send.c revision 9dc442143b9874ba677fc83bf8c60744ec642998
1/* 2 * Copyright (C) 2012 Alexander Block. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19#include <linux/bsearch.h> 20#include <linux/fs.h> 21#include <linux/file.h> 22#include <linux/sort.h> 23#include <linux/mount.h> 24#include <linux/xattr.h> 25#include <linux/posix_acl_xattr.h> 26#include <linux/radix-tree.h> 27#include <linux/vmalloc.h> 28#include <linux/string.h> 29 30#include "send.h" 31#include "backref.h" 32#include "hash.h" 33#include "locking.h" 34#include "disk-io.h" 35#include "btrfs_inode.h" 36#include "transaction.h" 37 38static int g_verbose = 0; 39 40#define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__) 41 42/* 43 * A fs_path is a helper to dynamically build path names with unknown size. 44 * It reallocates the internal buffer on demand. 45 * It allows fast adding of path elements on the right side (normal path) and 46 * fast adding to the left side (reversed path). A reversed path can also be 47 * unreversed if needed. 48 */ 49struct fs_path { 50 union { 51 struct { 52 char *start; 53 char *end; 54 55 char *buf; 56 unsigned short buf_len:15; 57 unsigned short reversed:1; 58 char inline_buf[]; 59 }; 60 /* 61 * Average path length does not exceed 200 bytes, we'll have 62 * better packing in the slab and higher chance to satisfy 63 * a allocation later during send. 64 */ 65 char pad[256]; 66 }; 67}; 68#define FS_PATH_INLINE_SIZE \ 69 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 70 71 72/* reused for each extent */ 73struct clone_root { 74 struct btrfs_root *root; 75 u64 ino; 76 u64 offset; 77 78 u64 found_refs; 79}; 80 81#define SEND_CTX_MAX_NAME_CACHE_SIZE 128 82#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 83 84struct send_ctx { 85 struct file *send_filp; 86 loff_t send_off; 87 char *send_buf; 88 u32 send_size; 89 u32 send_max_size; 90 u64 total_send_size; 91 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 92 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 93 94 struct btrfs_root *send_root; 95 struct btrfs_root *parent_root; 96 struct clone_root *clone_roots; 97 int clone_roots_cnt; 98 99 /* current state of the compare_tree call */ 100 struct btrfs_path *left_path; 101 struct btrfs_path *right_path; 102 struct btrfs_key *cmp_key; 103 104 /* 105 * infos of the currently processed inode. In case of deleted inodes, 106 * these are the values from the deleted inode. 107 */ 108 u64 cur_ino; 109 u64 cur_inode_gen; 110 int cur_inode_new; 111 int cur_inode_new_gen; 112 int cur_inode_deleted; 113 u64 cur_inode_size; 114 u64 cur_inode_mode; 115 u64 cur_inode_last_extent; 116 117 u64 send_progress; 118 119 struct list_head new_refs; 120 struct list_head deleted_refs; 121 122 struct radix_tree_root name_cache; 123 struct list_head name_cache_list; 124 int name_cache_size; 125 126 char *read_buf; 127 128 /* 129 * We process inodes by their increasing order, so if before an 130 * incremental send we reverse the parent/child relationship of 131 * directories such that a directory with a lower inode number was 132 * the parent of a directory with a higher inode number, and the one 133 * becoming the new parent got renamed too, we can't rename/move the 134 * directory with lower inode number when we finish processing it - we 135 * must process the directory with higher inode number first, then 136 * rename/move it and then rename/move the directory with lower inode 137 * number. Example follows. 138 * 139 * Tree state when the first send was performed: 140 * 141 * . 142 * |-- a (ino 257) 143 * |-- b (ino 258) 144 * | 145 * | 146 * |-- c (ino 259) 147 * | |-- d (ino 260) 148 * | 149 * |-- c2 (ino 261) 150 * 151 * Tree state when the second (incremental) send is performed: 152 * 153 * . 154 * |-- a (ino 257) 155 * |-- b (ino 258) 156 * |-- c2 (ino 261) 157 * |-- d2 (ino 260) 158 * |-- cc (ino 259) 159 * 160 * The sequence of steps that lead to the second state was: 161 * 162 * mv /a/b/c/d /a/b/c2/d2 163 * mv /a/b/c /a/b/c2/d2/cc 164 * 165 * "c" has lower inode number, but we can't move it (2nd mv operation) 166 * before we move "d", which has higher inode number. 167 * 168 * So we just memorize which move/rename operations must be performed 169 * later when their respective parent is processed and moved/renamed. 170 */ 171 172 /* Indexed by parent directory inode number. */ 173 struct rb_root pending_dir_moves; 174 175 /* 176 * Reverse index, indexed by the inode number of a directory that 177 * is waiting for the move/rename of its immediate parent before its 178 * own move/rename can be performed. 179 */ 180 struct rb_root waiting_dir_moves; 181 182 /* 183 * A directory that is going to be rm'ed might have a child directory 184 * which is in the pending directory moves index above. In this case, 185 * the directory can only be removed after the move/rename of its child 186 * is performed. Example: 187 * 188 * Parent snapshot: 189 * 190 * . (ino 256) 191 * |-- a/ (ino 257) 192 * |-- b/ (ino 258) 193 * |-- c/ (ino 259) 194 * | |-- x/ (ino 260) 195 * | 196 * |-- y/ (ino 261) 197 * 198 * Send snapshot: 199 * 200 * . (ino 256) 201 * |-- a/ (ino 257) 202 * |-- b/ (ino 258) 203 * |-- YY/ (ino 261) 204 * |-- x/ (ino 260) 205 * 206 * Sequence of steps that lead to the send snapshot: 207 * rm -f /a/b/c/foo.txt 208 * mv /a/b/y /a/b/YY 209 * mv /a/b/c/x /a/b/YY 210 * rmdir /a/b/c 211 * 212 * When the child is processed, its move/rename is delayed until its 213 * parent is processed (as explained above), but all other operations 214 * like update utimes, chown, chgrp, etc, are performed and the paths 215 * that it uses for those operations must use the orphanized name of 216 * its parent (the directory we're going to rm later), so we need to 217 * memorize that name. 218 * 219 * Indexed by the inode number of the directory to be deleted. 220 */ 221 struct rb_root orphan_dirs; 222}; 223 224struct pending_dir_move { 225 struct rb_node node; 226 struct list_head list; 227 u64 parent_ino; 228 u64 ino; 229 u64 gen; 230 struct list_head update_refs; 231}; 232 233struct waiting_dir_move { 234 struct rb_node node; 235 u64 ino; 236 /* 237 * There might be some directory that could not be removed because it 238 * was waiting for this directory inode to be moved first. Therefore 239 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 240 */ 241 u64 rmdir_ino; 242}; 243 244struct orphan_dir_info { 245 struct rb_node node; 246 u64 ino; 247 u64 gen; 248}; 249 250struct name_cache_entry { 251 struct list_head list; 252 /* 253 * radix_tree has only 32bit entries but we need to handle 64bit inums. 254 * We use the lower 32bit of the 64bit inum to store it in the tree. If 255 * more then one inum would fall into the same entry, we use radix_list 256 * to store the additional entries. radix_list is also used to store 257 * entries where two entries have the same inum but different 258 * generations. 259 */ 260 struct list_head radix_list; 261 u64 ino; 262 u64 gen; 263 u64 parent_ino; 264 u64 parent_gen; 265 int ret; 266 int need_later_update; 267 int name_len; 268 char name[]; 269}; 270 271static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 272 273static struct waiting_dir_move * 274get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 275 276static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino); 277 278static int need_send_hole(struct send_ctx *sctx) 279{ 280 return (sctx->parent_root && !sctx->cur_inode_new && 281 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 282 S_ISREG(sctx->cur_inode_mode)); 283} 284 285static void fs_path_reset(struct fs_path *p) 286{ 287 if (p->reversed) { 288 p->start = p->buf + p->buf_len - 1; 289 p->end = p->start; 290 *p->start = 0; 291 } else { 292 p->start = p->buf; 293 p->end = p->start; 294 *p->start = 0; 295 } 296} 297 298static struct fs_path *fs_path_alloc(void) 299{ 300 struct fs_path *p; 301 302 p = kmalloc(sizeof(*p), GFP_NOFS); 303 if (!p) 304 return NULL; 305 p->reversed = 0; 306 p->buf = p->inline_buf; 307 p->buf_len = FS_PATH_INLINE_SIZE; 308 fs_path_reset(p); 309 return p; 310} 311 312static struct fs_path *fs_path_alloc_reversed(void) 313{ 314 struct fs_path *p; 315 316 p = fs_path_alloc(); 317 if (!p) 318 return NULL; 319 p->reversed = 1; 320 fs_path_reset(p); 321 return p; 322} 323 324static void fs_path_free(struct fs_path *p) 325{ 326 if (!p) 327 return; 328 if (p->buf != p->inline_buf) 329 kfree(p->buf); 330 kfree(p); 331} 332 333static int fs_path_len(struct fs_path *p) 334{ 335 return p->end - p->start; 336} 337 338static int fs_path_ensure_buf(struct fs_path *p, int len) 339{ 340 char *tmp_buf; 341 int path_len; 342 int old_buf_len; 343 344 len++; 345 346 if (p->buf_len >= len) 347 return 0; 348 349 /* 350 * First time the inline_buf does not suffice 351 */ 352 if (p->buf == p->inline_buf) { 353 p->buf = kmalloc(len, GFP_NOFS); 354 if (!p->buf) 355 return -ENOMEM; 356 /* 357 * The real size of the buffer is bigger, this will let the 358 * fast path happen most of the time 359 */ 360 p->buf_len = ksize(p->buf); 361 } else { 362 char *tmp; 363 364 tmp = krealloc(p->buf, len, GFP_NOFS); 365 if (!tmp) 366 return -ENOMEM; 367 p->buf = tmp; 368 p->buf_len = ksize(p->buf); 369 } 370 371 path_len = p->end - p->start; 372 old_buf_len = p->buf_len; 373 374 if (p->reversed) { 375 tmp_buf = p->buf + old_buf_len - path_len - 1; 376 p->end = p->buf + p->buf_len - 1; 377 p->start = p->end - path_len; 378 memmove(p->start, tmp_buf, path_len + 1); 379 } else { 380 p->start = p->buf; 381 p->end = p->start + path_len; 382 } 383 return 0; 384} 385 386static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 387 char **prepared) 388{ 389 int ret; 390 int new_len; 391 392 new_len = p->end - p->start + name_len; 393 if (p->start != p->end) 394 new_len++; 395 ret = fs_path_ensure_buf(p, new_len); 396 if (ret < 0) 397 goto out; 398 399 if (p->reversed) { 400 if (p->start != p->end) 401 *--p->start = '/'; 402 p->start -= name_len; 403 *prepared = p->start; 404 } else { 405 if (p->start != p->end) 406 *p->end++ = '/'; 407 *prepared = p->end; 408 p->end += name_len; 409 *p->end = 0; 410 } 411 412out: 413 return ret; 414} 415 416static int fs_path_add(struct fs_path *p, const char *name, int name_len) 417{ 418 int ret; 419 char *prepared; 420 421 ret = fs_path_prepare_for_add(p, name_len, &prepared); 422 if (ret < 0) 423 goto out; 424 memcpy(prepared, name, name_len); 425 426out: 427 return ret; 428} 429 430static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 431{ 432 int ret; 433 char *prepared; 434 435 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 436 if (ret < 0) 437 goto out; 438 memcpy(prepared, p2->start, p2->end - p2->start); 439 440out: 441 return ret; 442} 443 444static int fs_path_add_from_extent_buffer(struct fs_path *p, 445 struct extent_buffer *eb, 446 unsigned long off, int len) 447{ 448 int ret; 449 char *prepared; 450 451 ret = fs_path_prepare_for_add(p, len, &prepared); 452 if (ret < 0) 453 goto out; 454 455 read_extent_buffer(eb, prepared, off, len); 456 457out: 458 return ret; 459} 460 461static int fs_path_copy(struct fs_path *p, struct fs_path *from) 462{ 463 int ret; 464 465 p->reversed = from->reversed; 466 fs_path_reset(p); 467 468 ret = fs_path_add_path(p, from); 469 470 return ret; 471} 472 473 474static void fs_path_unreverse(struct fs_path *p) 475{ 476 char *tmp; 477 int len; 478 479 if (!p->reversed) 480 return; 481 482 tmp = p->start; 483 len = p->end - p->start; 484 p->start = p->buf; 485 p->end = p->start + len; 486 memmove(p->start, tmp, len + 1); 487 p->reversed = 0; 488} 489 490static struct btrfs_path *alloc_path_for_send(void) 491{ 492 struct btrfs_path *path; 493 494 path = btrfs_alloc_path(); 495 if (!path) 496 return NULL; 497 path->search_commit_root = 1; 498 path->skip_locking = 1; 499 return path; 500} 501 502static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 503{ 504 int ret; 505 mm_segment_t old_fs; 506 u32 pos = 0; 507 508 old_fs = get_fs(); 509 set_fs(KERNEL_DS); 510 511 while (pos < len) { 512 ret = vfs_write(filp, (char *)buf + pos, len - pos, off); 513 /* TODO handle that correctly */ 514 /*if (ret == -ERESTARTSYS) { 515 continue; 516 }*/ 517 if (ret < 0) 518 goto out; 519 if (ret == 0) { 520 ret = -EIO; 521 goto out; 522 } 523 pos += ret; 524 } 525 526 ret = 0; 527 528out: 529 set_fs(old_fs); 530 return ret; 531} 532 533static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 534{ 535 struct btrfs_tlv_header *hdr; 536 int total_len = sizeof(*hdr) + len; 537 int left = sctx->send_max_size - sctx->send_size; 538 539 if (unlikely(left < total_len)) 540 return -EOVERFLOW; 541 542 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 543 hdr->tlv_type = cpu_to_le16(attr); 544 hdr->tlv_len = cpu_to_le16(len); 545 memcpy(hdr + 1, data, len); 546 sctx->send_size += total_len; 547 548 return 0; 549} 550 551#define TLV_PUT_DEFINE_INT(bits) \ 552 static int tlv_put_u##bits(struct send_ctx *sctx, \ 553 u##bits attr, u##bits value) \ 554 { \ 555 __le##bits __tmp = cpu_to_le##bits(value); \ 556 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 557 } 558 559TLV_PUT_DEFINE_INT(64) 560 561static int tlv_put_string(struct send_ctx *sctx, u16 attr, 562 const char *str, int len) 563{ 564 if (len == -1) 565 len = strlen(str); 566 return tlv_put(sctx, attr, str, len); 567} 568 569static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 570 const u8 *uuid) 571{ 572 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 573} 574 575static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 576 struct extent_buffer *eb, 577 struct btrfs_timespec *ts) 578{ 579 struct btrfs_timespec bts; 580 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 581 return tlv_put(sctx, attr, &bts, sizeof(bts)); 582} 583 584 585#define TLV_PUT(sctx, attrtype, attrlen, data) \ 586 do { \ 587 ret = tlv_put(sctx, attrtype, attrlen, data); \ 588 if (ret < 0) \ 589 goto tlv_put_failure; \ 590 } while (0) 591 592#define TLV_PUT_INT(sctx, attrtype, bits, value) \ 593 do { \ 594 ret = tlv_put_u##bits(sctx, attrtype, value); \ 595 if (ret < 0) \ 596 goto tlv_put_failure; \ 597 } while (0) 598 599#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 600#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 601#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 602#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 603#define TLV_PUT_STRING(sctx, attrtype, str, len) \ 604 do { \ 605 ret = tlv_put_string(sctx, attrtype, str, len); \ 606 if (ret < 0) \ 607 goto tlv_put_failure; \ 608 } while (0) 609#define TLV_PUT_PATH(sctx, attrtype, p) \ 610 do { \ 611 ret = tlv_put_string(sctx, attrtype, p->start, \ 612 p->end - p->start); \ 613 if (ret < 0) \ 614 goto tlv_put_failure; \ 615 } while(0) 616#define TLV_PUT_UUID(sctx, attrtype, uuid) \ 617 do { \ 618 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 619 if (ret < 0) \ 620 goto tlv_put_failure; \ 621 } while (0) 622#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 623 do { \ 624 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 625 if (ret < 0) \ 626 goto tlv_put_failure; \ 627 } while (0) 628 629static int send_header(struct send_ctx *sctx) 630{ 631 struct btrfs_stream_header hdr; 632 633 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 634 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 635 636 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 637 &sctx->send_off); 638} 639 640/* 641 * For each command/item we want to send to userspace, we call this function. 642 */ 643static int begin_cmd(struct send_ctx *sctx, int cmd) 644{ 645 struct btrfs_cmd_header *hdr; 646 647 if (WARN_ON(!sctx->send_buf)) 648 return -EINVAL; 649 650 BUG_ON(sctx->send_size); 651 652 sctx->send_size += sizeof(*hdr); 653 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 654 hdr->cmd = cpu_to_le16(cmd); 655 656 return 0; 657} 658 659static int send_cmd(struct send_ctx *sctx) 660{ 661 int ret; 662 struct btrfs_cmd_header *hdr; 663 u32 crc; 664 665 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 666 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr)); 667 hdr->crc = 0; 668 669 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 670 hdr->crc = cpu_to_le32(crc); 671 672 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 673 &sctx->send_off); 674 675 sctx->total_send_size += sctx->send_size; 676 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size; 677 sctx->send_size = 0; 678 679 return ret; 680} 681 682/* 683 * Sends a move instruction to user space 684 */ 685static int send_rename(struct send_ctx *sctx, 686 struct fs_path *from, struct fs_path *to) 687{ 688 int ret; 689 690verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start); 691 692 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 693 if (ret < 0) 694 goto out; 695 696 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 697 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 698 699 ret = send_cmd(sctx); 700 701tlv_put_failure: 702out: 703 return ret; 704} 705 706/* 707 * Sends a link instruction to user space 708 */ 709static int send_link(struct send_ctx *sctx, 710 struct fs_path *path, struct fs_path *lnk) 711{ 712 int ret; 713 714verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start); 715 716 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 717 if (ret < 0) 718 goto out; 719 720 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 721 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 722 723 ret = send_cmd(sctx); 724 725tlv_put_failure: 726out: 727 return ret; 728} 729 730/* 731 * Sends an unlink instruction to user space 732 */ 733static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 734{ 735 int ret; 736 737verbose_printk("btrfs: send_unlink %s\n", path->start); 738 739 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 740 if (ret < 0) 741 goto out; 742 743 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 744 745 ret = send_cmd(sctx); 746 747tlv_put_failure: 748out: 749 return ret; 750} 751 752/* 753 * Sends a rmdir instruction to user space 754 */ 755static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 756{ 757 int ret; 758 759verbose_printk("btrfs: send_rmdir %s\n", path->start); 760 761 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 762 if (ret < 0) 763 goto out; 764 765 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 766 767 ret = send_cmd(sctx); 768 769tlv_put_failure: 770out: 771 return ret; 772} 773 774/* 775 * Helper function to retrieve some fields from an inode item. 776 */ 777static int get_inode_info(struct btrfs_root *root, 778 u64 ino, u64 *size, u64 *gen, 779 u64 *mode, u64 *uid, u64 *gid, 780 u64 *rdev) 781{ 782 int ret; 783 struct btrfs_inode_item *ii; 784 struct btrfs_key key; 785 struct btrfs_path *path; 786 787 path = alloc_path_for_send(); 788 if (!path) 789 return -ENOMEM; 790 791 key.objectid = ino; 792 key.type = BTRFS_INODE_ITEM_KEY; 793 key.offset = 0; 794 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 795 if (ret < 0) 796 goto out; 797 if (ret) { 798 ret = -ENOENT; 799 goto out; 800 } 801 802 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 803 struct btrfs_inode_item); 804 if (size) 805 *size = btrfs_inode_size(path->nodes[0], ii); 806 if (gen) 807 *gen = btrfs_inode_generation(path->nodes[0], ii); 808 if (mode) 809 *mode = btrfs_inode_mode(path->nodes[0], ii); 810 if (uid) 811 *uid = btrfs_inode_uid(path->nodes[0], ii); 812 if (gid) 813 *gid = btrfs_inode_gid(path->nodes[0], ii); 814 if (rdev) 815 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 816 817out: 818 btrfs_free_path(path); 819 return ret; 820} 821 822typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 823 struct fs_path *p, 824 void *ctx); 825 826/* 827 * Helper function to iterate the entries in ONE btrfs_inode_ref or 828 * btrfs_inode_extref. 829 * The iterate callback may return a non zero value to stop iteration. This can 830 * be a negative value for error codes or 1 to simply stop it. 831 * 832 * path must point to the INODE_REF or INODE_EXTREF when called. 833 */ 834static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 835 struct btrfs_key *found_key, int resolve, 836 iterate_inode_ref_t iterate, void *ctx) 837{ 838 struct extent_buffer *eb = path->nodes[0]; 839 struct btrfs_item *item; 840 struct btrfs_inode_ref *iref; 841 struct btrfs_inode_extref *extref; 842 struct btrfs_path *tmp_path; 843 struct fs_path *p; 844 u32 cur = 0; 845 u32 total; 846 int slot = path->slots[0]; 847 u32 name_len; 848 char *start; 849 int ret = 0; 850 int num = 0; 851 int index; 852 u64 dir; 853 unsigned long name_off; 854 unsigned long elem_size; 855 unsigned long ptr; 856 857 p = fs_path_alloc_reversed(); 858 if (!p) 859 return -ENOMEM; 860 861 tmp_path = alloc_path_for_send(); 862 if (!tmp_path) { 863 fs_path_free(p); 864 return -ENOMEM; 865 } 866 867 868 if (found_key->type == BTRFS_INODE_REF_KEY) { 869 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 870 struct btrfs_inode_ref); 871 item = btrfs_item_nr(slot); 872 total = btrfs_item_size(eb, item); 873 elem_size = sizeof(*iref); 874 } else { 875 ptr = btrfs_item_ptr_offset(eb, slot); 876 total = btrfs_item_size_nr(eb, slot); 877 elem_size = sizeof(*extref); 878 } 879 880 while (cur < total) { 881 fs_path_reset(p); 882 883 if (found_key->type == BTRFS_INODE_REF_KEY) { 884 iref = (struct btrfs_inode_ref *)(ptr + cur); 885 name_len = btrfs_inode_ref_name_len(eb, iref); 886 name_off = (unsigned long)(iref + 1); 887 index = btrfs_inode_ref_index(eb, iref); 888 dir = found_key->offset; 889 } else { 890 extref = (struct btrfs_inode_extref *)(ptr + cur); 891 name_len = btrfs_inode_extref_name_len(eb, extref); 892 name_off = (unsigned long)&extref->name; 893 index = btrfs_inode_extref_index(eb, extref); 894 dir = btrfs_inode_extref_parent(eb, extref); 895 } 896 897 if (resolve) { 898 start = btrfs_ref_to_path(root, tmp_path, name_len, 899 name_off, eb, dir, 900 p->buf, p->buf_len); 901 if (IS_ERR(start)) { 902 ret = PTR_ERR(start); 903 goto out; 904 } 905 if (start < p->buf) { 906 /* overflow , try again with larger buffer */ 907 ret = fs_path_ensure_buf(p, 908 p->buf_len + p->buf - start); 909 if (ret < 0) 910 goto out; 911 start = btrfs_ref_to_path(root, tmp_path, 912 name_len, name_off, 913 eb, dir, 914 p->buf, p->buf_len); 915 if (IS_ERR(start)) { 916 ret = PTR_ERR(start); 917 goto out; 918 } 919 BUG_ON(start < p->buf); 920 } 921 p->start = start; 922 } else { 923 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 924 name_len); 925 if (ret < 0) 926 goto out; 927 } 928 929 cur += elem_size + name_len; 930 ret = iterate(num, dir, index, p, ctx); 931 if (ret) 932 goto out; 933 num++; 934 } 935 936out: 937 btrfs_free_path(tmp_path); 938 fs_path_free(p); 939 return ret; 940} 941 942typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 943 const char *name, int name_len, 944 const char *data, int data_len, 945 u8 type, void *ctx); 946 947/* 948 * Helper function to iterate the entries in ONE btrfs_dir_item. 949 * The iterate callback may return a non zero value to stop iteration. This can 950 * be a negative value for error codes or 1 to simply stop it. 951 * 952 * path must point to the dir item when called. 953 */ 954static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 955 struct btrfs_key *found_key, 956 iterate_dir_item_t iterate, void *ctx) 957{ 958 int ret = 0; 959 struct extent_buffer *eb; 960 struct btrfs_item *item; 961 struct btrfs_dir_item *di; 962 struct btrfs_key di_key; 963 char *buf = NULL; 964 const int buf_len = PATH_MAX; 965 u32 name_len; 966 u32 data_len; 967 u32 cur; 968 u32 len; 969 u32 total; 970 int slot; 971 int num; 972 u8 type; 973 974 buf = kmalloc(buf_len, GFP_NOFS); 975 if (!buf) { 976 ret = -ENOMEM; 977 goto out; 978 } 979 980 eb = path->nodes[0]; 981 slot = path->slots[0]; 982 item = btrfs_item_nr(slot); 983 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 984 cur = 0; 985 len = 0; 986 total = btrfs_item_size(eb, item); 987 988 num = 0; 989 while (cur < total) { 990 name_len = btrfs_dir_name_len(eb, di); 991 data_len = btrfs_dir_data_len(eb, di); 992 type = btrfs_dir_type(eb, di); 993 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 994 995 /* 996 * Path too long 997 */ 998 if (name_len + data_len > buf_len) { 999 ret = -ENAMETOOLONG; 1000 goto out; 1001 } 1002 1003 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1004 name_len + data_len); 1005 1006 len = sizeof(*di) + name_len + data_len; 1007 di = (struct btrfs_dir_item *)((char *)di + len); 1008 cur += len; 1009 1010 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1011 data_len, type, ctx); 1012 if (ret < 0) 1013 goto out; 1014 if (ret) { 1015 ret = 0; 1016 goto out; 1017 } 1018 1019 num++; 1020 } 1021 1022out: 1023 kfree(buf); 1024 return ret; 1025} 1026 1027static int __copy_first_ref(int num, u64 dir, int index, 1028 struct fs_path *p, void *ctx) 1029{ 1030 int ret; 1031 struct fs_path *pt = ctx; 1032 1033 ret = fs_path_copy(pt, p); 1034 if (ret < 0) 1035 return ret; 1036 1037 /* we want the first only */ 1038 return 1; 1039} 1040 1041/* 1042 * Retrieve the first path of an inode. If an inode has more then one 1043 * ref/hardlink, this is ignored. 1044 */ 1045static int get_inode_path(struct btrfs_root *root, 1046 u64 ino, struct fs_path *path) 1047{ 1048 int ret; 1049 struct btrfs_key key, found_key; 1050 struct btrfs_path *p; 1051 1052 p = alloc_path_for_send(); 1053 if (!p) 1054 return -ENOMEM; 1055 1056 fs_path_reset(path); 1057 1058 key.objectid = ino; 1059 key.type = BTRFS_INODE_REF_KEY; 1060 key.offset = 0; 1061 1062 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1063 if (ret < 0) 1064 goto out; 1065 if (ret) { 1066 ret = 1; 1067 goto out; 1068 } 1069 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1070 if (found_key.objectid != ino || 1071 (found_key.type != BTRFS_INODE_REF_KEY && 1072 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1073 ret = -ENOENT; 1074 goto out; 1075 } 1076 1077 ret = iterate_inode_ref(root, p, &found_key, 1, 1078 __copy_first_ref, path); 1079 if (ret < 0) 1080 goto out; 1081 ret = 0; 1082 1083out: 1084 btrfs_free_path(p); 1085 return ret; 1086} 1087 1088struct backref_ctx { 1089 struct send_ctx *sctx; 1090 1091 /* number of total found references */ 1092 u64 found; 1093 1094 /* 1095 * used for clones found in send_root. clones found behind cur_objectid 1096 * and cur_offset are not considered as allowed clones. 1097 */ 1098 u64 cur_objectid; 1099 u64 cur_offset; 1100 1101 /* may be truncated in case it's the last extent in a file */ 1102 u64 extent_len; 1103 1104 /* Just to check for bugs in backref resolving */ 1105 int found_itself; 1106}; 1107 1108static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1109{ 1110 u64 root = (u64)(uintptr_t)key; 1111 struct clone_root *cr = (struct clone_root *)elt; 1112 1113 if (root < cr->root->objectid) 1114 return -1; 1115 if (root > cr->root->objectid) 1116 return 1; 1117 return 0; 1118} 1119 1120static int __clone_root_cmp_sort(const void *e1, const void *e2) 1121{ 1122 struct clone_root *cr1 = (struct clone_root *)e1; 1123 struct clone_root *cr2 = (struct clone_root *)e2; 1124 1125 if (cr1->root->objectid < cr2->root->objectid) 1126 return -1; 1127 if (cr1->root->objectid > cr2->root->objectid) 1128 return 1; 1129 return 0; 1130} 1131 1132/* 1133 * Called for every backref that is found for the current extent. 1134 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1135 */ 1136static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1137{ 1138 struct backref_ctx *bctx = ctx_; 1139 struct clone_root *found; 1140 int ret; 1141 u64 i_size; 1142 1143 /* First check if the root is in the list of accepted clone sources */ 1144 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1145 bctx->sctx->clone_roots_cnt, 1146 sizeof(struct clone_root), 1147 __clone_root_cmp_bsearch); 1148 if (!found) 1149 return 0; 1150 1151 if (found->root == bctx->sctx->send_root && 1152 ino == bctx->cur_objectid && 1153 offset == bctx->cur_offset) { 1154 bctx->found_itself = 1; 1155 } 1156 1157 /* 1158 * There are inodes that have extents that lie behind its i_size. Don't 1159 * accept clones from these extents. 1160 */ 1161 ret = get_inode_info(found->root, ino, &i_size, NULL, NULL, NULL, NULL, 1162 NULL); 1163 if (ret < 0) 1164 return ret; 1165 1166 if (offset + bctx->extent_len > i_size) 1167 return 0; 1168 1169 /* 1170 * Make sure we don't consider clones from send_root that are 1171 * behind the current inode/offset. 1172 */ 1173 if (found->root == bctx->sctx->send_root) { 1174 /* 1175 * TODO for the moment we don't accept clones from the inode 1176 * that is currently send. We may change this when 1177 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same 1178 * file. 1179 */ 1180 if (ino >= bctx->cur_objectid) 1181 return 0; 1182#if 0 1183 if (ino > bctx->cur_objectid) 1184 return 0; 1185 if (offset + bctx->extent_len > bctx->cur_offset) 1186 return 0; 1187#endif 1188 } 1189 1190 bctx->found++; 1191 found->found_refs++; 1192 if (ino < found->ino) { 1193 found->ino = ino; 1194 found->offset = offset; 1195 } else if (found->ino == ino) { 1196 /* 1197 * same extent found more then once in the same file. 1198 */ 1199 if (found->offset > offset + bctx->extent_len) 1200 found->offset = offset; 1201 } 1202 1203 return 0; 1204} 1205 1206/* 1207 * Given an inode, offset and extent item, it finds a good clone for a clone 1208 * instruction. Returns -ENOENT when none could be found. The function makes 1209 * sure that the returned clone is usable at the point where sending is at the 1210 * moment. This means, that no clones are accepted which lie behind the current 1211 * inode+offset. 1212 * 1213 * path must point to the extent item when called. 1214 */ 1215static int find_extent_clone(struct send_ctx *sctx, 1216 struct btrfs_path *path, 1217 u64 ino, u64 data_offset, 1218 u64 ino_size, 1219 struct clone_root **found) 1220{ 1221 int ret; 1222 int extent_type; 1223 u64 logical; 1224 u64 disk_byte; 1225 u64 num_bytes; 1226 u64 extent_item_pos; 1227 u64 flags = 0; 1228 struct btrfs_file_extent_item *fi; 1229 struct extent_buffer *eb = path->nodes[0]; 1230 struct backref_ctx *backref_ctx = NULL; 1231 struct clone_root *cur_clone_root; 1232 struct btrfs_key found_key; 1233 struct btrfs_path *tmp_path; 1234 int compressed; 1235 u32 i; 1236 1237 tmp_path = alloc_path_for_send(); 1238 if (!tmp_path) 1239 return -ENOMEM; 1240 1241 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS); 1242 if (!backref_ctx) { 1243 ret = -ENOMEM; 1244 goto out; 1245 } 1246 1247 if (data_offset >= ino_size) { 1248 /* 1249 * There may be extents that lie behind the file's size. 1250 * I at least had this in combination with snapshotting while 1251 * writing large files. 1252 */ 1253 ret = 0; 1254 goto out; 1255 } 1256 1257 fi = btrfs_item_ptr(eb, path->slots[0], 1258 struct btrfs_file_extent_item); 1259 extent_type = btrfs_file_extent_type(eb, fi); 1260 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1261 ret = -ENOENT; 1262 goto out; 1263 } 1264 compressed = btrfs_file_extent_compression(eb, fi); 1265 1266 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1267 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1268 if (disk_byte == 0) { 1269 ret = -ENOENT; 1270 goto out; 1271 } 1272 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1273 1274 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path, 1275 &found_key, &flags); 1276 btrfs_release_path(tmp_path); 1277 1278 if (ret < 0) 1279 goto out; 1280 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1281 ret = -EIO; 1282 goto out; 1283 } 1284 1285 /* 1286 * Setup the clone roots. 1287 */ 1288 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1289 cur_clone_root = sctx->clone_roots + i; 1290 cur_clone_root->ino = (u64)-1; 1291 cur_clone_root->offset = 0; 1292 cur_clone_root->found_refs = 0; 1293 } 1294 1295 backref_ctx->sctx = sctx; 1296 backref_ctx->found = 0; 1297 backref_ctx->cur_objectid = ino; 1298 backref_ctx->cur_offset = data_offset; 1299 backref_ctx->found_itself = 0; 1300 backref_ctx->extent_len = num_bytes; 1301 1302 /* 1303 * The last extent of a file may be too large due to page alignment. 1304 * We need to adjust extent_len in this case so that the checks in 1305 * __iterate_backrefs work. 1306 */ 1307 if (data_offset + num_bytes >= ino_size) 1308 backref_ctx->extent_len = ino_size - data_offset; 1309 1310 /* 1311 * Now collect all backrefs. 1312 */ 1313 if (compressed == BTRFS_COMPRESS_NONE) 1314 extent_item_pos = logical - found_key.objectid; 1315 else 1316 extent_item_pos = 0; 1317 ret = iterate_extent_inodes(sctx->send_root->fs_info, 1318 found_key.objectid, extent_item_pos, 1, 1319 __iterate_backrefs, backref_ctx); 1320 1321 if (ret < 0) 1322 goto out; 1323 1324 if (!backref_ctx->found_itself) { 1325 /* found a bug in backref code? */ 1326 ret = -EIO; 1327 btrfs_err(sctx->send_root->fs_info, "did not find backref in " 1328 "send_root. inode=%llu, offset=%llu, " 1329 "disk_byte=%llu found extent=%llu\n", 1330 ino, data_offset, disk_byte, found_key.objectid); 1331 goto out; 1332 } 1333 1334verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, " 1335 "ino=%llu, " 1336 "num_bytes=%llu, logical=%llu\n", 1337 data_offset, ino, num_bytes, logical); 1338 1339 if (!backref_ctx->found) 1340 verbose_printk("btrfs: no clones found\n"); 1341 1342 cur_clone_root = NULL; 1343 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1344 if (sctx->clone_roots[i].found_refs) { 1345 if (!cur_clone_root) 1346 cur_clone_root = sctx->clone_roots + i; 1347 else if (sctx->clone_roots[i].root == sctx->send_root) 1348 /* prefer clones from send_root over others */ 1349 cur_clone_root = sctx->clone_roots + i; 1350 } 1351 1352 } 1353 1354 if (cur_clone_root) { 1355 if (compressed != BTRFS_COMPRESS_NONE) { 1356 /* 1357 * Offsets given by iterate_extent_inodes() are relative 1358 * to the start of the extent, we need to add logical 1359 * offset from the file extent item. 1360 * (See why at backref.c:check_extent_in_eb()) 1361 */ 1362 cur_clone_root->offset += btrfs_file_extent_offset(eb, 1363 fi); 1364 } 1365 *found = cur_clone_root; 1366 ret = 0; 1367 } else { 1368 ret = -ENOENT; 1369 } 1370 1371out: 1372 btrfs_free_path(tmp_path); 1373 kfree(backref_ctx); 1374 return ret; 1375} 1376 1377static int read_symlink(struct btrfs_root *root, 1378 u64 ino, 1379 struct fs_path *dest) 1380{ 1381 int ret; 1382 struct btrfs_path *path; 1383 struct btrfs_key key; 1384 struct btrfs_file_extent_item *ei; 1385 u8 type; 1386 u8 compression; 1387 unsigned long off; 1388 int len; 1389 1390 path = alloc_path_for_send(); 1391 if (!path) 1392 return -ENOMEM; 1393 1394 key.objectid = ino; 1395 key.type = BTRFS_EXTENT_DATA_KEY; 1396 key.offset = 0; 1397 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1398 if (ret < 0) 1399 goto out; 1400 BUG_ON(ret); 1401 1402 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1403 struct btrfs_file_extent_item); 1404 type = btrfs_file_extent_type(path->nodes[0], ei); 1405 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1406 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1407 BUG_ON(compression); 1408 1409 off = btrfs_file_extent_inline_start(ei); 1410 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei); 1411 1412 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1413 1414out: 1415 btrfs_free_path(path); 1416 return ret; 1417} 1418 1419/* 1420 * Helper function to generate a file name that is unique in the root of 1421 * send_root and parent_root. This is used to generate names for orphan inodes. 1422 */ 1423static int gen_unique_name(struct send_ctx *sctx, 1424 u64 ino, u64 gen, 1425 struct fs_path *dest) 1426{ 1427 int ret = 0; 1428 struct btrfs_path *path; 1429 struct btrfs_dir_item *di; 1430 char tmp[64]; 1431 int len; 1432 u64 idx = 0; 1433 1434 path = alloc_path_for_send(); 1435 if (!path) 1436 return -ENOMEM; 1437 1438 while (1) { 1439 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1440 ino, gen, idx); 1441 ASSERT(len < sizeof(tmp)); 1442 1443 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1444 path, BTRFS_FIRST_FREE_OBJECTID, 1445 tmp, strlen(tmp), 0); 1446 btrfs_release_path(path); 1447 if (IS_ERR(di)) { 1448 ret = PTR_ERR(di); 1449 goto out; 1450 } 1451 if (di) { 1452 /* not unique, try again */ 1453 idx++; 1454 continue; 1455 } 1456 1457 if (!sctx->parent_root) { 1458 /* unique */ 1459 ret = 0; 1460 break; 1461 } 1462 1463 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1464 path, BTRFS_FIRST_FREE_OBJECTID, 1465 tmp, strlen(tmp), 0); 1466 btrfs_release_path(path); 1467 if (IS_ERR(di)) { 1468 ret = PTR_ERR(di); 1469 goto out; 1470 } 1471 if (di) { 1472 /* not unique, try again */ 1473 idx++; 1474 continue; 1475 } 1476 /* unique */ 1477 break; 1478 } 1479 1480 ret = fs_path_add(dest, tmp, strlen(tmp)); 1481 1482out: 1483 btrfs_free_path(path); 1484 return ret; 1485} 1486 1487enum inode_state { 1488 inode_state_no_change, 1489 inode_state_will_create, 1490 inode_state_did_create, 1491 inode_state_will_delete, 1492 inode_state_did_delete, 1493}; 1494 1495static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1496{ 1497 int ret; 1498 int left_ret; 1499 int right_ret; 1500 u64 left_gen; 1501 u64 right_gen; 1502 1503 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1504 NULL, NULL); 1505 if (ret < 0 && ret != -ENOENT) 1506 goto out; 1507 left_ret = ret; 1508 1509 if (!sctx->parent_root) { 1510 right_ret = -ENOENT; 1511 } else { 1512 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1513 NULL, NULL, NULL, NULL); 1514 if (ret < 0 && ret != -ENOENT) 1515 goto out; 1516 right_ret = ret; 1517 } 1518 1519 if (!left_ret && !right_ret) { 1520 if (left_gen == gen && right_gen == gen) { 1521 ret = inode_state_no_change; 1522 } else if (left_gen == gen) { 1523 if (ino < sctx->send_progress) 1524 ret = inode_state_did_create; 1525 else 1526 ret = inode_state_will_create; 1527 } else if (right_gen == gen) { 1528 if (ino < sctx->send_progress) 1529 ret = inode_state_did_delete; 1530 else 1531 ret = inode_state_will_delete; 1532 } else { 1533 ret = -ENOENT; 1534 } 1535 } else if (!left_ret) { 1536 if (left_gen == gen) { 1537 if (ino < sctx->send_progress) 1538 ret = inode_state_did_create; 1539 else 1540 ret = inode_state_will_create; 1541 } else { 1542 ret = -ENOENT; 1543 } 1544 } else if (!right_ret) { 1545 if (right_gen == gen) { 1546 if (ino < sctx->send_progress) 1547 ret = inode_state_did_delete; 1548 else 1549 ret = inode_state_will_delete; 1550 } else { 1551 ret = -ENOENT; 1552 } 1553 } else { 1554 ret = -ENOENT; 1555 } 1556 1557out: 1558 return ret; 1559} 1560 1561static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1562{ 1563 int ret; 1564 1565 ret = get_cur_inode_state(sctx, ino, gen); 1566 if (ret < 0) 1567 goto out; 1568 1569 if (ret == inode_state_no_change || 1570 ret == inode_state_did_create || 1571 ret == inode_state_will_delete) 1572 ret = 1; 1573 else 1574 ret = 0; 1575 1576out: 1577 return ret; 1578} 1579 1580/* 1581 * Helper function to lookup a dir item in a dir. 1582 */ 1583static int lookup_dir_item_inode(struct btrfs_root *root, 1584 u64 dir, const char *name, int name_len, 1585 u64 *found_inode, 1586 u8 *found_type) 1587{ 1588 int ret = 0; 1589 struct btrfs_dir_item *di; 1590 struct btrfs_key key; 1591 struct btrfs_path *path; 1592 1593 path = alloc_path_for_send(); 1594 if (!path) 1595 return -ENOMEM; 1596 1597 di = btrfs_lookup_dir_item(NULL, root, path, 1598 dir, name, name_len, 0); 1599 if (!di) { 1600 ret = -ENOENT; 1601 goto out; 1602 } 1603 if (IS_ERR(di)) { 1604 ret = PTR_ERR(di); 1605 goto out; 1606 } 1607 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1608 *found_inode = key.objectid; 1609 *found_type = btrfs_dir_type(path->nodes[0], di); 1610 1611out: 1612 btrfs_free_path(path); 1613 return ret; 1614} 1615 1616/* 1617 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1618 * generation of the parent dir and the name of the dir entry. 1619 */ 1620static int get_first_ref(struct btrfs_root *root, u64 ino, 1621 u64 *dir, u64 *dir_gen, struct fs_path *name) 1622{ 1623 int ret; 1624 struct btrfs_key key; 1625 struct btrfs_key found_key; 1626 struct btrfs_path *path; 1627 int len; 1628 u64 parent_dir; 1629 1630 path = alloc_path_for_send(); 1631 if (!path) 1632 return -ENOMEM; 1633 1634 key.objectid = ino; 1635 key.type = BTRFS_INODE_REF_KEY; 1636 key.offset = 0; 1637 1638 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1639 if (ret < 0) 1640 goto out; 1641 if (!ret) 1642 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1643 path->slots[0]); 1644 if (ret || found_key.objectid != ino || 1645 (found_key.type != BTRFS_INODE_REF_KEY && 1646 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1647 ret = -ENOENT; 1648 goto out; 1649 } 1650 1651 if (key.type == BTRFS_INODE_REF_KEY) { 1652 struct btrfs_inode_ref *iref; 1653 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1654 struct btrfs_inode_ref); 1655 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1656 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1657 (unsigned long)(iref + 1), 1658 len); 1659 parent_dir = found_key.offset; 1660 } else { 1661 struct btrfs_inode_extref *extref; 1662 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1663 struct btrfs_inode_extref); 1664 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1665 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1666 (unsigned long)&extref->name, len); 1667 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1668 } 1669 if (ret < 0) 1670 goto out; 1671 btrfs_release_path(path); 1672 1673 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, NULL, 1674 NULL, NULL); 1675 if (ret < 0) 1676 goto out; 1677 1678 *dir = parent_dir; 1679 1680out: 1681 btrfs_free_path(path); 1682 return ret; 1683} 1684 1685static int is_first_ref(struct btrfs_root *root, 1686 u64 ino, u64 dir, 1687 const char *name, int name_len) 1688{ 1689 int ret; 1690 struct fs_path *tmp_name; 1691 u64 tmp_dir; 1692 u64 tmp_dir_gen; 1693 1694 tmp_name = fs_path_alloc(); 1695 if (!tmp_name) 1696 return -ENOMEM; 1697 1698 ret = get_first_ref(root, ino, &tmp_dir, &tmp_dir_gen, tmp_name); 1699 if (ret < 0) 1700 goto out; 1701 1702 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1703 ret = 0; 1704 goto out; 1705 } 1706 1707 ret = !memcmp(tmp_name->start, name, name_len); 1708 1709out: 1710 fs_path_free(tmp_name); 1711 return ret; 1712} 1713 1714/* 1715 * Used by process_recorded_refs to determine if a new ref would overwrite an 1716 * already existing ref. In case it detects an overwrite, it returns the 1717 * inode/gen in who_ino/who_gen. 1718 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1719 * to make sure later references to the overwritten inode are possible. 1720 * Orphanizing is however only required for the first ref of an inode. 1721 * process_recorded_refs does an additional is_first_ref check to see if 1722 * orphanizing is really required. 1723 */ 1724static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1725 const char *name, int name_len, 1726 u64 *who_ino, u64 *who_gen) 1727{ 1728 int ret = 0; 1729 u64 gen; 1730 u64 other_inode = 0; 1731 u8 other_type = 0; 1732 1733 if (!sctx->parent_root) 1734 goto out; 1735 1736 ret = is_inode_existent(sctx, dir, dir_gen); 1737 if (ret <= 0) 1738 goto out; 1739 1740 /* 1741 * If we have a parent root we need to verify that the parent dir was 1742 * not delted and then re-created, if it was then we have no overwrite 1743 * and we can just unlink this entry. 1744 */ 1745 if (sctx->parent_root) { 1746 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1747 NULL, NULL, NULL); 1748 if (ret < 0 && ret != -ENOENT) 1749 goto out; 1750 if (ret) { 1751 ret = 0; 1752 goto out; 1753 } 1754 if (gen != dir_gen) 1755 goto out; 1756 } 1757 1758 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1759 &other_inode, &other_type); 1760 if (ret < 0 && ret != -ENOENT) 1761 goto out; 1762 if (ret) { 1763 ret = 0; 1764 goto out; 1765 } 1766 1767 /* 1768 * Check if the overwritten ref was already processed. If yes, the ref 1769 * was already unlinked/moved, so we can safely assume that we will not 1770 * overwrite anything at this point in time. 1771 */ 1772 if (other_inode > sctx->send_progress) { 1773 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1774 who_gen, NULL, NULL, NULL, NULL); 1775 if (ret < 0) 1776 goto out; 1777 1778 ret = 1; 1779 *who_ino = other_inode; 1780 } else { 1781 ret = 0; 1782 } 1783 1784out: 1785 return ret; 1786} 1787 1788/* 1789 * Checks if the ref was overwritten by an already processed inode. This is 1790 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1791 * thus the orphan name needs be used. 1792 * process_recorded_refs also uses it to avoid unlinking of refs that were 1793 * overwritten. 1794 */ 1795static int did_overwrite_ref(struct send_ctx *sctx, 1796 u64 dir, u64 dir_gen, 1797 u64 ino, u64 ino_gen, 1798 const char *name, int name_len) 1799{ 1800 int ret = 0; 1801 u64 gen; 1802 u64 ow_inode; 1803 u8 other_type; 1804 1805 if (!sctx->parent_root) 1806 goto out; 1807 1808 ret = is_inode_existent(sctx, dir, dir_gen); 1809 if (ret <= 0) 1810 goto out; 1811 1812 /* check if the ref was overwritten by another ref */ 1813 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1814 &ow_inode, &other_type); 1815 if (ret < 0 && ret != -ENOENT) 1816 goto out; 1817 if (ret) { 1818 /* was never and will never be overwritten */ 1819 ret = 0; 1820 goto out; 1821 } 1822 1823 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1824 NULL, NULL); 1825 if (ret < 0) 1826 goto out; 1827 1828 if (ow_inode == ino && gen == ino_gen) { 1829 ret = 0; 1830 goto out; 1831 } 1832 1833 /* we know that it is or will be overwritten. check this now */ 1834 if (ow_inode < sctx->send_progress) 1835 ret = 1; 1836 else 1837 ret = 0; 1838 1839out: 1840 return ret; 1841} 1842 1843/* 1844 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1845 * that got overwritten. This is used by process_recorded_refs to determine 1846 * if it has to use the path as returned by get_cur_path or the orphan name. 1847 */ 1848static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1849{ 1850 int ret = 0; 1851 struct fs_path *name = NULL; 1852 u64 dir; 1853 u64 dir_gen; 1854 1855 if (!sctx->parent_root) 1856 goto out; 1857 1858 name = fs_path_alloc(); 1859 if (!name) 1860 return -ENOMEM; 1861 1862 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 1863 if (ret < 0) 1864 goto out; 1865 1866 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 1867 name->start, fs_path_len(name)); 1868 1869out: 1870 fs_path_free(name); 1871 return ret; 1872} 1873 1874/* 1875 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 1876 * so we need to do some special handling in case we have clashes. This function 1877 * takes care of this with the help of name_cache_entry::radix_list. 1878 * In case of error, nce is kfreed. 1879 */ 1880static int name_cache_insert(struct send_ctx *sctx, 1881 struct name_cache_entry *nce) 1882{ 1883 int ret = 0; 1884 struct list_head *nce_head; 1885 1886 nce_head = radix_tree_lookup(&sctx->name_cache, 1887 (unsigned long)nce->ino); 1888 if (!nce_head) { 1889 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS); 1890 if (!nce_head) { 1891 kfree(nce); 1892 return -ENOMEM; 1893 } 1894 INIT_LIST_HEAD(nce_head); 1895 1896 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 1897 if (ret < 0) { 1898 kfree(nce_head); 1899 kfree(nce); 1900 return ret; 1901 } 1902 } 1903 list_add_tail(&nce->radix_list, nce_head); 1904 list_add_tail(&nce->list, &sctx->name_cache_list); 1905 sctx->name_cache_size++; 1906 1907 return ret; 1908} 1909 1910static void name_cache_delete(struct send_ctx *sctx, 1911 struct name_cache_entry *nce) 1912{ 1913 struct list_head *nce_head; 1914 1915 nce_head = radix_tree_lookup(&sctx->name_cache, 1916 (unsigned long)nce->ino); 1917 if (!nce_head) { 1918 btrfs_err(sctx->send_root->fs_info, 1919 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 1920 nce->ino, sctx->name_cache_size); 1921 } 1922 1923 list_del(&nce->radix_list); 1924 list_del(&nce->list); 1925 sctx->name_cache_size--; 1926 1927 /* 1928 * We may not get to the final release of nce_head if the lookup fails 1929 */ 1930 if (nce_head && list_empty(nce_head)) { 1931 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 1932 kfree(nce_head); 1933 } 1934} 1935 1936static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 1937 u64 ino, u64 gen) 1938{ 1939 struct list_head *nce_head; 1940 struct name_cache_entry *cur; 1941 1942 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 1943 if (!nce_head) 1944 return NULL; 1945 1946 list_for_each_entry(cur, nce_head, radix_list) { 1947 if (cur->ino == ino && cur->gen == gen) 1948 return cur; 1949 } 1950 return NULL; 1951} 1952 1953/* 1954 * Removes the entry from the list and adds it back to the end. This marks the 1955 * entry as recently used so that name_cache_clean_unused does not remove it. 1956 */ 1957static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 1958{ 1959 list_del(&nce->list); 1960 list_add_tail(&nce->list, &sctx->name_cache_list); 1961} 1962 1963/* 1964 * Remove some entries from the beginning of name_cache_list. 1965 */ 1966static void name_cache_clean_unused(struct send_ctx *sctx) 1967{ 1968 struct name_cache_entry *nce; 1969 1970 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 1971 return; 1972 1973 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 1974 nce = list_entry(sctx->name_cache_list.next, 1975 struct name_cache_entry, list); 1976 name_cache_delete(sctx, nce); 1977 kfree(nce); 1978 } 1979} 1980 1981static void name_cache_free(struct send_ctx *sctx) 1982{ 1983 struct name_cache_entry *nce; 1984 1985 while (!list_empty(&sctx->name_cache_list)) { 1986 nce = list_entry(sctx->name_cache_list.next, 1987 struct name_cache_entry, list); 1988 name_cache_delete(sctx, nce); 1989 kfree(nce); 1990 } 1991} 1992 1993/* 1994 * Used by get_cur_path for each ref up to the root. 1995 * Returns 0 if it succeeded. 1996 * Returns 1 if the inode is not existent or got overwritten. In that case, the 1997 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 1998 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 1999 * Returns <0 in case of error. 2000 */ 2001static int __get_cur_name_and_parent(struct send_ctx *sctx, 2002 u64 ino, u64 gen, 2003 int skip_name_cache, 2004 u64 *parent_ino, 2005 u64 *parent_gen, 2006 struct fs_path *dest) 2007{ 2008 int ret; 2009 int nce_ret; 2010 struct btrfs_path *path = NULL; 2011 struct name_cache_entry *nce = NULL; 2012 2013 if (skip_name_cache) 2014 goto get_ref; 2015 /* 2016 * First check if we already did a call to this function with the same 2017 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2018 * return the cached result. 2019 */ 2020 nce = name_cache_search(sctx, ino, gen); 2021 if (nce) { 2022 if (ino < sctx->send_progress && nce->need_later_update) { 2023 name_cache_delete(sctx, nce); 2024 kfree(nce); 2025 nce = NULL; 2026 } else { 2027 name_cache_used(sctx, nce); 2028 *parent_ino = nce->parent_ino; 2029 *parent_gen = nce->parent_gen; 2030 ret = fs_path_add(dest, nce->name, nce->name_len); 2031 if (ret < 0) 2032 goto out; 2033 ret = nce->ret; 2034 goto out; 2035 } 2036 } 2037 2038 path = alloc_path_for_send(); 2039 if (!path) 2040 return -ENOMEM; 2041 2042 /* 2043 * If the inode is not existent yet, add the orphan name and return 1. 2044 * This should only happen for the parent dir that we determine in 2045 * __record_new_ref 2046 */ 2047 ret = is_inode_existent(sctx, ino, gen); 2048 if (ret < 0) 2049 goto out; 2050 2051 if (!ret) { 2052 ret = gen_unique_name(sctx, ino, gen, dest); 2053 if (ret < 0) 2054 goto out; 2055 ret = 1; 2056 goto out_cache; 2057 } 2058 2059get_ref: 2060 /* 2061 * Depending on whether the inode was already processed or not, use 2062 * send_root or parent_root for ref lookup. 2063 */ 2064 if (ino < sctx->send_progress && !skip_name_cache) 2065 ret = get_first_ref(sctx->send_root, ino, 2066 parent_ino, parent_gen, dest); 2067 else 2068 ret = get_first_ref(sctx->parent_root, ino, 2069 parent_ino, parent_gen, dest); 2070 if (ret < 0) 2071 goto out; 2072 2073 /* 2074 * Check if the ref was overwritten by an inode's ref that was processed 2075 * earlier. If yes, treat as orphan and return 1. 2076 */ 2077 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2078 dest->start, dest->end - dest->start); 2079 if (ret < 0) 2080 goto out; 2081 if (ret) { 2082 fs_path_reset(dest); 2083 ret = gen_unique_name(sctx, ino, gen, dest); 2084 if (ret < 0) 2085 goto out; 2086 ret = 1; 2087 } 2088 if (skip_name_cache) 2089 goto out; 2090 2091out_cache: 2092 /* 2093 * Store the result of the lookup in the name cache. 2094 */ 2095 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS); 2096 if (!nce) { 2097 ret = -ENOMEM; 2098 goto out; 2099 } 2100 2101 nce->ino = ino; 2102 nce->gen = gen; 2103 nce->parent_ino = *parent_ino; 2104 nce->parent_gen = *parent_gen; 2105 nce->name_len = fs_path_len(dest); 2106 nce->ret = ret; 2107 strcpy(nce->name, dest->start); 2108 2109 if (ino < sctx->send_progress) 2110 nce->need_later_update = 0; 2111 else 2112 nce->need_later_update = 1; 2113 2114 nce_ret = name_cache_insert(sctx, nce); 2115 if (nce_ret < 0) 2116 ret = nce_ret; 2117 name_cache_clean_unused(sctx); 2118 2119out: 2120 btrfs_free_path(path); 2121 return ret; 2122} 2123 2124/* 2125 * Magic happens here. This function returns the first ref to an inode as it 2126 * would look like while receiving the stream at this point in time. 2127 * We walk the path up to the root. For every inode in between, we check if it 2128 * was already processed/sent. If yes, we continue with the parent as found 2129 * in send_root. If not, we continue with the parent as found in parent_root. 2130 * If we encounter an inode that was deleted at this point in time, we use the 2131 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2132 * that were not created yet and overwritten inodes/refs. 2133 * 2134 * When do we have have orphan inodes: 2135 * 1. When an inode is freshly created and thus no valid refs are available yet 2136 * 2. When a directory lost all it's refs (deleted) but still has dir items 2137 * inside which were not processed yet (pending for move/delete). If anyone 2138 * tried to get the path to the dir items, it would get a path inside that 2139 * orphan directory. 2140 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2141 * of an unprocessed inode. If in that case the first ref would be 2142 * overwritten, the overwritten inode gets "orphanized". Later when we 2143 * process this overwritten inode, it is restored at a new place by moving 2144 * the orphan inode. 2145 * 2146 * sctx->send_progress tells this function at which point in time receiving 2147 * would be. 2148 */ 2149static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2150 struct fs_path *dest) 2151{ 2152 int ret = 0; 2153 struct fs_path *name = NULL; 2154 u64 parent_inode = 0; 2155 u64 parent_gen = 0; 2156 int stop = 0; 2157 int skip_name_cache = 0; 2158 2159 name = fs_path_alloc(); 2160 if (!name) { 2161 ret = -ENOMEM; 2162 goto out; 2163 } 2164 2165 if (is_waiting_for_move(sctx, ino)) 2166 skip_name_cache = 1; 2167 2168 dest->reversed = 1; 2169 fs_path_reset(dest); 2170 2171 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2172 fs_path_reset(name); 2173 2174 if (is_waiting_for_rm(sctx, ino)) { 2175 ret = gen_unique_name(sctx, ino, gen, name); 2176 if (ret < 0) 2177 goto out; 2178 ret = fs_path_add_path(dest, name); 2179 break; 2180 } 2181 2182 ret = __get_cur_name_and_parent(sctx, ino, gen, skip_name_cache, 2183 &parent_inode, &parent_gen, name); 2184 if (ret < 0) 2185 goto out; 2186 if (ret) 2187 stop = 1; 2188 2189 if (!skip_name_cache && 2190 is_waiting_for_move(sctx, parent_inode)) 2191 skip_name_cache = 1; 2192 2193 ret = fs_path_add_path(dest, name); 2194 if (ret < 0) 2195 goto out; 2196 2197 ino = parent_inode; 2198 gen = parent_gen; 2199 } 2200 2201out: 2202 fs_path_free(name); 2203 if (!ret) 2204 fs_path_unreverse(dest); 2205 return ret; 2206} 2207 2208/* 2209 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2210 */ 2211static int send_subvol_begin(struct send_ctx *sctx) 2212{ 2213 int ret; 2214 struct btrfs_root *send_root = sctx->send_root; 2215 struct btrfs_root *parent_root = sctx->parent_root; 2216 struct btrfs_path *path; 2217 struct btrfs_key key; 2218 struct btrfs_root_ref *ref; 2219 struct extent_buffer *leaf; 2220 char *name = NULL; 2221 int namelen; 2222 2223 path = btrfs_alloc_path(); 2224 if (!path) 2225 return -ENOMEM; 2226 2227 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS); 2228 if (!name) { 2229 btrfs_free_path(path); 2230 return -ENOMEM; 2231 } 2232 2233 key.objectid = send_root->objectid; 2234 key.type = BTRFS_ROOT_BACKREF_KEY; 2235 key.offset = 0; 2236 2237 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2238 &key, path, 1, 0); 2239 if (ret < 0) 2240 goto out; 2241 if (ret) { 2242 ret = -ENOENT; 2243 goto out; 2244 } 2245 2246 leaf = path->nodes[0]; 2247 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2248 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2249 key.objectid != send_root->objectid) { 2250 ret = -ENOENT; 2251 goto out; 2252 } 2253 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2254 namelen = btrfs_root_ref_name_len(leaf, ref); 2255 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2256 btrfs_release_path(path); 2257 2258 if (parent_root) { 2259 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2260 if (ret < 0) 2261 goto out; 2262 } else { 2263 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2264 if (ret < 0) 2265 goto out; 2266 } 2267 2268 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2269 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2270 sctx->send_root->root_item.uuid); 2271 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2272 le64_to_cpu(sctx->send_root->root_item.ctransid)); 2273 if (parent_root) { 2274 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2275 sctx->parent_root->root_item.uuid); 2276 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2277 le64_to_cpu(sctx->parent_root->root_item.ctransid)); 2278 } 2279 2280 ret = send_cmd(sctx); 2281 2282tlv_put_failure: 2283out: 2284 btrfs_free_path(path); 2285 kfree(name); 2286 return ret; 2287} 2288 2289static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2290{ 2291 int ret = 0; 2292 struct fs_path *p; 2293 2294verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size); 2295 2296 p = fs_path_alloc(); 2297 if (!p) 2298 return -ENOMEM; 2299 2300 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2301 if (ret < 0) 2302 goto out; 2303 2304 ret = get_cur_path(sctx, ino, gen, p); 2305 if (ret < 0) 2306 goto out; 2307 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2308 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2309 2310 ret = send_cmd(sctx); 2311 2312tlv_put_failure: 2313out: 2314 fs_path_free(p); 2315 return ret; 2316} 2317 2318static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2319{ 2320 int ret = 0; 2321 struct fs_path *p; 2322 2323verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode); 2324 2325 p = fs_path_alloc(); 2326 if (!p) 2327 return -ENOMEM; 2328 2329 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2330 if (ret < 0) 2331 goto out; 2332 2333 ret = get_cur_path(sctx, ino, gen, p); 2334 if (ret < 0) 2335 goto out; 2336 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2337 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2338 2339 ret = send_cmd(sctx); 2340 2341tlv_put_failure: 2342out: 2343 fs_path_free(p); 2344 return ret; 2345} 2346 2347static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2348{ 2349 int ret = 0; 2350 struct fs_path *p; 2351 2352verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid); 2353 2354 p = fs_path_alloc(); 2355 if (!p) 2356 return -ENOMEM; 2357 2358 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2359 if (ret < 0) 2360 goto out; 2361 2362 ret = get_cur_path(sctx, ino, gen, p); 2363 if (ret < 0) 2364 goto out; 2365 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2366 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2367 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2368 2369 ret = send_cmd(sctx); 2370 2371tlv_put_failure: 2372out: 2373 fs_path_free(p); 2374 return ret; 2375} 2376 2377static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2378{ 2379 int ret = 0; 2380 struct fs_path *p = NULL; 2381 struct btrfs_inode_item *ii; 2382 struct btrfs_path *path = NULL; 2383 struct extent_buffer *eb; 2384 struct btrfs_key key; 2385 int slot; 2386 2387verbose_printk("btrfs: send_utimes %llu\n", ino); 2388 2389 p = fs_path_alloc(); 2390 if (!p) 2391 return -ENOMEM; 2392 2393 path = alloc_path_for_send(); 2394 if (!path) { 2395 ret = -ENOMEM; 2396 goto out; 2397 } 2398 2399 key.objectid = ino; 2400 key.type = BTRFS_INODE_ITEM_KEY; 2401 key.offset = 0; 2402 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2403 if (ret < 0) 2404 goto out; 2405 2406 eb = path->nodes[0]; 2407 slot = path->slots[0]; 2408 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2409 2410 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2411 if (ret < 0) 2412 goto out; 2413 2414 ret = get_cur_path(sctx, ino, gen, p); 2415 if (ret < 0) 2416 goto out; 2417 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2418 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, 2419 btrfs_inode_atime(ii)); 2420 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, 2421 btrfs_inode_mtime(ii)); 2422 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, 2423 btrfs_inode_ctime(ii)); 2424 /* TODO Add otime support when the otime patches get into upstream */ 2425 2426 ret = send_cmd(sctx); 2427 2428tlv_put_failure: 2429out: 2430 fs_path_free(p); 2431 btrfs_free_path(path); 2432 return ret; 2433} 2434 2435/* 2436 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2437 * a valid path yet because we did not process the refs yet. So, the inode 2438 * is created as orphan. 2439 */ 2440static int send_create_inode(struct send_ctx *sctx, u64 ino) 2441{ 2442 int ret = 0; 2443 struct fs_path *p; 2444 int cmd; 2445 u64 gen; 2446 u64 mode; 2447 u64 rdev; 2448 2449verbose_printk("btrfs: send_create_inode %llu\n", ino); 2450 2451 p = fs_path_alloc(); 2452 if (!p) 2453 return -ENOMEM; 2454 2455 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, NULL, 2456 NULL, &rdev); 2457 if (ret < 0) 2458 goto out; 2459 2460 if (S_ISREG(mode)) { 2461 cmd = BTRFS_SEND_C_MKFILE; 2462 } else if (S_ISDIR(mode)) { 2463 cmd = BTRFS_SEND_C_MKDIR; 2464 } else if (S_ISLNK(mode)) { 2465 cmd = BTRFS_SEND_C_SYMLINK; 2466 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2467 cmd = BTRFS_SEND_C_MKNOD; 2468 } else if (S_ISFIFO(mode)) { 2469 cmd = BTRFS_SEND_C_MKFIFO; 2470 } else if (S_ISSOCK(mode)) { 2471 cmd = BTRFS_SEND_C_MKSOCK; 2472 } else { 2473 printk(KERN_WARNING "btrfs: unexpected inode type %o", 2474 (int)(mode & S_IFMT)); 2475 ret = -ENOTSUPP; 2476 goto out; 2477 } 2478 2479 ret = begin_cmd(sctx, cmd); 2480 if (ret < 0) 2481 goto out; 2482 2483 ret = gen_unique_name(sctx, ino, gen, p); 2484 if (ret < 0) 2485 goto out; 2486 2487 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2488 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2489 2490 if (S_ISLNK(mode)) { 2491 fs_path_reset(p); 2492 ret = read_symlink(sctx->send_root, ino, p); 2493 if (ret < 0) 2494 goto out; 2495 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2496 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2497 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2498 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2499 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2500 } 2501 2502 ret = send_cmd(sctx); 2503 if (ret < 0) 2504 goto out; 2505 2506 2507tlv_put_failure: 2508out: 2509 fs_path_free(p); 2510 return ret; 2511} 2512 2513/* 2514 * We need some special handling for inodes that get processed before the parent 2515 * directory got created. See process_recorded_refs for details. 2516 * This function does the check if we already created the dir out of order. 2517 */ 2518static int did_create_dir(struct send_ctx *sctx, u64 dir) 2519{ 2520 int ret = 0; 2521 struct btrfs_path *path = NULL; 2522 struct btrfs_key key; 2523 struct btrfs_key found_key; 2524 struct btrfs_key di_key; 2525 struct extent_buffer *eb; 2526 struct btrfs_dir_item *di; 2527 int slot; 2528 2529 path = alloc_path_for_send(); 2530 if (!path) { 2531 ret = -ENOMEM; 2532 goto out; 2533 } 2534 2535 key.objectid = dir; 2536 key.type = BTRFS_DIR_INDEX_KEY; 2537 key.offset = 0; 2538 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2539 if (ret < 0) 2540 goto out; 2541 2542 while (1) { 2543 eb = path->nodes[0]; 2544 slot = path->slots[0]; 2545 if (slot >= btrfs_header_nritems(eb)) { 2546 ret = btrfs_next_leaf(sctx->send_root, path); 2547 if (ret < 0) { 2548 goto out; 2549 } else if (ret > 0) { 2550 ret = 0; 2551 break; 2552 } 2553 continue; 2554 } 2555 2556 btrfs_item_key_to_cpu(eb, &found_key, slot); 2557 if (found_key.objectid != key.objectid || 2558 found_key.type != key.type) { 2559 ret = 0; 2560 goto out; 2561 } 2562 2563 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2564 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2565 2566 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2567 di_key.objectid < sctx->send_progress) { 2568 ret = 1; 2569 goto out; 2570 } 2571 2572 path->slots[0]++; 2573 } 2574 2575out: 2576 btrfs_free_path(path); 2577 return ret; 2578} 2579 2580/* 2581 * Only creates the inode if it is: 2582 * 1. Not a directory 2583 * 2. Or a directory which was not created already due to out of order 2584 * directories. See did_create_dir and process_recorded_refs for details. 2585 */ 2586static int send_create_inode_if_needed(struct send_ctx *sctx) 2587{ 2588 int ret; 2589 2590 if (S_ISDIR(sctx->cur_inode_mode)) { 2591 ret = did_create_dir(sctx, sctx->cur_ino); 2592 if (ret < 0) 2593 goto out; 2594 if (ret) { 2595 ret = 0; 2596 goto out; 2597 } 2598 } 2599 2600 ret = send_create_inode(sctx, sctx->cur_ino); 2601 if (ret < 0) 2602 goto out; 2603 2604out: 2605 return ret; 2606} 2607 2608struct recorded_ref { 2609 struct list_head list; 2610 char *dir_path; 2611 char *name; 2612 struct fs_path *full_path; 2613 u64 dir; 2614 u64 dir_gen; 2615 int dir_path_len; 2616 int name_len; 2617}; 2618 2619/* 2620 * We need to process new refs before deleted refs, but compare_tree gives us 2621 * everything mixed. So we first record all refs and later process them. 2622 * This function is a helper to record one ref. 2623 */ 2624static int record_ref(struct list_head *head, u64 dir, 2625 u64 dir_gen, struct fs_path *path) 2626{ 2627 struct recorded_ref *ref; 2628 2629 ref = kmalloc(sizeof(*ref), GFP_NOFS); 2630 if (!ref) 2631 return -ENOMEM; 2632 2633 ref->dir = dir; 2634 ref->dir_gen = dir_gen; 2635 ref->full_path = path; 2636 2637 ref->name = (char *)kbasename(ref->full_path->start); 2638 ref->name_len = ref->full_path->end - ref->name; 2639 ref->dir_path = ref->full_path->start; 2640 if (ref->name == ref->full_path->start) 2641 ref->dir_path_len = 0; 2642 else 2643 ref->dir_path_len = ref->full_path->end - 2644 ref->full_path->start - 1 - ref->name_len; 2645 2646 list_add_tail(&ref->list, head); 2647 return 0; 2648} 2649 2650static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2651{ 2652 struct recorded_ref *new; 2653 2654 new = kmalloc(sizeof(*ref), GFP_NOFS); 2655 if (!new) 2656 return -ENOMEM; 2657 2658 new->dir = ref->dir; 2659 new->dir_gen = ref->dir_gen; 2660 new->full_path = NULL; 2661 INIT_LIST_HEAD(&new->list); 2662 list_add_tail(&new->list, list); 2663 return 0; 2664} 2665 2666static void __free_recorded_refs(struct list_head *head) 2667{ 2668 struct recorded_ref *cur; 2669 2670 while (!list_empty(head)) { 2671 cur = list_entry(head->next, struct recorded_ref, list); 2672 fs_path_free(cur->full_path); 2673 list_del(&cur->list); 2674 kfree(cur); 2675 } 2676} 2677 2678static void free_recorded_refs(struct send_ctx *sctx) 2679{ 2680 __free_recorded_refs(&sctx->new_refs); 2681 __free_recorded_refs(&sctx->deleted_refs); 2682} 2683 2684/* 2685 * Renames/moves a file/dir to its orphan name. Used when the first 2686 * ref of an unprocessed inode gets overwritten and for all non empty 2687 * directories. 2688 */ 2689static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2690 struct fs_path *path) 2691{ 2692 int ret; 2693 struct fs_path *orphan; 2694 2695 orphan = fs_path_alloc(); 2696 if (!orphan) 2697 return -ENOMEM; 2698 2699 ret = gen_unique_name(sctx, ino, gen, orphan); 2700 if (ret < 0) 2701 goto out; 2702 2703 ret = send_rename(sctx, path, orphan); 2704 2705out: 2706 fs_path_free(orphan); 2707 return ret; 2708} 2709 2710static struct orphan_dir_info * 2711add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2712{ 2713 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2714 struct rb_node *parent = NULL; 2715 struct orphan_dir_info *entry, *odi; 2716 2717 odi = kmalloc(sizeof(*odi), GFP_NOFS); 2718 if (!odi) 2719 return ERR_PTR(-ENOMEM); 2720 odi->ino = dir_ino; 2721 odi->gen = 0; 2722 2723 while (*p) { 2724 parent = *p; 2725 entry = rb_entry(parent, struct orphan_dir_info, node); 2726 if (dir_ino < entry->ino) { 2727 p = &(*p)->rb_left; 2728 } else if (dir_ino > entry->ino) { 2729 p = &(*p)->rb_right; 2730 } else { 2731 kfree(odi); 2732 return entry; 2733 } 2734 } 2735 2736 rb_link_node(&odi->node, parent, p); 2737 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2738 return odi; 2739} 2740 2741static struct orphan_dir_info * 2742get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2743{ 2744 struct rb_node *n = sctx->orphan_dirs.rb_node; 2745 struct orphan_dir_info *entry; 2746 2747 while (n) { 2748 entry = rb_entry(n, struct orphan_dir_info, node); 2749 if (dir_ino < entry->ino) 2750 n = n->rb_left; 2751 else if (dir_ino > entry->ino) 2752 n = n->rb_right; 2753 else 2754 return entry; 2755 } 2756 return NULL; 2757} 2758 2759static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino) 2760{ 2761 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino); 2762 2763 return odi != NULL; 2764} 2765 2766static void free_orphan_dir_info(struct send_ctx *sctx, 2767 struct orphan_dir_info *odi) 2768{ 2769 if (!odi) 2770 return; 2771 rb_erase(&odi->node, &sctx->orphan_dirs); 2772 kfree(odi); 2773} 2774 2775/* 2776 * Returns 1 if a directory can be removed at this point in time. 2777 * We check this by iterating all dir items and checking if the inode behind 2778 * the dir item was already processed. 2779 */ 2780static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2781 u64 send_progress) 2782{ 2783 int ret = 0; 2784 struct btrfs_root *root = sctx->parent_root; 2785 struct btrfs_path *path; 2786 struct btrfs_key key; 2787 struct btrfs_key found_key; 2788 struct btrfs_key loc; 2789 struct btrfs_dir_item *di; 2790 2791 /* 2792 * Don't try to rmdir the top/root subvolume dir. 2793 */ 2794 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2795 return 0; 2796 2797 path = alloc_path_for_send(); 2798 if (!path) 2799 return -ENOMEM; 2800 2801 key.objectid = dir; 2802 key.type = BTRFS_DIR_INDEX_KEY; 2803 key.offset = 0; 2804 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2805 if (ret < 0) 2806 goto out; 2807 2808 while (1) { 2809 struct waiting_dir_move *dm; 2810 2811 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2812 ret = btrfs_next_leaf(root, path); 2813 if (ret < 0) 2814 goto out; 2815 else if (ret > 0) 2816 break; 2817 continue; 2818 } 2819 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2820 path->slots[0]); 2821 if (found_key.objectid != key.objectid || 2822 found_key.type != key.type) 2823 break; 2824 2825 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2826 struct btrfs_dir_item); 2827 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2828 2829 dm = get_waiting_dir_move(sctx, loc.objectid); 2830 if (dm) { 2831 struct orphan_dir_info *odi; 2832 2833 odi = add_orphan_dir_info(sctx, dir); 2834 if (IS_ERR(odi)) { 2835 ret = PTR_ERR(odi); 2836 goto out; 2837 } 2838 odi->gen = dir_gen; 2839 dm->rmdir_ino = dir; 2840 ret = 0; 2841 goto out; 2842 } 2843 2844 if (loc.objectid > send_progress) { 2845 ret = 0; 2846 goto out; 2847 } 2848 2849 path->slots[0]++; 2850 } 2851 2852 ret = 1; 2853 2854out: 2855 btrfs_free_path(path); 2856 return ret; 2857} 2858 2859static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 2860{ 2861 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 2862 2863 return entry != NULL; 2864} 2865 2866static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino) 2867{ 2868 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 2869 struct rb_node *parent = NULL; 2870 struct waiting_dir_move *entry, *dm; 2871 2872 dm = kmalloc(sizeof(*dm), GFP_NOFS); 2873 if (!dm) 2874 return -ENOMEM; 2875 dm->ino = ino; 2876 dm->rmdir_ino = 0; 2877 2878 while (*p) { 2879 parent = *p; 2880 entry = rb_entry(parent, struct waiting_dir_move, node); 2881 if (ino < entry->ino) { 2882 p = &(*p)->rb_left; 2883 } else if (ino > entry->ino) { 2884 p = &(*p)->rb_right; 2885 } else { 2886 kfree(dm); 2887 return -EEXIST; 2888 } 2889 } 2890 2891 rb_link_node(&dm->node, parent, p); 2892 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 2893 return 0; 2894} 2895 2896static struct waiting_dir_move * 2897get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 2898{ 2899 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 2900 struct waiting_dir_move *entry; 2901 2902 while (n) { 2903 entry = rb_entry(n, struct waiting_dir_move, node); 2904 if (ino < entry->ino) 2905 n = n->rb_left; 2906 else if (ino > entry->ino) 2907 n = n->rb_right; 2908 else 2909 return entry; 2910 } 2911 return NULL; 2912} 2913 2914static void free_waiting_dir_move(struct send_ctx *sctx, 2915 struct waiting_dir_move *dm) 2916{ 2917 if (!dm) 2918 return; 2919 rb_erase(&dm->node, &sctx->waiting_dir_moves); 2920 kfree(dm); 2921} 2922 2923static int add_pending_dir_move(struct send_ctx *sctx, u64 parent_ino) 2924{ 2925 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 2926 struct rb_node *parent = NULL; 2927 struct pending_dir_move *entry, *pm; 2928 struct recorded_ref *cur; 2929 int exists = 0; 2930 int ret; 2931 2932 pm = kmalloc(sizeof(*pm), GFP_NOFS); 2933 if (!pm) 2934 return -ENOMEM; 2935 pm->parent_ino = parent_ino; 2936 pm->ino = sctx->cur_ino; 2937 pm->gen = sctx->cur_inode_gen; 2938 INIT_LIST_HEAD(&pm->list); 2939 INIT_LIST_HEAD(&pm->update_refs); 2940 RB_CLEAR_NODE(&pm->node); 2941 2942 while (*p) { 2943 parent = *p; 2944 entry = rb_entry(parent, struct pending_dir_move, node); 2945 if (parent_ino < entry->parent_ino) { 2946 p = &(*p)->rb_left; 2947 } else if (parent_ino > entry->parent_ino) { 2948 p = &(*p)->rb_right; 2949 } else { 2950 exists = 1; 2951 break; 2952 } 2953 } 2954 2955 list_for_each_entry(cur, &sctx->deleted_refs, list) { 2956 ret = dup_ref(cur, &pm->update_refs); 2957 if (ret < 0) 2958 goto out; 2959 } 2960 list_for_each_entry(cur, &sctx->new_refs, list) { 2961 ret = dup_ref(cur, &pm->update_refs); 2962 if (ret < 0) 2963 goto out; 2964 } 2965 2966 ret = add_waiting_dir_move(sctx, pm->ino); 2967 if (ret) 2968 goto out; 2969 2970 if (exists) { 2971 list_add_tail(&pm->list, &entry->list); 2972 } else { 2973 rb_link_node(&pm->node, parent, p); 2974 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 2975 } 2976 ret = 0; 2977out: 2978 if (ret) { 2979 __free_recorded_refs(&pm->update_refs); 2980 kfree(pm); 2981 } 2982 return ret; 2983} 2984 2985static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 2986 u64 parent_ino) 2987{ 2988 struct rb_node *n = sctx->pending_dir_moves.rb_node; 2989 struct pending_dir_move *entry; 2990 2991 while (n) { 2992 entry = rb_entry(n, struct pending_dir_move, node); 2993 if (parent_ino < entry->parent_ino) 2994 n = n->rb_left; 2995 else if (parent_ino > entry->parent_ino) 2996 n = n->rb_right; 2997 else 2998 return entry; 2999 } 3000 return NULL; 3001} 3002 3003static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3004{ 3005 struct fs_path *from_path = NULL; 3006 struct fs_path *to_path = NULL; 3007 struct fs_path *name = NULL; 3008 u64 orig_progress = sctx->send_progress; 3009 struct recorded_ref *cur; 3010 u64 parent_ino, parent_gen; 3011 struct waiting_dir_move *dm = NULL; 3012 u64 rmdir_ino = 0; 3013 int ret; 3014 3015 name = fs_path_alloc(); 3016 from_path = fs_path_alloc(); 3017 if (!name || !from_path) { 3018 ret = -ENOMEM; 3019 goto out; 3020 } 3021 3022 dm = get_waiting_dir_move(sctx, pm->ino); 3023 ASSERT(dm); 3024 rmdir_ino = dm->rmdir_ino; 3025 free_waiting_dir_move(sctx, dm); 3026 3027 ret = get_first_ref(sctx->parent_root, pm->ino, 3028 &parent_ino, &parent_gen, name); 3029 if (ret < 0) 3030 goto out; 3031 3032 if (parent_ino == sctx->cur_ino) { 3033 /* child only renamed, not moved */ 3034 ASSERT(parent_gen == sctx->cur_inode_gen); 3035 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3036 from_path); 3037 if (ret < 0) 3038 goto out; 3039 ret = fs_path_add_path(from_path, name); 3040 if (ret < 0) 3041 goto out; 3042 } else { 3043 /* child moved and maybe renamed too */ 3044 sctx->send_progress = pm->ino; 3045 ret = get_cur_path(sctx, pm->ino, pm->gen, from_path); 3046 if (ret < 0) 3047 goto out; 3048 } 3049 3050 fs_path_free(name); 3051 name = NULL; 3052 3053 to_path = fs_path_alloc(); 3054 if (!to_path) { 3055 ret = -ENOMEM; 3056 goto out; 3057 } 3058 3059 sctx->send_progress = sctx->cur_ino + 1; 3060 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3061 if (ret < 0) 3062 goto out; 3063 3064 ret = send_rename(sctx, from_path, to_path); 3065 if (ret < 0) 3066 goto out; 3067 3068 if (rmdir_ino) { 3069 struct orphan_dir_info *odi; 3070 3071 odi = get_orphan_dir_info(sctx, rmdir_ino); 3072 if (!odi) { 3073 /* already deleted */ 3074 goto finish; 3075 } 3076 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1); 3077 if (ret < 0) 3078 goto out; 3079 if (!ret) 3080 goto finish; 3081 3082 name = fs_path_alloc(); 3083 if (!name) { 3084 ret = -ENOMEM; 3085 goto out; 3086 } 3087 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name); 3088 if (ret < 0) 3089 goto out; 3090 ret = send_rmdir(sctx, name); 3091 if (ret < 0) 3092 goto out; 3093 free_orphan_dir_info(sctx, odi); 3094 } 3095 3096finish: 3097 ret = send_utimes(sctx, pm->ino, pm->gen); 3098 if (ret < 0) 3099 goto out; 3100 3101 /* 3102 * After rename/move, need to update the utimes of both new parent(s) 3103 * and old parent(s). 3104 */ 3105 list_for_each_entry(cur, &pm->update_refs, list) { 3106 if (cur->dir == rmdir_ino) 3107 continue; 3108 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3109 if (ret < 0) 3110 goto out; 3111 } 3112 3113out: 3114 fs_path_free(name); 3115 fs_path_free(from_path); 3116 fs_path_free(to_path); 3117 sctx->send_progress = orig_progress; 3118 3119 return ret; 3120} 3121 3122static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3123{ 3124 if (!list_empty(&m->list)) 3125 list_del(&m->list); 3126 if (!RB_EMPTY_NODE(&m->node)) 3127 rb_erase(&m->node, &sctx->pending_dir_moves); 3128 __free_recorded_refs(&m->update_refs); 3129 kfree(m); 3130} 3131 3132static void tail_append_pending_moves(struct pending_dir_move *moves, 3133 struct list_head *stack) 3134{ 3135 if (list_empty(&moves->list)) { 3136 list_add_tail(&moves->list, stack); 3137 } else { 3138 LIST_HEAD(list); 3139 list_splice_init(&moves->list, &list); 3140 list_add_tail(&moves->list, stack); 3141 list_splice_tail(&list, stack); 3142 } 3143} 3144 3145static int apply_children_dir_moves(struct send_ctx *sctx) 3146{ 3147 struct pending_dir_move *pm; 3148 struct list_head stack; 3149 u64 parent_ino = sctx->cur_ino; 3150 int ret = 0; 3151 3152 pm = get_pending_dir_moves(sctx, parent_ino); 3153 if (!pm) 3154 return 0; 3155 3156 INIT_LIST_HEAD(&stack); 3157 tail_append_pending_moves(pm, &stack); 3158 3159 while (!list_empty(&stack)) { 3160 pm = list_first_entry(&stack, struct pending_dir_move, list); 3161 parent_ino = pm->ino; 3162 ret = apply_dir_move(sctx, pm); 3163 free_pending_move(sctx, pm); 3164 if (ret) 3165 goto out; 3166 pm = get_pending_dir_moves(sctx, parent_ino); 3167 if (pm) 3168 tail_append_pending_moves(pm, &stack); 3169 } 3170 return 0; 3171 3172out: 3173 while (!list_empty(&stack)) { 3174 pm = list_first_entry(&stack, struct pending_dir_move, list); 3175 free_pending_move(sctx, pm); 3176 } 3177 return ret; 3178} 3179 3180static int wait_for_parent_move(struct send_ctx *sctx, 3181 struct recorded_ref *parent_ref) 3182{ 3183 int ret; 3184 u64 ino = parent_ref->dir; 3185 u64 parent_ino_before, parent_ino_after; 3186 u64 new_gen, old_gen; 3187 struct fs_path *path_before = NULL; 3188 struct fs_path *path_after = NULL; 3189 int len1, len2; 3190 3191 if (parent_ref->dir <= sctx->cur_ino) 3192 return 0; 3193 3194 if (is_waiting_for_move(sctx, ino)) 3195 return 1; 3196 3197 ret = get_inode_info(sctx->parent_root, ino, NULL, &old_gen, 3198 NULL, NULL, NULL, NULL); 3199 if (ret == -ENOENT) 3200 return 0; 3201 else if (ret < 0) 3202 return ret; 3203 3204 ret = get_inode_info(sctx->send_root, ino, NULL, &new_gen, 3205 NULL, NULL, NULL, NULL); 3206 if (ret < 0) 3207 return ret; 3208 3209 if (new_gen != old_gen) 3210 return 0; 3211 3212 path_before = fs_path_alloc(); 3213 if (!path_before) 3214 return -ENOMEM; 3215 3216 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3217 NULL, path_before); 3218 if (ret == -ENOENT) { 3219 ret = 0; 3220 goto out; 3221 } else if (ret < 0) { 3222 goto out; 3223 } 3224 3225 path_after = fs_path_alloc(); 3226 if (!path_after) { 3227 ret = -ENOMEM; 3228 goto out; 3229 } 3230 3231 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3232 NULL, path_after); 3233 if (ret == -ENOENT) { 3234 ret = 0; 3235 goto out; 3236 } else if (ret < 0) { 3237 goto out; 3238 } 3239 3240 len1 = fs_path_len(path_before); 3241 len2 = fs_path_len(path_after); 3242 if (parent_ino_before != parent_ino_after || len1 != len2 || 3243 memcmp(path_before->start, path_after->start, len1)) { 3244 ret = 1; 3245 goto out; 3246 } 3247 ret = 0; 3248 3249out: 3250 fs_path_free(path_before); 3251 fs_path_free(path_after); 3252 3253 return ret; 3254} 3255 3256/* 3257 * This does all the move/link/unlink/rmdir magic. 3258 */ 3259static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3260{ 3261 int ret = 0; 3262 struct recorded_ref *cur; 3263 struct recorded_ref *cur2; 3264 struct list_head check_dirs; 3265 struct fs_path *valid_path = NULL; 3266 u64 ow_inode = 0; 3267 u64 ow_gen; 3268 int did_overwrite = 0; 3269 int is_orphan = 0; 3270 u64 last_dir_ino_rm = 0; 3271 3272verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino); 3273 3274 /* 3275 * This should never happen as the root dir always has the same ref 3276 * which is always '..' 3277 */ 3278 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3279 INIT_LIST_HEAD(&check_dirs); 3280 3281 valid_path = fs_path_alloc(); 3282 if (!valid_path) { 3283 ret = -ENOMEM; 3284 goto out; 3285 } 3286 3287 /* 3288 * First, check if the first ref of the current inode was overwritten 3289 * before. If yes, we know that the current inode was already orphanized 3290 * and thus use the orphan name. If not, we can use get_cur_path to 3291 * get the path of the first ref as it would like while receiving at 3292 * this point in time. 3293 * New inodes are always orphan at the beginning, so force to use the 3294 * orphan name in this case. 3295 * The first ref is stored in valid_path and will be updated if it 3296 * gets moved around. 3297 */ 3298 if (!sctx->cur_inode_new) { 3299 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3300 sctx->cur_inode_gen); 3301 if (ret < 0) 3302 goto out; 3303 if (ret) 3304 did_overwrite = 1; 3305 } 3306 if (sctx->cur_inode_new || did_overwrite) { 3307 ret = gen_unique_name(sctx, sctx->cur_ino, 3308 sctx->cur_inode_gen, valid_path); 3309 if (ret < 0) 3310 goto out; 3311 is_orphan = 1; 3312 } else { 3313 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3314 valid_path); 3315 if (ret < 0) 3316 goto out; 3317 } 3318 3319 list_for_each_entry(cur, &sctx->new_refs, list) { 3320 /* 3321 * We may have refs where the parent directory does not exist 3322 * yet. This happens if the parent directories inum is higher 3323 * the the current inum. To handle this case, we create the 3324 * parent directory out of order. But we need to check if this 3325 * did already happen before due to other refs in the same dir. 3326 */ 3327 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3328 if (ret < 0) 3329 goto out; 3330 if (ret == inode_state_will_create) { 3331 ret = 0; 3332 /* 3333 * First check if any of the current inodes refs did 3334 * already create the dir. 3335 */ 3336 list_for_each_entry(cur2, &sctx->new_refs, list) { 3337 if (cur == cur2) 3338 break; 3339 if (cur2->dir == cur->dir) { 3340 ret = 1; 3341 break; 3342 } 3343 } 3344 3345 /* 3346 * If that did not happen, check if a previous inode 3347 * did already create the dir. 3348 */ 3349 if (!ret) 3350 ret = did_create_dir(sctx, cur->dir); 3351 if (ret < 0) 3352 goto out; 3353 if (!ret) { 3354 ret = send_create_inode(sctx, cur->dir); 3355 if (ret < 0) 3356 goto out; 3357 } 3358 } 3359 3360 /* 3361 * Check if this new ref would overwrite the first ref of 3362 * another unprocessed inode. If yes, orphanize the 3363 * overwritten inode. If we find an overwritten ref that is 3364 * not the first ref, simply unlink it. 3365 */ 3366 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3367 cur->name, cur->name_len, 3368 &ow_inode, &ow_gen); 3369 if (ret < 0) 3370 goto out; 3371 if (ret) { 3372 ret = is_first_ref(sctx->parent_root, 3373 ow_inode, cur->dir, cur->name, 3374 cur->name_len); 3375 if (ret < 0) 3376 goto out; 3377 if (ret) { 3378 ret = orphanize_inode(sctx, ow_inode, ow_gen, 3379 cur->full_path); 3380 if (ret < 0) 3381 goto out; 3382 } else { 3383 ret = send_unlink(sctx, cur->full_path); 3384 if (ret < 0) 3385 goto out; 3386 } 3387 } 3388 3389 /* 3390 * link/move the ref to the new place. If we have an orphan 3391 * inode, move it and update valid_path. If not, link or move 3392 * it depending on the inode mode. 3393 */ 3394 if (is_orphan) { 3395 ret = send_rename(sctx, valid_path, cur->full_path); 3396 if (ret < 0) 3397 goto out; 3398 is_orphan = 0; 3399 ret = fs_path_copy(valid_path, cur->full_path); 3400 if (ret < 0) 3401 goto out; 3402 } else { 3403 if (S_ISDIR(sctx->cur_inode_mode)) { 3404 /* 3405 * Dirs can't be linked, so move it. For moved 3406 * dirs, we always have one new and one deleted 3407 * ref. The deleted ref is ignored later. 3408 */ 3409 ret = wait_for_parent_move(sctx, cur); 3410 if (ret < 0) 3411 goto out; 3412 if (ret) { 3413 ret = add_pending_dir_move(sctx, 3414 cur->dir); 3415 *pending_move = 1; 3416 } else { 3417 ret = send_rename(sctx, valid_path, 3418 cur->full_path); 3419 if (!ret) 3420 ret = fs_path_copy(valid_path, 3421 cur->full_path); 3422 } 3423 if (ret < 0) 3424 goto out; 3425 } else { 3426 ret = send_link(sctx, cur->full_path, 3427 valid_path); 3428 if (ret < 0) 3429 goto out; 3430 } 3431 } 3432 ret = dup_ref(cur, &check_dirs); 3433 if (ret < 0) 3434 goto out; 3435 } 3436 3437 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 3438 /* 3439 * Check if we can already rmdir the directory. If not, 3440 * orphanize it. For every dir item inside that gets deleted 3441 * later, we do this check again and rmdir it then if possible. 3442 * See the use of check_dirs for more details. 3443 */ 3444 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3445 sctx->cur_ino); 3446 if (ret < 0) 3447 goto out; 3448 if (ret) { 3449 ret = send_rmdir(sctx, valid_path); 3450 if (ret < 0) 3451 goto out; 3452 } else if (!is_orphan) { 3453 ret = orphanize_inode(sctx, sctx->cur_ino, 3454 sctx->cur_inode_gen, valid_path); 3455 if (ret < 0) 3456 goto out; 3457 is_orphan = 1; 3458 } 3459 3460 list_for_each_entry(cur, &sctx->deleted_refs, list) { 3461 ret = dup_ref(cur, &check_dirs); 3462 if (ret < 0) 3463 goto out; 3464 } 3465 } else if (S_ISDIR(sctx->cur_inode_mode) && 3466 !list_empty(&sctx->deleted_refs)) { 3467 /* 3468 * We have a moved dir. Add the old parent to check_dirs 3469 */ 3470 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 3471 list); 3472 ret = dup_ref(cur, &check_dirs); 3473 if (ret < 0) 3474 goto out; 3475 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 3476 /* 3477 * We have a non dir inode. Go through all deleted refs and 3478 * unlink them if they were not already overwritten by other 3479 * inodes. 3480 */ 3481 list_for_each_entry(cur, &sctx->deleted_refs, list) { 3482 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3483 sctx->cur_ino, sctx->cur_inode_gen, 3484 cur->name, cur->name_len); 3485 if (ret < 0) 3486 goto out; 3487 if (!ret) { 3488 ret = send_unlink(sctx, cur->full_path); 3489 if (ret < 0) 3490 goto out; 3491 } 3492 ret = dup_ref(cur, &check_dirs); 3493 if (ret < 0) 3494 goto out; 3495 } 3496 /* 3497 * If the inode is still orphan, unlink the orphan. This may 3498 * happen when a previous inode did overwrite the first ref 3499 * of this inode and no new refs were added for the current 3500 * inode. Unlinking does not mean that the inode is deleted in 3501 * all cases. There may still be links to this inode in other 3502 * places. 3503 */ 3504 if (is_orphan) { 3505 ret = send_unlink(sctx, valid_path); 3506 if (ret < 0) 3507 goto out; 3508 } 3509 } 3510 3511 /* 3512 * We did collect all parent dirs where cur_inode was once located. We 3513 * now go through all these dirs and check if they are pending for 3514 * deletion and if it's finally possible to perform the rmdir now. 3515 * We also update the inode stats of the parent dirs here. 3516 */ 3517 list_for_each_entry(cur, &check_dirs, list) { 3518 /* 3519 * In case we had refs into dirs that were not processed yet, 3520 * we don't need to do the utime and rmdir logic for these dirs. 3521 * The dir will be processed later. 3522 */ 3523 if (cur->dir > sctx->cur_ino) 3524 continue; 3525 3526 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3527 if (ret < 0) 3528 goto out; 3529 3530 if (ret == inode_state_did_create || 3531 ret == inode_state_no_change) { 3532 /* TODO delayed utimes */ 3533 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3534 if (ret < 0) 3535 goto out; 3536 } else if (ret == inode_state_did_delete && 3537 cur->dir != last_dir_ino_rm) { 3538 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 3539 sctx->cur_ino); 3540 if (ret < 0) 3541 goto out; 3542 if (ret) { 3543 ret = get_cur_path(sctx, cur->dir, 3544 cur->dir_gen, valid_path); 3545 if (ret < 0) 3546 goto out; 3547 ret = send_rmdir(sctx, valid_path); 3548 if (ret < 0) 3549 goto out; 3550 last_dir_ino_rm = cur->dir; 3551 } 3552 } 3553 } 3554 3555 ret = 0; 3556 3557out: 3558 __free_recorded_refs(&check_dirs); 3559 free_recorded_refs(sctx); 3560 fs_path_free(valid_path); 3561 return ret; 3562} 3563 3564static int __record_new_ref(int num, u64 dir, int index, 3565 struct fs_path *name, 3566 void *ctx) 3567{ 3568 int ret = 0; 3569 struct send_ctx *sctx = ctx; 3570 struct fs_path *p; 3571 u64 gen; 3572 3573 p = fs_path_alloc(); 3574 if (!p) 3575 return -ENOMEM; 3576 3577 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, NULL, 3578 NULL, NULL); 3579 if (ret < 0) 3580 goto out; 3581 3582 ret = get_cur_path(sctx, dir, gen, p); 3583 if (ret < 0) 3584 goto out; 3585 ret = fs_path_add_path(p, name); 3586 if (ret < 0) 3587 goto out; 3588 3589 ret = record_ref(&sctx->new_refs, dir, gen, p); 3590 3591out: 3592 if (ret) 3593 fs_path_free(p); 3594 return ret; 3595} 3596 3597static int __record_deleted_ref(int num, u64 dir, int index, 3598 struct fs_path *name, 3599 void *ctx) 3600{ 3601 int ret = 0; 3602 struct send_ctx *sctx = ctx; 3603 struct fs_path *p; 3604 u64 gen; 3605 3606 p = fs_path_alloc(); 3607 if (!p) 3608 return -ENOMEM; 3609 3610 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, NULL, 3611 NULL, NULL); 3612 if (ret < 0) 3613 goto out; 3614 3615 ret = get_cur_path(sctx, dir, gen, p); 3616 if (ret < 0) 3617 goto out; 3618 ret = fs_path_add_path(p, name); 3619 if (ret < 0) 3620 goto out; 3621 3622 ret = record_ref(&sctx->deleted_refs, dir, gen, p); 3623 3624out: 3625 if (ret) 3626 fs_path_free(p); 3627 return ret; 3628} 3629 3630static int record_new_ref(struct send_ctx *sctx) 3631{ 3632 int ret; 3633 3634 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 3635 sctx->cmp_key, 0, __record_new_ref, sctx); 3636 if (ret < 0) 3637 goto out; 3638 ret = 0; 3639 3640out: 3641 return ret; 3642} 3643 3644static int record_deleted_ref(struct send_ctx *sctx) 3645{ 3646 int ret; 3647 3648 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 3649 sctx->cmp_key, 0, __record_deleted_ref, sctx); 3650 if (ret < 0) 3651 goto out; 3652 ret = 0; 3653 3654out: 3655 return ret; 3656} 3657 3658struct find_ref_ctx { 3659 u64 dir; 3660 u64 dir_gen; 3661 struct btrfs_root *root; 3662 struct fs_path *name; 3663 int found_idx; 3664}; 3665 3666static int __find_iref(int num, u64 dir, int index, 3667 struct fs_path *name, 3668 void *ctx_) 3669{ 3670 struct find_ref_ctx *ctx = ctx_; 3671 u64 dir_gen; 3672 int ret; 3673 3674 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 3675 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 3676 /* 3677 * To avoid doing extra lookups we'll only do this if everything 3678 * else matches. 3679 */ 3680 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 3681 NULL, NULL, NULL); 3682 if (ret) 3683 return ret; 3684 if (dir_gen != ctx->dir_gen) 3685 return 0; 3686 ctx->found_idx = num; 3687 return 1; 3688 } 3689 return 0; 3690} 3691 3692static int find_iref(struct btrfs_root *root, 3693 struct btrfs_path *path, 3694 struct btrfs_key *key, 3695 u64 dir, u64 dir_gen, struct fs_path *name) 3696{ 3697 int ret; 3698 struct find_ref_ctx ctx; 3699 3700 ctx.dir = dir; 3701 ctx.name = name; 3702 ctx.dir_gen = dir_gen; 3703 ctx.found_idx = -1; 3704 ctx.root = root; 3705 3706 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 3707 if (ret < 0) 3708 return ret; 3709 3710 if (ctx.found_idx == -1) 3711 return -ENOENT; 3712 3713 return ctx.found_idx; 3714} 3715 3716static int __record_changed_new_ref(int num, u64 dir, int index, 3717 struct fs_path *name, 3718 void *ctx) 3719{ 3720 u64 dir_gen; 3721 int ret; 3722 struct send_ctx *sctx = ctx; 3723 3724 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 3725 NULL, NULL, NULL); 3726 if (ret) 3727 return ret; 3728 3729 ret = find_iref(sctx->parent_root, sctx->right_path, 3730 sctx->cmp_key, dir, dir_gen, name); 3731 if (ret == -ENOENT) 3732 ret = __record_new_ref(num, dir, index, name, sctx); 3733 else if (ret > 0) 3734 ret = 0; 3735 3736 return ret; 3737} 3738 3739static int __record_changed_deleted_ref(int num, u64 dir, int index, 3740 struct fs_path *name, 3741 void *ctx) 3742{ 3743 u64 dir_gen; 3744 int ret; 3745 struct send_ctx *sctx = ctx; 3746 3747 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 3748 NULL, NULL, NULL); 3749 if (ret) 3750 return ret; 3751 3752 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 3753 dir, dir_gen, name); 3754 if (ret == -ENOENT) 3755 ret = __record_deleted_ref(num, dir, index, name, sctx); 3756 else if (ret > 0) 3757 ret = 0; 3758 3759 return ret; 3760} 3761 3762static int record_changed_ref(struct send_ctx *sctx) 3763{ 3764 int ret = 0; 3765 3766 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 3767 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 3768 if (ret < 0) 3769 goto out; 3770 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 3771 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 3772 if (ret < 0) 3773 goto out; 3774 ret = 0; 3775 3776out: 3777 return ret; 3778} 3779 3780/* 3781 * Record and process all refs at once. Needed when an inode changes the 3782 * generation number, which means that it was deleted and recreated. 3783 */ 3784static int process_all_refs(struct send_ctx *sctx, 3785 enum btrfs_compare_tree_result cmd) 3786{ 3787 int ret; 3788 struct btrfs_root *root; 3789 struct btrfs_path *path; 3790 struct btrfs_key key; 3791 struct btrfs_key found_key; 3792 struct extent_buffer *eb; 3793 int slot; 3794 iterate_inode_ref_t cb; 3795 int pending_move = 0; 3796 3797 path = alloc_path_for_send(); 3798 if (!path) 3799 return -ENOMEM; 3800 3801 if (cmd == BTRFS_COMPARE_TREE_NEW) { 3802 root = sctx->send_root; 3803 cb = __record_new_ref; 3804 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 3805 root = sctx->parent_root; 3806 cb = __record_deleted_ref; 3807 } else { 3808 btrfs_err(sctx->send_root->fs_info, 3809 "Wrong command %d in process_all_refs", cmd); 3810 ret = -EINVAL; 3811 goto out; 3812 } 3813 3814 key.objectid = sctx->cmp_key->objectid; 3815 key.type = BTRFS_INODE_REF_KEY; 3816 key.offset = 0; 3817 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3818 if (ret < 0) 3819 goto out; 3820 3821 while (1) { 3822 eb = path->nodes[0]; 3823 slot = path->slots[0]; 3824 if (slot >= btrfs_header_nritems(eb)) { 3825 ret = btrfs_next_leaf(root, path); 3826 if (ret < 0) 3827 goto out; 3828 else if (ret > 0) 3829 break; 3830 continue; 3831 } 3832 3833 btrfs_item_key_to_cpu(eb, &found_key, slot); 3834 3835 if (found_key.objectid != key.objectid || 3836 (found_key.type != BTRFS_INODE_REF_KEY && 3837 found_key.type != BTRFS_INODE_EXTREF_KEY)) 3838 break; 3839 3840 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 3841 if (ret < 0) 3842 goto out; 3843 3844 path->slots[0]++; 3845 } 3846 btrfs_release_path(path); 3847 3848 ret = process_recorded_refs(sctx, &pending_move); 3849 /* Only applicable to an incremental send. */ 3850 ASSERT(pending_move == 0); 3851 3852out: 3853 btrfs_free_path(path); 3854 return ret; 3855} 3856 3857static int send_set_xattr(struct send_ctx *sctx, 3858 struct fs_path *path, 3859 const char *name, int name_len, 3860 const char *data, int data_len) 3861{ 3862 int ret = 0; 3863 3864 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 3865 if (ret < 0) 3866 goto out; 3867 3868 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 3869 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 3870 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 3871 3872 ret = send_cmd(sctx); 3873 3874tlv_put_failure: 3875out: 3876 return ret; 3877} 3878 3879static int send_remove_xattr(struct send_ctx *sctx, 3880 struct fs_path *path, 3881 const char *name, int name_len) 3882{ 3883 int ret = 0; 3884 3885 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 3886 if (ret < 0) 3887 goto out; 3888 3889 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 3890 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 3891 3892 ret = send_cmd(sctx); 3893 3894tlv_put_failure: 3895out: 3896 return ret; 3897} 3898 3899static int __process_new_xattr(int num, struct btrfs_key *di_key, 3900 const char *name, int name_len, 3901 const char *data, int data_len, 3902 u8 type, void *ctx) 3903{ 3904 int ret; 3905 struct send_ctx *sctx = ctx; 3906 struct fs_path *p; 3907 posix_acl_xattr_header dummy_acl; 3908 3909 p = fs_path_alloc(); 3910 if (!p) 3911 return -ENOMEM; 3912 3913 /* 3914 * This hack is needed because empty acl's are stored as zero byte 3915 * data in xattrs. Problem with that is, that receiving these zero byte 3916 * acl's will fail later. To fix this, we send a dummy acl list that 3917 * only contains the version number and no entries. 3918 */ 3919 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 3920 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 3921 if (data_len == 0) { 3922 dummy_acl.a_version = 3923 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 3924 data = (char *)&dummy_acl; 3925 data_len = sizeof(dummy_acl); 3926 } 3927 } 3928 3929 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 3930 if (ret < 0) 3931 goto out; 3932 3933 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 3934 3935out: 3936 fs_path_free(p); 3937 return ret; 3938} 3939 3940static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 3941 const char *name, int name_len, 3942 const char *data, int data_len, 3943 u8 type, void *ctx) 3944{ 3945 int ret; 3946 struct send_ctx *sctx = ctx; 3947 struct fs_path *p; 3948 3949 p = fs_path_alloc(); 3950 if (!p) 3951 return -ENOMEM; 3952 3953 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 3954 if (ret < 0) 3955 goto out; 3956 3957 ret = send_remove_xattr(sctx, p, name, name_len); 3958 3959out: 3960 fs_path_free(p); 3961 return ret; 3962} 3963 3964static int process_new_xattr(struct send_ctx *sctx) 3965{ 3966 int ret = 0; 3967 3968 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 3969 sctx->cmp_key, __process_new_xattr, sctx); 3970 3971 return ret; 3972} 3973 3974static int process_deleted_xattr(struct send_ctx *sctx) 3975{ 3976 int ret; 3977 3978 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 3979 sctx->cmp_key, __process_deleted_xattr, sctx); 3980 3981 return ret; 3982} 3983 3984struct find_xattr_ctx { 3985 const char *name; 3986 int name_len; 3987 int found_idx; 3988 char *found_data; 3989 int found_data_len; 3990}; 3991 3992static int __find_xattr(int num, struct btrfs_key *di_key, 3993 const char *name, int name_len, 3994 const char *data, int data_len, 3995 u8 type, void *vctx) 3996{ 3997 struct find_xattr_ctx *ctx = vctx; 3998 3999 if (name_len == ctx->name_len && 4000 strncmp(name, ctx->name, name_len) == 0) { 4001 ctx->found_idx = num; 4002 ctx->found_data_len = data_len; 4003 ctx->found_data = kmemdup(data, data_len, GFP_NOFS); 4004 if (!ctx->found_data) 4005 return -ENOMEM; 4006 return 1; 4007 } 4008 return 0; 4009} 4010 4011static int find_xattr(struct btrfs_root *root, 4012 struct btrfs_path *path, 4013 struct btrfs_key *key, 4014 const char *name, int name_len, 4015 char **data, int *data_len) 4016{ 4017 int ret; 4018 struct find_xattr_ctx ctx; 4019 4020 ctx.name = name; 4021 ctx.name_len = name_len; 4022 ctx.found_idx = -1; 4023 ctx.found_data = NULL; 4024 ctx.found_data_len = 0; 4025 4026 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx); 4027 if (ret < 0) 4028 return ret; 4029 4030 if (ctx.found_idx == -1) 4031 return -ENOENT; 4032 if (data) { 4033 *data = ctx.found_data; 4034 *data_len = ctx.found_data_len; 4035 } else { 4036 kfree(ctx.found_data); 4037 } 4038 return ctx.found_idx; 4039} 4040 4041 4042static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4043 const char *name, int name_len, 4044 const char *data, int data_len, 4045 u8 type, void *ctx) 4046{ 4047 int ret; 4048 struct send_ctx *sctx = ctx; 4049 char *found_data = NULL; 4050 int found_data_len = 0; 4051 4052 ret = find_xattr(sctx->parent_root, sctx->right_path, 4053 sctx->cmp_key, name, name_len, &found_data, 4054 &found_data_len); 4055 if (ret == -ENOENT) { 4056 ret = __process_new_xattr(num, di_key, name, name_len, data, 4057 data_len, type, ctx); 4058 } else if (ret >= 0) { 4059 if (data_len != found_data_len || 4060 memcmp(data, found_data, data_len)) { 4061 ret = __process_new_xattr(num, di_key, name, name_len, 4062 data, data_len, type, ctx); 4063 } else { 4064 ret = 0; 4065 } 4066 } 4067 4068 kfree(found_data); 4069 return ret; 4070} 4071 4072static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4073 const char *name, int name_len, 4074 const char *data, int data_len, 4075 u8 type, void *ctx) 4076{ 4077 int ret; 4078 struct send_ctx *sctx = ctx; 4079 4080 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4081 name, name_len, NULL, NULL); 4082 if (ret == -ENOENT) 4083 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4084 data_len, type, ctx); 4085 else if (ret >= 0) 4086 ret = 0; 4087 4088 return ret; 4089} 4090 4091static int process_changed_xattr(struct send_ctx *sctx) 4092{ 4093 int ret = 0; 4094 4095 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4096 sctx->cmp_key, __process_changed_new_xattr, sctx); 4097 if (ret < 0) 4098 goto out; 4099 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4100 sctx->cmp_key, __process_changed_deleted_xattr, sctx); 4101 4102out: 4103 return ret; 4104} 4105 4106static int process_all_new_xattrs(struct send_ctx *sctx) 4107{ 4108 int ret; 4109 struct btrfs_root *root; 4110 struct btrfs_path *path; 4111 struct btrfs_key key; 4112 struct btrfs_key found_key; 4113 struct extent_buffer *eb; 4114 int slot; 4115 4116 path = alloc_path_for_send(); 4117 if (!path) 4118 return -ENOMEM; 4119 4120 root = sctx->send_root; 4121 4122 key.objectid = sctx->cmp_key->objectid; 4123 key.type = BTRFS_XATTR_ITEM_KEY; 4124 key.offset = 0; 4125 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4126 if (ret < 0) 4127 goto out; 4128 4129 while (1) { 4130 eb = path->nodes[0]; 4131 slot = path->slots[0]; 4132 if (slot >= btrfs_header_nritems(eb)) { 4133 ret = btrfs_next_leaf(root, path); 4134 if (ret < 0) { 4135 goto out; 4136 } else if (ret > 0) { 4137 ret = 0; 4138 break; 4139 } 4140 continue; 4141 } 4142 4143 btrfs_item_key_to_cpu(eb, &found_key, slot); 4144 if (found_key.objectid != key.objectid || 4145 found_key.type != key.type) { 4146 ret = 0; 4147 goto out; 4148 } 4149 4150 ret = iterate_dir_item(root, path, &found_key, 4151 __process_new_xattr, sctx); 4152 if (ret < 0) 4153 goto out; 4154 4155 path->slots[0]++; 4156 } 4157 4158out: 4159 btrfs_free_path(path); 4160 return ret; 4161} 4162 4163static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len) 4164{ 4165 struct btrfs_root *root = sctx->send_root; 4166 struct btrfs_fs_info *fs_info = root->fs_info; 4167 struct inode *inode; 4168 struct page *page; 4169 char *addr; 4170 struct btrfs_key key; 4171 pgoff_t index = offset >> PAGE_CACHE_SHIFT; 4172 pgoff_t last_index; 4173 unsigned pg_offset = offset & ~PAGE_CACHE_MASK; 4174 ssize_t ret = 0; 4175 4176 key.objectid = sctx->cur_ino; 4177 key.type = BTRFS_INODE_ITEM_KEY; 4178 key.offset = 0; 4179 4180 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4181 if (IS_ERR(inode)) 4182 return PTR_ERR(inode); 4183 4184 if (offset + len > i_size_read(inode)) { 4185 if (offset > i_size_read(inode)) 4186 len = 0; 4187 else 4188 len = offset - i_size_read(inode); 4189 } 4190 if (len == 0) 4191 goto out; 4192 4193 last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT; 4194 while (index <= last_index) { 4195 unsigned cur_len = min_t(unsigned, len, 4196 PAGE_CACHE_SIZE - pg_offset); 4197 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 4198 if (!page) { 4199 ret = -ENOMEM; 4200 break; 4201 } 4202 4203 if (!PageUptodate(page)) { 4204 btrfs_readpage(NULL, page); 4205 lock_page(page); 4206 if (!PageUptodate(page)) { 4207 unlock_page(page); 4208 page_cache_release(page); 4209 ret = -EIO; 4210 break; 4211 } 4212 } 4213 4214 addr = kmap(page); 4215 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len); 4216 kunmap(page); 4217 unlock_page(page); 4218 page_cache_release(page); 4219 index++; 4220 pg_offset = 0; 4221 len -= cur_len; 4222 ret += cur_len; 4223 } 4224out: 4225 iput(inode); 4226 return ret; 4227} 4228 4229/* 4230 * Read some bytes from the current inode/file and send a write command to 4231 * user space. 4232 */ 4233static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 4234{ 4235 int ret = 0; 4236 struct fs_path *p; 4237 ssize_t num_read = 0; 4238 4239 p = fs_path_alloc(); 4240 if (!p) 4241 return -ENOMEM; 4242 4243verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len); 4244 4245 num_read = fill_read_buf(sctx, offset, len); 4246 if (num_read <= 0) { 4247 if (num_read < 0) 4248 ret = num_read; 4249 goto out; 4250 } 4251 4252 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4253 if (ret < 0) 4254 goto out; 4255 4256 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4257 if (ret < 0) 4258 goto out; 4259 4260 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4261 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4262 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read); 4263 4264 ret = send_cmd(sctx); 4265 4266tlv_put_failure: 4267out: 4268 fs_path_free(p); 4269 if (ret < 0) 4270 return ret; 4271 return num_read; 4272} 4273 4274/* 4275 * Send a clone command to user space. 4276 */ 4277static int send_clone(struct send_ctx *sctx, 4278 u64 offset, u32 len, 4279 struct clone_root *clone_root) 4280{ 4281 int ret = 0; 4282 struct fs_path *p; 4283 u64 gen; 4284 4285verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, " 4286 "clone_inode=%llu, clone_offset=%llu\n", offset, len, 4287 clone_root->root->objectid, clone_root->ino, 4288 clone_root->offset); 4289 4290 p = fs_path_alloc(); 4291 if (!p) 4292 return -ENOMEM; 4293 4294 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 4295 if (ret < 0) 4296 goto out; 4297 4298 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4299 if (ret < 0) 4300 goto out; 4301 4302 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4303 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 4304 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4305 4306 if (clone_root->root == sctx->send_root) { 4307 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 4308 &gen, NULL, NULL, NULL, NULL); 4309 if (ret < 0) 4310 goto out; 4311 ret = get_cur_path(sctx, clone_root->ino, gen, p); 4312 } else { 4313 ret = get_inode_path(clone_root->root, clone_root->ino, p); 4314 } 4315 if (ret < 0) 4316 goto out; 4317 4318 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4319 clone_root->root->root_item.uuid); 4320 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 4321 le64_to_cpu(clone_root->root->root_item.ctransid)); 4322 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 4323 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 4324 clone_root->offset); 4325 4326 ret = send_cmd(sctx); 4327 4328tlv_put_failure: 4329out: 4330 fs_path_free(p); 4331 return ret; 4332} 4333 4334/* 4335 * Send an update extent command to user space. 4336 */ 4337static int send_update_extent(struct send_ctx *sctx, 4338 u64 offset, u32 len) 4339{ 4340 int ret = 0; 4341 struct fs_path *p; 4342 4343 p = fs_path_alloc(); 4344 if (!p) 4345 return -ENOMEM; 4346 4347 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 4348 if (ret < 0) 4349 goto out; 4350 4351 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4352 if (ret < 0) 4353 goto out; 4354 4355 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4356 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4357 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 4358 4359 ret = send_cmd(sctx); 4360 4361tlv_put_failure: 4362out: 4363 fs_path_free(p); 4364 return ret; 4365} 4366 4367static int send_hole(struct send_ctx *sctx, u64 end) 4368{ 4369 struct fs_path *p = NULL; 4370 u64 offset = sctx->cur_inode_last_extent; 4371 u64 len; 4372 int ret = 0; 4373 4374 p = fs_path_alloc(); 4375 if (!p) 4376 return -ENOMEM; 4377 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE); 4378 while (offset < end) { 4379 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE); 4380 4381 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4382 if (ret < 0) 4383 break; 4384 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4385 if (ret < 0) 4386 break; 4387 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4388 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4389 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len); 4390 ret = send_cmd(sctx); 4391 if (ret < 0) 4392 break; 4393 offset += len; 4394 } 4395tlv_put_failure: 4396 fs_path_free(p); 4397 return ret; 4398} 4399 4400static int send_write_or_clone(struct send_ctx *sctx, 4401 struct btrfs_path *path, 4402 struct btrfs_key *key, 4403 struct clone_root *clone_root) 4404{ 4405 int ret = 0; 4406 struct btrfs_file_extent_item *ei; 4407 u64 offset = key->offset; 4408 u64 pos = 0; 4409 u64 len; 4410 u32 l; 4411 u8 type; 4412 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 4413 4414 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 4415 struct btrfs_file_extent_item); 4416 type = btrfs_file_extent_type(path->nodes[0], ei); 4417 if (type == BTRFS_FILE_EXTENT_INLINE) { 4418 len = btrfs_file_extent_inline_len(path->nodes[0], 4419 path->slots[0], ei); 4420 /* 4421 * it is possible the inline item won't cover the whole page, 4422 * but there may be items after this page. Make 4423 * sure to send the whole thing 4424 */ 4425 len = PAGE_CACHE_ALIGN(len); 4426 } else { 4427 len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 4428 } 4429 4430 if (offset + len > sctx->cur_inode_size) 4431 len = sctx->cur_inode_size - offset; 4432 if (len == 0) { 4433 ret = 0; 4434 goto out; 4435 } 4436 4437 if (clone_root && IS_ALIGNED(offset + len, bs)) { 4438 ret = send_clone(sctx, offset, len, clone_root); 4439 } else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) { 4440 ret = send_update_extent(sctx, offset, len); 4441 } else { 4442 while (pos < len) { 4443 l = len - pos; 4444 if (l > BTRFS_SEND_READ_SIZE) 4445 l = BTRFS_SEND_READ_SIZE; 4446 ret = send_write(sctx, pos + offset, l); 4447 if (ret < 0) 4448 goto out; 4449 if (!ret) 4450 break; 4451 pos += ret; 4452 } 4453 ret = 0; 4454 } 4455out: 4456 return ret; 4457} 4458 4459static int is_extent_unchanged(struct send_ctx *sctx, 4460 struct btrfs_path *left_path, 4461 struct btrfs_key *ekey) 4462{ 4463 int ret = 0; 4464 struct btrfs_key key; 4465 struct btrfs_path *path = NULL; 4466 struct extent_buffer *eb; 4467 int slot; 4468 struct btrfs_key found_key; 4469 struct btrfs_file_extent_item *ei; 4470 u64 left_disknr; 4471 u64 right_disknr; 4472 u64 left_offset; 4473 u64 right_offset; 4474 u64 left_offset_fixed; 4475 u64 left_len; 4476 u64 right_len; 4477 u64 left_gen; 4478 u64 right_gen; 4479 u8 left_type; 4480 u8 right_type; 4481 4482 path = alloc_path_for_send(); 4483 if (!path) 4484 return -ENOMEM; 4485 4486 eb = left_path->nodes[0]; 4487 slot = left_path->slots[0]; 4488 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 4489 left_type = btrfs_file_extent_type(eb, ei); 4490 4491 if (left_type != BTRFS_FILE_EXTENT_REG) { 4492 ret = 0; 4493 goto out; 4494 } 4495 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 4496 left_len = btrfs_file_extent_num_bytes(eb, ei); 4497 left_offset = btrfs_file_extent_offset(eb, ei); 4498 left_gen = btrfs_file_extent_generation(eb, ei); 4499 4500 /* 4501 * Following comments will refer to these graphics. L is the left 4502 * extents which we are checking at the moment. 1-8 are the right 4503 * extents that we iterate. 4504 * 4505 * |-----L-----| 4506 * |-1-|-2a-|-3-|-4-|-5-|-6-| 4507 * 4508 * |-----L-----| 4509 * |--1--|-2b-|...(same as above) 4510 * 4511 * Alternative situation. Happens on files where extents got split. 4512 * |-----L-----| 4513 * |-----------7-----------|-6-| 4514 * 4515 * Alternative situation. Happens on files which got larger. 4516 * |-----L-----| 4517 * |-8-| 4518 * Nothing follows after 8. 4519 */ 4520 4521 key.objectid = ekey->objectid; 4522 key.type = BTRFS_EXTENT_DATA_KEY; 4523 key.offset = ekey->offset; 4524 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 4525 if (ret < 0) 4526 goto out; 4527 if (ret) { 4528 ret = 0; 4529 goto out; 4530 } 4531 4532 /* 4533 * Handle special case where the right side has no extents at all. 4534 */ 4535 eb = path->nodes[0]; 4536 slot = path->slots[0]; 4537 btrfs_item_key_to_cpu(eb, &found_key, slot); 4538 if (found_key.objectid != key.objectid || 4539 found_key.type != key.type) { 4540 /* If we're a hole then just pretend nothing changed */ 4541 ret = (left_disknr) ? 0 : 1; 4542 goto out; 4543 } 4544 4545 /* 4546 * We're now on 2a, 2b or 7. 4547 */ 4548 key = found_key; 4549 while (key.offset < ekey->offset + left_len) { 4550 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 4551 right_type = btrfs_file_extent_type(eb, ei); 4552 if (right_type != BTRFS_FILE_EXTENT_REG) { 4553 ret = 0; 4554 goto out; 4555 } 4556 4557 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 4558 right_len = btrfs_file_extent_num_bytes(eb, ei); 4559 right_offset = btrfs_file_extent_offset(eb, ei); 4560 right_gen = btrfs_file_extent_generation(eb, ei); 4561 4562 /* 4563 * Are we at extent 8? If yes, we know the extent is changed. 4564 * This may only happen on the first iteration. 4565 */ 4566 if (found_key.offset + right_len <= ekey->offset) { 4567 /* If we're a hole just pretend nothing changed */ 4568 ret = (left_disknr) ? 0 : 1; 4569 goto out; 4570 } 4571 4572 left_offset_fixed = left_offset; 4573 if (key.offset < ekey->offset) { 4574 /* Fix the right offset for 2a and 7. */ 4575 right_offset += ekey->offset - key.offset; 4576 } else { 4577 /* Fix the left offset for all behind 2a and 2b */ 4578 left_offset_fixed += key.offset - ekey->offset; 4579 } 4580 4581 /* 4582 * Check if we have the same extent. 4583 */ 4584 if (left_disknr != right_disknr || 4585 left_offset_fixed != right_offset || 4586 left_gen != right_gen) { 4587 ret = 0; 4588 goto out; 4589 } 4590 4591 /* 4592 * Go to the next extent. 4593 */ 4594 ret = btrfs_next_item(sctx->parent_root, path); 4595 if (ret < 0) 4596 goto out; 4597 if (!ret) { 4598 eb = path->nodes[0]; 4599 slot = path->slots[0]; 4600 btrfs_item_key_to_cpu(eb, &found_key, slot); 4601 } 4602 if (ret || found_key.objectid != key.objectid || 4603 found_key.type != key.type) { 4604 key.offset += right_len; 4605 break; 4606 } 4607 if (found_key.offset != key.offset + right_len) { 4608 ret = 0; 4609 goto out; 4610 } 4611 key = found_key; 4612 } 4613 4614 /* 4615 * We're now behind the left extent (treat as unchanged) or at the end 4616 * of the right side (treat as changed). 4617 */ 4618 if (key.offset >= ekey->offset + left_len) 4619 ret = 1; 4620 else 4621 ret = 0; 4622 4623 4624out: 4625 btrfs_free_path(path); 4626 return ret; 4627} 4628 4629static int get_last_extent(struct send_ctx *sctx, u64 offset) 4630{ 4631 struct btrfs_path *path; 4632 struct btrfs_root *root = sctx->send_root; 4633 struct btrfs_file_extent_item *fi; 4634 struct btrfs_key key; 4635 u64 extent_end; 4636 u8 type; 4637 int ret; 4638 4639 path = alloc_path_for_send(); 4640 if (!path) 4641 return -ENOMEM; 4642 4643 sctx->cur_inode_last_extent = 0; 4644 4645 key.objectid = sctx->cur_ino; 4646 key.type = BTRFS_EXTENT_DATA_KEY; 4647 key.offset = offset; 4648 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 4649 if (ret < 0) 4650 goto out; 4651 ret = 0; 4652 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4653 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 4654 goto out; 4655 4656 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 4657 struct btrfs_file_extent_item); 4658 type = btrfs_file_extent_type(path->nodes[0], fi); 4659 if (type == BTRFS_FILE_EXTENT_INLINE) { 4660 u64 size = btrfs_file_extent_inline_len(path->nodes[0], 4661 path->slots[0], fi); 4662 extent_end = ALIGN(key.offset + size, 4663 sctx->send_root->sectorsize); 4664 } else { 4665 extent_end = key.offset + 4666 btrfs_file_extent_num_bytes(path->nodes[0], fi); 4667 } 4668 sctx->cur_inode_last_extent = extent_end; 4669out: 4670 btrfs_free_path(path); 4671 return ret; 4672} 4673 4674static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 4675 struct btrfs_key *key) 4676{ 4677 struct btrfs_file_extent_item *fi; 4678 u64 extent_end; 4679 u8 type; 4680 int ret = 0; 4681 4682 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 4683 return 0; 4684 4685 if (sctx->cur_inode_last_extent == (u64)-1) { 4686 ret = get_last_extent(sctx, key->offset - 1); 4687 if (ret) 4688 return ret; 4689 } 4690 4691 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 4692 struct btrfs_file_extent_item); 4693 type = btrfs_file_extent_type(path->nodes[0], fi); 4694 if (type == BTRFS_FILE_EXTENT_INLINE) { 4695 u64 size = btrfs_file_extent_inline_len(path->nodes[0], 4696 path->slots[0], fi); 4697 extent_end = ALIGN(key->offset + size, 4698 sctx->send_root->sectorsize); 4699 } else { 4700 extent_end = key->offset + 4701 btrfs_file_extent_num_bytes(path->nodes[0], fi); 4702 } 4703 4704 if (path->slots[0] == 0 && 4705 sctx->cur_inode_last_extent < key->offset) { 4706 /* 4707 * We might have skipped entire leafs that contained only 4708 * file extent items for our current inode. These leafs have 4709 * a generation number smaller (older) than the one in the 4710 * current leaf and the leaf our last extent came from, and 4711 * are located between these 2 leafs. 4712 */ 4713 ret = get_last_extent(sctx, key->offset - 1); 4714 if (ret) 4715 return ret; 4716 } 4717 4718 if (sctx->cur_inode_last_extent < key->offset) 4719 ret = send_hole(sctx, key->offset); 4720 sctx->cur_inode_last_extent = extent_end; 4721 return ret; 4722} 4723 4724static int process_extent(struct send_ctx *sctx, 4725 struct btrfs_path *path, 4726 struct btrfs_key *key) 4727{ 4728 struct clone_root *found_clone = NULL; 4729 int ret = 0; 4730 4731 if (S_ISLNK(sctx->cur_inode_mode)) 4732 return 0; 4733 4734 if (sctx->parent_root && !sctx->cur_inode_new) { 4735 ret = is_extent_unchanged(sctx, path, key); 4736 if (ret < 0) 4737 goto out; 4738 if (ret) { 4739 ret = 0; 4740 goto out_hole; 4741 } 4742 } else { 4743 struct btrfs_file_extent_item *ei; 4744 u8 type; 4745 4746 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 4747 struct btrfs_file_extent_item); 4748 type = btrfs_file_extent_type(path->nodes[0], ei); 4749 if (type == BTRFS_FILE_EXTENT_PREALLOC || 4750 type == BTRFS_FILE_EXTENT_REG) { 4751 /* 4752 * The send spec does not have a prealloc command yet, 4753 * so just leave a hole for prealloc'ed extents until 4754 * we have enough commands queued up to justify rev'ing 4755 * the send spec. 4756 */ 4757 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 4758 ret = 0; 4759 goto out; 4760 } 4761 4762 /* Have a hole, just skip it. */ 4763 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 4764 ret = 0; 4765 goto out; 4766 } 4767 } 4768 } 4769 4770 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 4771 sctx->cur_inode_size, &found_clone); 4772 if (ret != -ENOENT && ret < 0) 4773 goto out; 4774 4775 ret = send_write_or_clone(sctx, path, key, found_clone); 4776 if (ret) 4777 goto out; 4778out_hole: 4779 ret = maybe_send_hole(sctx, path, key); 4780out: 4781 return ret; 4782} 4783 4784static int process_all_extents(struct send_ctx *sctx) 4785{ 4786 int ret; 4787 struct btrfs_root *root; 4788 struct btrfs_path *path; 4789 struct btrfs_key key; 4790 struct btrfs_key found_key; 4791 struct extent_buffer *eb; 4792 int slot; 4793 4794 root = sctx->send_root; 4795 path = alloc_path_for_send(); 4796 if (!path) 4797 return -ENOMEM; 4798 4799 key.objectid = sctx->cmp_key->objectid; 4800 key.type = BTRFS_EXTENT_DATA_KEY; 4801 key.offset = 0; 4802 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4803 if (ret < 0) 4804 goto out; 4805 4806 while (1) { 4807 eb = path->nodes[0]; 4808 slot = path->slots[0]; 4809 4810 if (slot >= btrfs_header_nritems(eb)) { 4811 ret = btrfs_next_leaf(root, path); 4812 if (ret < 0) { 4813 goto out; 4814 } else if (ret > 0) { 4815 ret = 0; 4816 break; 4817 } 4818 continue; 4819 } 4820 4821 btrfs_item_key_to_cpu(eb, &found_key, slot); 4822 4823 if (found_key.objectid != key.objectid || 4824 found_key.type != key.type) { 4825 ret = 0; 4826 goto out; 4827 } 4828 4829 ret = process_extent(sctx, path, &found_key); 4830 if (ret < 0) 4831 goto out; 4832 4833 path->slots[0]++; 4834 } 4835 4836out: 4837 btrfs_free_path(path); 4838 return ret; 4839} 4840 4841static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 4842 int *pending_move, 4843 int *refs_processed) 4844{ 4845 int ret = 0; 4846 4847 if (sctx->cur_ino == 0) 4848 goto out; 4849 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 4850 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 4851 goto out; 4852 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 4853 goto out; 4854 4855 ret = process_recorded_refs(sctx, pending_move); 4856 if (ret < 0) 4857 goto out; 4858 4859 *refs_processed = 1; 4860out: 4861 return ret; 4862} 4863 4864static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 4865{ 4866 int ret = 0; 4867 u64 left_mode; 4868 u64 left_uid; 4869 u64 left_gid; 4870 u64 right_mode; 4871 u64 right_uid; 4872 u64 right_gid; 4873 int need_chmod = 0; 4874 int need_chown = 0; 4875 int pending_move = 0; 4876 int refs_processed = 0; 4877 4878 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 4879 &refs_processed); 4880 if (ret < 0) 4881 goto out; 4882 4883 /* 4884 * We have processed the refs and thus need to advance send_progress. 4885 * Now, calls to get_cur_xxx will take the updated refs of the current 4886 * inode into account. 4887 * 4888 * On the other hand, if our current inode is a directory and couldn't 4889 * be moved/renamed because its parent was renamed/moved too and it has 4890 * a higher inode number, we can only move/rename our current inode 4891 * after we moved/renamed its parent. Therefore in this case operate on 4892 * the old path (pre move/rename) of our current inode, and the 4893 * move/rename will be performed later. 4894 */ 4895 if (refs_processed && !pending_move) 4896 sctx->send_progress = sctx->cur_ino + 1; 4897 4898 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 4899 goto out; 4900 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 4901 goto out; 4902 4903 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 4904 &left_mode, &left_uid, &left_gid, NULL); 4905 if (ret < 0) 4906 goto out; 4907 4908 if (!sctx->parent_root || sctx->cur_inode_new) { 4909 need_chown = 1; 4910 if (!S_ISLNK(sctx->cur_inode_mode)) 4911 need_chmod = 1; 4912 } else { 4913 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 4914 NULL, NULL, &right_mode, &right_uid, 4915 &right_gid, NULL); 4916 if (ret < 0) 4917 goto out; 4918 4919 if (left_uid != right_uid || left_gid != right_gid) 4920 need_chown = 1; 4921 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 4922 need_chmod = 1; 4923 } 4924 4925 if (S_ISREG(sctx->cur_inode_mode)) { 4926 if (need_send_hole(sctx)) { 4927 if (sctx->cur_inode_last_extent == (u64)-1) { 4928 ret = get_last_extent(sctx, (u64)-1); 4929 if (ret) 4930 goto out; 4931 } 4932 if (sctx->cur_inode_last_extent < 4933 sctx->cur_inode_size) { 4934 ret = send_hole(sctx, sctx->cur_inode_size); 4935 if (ret) 4936 goto out; 4937 } 4938 } 4939 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4940 sctx->cur_inode_size); 4941 if (ret < 0) 4942 goto out; 4943 } 4944 4945 if (need_chown) { 4946 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4947 left_uid, left_gid); 4948 if (ret < 0) 4949 goto out; 4950 } 4951 if (need_chmod) { 4952 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4953 left_mode); 4954 if (ret < 0) 4955 goto out; 4956 } 4957 4958 /* 4959 * If other directory inodes depended on our current directory 4960 * inode's move/rename, now do their move/rename operations. 4961 */ 4962 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 4963 ret = apply_children_dir_moves(sctx); 4964 if (ret) 4965 goto out; 4966 } 4967 4968 /* 4969 * Need to send that every time, no matter if it actually 4970 * changed between the two trees as we have done changes to 4971 * the inode before. 4972 */ 4973 sctx->send_progress = sctx->cur_ino + 1; 4974 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 4975 if (ret < 0) 4976 goto out; 4977 4978out: 4979 return ret; 4980} 4981 4982static int changed_inode(struct send_ctx *sctx, 4983 enum btrfs_compare_tree_result result) 4984{ 4985 int ret = 0; 4986 struct btrfs_key *key = sctx->cmp_key; 4987 struct btrfs_inode_item *left_ii = NULL; 4988 struct btrfs_inode_item *right_ii = NULL; 4989 u64 left_gen = 0; 4990 u64 right_gen = 0; 4991 4992 sctx->cur_ino = key->objectid; 4993 sctx->cur_inode_new_gen = 0; 4994 sctx->cur_inode_last_extent = (u64)-1; 4995 4996 /* 4997 * Set send_progress to current inode. This will tell all get_cur_xxx 4998 * functions that the current inode's refs are not updated yet. Later, 4999 * when process_recorded_refs is finished, it is set to cur_ino + 1. 5000 */ 5001 sctx->send_progress = sctx->cur_ino; 5002 5003 if (result == BTRFS_COMPARE_TREE_NEW || 5004 result == BTRFS_COMPARE_TREE_CHANGED) { 5005 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 5006 sctx->left_path->slots[0], 5007 struct btrfs_inode_item); 5008 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 5009 left_ii); 5010 } else { 5011 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 5012 sctx->right_path->slots[0], 5013 struct btrfs_inode_item); 5014 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 5015 right_ii); 5016 } 5017 if (result == BTRFS_COMPARE_TREE_CHANGED) { 5018 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 5019 sctx->right_path->slots[0], 5020 struct btrfs_inode_item); 5021 5022 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 5023 right_ii); 5024 5025 /* 5026 * The cur_ino = root dir case is special here. We can't treat 5027 * the inode as deleted+reused because it would generate a 5028 * stream that tries to delete/mkdir the root dir. 5029 */ 5030 if (left_gen != right_gen && 5031 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 5032 sctx->cur_inode_new_gen = 1; 5033 } 5034 5035 if (result == BTRFS_COMPARE_TREE_NEW) { 5036 sctx->cur_inode_gen = left_gen; 5037 sctx->cur_inode_new = 1; 5038 sctx->cur_inode_deleted = 0; 5039 sctx->cur_inode_size = btrfs_inode_size( 5040 sctx->left_path->nodes[0], left_ii); 5041 sctx->cur_inode_mode = btrfs_inode_mode( 5042 sctx->left_path->nodes[0], left_ii); 5043 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 5044 ret = send_create_inode_if_needed(sctx); 5045 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 5046 sctx->cur_inode_gen = right_gen; 5047 sctx->cur_inode_new = 0; 5048 sctx->cur_inode_deleted = 1; 5049 sctx->cur_inode_size = btrfs_inode_size( 5050 sctx->right_path->nodes[0], right_ii); 5051 sctx->cur_inode_mode = btrfs_inode_mode( 5052 sctx->right_path->nodes[0], right_ii); 5053 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 5054 /* 5055 * We need to do some special handling in case the inode was 5056 * reported as changed with a changed generation number. This 5057 * means that the original inode was deleted and new inode 5058 * reused the same inum. So we have to treat the old inode as 5059 * deleted and the new one as new. 5060 */ 5061 if (sctx->cur_inode_new_gen) { 5062 /* 5063 * First, process the inode as if it was deleted. 5064 */ 5065 sctx->cur_inode_gen = right_gen; 5066 sctx->cur_inode_new = 0; 5067 sctx->cur_inode_deleted = 1; 5068 sctx->cur_inode_size = btrfs_inode_size( 5069 sctx->right_path->nodes[0], right_ii); 5070 sctx->cur_inode_mode = btrfs_inode_mode( 5071 sctx->right_path->nodes[0], right_ii); 5072 ret = process_all_refs(sctx, 5073 BTRFS_COMPARE_TREE_DELETED); 5074 if (ret < 0) 5075 goto out; 5076 5077 /* 5078 * Now process the inode as if it was new. 5079 */ 5080 sctx->cur_inode_gen = left_gen; 5081 sctx->cur_inode_new = 1; 5082 sctx->cur_inode_deleted = 0; 5083 sctx->cur_inode_size = btrfs_inode_size( 5084 sctx->left_path->nodes[0], left_ii); 5085 sctx->cur_inode_mode = btrfs_inode_mode( 5086 sctx->left_path->nodes[0], left_ii); 5087 ret = send_create_inode_if_needed(sctx); 5088 if (ret < 0) 5089 goto out; 5090 5091 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 5092 if (ret < 0) 5093 goto out; 5094 /* 5095 * Advance send_progress now as we did not get into 5096 * process_recorded_refs_if_needed in the new_gen case. 5097 */ 5098 sctx->send_progress = sctx->cur_ino + 1; 5099 5100 /* 5101 * Now process all extents and xattrs of the inode as if 5102 * they were all new. 5103 */ 5104 ret = process_all_extents(sctx); 5105 if (ret < 0) 5106 goto out; 5107 ret = process_all_new_xattrs(sctx); 5108 if (ret < 0) 5109 goto out; 5110 } else { 5111 sctx->cur_inode_gen = left_gen; 5112 sctx->cur_inode_new = 0; 5113 sctx->cur_inode_new_gen = 0; 5114 sctx->cur_inode_deleted = 0; 5115 sctx->cur_inode_size = btrfs_inode_size( 5116 sctx->left_path->nodes[0], left_ii); 5117 sctx->cur_inode_mode = btrfs_inode_mode( 5118 sctx->left_path->nodes[0], left_ii); 5119 } 5120 } 5121 5122out: 5123 return ret; 5124} 5125 5126/* 5127 * We have to process new refs before deleted refs, but compare_trees gives us 5128 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 5129 * first and later process them in process_recorded_refs. 5130 * For the cur_inode_new_gen case, we skip recording completely because 5131 * changed_inode did already initiate processing of refs. The reason for this is 5132 * that in this case, compare_tree actually compares the refs of 2 different 5133 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 5134 * refs of the right tree as deleted and all refs of the left tree as new. 5135 */ 5136static int changed_ref(struct send_ctx *sctx, 5137 enum btrfs_compare_tree_result result) 5138{ 5139 int ret = 0; 5140 5141 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 5142 5143 if (!sctx->cur_inode_new_gen && 5144 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 5145 if (result == BTRFS_COMPARE_TREE_NEW) 5146 ret = record_new_ref(sctx); 5147 else if (result == BTRFS_COMPARE_TREE_DELETED) 5148 ret = record_deleted_ref(sctx); 5149 else if (result == BTRFS_COMPARE_TREE_CHANGED) 5150 ret = record_changed_ref(sctx); 5151 } 5152 5153 return ret; 5154} 5155 5156/* 5157 * Process new/deleted/changed xattrs. We skip processing in the 5158 * cur_inode_new_gen case because changed_inode did already initiate processing 5159 * of xattrs. The reason is the same as in changed_ref 5160 */ 5161static int changed_xattr(struct send_ctx *sctx, 5162 enum btrfs_compare_tree_result result) 5163{ 5164 int ret = 0; 5165 5166 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 5167 5168 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 5169 if (result == BTRFS_COMPARE_TREE_NEW) 5170 ret = process_new_xattr(sctx); 5171 else if (result == BTRFS_COMPARE_TREE_DELETED) 5172 ret = process_deleted_xattr(sctx); 5173 else if (result == BTRFS_COMPARE_TREE_CHANGED) 5174 ret = process_changed_xattr(sctx); 5175 } 5176 5177 return ret; 5178} 5179 5180/* 5181 * Process new/deleted/changed extents. We skip processing in the 5182 * cur_inode_new_gen case because changed_inode did already initiate processing 5183 * of extents. The reason is the same as in changed_ref 5184 */ 5185static int changed_extent(struct send_ctx *sctx, 5186 enum btrfs_compare_tree_result result) 5187{ 5188 int ret = 0; 5189 5190 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 5191 5192 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 5193 if (result != BTRFS_COMPARE_TREE_DELETED) 5194 ret = process_extent(sctx, sctx->left_path, 5195 sctx->cmp_key); 5196 } 5197 5198 return ret; 5199} 5200 5201static int dir_changed(struct send_ctx *sctx, u64 dir) 5202{ 5203 u64 orig_gen, new_gen; 5204 int ret; 5205 5206 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 5207 NULL, NULL); 5208 if (ret) 5209 return ret; 5210 5211 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 5212 NULL, NULL, NULL); 5213 if (ret) 5214 return ret; 5215 5216 return (orig_gen != new_gen) ? 1 : 0; 5217} 5218 5219static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 5220 struct btrfs_key *key) 5221{ 5222 struct btrfs_inode_extref *extref; 5223 struct extent_buffer *leaf; 5224 u64 dirid = 0, last_dirid = 0; 5225 unsigned long ptr; 5226 u32 item_size; 5227 u32 cur_offset = 0; 5228 int ref_name_len; 5229 int ret = 0; 5230 5231 /* Easy case, just check this one dirid */ 5232 if (key->type == BTRFS_INODE_REF_KEY) { 5233 dirid = key->offset; 5234 5235 ret = dir_changed(sctx, dirid); 5236 goto out; 5237 } 5238 5239 leaf = path->nodes[0]; 5240 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 5241 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 5242 while (cur_offset < item_size) { 5243 extref = (struct btrfs_inode_extref *)(ptr + 5244 cur_offset); 5245 dirid = btrfs_inode_extref_parent(leaf, extref); 5246 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 5247 cur_offset += ref_name_len + sizeof(*extref); 5248 if (dirid == last_dirid) 5249 continue; 5250 ret = dir_changed(sctx, dirid); 5251 if (ret) 5252 break; 5253 last_dirid = dirid; 5254 } 5255out: 5256 return ret; 5257} 5258 5259/* 5260 * Updates compare related fields in sctx and simply forwards to the actual 5261 * changed_xxx functions. 5262 */ 5263static int changed_cb(struct btrfs_root *left_root, 5264 struct btrfs_root *right_root, 5265 struct btrfs_path *left_path, 5266 struct btrfs_path *right_path, 5267 struct btrfs_key *key, 5268 enum btrfs_compare_tree_result result, 5269 void *ctx) 5270{ 5271 int ret = 0; 5272 struct send_ctx *sctx = ctx; 5273 5274 if (result == BTRFS_COMPARE_TREE_SAME) { 5275 if (key->type == BTRFS_INODE_REF_KEY || 5276 key->type == BTRFS_INODE_EXTREF_KEY) { 5277 ret = compare_refs(sctx, left_path, key); 5278 if (!ret) 5279 return 0; 5280 if (ret < 0) 5281 return ret; 5282 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 5283 return maybe_send_hole(sctx, left_path, key); 5284 } else { 5285 return 0; 5286 } 5287 result = BTRFS_COMPARE_TREE_CHANGED; 5288 ret = 0; 5289 } 5290 5291 sctx->left_path = left_path; 5292 sctx->right_path = right_path; 5293 sctx->cmp_key = key; 5294 5295 ret = finish_inode_if_needed(sctx, 0); 5296 if (ret < 0) 5297 goto out; 5298 5299 /* Ignore non-FS objects */ 5300 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 5301 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 5302 goto out; 5303 5304 if (key->type == BTRFS_INODE_ITEM_KEY) 5305 ret = changed_inode(sctx, result); 5306 else if (key->type == BTRFS_INODE_REF_KEY || 5307 key->type == BTRFS_INODE_EXTREF_KEY) 5308 ret = changed_ref(sctx, result); 5309 else if (key->type == BTRFS_XATTR_ITEM_KEY) 5310 ret = changed_xattr(sctx, result); 5311 else if (key->type == BTRFS_EXTENT_DATA_KEY) 5312 ret = changed_extent(sctx, result); 5313 5314out: 5315 return ret; 5316} 5317 5318static int full_send_tree(struct send_ctx *sctx) 5319{ 5320 int ret; 5321 struct btrfs_trans_handle *trans = NULL; 5322 struct btrfs_root *send_root = sctx->send_root; 5323 struct btrfs_key key; 5324 struct btrfs_key found_key; 5325 struct btrfs_path *path; 5326 struct extent_buffer *eb; 5327 int slot; 5328 u64 start_ctransid; 5329 u64 ctransid; 5330 5331 path = alloc_path_for_send(); 5332 if (!path) 5333 return -ENOMEM; 5334 5335 spin_lock(&send_root->root_item_lock); 5336 start_ctransid = btrfs_root_ctransid(&send_root->root_item); 5337 spin_unlock(&send_root->root_item_lock); 5338 5339 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 5340 key.type = BTRFS_INODE_ITEM_KEY; 5341 key.offset = 0; 5342 5343join_trans: 5344 /* 5345 * We need to make sure the transaction does not get committed 5346 * while we do anything on commit roots. Join a transaction to prevent 5347 * this. 5348 */ 5349 trans = btrfs_join_transaction(send_root); 5350 if (IS_ERR(trans)) { 5351 ret = PTR_ERR(trans); 5352 trans = NULL; 5353 goto out; 5354 } 5355 5356 /* 5357 * Make sure the tree has not changed after re-joining. We detect this 5358 * by comparing start_ctransid and ctransid. They should always match. 5359 */ 5360 spin_lock(&send_root->root_item_lock); 5361 ctransid = btrfs_root_ctransid(&send_root->root_item); 5362 spin_unlock(&send_root->root_item_lock); 5363 5364 if (ctransid != start_ctransid) { 5365 WARN(1, KERN_WARNING "BTRFS: the root that you're trying to " 5366 "send was modified in between. This is " 5367 "probably a bug.\n"); 5368 ret = -EIO; 5369 goto out; 5370 } 5371 5372 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 5373 if (ret < 0) 5374 goto out; 5375 if (ret) 5376 goto out_finish; 5377 5378 while (1) { 5379 /* 5380 * When someone want to commit while we iterate, end the 5381 * joined transaction and rejoin. 5382 */ 5383 if (btrfs_should_end_transaction(trans, send_root)) { 5384 ret = btrfs_end_transaction(trans, send_root); 5385 trans = NULL; 5386 if (ret < 0) 5387 goto out; 5388 btrfs_release_path(path); 5389 goto join_trans; 5390 } 5391 5392 eb = path->nodes[0]; 5393 slot = path->slots[0]; 5394 btrfs_item_key_to_cpu(eb, &found_key, slot); 5395 5396 ret = changed_cb(send_root, NULL, path, NULL, 5397 &found_key, BTRFS_COMPARE_TREE_NEW, sctx); 5398 if (ret < 0) 5399 goto out; 5400 5401 key.objectid = found_key.objectid; 5402 key.type = found_key.type; 5403 key.offset = found_key.offset + 1; 5404 5405 ret = btrfs_next_item(send_root, path); 5406 if (ret < 0) 5407 goto out; 5408 if (ret) { 5409 ret = 0; 5410 break; 5411 } 5412 } 5413 5414out_finish: 5415 ret = finish_inode_if_needed(sctx, 1); 5416 5417out: 5418 btrfs_free_path(path); 5419 if (trans) { 5420 if (!ret) 5421 ret = btrfs_end_transaction(trans, send_root); 5422 else 5423 btrfs_end_transaction(trans, send_root); 5424 } 5425 return ret; 5426} 5427 5428static int send_subvol(struct send_ctx *sctx) 5429{ 5430 int ret; 5431 5432 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 5433 ret = send_header(sctx); 5434 if (ret < 0) 5435 goto out; 5436 } 5437 5438 ret = send_subvol_begin(sctx); 5439 if (ret < 0) 5440 goto out; 5441 5442 if (sctx->parent_root) { 5443 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, 5444 changed_cb, sctx); 5445 if (ret < 0) 5446 goto out; 5447 ret = finish_inode_if_needed(sctx, 1); 5448 if (ret < 0) 5449 goto out; 5450 } else { 5451 ret = full_send_tree(sctx); 5452 if (ret < 0) 5453 goto out; 5454 } 5455 5456out: 5457 free_recorded_refs(sctx); 5458 return ret; 5459} 5460 5461static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 5462{ 5463 spin_lock(&root->root_item_lock); 5464 root->send_in_progress--; 5465 /* 5466 * Not much left to do, we don't know why it's unbalanced and 5467 * can't blindly reset it to 0. 5468 */ 5469 if (root->send_in_progress < 0) 5470 btrfs_err(root->fs_info, 5471 "send_in_progres unbalanced %d root %llu\n", 5472 root->send_in_progress, root->root_key.objectid); 5473 spin_unlock(&root->root_item_lock); 5474} 5475 5476long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_) 5477{ 5478 int ret = 0; 5479 struct btrfs_root *send_root; 5480 struct btrfs_root *clone_root; 5481 struct btrfs_fs_info *fs_info; 5482 struct btrfs_ioctl_send_args *arg = NULL; 5483 struct btrfs_key key; 5484 struct send_ctx *sctx = NULL; 5485 u32 i; 5486 u64 *clone_sources_tmp = NULL; 5487 int clone_sources_to_rollback = 0; 5488 int sort_clone_roots = 0; 5489 int index; 5490 5491 if (!capable(CAP_SYS_ADMIN)) 5492 return -EPERM; 5493 5494 send_root = BTRFS_I(file_inode(mnt_file))->root; 5495 fs_info = send_root->fs_info; 5496 5497 /* 5498 * The subvolume must remain read-only during send, protect against 5499 * making it RW. 5500 */ 5501 spin_lock(&send_root->root_item_lock); 5502 send_root->send_in_progress++; 5503 spin_unlock(&send_root->root_item_lock); 5504 5505 /* 5506 * This is done when we lookup the root, it should already be complete 5507 * by the time we get here. 5508 */ 5509 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE); 5510 5511 /* 5512 * Userspace tools do the checks and warn the user if it's 5513 * not RO. 5514 */ 5515 if (!btrfs_root_readonly(send_root)) { 5516 ret = -EPERM; 5517 goto out; 5518 } 5519 5520 arg = memdup_user(arg_, sizeof(*arg)); 5521 if (IS_ERR(arg)) { 5522 ret = PTR_ERR(arg); 5523 arg = NULL; 5524 goto out; 5525 } 5526 5527 if (!access_ok(VERIFY_READ, arg->clone_sources, 5528 sizeof(*arg->clone_sources) * 5529 arg->clone_sources_count)) { 5530 ret = -EFAULT; 5531 goto out; 5532 } 5533 5534 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 5535 ret = -EINVAL; 5536 goto out; 5537 } 5538 5539 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS); 5540 if (!sctx) { 5541 ret = -ENOMEM; 5542 goto out; 5543 } 5544 5545 INIT_LIST_HEAD(&sctx->new_refs); 5546 INIT_LIST_HEAD(&sctx->deleted_refs); 5547 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS); 5548 INIT_LIST_HEAD(&sctx->name_cache_list); 5549 5550 sctx->flags = arg->flags; 5551 5552 sctx->send_filp = fget(arg->send_fd); 5553 if (!sctx->send_filp) { 5554 ret = -EBADF; 5555 goto out; 5556 } 5557 5558 sctx->send_root = send_root; 5559 sctx->clone_roots_cnt = arg->clone_sources_count; 5560 5561 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 5562 sctx->send_buf = vmalloc(sctx->send_max_size); 5563 if (!sctx->send_buf) { 5564 ret = -ENOMEM; 5565 goto out; 5566 } 5567 5568 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE); 5569 if (!sctx->read_buf) { 5570 ret = -ENOMEM; 5571 goto out; 5572 } 5573 5574 sctx->pending_dir_moves = RB_ROOT; 5575 sctx->waiting_dir_moves = RB_ROOT; 5576 sctx->orphan_dirs = RB_ROOT; 5577 5578 sctx->clone_roots = vzalloc(sizeof(struct clone_root) * 5579 (arg->clone_sources_count + 1)); 5580 if (!sctx->clone_roots) { 5581 ret = -ENOMEM; 5582 goto out; 5583 } 5584 5585 if (arg->clone_sources_count) { 5586 clone_sources_tmp = vmalloc(arg->clone_sources_count * 5587 sizeof(*arg->clone_sources)); 5588 if (!clone_sources_tmp) { 5589 ret = -ENOMEM; 5590 goto out; 5591 } 5592 5593 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 5594 arg->clone_sources_count * 5595 sizeof(*arg->clone_sources)); 5596 if (ret) { 5597 ret = -EFAULT; 5598 goto out; 5599 } 5600 5601 for (i = 0; i < arg->clone_sources_count; i++) { 5602 key.objectid = clone_sources_tmp[i]; 5603 key.type = BTRFS_ROOT_ITEM_KEY; 5604 key.offset = (u64)-1; 5605 5606 index = srcu_read_lock(&fs_info->subvol_srcu); 5607 5608 clone_root = btrfs_read_fs_root_no_name(fs_info, &key); 5609 if (IS_ERR(clone_root)) { 5610 srcu_read_unlock(&fs_info->subvol_srcu, index); 5611 ret = PTR_ERR(clone_root); 5612 goto out; 5613 } 5614 clone_sources_to_rollback = i + 1; 5615 spin_lock(&clone_root->root_item_lock); 5616 clone_root->send_in_progress++; 5617 if (!btrfs_root_readonly(clone_root)) { 5618 spin_unlock(&clone_root->root_item_lock); 5619 srcu_read_unlock(&fs_info->subvol_srcu, index); 5620 ret = -EPERM; 5621 goto out; 5622 } 5623 spin_unlock(&clone_root->root_item_lock); 5624 srcu_read_unlock(&fs_info->subvol_srcu, index); 5625 5626 sctx->clone_roots[i].root = clone_root; 5627 } 5628 vfree(clone_sources_tmp); 5629 clone_sources_tmp = NULL; 5630 } 5631 5632 if (arg->parent_root) { 5633 key.objectid = arg->parent_root; 5634 key.type = BTRFS_ROOT_ITEM_KEY; 5635 key.offset = (u64)-1; 5636 5637 index = srcu_read_lock(&fs_info->subvol_srcu); 5638 5639 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key); 5640 if (IS_ERR(sctx->parent_root)) { 5641 srcu_read_unlock(&fs_info->subvol_srcu, index); 5642 ret = PTR_ERR(sctx->parent_root); 5643 goto out; 5644 } 5645 5646 spin_lock(&sctx->parent_root->root_item_lock); 5647 sctx->parent_root->send_in_progress++; 5648 if (!btrfs_root_readonly(sctx->parent_root)) { 5649 spin_unlock(&sctx->parent_root->root_item_lock); 5650 srcu_read_unlock(&fs_info->subvol_srcu, index); 5651 ret = -EPERM; 5652 goto out; 5653 } 5654 spin_unlock(&sctx->parent_root->root_item_lock); 5655 5656 srcu_read_unlock(&fs_info->subvol_srcu, index); 5657 } 5658 5659 /* 5660 * Clones from send_root are allowed, but only if the clone source 5661 * is behind the current send position. This is checked while searching 5662 * for possible clone sources. 5663 */ 5664 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root; 5665 5666 /* We do a bsearch later */ 5667 sort(sctx->clone_roots, sctx->clone_roots_cnt, 5668 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 5669 NULL); 5670 sort_clone_roots = 1; 5671 5672 ret = send_subvol(sctx); 5673 if (ret < 0) 5674 goto out; 5675 5676 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 5677 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 5678 if (ret < 0) 5679 goto out; 5680 ret = send_cmd(sctx); 5681 if (ret < 0) 5682 goto out; 5683 } 5684 5685out: 5686 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 5687 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 5688 struct rb_node *n; 5689 struct pending_dir_move *pm; 5690 5691 n = rb_first(&sctx->pending_dir_moves); 5692 pm = rb_entry(n, struct pending_dir_move, node); 5693 while (!list_empty(&pm->list)) { 5694 struct pending_dir_move *pm2; 5695 5696 pm2 = list_first_entry(&pm->list, 5697 struct pending_dir_move, list); 5698 free_pending_move(sctx, pm2); 5699 } 5700 free_pending_move(sctx, pm); 5701 } 5702 5703 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 5704 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 5705 struct rb_node *n; 5706 struct waiting_dir_move *dm; 5707 5708 n = rb_first(&sctx->waiting_dir_moves); 5709 dm = rb_entry(n, struct waiting_dir_move, node); 5710 rb_erase(&dm->node, &sctx->waiting_dir_moves); 5711 kfree(dm); 5712 } 5713 5714 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 5715 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 5716 struct rb_node *n; 5717 struct orphan_dir_info *odi; 5718 5719 n = rb_first(&sctx->orphan_dirs); 5720 odi = rb_entry(n, struct orphan_dir_info, node); 5721 free_orphan_dir_info(sctx, odi); 5722 } 5723 5724 if (sort_clone_roots) { 5725 for (i = 0; i < sctx->clone_roots_cnt; i++) 5726 btrfs_root_dec_send_in_progress( 5727 sctx->clone_roots[i].root); 5728 } else { 5729 for (i = 0; sctx && i < clone_sources_to_rollback; i++) 5730 btrfs_root_dec_send_in_progress( 5731 sctx->clone_roots[i].root); 5732 5733 btrfs_root_dec_send_in_progress(send_root); 5734 } 5735 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) 5736 btrfs_root_dec_send_in_progress(sctx->parent_root); 5737 5738 kfree(arg); 5739 vfree(clone_sources_tmp); 5740 5741 if (sctx) { 5742 if (sctx->send_filp) 5743 fput(sctx->send_filp); 5744 5745 vfree(sctx->clone_roots); 5746 vfree(sctx->send_buf); 5747 vfree(sctx->read_buf); 5748 5749 name_cache_free(sctx); 5750 5751 kfree(sctx); 5752 } 5753 5754 return ret; 5755} 5756