send.c revision 766b5e5ae78dd04a93a275690a49e23d7dcb1f39
1/* 2 * Copyright (C) 2012 Alexander Block. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19#include <linux/bsearch.h> 20#include <linux/fs.h> 21#include <linux/file.h> 22#include <linux/sort.h> 23#include <linux/mount.h> 24#include <linux/xattr.h> 25#include <linux/posix_acl_xattr.h> 26#include <linux/radix-tree.h> 27#include <linux/vmalloc.h> 28#include <linux/string.h> 29 30#include "send.h" 31#include "backref.h" 32#include "hash.h" 33#include "locking.h" 34#include "disk-io.h" 35#include "btrfs_inode.h" 36#include "transaction.h" 37 38static int g_verbose = 0; 39 40#define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__) 41 42/* 43 * A fs_path is a helper to dynamically build path names with unknown size. 44 * It reallocates the internal buffer on demand. 45 * It allows fast adding of path elements on the right side (normal path) and 46 * fast adding to the left side (reversed path). A reversed path can also be 47 * unreversed if needed. 48 */ 49struct fs_path { 50 union { 51 struct { 52 char *start; 53 char *end; 54 55 char *buf; 56 unsigned short buf_len:15; 57 unsigned short reversed:1; 58 char inline_buf[]; 59 }; 60 /* 61 * Average path length does not exceed 200 bytes, we'll have 62 * better packing in the slab and higher chance to satisfy 63 * a allocation later during send. 64 */ 65 char pad[256]; 66 }; 67}; 68#define FS_PATH_INLINE_SIZE \ 69 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 70 71 72/* reused for each extent */ 73struct clone_root { 74 struct btrfs_root *root; 75 u64 ino; 76 u64 offset; 77 78 u64 found_refs; 79}; 80 81#define SEND_CTX_MAX_NAME_CACHE_SIZE 128 82#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 83 84struct send_ctx { 85 struct file *send_filp; 86 loff_t send_off; 87 char *send_buf; 88 u32 send_size; 89 u32 send_max_size; 90 u64 total_send_size; 91 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 92 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 93 94 struct btrfs_root *send_root; 95 struct btrfs_root *parent_root; 96 struct clone_root *clone_roots; 97 int clone_roots_cnt; 98 99 /* current state of the compare_tree call */ 100 struct btrfs_path *left_path; 101 struct btrfs_path *right_path; 102 struct btrfs_key *cmp_key; 103 104 /* 105 * infos of the currently processed inode. In case of deleted inodes, 106 * these are the values from the deleted inode. 107 */ 108 u64 cur_ino; 109 u64 cur_inode_gen; 110 int cur_inode_new; 111 int cur_inode_new_gen; 112 int cur_inode_deleted; 113 u64 cur_inode_size; 114 u64 cur_inode_mode; 115 u64 cur_inode_rdev; 116 u64 cur_inode_last_extent; 117 118 u64 send_progress; 119 120 struct list_head new_refs; 121 struct list_head deleted_refs; 122 123 struct radix_tree_root name_cache; 124 struct list_head name_cache_list; 125 int name_cache_size; 126 127 struct file_ra_state ra; 128 129 char *read_buf; 130 131 /* 132 * We process inodes by their increasing order, so if before an 133 * incremental send we reverse the parent/child relationship of 134 * directories such that a directory with a lower inode number was 135 * the parent of a directory with a higher inode number, and the one 136 * becoming the new parent got renamed too, we can't rename/move the 137 * directory with lower inode number when we finish processing it - we 138 * must process the directory with higher inode number first, then 139 * rename/move it and then rename/move the directory with lower inode 140 * number. Example follows. 141 * 142 * Tree state when the first send was performed: 143 * 144 * . 145 * |-- a (ino 257) 146 * |-- b (ino 258) 147 * | 148 * | 149 * |-- c (ino 259) 150 * | |-- d (ino 260) 151 * | 152 * |-- c2 (ino 261) 153 * 154 * Tree state when the second (incremental) send is performed: 155 * 156 * . 157 * |-- a (ino 257) 158 * |-- b (ino 258) 159 * |-- c2 (ino 261) 160 * |-- d2 (ino 260) 161 * |-- cc (ino 259) 162 * 163 * The sequence of steps that lead to the second state was: 164 * 165 * mv /a/b/c/d /a/b/c2/d2 166 * mv /a/b/c /a/b/c2/d2/cc 167 * 168 * "c" has lower inode number, but we can't move it (2nd mv operation) 169 * before we move "d", which has higher inode number. 170 * 171 * So we just memorize which move/rename operations must be performed 172 * later when their respective parent is processed and moved/renamed. 173 */ 174 175 /* Indexed by parent directory inode number. */ 176 struct rb_root pending_dir_moves; 177 178 /* 179 * Reverse index, indexed by the inode number of a directory that 180 * is waiting for the move/rename of its immediate parent before its 181 * own move/rename can be performed. 182 */ 183 struct rb_root waiting_dir_moves; 184 185 /* 186 * A directory that is going to be rm'ed might have a child directory 187 * which is in the pending directory moves index above. In this case, 188 * the directory can only be removed after the move/rename of its child 189 * is performed. Example: 190 * 191 * Parent snapshot: 192 * 193 * . (ino 256) 194 * |-- a/ (ino 257) 195 * |-- b/ (ino 258) 196 * |-- c/ (ino 259) 197 * | |-- x/ (ino 260) 198 * | 199 * |-- y/ (ino 261) 200 * 201 * Send snapshot: 202 * 203 * . (ino 256) 204 * |-- a/ (ino 257) 205 * |-- b/ (ino 258) 206 * |-- YY/ (ino 261) 207 * |-- x/ (ino 260) 208 * 209 * Sequence of steps that lead to the send snapshot: 210 * rm -f /a/b/c/foo.txt 211 * mv /a/b/y /a/b/YY 212 * mv /a/b/c/x /a/b/YY 213 * rmdir /a/b/c 214 * 215 * When the child is processed, its move/rename is delayed until its 216 * parent is processed (as explained above), but all other operations 217 * like update utimes, chown, chgrp, etc, are performed and the paths 218 * that it uses for those operations must use the orphanized name of 219 * its parent (the directory we're going to rm later), so we need to 220 * memorize that name. 221 * 222 * Indexed by the inode number of the directory to be deleted. 223 */ 224 struct rb_root orphan_dirs; 225}; 226 227struct pending_dir_move { 228 struct rb_node node; 229 struct list_head list; 230 u64 parent_ino; 231 u64 ino; 232 u64 gen; 233 struct list_head update_refs; 234}; 235 236struct waiting_dir_move { 237 struct rb_node node; 238 u64 ino; 239 /* 240 * There might be some directory that could not be removed because it 241 * was waiting for this directory inode to be moved first. Therefore 242 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 243 */ 244 u64 rmdir_ino; 245}; 246 247struct orphan_dir_info { 248 struct rb_node node; 249 u64 ino; 250 u64 gen; 251}; 252 253struct name_cache_entry { 254 struct list_head list; 255 /* 256 * radix_tree has only 32bit entries but we need to handle 64bit inums. 257 * We use the lower 32bit of the 64bit inum to store it in the tree. If 258 * more then one inum would fall into the same entry, we use radix_list 259 * to store the additional entries. radix_list is also used to store 260 * entries where two entries have the same inum but different 261 * generations. 262 */ 263 struct list_head radix_list; 264 u64 ino; 265 u64 gen; 266 u64 parent_ino; 267 u64 parent_gen; 268 int ret; 269 int need_later_update; 270 int name_len; 271 char name[]; 272}; 273 274static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 275 276static struct waiting_dir_move * 277get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 278 279static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino); 280 281static int need_send_hole(struct send_ctx *sctx) 282{ 283 return (sctx->parent_root && !sctx->cur_inode_new && 284 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 285 S_ISREG(sctx->cur_inode_mode)); 286} 287 288static void fs_path_reset(struct fs_path *p) 289{ 290 if (p->reversed) { 291 p->start = p->buf + p->buf_len - 1; 292 p->end = p->start; 293 *p->start = 0; 294 } else { 295 p->start = p->buf; 296 p->end = p->start; 297 *p->start = 0; 298 } 299} 300 301static struct fs_path *fs_path_alloc(void) 302{ 303 struct fs_path *p; 304 305 p = kmalloc(sizeof(*p), GFP_NOFS); 306 if (!p) 307 return NULL; 308 p->reversed = 0; 309 p->buf = p->inline_buf; 310 p->buf_len = FS_PATH_INLINE_SIZE; 311 fs_path_reset(p); 312 return p; 313} 314 315static struct fs_path *fs_path_alloc_reversed(void) 316{ 317 struct fs_path *p; 318 319 p = fs_path_alloc(); 320 if (!p) 321 return NULL; 322 p->reversed = 1; 323 fs_path_reset(p); 324 return p; 325} 326 327static void fs_path_free(struct fs_path *p) 328{ 329 if (!p) 330 return; 331 if (p->buf != p->inline_buf) 332 kfree(p->buf); 333 kfree(p); 334} 335 336static int fs_path_len(struct fs_path *p) 337{ 338 return p->end - p->start; 339} 340 341static int fs_path_ensure_buf(struct fs_path *p, int len) 342{ 343 char *tmp_buf; 344 int path_len; 345 int old_buf_len; 346 347 len++; 348 349 if (p->buf_len >= len) 350 return 0; 351 352 path_len = p->end - p->start; 353 old_buf_len = p->buf_len; 354 355 /* 356 * First time the inline_buf does not suffice 357 */ 358 if (p->buf == p->inline_buf) 359 tmp_buf = kmalloc(len, GFP_NOFS); 360 else 361 tmp_buf = krealloc(p->buf, len, GFP_NOFS); 362 if (!tmp_buf) 363 return -ENOMEM; 364 p->buf = tmp_buf; 365 /* 366 * The real size of the buffer is bigger, this will let the fast path 367 * happen most of the time 368 */ 369 p->buf_len = ksize(p->buf); 370 371 if (p->reversed) { 372 tmp_buf = p->buf + old_buf_len - path_len - 1; 373 p->end = p->buf + p->buf_len - 1; 374 p->start = p->end - path_len; 375 memmove(p->start, tmp_buf, path_len + 1); 376 } else { 377 p->start = p->buf; 378 p->end = p->start + path_len; 379 } 380 return 0; 381} 382 383static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 384 char **prepared) 385{ 386 int ret; 387 int new_len; 388 389 new_len = p->end - p->start + name_len; 390 if (p->start != p->end) 391 new_len++; 392 ret = fs_path_ensure_buf(p, new_len); 393 if (ret < 0) 394 goto out; 395 396 if (p->reversed) { 397 if (p->start != p->end) 398 *--p->start = '/'; 399 p->start -= name_len; 400 *prepared = p->start; 401 } else { 402 if (p->start != p->end) 403 *p->end++ = '/'; 404 *prepared = p->end; 405 p->end += name_len; 406 *p->end = 0; 407 } 408 409out: 410 return ret; 411} 412 413static int fs_path_add(struct fs_path *p, const char *name, int name_len) 414{ 415 int ret; 416 char *prepared; 417 418 ret = fs_path_prepare_for_add(p, name_len, &prepared); 419 if (ret < 0) 420 goto out; 421 memcpy(prepared, name, name_len); 422 423out: 424 return ret; 425} 426 427static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 428{ 429 int ret; 430 char *prepared; 431 432 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 433 if (ret < 0) 434 goto out; 435 memcpy(prepared, p2->start, p2->end - p2->start); 436 437out: 438 return ret; 439} 440 441static int fs_path_add_from_extent_buffer(struct fs_path *p, 442 struct extent_buffer *eb, 443 unsigned long off, int len) 444{ 445 int ret; 446 char *prepared; 447 448 ret = fs_path_prepare_for_add(p, len, &prepared); 449 if (ret < 0) 450 goto out; 451 452 read_extent_buffer(eb, prepared, off, len); 453 454out: 455 return ret; 456} 457 458static int fs_path_copy(struct fs_path *p, struct fs_path *from) 459{ 460 int ret; 461 462 p->reversed = from->reversed; 463 fs_path_reset(p); 464 465 ret = fs_path_add_path(p, from); 466 467 return ret; 468} 469 470 471static void fs_path_unreverse(struct fs_path *p) 472{ 473 char *tmp; 474 int len; 475 476 if (!p->reversed) 477 return; 478 479 tmp = p->start; 480 len = p->end - p->start; 481 p->start = p->buf; 482 p->end = p->start + len; 483 memmove(p->start, tmp, len + 1); 484 p->reversed = 0; 485} 486 487static struct btrfs_path *alloc_path_for_send(void) 488{ 489 struct btrfs_path *path; 490 491 path = btrfs_alloc_path(); 492 if (!path) 493 return NULL; 494 path->search_commit_root = 1; 495 path->skip_locking = 1; 496 path->need_commit_sem = 1; 497 return path; 498} 499 500static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 501{ 502 int ret; 503 mm_segment_t old_fs; 504 u32 pos = 0; 505 506 old_fs = get_fs(); 507 set_fs(KERNEL_DS); 508 509 while (pos < len) { 510 ret = vfs_write(filp, (char *)buf + pos, len - pos, off); 511 /* TODO handle that correctly */ 512 /*if (ret == -ERESTARTSYS) { 513 continue; 514 }*/ 515 if (ret < 0) 516 goto out; 517 if (ret == 0) { 518 ret = -EIO; 519 goto out; 520 } 521 pos += ret; 522 } 523 524 ret = 0; 525 526out: 527 set_fs(old_fs); 528 return ret; 529} 530 531static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 532{ 533 struct btrfs_tlv_header *hdr; 534 int total_len = sizeof(*hdr) + len; 535 int left = sctx->send_max_size - sctx->send_size; 536 537 if (unlikely(left < total_len)) 538 return -EOVERFLOW; 539 540 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 541 hdr->tlv_type = cpu_to_le16(attr); 542 hdr->tlv_len = cpu_to_le16(len); 543 memcpy(hdr + 1, data, len); 544 sctx->send_size += total_len; 545 546 return 0; 547} 548 549#define TLV_PUT_DEFINE_INT(bits) \ 550 static int tlv_put_u##bits(struct send_ctx *sctx, \ 551 u##bits attr, u##bits value) \ 552 { \ 553 __le##bits __tmp = cpu_to_le##bits(value); \ 554 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 555 } 556 557TLV_PUT_DEFINE_INT(64) 558 559static int tlv_put_string(struct send_ctx *sctx, u16 attr, 560 const char *str, int len) 561{ 562 if (len == -1) 563 len = strlen(str); 564 return tlv_put(sctx, attr, str, len); 565} 566 567static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 568 const u8 *uuid) 569{ 570 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 571} 572 573static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 574 struct extent_buffer *eb, 575 struct btrfs_timespec *ts) 576{ 577 struct btrfs_timespec bts; 578 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 579 return tlv_put(sctx, attr, &bts, sizeof(bts)); 580} 581 582 583#define TLV_PUT(sctx, attrtype, attrlen, data) \ 584 do { \ 585 ret = tlv_put(sctx, attrtype, attrlen, data); \ 586 if (ret < 0) \ 587 goto tlv_put_failure; \ 588 } while (0) 589 590#define TLV_PUT_INT(sctx, attrtype, bits, value) \ 591 do { \ 592 ret = tlv_put_u##bits(sctx, attrtype, value); \ 593 if (ret < 0) \ 594 goto tlv_put_failure; \ 595 } while (0) 596 597#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 598#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 599#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 600#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 601#define TLV_PUT_STRING(sctx, attrtype, str, len) \ 602 do { \ 603 ret = tlv_put_string(sctx, attrtype, str, len); \ 604 if (ret < 0) \ 605 goto tlv_put_failure; \ 606 } while (0) 607#define TLV_PUT_PATH(sctx, attrtype, p) \ 608 do { \ 609 ret = tlv_put_string(sctx, attrtype, p->start, \ 610 p->end - p->start); \ 611 if (ret < 0) \ 612 goto tlv_put_failure; \ 613 } while(0) 614#define TLV_PUT_UUID(sctx, attrtype, uuid) \ 615 do { \ 616 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 617 if (ret < 0) \ 618 goto tlv_put_failure; \ 619 } while (0) 620#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 621 do { \ 622 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 623 if (ret < 0) \ 624 goto tlv_put_failure; \ 625 } while (0) 626 627static int send_header(struct send_ctx *sctx) 628{ 629 struct btrfs_stream_header hdr; 630 631 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 632 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 633 634 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 635 &sctx->send_off); 636} 637 638/* 639 * For each command/item we want to send to userspace, we call this function. 640 */ 641static int begin_cmd(struct send_ctx *sctx, int cmd) 642{ 643 struct btrfs_cmd_header *hdr; 644 645 if (WARN_ON(!sctx->send_buf)) 646 return -EINVAL; 647 648 BUG_ON(sctx->send_size); 649 650 sctx->send_size += sizeof(*hdr); 651 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 652 hdr->cmd = cpu_to_le16(cmd); 653 654 return 0; 655} 656 657static int send_cmd(struct send_ctx *sctx) 658{ 659 int ret; 660 struct btrfs_cmd_header *hdr; 661 u32 crc; 662 663 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 664 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr)); 665 hdr->crc = 0; 666 667 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 668 hdr->crc = cpu_to_le32(crc); 669 670 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 671 &sctx->send_off); 672 673 sctx->total_send_size += sctx->send_size; 674 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size; 675 sctx->send_size = 0; 676 677 return ret; 678} 679 680/* 681 * Sends a move instruction to user space 682 */ 683static int send_rename(struct send_ctx *sctx, 684 struct fs_path *from, struct fs_path *to) 685{ 686 int ret; 687 688verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start); 689 690 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 691 if (ret < 0) 692 goto out; 693 694 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 695 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 696 697 ret = send_cmd(sctx); 698 699tlv_put_failure: 700out: 701 return ret; 702} 703 704/* 705 * Sends a link instruction to user space 706 */ 707static int send_link(struct send_ctx *sctx, 708 struct fs_path *path, struct fs_path *lnk) 709{ 710 int ret; 711 712verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start); 713 714 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 715 if (ret < 0) 716 goto out; 717 718 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 719 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 720 721 ret = send_cmd(sctx); 722 723tlv_put_failure: 724out: 725 return ret; 726} 727 728/* 729 * Sends an unlink instruction to user space 730 */ 731static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 732{ 733 int ret; 734 735verbose_printk("btrfs: send_unlink %s\n", path->start); 736 737 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 738 if (ret < 0) 739 goto out; 740 741 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 742 743 ret = send_cmd(sctx); 744 745tlv_put_failure: 746out: 747 return ret; 748} 749 750/* 751 * Sends a rmdir instruction to user space 752 */ 753static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 754{ 755 int ret; 756 757verbose_printk("btrfs: send_rmdir %s\n", path->start); 758 759 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 760 if (ret < 0) 761 goto out; 762 763 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 764 765 ret = send_cmd(sctx); 766 767tlv_put_failure: 768out: 769 return ret; 770} 771 772/* 773 * Helper function to retrieve some fields from an inode item. 774 */ 775static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 776 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 777 u64 *gid, u64 *rdev) 778{ 779 int ret; 780 struct btrfs_inode_item *ii; 781 struct btrfs_key key; 782 783 key.objectid = ino; 784 key.type = BTRFS_INODE_ITEM_KEY; 785 key.offset = 0; 786 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 787 if (ret) { 788 if (ret > 0) 789 ret = -ENOENT; 790 return ret; 791 } 792 793 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 794 struct btrfs_inode_item); 795 if (size) 796 *size = btrfs_inode_size(path->nodes[0], ii); 797 if (gen) 798 *gen = btrfs_inode_generation(path->nodes[0], ii); 799 if (mode) 800 *mode = btrfs_inode_mode(path->nodes[0], ii); 801 if (uid) 802 *uid = btrfs_inode_uid(path->nodes[0], ii); 803 if (gid) 804 *gid = btrfs_inode_gid(path->nodes[0], ii); 805 if (rdev) 806 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 807 808 return ret; 809} 810 811static int get_inode_info(struct btrfs_root *root, 812 u64 ino, u64 *size, u64 *gen, 813 u64 *mode, u64 *uid, u64 *gid, 814 u64 *rdev) 815{ 816 struct btrfs_path *path; 817 int ret; 818 819 path = alloc_path_for_send(); 820 if (!path) 821 return -ENOMEM; 822 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 823 rdev); 824 btrfs_free_path(path); 825 return ret; 826} 827 828typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 829 struct fs_path *p, 830 void *ctx); 831 832/* 833 * Helper function to iterate the entries in ONE btrfs_inode_ref or 834 * btrfs_inode_extref. 835 * The iterate callback may return a non zero value to stop iteration. This can 836 * be a negative value for error codes or 1 to simply stop it. 837 * 838 * path must point to the INODE_REF or INODE_EXTREF when called. 839 */ 840static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 841 struct btrfs_key *found_key, int resolve, 842 iterate_inode_ref_t iterate, void *ctx) 843{ 844 struct extent_buffer *eb = path->nodes[0]; 845 struct btrfs_item *item; 846 struct btrfs_inode_ref *iref; 847 struct btrfs_inode_extref *extref; 848 struct btrfs_path *tmp_path; 849 struct fs_path *p; 850 u32 cur = 0; 851 u32 total; 852 int slot = path->slots[0]; 853 u32 name_len; 854 char *start; 855 int ret = 0; 856 int num = 0; 857 int index; 858 u64 dir; 859 unsigned long name_off; 860 unsigned long elem_size; 861 unsigned long ptr; 862 863 p = fs_path_alloc_reversed(); 864 if (!p) 865 return -ENOMEM; 866 867 tmp_path = alloc_path_for_send(); 868 if (!tmp_path) { 869 fs_path_free(p); 870 return -ENOMEM; 871 } 872 873 874 if (found_key->type == BTRFS_INODE_REF_KEY) { 875 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 876 struct btrfs_inode_ref); 877 item = btrfs_item_nr(slot); 878 total = btrfs_item_size(eb, item); 879 elem_size = sizeof(*iref); 880 } else { 881 ptr = btrfs_item_ptr_offset(eb, slot); 882 total = btrfs_item_size_nr(eb, slot); 883 elem_size = sizeof(*extref); 884 } 885 886 while (cur < total) { 887 fs_path_reset(p); 888 889 if (found_key->type == BTRFS_INODE_REF_KEY) { 890 iref = (struct btrfs_inode_ref *)(ptr + cur); 891 name_len = btrfs_inode_ref_name_len(eb, iref); 892 name_off = (unsigned long)(iref + 1); 893 index = btrfs_inode_ref_index(eb, iref); 894 dir = found_key->offset; 895 } else { 896 extref = (struct btrfs_inode_extref *)(ptr + cur); 897 name_len = btrfs_inode_extref_name_len(eb, extref); 898 name_off = (unsigned long)&extref->name; 899 index = btrfs_inode_extref_index(eb, extref); 900 dir = btrfs_inode_extref_parent(eb, extref); 901 } 902 903 if (resolve) { 904 start = btrfs_ref_to_path(root, tmp_path, name_len, 905 name_off, eb, dir, 906 p->buf, p->buf_len); 907 if (IS_ERR(start)) { 908 ret = PTR_ERR(start); 909 goto out; 910 } 911 if (start < p->buf) { 912 /* overflow , try again with larger buffer */ 913 ret = fs_path_ensure_buf(p, 914 p->buf_len + p->buf - start); 915 if (ret < 0) 916 goto out; 917 start = btrfs_ref_to_path(root, tmp_path, 918 name_len, name_off, 919 eb, dir, 920 p->buf, p->buf_len); 921 if (IS_ERR(start)) { 922 ret = PTR_ERR(start); 923 goto out; 924 } 925 BUG_ON(start < p->buf); 926 } 927 p->start = start; 928 } else { 929 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 930 name_len); 931 if (ret < 0) 932 goto out; 933 } 934 935 cur += elem_size + name_len; 936 ret = iterate(num, dir, index, p, ctx); 937 if (ret) 938 goto out; 939 num++; 940 } 941 942out: 943 btrfs_free_path(tmp_path); 944 fs_path_free(p); 945 return ret; 946} 947 948typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 949 const char *name, int name_len, 950 const char *data, int data_len, 951 u8 type, void *ctx); 952 953/* 954 * Helper function to iterate the entries in ONE btrfs_dir_item. 955 * The iterate callback may return a non zero value to stop iteration. This can 956 * be a negative value for error codes or 1 to simply stop it. 957 * 958 * path must point to the dir item when called. 959 */ 960static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 961 struct btrfs_key *found_key, 962 iterate_dir_item_t iterate, void *ctx) 963{ 964 int ret = 0; 965 struct extent_buffer *eb; 966 struct btrfs_item *item; 967 struct btrfs_dir_item *di; 968 struct btrfs_key di_key; 969 char *buf = NULL; 970 const int buf_len = PATH_MAX; 971 u32 name_len; 972 u32 data_len; 973 u32 cur; 974 u32 len; 975 u32 total; 976 int slot; 977 int num; 978 u8 type; 979 980 buf = kmalloc(buf_len, GFP_NOFS); 981 if (!buf) { 982 ret = -ENOMEM; 983 goto out; 984 } 985 986 eb = path->nodes[0]; 987 slot = path->slots[0]; 988 item = btrfs_item_nr(slot); 989 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 990 cur = 0; 991 len = 0; 992 total = btrfs_item_size(eb, item); 993 994 num = 0; 995 while (cur < total) { 996 name_len = btrfs_dir_name_len(eb, di); 997 data_len = btrfs_dir_data_len(eb, di); 998 type = btrfs_dir_type(eb, di); 999 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1000 1001 /* 1002 * Path too long 1003 */ 1004 if (name_len + data_len > buf_len) { 1005 ret = -ENAMETOOLONG; 1006 goto out; 1007 } 1008 1009 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1010 name_len + data_len); 1011 1012 len = sizeof(*di) + name_len + data_len; 1013 di = (struct btrfs_dir_item *)((char *)di + len); 1014 cur += len; 1015 1016 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1017 data_len, type, ctx); 1018 if (ret < 0) 1019 goto out; 1020 if (ret) { 1021 ret = 0; 1022 goto out; 1023 } 1024 1025 num++; 1026 } 1027 1028out: 1029 kfree(buf); 1030 return ret; 1031} 1032 1033static int __copy_first_ref(int num, u64 dir, int index, 1034 struct fs_path *p, void *ctx) 1035{ 1036 int ret; 1037 struct fs_path *pt = ctx; 1038 1039 ret = fs_path_copy(pt, p); 1040 if (ret < 0) 1041 return ret; 1042 1043 /* we want the first only */ 1044 return 1; 1045} 1046 1047/* 1048 * Retrieve the first path of an inode. If an inode has more then one 1049 * ref/hardlink, this is ignored. 1050 */ 1051static int get_inode_path(struct btrfs_root *root, 1052 u64 ino, struct fs_path *path) 1053{ 1054 int ret; 1055 struct btrfs_key key, found_key; 1056 struct btrfs_path *p; 1057 1058 p = alloc_path_for_send(); 1059 if (!p) 1060 return -ENOMEM; 1061 1062 fs_path_reset(path); 1063 1064 key.objectid = ino; 1065 key.type = BTRFS_INODE_REF_KEY; 1066 key.offset = 0; 1067 1068 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1069 if (ret < 0) 1070 goto out; 1071 if (ret) { 1072 ret = 1; 1073 goto out; 1074 } 1075 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1076 if (found_key.objectid != ino || 1077 (found_key.type != BTRFS_INODE_REF_KEY && 1078 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1079 ret = -ENOENT; 1080 goto out; 1081 } 1082 1083 ret = iterate_inode_ref(root, p, &found_key, 1, 1084 __copy_first_ref, path); 1085 if (ret < 0) 1086 goto out; 1087 ret = 0; 1088 1089out: 1090 btrfs_free_path(p); 1091 return ret; 1092} 1093 1094struct backref_ctx { 1095 struct send_ctx *sctx; 1096 1097 struct btrfs_path *path; 1098 /* number of total found references */ 1099 u64 found; 1100 1101 /* 1102 * used for clones found in send_root. clones found behind cur_objectid 1103 * and cur_offset are not considered as allowed clones. 1104 */ 1105 u64 cur_objectid; 1106 u64 cur_offset; 1107 1108 /* may be truncated in case it's the last extent in a file */ 1109 u64 extent_len; 1110 1111 /* Just to check for bugs in backref resolving */ 1112 int found_itself; 1113}; 1114 1115static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1116{ 1117 u64 root = (u64)(uintptr_t)key; 1118 struct clone_root *cr = (struct clone_root *)elt; 1119 1120 if (root < cr->root->objectid) 1121 return -1; 1122 if (root > cr->root->objectid) 1123 return 1; 1124 return 0; 1125} 1126 1127static int __clone_root_cmp_sort(const void *e1, const void *e2) 1128{ 1129 struct clone_root *cr1 = (struct clone_root *)e1; 1130 struct clone_root *cr2 = (struct clone_root *)e2; 1131 1132 if (cr1->root->objectid < cr2->root->objectid) 1133 return -1; 1134 if (cr1->root->objectid > cr2->root->objectid) 1135 return 1; 1136 return 0; 1137} 1138 1139/* 1140 * Called for every backref that is found for the current extent. 1141 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1142 */ 1143static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1144{ 1145 struct backref_ctx *bctx = ctx_; 1146 struct clone_root *found; 1147 int ret; 1148 u64 i_size; 1149 1150 /* First check if the root is in the list of accepted clone sources */ 1151 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1152 bctx->sctx->clone_roots_cnt, 1153 sizeof(struct clone_root), 1154 __clone_root_cmp_bsearch); 1155 if (!found) 1156 return 0; 1157 1158 if (found->root == bctx->sctx->send_root && 1159 ino == bctx->cur_objectid && 1160 offset == bctx->cur_offset) { 1161 bctx->found_itself = 1; 1162 } 1163 1164 /* 1165 * There are inodes that have extents that lie behind its i_size. Don't 1166 * accept clones from these extents. 1167 */ 1168 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL, 1169 NULL, NULL, NULL); 1170 btrfs_release_path(bctx->path); 1171 if (ret < 0) 1172 return ret; 1173 1174 if (offset + bctx->extent_len > i_size) 1175 return 0; 1176 1177 /* 1178 * Make sure we don't consider clones from send_root that are 1179 * behind the current inode/offset. 1180 */ 1181 if (found->root == bctx->sctx->send_root) { 1182 /* 1183 * TODO for the moment we don't accept clones from the inode 1184 * that is currently send. We may change this when 1185 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same 1186 * file. 1187 */ 1188 if (ino >= bctx->cur_objectid) 1189 return 0; 1190#if 0 1191 if (ino > bctx->cur_objectid) 1192 return 0; 1193 if (offset + bctx->extent_len > bctx->cur_offset) 1194 return 0; 1195#endif 1196 } 1197 1198 bctx->found++; 1199 found->found_refs++; 1200 if (ino < found->ino) { 1201 found->ino = ino; 1202 found->offset = offset; 1203 } else if (found->ino == ino) { 1204 /* 1205 * same extent found more then once in the same file. 1206 */ 1207 if (found->offset > offset + bctx->extent_len) 1208 found->offset = offset; 1209 } 1210 1211 return 0; 1212} 1213 1214/* 1215 * Given an inode, offset and extent item, it finds a good clone for a clone 1216 * instruction. Returns -ENOENT when none could be found. The function makes 1217 * sure that the returned clone is usable at the point where sending is at the 1218 * moment. This means, that no clones are accepted which lie behind the current 1219 * inode+offset. 1220 * 1221 * path must point to the extent item when called. 1222 */ 1223static int find_extent_clone(struct send_ctx *sctx, 1224 struct btrfs_path *path, 1225 u64 ino, u64 data_offset, 1226 u64 ino_size, 1227 struct clone_root **found) 1228{ 1229 int ret; 1230 int extent_type; 1231 u64 logical; 1232 u64 disk_byte; 1233 u64 num_bytes; 1234 u64 extent_item_pos; 1235 u64 flags = 0; 1236 struct btrfs_file_extent_item *fi; 1237 struct extent_buffer *eb = path->nodes[0]; 1238 struct backref_ctx *backref_ctx = NULL; 1239 struct clone_root *cur_clone_root; 1240 struct btrfs_key found_key; 1241 struct btrfs_path *tmp_path; 1242 int compressed; 1243 u32 i; 1244 1245 tmp_path = alloc_path_for_send(); 1246 if (!tmp_path) 1247 return -ENOMEM; 1248 1249 /* We only use this path under the commit sem */ 1250 tmp_path->need_commit_sem = 0; 1251 1252 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS); 1253 if (!backref_ctx) { 1254 ret = -ENOMEM; 1255 goto out; 1256 } 1257 1258 backref_ctx->path = tmp_path; 1259 1260 if (data_offset >= ino_size) { 1261 /* 1262 * There may be extents that lie behind the file's size. 1263 * I at least had this in combination with snapshotting while 1264 * writing large files. 1265 */ 1266 ret = 0; 1267 goto out; 1268 } 1269 1270 fi = btrfs_item_ptr(eb, path->slots[0], 1271 struct btrfs_file_extent_item); 1272 extent_type = btrfs_file_extent_type(eb, fi); 1273 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1274 ret = -ENOENT; 1275 goto out; 1276 } 1277 compressed = btrfs_file_extent_compression(eb, fi); 1278 1279 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1280 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1281 if (disk_byte == 0) { 1282 ret = -ENOENT; 1283 goto out; 1284 } 1285 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1286 1287 down_read(&sctx->send_root->fs_info->commit_root_sem); 1288 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path, 1289 &found_key, &flags); 1290 up_read(&sctx->send_root->fs_info->commit_root_sem); 1291 btrfs_release_path(tmp_path); 1292 1293 if (ret < 0) 1294 goto out; 1295 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1296 ret = -EIO; 1297 goto out; 1298 } 1299 1300 /* 1301 * Setup the clone roots. 1302 */ 1303 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1304 cur_clone_root = sctx->clone_roots + i; 1305 cur_clone_root->ino = (u64)-1; 1306 cur_clone_root->offset = 0; 1307 cur_clone_root->found_refs = 0; 1308 } 1309 1310 backref_ctx->sctx = sctx; 1311 backref_ctx->found = 0; 1312 backref_ctx->cur_objectid = ino; 1313 backref_ctx->cur_offset = data_offset; 1314 backref_ctx->found_itself = 0; 1315 backref_ctx->extent_len = num_bytes; 1316 1317 /* 1318 * The last extent of a file may be too large due to page alignment. 1319 * We need to adjust extent_len in this case so that the checks in 1320 * __iterate_backrefs work. 1321 */ 1322 if (data_offset + num_bytes >= ino_size) 1323 backref_ctx->extent_len = ino_size - data_offset; 1324 1325 /* 1326 * Now collect all backrefs. 1327 */ 1328 if (compressed == BTRFS_COMPRESS_NONE) 1329 extent_item_pos = logical - found_key.objectid; 1330 else 1331 extent_item_pos = 0; 1332 ret = iterate_extent_inodes(sctx->send_root->fs_info, 1333 found_key.objectid, extent_item_pos, 1, 1334 __iterate_backrefs, backref_ctx); 1335 1336 if (ret < 0) 1337 goto out; 1338 1339 if (!backref_ctx->found_itself) { 1340 /* found a bug in backref code? */ 1341 ret = -EIO; 1342 btrfs_err(sctx->send_root->fs_info, "did not find backref in " 1343 "send_root. inode=%llu, offset=%llu, " 1344 "disk_byte=%llu found extent=%llu\n", 1345 ino, data_offset, disk_byte, found_key.objectid); 1346 goto out; 1347 } 1348 1349verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, " 1350 "ino=%llu, " 1351 "num_bytes=%llu, logical=%llu\n", 1352 data_offset, ino, num_bytes, logical); 1353 1354 if (!backref_ctx->found) 1355 verbose_printk("btrfs: no clones found\n"); 1356 1357 cur_clone_root = NULL; 1358 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1359 if (sctx->clone_roots[i].found_refs) { 1360 if (!cur_clone_root) 1361 cur_clone_root = sctx->clone_roots + i; 1362 else if (sctx->clone_roots[i].root == sctx->send_root) 1363 /* prefer clones from send_root over others */ 1364 cur_clone_root = sctx->clone_roots + i; 1365 } 1366 1367 } 1368 1369 if (cur_clone_root) { 1370 if (compressed != BTRFS_COMPRESS_NONE) { 1371 /* 1372 * Offsets given by iterate_extent_inodes() are relative 1373 * to the start of the extent, we need to add logical 1374 * offset from the file extent item. 1375 * (See why at backref.c:check_extent_in_eb()) 1376 */ 1377 cur_clone_root->offset += btrfs_file_extent_offset(eb, 1378 fi); 1379 } 1380 *found = cur_clone_root; 1381 ret = 0; 1382 } else { 1383 ret = -ENOENT; 1384 } 1385 1386out: 1387 btrfs_free_path(tmp_path); 1388 kfree(backref_ctx); 1389 return ret; 1390} 1391 1392static int read_symlink(struct btrfs_root *root, 1393 u64 ino, 1394 struct fs_path *dest) 1395{ 1396 int ret; 1397 struct btrfs_path *path; 1398 struct btrfs_key key; 1399 struct btrfs_file_extent_item *ei; 1400 u8 type; 1401 u8 compression; 1402 unsigned long off; 1403 int len; 1404 1405 path = alloc_path_for_send(); 1406 if (!path) 1407 return -ENOMEM; 1408 1409 key.objectid = ino; 1410 key.type = BTRFS_EXTENT_DATA_KEY; 1411 key.offset = 0; 1412 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1413 if (ret < 0) 1414 goto out; 1415 BUG_ON(ret); 1416 1417 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1418 struct btrfs_file_extent_item); 1419 type = btrfs_file_extent_type(path->nodes[0], ei); 1420 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1421 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1422 BUG_ON(compression); 1423 1424 off = btrfs_file_extent_inline_start(ei); 1425 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei); 1426 1427 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1428 1429out: 1430 btrfs_free_path(path); 1431 return ret; 1432} 1433 1434/* 1435 * Helper function to generate a file name that is unique in the root of 1436 * send_root and parent_root. This is used to generate names for orphan inodes. 1437 */ 1438static int gen_unique_name(struct send_ctx *sctx, 1439 u64 ino, u64 gen, 1440 struct fs_path *dest) 1441{ 1442 int ret = 0; 1443 struct btrfs_path *path; 1444 struct btrfs_dir_item *di; 1445 char tmp[64]; 1446 int len; 1447 u64 idx = 0; 1448 1449 path = alloc_path_for_send(); 1450 if (!path) 1451 return -ENOMEM; 1452 1453 while (1) { 1454 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1455 ino, gen, idx); 1456 ASSERT(len < sizeof(tmp)); 1457 1458 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1459 path, BTRFS_FIRST_FREE_OBJECTID, 1460 tmp, strlen(tmp), 0); 1461 btrfs_release_path(path); 1462 if (IS_ERR(di)) { 1463 ret = PTR_ERR(di); 1464 goto out; 1465 } 1466 if (di) { 1467 /* not unique, try again */ 1468 idx++; 1469 continue; 1470 } 1471 1472 if (!sctx->parent_root) { 1473 /* unique */ 1474 ret = 0; 1475 break; 1476 } 1477 1478 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1479 path, BTRFS_FIRST_FREE_OBJECTID, 1480 tmp, strlen(tmp), 0); 1481 btrfs_release_path(path); 1482 if (IS_ERR(di)) { 1483 ret = PTR_ERR(di); 1484 goto out; 1485 } 1486 if (di) { 1487 /* not unique, try again */ 1488 idx++; 1489 continue; 1490 } 1491 /* unique */ 1492 break; 1493 } 1494 1495 ret = fs_path_add(dest, tmp, strlen(tmp)); 1496 1497out: 1498 btrfs_free_path(path); 1499 return ret; 1500} 1501 1502enum inode_state { 1503 inode_state_no_change, 1504 inode_state_will_create, 1505 inode_state_did_create, 1506 inode_state_will_delete, 1507 inode_state_did_delete, 1508}; 1509 1510static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1511{ 1512 int ret; 1513 int left_ret; 1514 int right_ret; 1515 u64 left_gen; 1516 u64 right_gen; 1517 1518 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1519 NULL, NULL); 1520 if (ret < 0 && ret != -ENOENT) 1521 goto out; 1522 left_ret = ret; 1523 1524 if (!sctx->parent_root) { 1525 right_ret = -ENOENT; 1526 } else { 1527 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1528 NULL, NULL, NULL, NULL); 1529 if (ret < 0 && ret != -ENOENT) 1530 goto out; 1531 right_ret = ret; 1532 } 1533 1534 if (!left_ret && !right_ret) { 1535 if (left_gen == gen && right_gen == gen) { 1536 ret = inode_state_no_change; 1537 } else if (left_gen == gen) { 1538 if (ino < sctx->send_progress) 1539 ret = inode_state_did_create; 1540 else 1541 ret = inode_state_will_create; 1542 } else if (right_gen == gen) { 1543 if (ino < sctx->send_progress) 1544 ret = inode_state_did_delete; 1545 else 1546 ret = inode_state_will_delete; 1547 } else { 1548 ret = -ENOENT; 1549 } 1550 } else if (!left_ret) { 1551 if (left_gen == gen) { 1552 if (ino < sctx->send_progress) 1553 ret = inode_state_did_create; 1554 else 1555 ret = inode_state_will_create; 1556 } else { 1557 ret = -ENOENT; 1558 } 1559 } else if (!right_ret) { 1560 if (right_gen == gen) { 1561 if (ino < sctx->send_progress) 1562 ret = inode_state_did_delete; 1563 else 1564 ret = inode_state_will_delete; 1565 } else { 1566 ret = -ENOENT; 1567 } 1568 } else { 1569 ret = -ENOENT; 1570 } 1571 1572out: 1573 return ret; 1574} 1575 1576static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1577{ 1578 int ret; 1579 1580 ret = get_cur_inode_state(sctx, ino, gen); 1581 if (ret < 0) 1582 goto out; 1583 1584 if (ret == inode_state_no_change || 1585 ret == inode_state_did_create || 1586 ret == inode_state_will_delete) 1587 ret = 1; 1588 else 1589 ret = 0; 1590 1591out: 1592 return ret; 1593} 1594 1595/* 1596 * Helper function to lookup a dir item in a dir. 1597 */ 1598static int lookup_dir_item_inode(struct btrfs_root *root, 1599 u64 dir, const char *name, int name_len, 1600 u64 *found_inode, 1601 u8 *found_type) 1602{ 1603 int ret = 0; 1604 struct btrfs_dir_item *di; 1605 struct btrfs_key key; 1606 struct btrfs_path *path; 1607 1608 path = alloc_path_for_send(); 1609 if (!path) 1610 return -ENOMEM; 1611 1612 di = btrfs_lookup_dir_item(NULL, root, path, 1613 dir, name, name_len, 0); 1614 if (!di) { 1615 ret = -ENOENT; 1616 goto out; 1617 } 1618 if (IS_ERR(di)) { 1619 ret = PTR_ERR(di); 1620 goto out; 1621 } 1622 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1623 *found_inode = key.objectid; 1624 *found_type = btrfs_dir_type(path->nodes[0], di); 1625 1626out: 1627 btrfs_free_path(path); 1628 return ret; 1629} 1630 1631/* 1632 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1633 * generation of the parent dir and the name of the dir entry. 1634 */ 1635static int get_first_ref(struct btrfs_root *root, u64 ino, 1636 u64 *dir, u64 *dir_gen, struct fs_path *name) 1637{ 1638 int ret; 1639 struct btrfs_key key; 1640 struct btrfs_key found_key; 1641 struct btrfs_path *path; 1642 int len; 1643 u64 parent_dir; 1644 1645 path = alloc_path_for_send(); 1646 if (!path) 1647 return -ENOMEM; 1648 1649 key.objectid = ino; 1650 key.type = BTRFS_INODE_REF_KEY; 1651 key.offset = 0; 1652 1653 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1654 if (ret < 0) 1655 goto out; 1656 if (!ret) 1657 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1658 path->slots[0]); 1659 if (ret || found_key.objectid != ino || 1660 (found_key.type != BTRFS_INODE_REF_KEY && 1661 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1662 ret = -ENOENT; 1663 goto out; 1664 } 1665 1666 if (key.type == BTRFS_INODE_REF_KEY) { 1667 struct btrfs_inode_ref *iref; 1668 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1669 struct btrfs_inode_ref); 1670 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1671 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1672 (unsigned long)(iref + 1), 1673 len); 1674 parent_dir = found_key.offset; 1675 } else { 1676 struct btrfs_inode_extref *extref; 1677 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1678 struct btrfs_inode_extref); 1679 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1680 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1681 (unsigned long)&extref->name, len); 1682 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1683 } 1684 if (ret < 0) 1685 goto out; 1686 btrfs_release_path(path); 1687 1688 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, NULL, 1689 NULL, NULL); 1690 if (ret < 0) 1691 goto out; 1692 1693 *dir = parent_dir; 1694 1695out: 1696 btrfs_free_path(path); 1697 return ret; 1698} 1699 1700static int is_first_ref(struct btrfs_root *root, 1701 u64 ino, u64 dir, 1702 const char *name, int name_len) 1703{ 1704 int ret; 1705 struct fs_path *tmp_name; 1706 u64 tmp_dir; 1707 u64 tmp_dir_gen; 1708 1709 tmp_name = fs_path_alloc(); 1710 if (!tmp_name) 1711 return -ENOMEM; 1712 1713 ret = get_first_ref(root, ino, &tmp_dir, &tmp_dir_gen, tmp_name); 1714 if (ret < 0) 1715 goto out; 1716 1717 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1718 ret = 0; 1719 goto out; 1720 } 1721 1722 ret = !memcmp(tmp_name->start, name, name_len); 1723 1724out: 1725 fs_path_free(tmp_name); 1726 return ret; 1727} 1728 1729/* 1730 * Used by process_recorded_refs to determine if a new ref would overwrite an 1731 * already existing ref. In case it detects an overwrite, it returns the 1732 * inode/gen in who_ino/who_gen. 1733 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1734 * to make sure later references to the overwritten inode are possible. 1735 * Orphanizing is however only required for the first ref of an inode. 1736 * process_recorded_refs does an additional is_first_ref check to see if 1737 * orphanizing is really required. 1738 */ 1739static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1740 const char *name, int name_len, 1741 u64 *who_ino, u64 *who_gen) 1742{ 1743 int ret = 0; 1744 u64 gen; 1745 u64 other_inode = 0; 1746 u8 other_type = 0; 1747 1748 if (!sctx->parent_root) 1749 goto out; 1750 1751 ret = is_inode_existent(sctx, dir, dir_gen); 1752 if (ret <= 0) 1753 goto out; 1754 1755 /* 1756 * If we have a parent root we need to verify that the parent dir was 1757 * not delted and then re-created, if it was then we have no overwrite 1758 * and we can just unlink this entry. 1759 */ 1760 if (sctx->parent_root) { 1761 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1762 NULL, NULL, NULL); 1763 if (ret < 0 && ret != -ENOENT) 1764 goto out; 1765 if (ret) { 1766 ret = 0; 1767 goto out; 1768 } 1769 if (gen != dir_gen) 1770 goto out; 1771 } 1772 1773 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1774 &other_inode, &other_type); 1775 if (ret < 0 && ret != -ENOENT) 1776 goto out; 1777 if (ret) { 1778 ret = 0; 1779 goto out; 1780 } 1781 1782 /* 1783 * Check if the overwritten ref was already processed. If yes, the ref 1784 * was already unlinked/moved, so we can safely assume that we will not 1785 * overwrite anything at this point in time. 1786 */ 1787 if (other_inode > sctx->send_progress) { 1788 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1789 who_gen, NULL, NULL, NULL, NULL); 1790 if (ret < 0) 1791 goto out; 1792 1793 ret = 1; 1794 *who_ino = other_inode; 1795 } else { 1796 ret = 0; 1797 } 1798 1799out: 1800 return ret; 1801} 1802 1803/* 1804 * Checks if the ref was overwritten by an already processed inode. This is 1805 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1806 * thus the orphan name needs be used. 1807 * process_recorded_refs also uses it to avoid unlinking of refs that were 1808 * overwritten. 1809 */ 1810static int did_overwrite_ref(struct send_ctx *sctx, 1811 u64 dir, u64 dir_gen, 1812 u64 ino, u64 ino_gen, 1813 const char *name, int name_len) 1814{ 1815 int ret = 0; 1816 u64 gen; 1817 u64 ow_inode; 1818 u8 other_type; 1819 1820 if (!sctx->parent_root) 1821 goto out; 1822 1823 ret = is_inode_existent(sctx, dir, dir_gen); 1824 if (ret <= 0) 1825 goto out; 1826 1827 /* check if the ref was overwritten by another ref */ 1828 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1829 &ow_inode, &other_type); 1830 if (ret < 0 && ret != -ENOENT) 1831 goto out; 1832 if (ret) { 1833 /* was never and will never be overwritten */ 1834 ret = 0; 1835 goto out; 1836 } 1837 1838 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1839 NULL, NULL); 1840 if (ret < 0) 1841 goto out; 1842 1843 if (ow_inode == ino && gen == ino_gen) { 1844 ret = 0; 1845 goto out; 1846 } 1847 1848 /* we know that it is or will be overwritten. check this now */ 1849 if (ow_inode < sctx->send_progress) 1850 ret = 1; 1851 else 1852 ret = 0; 1853 1854out: 1855 return ret; 1856} 1857 1858/* 1859 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1860 * that got overwritten. This is used by process_recorded_refs to determine 1861 * if it has to use the path as returned by get_cur_path or the orphan name. 1862 */ 1863static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1864{ 1865 int ret = 0; 1866 struct fs_path *name = NULL; 1867 u64 dir; 1868 u64 dir_gen; 1869 1870 if (!sctx->parent_root) 1871 goto out; 1872 1873 name = fs_path_alloc(); 1874 if (!name) 1875 return -ENOMEM; 1876 1877 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 1878 if (ret < 0) 1879 goto out; 1880 1881 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 1882 name->start, fs_path_len(name)); 1883 1884out: 1885 fs_path_free(name); 1886 return ret; 1887} 1888 1889/* 1890 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 1891 * so we need to do some special handling in case we have clashes. This function 1892 * takes care of this with the help of name_cache_entry::radix_list. 1893 * In case of error, nce is kfreed. 1894 */ 1895static int name_cache_insert(struct send_ctx *sctx, 1896 struct name_cache_entry *nce) 1897{ 1898 int ret = 0; 1899 struct list_head *nce_head; 1900 1901 nce_head = radix_tree_lookup(&sctx->name_cache, 1902 (unsigned long)nce->ino); 1903 if (!nce_head) { 1904 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS); 1905 if (!nce_head) { 1906 kfree(nce); 1907 return -ENOMEM; 1908 } 1909 INIT_LIST_HEAD(nce_head); 1910 1911 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 1912 if (ret < 0) { 1913 kfree(nce_head); 1914 kfree(nce); 1915 return ret; 1916 } 1917 } 1918 list_add_tail(&nce->radix_list, nce_head); 1919 list_add_tail(&nce->list, &sctx->name_cache_list); 1920 sctx->name_cache_size++; 1921 1922 return ret; 1923} 1924 1925static void name_cache_delete(struct send_ctx *sctx, 1926 struct name_cache_entry *nce) 1927{ 1928 struct list_head *nce_head; 1929 1930 nce_head = radix_tree_lookup(&sctx->name_cache, 1931 (unsigned long)nce->ino); 1932 if (!nce_head) { 1933 btrfs_err(sctx->send_root->fs_info, 1934 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 1935 nce->ino, sctx->name_cache_size); 1936 } 1937 1938 list_del(&nce->radix_list); 1939 list_del(&nce->list); 1940 sctx->name_cache_size--; 1941 1942 /* 1943 * We may not get to the final release of nce_head if the lookup fails 1944 */ 1945 if (nce_head && list_empty(nce_head)) { 1946 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 1947 kfree(nce_head); 1948 } 1949} 1950 1951static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 1952 u64 ino, u64 gen) 1953{ 1954 struct list_head *nce_head; 1955 struct name_cache_entry *cur; 1956 1957 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 1958 if (!nce_head) 1959 return NULL; 1960 1961 list_for_each_entry(cur, nce_head, radix_list) { 1962 if (cur->ino == ino && cur->gen == gen) 1963 return cur; 1964 } 1965 return NULL; 1966} 1967 1968/* 1969 * Removes the entry from the list and adds it back to the end. This marks the 1970 * entry as recently used so that name_cache_clean_unused does not remove it. 1971 */ 1972static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 1973{ 1974 list_del(&nce->list); 1975 list_add_tail(&nce->list, &sctx->name_cache_list); 1976} 1977 1978/* 1979 * Remove some entries from the beginning of name_cache_list. 1980 */ 1981static void name_cache_clean_unused(struct send_ctx *sctx) 1982{ 1983 struct name_cache_entry *nce; 1984 1985 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 1986 return; 1987 1988 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 1989 nce = list_entry(sctx->name_cache_list.next, 1990 struct name_cache_entry, list); 1991 name_cache_delete(sctx, nce); 1992 kfree(nce); 1993 } 1994} 1995 1996static void name_cache_free(struct send_ctx *sctx) 1997{ 1998 struct name_cache_entry *nce; 1999 2000 while (!list_empty(&sctx->name_cache_list)) { 2001 nce = list_entry(sctx->name_cache_list.next, 2002 struct name_cache_entry, list); 2003 name_cache_delete(sctx, nce); 2004 kfree(nce); 2005 } 2006} 2007 2008/* 2009 * Used by get_cur_path for each ref up to the root. 2010 * Returns 0 if it succeeded. 2011 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2012 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2013 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2014 * Returns <0 in case of error. 2015 */ 2016static int __get_cur_name_and_parent(struct send_ctx *sctx, 2017 u64 ino, u64 gen, 2018 u64 *parent_ino, 2019 u64 *parent_gen, 2020 struct fs_path *dest) 2021{ 2022 int ret; 2023 int nce_ret; 2024 struct btrfs_path *path = NULL; 2025 struct name_cache_entry *nce = NULL; 2026 2027 /* 2028 * First check if we already did a call to this function with the same 2029 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2030 * return the cached result. 2031 */ 2032 nce = name_cache_search(sctx, ino, gen); 2033 if (nce) { 2034 if (ino < sctx->send_progress && nce->need_later_update) { 2035 name_cache_delete(sctx, nce); 2036 kfree(nce); 2037 nce = NULL; 2038 } else { 2039 name_cache_used(sctx, nce); 2040 *parent_ino = nce->parent_ino; 2041 *parent_gen = nce->parent_gen; 2042 ret = fs_path_add(dest, nce->name, nce->name_len); 2043 if (ret < 0) 2044 goto out; 2045 ret = nce->ret; 2046 goto out; 2047 } 2048 } 2049 2050 path = alloc_path_for_send(); 2051 if (!path) 2052 return -ENOMEM; 2053 2054 /* 2055 * If the inode is not existent yet, add the orphan name and return 1. 2056 * This should only happen for the parent dir that we determine in 2057 * __record_new_ref 2058 */ 2059 ret = is_inode_existent(sctx, ino, gen); 2060 if (ret < 0) 2061 goto out; 2062 2063 if (!ret) { 2064 ret = gen_unique_name(sctx, ino, gen, dest); 2065 if (ret < 0) 2066 goto out; 2067 ret = 1; 2068 goto out_cache; 2069 } 2070 2071 /* 2072 * Depending on whether the inode was already processed or not, use 2073 * send_root or parent_root for ref lookup. 2074 */ 2075 if (ino < sctx->send_progress) 2076 ret = get_first_ref(sctx->send_root, ino, 2077 parent_ino, parent_gen, dest); 2078 else 2079 ret = get_first_ref(sctx->parent_root, ino, 2080 parent_ino, parent_gen, dest); 2081 if (ret < 0) 2082 goto out; 2083 2084 /* 2085 * Check if the ref was overwritten by an inode's ref that was processed 2086 * earlier. If yes, treat as orphan and return 1. 2087 */ 2088 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2089 dest->start, dest->end - dest->start); 2090 if (ret < 0) 2091 goto out; 2092 if (ret) { 2093 fs_path_reset(dest); 2094 ret = gen_unique_name(sctx, ino, gen, dest); 2095 if (ret < 0) 2096 goto out; 2097 ret = 1; 2098 } 2099 2100out_cache: 2101 /* 2102 * Store the result of the lookup in the name cache. 2103 */ 2104 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS); 2105 if (!nce) { 2106 ret = -ENOMEM; 2107 goto out; 2108 } 2109 2110 nce->ino = ino; 2111 nce->gen = gen; 2112 nce->parent_ino = *parent_ino; 2113 nce->parent_gen = *parent_gen; 2114 nce->name_len = fs_path_len(dest); 2115 nce->ret = ret; 2116 strcpy(nce->name, dest->start); 2117 2118 if (ino < sctx->send_progress) 2119 nce->need_later_update = 0; 2120 else 2121 nce->need_later_update = 1; 2122 2123 nce_ret = name_cache_insert(sctx, nce); 2124 if (nce_ret < 0) 2125 ret = nce_ret; 2126 name_cache_clean_unused(sctx); 2127 2128out: 2129 btrfs_free_path(path); 2130 return ret; 2131} 2132 2133/* 2134 * Magic happens here. This function returns the first ref to an inode as it 2135 * would look like while receiving the stream at this point in time. 2136 * We walk the path up to the root. For every inode in between, we check if it 2137 * was already processed/sent. If yes, we continue with the parent as found 2138 * in send_root. If not, we continue with the parent as found in parent_root. 2139 * If we encounter an inode that was deleted at this point in time, we use the 2140 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2141 * that were not created yet and overwritten inodes/refs. 2142 * 2143 * When do we have have orphan inodes: 2144 * 1. When an inode is freshly created and thus no valid refs are available yet 2145 * 2. When a directory lost all it's refs (deleted) but still has dir items 2146 * inside which were not processed yet (pending for move/delete). If anyone 2147 * tried to get the path to the dir items, it would get a path inside that 2148 * orphan directory. 2149 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2150 * of an unprocessed inode. If in that case the first ref would be 2151 * overwritten, the overwritten inode gets "orphanized". Later when we 2152 * process this overwritten inode, it is restored at a new place by moving 2153 * the orphan inode. 2154 * 2155 * sctx->send_progress tells this function at which point in time receiving 2156 * would be. 2157 */ 2158static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2159 struct fs_path *dest) 2160{ 2161 int ret = 0; 2162 struct fs_path *name = NULL; 2163 u64 parent_inode = 0; 2164 u64 parent_gen = 0; 2165 int stop = 0; 2166 2167 name = fs_path_alloc(); 2168 if (!name) { 2169 ret = -ENOMEM; 2170 goto out; 2171 } 2172 2173 dest->reversed = 1; 2174 fs_path_reset(dest); 2175 2176 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2177 fs_path_reset(name); 2178 2179 if (is_waiting_for_rm(sctx, ino)) { 2180 ret = gen_unique_name(sctx, ino, gen, name); 2181 if (ret < 0) 2182 goto out; 2183 ret = fs_path_add_path(dest, name); 2184 break; 2185 } 2186 2187 if (is_waiting_for_move(sctx, ino)) { 2188 ret = get_first_ref(sctx->parent_root, ino, 2189 &parent_inode, &parent_gen, name); 2190 } else { 2191 ret = __get_cur_name_and_parent(sctx, ino, gen, 2192 &parent_inode, 2193 &parent_gen, name); 2194 if (ret) 2195 stop = 1; 2196 } 2197 2198 if (ret < 0) 2199 goto out; 2200 2201 ret = fs_path_add_path(dest, name); 2202 if (ret < 0) 2203 goto out; 2204 2205 ino = parent_inode; 2206 gen = parent_gen; 2207 } 2208 2209out: 2210 fs_path_free(name); 2211 if (!ret) 2212 fs_path_unreverse(dest); 2213 return ret; 2214} 2215 2216/* 2217 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2218 */ 2219static int send_subvol_begin(struct send_ctx *sctx) 2220{ 2221 int ret; 2222 struct btrfs_root *send_root = sctx->send_root; 2223 struct btrfs_root *parent_root = sctx->parent_root; 2224 struct btrfs_path *path; 2225 struct btrfs_key key; 2226 struct btrfs_root_ref *ref; 2227 struct extent_buffer *leaf; 2228 char *name = NULL; 2229 int namelen; 2230 2231 path = btrfs_alloc_path(); 2232 if (!path) 2233 return -ENOMEM; 2234 2235 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS); 2236 if (!name) { 2237 btrfs_free_path(path); 2238 return -ENOMEM; 2239 } 2240 2241 key.objectid = send_root->objectid; 2242 key.type = BTRFS_ROOT_BACKREF_KEY; 2243 key.offset = 0; 2244 2245 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2246 &key, path, 1, 0); 2247 if (ret < 0) 2248 goto out; 2249 if (ret) { 2250 ret = -ENOENT; 2251 goto out; 2252 } 2253 2254 leaf = path->nodes[0]; 2255 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2256 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2257 key.objectid != send_root->objectid) { 2258 ret = -ENOENT; 2259 goto out; 2260 } 2261 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2262 namelen = btrfs_root_ref_name_len(leaf, ref); 2263 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2264 btrfs_release_path(path); 2265 2266 if (parent_root) { 2267 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2268 if (ret < 0) 2269 goto out; 2270 } else { 2271 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2272 if (ret < 0) 2273 goto out; 2274 } 2275 2276 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2277 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2278 sctx->send_root->root_item.uuid); 2279 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2280 le64_to_cpu(sctx->send_root->root_item.ctransid)); 2281 if (parent_root) { 2282 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2283 sctx->parent_root->root_item.uuid); 2284 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2285 le64_to_cpu(sctx->parent_root->root_item.ctransid)); 2286 } 2287 2288 ret = send_cmd(sctx); 2289 2290tlv_put_failure: 2291out: 2292 btrfs_free_path(path); 2293 kfree(name); 2294 return ret; 2295} 2296 2297static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2298{ 2299 int ret = 0; 2300 struct fs_path *p; 2301 2302verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size); 2303 2304 p = fs_path_alloc(); 2305 if (!p) 2306 return -ENOMEM; 2307 2308 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2309 if (ret < 0) 2310 goto out; 2311 2312 ret = get_cur_path(sctx, ino, gen, p); 2313 if (ret < 0) 2314 goto out; 2315 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2316 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2317 2318 ret = send_cmd(sctx); 2319 2320tlv_put_failure: 2321out: 2322 fs_path_free(p); 2323 return ret; 2324} 2325 2326static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2327{ 2328 int ret = 0; 2329 struct fs_path *p; 2330 2331verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode); 2332 2333 p = fs_path_alloc(); 2334 if (!p) 2335 return -ENOMEM; 2336 2337 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2338 if (ret < 0) 2339 goto out; 2340 2341 ret = get_cur_path(sctx, ino, gen, p); 2342 if (ret < 0) 2343 goto out; 2344 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2345 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2346 2347 ret = send_cmd(sctx); 2348 2349tlv_put_failure: 2350out: 2351 fs_path_free(p); 2352 return ret; 2353} 2354 2355static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2356{ 2357 int ret = 0; 2358 struct fs_path *p; 2359 2360verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid); 2361 2362 p = fs_path_alloc(); 2363 if (!p) 2364 return -ENOMEM; 2365 2366 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2367 if (ret < 0) 2368 goto out; 2369 2370 ret = get_cur_path(sctx, ino, gen, p); 2371 if (ret < 0) 2372 goto out; 2373 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2374 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2375 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2376 2377 ret = send_cmd(sctx); 2378 2379tlv_put_failure: 2380out: 2381 fs_path_free(p); 2382 return ret; 2383} 2384 2385static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2386{ 2387 int ret = 0; 2388 struct fs_path *p = NULL; 2389 struct btrfs_inode_item *ii; 2390 struct btrfs_path *path = NULL; 2391 struct extent_buffer *eb; 2392 struct btrfs_key key; 2393 int slot; 2394 2395verbose_printk("btrfs: send_utimes %llu\n", ino); 2396 2397 p = fs_path_alloc(); 2398 if (!p) 2399 return -ENOMEM; 2400 2401 path = alloc_path_for_send(); 2402 if (!path) { 2403 ret = -ENOMEM; 2404 goto out; 2405 } 2406 2407 key.objectid = ino; 2408 key.type = BTRFS_INODE_ITEM_KEY; 2409 key.offset = 0; 2410 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2411 if (ret < 0) 2412 goto out; 2413 2414 eb = path->nodes[0]; 2415 slot = path->slots[0]; 2416 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2417 2418 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2419 if (ret < 0) 2420 goto out; 2421 2422 ret = get_cur_path(sctx, ino, gen, p); 2423 if (ret < 0) 2424 goto out; 2425 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2426 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, 2427 btrfs_inode_atime(ii)); 2428 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, 2429 btrfs_inode_mtime(ii)); 2430 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, 2431 btrfs_inode_ctime(ii)); 2432 /* TODO Add otime support when the otime patches get into upstream */ 2433 2434 ret = send_cmd(sctx); 2435 2436tlv_put_failure: 2437out: 2438 fs_path_free(p); 2439 btrfs_free_path(path); 2440 return ret; 2441} 2442 2443/* 2444 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2445 * a valid path yet because we did not process the refs yet. So, the inode 2446 * is created as orphan. 2447 */ 2448static int send_create_inode(struct send_ctx *sctx, u64 ino) 2449{ 2450 int ret = 0; 2451 struct fs_path *p; 2452 int cmd; 2453 u64 gen; 2454 u64 mode; 2455 u64 rdev; 2456 2457verbose_printk("btrfs: send_create_inode %llu\n", ino); 2458 2459 p = fs_path_alloc(); 2460 if (!p) 2461 return -ENOMEM; 2462 2463 if (ino != sctx->cur_ino) { 2464 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2465 NULL, NULL, &rdev); 2466 if (ret < 0) 2467 goto out; 2468 } else { 2469 gen = sctx->cur_inode_gen; 2470 mode = sctx->cur_inode_mode; 2471 rdev = sctx->cur_inode_rdev; 2472 } 2473 2474 if (S_ISREG(mode)) { 2475 cmd = BTRFS_SEND_C_MKFILE; 2476 } else if (S_ISDIR(mode)) { 2477 cmd = BTRFS_SEND_C_MKDIR; 2478 } else if (S_ISLNK(mode)) { 2479 cmd = BTRFS_SEND_C_SYMLINK; 2480 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2481 cmd = BTRFS_SEND_C_MKNOD; 2482 } else if (S_ISFIFO(mode)) { 2483 cmd = BTRFS_SEND_C_MKFIFO; 2484 } else if (S_ISSOCK(mode)) { 2485 cmd = BTRFS_SEND_C_MKSOCK; 2486 } else { 2487 printk(KERN_WARNING "btrfs: unexpected inode type %o", 2488 (int)(mode & S_IFMT)); 2489 ret = -ENOTSUPP; 2490 goto out; 2491 } 2492 2493 ret = begin_cmd(sctx, cmd); 2494 if (ret < 0) 2495 goto out; 2496 2497 ret = gen_unique_name(sctx, ino, gen, p); 2498 if (ret < 0) 2499 goto out; 2500 2501 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2502 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2503 2504 if (S_ISLNK(mode)) { 2505 fs_path_reset(p); 2506 ret = read_symlink(sctx->send_root, ino, p); 2507 if (ret < 0) 2508 goto out; 2509 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2510 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2511 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2512 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2513 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2514 } 2515 2516 ret = send_cmd(sctx); 2517 if (ret < 0) 2518 goto out; 2519 2520 2521tlv_put_failure: 2522out: 2523 fs_path_free(p); 2524 return ret; 2525} 2526 2527/* 2528 * We need some special handling for inodes that get processed before the parent 2529 * directory got created. See process_recorded_refs for details. 2530 * This function does the check if we already created the dir out of order. 2531 */ 2532static int did_create_dir(struct send_ctx *sctx, u64 dir) 2533{ 2534 int ret = 0; 2535 struct btrfs_path *path = NULL; 2536 struct btrfs_key key; 2537 struct btrfs_key found_key; 2538 struct btrfs_key di_key; 2539 struct extent_buffer *eb; 2540 struct btrfs_dir_item *di; 2541 int slot; 2542 2543 path = alloc_path_for_send(); 2544 if (!path) { 2545 ret = -ENOMEM; 2546 goto out; 2547 } 2548 2549 key.objectid = dir; 2550 key.type = BTRFS_DIR_INDEX_KEY; 2551 key.offset = 0; 2552 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2553 if (ret < 0) 2554 goto out; 2555 2556 while (1) { 2557 eb = path->nodes[0]; 2558 slot = path->slots[0]; 2559 if (slot >= btrfs_header_nritems(eb)) { 2560 ret = btrfs_next_leaf(sctx->send_root, path); 2561 if (ret < 0) { 2562 goto out; 2563 } else if (ret > 0) { 2564 ret = 0; 2565 break; 2566 } 2567 continue; 2568 } 2569 2570 btrfs_item_key_to_cpu(eb, &found_key, slot); 2571 if (found_key.objectid != key.objectid || 2572 found_key.type != key.type) { 2573 ret = 0; 2574 goto out; 2575 } 2576 2577 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2578 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2579 2580 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2581 di_key.objectid < sctx->send_progress) { 2582 ret = 1; 2583 goto out; 2584 } 2585 2586 path->slots[0]++; 2587 } 2588 2589out: 2590 btrfs_free_path(path); 2591 return ret; 2592} 2593 2594/* 2595 * Only creates the inode if it is: 2596 * 1. Not a directory 2597 * 2. Or a directory which was not created already due to out of order 2598 * directories. See did_create_dir and process_recorded_refs for details. 2599 */ 2600static int send_create_inode_if_needed(struct send_ctx *sctx) 2601{ 2602 int ret; 2603 2604 if (S_ISDIR(sctx->cur_inode_mode)) { 2605 ret = did_create_dir(sctx, sctx->cur_ino); 2606 if (ret < 0) 2607 goto out; 2608 if (ret) { 2609 ret = 0; 2610 goto out; 2611 } 2612 } 2613 2614 ret = send_create_inode(sctx, sctx->cur_ino); 2615 if (ret < 0) 2616 goto out; 2617 2618out: 2619 return ret; 2620} 2621 2622struct recorded_ref { 2623 struct list_head list; 2624 char *dir_path; 2625 char *name; 2626 struct fs_path *full_path; 2627 u64 dir; 2628 u64 dir_gen; 2629 int dir_path_len; 2630 int name_len; 2631}; 2632 2633/* 2634 * We need to process new refs before deleted refs, but compare_tree gives us 2635 * everything mixed. So we first record all refs and later process them. 2636 * This function is a helper to record one ref. 2637 */ 2638static int __record_ref(struct list_head *head, u64 dir, 2639 u64 dir_gen, struct fs_path *path) 2640{ 2641 struct recorded_ref *ref; 2642 2643 ref = kmalloc(sizeof(*ref), GFP_NOFS); 2644 if (!ref) 2645 return -ENOMEM; 2646 2647 ref->dir = dir; 2648 ref->dir_gen = dir_gen; 2649 ref->full_path = path; 2650 2651 ref->name = (char *)kbasename(ref->full_path->start); 2652 ref->name_len = ref->full_path->end - ref->name; 2653 ref->dir_path = ref->full_path->start; 2654 if (ref->name == ref->full_path->start) 2655 ref->dir_path_len = 0; 2656 else 2657 ref->dir_path_len = ref->full_path->end - 2658 ref->full_path->start - 1 - ref->name_len; 2659 2660 list_add_tail(&ref->list, head); 2661 return 0; 2662} 2663 2664static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2665{ 2666 struct recorded_ref *new; 2667 2668 new = kmalloc(sizeof(*ref), GFP_NOFS); 2669 if (!new) 2670 return -ENOMEM; 2671 2672 new->dir = ref->dir; 2673 new->dir_gen = ref->dir_gen; 2674 new->full_path = NULL; 2675 INIT_LIST_HEAD(&new->list); 2676 list_add_tail(&new->list, list); 2677 return 0; 2678} 2679 2680static void __free_recorded_refs(struct list_head *head) 2681{ 2682 struct recorded_ref *cur; 2683 2684 while (!list_empty(head)) { 2685 cur = list_entry(head->next, struct recorded_ref, list); 2686 fs_path_free(cur->full_path); 2687 list_del(&cur->list); 2688 kfree(cur); 2689 } 2690} 2691 2692static void free_recorded_refs(struct send_ctx *sctx) 2693{ 2694 __free_recorded_refs(&sctx->new_refs); 2695 __free_recorded_refs(&sctx->deleted_refs); 2696} 2697 2698/* 2699 * Renames/moves a file/dir to its orphan name. Used when the first 2700 * ref of an unprocessed inode gets overwritten and for all non empty 2701 * directories. 2702 */ 2703static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2704 struct fs_path *path) 2705{ 2706 int ret; 2707 struct fs_path *orphan; 2708 2709 orphan = fs_path_alloc(); 2710 if (!orphan) 2711 return -ENOMEM; 2712 2713 ret = gen_unique_name(sctx, ino, gen, orphan); 2714 if (ret < 0) 2715 goto out; 2716 2717 ret = send_rename(sctx, path, orphan); 2718 2719out: 2720 fs_path_free(orphan); 2721 return ret; 2722} 2723 2724static struct orphan_dir_info * 2725add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2726{ 2727 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2728 struct rb_node *parent = NULL; 2729 struct orphan_dir_info *entry, *odi; 2730 2731 odi = kmalloc(sizeof(*odi), GFP_NOFS); 2732 if (!odi) 2733 return ERR_PTR(-ENOMEM); 2734 odi->ino = dir_ino; 2735 odi->gen = 0; 2736 2737 while (*p) { 2738 parent = *p; 2739 entry = rb_entry(parent, struct orphan_dir_info, node); 2740 if (dir_ino < entry->ino) { 2741 p = &(*p)->rb_left; 2742 } else if (dir_ino > entry->ino) { 2743 p = &(*p)->rb_right; 2744 } else { 2745 kfree(odi); 2746 return entry; 2747 } 2748 } 2749 2750 rb_link_node(&odi->node, parent, p); 2751 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2752 return odi; 2753} 2754 2755static struct orphan_dir_info * 2756get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2757{ 2758 struct rb_node *n = sctx->orphan_dirs.rb_node; 2759 struct orphan_dir_info *entry; 2760 2761 while (n) { 2762 entry = rb_entry(n, struct orphan_dir_info, node); 2763 if (dir_ino < entry->ino) 2764 n = n->rb_left; 2765 else if (dir_ino > entry->ino) 2766 n = n->rb_right; 2767 else 2768 return entry; 2769 } 2770 return NULL; 2771} 2772 2773static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino) 2774{ 2775 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino); 2776 2777 return odi != NULL; 2778} 2779 2780static void free_orphan_dir_info(struct send_ctx *sctx, 2781 struct orphan_dir_info *odi) 2782{ 2783 if (!odi) 2784 return; 2785 rb_erase(&odi->node, &sctx->orphan_dirs); 2786 kfree(odi); 2787} 2788 2789/* 2790 * Returns 1 if a directory can be removed at this point in time. 2791 * We check this by iterating all dir items and checking if the inode behind 2792 * the dir item was already processed. 2793 */ 2794static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2795 u64 send_progress) 2796{ 2797 int ret = 0; 2798 struct btrfs_root *root = sctx->parent_root; 2799 struct btrfs_path *path; 2800 struct btrfs_key key; 2801 struct btrfs_key found_key; 2802 struct btrfs_key loc; 2803 struct btrfs_dir_item *di; 2804 2805 /* 2806 * Don't try to rmdir the top/root subvolume dir. 2807 */ 2808 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2809 return 0; 2810 2811 path = alloc_path_for_send(); 2812 if (!path) 2813 return -ENOMEM; 2814 2815 key.objectid = dir; 2816 key.type = BTRFS_DIR_INDEX_KEY; 2817 key.offset = 0; 2818 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2819 if (ret < 0) 2820 goto out; 2821 2822 while (1) { 2823 struct waiting_dir_move *dm; 2824 2825 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2826 ret = btrfs_next_leaf(root, path); 2827 if (ret < 0) 2828 goto out; 2829 else if (ret > 0) 2830 break; 2831 continue; 2832 } 2833 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2834 path->slots[0]); 2835 if (found_key.objectid != key.objectid || 2836 found_key.type != key.type) 2837 break; 2838 2839 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2840 struct btrfs_dir_item); 2841 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2842 2843 dm = get_waiting_dir_move(sctx, loc.objectid); 2844 if (dm) { 2845 struct orphan_dir_info *odi; 2846 2847 odi = add_orphan_dir_info(sctx, dir); 2848 if (IS_ERR(odi)) { 2849 ret = PTR_ERR(odi); 2850 goto out; 2851 } 2852 odi->gen = dir_gen; 2853 dm->rmdir_ino = dir; 2854 ret = 0; 2855 goto out; 2856 } 2857 2858 if (loc.objectid > send_progress) { 2859 ret = 0; 2860 goto out; 2861 } 2862 2863 path->slots[0]++; 2864 } 2865 2866 ret = 1; 2867 2868out: 2869 btrfs_free_path(path); 2870 return ret; 2871} 2872 2873static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 2874{ 2875 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 2876 2877 return entry != NULL; 2878} 2879 2880static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino) 2881{ 2882 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 2883 struct rb_node *parent = NULL; 2884 struct waiting_dir_move *entry, *dm; 2885 2886 dm = kmalloc(sizeof(*dm), GFP_NOFS); 2887 if (!dm) 2888 return -ENOMEM; 2889 dm->ino = ino; 2890 dm->rmdir_ino = 0; 2891 2892 while (*p) { 2893 parent = *p; 2894 entry = rb_entry(parent, struct waiting_dir_move, node); 2895 if (ino < entry->ino) { 2896 p = &(*p)->rb_left; 2897 } else if (ino > entry->ino) { 2898 p = &(*p)->rb_right; 2899 } else { 2900 kfree(dm); 2901 return -EEXIST; 2902 } 2903 } 2904 2905 rb_link_node(&dm->node, parent, p); 2906 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 2907 return 0; 2908} 2909 2910static struct waiting_dir_move * 2911get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 2912{ 2913 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 2914 struct waiting_dir_move *entry; 2915 2916 while (n) { 2917 entry = rb_entry(n, struct waiting_dir_move, node); 2918 if (ino < entry->ino) 2919 n = n->rb_left; 2920 else if (ino > entry->ino) 2921 n = n->rb_right; 2922 else 2923 return entry; 2924 } 2925 return NULL; 2926} 2927 2928static void free_waiting_dir_move(struct send_ctx *sctx, 2929 struct waiting_dir_move *dm) 2930{ 2931 if (!dm) 2932 return; 2933 rb_erase(&dm->node, &sctx->waiting_dir_moves); 2934 kfree(dm); 2935} 2936 2937static int add_pending_dir_move(struct send_ctx *sctx, 2938 u64 ino, 2939 u64 ino_gen, 2940 u64 parent_ino) 2941{ 2942 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 2943 struct rb_node *parent = NULL; 2944 struct pending_dir_move *entry = NULL, *pm; 2945 struct recorded_ref *cur; 2946 int exists = 0; 2947 int ret; 2948 2949 pm = kmalloc(sizeof(*pm), GFP_NOFS); 2950 if (!pm) 2951 return -ENOMEM; 2952 pm->parent_ino = parent_ino; 2953 pm->ino = ino; 2954 pm->gen = ino_gen; 2955 INIT_LIST_HEAD(&pm->list); 2956 INIT_LIST_HEAD(&pm->update_refs); 2957 RB_CLEAR_NODE(&pm->node); 2958 2959 while (*p) { 2960 parent = *p; 2961 entry = rb_entry(parent, struct pending_dir_move, node); 2962 if (parent_ino < entry->parent_ino) { 2963 p = &(*p)->rb_left; 2964 } else if (parent_ino > entry->parent_ino) { 2965 p = &(*p)->rb_right; 2966 } else { 2967 exists = 1; 2968 break; 2969 } 2970 } 2971 2972 list_for_each_entry(cur, &sctx->deleted_refs, list) { 2973 ret = dup_ref(cur, &pm->update_refs); 2974 if (ret < 0) 2975 goto out; 2976 } 2977 list_for_each_entry(cur, &sctx->new_refs, list) { 2978 ret = dup_ref(cur, &pm->update_refs); 2979 if (ret < 0) 2980 goto out; 2981 } 2982 2983 ret = add_waiting_dir_move(sctx, pm->ino); 2984 if (ret) 2985 goto out; 2986 2987 if (exists) { 2988 list_add_tail(&pm->list, &entry->list); 2989 } else { 2990 rb_link_node(&pm->node, parent, p); 2991 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 2992 } 2993 ret = 0; 2994out: 2995 if (ret) { 2996 __free_recorded_refs(&pm->update_refs); 2997 kfree(pm); 2998 } 2999 return ret; 3000} 3001 3002static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3003 u64 parent_ino) 3004{ 3005 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3006 struct pending_dir_move *entry; 3007 3008 while (n) { 3009 entry = rb_entry(n, struct pending_dir_move, node); 3010 if (parent_ino < entry->parent_ino) 3011 n = n->rb_left; 3012 else if (parent_ino > entry->parent_ino) 3013 n = n->rb_right; 3014 else 3015 return entry; 3016 } 3017 return NULL; 3018} 3019 3020static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3021{ 3022 struct fs_path *from_path = NULL; 3023 struct fs_path *to_path = NULL; 3024 struct fs_path *name = NULL; 3025 u64 orig_progress = sctx->send_progress; 3026 struct recorded_ref *cur; 3027 u64 parent_ino, parent_gen; 3028 struct waiting_dir_move *dm = NULL; 3029 u64 rmdir_ino = 0; 3030 int ret; 3031 3032 name = fs_path_alloc(); 3033 from_path = fs_path_alloc(); 3034 if (!name || !from_path) { 3035 ret = -ENOMEM; 3036 goto out; 3037 } 3038 3039 dm = get_waiting_dir_move(sctx, pm->ino); 3040 ASSERT(dm); 3041 rmdir_ino = dm->rmdir_ino; 3042 free_waiting_dir_move(sctx, dm); 3043 3044 ret = get_first_ref(sctx->parent_root, pm->ino, 3045 &parent_ino, &parent_gen, name); 3046 if (ret < 0) 3047 goto out; 3048 3049 if (parent_ino == sctx->cur_ino) { 3050 /* child only renamed, not moved */ 3051 ASSERT(parent_gen == sctx->cur_inode_gen); 3052 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3053 from_path); 3054 if (ret < 0) 3055 goto out; 3056 ret = fs_path_add_path(from_path, name); 3057 if (ret < 0) 3058 goto out; 3059 } else { 3060 /* child moved and maybe renamed too */ 3061 sctx->send_progress = pm->ino; 3062 ret = get_cur_path(sctx, pm->ino, pm->gen, from_path); 3063 if (ret < 0) 3064 goto out; 3065 } 3066 3067 fs_path_free(name); 3068 name = NULL; 3069 3070 to_path = fs_path_alloc(); 3071 if (!to_path) { 3072 ret = -ENOMEM; 3073 goto out; 3074 } 3075 3076 sctx->send_progress = sctx->cur_ino + 1; 3077 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3078 if (ret < 0) 3079 goto out; 3080 3081 ret = send_rename(sctx, from_path, to_path); 3082 if (ret < 0) 3083 goto out; 3084 3085 if (rmdir_ino) { 3086 struct orphan_dir_info *odi; 3087 3088 odi = get_orphan_dir_info(sctx, rmdir_ino); 3089 if (!odi) { 3090 /* already deleted */ 3091 goto finish; 3092 } 3093 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1); 3094 if (ret < 0) 3095 goto out; 3096 if (!ret) 3097 goto finish; 3098 3099 name = fs_path_alloc(); 3100 if (!name) { 3101 ret = -ENOMEM; 3102 goto out; 3103 } 3104 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name); 3105 if (ret < 0) 3106 goto out; 3107 ret = send_rmdir(sctx, name); 3108 if (ret < 0) 3109 goto out; 3110 free_orphan_dir_info(sctx, odi); 3111 } 3112 3113finish: 3114 ret = send_utimes(sctx, pm->ino, pm->gen); 3115 if (ret < 0) 3116 goto out; 3117 3118 /* 3119 * After rename/move, need to update the utimes of both new parent(s) 3120 * and old parent(s). 3121 */ 3122 list_for_each_entry(cur, &pm->update_refs, list) { 3123 if (cur->dir == rmdir_ino) 3124 continue; 3125 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3126 if (ret < 0) 3127 goto out; 3128 } 3129 3130out: 3131 fs_path_free(name); 3132 fs_path_free(from_path); 3133 fs_path_free(to_path); 3134 sctx->send_progress = orig_progress; 3135 3136 return ret; 3137} 3138 3139static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3140{ 3141 if (!list_empty(&m->list)) 3142 list_del(&m->list); 3143 if (!RB_EMPTY_NODE(&m->node)) 3144 rb_erase(&m->node, &sctx->pending_dir_moves); 3145 __free_recorded_refs(&m->update_refs); 3146 kfree(m); 3147} 3148 3149static void tail_append_pending_moves(struct pending_dir_move *moves, 3150 struct list_head *stack) 3151{ 3152 if (list_empty(&moves->list)) { 3153 list_add_tail(&moves->list, stack); 3154 } else { 3155 LIST_HEAD(list); 3156 list_splice_init(&moves->list, &list); 3157 list_add_tail(&moves->list, stack); 3158 list_splice_tail(&list, stack); 3159 } 3160} 3161 3162static int apply_children_dir_moves(struct send_ctx *sctx) 3163{ 3164 struct pending_dir_move *pm; 3165 struct list_head stack; 3166 u64 parent_ino = sctx->cur_ino; 3167 int ret = 0; 3168 3169 pm = get_pending_dir_moves(sctx, parent_ino); 3170 if (!pm) 3171 return 0; 3172 3173 INIT_LIST_HEAD(&stack); 3174 tail_append_pending_moves(pm, &stack); 3175 3176 while (!list_empty(&stack)) { 3177 pm = list_first_entry(&stack, struct pending_dir_move, list); 3178 parent_ino = pm->ino; 3179 ret = apply_dir_move(sctx, pm); 3180 free_pending_move(sctx, pm); 3181 if (ret) 3182 goto out; 3183 pm = get_pending_dir_moves(sctx, parent_ino); 3184 if (pm) 3185 tail_append_pending_moves(pm, &stack); 3186 } 3187 return 0; 3188 3189out: 3190 while (!list_empty(&stack)) { 3191 pm = list_first_entry(&stack, struct pending_dir_move, list); 3192 free_pending_move(sctx, pm); 3193 } 3194 return ret; 3195} 3196 3197static int wait_for_parent_move(struct send_ctx *sctx, 3198 struct recorded_ref *parent_ref) 3199{ 3200 int ret; 3201 u64 ino = parent_ref->dir; 3202 u64 parent_ino_before, parent_ino_after; 3203 u64 old_gen; 3204 struct fs_path *path_before = NULL; 3205 struct fs_path *path_after = NULL; 3206 int len1, len2; 3207 int register_upper_dirs; 3208 u64 gen; 3209 3210 if (is_waiting_for_move(sctx, ino)) 3211 return 1; 3212 3213 if (parent_ref->dir <= sctx->cur_ino) 3214 return 0; 3215 3216 ret = get_inode_info(sctx->parent_root, ino, NULL, &old_gen, 3217 NULL, NULL, NULL, NULL); 3218 if (ret == -ENOENT) 3219 return 0; 3220 else if (ret < 0) 3221 return ret; 3222 3223 if (parent_ref->dir_gen != old_gen) 3224 return 0; 3225 3226 path_before = fs_path_alloc(); 3227 if (!path_before) 3228 return -ENOMEM; 3229 3230 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3231 NULL, path_before); 3232 if (ret == -ENOENT) { 3233 ret = 0; 3234 goto out; 3235 } else if (ret < 0) { 3236 goto out; 3237 } 3238 3239 path_after = fs_path_alloc(); 3240 if (!path_after) { 3241 ret = -ENOMEM; 3242 goto out; 3243 } 3244 3245 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3246 &gen, path_after); 3247 if (ret == -ENOENT) { 3248 ret = 0; 3249 goto out; 3250 } else if (ret < 0) { 3251 goto out; 3252 } 3253 3254 len1 = fs_path_len(path_before); 3255 len2 = fs_path_len(path_after); 3256 if (parent_ino_before != parent_ino_after || len1 != len2 || 3257 memcmp(path_before->start, path_after->start, len1)) { 3258 ret = 1; 3259 goto out; 3260 } 3261 ret = 0; 3262 3263 /* 3264 * Ok, our new most direct ancestor has a higher inode number but 3265 * wasn't moved/renamed. So maybe some of the new ancestors higher in 3266 * the hierarchy have an higher inode number too *and* were renamed 3267 * or moved - in this case we need to wait for the ancestor's rename 3268 * or move operation before we can do the move/rename for the current 3269 * inode. 3270 */ 3271 register_upper_dirs = 0; 3272 ino = parent_ino_after; 3273again: 3274 while ((ret == 0 || register_upper_dirs) && ino > sctx->cur_ino) { 3275 u64 parent_gen; 3276 3277 fs_path_reset(path_before); 3278 fs_path_reset(path_after); 3279 3280 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3281 &parent_gen, path_after); 3282 if (ret < 0) 3283 goto out; 3284 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3285 NULL, path_before); 3286 if (ret == -ENOENT) { 3287 ret = 0; 3288 break; 3289 } else if (ret < 0) { 3290 goto out; 3291 } 3292 3293 len1 = fs_path_len(path_before); 3294 len2 = fs_path_len(path_after); 3295 if (parent_ino_before != parent_ino_after || len1 != len2 || 3296 memcmp(path_before->start, path_after->start, len1)) { 3297 ret = 1; 3298 if (register_upper_dirs) { 3299 break; 3300 } else { 3301 register_upper_dirs = 1; 3302 ino = parent_ref->dir; 3303 gen = parent_ref->dir_gen; 3304 goto again; 3305 } 3306 } else if (register_upper_dirs) { 3307 ret = add_pending_dir_move(sctx, ino, gen, 3308 parent_ino_after); 3309 if (ret < 0 && ret != -EEXIST) 3310 goto out; 3311 } 3312 3313 ino = parent_ino_after; 3314 gen = parent_gen; 3315 } 3316 3317out: 3318 fs_path_free(path_before); 3319 fs_path_free(path_after); 3320 3321 return ret; 3322} 3323 3324/* 3325 * This does all the move/link/unlink/rmdir magic. 3326 */ 3327static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3328{ 3329 int ret = 0; 3330 struct recorded_ref *cur; 3331 struct recorded_ref *cur2; 3332 struct list_head check_dirs; 3333 struct fs_path *valid_path = NULL; 3334 u64 ow_inode = 0; 3335 u64 ow_gen; 3336 int did_overwrite = 0; 3337 int is_orphan = 0; 3338 u64 last_dir_ino_rm = 0; 3339 3340verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino); 3341 3342 /* 3343 * This should never happen as the root dir always has the same ref 3344 * which is always '..' 3345 */ 3346 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3347 INIT_LIST_HEAD(&check_dirs); 3348 3349 valid_path = fs_path_alloc(); 3350 if (!valid_path) { 3351 ret = -ENOMEM; 3352 goto out; 3353 } 3354 3355 /* 3356 * First, check if the first ref of the current inode was overwritten 3357 * before. If yes, we know that the current inode was already orphanized 3358 * and thus use the orphan name. If not, we can use get_cur_path to 3359 * get the path of the first ref as it would like while receiving at 3360 * this point in time. 3361 * New inodes are always orphan at the beginning, so force to use the 3362 * orphan name in this case. 3363 * The first ref is stored in valid_path and will be updated if it 3364 * gets moved around. 3365 */ 3366 if (!sctx->cur_inode_new) { 3367 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3368 sctx->cur_inode_gen); 3369 if (ret < 0) 3370 goto out; 3371 if (ret) 3372 did_overwrite = 1; 3373 } 3374 if (sctx->cur_inode_new || did_overwrite) { 3375 ret = gen_unique_name(sctx, sctx->cur_ino, 3376 sctx->cur_inode_gen, valid_path); 3377 if (ret < 0) 3378 goto out; 3379 is_orphan = 1; 3380 } else { 3381 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3382 valid_path); 3383 if (ret < 0) 3384 goto out; 3385 } 3386 3387 list_for_each_entry(cur, &sctx->new_refs, list) { 3388 /* 3389 * We may have refs where the parent directory does not exist 3390 * yet. This happens if the parent directories inum is higher 3391 * the the current inum. To handle this case, we create the 3392 * parent directory out of order. But we need to check if this 3393 * did already happen before due to other refs in the same dir. 3394 */ 3395 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3396 if (ret < 0) 3397 goto out; 3398 if (ret == inode_state_will_create) { 3399 ret = 0; 3400 /* 3401 * First check if any of the current inodes refs did 3402 * already create the dir. 3403 */ 3404 list_for_each_entry(cur2, &sctx->new_refs, list) { 3405 if (cur == cur2) 3406 break; 3407 if (cur2->dir == cur->dir) { 3408 ret = 1; 3409 break; 3410 } 3411 } 3412 3413 /* 3414 * If that did not happen, check if a previous inode 3415 * did already create the dir. 3416 */ 3417 if (!ret) 3418 ret = did_create_dir(sctx, cur->dir); 3419 if (ret < 0) 3420 goto out; 3421 if (!ret) { 3422 ret = send_create_inode(sctx, cur->dir); 3423 if (ret < 0) 3424 goto out; 3425 } 3426 } 3427 3428 /* 3429 * Check if this new ref would overwrite the first ref of 3430 * another unprocessed inode. If yes, orphanize the 3431 * overwritten inode. If we find an overwritten ref that is 3432 * not the first ref, simply unlink it. 3433 */ 3434 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3435 cur->name, cur->name_len, 3436 &ow_inode, &ow_gen); 3437 if (ret < 0) 3438 goto out; 3439 if (ret) { 3440 ret = is_first_ref(sctx->parent_root, 3441 ow_inode, cur->dir, cur->name, 3442 cur->name_len); 3443 if (ret < 0) 3444 goto out; 3445 if (ret) { 3446 ret = orphanize_inode(sctx, ow_inode, ow_gen, 3447 cur->full_path); 3448 if (ret < 0) 3449 goto out; 3450 } else { 3451 ret = send_unlink(sctx, cur->full_path); 3452 if (ret < 0) 3453 goto out; 3454 } 3455 } 3456 3457 /* 3458 * link/move the ref to the new place. If we have an orphan 3459 * inode, move it and update valid_path. If not, link or move 3460 * it depending on the inode mode. 3461 */ 3462 if (is_orphan) { 3463 ret = send_rename(sctx, valid_path, cur->full_path); 3464 if (ret < 0) 3465 goto out; 3466 is_orphan = 0; 3467 ret = fs_path_copy(valid_path, cur->full_path); 3468 if (ret < 0) 3469 goto out; 3470 } else { 3471 if (S_ISDIR(sctx->cur_inode_mode)) { 3472 /* 3473 * Dirs can't be linked, so move it. For moved 3474 * dirs, we always have one new and one deleted 3475 * ref. The deleted ref is ignored later. 3476 */ 3477 ret = wait_for_parent_move(sctx, cur); 3478 if (ret < 0) 3479 goto out; 3480 if (ret) { 3481 ret = add_pending_dir_move(sctx, 3482 sctx->cur_ino, 3483 sctx->cur_inode_gen, 3484 cur->dir); 3485 *pending_move = 1; 3486 } else { 3487 ret = send_rename(sctx, valid_path, 3488 cur->full_path); 3489 if (!ret) 3490 ret = fs_path_copy(valid_path, 3491 cur->full_path); 3492 } 3493 if (ret < 0) 3494 goto out; 3495 } else { 3496 ret = send_link(sctx, cur->full_path, 3497 valid_path); 3498 if (ret < 0) 3499 goto out; 3500 } 3501 } 3502 ret = dup_ref(cur, &check_dirs); 3503 if (ret < 0) 3504 goto out; 3505 } 3506 3507 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 3508 /* 3509 * Check if we can already rmdir the directory. If not, 3510 * orphanize it. For every dir item inside that gets deleted 3511 * later, we do this check again and rmdir it then if possible. 3512 * See the use of check_dirs for more details. 3513 */ 3514 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3515 sctx->cur_ino); 3516 if (ret < 0) 3517 goto out; 3518 if (ret) { 3519 ret = send_rmdir(sctx, valid_path); 3520 if (ret < 0) 3521 goto out; 3522 } else if (!is_orphan) { 3523 ret = orphanize_inode(sctx, sctx->cur_ino, 3524 sctx->cur_inode_gen, valid_path); 3525 if (ret < 0) 3526 goto out; 3527 is_orphan = 1; 3528 } 3529 3530 list_for_each_entry(cur, &sctx->deleted_refs, list) { 3531 ret = dup_ref(cur, &check_dirs); 3532 if (ret < 0) 3533 goto out; 3534 } 3535 } else if (S_ISDIR(sctx->cur_inode_mode) && 3536 !list_empty(&sctx->deleted_refs)) { 3537 /* 3538 * We have a moved dir. Add the old parent to check_dirs 3539 */ 3540 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 3541 list); 3542 ret = dup_ref(cur, &check_dirs); 3543 if (ret < 0) 3544 goto out; 3545 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 3546 /* 3547 * We have a non dir inode. Go through all deleted refs and 3548 * unlink them if they were not already overwritten by other 3549 * inodes. 3550 */ 3551 list_for_each_entry(cur, &sctx->deleted_refs, list) { 3552 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3553 sctx->cur_ino, sctx->cur_inode_gen, 3554 cur->name, cur->name_len); 3555 if (ret < 0) 3556 goto out; 3557 if (!ret) { 3558 ret = send_unlink(sctx, cur->full_path); 3559 if (ret < 0) 3560 goto out; 3561 } 3562 ret = dup_ref(cur, &check_dirs); 3563 if (ret < 0) 3564 goto out; 3565 } 3566 /* 3567 * If the inode is still orphan, unlink the orphan. This may 3568 * happen when a previous inode did overwrite the first ref 3569 * of this inode and no new refs were added for the current 3570 * inode. Unlinking does not mean that the inode is deleted in 3571 * all cases. There may still be links to this inode in other 3572 * places. 3573 */ 3574 if (is_orphan) { 3575 ret = send_unlink(sctx, valid_path); 3576 if (ret < 0) 3577 goto out; 3578 } 3579 } 3580 3581 /* 3582 * We did collect all parent dirs where cur_inode was once located. We 3583 * now go through all these dirs and check if they are pending for 3584 * deletion and if it's finally possible to perform the rmdir now. 3585 * We also update the inode stats of the parent dirs here. 3586 */ 3587 list_for_each_entry(cur, &check_dirs, list) { 3588 /* 3589 * In case we had refs into dirs that were not processed yet, 3590 * we don't need to do the utime and rmdir logic for these dirs. 3591 * The dir will be processed later. 3592 */ 3593 if (cur->dir > sctx->cur_ino) 3594 continue; 3595 3596 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3597 if (ret < 0) 3598 goto out; 3599 3600 if (ret == inode_state_did_create || 3601 ret == inode_state_no_change) { 3602 /* TODO delayed utimes */ 3603 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3604 if (ret < 0) 3605 goto out; 3606 } else if (ret == inode_state_did_delete && 3607 cur->dir != last_dir_ino_rm) { 3608 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 3609 sctx->cur_ino); 3610 if (ret < 0) 3611 goto out; 3612 if (ret) { 3613 ret = get_cur_path(sctx, cur->dir, 3614 cur->dir_gen, valid_path); 3615 if (ret < 0) 3616 goto out; 3617 ret = send_rmdir(sctx, valid_path); 3618 if (ret < 0) 3619 goto out; 3620 last_dir_ino_rm = cur->dir; 3621 } 3622 } 3623 } 3624 3625 ret = 0; 3626 3627out: 3628 __free_recorded_refs(&check_dirs); 3629 free_recorded_refs(sctx); 3630 fs_path_free(valid_path); 3631 return ret; 3632} 3633 3634static int record_ref(struct btrfs_root *root, int num, u64 dir, int index, 3635 struct fs_path *name, void *ctx, struct list_head *refs) 3636{ 3637 int ret = 0; 3638 struct send_ctx *sctx = ctx; 3639 struct fs_path *p; 3640 u64 gen; 3641 3642 p = fs_path_alloc(); 3643 if (!p) 3644 return -ENOMEM; 3645 3646 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 3647 NULL, NULL); 3648 if (ret < 0) 3649 goto out; 3650 3651 ret = get_cur_path(sctx, dir, gen, p); 3652 if (ret < 0) 3653 goto out; 3654 ret = fs_path_add_path(p, name); 3655 if (ret < 0) 3656 goto out; 3657 3658 ret = __record_ref(refs, dir, gen, p); 3659 3660out: 3661 if (ret) 3662 fs_path_free(p); 3663 return ret; 3664} 3665 3666static int __record_new_ref(int num, u64 dir, int index, 3667 struct fs_path *name, 3668 void *ctx) 3669{ 3670 struct send_ctx *sctx = ctx; 3671 return record_ref(sctx->send_root, num, dir, index, name, 3672 ctx, &sctx->new_refs); 3673} 3674 3675 3676static int __record_deleted_ref(int num, u64 dir, int index, 3677 struct fs_path *name, 3678 void *ctx) 3679{ 3680 struct send_ctx *sctx = ctx; 3681 return record_ref(sctx->parent_root, num, dir, index, name, 3682 ctx, &sctx->deleted_refs); 3683} 3684 3685static int record_new_ref(struct send_ctx *sctx) 3686{ 3687 int ret; 3688 3689 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 3690 sctx->cmp_key, 0, __record_new_ref, sctx); 3691 if (ret < 0) 3692 goto out; 3693 ret = 0; 3694 3695out: 3696 return ret; 3697} 3698 3699static int record_deleted_ref(struct send_ctx *sctx) 3700{ 3701 int ret; 3702 3703 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 3704 sctx->cmp_key, 0, __record_deleted_ref, sctx); 3705 if (ret < 0) 3706 goto out; 3707 ret = 0; 3708 3709out: 3710 return ret; 3711} 3712 3713struct find_ref_ctx { 3714 u64 dir; 3715 u64 dir_gen; 3716 struct btrfs_root *root; 3717 struct fs_path *name; 3718 int found_idx; 3719}; 3720 3721static int __find_iref(int num, u64 dir, int index, 3722 struct fs_path *name, 3723 void *ctx_) 3724{ 3725 struct find_ref_ctx *ctx = ctx_; 3726 u64 dir_gen; 3727 int ret; 3728 3729 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 3730 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 3731 /* 3732 * To avoid doing extra lookups we'll only do this if everything 3733 * else matches. 3734 */ 3735 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 3736 NULL, NULL, NULL); 3737 if (ret) 3738 return ret; 3739 if (dir_gen != ctx->dir_gen) 3740 return 0; 3741 ctx->found_idx = num; 3742 return 1; 3743 } 3744 return 0; 3745} 3746 3747static int find_iref(struct btrfs_root *root, 3748 struct btrfs_path *path, 3749 struct btrfs_key *key, 3750 u64 dir, u64 dir_gen, struct fs_path *name) 3751{ 3752 int ret; 3753 struct find_ref_ctx ctx; 3754 3755 ctx.dir = dir; 3756 ctx.name = name; 3757 ctx.dir_gen = dir_gen; 3758 ctx.found_idx = -1; 3759 ctx.root = root; 3760 3761 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 3762 if (ret < 0) 3763 return ret; 3764 3765 if (ctx.found_idx == -1) 3766 return -ENOENT; 3767 3768 return ctx.found_idx; 3769} 3770 3771static int __record_changed_new_ref(int num, u64 dir, int index, 3772 struct fs_path *name, 3773 void *ctx) 3774{ 3775 u64 dir_gen; 3776 int ret; 3777 struct send_ctx *sctx = ctx; 3778 3779 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 3780 NULL, NULL, NULL); 3781 if (ret) 3782 return ret; 3783 3784 ret = find_iref(sctx->parent_root, sctx->right_path, 3785 sctx->cmp_key, dir, dir_gen, name); 3786 if (ret == -ENOENT) 3787 ret = __record_new_ref(num, dir, index, name, sctx); 3788 else if (ret > 0) 3789 ret = 0; 3790 3791 return ret; 3792} 3793 3794static int __record_changed_deleted_ref(int num, u64 dir, int index, 3795 struct fs_path *name, 3796 void *ctx) 3797{ 3798 u64 dir_gen; 3799 int ret; 3800 struct send_ctx *sctx = ctx; 3801 3802 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 3803 NULL, NULL, NULL); 3804 if (ret) 3805 return ret; 3806 3807 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 3808 dir, dir_gen, name); 3809 if (ret == -ENOENT) 3810 ret = __record_deleted_ref(num, dir, index, name, sctx); 3811 else if (ret > 0) 3812 ret = 0; 3813 3814 return ret; 3815} 3816 3817static int record_changed_ref(struct send_ctx *sctx) 3818{ 3819 int ret = 0; 3820 3821 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 3822 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 3823 if (ret < 0) 3824 goto out; 3825 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 3826 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 3827 if (ret < 0) 3828 goto out; 3829 ret = 0; 3830 3831out: 3832 return ret; 3833} 3834 3835/* 3836 * Record and process all refs at once. Needed when an inode changes the 3837 * generation number, which means that it was deleted and recreated. 3838 */ 3839static int process_all_refs(struct send_ctx *sctx, 3840 enum btrfs_compare_tree_result cmd) 3841{ 3842 int ret; 3843 struct btrfs_root *root; 3844 struct btrfs_path *path; 3845 struct btrfs_key key; 3846 struct btrfs_key found_key; 3847 struct extent_buffer *eb; 3848 int slot; 3849 iterate_inode_ref_t cb; 3850 int pending_move = 0; 3851 3852 path = alloc_path_for_send(); 3853 if (!path) 3854 return -ENOMEM; 3855 3856 if (cmd == BTRFS_COMPARE_TREE_NEW) { 3857 root = sctx->send_root; 3858 cb = __record_new_ref; 3859 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 3860 root = sctx->parent_root; 3861 cb = __record_deleted_ref; 3862 } else { 3863 btrfs_err(sctx->send_root->fs_info, 3864 "Wrong command %d in process_all_refs", cmd); 3865 ret = -EINVAL; 3866 goto out; 3867 } 3868 3869 key.objectid = sctx->cmp_key->objectid; 3870 key.type = BTRFS_INODE_REF_KEY; 3871 key.offset = 0; 3872 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3873 if (ret < 0) 3874 goto out; 3875 3876 while (1) { 3877 eb = path->nodes[0]; 3878 slot = path->slots[0]; 3879 if (slot >= btrfs_header_nritems(eb)) { 3880 ret = btrfs_next_leaf(root, path); 3881 if (ret < 0) 3882 goto out; 3883 else if (ret > 0) 3884 break; 3885 continue; 3886 } 3887 3888 btrfs_item_key_to_cpu(eb, &found_key, slot); 3889 3890 if (found_key.objectid != key.objectid || 3891 (found_key.type != BTRFS_INODE_REF_KEY && 3892 found_key.type != BTRFS_INODE_EXTREF_KEY)) 3893 break; 3894 3895 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 3896 if (ret < 0) 3897 goto out; 3898 3899 path->slots[0]++; 3900 } 3901 btrfs_release_path(path); 3902 3903 ret = process_recorded_refs(sctx, &pending_move); 3904 /* Only applicable to an incremental send. */ 3905 ASSERT(pending_move == 0); 3906 3907out: 3908 btrfs_free_path(path); 3909 return ret; 3910} 3911 3912static int send_set_xattr(struct send_ctx *sctx, 3913 struct fs_path *path, 3914 const char *name, int name_len, 3915 const char *data, int data_len) 3916{ 3917 int ret = 0; 3918 3919 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 3920 if (ret < 0) 3921 goto out; 3922 3923 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 3924 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 3925 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 3926 3927 ret = send_cmd(sctx); 3928 3929tlv_put_failure: 3930out: 3931 return ret; 3932} 3933 3934static int send_remove_xattr(struct send_ctx *sctx, 3935 struct fs_path *path, 3936 const char *name, int name_len) 3937{ 3938 int ret = 0; 3939 3940 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 3941 if (ret < 0) 3942 goto out; 3943 3944 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 3945 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 3946 3947 ret = send_cmd(sctx); 3948 3949tlv_put_failure: 3950out: 3951 return ret; 3952} 3953 3954static int __process_new_xattr(int num, struct btrfs_key *di_key, 3955 const char *name, int name_len, 3956 const char *data, int data_len, 3957 u8 type, void *ctx) 3958{ 3959 int ret; 3960 struct send_ctx *sctx = ctx; 3961 struct fs_path *p; 3962 posix_acl_xattr_header dummy_acl; 3963 3964 p = fs_path_alloc(); 3965 if (!p) 3966 return -ENOMEM; 3967 3968 /* 3969 * This hack is needed because empty acl's are stored as zero byte 3970 * data in xattrs. Problem with that is, that receiving these zero byte 3971 * acl's will fail later. To fix this, we send a dummy acl list that 3972 * only contains the version number and no entries. 3973 */ 3974 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 3975 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 3976 if (data_len == 0) { 3977 dummy_acl.a_version = 3978 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 3979 data = (char *)&dummy_acl; 3980 data_len = sizeof(dummy_acl); 3981 } 3982 } 3983 3984 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 3985 if (ret < 0) 3986 goto out; 3987 3988 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 3989 3990out: 3991 fs_path_free(p); 3992 return ret; 3993} 3994 3995static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 3996 const char *name, int name_len, 3997 const char *data, int data_len, 3998 u8 type, void *ctx) 3999{ 4000 int ret; 4001 struct send_ctx *sctx = ctx; 4002 struct fs_path *p; 4003 4004 p = fs_path_alloc(); 4005 if (!p) 4006 return -ENOMEM; 4007 4008 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4009 if (ret < 0) 4010 goto out; 4011 4012 ret = send_remove_xattr(sctx, p, name, name_len); 4013 4014out: 4015 fs_path_free(p); 4016 return ret; 4017} 4018 4019static int process_new_xattr(struct send_ctx *sctx) 4020{ 4021 int ret = 0; 4022 4023 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4024 sctx->cmp_key, __process_new_xattr, sctx); 4025 4026 return ret; 4027} 4028 4029static int process_deleted_xattr(struct send_ctx *sctx) 4030{ 4031 int ret; 4032 4033 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4034 sctx->cmp_key, __process_deleted_xattr, sctx); 4035 4036 return ret; 4037} 4038 4039struct find_xattr_ctx { 4040 const char *name; 4041 int name_len; 4042 int found_idx; 4043 char *found_data; 4044 int found_data_len; 4045}; 4046 4047static int __find_xattr(int num, struct btrfs_key *di_key, 4048 const char *name, int name_len, 4049 const char *data, int data_len, 4050 u8 type, void *vctx) 4051{ 4052 struct find_xattr_ctx *ctx = vctx; 4053 4054 if (name_len == ctx->name_len && 4055 strncmp(name, ctx->name, name_len) == 0) { 4056 ctx->found_idx = num; 4057 ctx->found_data_len = data_len; 4058 ctx->found_data = kmemdup(data, data_len, GFP_NOFS); 4059 if (!ctx->found_data) 4060 return -ENOMEM; 4061 return 1; 4062 } 4063 return 0; 4064} 4065 4066static int find_xattr(struct btrfs_root *root, 4067 struct btrfs_path *path, 4068 struct btrfs_key *key, 4069 const char *name, int name_len, 4070 char **data, int *data_len) 4071{ 4072 int ret; 4073 struct find_xattr_ctx ctx; 4074 4075 ctx.name = name; 4076 ctx.name_len = name_len; 4077 ctx.found_idx = -1; 4078 ctx.found_data = NULL; 4079 ctx.found_data_len = 0; 4080 4081 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx); 4082 if (ret < 0) 4083 return ret; 4084 4085 if (ctx.found_idx == -1) 4086 return -ENOENT; 4087 if (data) { 4088 *data = ctx.found_data; 4089 *data_len = ctx.found_data_len; 4090 } else { 4091 kfree(ctx.found_data); 4092 } 4093 return ctx.found_idx; 4094} 4095 4096 4097static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4098 const char *name, int name_len, 4099 const char *data, int data_len, 4100 u8 type, void *ctx) 4101{ 4102 int ret; 4103 struct send_ctx *sctx = ctx; 4104 char *found_data = NULL; 4105 int found_data_len = 0; 4106 4107 ret = find_xattr(sctx->parent_root, sctx->right_path, 4108 sctx->cmp_key, name, name_len, &found_data, 4109 &found_data_len); 4110 if (ret == -ENOENT) { 4111 ret = __process_new_xattr(num, di_key, name, name_len, data, 4112 data_len, type, ctx); 4113 } else if (ret >= 0) { 4114 if (data_len != found_data_len || 4115 memcmp(data, found_data, data_len)) { 4116 ret = __process_new_xattr(num, di_key, name, name_len, 4117 data, data_len, type, ctx); 4118 } else { 4119 ret = 0; 4120 } 4121 } 4122 4123 kfree(found_data); 4124 return ret; 4125} 4126 4127static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4128 const char *name, int name_len, 4129 const char *data, int data_len, 4130 u8 type, void *ctx) 4131{ 4132 int ret; 4133 struct send_ctx *sctx = ctx; 4134 4135 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4136 name, name_len, NULL, NULL); 4137 if (ret == -ENOENT) 4138 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4139 data_len, type, ctx); 4140 else if (ret >= 0) 4141 ret = 0; 4142 4143 return ret; 4144} 4145 4146static int process_changed_xattr(struct send_ctx *sctx) 4147{ 4148 int ret = 0; 4149 4150 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4151 sctx->cmp_key, __process_changed_new_xattr, sctx); 4152 if (ret < 0) 4153 goto out; 4154 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4155 sctx->cmp_key, __process_changed_deleted_xattr, sctx); 4156 4157out: 4158 return ret; 4159} 4160 4161static int process_all_new_xattrs(struct send_ctx *sctx) 4162{ 4163 int ret; 4164 struct btrfs_root *root; 4165 struct btrfs_path *path; 4166 struct btrfs_key key; 4167 struct btrfs_key found_key; 4168 struct extent_buffer *eb; 4169 int slot; 4170 4171 path = alloc_path_for_send(); 4172 if (!path) 4173 return -ENOMEM; 4174 4175 root = sctx->send_root; 4176 4177 key.objectid = sctx->cmp_key->objectid; 4178 key.type = BTRFS_XATTR_ITEM_KEY; 4179 key.offset = 0; 4180 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4181 if (ret < 0) 4182 goto out; 4183 4184 while (1) { 4185 eb = path->nodes[0]; 4186 slot = path->slots[0]; 4187 if (slot >= btrfs_header_nritems(eb)) { 4188 ret = btrfs_next_leaf(root, path); 4189 if (ret < 0) { 4190 goto out; 4191 } else if (ret > 0) { 4192 ret = 0; 4193 break; 4194 } 4195 continue; 4196 } 4197 4198 btrfs_item_key_to_cpu(eb, &found_key, slot); 4199 if (found_key.objectid != key.objectid || 4200 found_key.type != key.type) { 4201 ret = 0; 4202 goto out; 4203 } 4204 4205 ret = iterate_dir_item(root, path, &found_key, 4206 __process_new_xattr, sctx); 4207 if (ret < 0) 4208 goto out; 4209 4210 path->slots[0]++; 4211 } 4212 4213out: 4214 btrfs_free_path(path); 4215 return ret; 4216} 4217 4218static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len) 4219{ 4220 struct btrfs_root *root = sctx->send_root; 4221 struct btrfs_fs_info *fs_info = root->fs_info; 4222 struct inode *inode; 4223 struct page *page; 4224 char *addr; 4225 struct btrfs_key key; 4226 pgoff_t index = offset >> PAGE_CACHE_SHIFT; 4227 pgoff_t last_index; 4228 unsigned pg_offset = offset & ~PAGE_CACHE_MASK; 4229 ssize_t ret = 0; 4230 4231 key.objectid = sctx->cur_ino; 4232 key.type = BTRFS_INODE_ITEM_KEY; 4233 key.offset = 0; 4234 4235 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4236 if (IS_ERR(inode)) 4237 return PTR_ERR(inode); 4238 4239 if (offset + len > i_size_read(inode)) { 4240 if (offset > i_size_read(inode)) 4241 len = 0; 4242 else 4243 len = offset - i_size_read(inode); 4244 } 4245 if (len == 0) 4246 goto out; 4247 4248 last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT; 4249 4250 /* initial readahead */ 4251 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 4252 file_ra_state_init(&sctx->ra, inode->i_mapping); 4253 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index, 4254 last_index - index + 1); 4255 4256 while (index <= last_index) { 4257 unsigned cur_len = min_t(unsigned, len, 4258 PAGE_CACHE_SIZE - pg_offset); 4259 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 4260 if (!page) { 4261 ret = -ENOMEM; 4262 break; 4263 } 4264 4265 if (!PageUptodate(page)) { 4266 btrfs_readpage(NULL, page); 4267 lock_page(page); 4268 if (!PageUptodate(page)) { 4269 unlock_page(page); 4270 page_cache_release(page); 4271 ret = -EIO; 4272 break; 4273 } 4274 } 4275 4276 addr = kmap(page); 4277 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len); 4278 kunmap(page); 4279 unlock_page(page); 4280 page_cache_release(page); 4281 index++; 4282 pg_offset = 0; 4283 len -= cur_len; 4284 ret += cur_len; 4285 } 4286out: 4287 iput(inode); 4288 return ret; 4289} 4290 4291/* 4292 * Read some bytes from the current inode/file and send a write command to 4293 * user space. 4294 */ 4295static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 4296{ 4297 int ret = 0; 4298 struct fs_path *p; 4299 ssize_t num_read = 0; 4300 4301 p = fs_path_alloc(); 4302 if (!p) 4303 return -ENOMEM; 4304 4305verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len); 4306 4307 num_read = fill_read_buf(sctx, offset, len); 4308 if (num_read <= 0) { 4309 if (num_read < 0) 4310 ret = num_read; 4311 goto out; 4312 } 4313 4314 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4315 if (ret < 0) 4316 goto out; 4317 4318 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4319 if (ret < 0) 4320 goto out; 4321 4322 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4323 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4324 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read); 4325 4326 ret = send_cmd(sctx); 4327 4328tlv_put_failure: 4329out: 4330 fs_path_free(p); 4331 if (ret < 0) 4332 return ret; 4333 return num_read; 4334} 4335 4336/* 4337 * Send a clone command to user space. 4338 */ 4339static int send_clone(struct send_ctx *sctx, 4340 u64 offset, u32 len, 4341 struct clone_root *clone_root) 4342{ 4343 int ret = 0; 4344 struct fs_path *p; 4345 u64 gen; 4346 4347verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, " 4348 "clone_inode=%llu, clone_offset=%llu\n", offset, len, 4349 clone_root->root->objectid, clone_root->ino, 4350 clone_root->offset); 4351 4352 p = fs_path_alloc(); 4353 if (!p) 4354 return -ENOMEM; 4355 4356 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 4357 if (ret < 0) 4358 goto out; 4359 4360 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4361 if (ret < 0) 4362 goto out; 4363 4364 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4365 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 4366 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4367 4368 if (clone_root->root == sctx->send_root) { 4369 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 4370 &gen, NULL, NULL, NULL, NULL); 4371 if (ret < 0) 4372 goto out; 4373 ret = get_cur_path(sctx, clone_root->ino, gen, p); 4374 } else { 4375 ret = get_inode_path(clone_root->root, clone_root->ino, p); 4376 } 4377 if (ret < 0) 4378 goto out; 4379 4380 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4381 clone_root->root->root_item.uuid); 4382 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 4383 le64_to_cpu(clone_root->root->root_item.ctransid)); 4384 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 4385 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 4386 clone_root->offset); 4387 4388 ret = send_cmd(sctx); 4389 4390tlv_put_failure: 4391out: 4392 fs_path_free(p); 4393 return ret; 4394} 4395 4396/* 4397 * Send an update extent command to user space. 4398 */ 4399static int send_update_extent(struct send_ctx *sctx, 4400 u64 offset, u32 len) 4401{ 4402 int ret = 0; 4403 struct fs_path *p; 4404 4405 p = fs_path_alloc(); 4406 if (!p) 4407 return -ENOMEM; 4408 4409 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 4410 if (ret < 0) 4411 goto out; 4412 4413 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4414 if (ret < 0) 4415 goto out; 4416 4417 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4418 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4419 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 4420 4421 ret = send_cmd(sctx); 4422 4423tlv_put_failure: 4424out: 4425 fs_path_free(p); 4426 return ret; 4427} 4428 4429static int send_hole(struct send_ctx *sctx, u64 end) 4430{ 4431 struct fs_path *p = NULL; 4432 u64 offset = sctx->cur_inode_last_extent; 4433 u64 len; 4434 int ret = 0; 4435 4436 p = fs_path_alloc(); 4437 if (!p) 4438 return -ENOMEM; 4439 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE); 4440 while (offset < end) { 4441 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE); 4442 4443 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4444 if (ret < 0) 4445 break; 4446 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4447 if (ret < 0) 4448 break; 4449 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4450 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4451 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len); 4452 ret = send_cmd(sctx); 4453 if (ret < 0) 4454 break; 4455 offset += len; 4456 } 4457tlv_put_failure: 4458 fs_path_free(p); 4459 return ret; 4460} 4461 4462static int send_write_or_clone(struct send_ctx *sctx, 4463 struct btrfs_path *path, 4464 struct btrfs_key *key, 4465 struct clone_root *clone_root) 4466{ 4467 int ret = 0; 4468 struct btrfs_file_extent_item *ei; 4469 u64 offset = key->offset; 4470 u64 pos = 0; 4471 u64 len; 4472 u32 l; 4473 u8 type; 4474 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 4475 4476 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 4477 struct btrfs_file_extent_item); 4478 type = btrfs_file_extent_type(path->nodes[0], ei); 4479 if (type == BTRFS_FILE_EXTENT_INLINE) { 4480 len = btrfs_file_extent_inline_len(path->nodes[0], 4481 path->slots[0], ei); 4482 /* 4483 * it is possible the inline item won't cover the whole page, 4484 * but there may be items after this page. Make 4485 * sure to send the whole thing 4486 */ 4487 len = PAGE_CACHE_ALIGN(len); 4488 } else { 4489 len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 4490 } 4491 4492 if (offset + len > sctx->cur_inode_size) 4493 len = sctx->cur_inode_size - offset; 4494 if (len == 0) { 4495 ret = 0; 4496 goto out; 4497 } 4498 4499 if (clone_root && IS_ALIGNED(offset + len, bs)) { 4500 ret = send_clone(sctx, offset, len, clone_root); 4501 } else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) { 4502 ret = send_update_extent(sctx, offset, len); 4503 } else { 4504 while (pos < len) { 4505 l = len - pos; 4506 if (l > BTRFS_SEND_READ_SIZE) 4507 l = BTRFS_SEND_READ_SIZE; 4508 ret = send_write(sctx, pos + offset, l); 4509 if (ret < 0) 4510 goto out; 4511 if (!ret) 4512 break; 4513 pos += ret; 4514 } 4515 ret = 0; 4516 } 4517out: 4518 return ret; 4519} 4520 4521static int is_extent_unchanged(struct send_ctx *sctx, 4522 struct btrfs_path *left_path, 4523 struct btrfs_key *ekey) 4524{ 4525 int ret = 0; 4526 struct btrfs_key key; 4527 struct btrfs_path *path = NULL; 4528 struct extent_buffer *eb; 4529 int slot; 4530 struct btrfs_key found_key; 4531 struct btrfs_file_extent_item *ei; 4532 u64 left_disknr; 4533 u64 right_disknr; 4534 u64 left_offset; 4535 u64 right_offset; 4536 u64 left_offset_fixed; 4537 u64 left_len; 4538 u64 right_len; 4539 u64 left_gen; 4540 u64 right_gen; 4541 u8 left_type; 4542 u8 right_type; 4543 4544 path = alloc_path_for_send(); 4545 if (!path) 4546 return -ENOMEM; 4547 4548 eb = left_path->nodes[0]; 4549 slot = left_path->slots[0]; 4550 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 4551 left_type = btrfs_file_extent_type(eb, ei); 4552 4553 if (left_type != BTRFS_FILE_EXTENT_REG) { 4554 ret = 0; 4555 goto out; 4556 } 4557 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 4558 left_len = btrfs_file_extent_num_bytes(eb, ei); 4559 left_offset = btrfs_file_extent_offset(eb, ei); 4560 left_gen = btrfs_file_extent_generation(eb, ei); 4561 4562 /* 4563 * Following comments will refer to these graphics. L is the left 4564 * extents which we are checking at the moment. 1-8 are the right 4565 * extents that we iterate. 4566 * 4567 * |-----L-----| 4568 * |-1-|-2a-|-3-|-4-|-5-|-6-| 4569 * 4570 * |-----L-----| 4571 * |--1--|-2b-|...(same as above) 4572 * 4573 * Alternative situation. Happens on files where extents got split. 4574 * |-----L-----| 4575 * |-----------7-----------|-6-| 4576 * 4577 * Alternative situation. Happens on files which got larger. 4578 * |-----L-----| 4579 * |-8-| 4580 * Nothing follows after 8. 4581 */ 4582 4583 key.objectid = ekey->objectid; 4584 key.type = BTRFS_EXTENT_DATA_KEY; 4585 key.offset = ekey->offset; 4586 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 4587 if (ret < 0) 4588 goto out; 4589 if (ret) { 4590 ret = 0; 4591 goto out; 4592 } 4593 4594 /* 4595 * Handle special case where the right side has no extents at all. 4596 */ 4597 eb = path->nodes[0]; 4598 slot = path->slots[0]; 4599 btrfs_item_key_to_cpu(eb, &found_key, slot); 4600 if (found_key.objectid != key.objectid || 4601 found_key.type != key.type) { 4602 /* If we're a hole then just pretend nothing changed */ 4603 ret = (left_disknr) ? 0 : 1; 4604 goto out; 4605 } 4606 4607 /* 4608 * We're now on 2a, 2b or 7. 4609 */ 4610 key = found_key; 4611 while (key.offset < ekey->offset + left_len) { 4612 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 4613 right_type = btrfs_file_extent_type(eb, ei); 4614 if (right_type != BTRFS_FILE_EXTENT_REG) { 4615 ret = 0; 4616 goto out; 4617 } 4618 4619 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 4620 right_len = btrfs_file_extent_num_bytes(eb, ei); 4621 right_offset = btrfs_file_extent_offset(eb, ei); 4622 right_gen = btrfs_file_extent_generation(eb, ei); 4623 4624 /* 4625 * Are we at extent 8? If yes, we know the extent is changed. 4626 * This may only happen on the first iteration. 4627 */ 4628 if (found_key.offset + right_len <= ekey->offset) { 4629 /* If we're a hole just pretend nothing changed */ 4630 ret = (left_disknr) ? 0 : 1; 4631 goto out; 4632 } 4633 4634 left_offset_fixed = left_offset; 4635 if (key.offset < ekey->offset) { 4636 /* Fix the right offset for 2a and 7. */ 4637 right_offset += ekey->offset - key.offset; 4638 } else { 4639 /* Fix the left offset for all behind 2a and 2b */ 4640 left_offset_fixed += key.offset - ekey->offset; 4641 } 4642 4643 /* 4644 * Check if we have the same extent. 4645 */ 4646 if (left_disknr != right_disknr || 4647 left_offset_fixed != right_offset || 4648 left_gen != right_gen) { 4649 ret = 0; 4650 goto out; 4651 } 4652 4653 /* 4654 * Go to the next extent. 4655 */ 4656 ret = btrfs_next_item(sctx->parent_root, path); 4657 if (ret < 0) 4658 goto out; 4659 if (!ret) { 4660 eb = path->nodes[0]; 4661 slot = path->slots[0]; 4662 btrfs_item_key_to_cpu(eb, &found_key, slot); 4663 } 4664 if (ret || found_key.objectid != key.objectid || 4665 found_key.type != key.type) { 4666 key.offset += right_len; 4667 break; 4668 } 4669 if (found_key.offset != key.offset + right_len) { 4670 ret = 0; 4671 goto out; 4672 } 4673 key = found_key; 4674 } 4675 4676 /* 4677 * We're now behind the left extent (treat as unchanged) or at the end 4678 * of the right side (treat as changed). 4679 */ 4680 if (key.offset >= ekey->offset + left_len) 4681 ret = 1; 4682 else 4683 ret = 0; 4684 4685 4686out: 4687 btrfs_free_path(path); 4688 return ret; 4689} 4690 4691static int get_last_extent(struct send_ctx *sctx, u64 offset) 4692{ 4693 struct btrfs_path *path; 4694 struct btrfs_root *root = sctx->send_root; 4695 struct btrfs_file_extent_item *fi; 4696 struct btrfs_key key; 4697 u64 extent_end; 4698 u8 type; 4699 int ret; 4700 4701 path = alloc_path_for_send(); 4702 if (!path) 4703 return -ENOMEM; 4704 4705 sctx->cur_inode_last_extent = 0; 4706 4707 key.objectid = sctx->cur_ino; 4708 key.type = BTRFS_EXTENT_DATA_KEY; 4709 key.offset = offset; 4710 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 4711 if (ret < 0) 4712 goto out; 4713 ret = 0; 4714 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4715 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 4716 goto out; 4717 4718 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 4719 struct btrfs_file_extent_item); 4720 type = btrfs_file_extent_type(path->nodes[0], fi); 4721 if (type == BTRFS_FILE_EXTENT_INLINE) { 4722 u64 size = btrfs_file_extent_inline_len(path->nodes[0], 4723 path->slots[0], fi); 4724 extent_end = ALIGN(key.offset + size, 4725 sctx->send_root->sectorsize); 4726 } else { 4727 extent_end = key.offset + 4728 btrfs_file_extent_num_bytes(path->nodes[0], fi); 4729 } 4730 sctx->cur_inode_last_extent = extent_end; 4731out: 4732 btrfs_free_path(path); 4733 return ret; 4734} 4735 4736static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 4737 struct btrfs_key *key) 4738{ 4739 struct btrfs_file_extent_item *fi; 4740 u64 extent_end; 4741 u8 type; 4742 int ret = 0; 4743 4744 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 4745 return 0; 4746 4747 if (sctx->cur_inode_last_extent == (u64)-1) { 4748 ret = get_last_extent(sctx, key->offset - 1); 4749 if (ret) 4750 return ret; 4751 } 4752 4753 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 4754 struct btrfs_file_extent_item); 4755 type = btrfs_file_extent_type(path->nodes[0], fi); 4756 if (type == BTRFS_FILE_EXTENT_INLINE) { 4757 u64 size = btrfs_file_extent_inline_len(path->nodes[0], 4758 path->slots[0], fi); 4759 extent_end = ALIGN(key->offset + size, 4760 sctx->send_root->sectorsize); 4761 } else { 4762 extent_end = key->offset + 4763 btrfs_file_extent_num_bytes(path->nodes[0], fi); 4764 } 4765 4766 if (path->slots[0] == 0 && 4767 sctx->cur_inode_last_extent < key->offset) { 4768 /* 4769 * We might have skipped entire leafs that contained only 4770 * file extent items for our current inode. These leafs have 4771 * a generation number smaller (older) than the one in the 4772 * current leaf and the leaf our last extent came from, and 4773 * are located between these 2 leafs. 4774 */ 4775 ret = get_last_extent(sctx, key->offset - 1); 4776 if (ret) 4777 return ret; 4778 } 4779 4780 if (sctx->cur_inode_last_extent < key->offset) 4781 ret = send_hole(sctx, key->offset); 4782 sctx->cur_inode_last_extent = extent_end; 4783 return ret; 4784} 4785 4786static int process_extent(struct send_ctx *sctx, 4787 struct btrfs_path *path, 4788 struct btrfs_key *key) 4789{ 4790 struct clone_root *found_clone = NULL; 4791 int ret = 0; 4792 4793 if (S_ISLNK(sctx->cur_inode_mode)) 4794 return 0; 4795 4796 if (sctx->parent_root && !sctx->cur_inode_new) { 4797 ret = is_extent_unchanged(sctx, path, key); 4798 if (ret < 0) 4799 goto out; 4800 if (ret) { 4801 ret = 0; 4802 goto out_hole; 4803 } 4804 } else { 4805 struct btrfs_file_extent_item *ei; 4806 u8 type; 4807 4808 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 4809 struct btrfs_file_extent_item); 4810 type = btrfs_file_extent_type(path->nodes[0], ei); 4811 if (type == BTRFS_FILE_EXTENT_PREALLOC || 4812 type == BTRFS_FILE_EXTENT_REG) { 4813 /* 4814 * The send spec does not have a prealloc command yet, 4815 * so just leave a hole for prealloc'ed extents until 4816 * we have enough commands queued up to justify rev'ing 4817 * the send spec. 4818 */ 4819 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 4820 ret = 0; 4821 goto out; 4822 } 4823 4824 /* Have a hole, just skip it. */ 4825 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 4826 ret = 0; 4827 goto out; 4828 } 4829 } 4830 } 4831 4832 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 4833 sctx->cur_inode_size, &found_clone); 4834 if (ret != -ENOENT && ret < 0) 4835 goto out; 4836 4837 ret = send_write_or_clone(sctx, path, key, found_clone); 4838 if (ret) 4839 goto out; 4840out_hole: 4841 ret = maybe_send_hole(sctx, path, key); 4842out: 4843 return ret; 4844} 4845 4846static int process_all_extents(struct send_ctx *sctx) 4847{ 4848 int ret; 4849 struct btrfs_root *root; 4850 struct btrfs_path *path; 4851 struct btrfs_key key; 4852 struct btrfs_key found_key; 4853 struct extent_buffer *eb; 4854 int slot; 4855 4856 root = sctx->send_root; 4857 path = alloc_path_for_send(); 4858 if (!path) 4859 return -ENOMEM; 4860 4861 key.objectid = sctx->cmp_key->objectid; 4862 key.type = BTRFS_EXTENT_DATA_KEY; 4863 key.offset = 0; 4864 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4865 if (ret < 0) 4866 goto out; 4867 4868 while (1) { 4869 eb = path->nodes[0]; 4870 slot = path->slots[0]; 4871 4872 if (slot >= btrfs_header_nritems(eb)) { 4873 ret = btrfs_next_leaf(root, path); 4874 if (ret < 0) { 4875 goto out; 4876 } else if (ret > 0) { 4877 ret = 0; 4878 break; 4879 } 4880 continue; 4881 } 4882 4883 btrfs_item_key_to_cpu(eb, &found_key, slot); 4884 4885 if (found_key.objectid != key.objectid || 4886 found_key.type != key.type) { 4887 ret = 0; 4888 goto out; 4889 } 4890 4891 ret = process_extent(sctx, path, &found_key); 4892 if (ret < 0) 4893 goto out; 4894 4895 path->slots[0]++; 4896 } 4897 4898out: 4899 btrfs_free_path(path); 4900 return ret; 4901} 4902 4903static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 4904 int *pending_move, 4905 int *refs_processed) 4906{ 4907 int ret = 0; 4908 4909 if (sctx->cur_ino == 0) 4910 goto out; 4911 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 4912 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 4913 goto out; 4914 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 4915 goto out; 4916 4917 ret = process_recorded_refs(sctx, pending_move); 4918 if (ret < 0) 4919 goto out; 4920 4921 *refs_processed = 1; 4922out: 4923 return ret; 4924} 4925 4926static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 4927{ 4928 int ret = 0; 4929 u64 left_mode; 4930 u64 left_uid; 4931 u64 left_gid; 4932 u64 right_mode; 4933 u64 right_uid; 4934 u64 right_gid; 4935 int need_chmod = 0; 4936 int need_chown = 0; 4937 int pending_move = 0; 4938 int refs_processed = 0; 4939 4940 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 4941 &refs_processed); 4942 if (ret < 0) 4943 goto out; 4944 4945 /* 4946 * We have processed the refs and thus need to advance send_progress. 4947 * Now, calls to get_cur_xxx will take the updated refs of the current 4948 * inode into account. 4949 * 4950 * On the other hand, if our current inode is a directory and couldn't 4951 * be moved/renamed because its parent was renamed/moved too and it has 4952 * a higher inode number, we can only move/rename our current inode 4953 * after we moved/renamed its parent. Therefore in this case operate on 4954 * the old path (pre move/rename) of our current inode, and the 4955 * move/rename will be performed later. 4956 */ 4957 if (refs_processed && !pending_move) 4958 sctx->send_progress = sctx->cur_ino + 1; 4959 4960 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 4961 goto out; 4962 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 4963 goto out; 4964 4965 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 4966 &left_mode, &left_uid, &left_gid, NULL); 4967 if (ret < 0) 4968 goto out; 4969 4970 if (!sctx->parent_root || sctx->cur_inode_new) { 4971 need_chown = 1; 4972 if (!S_ISLNK(sctx->cur_inode_mode)) 4973 need_chmod = 1; 4974 } else { 4975 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 4976 NULL, NULL, &right_mode, &right_uid, 4977 &right_gid, NULL); 4978 if (ret < 0) 4979 goto out; 4980 4981 if (left_uid != right_uid || left_gid != right_gid) 4982 need_chown = 1; 4983 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 4984 need_chmod = 1; 4985 } 4986 4987 if (S_ISREG(sctx->cur_inode_mode)) { 4988 if (need_send_hole(sctx)) { 4989 if (sctx->cur_inode_last_extent == (u64)-1 || 4990 sctx->cur_inode_last_extent < 4991 sctx->cur_inode_size) { 4992 ret = get_last_extent(sctx, (u64)-1); 4993 if (ret) 4994 goto out; 4995 } 4996 if (sctx->cur_inode_last_extent < 4997 sctx->cur_inode_size) { 4998 ret = send_hole(sctx, sctx->cur_inode_size); 4999 if (ret) 5000 goto out; 5001 } 5002 } 5003 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5004 sctx->cur_inode_size); 5005 if (ret < 0) 5006 goto out; 5007 } 5008 5009 if (need_chown) { 5010 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5011 left_uid, left_gid); 5012 if (ret < 0) 5013 goto out; 5014 } 5015 if (need_chmod) { 5016 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5017 left_mode); 5018 if (ret < 0) 5019 goto out; 5020 } 5021 5022 /* 5023 * If other directory inodes depended on our current directory 5024 * inode's move/rename, now do their move/rename operations. 5025 */ 5026 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 5027 ret = apply_children_dir_moves(sctx); 5028 if (ret) 5029 goto out; 5030 /* 5031 * Need to send that every time, no matter if it actually 5032 * changed between the two trees as we have done changes to 5033 * the inode before. If our inode is a directory and it's 5034 * waiting to be moved/renamed, we will send its utimes when 5035 * it's moved/renamed, therefore we don't need to do it here. 5036 */ 5037 sctx->send_progress = sctx->cur_ino + 1; 5038 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 5039 if (ret < 0) 5040 goto out; 5041 } 5042 5043out: 5044 return ret; 5045} 5046 5047static int changed_inode(struct send_ctx *sctx, 5048 enum btrfs_compare_tree_result result) 5049{ 5050 int ret = 0; 5051 struct btrfs_key *key = sctx->cmp_key; 5052 struct btrfs_inode_item *left_ii = NULL; 5053 struct btrfs_inode_item *right_ii = NULL; 5054 u64 left_gen = 0; 5055 u64 right_gen = 0; 5056 5057 sctx->cur_ino = key->objectid; 5058 sctx->cur_inode_new_gen = 0; 5059 sctx->cur_inode_last_extent = (u64)-1; 5060 5061 /* 5062 * Set send_progress to current inode. This will tell all get_cur_xxx 5063 * functions that the current inode's refs are not updated yet. Later, 5064 * when process_recorded_refs is finished, it is set to cur_ino + 1. 5065 */ 5066 sctx->send_progress = sctx->cur_ino; 5067 5068 if (result == BTRFS_COMPARE_TREE_NEW || 5069 result == BTRFS_COMPARE_TREE_CHANGED) { 5070 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 5071 sctx->left_path->slots[0], 5072 struct btrfs_inode_item); 5073 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 5074 left_ii); 5075 } else { 5076 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 5077 sctx->right_path->slots[0], 5078 struct btrfs_inode_item); 5079 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 5080 right_ii); 5081 } 5082 if (result == BTRFS_COMPARE_TREE_CHANGED) { 5083 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 5084 sctx->right_path->slots[0], 5085 struct btrfs_inode_item); 5086 5087 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 5088 right_ii); 5089 5090 /* 5091 * The cur_ino = root dir case is special here. We can't treat 5092 * the inode as deleted+reused because it would generate a 5093 * stream that tries to delete/mkdir the root dir. 5094 */ 5095 if (left_gen != right_gen && 5096 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 5097 sctx->cur_inode_new_gen = 1; 5098 } 5099 5100 if (result == BTRFS_COMPARE_TREE_NEW) { 5101 sctx->cur_inode_gen = left_gen; 5102 sctx->cur_inode_new = 1; 5103 sctx->cur_inode_deleted = 0; 5104 sctx->cur_inode_size = btrfs_inode_size( 5105 sctx->left_path->nodes[0], left_ii); 5106 sctx->cur_inode_mode = btrfs_inode_mode( 5107 sctx->left_path->nodes[0], left_ii); 5108 sctx->cur_inode_rdev = btrfs_inode_rdev( 5109 sctx->left_path->nodes[0], left_ii); 5110 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 5111 ret = send_create_inode_if_needed(sctx); 5112 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 5113 sctx->cur_inode_gen = right_gen; 5114 sctx->cur_inode_new = 0; 5115 sctx->cur_inode_deleted = 1; 5116 sctx->cur_inode_size = btrfs_inode_size( 5117 sctx->right_path->nodes[0], right_ii); 5118 sctx->cur_inode_mode = btrfs_inode_mode( 5119 sctx->right_path->nodes[0], right_ii); 5120 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 5121 /* 5122 * We need to do some special handling in case the inode was 5123 * reported as changed with a changed generation number. This 5124 * means that the original inode was deleted and new inode 5125 * reused the same inum. So we have to treat the old inode as 5126 * deleted and the new one as new. 5127 */ 5128 if (sctx->cur_inode_new_gen) { 5129 /* 5130 * First, process the inode as if it was deleted. 5131 */ 5132 sctx->cur_inode_gen = right_gen; 5133 sctx->cur_inode_new = 0; 5134 sctx->cur_inode_deleted = 1; 5135 sctx->cur_inode_size = btrfs_inode_size( 5136 sctx->right_path->nodes[0], right_ii); 5137 sctx->cur_inode_mode = btrfs_inode_mode( 5138 sctx->right_path->nodes[0], right_ii); 5139 ret = process_all_refs(sctx, 5140 BTRFS_COMPARE_TREE_DELETED); 5141 if (ret < 0) 5142 goto out; 5143 5144 /* 5145 * Now process the inode as if it was new. 5146 */ 5147 sctx->cur_inode_gen = left_gen; 5148 sctx->cur_inode_new = 1; 5149 sctx->cur_inode_deleted = 0; 5150 sctx->cur_inode_size = btrfs_inode_size( 5151 sctx->left_path->nodes[0], left_ii); 5152 sctx->cur_inode_mode = btrfs_inode_mode( 5153 sctx->left_path->nodes[0], left_ii); 5154 sctx->cur_inode_rdev = btrfs_inode_rdev( 5155 sctx->left_path->nodes[0], left_ii); 5156 ret = send_create_inode_if_needed(sctx); 5157 if (ret < 0) 5158 goto out; 5159 5160 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 5161 if (ret < 0) 5162 goto out; 5163 /* 5164 * Advance send_progress now as we did not get into 5165 * process_recorded_refs_if_needed in the new_gen case. 5166 */ 5167 sctx->send_progress = sctx->cur_ino + 1; 5168 5169 /* 5170 * Now process all extents and xattrs of the inode as if 5171 * they were all new. 5172 */ 5173 ret = process_all_extents(sctx); 5174 if (ret < 0) 5175 goto out; 5176 ret = process_all_new_xattrs(sctx); 5177 if (ret < 0) 5178 goto out; 5179 } else { 5180 sctx->cur_inode_gen = left_gen; 5181 sctx->cur_inode_new = 0; 5182 sctx->cur_inode_new_gen = 0; 5183 sctx->cur_inode_deleted = 0; 5184 sctx->cur_inode_size = btrfs_inode_size( 5185 sctx->left_path->nodes[0], left_ii); 5186 sctx->cur_inode_mode = btrfs_inode_mode( 5187 sctx->left_path->nodes[0], left_ii); 5188 } 5189 } 5190 5191out: 5192 return ret; 5193} 5194 5195/* 5196 * We have to process new refs before deleted refs, but compare_trees gives us 5197 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 5198 * first and later process them in process_recorded_refs. 5199 * For the cur_inode_new_gen case, we skip recording completely because 5200 * changed_inode did already initiate processing of refs. The reason for this is 5201 * that in this case, compare_tree actually compares the refs of 2 different 5202 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 5203 * refs of the right tree as deleted and all refs of the left tree as new. 5204 */ 5205static int changed_ref(struct send_ctx *sctx, 5206 enum btrfs_compare_tree_result result) 5207{ 5208 int ret = 0; 5209 5210 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 5211 5212 if (!sctx->cur_inode_new_gen && 5213 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 5214 if (result == BTRFS_COMPARE_TREE_NEW) 5215 ret = record_new_ref(sctx); 5216 else if (result == BTRFS_COMPARE_TREE_DELETED) 5217 ret = record_deleted_ref(sctx); 5218 else if (result == BTRFS_COMPARE_TREE_CHANGED) 5219 ret = record_changed_ref(sctx); 5220 } 5221 5222 return ret; 5223} 5224 5225/* 5226 * Process new/deleted/changed xattrs. We skip processing in the 5227 * cur_inode_new_gen case because changed_inode did already initiate processing 5228 * of xattrs. The reason is the same as in changed_ref 5229 */ 5230static int changed_xattr(struct send_ctx *sctx, 5231 enum btrfs_compare_tree_result result) 5232{ 5233 int ret = 0; 5234 5235 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 5236 5237 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 5238 if (result == BTRFS_COMPARE_TREE_NEW) 5239 ret = process_new_xattr(sctx); 5240 else if (result == BTRFS_COMPARE_TREE_DELETED) 5241 ret = process_deleted_xattr(sctx); 5242 else if (result == BTRFS_COMPARE_TREE_CHANGED) 5243 ret = process_changed_xattr(sctx); 5244 } 5245 5246 return ret; 5247} 5248 5249/* 5250 * Process new/deleted/changed extents. We skip processing in the 5251 * cur_inode_new_gen case because changed_inode did already initiate processing 5252 * of extents. The reason is the same as in changed_ref 5253 */ 5254static int changed_extent(struct send_ctx *sctx, 5255 enum btrfs_compare_tree_result result) 5256{ 5257 int ret = 0; 5258 5259 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 5260 5261 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 5262 if (result != BTRFS_COMPARE_TREE_DELETED) 5263 ret = process_extent(sctx, sctx->left_path, 5264 sctx->cmp_key); 5265 } 5266 5267 return ret; 5268} 5269 5270static int dir_changed(struct send_ctx *sctx, u64 dir) 5271{ 5272 u64 orig_gen, new_gen; 5273 int ret; 5274 5275 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 5276 NULL, NULL); 5277 if (ret) 5278 return ret; 5279 5280 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 5281 NULL, NULL, NULL); 5282 if (ret) 5283 return ret; 5284 5285 return (orig_gen != new_gen) ? 1 : 0; 5286} 5287 5288static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 5289 struct btrfs_key *key) 5290{ 5291 struct btrfs_inode_extref *extref; 5292 struct extent_buffer *leaf; 5293 u64 dirid = 0, last_dirid = 0; 5294 unsigned long ptr; 5295 u32 item_size; 5296 u32 cur_offset = 0; 5297 int ref_name_len; 5298 int ret = 0; 5299 5300 /* Easy case, just check this one dirid */ 5301 if (key->type == BTRFS_INODE_REF_KEY) { 5302 dirid = key->offset; 5303 5304 ret = dir_changed(sctx, dirid); 5305 goto out; 5306 } 5307 5308 leaf = path->nodes[0]; 5309 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 5310 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 5311 while (cur_offset < item_size) { 5312 extref = (struct btrfs_inode_extref *)(ptr + 5313 cur_offset); 5314 dirid = btrfs_inode_extref_parent(leaf, extref); 5315 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 5316 cur_offset += ref_name_len + sizeof(*extref); 5317 if (dirid == last_dirid) 5318 continue; 5319 ret = dir_changed(sctx, dirid); 5320 if (ret) 5321 break; 5322 last_dirid = dirid; 5323 } 5324out: 5325 return ret; 5326} 5327 5328/* 5329 * Updates compare related fields in sctx and simply forwards to the actual 5330 * changed_xxx functions. 5331 */ 5332static int changed_cb(struct btrfs_root *left_root, 5333 struct btrfs_root *right_root, 5334 struct btrfs_path *left_path, 5335 struct btrfs_path *right_path, 5336 struct btrfs_key *key, 5337 enum btrfs_compare_tree_result result, 5338 void *ctx) 5339{ 5340 int ret = 0; 5341 struct send_ctx *sctx = ctx; 5342 5343 if (result == BTRFS_COMPARE_TREE_SAME) { 5344 if (key->type == BTRFS_INODE_REF_KEY || 5345 key->type == BTRFS_INODE_EXTREF_KEY) { 5346 ret = compare_refs(sctx, left_path, key); 5347 if (!ret) 5348 return 0; 5349 if (ret < 0) 5350 return ret; 5351 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 5352 return maybe_send_hole(sctx, left_path, key); 5353 } else { 5354 return 0; 5355 } 5356 result = BTRFS_COMPARE_TREE_CHANGED; 5357 ret = 0; 5358 } 5359 5360 sctx->left_path = left_path; 5361 sctx->right_path = right_path; 5362 sctx->cmp_key = key; 5363 5364 ret = finish_inode_if_needed(sctx, 0); 5365 if (ret < 0) 5366 goto out; 5367 5368 /* Ignore non-FS objects */ 5369 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 5370 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 5371 goto out; 5372 5373 if (key->type == BTRFS_INODE_ITEM_KEY) 5374 ret = changed_inode(sctx, result); 5375 else if (key->type == BTRFS_INODE_REF_KEY || 5376 key->type == BTRFS_INODE_EXTREF_KEY) 5377 ret = changed_ref(sctx, result); 5378 else if (key->type == BTRFS_XATTR_ITEM_KEY) 5379 ret = changed_xattr(sctx, result); 5380 else if (key->type == BTRFS_EXTENT_DATA_KEY) 5381 ret = changed_extent(sctx, result); 5382 5383out: 5384 return ret; 5385} 5386 5387static int full_send_tree(struct send_ctx *sctx) 5388{ 5389 int ret; 5390 struct btrfs_root *send_root = sctx->send_root; 5391 struct btrfs_key key; 5392 struct btrfs_key found_key; 5393 struct btrfs_path *path; 5394 struct extent_buffer *eb; 5395 int slot; 5396 5397 path = alloc_path_for_send(); 5398 if (!path) 5399 return -ENOMEM; 5400 5401 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 5402 key.type = BTRFS_INODE_ITEM_KEY; 5403 key.offset = 0; 5404 5405 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 5406 if (ret < 0) 5407 goto out; 5408 if (ret) 5409 goto out_finish; 5410 5411 while (1) { 5412 eb = path->nodes[0]; 5413 slot = path->slots[0]; 5414 btrfs_item_key_to_cpu(eb, &found_key, slot); 5415 5416 ret = changed_cb(send_root, NULL, path, NULL, 5417 &found_key, BTRFS_COMPARE_TREE_NEW, sctx); 5418 if (ret < 0) 5419 goto out; 5420 5421 key.objectid = found_key.objectid; 5422 key.type = found_key.type; 5423 key.offset = found_key.offset + 1; 5424 5425 ret = btrfs_next_item(send_root, path); 5426 if (ret < 0) 5427 goto out; 5428 if (ret) { 5429 ret = 0; 5430 break; 5431 } 5432 } 5433 5434out_finish: 5435 ret = finish_inode_if_needed(sctx, 1); 5436 5437out: 5438 btrfs_free_path(path); 5439 return ret; 5440} 5441 5442static int send_subvol(struct send_ctx *sctx) 5443{ 5444 int ret; 5445 5446 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 5447 ret = send_header(sctx); 5448 if (ret < 0) 5449 goto out; 5450 } 5451 5452 ret = send_subvol_begin(sctx); 5453 if (ret < 0) 5454 goto out; 5455 5456 if (sctx->parent_root) { 5457 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, 5458 changed_cb, sctx); 5459 if (ret < 0) 5460 goto out; 5461 ret = finish_inode_if_needed(sctx, 1); 5462 if (ret < 0) 5463 goto out; 5464 } else { 5465 ret = full_send_tree(sctx); 5466 if (ret < 0) 5467 goto out; 5468 } 5469 5470out: 5471 free_recorded_refs(sctx); 5472 return ret; 5473} 5474 5475static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 5476{ 5477 spin_lock(&root->root_item_lock); 5478 root->send_in_progress--; 5479 /* 5480 * Not much left to do, we don't know why it's unbalanced and 5481 * can't blindly reset it to 0. 5482 */ 5483 if (root->send_in_progress < 0) 5484 btrfs_err(root->fs_info, 5485 "send_in_progres unbalanced %d root %llu\n", 5486 root->send_in_progress, root->root_key.objectid); 5487 spin_unlock(&root->root_item_lock); 5488} 5489 5490long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_) 5491{ 5492 int ret = 0; 5493 struct btrfs_root *send_root; 5494 struct btrfs_root *clone_root; 5495 struct btrfs_fs_info *fs_info; 5496 struct btrfs_ioctl_send_args *arg = NULL; 5497 struct btrfs_key key; 5498 struct send_ctx *sctx = NULL; 5499 u32 i; 5500 u64 *clone_sources_tmp = NULL; 5501 int clone_sources_to_rollback = 0; 5502 int sort_clone_roots = 0; 5503 int index; 5504 5505 if (!capable(CAP_SYS_ADMIN)) 5506 return -EPERM; 5507 5508 send_root = BTRFS_I(file_inode(mnt_file))->root; 5509 fs_info = send_root->fs_info; 5510 5511 /* 5512 * The subvolume must remain read-only during send, protect against 5513 * making it RW. 5514 */ 5515 spin_lock(&send_root->root_item_lock); 5516 send_root->send_in_progress++; 5517 spin_unlock(&send_root->root_item_lock); 5518 5519 /* 5520 * This is done when we lookup the root, it should already be complete 5521 * by the time we get here. 5522 */ 5523 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE); 5524 5525 /* 5526 * Userspace tools do the checks and warn the user if it's 5527 * not RO. 5528 */ 5529 if (!btrfs_root_readonly(send_root)) { 5530 ret = -EPERM; 5531 goto out; 5532 } 5533 5534 arg = memdup_user(arg_, sizeof(*arg)); 5535 if (IS_ERR(arg)) { 5536 ret = PTR_ERR(arg); 5537 arg = NULL; 5538 goto out; 5539 } 5540 5541 if (!access_ok(VERIFY_READ, arg->clone_sources, 5542 sizeof(*arg->clone_sources) * 5543 arg->clone_sources_count)) { 5544 ret = -EFAULT; 5545 goto out; 5546 } 5547 5548 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 5549 ret = -EINVAL; 5550 goto out; 5551 } 5552 5553 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS); 5554 if (!sctx) { 5555 ret = -ENOMEM; 5556 goto out; 5557 } 5558 5559 INIT_LIST_HEAD(&sctx->new_refs); 5560 INIT_LIST_HEAD(&sctx->deleted_refs); 5561 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS); 5562 INIT_LIST_HEAD(&sctx->name_cache_list); 5563 5564 sctx->flags = arg->flags; 5565 5566 sctx->send_filp = fget(arg->send_fd); 5567 if (!sctx->send_filp) { 5568 ret = -EBADF; 5569 goto out; 5570 } 5571 5572 sctx->send_root = send_root; 5573 sctx->clone_roots_cnt = arg->clone_sources_count; 5574 5575 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 5576 sctx->send_buf = vmalloc(sctx->send_max_size); 5577 if (!sctx->send_buf) { 5578 ret = -ENOMEM; 5579 goto out; 5580 } 5581 5582 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE); 5583 if (!sctx->read_buf) { 5584 ret = -ENOMEM; 5585 goto out; 5586 } 5587 5588 sctx->pending_dir_moves = RB_ROOT; 5589 sctx->waiting_dir_moves = RB_ROOT; 5590 sctx->orphan_dirs = RB_ROOT; 5591 5592 sctx->clone_roots = vzalloc(sizeof(struct clone_root) * 5593 (arg->clone_sources_count + 1)); 5594 if (!sctx->clone_roots) { 5595 ret = -ENOMEM; 5596 goto out; 5597 } 5598 5599 if (arg->clone_sources_count) { 5600 clone_sources_tmp = vmalloc(arg->clone_sources_count * 5601 sizeof(*arg->clone_sources)); 5602 if (!clone_sources_tmp) { 5603 ret = -ENOMEM; 5604 goto out; 5605 } 5606 5607 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 5608 arg->clone_sources_count * 5609 sizeof(*arg->clone_sources)); 5610 if (ret) { 5611 ret = -EFAULT; 5612 goto out; 5613 } 5614 5615 for (i = 0; i < arg->clone_sources_count; i++) { 5616 key.objectid = clone_sources_tmp[i]; 5617 key.type = BTRFS_ROOT_ITEM_KEY; 5618 key.offset = (u64)-1; 5619 5620 index = srcu_read_lock(&fs_info->subvol_srcu); 5621 5622 clone_root = btrfs_read_fs_root_no_name(fs_info, &key); 5623 if (IS_ERR(clone_root)) { 5624 srcu_read_unlock(&fs_info->subvol_srcu, index); 5625 ret = PTR_ERR(clone_root); 5626 goto out; 5627 } 5628 clone_sources_to_rollback = i + 1; 5629 spin_lock(&clone_root->root_item_lock); 5630 clone_root->send_in_progress++; 5631 if (!btrfs_root_readonly(clone_root)) { 5632 spin_unlock(&clone_root->root_item_lock); 5633 srcu_read_unlock(&fs_info->subvol_srcu, index); 5634 ret = -EPERM; 5635 goto out; 5636 } 5637 spin_unlock(&clone_root->root_item_lock); 5638 srcu_read_unlock(&fs_info->subvol_srcu, index); 5639 5640 sctx->clone_roots[i].root = clone_root; 5641 } 5642 vfree(clone_sources_tmp); 5643 clone_sources_tmp = NULL; 5644 } 5645 5646 if (arg->parent_root) { 5647 key.objectid = arg->parent_root; 5648 key.type = BTRFS_ROOT_ITEM_KEY; 5649 key.offset = (u64)-1; 5650 5651 index = srcu_read_lock(&fs_info->subvol_srcu); 5652 5653 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key); 5654 if (IS_ERR(sctx->parent_root)) { 5655 srcu_read_unlock(&fs_info->subvol_srcu, index); 5656 ret = PTR_ERR(sctx->parent_root); 5657 goto out; 5658 } 5659 5660 spin_lock(&sctx->parent_root->root_item_lock); 5661 sctx->parent_root->send_in_progress++; 5662 if (!btrfs_root_readonly(sctx->parent_root)) { 5663 spin_unlock(&sctx->parent_root->root_item_lock); 5664 srcu_read_unlock(&fs_info->subvol_srcu, index); 5665 ret = -EPERM; 5666 goto out; 5667 } 5668 spin_unlock(&sctx->parent_root->root_item_lock); 5669 5670 srcu_read_unlock(&fs_info->subvol_srcu, index); 5671 } 5672 5673 /* 5674 * Clones from send_root are allowed, but only if the clone source 5675 * is behind the current send position. This is checked while searching 5676 * for possible clone sources. 5677 */ 5678 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root; 5679 5680 /* We do a bsearch later */ 5681 sort(sctx->clone_roots, sctx->clone_roots_cnt, 5682 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 5683 NULL); 5684 sort_clone_roots = 1; 5685 5686 current->journal_info = (void *)BTRFS_SEND_TRANS_STUB; 5687 ret = send_subvol(sctx); 5688 current->journal_info = NULL; 5689 if (ret < 0) 5690 goto out; 5691 5692 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 5693 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 5694 if (ret < 0) 5695 goto out; 5696 ret = send_cmd(sctx); 5697 if (ret < 0) 5698 goto out; 5699 } 5700 5701out: 5702 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 5703 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 5704 struct rb_node *n; 5705 struct pending_dir_move *pm; 5706 5707 n = rb_first(&sctx->pending_dir_moves); 5708 pm = rb_entry(n, struct pending_dir_move, node); 5709 while (!list_empty(&pm->list)) { 5710 struct pending_dir_move *pm2; 5711 5712 pm2 = list_first_entry(&pm->list, 5713 struct pending_dir_move, list); 5714 free_pending_move(sctx, pm2); 5715 } 5716 free_pending_move(sctx, pm); 5717 } 5718 5719 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 5720 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 5721 struct rb_node *n; 5722 struct waiting_dir_move *dm; 5723 5724 n = rb_first(&sctx->waiting_dir_moves); 5725 dm = rb_entry(n, struct waiting_dir_move, node); 5726 rb_erase(&dm->node, &sctx->waiting_dir_moves); 5727 kfree(dm); 5728 } 5729 5730 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 5731 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 5732 struct rb_node *n; 5733 struct orphan_dir_info *odi; 5734 5735 n = rb_first(&sctx->orphan_dirs); 5736 odi = rb_entry(n, struct orphan_dir_info, node); 5737 free_orphan_dir_info(sctx, odi); 5738 } 5739 5740 if (sort_clone_roots) { 5741 for (i = 0; i < sctx->clone_roots_cnt; i++) 5742 btrfs_root_dec_send_in_progress( 5743 sctx->clone_roots[i].root); 5744 } else { 5745 for (i = 0; sctx && i < clone_sources_to_rollback; i++) 5746 btrfs_root_dec_send_in_progress( 5747 sctx->clone_roots[i].root); 5748 5749 btrfs_root_dec_send_in_progress(send_root); 5750 } 5751 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) 5752 btrfs_root_dec_send_in_progress(sctx->parent_root); 5753 5754 kfree(arg); 5755 vfree(clone_sources_tmp); 5756 5757 if (sctx) { 5758 if (sctx->send_filp) 5759 fput(sctx->send_filp); 5760 5761 vfree(sctx->clone_roots); 5762 vfree(sctx->send_buf); 5763 vfree(sctx->read_buf); 5764 5765 name_cache_free(sctx); 5766 5767 kfree(sctx); 5768 } 5769 5770 return ret; 5771} 5772