extents.c revision 09b882520bbe01f2e5044642109c1c1d19fe3559
1/*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 *   Copyright (c) 2005, Bull S.A.
7 *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21 */
22
23/*
24 * Extents support for EXT4
25 *
26 * TODO:
27 *   - ext4*_error() should be used in some situations
28 *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 *   - smart tree reduction
30 */
31
32#include <linux/module.h>
33#include <linux/fs.h>
34#include <linux/time.h>
35#include <linux/ext4_jbd2.h>
36#include <linux/jbd.h>
37#include <linux/smp_lock.h>
38#include <linux/highuid.h>
39#include <linux/pagemap.h>
40#include <linux/quotaops.h>
41#include <linux/string.h>
42#include <linux/slab.h>
43#include <linux/ext4_fs_extents.h>
44#include <asm/uaccess.h>
45
46
47/*
48 * ext_pblock:
49 * combine low and high parts of physical block number into ext4_fsblk_t
50 */
51static ext4_fsblk_t ext_pblock(struct ext4_extent *ex)
52{
53	ext4_fsblk_t block;
54
55	block = le32_to_cpu(ex->ee_start);
56	block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
57	return block;
58}
59
60/*
61 * idx_pblock:
62 * combine low and high parts of a leaf physical block number into ext4_fsblk_t
63 */
64static ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix)
65{
66	ext4_fsblk_t block;
67
68	block = le32_to_cpu(ix->ei_leaf);
69	block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
70	return block;
71}
72
73/*
74 * ext4_ext_store_pblock:
75 * stores a large physical block number into an extent struct,
76 * breaking it into parts
77 */
78static void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb)
79{
80	ex->ee_start = cpu_to_le32((unsigned long) (pb & 0xffffffff));
81	ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
82}
83
84/*
85 * ext4_idx_store_pblock:
86 * stores a large physical block number into an index struct,
87 * breaking it into parts
88 */
89static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb)
90{
91	ix->ei_leaf = cpu_to_le32((unsigned long) (pb & 0xffffffff));
92	ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
93}
94
95static int ext4_ext_check_header(const char *function, struct inode *inode,
96				struct ext4_extent_header *eh)
97{
98	const char *error_msg = NULL;
99
100	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
101		error_msg = "invalid magic";
102		goto corrupted;
103	}
104	if (unlikely(eh->eh_max == 0)) {
105		error_msg = "invalid eh_max";
106		goto corrupted;
107	}
108	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
109		error_msg = "invalid eh_entries";
110		goto corrupted;
111	}
112	return 0;
113
114corrupted:
115	ext4_error(inode->i_sb, function,
116			"bad header in inode #%lu: %s - magic %x, "
117			"entries %u, max %u, depth %u",
118			inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic),
119			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
120			le16_to_cpu(eh->eh_depth));
121
122	return -EIO;
123}
124
125static handle_t *ext4_ext_journal_restart(handle_t *handle, int needed)
126{
127	int err;
128
129	if (handle->h_buffer_credits > needed)
130		return handle;
131	if (!ext4_journal_extend(handle, needed))
132		return handle;
133	err = ext4_journal_restart(handle, needed);
134
135	return handle;
136}
137
138/*
139 * could return:
140 *  - EROFS
141 *  - ENOMEM
142 */
143static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
144				struct ext4_ext_path *path)
145{
146	if (path->p_bh) {
147		/* path points to block */
148		return ext4_journal_get_write_access(handle, path->p_bh);
149	}
150	/* path points to leaf/index in inode body */
151	/* we use in-core data, no need to protect them */
152	return 0;
153}
154
155/*
156 * could return:
157 *  - EROFS
158 *  - ENOMEM
159 *  - EIO
160 */
161static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
162				struct ext4_ext_path *path)
163{
164	int err;
165	if (path->p_bh) {
166		/* path points to block */
167		err = ext4_journal_dirty_metadata(handle, path->p_bh);
168	} else {
169		/* path points to leaf/index in inode body */
170		err = ext4_mark_inode_dirty(handle, inode);
171	}
172	return err;
173}
174
175static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
176			      struct ext4_ext_path *path,
177			      ext4_fsblk_t block)
178{
179	struct ext4_inode_info *ei = EXT4_I(inode);
180	ext4_fsblk_t bg_start;
181	ext4_grpblk_t colour;
182	int depth;
183
184	if (path) {
185		struct ext4_extent *ex;
186		depth = path->p_depth;
187
188		/* try to predict block placement */
189		ex = path[depth].p_ext;
190		if (ex)
191			return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block));
192
193		/* it looks like index is empty;
194		 * try to find starting block from index itself */
195		if (path[depth].p_bh)
196			return path[depth].p_bh->b_blocknr;
197	}
198
199	/* OK. use inode's group */
200	bg_start = (ei->i_block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) +
201		le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block);
202	colour = (current->pid % 16) *
203			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
204	return bg_start + colour + block;
205}
206
207static ext4_fsblk_t
208ext4_ext_new_block(handle_t *handle, struct inode *inode,
209			struct ext4_ext_path *path,
210			struct ext4_extent *ex, int *err)
211{
212	ext4_fsblk_t goal, newblock;
213
214	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
215	newblock = ext4_new_block(handle, inode, goal, err);
216	return newblock;
217}
218
219static int ext4_ext_space_block(struct inode *inode)
220{
221	int size;
222
223	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
224			/ sizeof(struct ext4_extent);
225#ifdef AGRESSIVE_TEST
226	if (size > 6)
227		size = 6;
228#endif
229	return size;
230}
231
232static int ext4_ext_space_block_idx(struct inode *inode)
233{
234	int size;
235
236	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
237			/ sizeof(struct ext4_extent_idx);
238#ifdef AGRESSIVE_TEST
239	if (size > 5)
240		size = 5;
241#endif
242	return size;
243}
244
245static int ext4_ext_space_root(struct inode *inode)
246{
247	int size;
248
249	size = sizeof(EXT4_I(inode)->i_data);
250	size -= sizeof(struct ext4_extent_header);
251	size /= sizeof(struct ext4_extent);
252#ifdef AGRESSIVE_TEST
253	if (size > 3)
254		size = 3;
255#endif
256	return size;
257}
258
259static int ext4_ext_space_root_idx(struct inode *inode)
260{
261	int size;
262
263	size = sizeof(EXT4_I(inode)->i_data);
264	size -= sizeof(struct ext4_extent_header);
265	size /= sizeof(struct ext4_extent_idx);
266#ifdef AGRESSIVE_TEST
267	if (size > 4)
268		size = 4;
269#endif
270	return size;
271}
272
273#ifdef EXT_DEBUG
274static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
275{
276	int k, l = path->p_depth;
277
278	ext_debug("path:");
279	for (k = 0; k <= l; k++, path++) {
280		if (path->p_idx) {
281		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
282			    idx_pblock(path->p_idx));
283		} else if (path->p_ext) {
284			ext_debug("  %d:%d:%llu ",
285				  le32_to_cpu(path->p_ext->ee_block),
286				  le16_to_cpu(path->p_ext->ee_len),
287				  ext_pblock(path->p_ext));
288		} else
289			ext_debug("  []");
290	}
291	ext_debug("\n");
292}
293
294static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
295{
296	int depth = ext_depth(inode);
297	struct ext4_extent_header *eh;
298	struct ext4_extent *ex;
299	int i;
300
301	if (!path)
302		return;
303
304	eh = path[depth].p_hdr;
305	ex = EXT_FIRST_EXTENT(eh);
306
307	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
308		ext_debug("%d:%d:%llu ", le32_to_cpu(ex->ee_block),
309			  le16_to_cpu(ex->ee_len), ext_pblock(ex));
310	}
311	ext_debug("\n");
312}
313#else
314#define ext4_ext_show_path(inode,path)
315#define ext4_ext_show_leaf(inode,path)
316#endif
317
318static void ext4_ext_drop_refs(struct ext4_ext_path *path)
319{
320	int depth = path->p_depth;
321	int i;
322
323	for (i = 0; i <= depth; i++, path++)
324		if (path->p_bh) {
325			brelse(path->p_bh);
326			path->p_bh = NULL;
327		}
328}
329
330/*
331 * ext4_ext_binsearch_idx:
332 * binary search for the closest index of the given block
333 */
334static void
335ext4_ext_binsearch_idx(struct inode *inode, struct ext4_ext_path *path, int block)
336{
337	struct ext4_extent_header *eh = path->p_hdr;
338	struct ext4_extent_idx *r, *l, *m;
339
340	BUG_ON(eh->eh_magic != EXT4_EXT_MAGIC);
341	BUG_ON(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max));
342	BUG_ON(le16_to_cpu(eh->eh_entries) <= 0);
343
344	ext_debug("binsearch for %d(idx):  ", block);
345
346	l = EXT_FIRST_INDEX(eh) + 1;
347	r = EXT_FIRST_INDEX(eh) + le16_to_cpu(eh->eh_entries) - 1;
348	while (l <= r) {
349		m = l + (r - l) / 2;
350		if (block < le32_to_cpu(m->ei_block))
351			r = m - 1;
352		else
353			l = m + 1;
354		ext_debug("%p(%u):%p(%u):%p(%u) ", l, l->ei_block,
355				m, m->ei_block, r, r->ei_block);
356	}
357
358	path->p_idx = l - 1;
359	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
360		  idx_block(path->p_idx));
361
362#ifdef CHECK_BINSEARCH
363	{
364		struct ext4_extent_idx *chix, *ix;
365		int k;
366
367		chix = ix = EXT_FIRST_INDEX(eh);
368		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
369		  if (k != 0 &&
370		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
371				printk("k=%d, ix=0x%p, first=0x%p\n", k,
372					ix, EXT_FIRST_INDEX(eh));
373				printk("%u <= %u\n",
374				       le32_to_cpu(ix->ei_block),
375				       le32_to_cpu(ix[-1].ei_block));
376			}
377			BUG_ON(k && le32_to_cpu(ix->ei_block)
378				           <= le32_to_cpu(ix[-1].ei_block));
379			if (block < le32_to_cpu(ix->ei_block))
380				break;
381			chix = ix;
382		}
383		BUG_ON(chix != path->p_idx);
384	}
385#endif
386
387}
388
389/*
390 * ext4_ext_binsearch:
391 * binary search for closest extent of the given block
392 */
393static void
394ext4_ext_binsearch(struct inode *inode, struct ext4_ext_path *path, int block)
395{
396	struct ext4_extent_header *eh = path->p_hdr;
397	struct ext4_extent *r, *l, *m;
398
399	BUG_ON(eh->eh_magic != EXT4_EXT_MAGIC);
400	BUG_ON(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max));
401
402	if (eh->eh_entries == 0) {
403		/*
404		 * this leaf is empty:
405		 * we get such a leaf in split/add case
406		 */
407		return;
408	}
409
410	ext_debug("binsearch for %d:  ", block);
411
412	l = EXT_FIRST_EXTENT(eh) + 1;
413	r = EXT_FIRST_EXTENT(eh) + le16_to_cpu(eh->eh_entries) - 1;
414
415	while (l <= r) {
416		m = l + (r - l) / 2;
417		if (block < le32_to_cpu(m->ee_block))
418			r = m - 1;
419		else
420			l = m + 1;
421		ext_debug("%p(%u):%p(%u):%p(%u) ", l, l->ee_block,
422				m, m->ee_block, r, r->ee_block);
423	}
424
425	path->p_ext = l - 1;
426	ext_debug("  -> %d:%llu:%d ",
427		        le32_to_cpu(path->p_ext->ee_block),
428		        ext_pblock(path->p_ext),
429			le16_to_cpu(path->p_ext->ee_len));
430
431#ifdef CHECK_BINSEARCH
432	{
433		struct ext4_extent *chex, *ex;
434		int k;
435
436		chex = ex = EXT_FIRST_EXTENT(eh);
437		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
438			BUG_ON(k && le32_to_cpu(ex->ee_block)
439				          <= le32_to_cpu(ex[-1].ee_block));
440			if (block < le32_to_cpu(ex->ee_block))
441				break;
442			chex = ex;
443		}
444		BUG_ON(chex != path->p_ext);
445	}
446#endif
447
448}
449
450int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
451{
452	struct ext4_extent_header *eh;
453
454	eh = ext_inode_hdr(inode);
455	eh->eh_depth = 0;
456	eh->eh_entries = 0;
457	eh->eh_magic = EXT4_EXT_MAGIC;
458	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode));
459	ext4_mark_inode_dirty(handle, inode);
460	ext4_ext_invalidate_cache(inode);
461	return 0;
462}
463
464struct ext4_ext_path *
465ext4_ext_find_extent(struct inode *inode, int block, struct ext4_ext_path *path)
466{
467	struct ext4_extent_header *eh;
468	struct buffer_head *bh;
469	short int depth, i, ppos = 0, alloc = 0;
470
471	eh = ext_inode_hdr(inode);
472	BUG_ON(eh == NULL);
473	if (ext4_ext_check_header(__FUNCTION__, inode, eh))
474		return ERR_PTR(-EIO);
475
476	i = depth = ext_depth(inode);
477
478	/* account possible depth increase */
479	if (!path) {
480		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
481				GFP_NOFS);
482		if (!path)
483			return ERR_PTR(-ENOMEM);
484		alloc = 1;
485	}
486	path[0].p_hdr = eh;
487
488	/* walk through the tree */
489	while (i) {
490		ext_debug("depth %d: num %d, max %d\n",
491			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
492		ext4_ext_binsearch_idx(inode, path + ppos, block);
493		path[ppos].p_block = idx_pblock(path[ppos].p_idx);
494		path[ppos].p_depth = i;
495		path[ppos].p_ext = NULL;
496
497		bh = sb_bread(inode->i_sb, path[ppos].p_block);
498		if (!bh)
499			goto err;
500
501		eh = ext_block_hdr(bh);
502		ppos++;
503		BUG_ON(ppos > depth);
504		path[ppos].p_bh = bh;
505		path[ppos].p_hdr = eh;
506		i--;
507
508		if (ext4_ext_check_header(__FUNCTION__, inode, eh))
509			goto err;
510	}
511
512	path[ppos].p_depth = i;
513	path[ppos].p_hdr = eh;
514	path[ppos].p_ext = NULL;
515	path[ppos].p_idx = NULL;
516
517	if (ext4_ext_check_header(__FUNCTION__, inode, eh))
518		goto err;
519
520	/* find extent */
521	ext4_ext_binsearch(inode, path + ppos, block);
522
523	ext4_ext_show_path(inode, path);
524
525	return path;
526
527err:
528	ext4_ext_drop_refs(path);
529	if (alloc)
530		kfree(path);
531	return ERR_PTR(-EIO);
532}
533
534/*
535 * ext4_ext_insert_index:
536 * insert new index [@logical;@ptr] into the block at @curp;
537 * check where to insert: before @curp or after @curp
538 */
539static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
540				struct ext4_ext_path *curp,
541				int logical, ext4_fsblk_t ptr)
542{
543	struct ext4_extent_idx *ix;
544	int len, err;
545
546	err = ext4_ext_get_access(handle, inode, curp);
547	if (err)
548		return err;
549
550	BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block));
551	len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
552	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
553		/* insert after */
554		if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
555			len = (len - 1) * sizeof(struct ext4_extent_idx);
556			len = len < 0 ? 0 : len;
557			ext_debug("insert new index %d after: %d. "
558					"move %d from 0x%p to 0x%p\n",
559					logical, ptr, len,
560					(curp->p_idx + 1), (curp->p_idx + 2));
561			memmove(curp->p_idx + 2, curp->p_idx + 1, len);
562		}
563		ix = curp->p_idx + 1;
564	} else {
565		/* insert before */
566		len = len * sizeof(struct ext4_extent_idx);
567		len = len < 0 ? 0 : len;
568		ext_debug("insert new index %d before: %d. "
569				"move %d from 0x%p to 0x%p\n",
570				logical, ptr, len,
571				curp->p_idx, (curp->p_idx + 1));
572		memmove(curp->p_idx + 1, curp->p_idx, len);
573		ix = curp->p_idx;
574	}
575
576	ix->ei_block = cpu_to_le32(logical);
577	ext4_idx_store_pblock(ix, ptr);
578	curp->p_hdr->eh_entries = cpu_to_le16(le16_to_cpu(curp->p_hdr->eh_entries)+1);
579
580	BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries)
581	                     > le16_to_cpu(curp->p_hdr->eh_max));
582	BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr));
583
584	err = ext4_ext_dirty(handle, inode, curp);
585	ext4_std_error(inode->i_sb, err);
586
587	return err;
588}
589
590/*
591 * ext4_ext_split:
592 * inserts new subtree into the path, using free index entry
593 * at depth @at:
594 * - allocates all needed blocks (new leaf and all intermediate index blocks)
595 * - makes decision where to split
596 * - moves remaining extents and index entries (right to the split point)
597 *   into the newly allocated blocks
598 * - initializes subtree
599 */
600static int ext4_ext_split(handle_t *handle, struct inode *inode,
601				struct ext4_ext_path *path,
602				struct ext4_extent *newext, int at)
603{
604	struct buffer_head *bh = NULL;
605	int depth = ext_depth(inode);
606	struct ext4_extent_header *neh;
607	struct ext4_extent_idx *fidx;
608	struct ext4_extent *ex;
609	int i = at, k, m, a;
610	ext4_fsblk_t newblock, oldblock;
611	__le32 border;
612	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
613	int err = 0;
614
615	/* make decision: where to split? */
616	/* FIXME: now decision is simplest: at current extent */
617
618	/* if current leaf will be split, then we should use
619	 * border from split point */
620	BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr));
621	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
622		border = path[depth].p_ext[1].ee_block;
623		ext_debug("leaf will be split."
624				" next leaf starts at %d\n",
625			          le32_to_cpu(border));
626	} else {
627		border = newext->ee_block;
628		ext_debug("leaf will be added."
629				" next leaf starts at %d\n",
630			        le32_to_cpu(border));
631	}
632
633	/*
634	 * If error occurs, then we break processing
635	 * and mark filesystem read-only. index won't
636	 * be inserted and tree will be in consistent
637	 * state. Next mount will repair buffers too.
638	 */
639
640	/*
641	 * Get array to track all allocated blocks.
642	 * We need this to handle errors and free blocks
643	 * upon them.
644	 */
645	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
646	if (!ablocks)
647		return -ENOMEM;
648
649	/* allocate all needed blocks */
650	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
651	for (a = 0; a < depth - at; a++) {
652		newblock = ext4_ext_new_block(handle, inode, path, newext, &err);
653		if (newblock == 0)
654			goto cleanup;
655		ablocks[a] = newblock;
656	}
657
658	/* initialize new leaf */
659	newblock = ablocks[--a];
660	BUG_ON(newblock == 0);
661	bh = sb_getblk(inode->i_sb, newblock);
662	if (!bh) {
663		err = -EIO;
664		goto cleanup;
665	}
666	lock_buffer(bh);
667
668	err = ext4_journal_get_create_access(handle, bh);
669	if (err)
670		goto cleanup;
671
672	neh = ext_block_hdr(bh);
673	neh->eh_entries = 0;
674	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
675	neh->eh_magic = EXT4_EXT_MAGIC;
676	neh->eh_depth = 0;
677	ex = EXT_FIRST_EXTENT(neh);
678
679	/* move remainder of path[depth] to the new leaf */
680	BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max);
681	/* start copy from next extent */
682	/* TODO: we could do it by single memmove */
683	m = 0;
684	path[depth].p_ext++;
685	while (path[depth].p_ext <=
686			EXT_MAX_EXTENT(path[depth].p_hdr)) {
687		ext_debug("move %d:%llu:%d in new leaf %llu\n",
688			        le32_to_cpu(path[depth].p_ext->ee_block),
689			        ext_pblock(path[depth].p_ext),
690			        le16_to_cpu(path[depth].p_ext->ee_len),
691				newblock);
692		/*memmove(ex++, path[depth].p_ext++,
693				sizeof(struct ext4_extent));
694		neh->eh_entries++;*/
695		path[depth].p_ext++;
696		m++;
697	}
698	if (m) {
699		memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
700		neh->eh_entries = cpu_to_le16(le16_to_cpu(neh->eh_entries)+m);
701	}
702
703	set_buffer_uptodate(bh);
704	unlock_buffer(bh);
705
706	err = ext4_journal_dirty_metadata(handle, bh);
707	if (err)
708		goto cleanup;
709	brelse(bh);
710	bh = NULL;
711
712	/* correct old leaf */
713	if (m) {
714		err = ext4_ext_get_access(handle, inode, path + depth);
715		if (err)
716			goto cleanup;
717		path[depth].p_hdr->eh_entries =
718		     cpu_to_le16(le16_to_cpu(path[depth].p_hdr->eh_entries)-m);
719		err = ext4_ext_dirty(handle, inode, path + depth);
720		if (err)
721			goto cleanup;
722
723	}
724
725	/* create intermediate indexes */
726	k = depth - at - 1;
727	BUG_ON(k < 0);
728	if (k)
729		ext_debug("create %d intermediate indices\n", k);
730	/* insert new index into current index block */
731	/* current depth stored in i var */
732	i = depth - 1;
733	while (k--) {
734		oldblock = newblock;
735		newblock = ablocks[--a];
736		bh = sb_getblk(inode->i_sb, (ext4_fsblk_t)newblock);
737		if (!bh) {
738			err = -EIO;
739			goto cleanup;
740		}
741		lock_buffer(bh);
742
743		err = ext4_journal_get_create_access(handle, bh);
744		if (err)
745			goto cleanup;
746
747		neh = ext_block_hdr(bh);
748		neh->eh_entries = cpu_to_le16(1);
749		neh->eh_magic = EXT4_EXT_MAGIC;
750		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
751		neh->eh_depth = cpu_to_le16(depth - i);
752		fidx = EXT_FIRST_INDEX(neh);
753		fidx->ei_block = border;
754		ext4_idx_store_pblock(fidx, oldblock);
755
756		ext_debug("int.index at %d (block %llu): %lu -> %llu\n", i,
757				newblock, (unsigned long) le32_to_cpu(border),
758				oldblock);
759		/* copy indexes */
760		m = 0;
761		path[i].p_idx++;
762
763		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
764				EXT_MAX_INDEX(path[i].p_hdr));
765		BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) !=
766				EXT_LAST_INDEX(path[i].p_hdr));
767		while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
768			ext_debug("%d: move %d:%d in new index %llu\n", i,
769				        le32_to_cpu(path[i].p_idx->ei_block),
770				        idx_pblock(path[i].p_idx),
771				        newblock);
772			/*memmove(++fidx, path[i].p_idx++,
773					sizeof(struct ext4_extent_idx));
774			neh->eh_entries++;
775			BUG_ON(neh->eh_entries > neh->eh_max);*/
776			path[i].p_idx++;
777			m++;
778		}
779		if (m) {
780			memmove(++fidx, path[i].p_idx - m,
781				sizeof(struct ext4_extent_idx) * m);
782			neh->eh_entries =
783				cpu_to_le16(le16_to_cpu(neh->eh_entries) + m);
784		}
785		set_buffer_uptodate(bh);
786		unlock_buffer(bh);
787
788		err = ext4_journal_dirty_metadata(handle, bh);
789		if (err)
790			goto cleanup;
791		brelse(bh);
792		bh = NULL;
793
794		/* correct old index */
795		if (m) {
796			err = ext4_ext_get_access(handle, inode, path + i);
797			if (err)
798				goto cleanup;
799			path[i].p_hdr->eh_entries = cpu_to_le16(le16_to_cpu(path[i].p_hdr->eh_entries)-m);
800			err = ext4_ext_dirty(handle, inode, path + i);
801			if (err)
802				goto cleanup;
803		}
804
805		i--;
806	}
807
808	/* insert new index */
809	err = ext4_ext_insert_index(handle, inode, path + at,
810				    le32_to_cpu(border), newblock);
811
812cleanup:
813	if (bh) {
814		if (buffer_locked(bh))
815			unlock_buffer(bh);
816		brelse(bh);
817	}
818
819	if (err) {
820		/* free all allocated blocks in error case */
821		for (i = 0; i < depth; i++) {
822			if (!ablocks[i])
823				continue;
824			ext4_free_blocks(handle, inode, ablocks[i], 1);
825		}
826	}
827	kfree(ablocks);
828
829	return err;
830}
831
832/*
833 * ext4_ext_grow_indepth:
834 * implements tree growing procedure:
835 * - allocates new block
836 * - moves top-level data (index block or leaf) into the new block
837 * - initializes new top-level, creating index that points to the
838 *   just created block
839 */
840static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
841					struct ext4_ext_path *path,
842					struct ext4_extent *newext)
843{
844	struct ext4_ext_path *curp = path;
845	struct ext4_extent_header *neh;
846	struct ext4_extent_idx *fidx;
847	struct buffer_head *bh;
848	ext4_fsblk_t newblock;
849	int err = 0;
850
851	newblock = ext4_ext_new_block(handle, inode, path, newext, &err);
852	if (newblock == 0)
853		return err;
854
855	bh = sb_getblk(inode->i_sb, newblock);
856	if (!bh) {
857		err = -EIO;
858		ext4_std_error(inode->i_sb, err);
859		return err;
860	}
861	lock_buffer(bh);
862
863	err = ext4_journal_get_create_access(handle, bh);
864	if (err) {
865		unlock_buffer(bh);
866		goto out;
867	}
868
869	/* move top-level index/leaf into new block */
870	memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
871
872	/* set size of new block */
873	neh = ext_block_hdr(bh);
874	/* old root could have indexes or leaves
875	 * so calculate e_max right way */
876	if (ext_depth(inode))
877	  neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
878	else
879	  neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
880	neh->eh_magic = EXT4_EXT_MAGIC;
881	set_buffer_uptodate(bh);
882	unlock_buffer(bh);
883
884	err = ext4_journal_dirty_metadata(handle, bh);
885	if (err)
886		goto out;
887
888	/* create index in new top-level index: num,max,pointer */
889	err = ext4_ext_get_access(handle, inode, curp);
890	if (err)
891		goto out;
892
893	curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
894	curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode));
895	curp->p_hdr->eh_entries = cpu_to_le16(1);
896	curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
897	/* FIXME: it works, but actually path[0] can be index */
898	curp->p_idx->ei_block = EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
899	ext4_idx_store_pblock(curp->p_idx, newblock);
900
901	neh = ext_inode_hdr(inode);
902	fidx = EXT_FIRST_INDEX(neh);
903	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
904		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
905		  le32_to_cpu(fidx->ei_block), idx_pblock(fidx));
906
907	neh->eh_depth = cpu_to_le16(path->p_depth + 1);
908	err = ext4_ext_dirty(handle, inode, curp);
909out:
910	brelse(bh);
911
912	return err;
913}
914
915/*
916 * ext4_ext_create_new_leaf:
917 * finds empty index and adds new leaf.
918 * if no free index is found, then it requests in-depth growing.
919 */
920static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
921					struct ext4_ext_path *path,
922					struct ext4_extent *newext)
923{
924	struct ext4_ext_path *curp;
925	int depth, i, err = 0;
926
927repeat:
928	i = depth = ext_depth(inode);
929
930	/* walk up to the tree and look for free index entry */
931	curp = path + depth;
932	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
933		i--;
934		curp--;
935	}
936
937	/* we use already allocated block for index block,
938	 * so subsequent data blocks should be contiguous */
939	if (EXT_HAS_FREE_INDEX(curp)) {
940		/* if we found index with free entry, then use that
941		 * entry: create all needed subtree and add new leaf */
942		err = ext4_ext_split(handle, inode, path, newext, i);
943
944		/* refill path */
945		ext4_ext_drop_refs(path);
946		path = ext4_ext_find_extent(inode,
947					    le32_to_cpu(newext->ee_block),
948					    path);
949		if (IS_ERR(path))
950			err = PTR_ERR(path);
951	} else {
952		/* tree is full, time to grow in depth */
953		err = ext4_ext_grow_indepth(handle, inode, path, newext);
954		if (err)
955			goto out;
956
957		/* refill path */
958		ext4_ext_drop_refs(path);
959		path = ext4_ext_find_extent(inode,
960					    le32_to_cpu(newext->ee_block),
961					    path);
962		if (IS_ERR(path)) {
963			err = PTR_ERR(path);
964			goto out;
965		}
966
967		/*
968		 * only first (depth 0 -> 1) produces free space;
969		 * in all other cases we have to split the grown tree
970		 */
971		depth = ext_depth(inode);
972		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
973			/* now we need to split */
974			goto repeat;
975		}
976	}
977
978out:
979	return err;
980}
981
982/*
983 * ext4_ext_next_allocated_block:
984 * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
985 * NOTE: it considers block number from index entry as
986 * allocated block. Thus, index entries have to be consistent
987 * with leaves.
988 */
989static unsigned long
990ext4_ext_next_allocated_block(struct ext4_ext_path *path)
991{
992	int depth;
993
994	BUG_ON(path == NULL);
995	depth = path->p_depth;
996
997	if (depth == 0 && path->p_ext == NULL)
998		return EXT_MAX_BLOCK;
999
1000	while (depth >= 0) {
1001		if (depth == path->p_depth) {
1002			/* leaf */
1003			if (path[depth].p_ext !=
1004					EXT_LAST_EXTENT(path[depth].p_hdr))
1005			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1006		} else {
1007			/* index */
1008			if (path[depth].p_idx !=
1009					EXT_LAST_INDEX(path[depth].p_hdr))
1010			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1011		}
1012		depth--;
1013	}
1014
1015	return EXT_MAX_BLOCK;
1016}
1017
1018/*
1019 * ext4_ext_next_leaf_block:
1020 * returns first allocated block from next leaf or EXT_MAX_BLOCK
1021 */
1022static unsigned ext4_ext_next_leaf_block(struct inode *inode,
1023					struct ext4_ext_path *path)
1024{
1025	int depth;
1026
1027	BUG_ON(path == NULL);
1028	depth = path->p_depth;
1029
1030	/* zero-tree has no leaf blocks at all */
1031	if (depth == 0)
1032		return EXT_MAX_BLOCK;
1033
1034	/* go to index block */
1035	depth--;
1036
1037	while (depth >= 0) {
1038		if (path[depth].p_idx !=
1039				EXT_LAST_INDEX(path[depth].p_hdr))
1040		  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1041		depth--;
1042	}
1043
1044	return EXT_MAX_BLOCK;
1045}
1046
1047/*
1048 * ext4_ext_correct_indexes:
1049 * if leaf gets modified and modified extent is first in the leaf,
1050 * then we have to correct all indexes above.
1051 * TODO: do we need to correct tree in all cases?
1052 */
1053int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1054				struct ext4_ext_path *path)
1055{
1056	struct ext4_extent_header *eh;
1057	int depth = ext_depth(inode);
1058	struct ext4_extent *ex;
1059	__le32 border;
1060	int k, err = 0;
1061
1062	eh = path[depth].p_hdr;
1063	ex = path[depth].p_ext;
1064	BUG_ON(ex == NULL);
1065	BUG_ON(eh == NULL);
1066
1067	if (depth == 0) {
1068		/* there is no tree at all */
1069		return 0;
1070	}
1071
1072	if (ex != EXT_FIRST_EXTENT(eh)) {
1073		/* we correct tree if first leaf got modified only */
1074		return 0;
1075	}
1076
1077	/*
1078	 * TODO: we need correction if border is smaller than current one
1079	 */
1080	k = depth - 1;
1081	border = path[depth].p_ext->ee_block;
1082	err = ext4_ext_get_access(handle, inode, path + k);
1083	if (err)
1084		return err;
1085	path[k].p_idx->ei_block = border;
1086	err = ext4_ext_dirty(handle, inode, path + k);
1087	if (err)
1088		return err;
1089
1090	while (k--) {
1091		/* change all left-side indexes */
1092		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1093			break;
1094		err = ext4_ext_get_access(handle, inode, path + k);
1095		if (err)
1096			break;
1097		path[k].p_idx->ei_block = border;
1098		err = ext4_ext_dirty(handle, inode, path + k);
1099		if (err)
1100			break;
1101	}
1102
1103	return err;
1104}
1105
1106static int
1107ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1108				struct ext4_extent *ex2)
1109{
1110	if (le32_to_cpu(ex1->ee_block) + le16_to_cpu(ex1->ee_len) !=
1111			le32_to_cpu(ex2->ee_block))
1112		return 0;
1113
1114	/*
1115	 * To allow future support for preallocated extents to be added
1116	 * as an RO_COMPAT feature, refuse to merge to extents if
1117	 * this can result in the top bit of ee_len being set.
1118	 */
1119	if (le16_to_cpu(ex1->ee_len) + le16_to_cpu(ex2->ee_len) > EXT_MAX_LEN)
1120		return 0;
1121#ifdef AGRESSIVE_TEST
1122	if (le16_to_cpu(ex1->ee_len) >= 4)
1123		return 0;
1124#endif
1125
1126	if (ext_pblock(ex1) + le16_to_cpu(ex1->ee_len) == ext_pblock(ex2))
1127		return 1;
1128	return 0;
1129}
1130
1131/*
1132 * ext4_ext_insert_extent:
1133 * tries to merge requsted extent into the existing extent or
1134 * inserts requested extent as new one into the tree,
1135 * creating new leaf in the no-space case.
1136 */
1137int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1138				struct ext4_ext_path *path,
1139				struct ext4_extent *newext)
1140{
1141	struct ext4_extent_header * eh;
1142	struct ext4_extent *ex, *fex;
1143	struct ext4_extent *nearex; /* nearest extent */
1144	struct ext4_ext_path *npath = NULL;
1145	int depth, len, err, next;
1146
1147	BUG_ON(newext->ee_len == 0);
1148	depth = ext_depth(inode);
1149	ex = path[depth].p_ext;
1150	BUG_ON(path[depth].p_hdr == NULL);
1151
1152	/* try to insert block into found extent and return */
1153	if (ex && ext4_can_extents_be_merged(inode, ex, newext)) {
1154		ext_debug("append %d block to %d:%d (from %llu)\n",
1155				le16_to_cpu(newext->ee_len),
1156				le32_to_cpu(ex->ee_block),
1157				le16_to_cpu(ex->ee_len), ext_pblock(ex));
1158		err = ext4_ext_get_access(handle, inode, path + depth);
1159		if (err)
1160			return err;
1161		ex->ee_len = cpu_to_le16(le16_to_cpu(ex->ee_len)
1162					 + le16_to_cpu(newext->ee_len));
1163		eh = path[depth].p_hdr;
1164		nearex = ex;
1165		goto merge;
1166	}
1167
1168repeat:
1169	depth = ext_depth(inode);
1170	eh = path[depth].p_hdr;
1171	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1172		goto has_space;
1173
1174	/* probably next leaf has space for us? */
1175	fex = EXT_LAST_EXTENT(eh);
1176	next = ext4_ext_next_leaf_block(inode, path);
1177	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1178	    && next != EXT_MAX_BLOCK) {
1179		ext_debug("next leaf block - %d\n", next);
1180		BUG_ON(npath != NULL);
1181		npath = ext4_ext_find_extent(inode, next, NULL);
1182		if (IS_ERR(npath))
1183			return PTR_ERR(npath);
1184		BUG_ON(npath->p_depth != path->p_depth);
1185		eh = npath[depth].p_hdr;
1186		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1187			ext_debug("next leaf isnt full(%d)\n",
1188				  le16_to_cpu(eh->eh_entries));
1189			path = npath;
1190			goto repeat;
1191		}
1192		ext_debug("next leaf has no free space(%d,%d)\n",
1193			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1194	}
1195
1196	/*
1197	 * There is no free space in the found leaf.
1198	 * We're gonna add a new leaf in the tree.
1199	 */
1200	err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1201	if (err)
1202		goto cleanup;
1203	depth = ext_depth(inode);
1204	eh = path[depth].p_hdr;
1205
1206has_space:
1207	nearex = path[depth].p_ext;
1208
1209	err = ext4_ext_get_access(handle, inode, path + depth);
1210	if (err)
1211		goto cleanup;
1212
1213	if (!nearex) {
1214		/* there is no extent in this leaf, create first one */
1215		ext_debug("first extent in the leaf: %d:%llu:%d\n",
1216			        le32_to_cpu(newext->ee_block),
1217			        ext_pblock(newext),
1218			        le16_to_cpu(newext->ee_len));
1219		path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1220	} else if (le32_to_cpu(newext->ee_block)
1221		           > le32_to_cpu(nearex->ee_block)) {
1222/*		BUG_ON(newext->ee_block == nearex->ee_block); */
1223		if (nearex != EXT_LAST_EXTENT(eh)) {
1224			len = EXT_MAX_EXTENT(eh) - nearex;
1225			len = (len - 1) * sizeof(struct ext4_extent);
1226			len = len < 0 ? 0 : len;
1227			ext_debug("insert %d:%llu:%d after: nearest 0x%p, "
1228					"move %d from 0x%p to 0x%p\n",
1229				        le32_to_cpu(newext->ee_block),
1230				        ext_pblock(newext),
1231				        le16_to_cpu(newext->ee_len),
1232					nearex, len, nearex + 1, nearex + 2);
1233			memmove(nearex + 2, nearex + 1, len);
1234		}
1235		path[depth].p_ext = nearex + 1;
1236	} else {
1237		BUG_ON(newext->ee_block == nearex->ee_block);
1238		len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1239		len = len < 0 ? 0 : len;
1240		ext_debug("insert %d:%llu:%d before: nearest 0x%p, "
1241				"move %d from 0x%p to 0x%p\n",
1242				le32_to_cpu(newext->ee_block),
1243				ext_pblock(newext),
1244				le16_to_cpu(newext->ee_len),
1245				nearex, len, nearex + 1, nearex + 2);
1246		memmove(nearex + 1, nearex, len);
1247		path[depth].p_ext = nearex;
1248	}
1249
1250	eh->eh_entries = cpu_to_le16(le16_to_cpu(eh->eh_entries)+1);
1251	nearex = path[depth].p_ext;
1252	nearex->ee_block = newext->ee_block;
1253	nearex->ee_start = newext->ee_start;
1254	nearex->ee_start_hi = newext->ee_start_hi;
1255	nearex->ee_len = newext->ee_len;
1256
1257merge:
1258	/* try to merge extents to the right */
1259	while (nearex < EXT_LAST_EXTENT(eh)) {
1260		if (!ext4_can_extents_be_merged(inode, nearex, nearex + 1))
1261			break;
1262		/* merge with next extent! */
1263		nearex->ee_len = cpu_to_le16(le16_to_cpu(nearex->ee_len)
1264					     + le16_to_cpu(nearex[1].ee_len));
1265		if (nearex + 1 < EXT_LAST_EXTENT(eh)) {
1266			len = (EXT_LAST_EXTENT(eh) - nearex - 1)
1267					* sizeof(struct ext4_extent);
1268			memmove(nearex + 1, nearex + 2, len);
1269		}
1270		eh->eh_entries = cpu_to_le16(le16_to_cpu(eh->eh_entries)-1);
1271		BUG_ON(eh->eh_entries == 0);
1272	}
1273
1274	/* try to merge extents to the left */
1275
1276	/* time to correct all indexes above */
1277	err = ext4_ext_correct_indexes(handle, inode, path);
1278	if (err)
1279		goto cleanup;
1280
1281	err = ext4_ext_dirty(handle, inode, path + depth);
1282
1283cleanup:
1284	if (npath) {
1285		ext4_ext_drop_refs(npath);
1286		kfree(npath);
1287	}
1288	ext4_ext_tree_changed(inode);
1289	ext4_ext_invalidate_cache(inode);
1290	return err;
1291}
1292
1293int ext4_ext_walk_space(struct inode *inode, unsigned long block,
1294			unsigned long num, ext_prepare_callback func,
1295			void *cbdata)
1296{
1297	struct ext4_ext_path *path = NULL;
1298	struct ext4_ext_cache cbex;
1299	struct ext4_extent *ex;
1300	unsigned long next, start = 0, end = 0;
1301	unsigned long last = block + num;
1302	int depth, exists, err = 0;
1303
1304	BUG_ON(func == NULL);
1305	BUG_ON(inode == NULL);
1306
1307	while (block < last && block != EXT_MAX_BLOCK) {
1308		num = last - block;
1309		/* find extent for this block */
1310		path = ext4_ext_find_extent(inode, block, path);
1311		if (IS_ERR(path)) {
1312			err = PTR_ERR(path);
1313			path = NULL;
1314			break;
1315		}
1316
1317		depth = ext_depth(inode);
1318		BUG_ON(path[depth].p_hdr == NULL);
1319		ex = path[depth].p_ext;
1320		next = ext4_ext_next_allocated_block(path);
1321
1322		exists = 0;
1323		if (!ex) {
1324			/* there is no extent yet, so try to allocate
1325			 * all requested space */
1326			start = block;
1327			end = block + num;
1328		} else if (le32_to_cpu(ex->ee_block) > block) {
1329			/* need to allocate space before found extent */
1330			start = block;
1331			end = le32_to_cpu(ex->ee_block);
1332			if (block + num < end)
1333				end = block + num;
1334		} else if (block >=
1335			     le32_to_cpu(ex->ee_block) + le16_to_cpu(ex->ee_len)) {
1336			/* need to allocate space after found extent */
1337			start = block;
1338			end = block + num;
1339			if (end >= next)
1340				end = next;
1341		} else if (block >= le32_to_cpu(ex->ee_block)) {
1342			/*
1343			 * some part of requested space is covered
1344			 * by found extent
1345			 */
1346			start = block;
1347			end = le32_to_cpu(ex->ee_block) + le16_to_cpu(ex->ee_len);
1348			if (block + num < end)
1349				end = block + num;
1350			exists = 1;
1351		} else {
1352			BUG();
1353		}
1354		BUG_ON(end <= start);
1355
1356		if (!exists) {
1357			cbex.ec_block = start;
1358			cbex.ec_len = end - start;
1359			cbex.ec_start = 0;
1360			cbex.ec_type = EXT4_EXT_CACHE_GAP;
1361		} else {
1362		        cbex.ec_block = le32_to_cpu(ex->ee_block);
1363		        cbex.ec_len = le16_to_cpu(ex->ee_len);
1364		        cbex.ec_start = ext_pblock(ex);
1365			cbex.ec_type = EXT4_EXT_CACHE_EXTENT;
1366		}
1367
1368		BUG_ON(cbex.ec_len == 0);
1369		err = func(inode, path, &cbex, cbdata);
1370		ext4_ext_drop_refs(path);
1371
1372		if (err < 0)
1373			break;
1374		if (err == EXT_REPEAT)
1375			continue;
1376		else if (err == EXT_BREAK) {
1377			err = 0;
1378			break;
1379		}
1380
1381		if (ext_depth(inode) != depth) {
1382			/* depth was changed. we have to realloc path */
1383			kfree(path);
1384			path = NULL;
1385		}
1386
1387		block = cbex.ec_block + cbex.ec_len;
1388	}
1389
1390	if (path) {
1391		ext4_ext_drop_refs(path);
1392		kfree(path);
1393	}
1394
1395	return err;
1396}
1397
1398static void
1399ext4_ext_put_in_cache(struct inode *inode, __u32 block,
1400			__u32 len, __u32 start, int type)
1401{
1402	struct ext4_ext_cache *cex;
1403	BUG_ON(len == 0);
1404	cex = &EXT4_I(inode)->i_cached_extent;
1405	cex->ec_type = type;
1406	cex->ec_block = block;
1407	cex->ec_len = len;
1408	cex->ec_start = start;
1409}
1410
1411/*
1412 * ext4_ext_put_gap_in_cache:
1413 * calculate boundaries of the gap that the requested block fits into
1414 * and cache this gap
1415 */
1416static void
1417ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1418				unsigned long block)
1419{
1420	int depth = ext_depth(inode);
1421	unsigned long lblock, len;
1422	struct ext4_extent *ex;
1423
1424	ex = path[depth].p_ext;
1425	if (ex == NULL) {
1426		/* there is no extent yet, so gap is [0;-] */
1427		lblock = 0;
1428		len = EXT_MAX_BLOCK;
1429		ext_debug("cache gap(whole file):");
1430	} else if (block < le32_to_cpu(ex->ee_block)) {
1431		lblock = block;
1432		len = le32_to_cpu(ex->ee_block) - block;
1433		ext_debug("cache gap(before): %lu [%lu:%lu]",
1434				(unsigned long) block,
1435			        (unsigned long) le32_to_cpu(ex->ee_block),
1436			        (unsigned long) le16_to_cpu(ex->ee_len));
1437	} else if (block >= le32_to_cpu(ex->ee_block)
1438		            + le16_to_cpu(ex->ee_len)) {
1439	        lblock = le32_to_cpu(ex->ee_block)
1440		         + le16_to_cpu(ex->ee_len);
1441		len = ext4_ext_next_allocated_block(path);
1442		ext_debug("cache gap(after): [%lu:%lu] %lu",
1443			        (unsigned long) le32_to_cpu(ex->ee_block),
1444			        (unsigned long) le16_to_cpu(ex->ee_len),
1445				(unsigned long) block);
1446		BUG_ON(len == lblock);
1447		len = len - lblock;
1448	} else {
1449		lblock = len = 0;
1450		BUG();
1451	}
1452
1453	ext_debug(" -> %lu:%lu\n", (unsigned long) lblock, len);
1454	ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP);
1455}
1456
1457static int
1458ext4_ext_in_cache(struct inode *inode, unsigned long block,
1459			struct ext4_extent *ex)
1460{
1461	struct ext4_ext_cache *cex;
1462
1463	cex = &EXT4_I(inode)->i_cached_extent;
1464
1465	/* has cache valid data? */
1466	if (cex->ec_type == EXT4_EXT_CACHE_NO)
1467		return EXT4_EXT_CACHE_NO;
1468
1469	BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP &&
1470			cex->ec_type != EXT4_EXT_CACHE_EXTENT);
1471	if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) {
1472	        ex->ee_block = cpu_to_le32(cex->ec_block);
1473		ext4_ext_store_pblock(ex, cex->ec_start);
1474	        ex->ee_len = cpu_to_le16(cex->ec_len);
1475		ext_debug("%lu cached by %lu:%lu:%llu\n",
1476				(unsigned long) block,
1477				(unsigned long) cex->ec_block,
1478				(unsigned long) cex->ec_len,
1479				cex->ec_start);
1480		return cex->ec_type;
1481	}
1482
1483	/* not in cache */
1484	return EXT4_EXT_CACHE_NO;
1485}
1486
1487/*
1488 * ext4_ext_rm_idx:
1489 * removes index from the index block.
1490 * It's used in truncate case only, thus all requests are for
1491 * last index in the block only.
1492 */
1493int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
1494			struct ext4_ext_path *path)
1495{
1496	struct buffer_head *bh;
1497	int err;
1498	ext4_fsblk_t leaf;
1499
1500	/* free index block */
1501	path--;
1502	leaf = idx_pblock(path->p_idx);
1503	BUG_ON(path->p_hdr->eh_entries == 0);
1504	err = ext4_ext_get_access(handle, inode, path);
1505	if (err)
1506		return err;
1507	path->p_hdr->eh_entries = cpu_to_le16(le16_to_cpu(path->p_hdr->eh_entries)-1);
1508	err = ext4_ext_dirty(handle, inode, path);
1509	if (err)
1510		return err;
1511	ext_debug("index is empty, remove it, free block %llu\n", leaf);
1512	bh = sb_find_get_block(inode->i_sb, leaf);
1513	ext4_forget(handle, 1, inode, bh, leaf);
1514	ext4_free_blocks(handle, inode, leaf, 1);
1515	return err;
1516}
1517
1518/*
1519 * ext4_ext_calc_credits_for_insert:
1520 * This routine returns max. credits that the extent tree can consume.
1521 * It should be OK for low-performance paths like ->writepage()
1522 * To allow many writing processes to fit into a single transaction,
1523 * the caller should calculate credits under truncate_mutex and
1524 * pass the actual path.
1525 */
1526int ext4_ext_calc_credits_for_insert(struct inode *inode,
1527						struct ext4_ext_path *path)
1528{
1529	int depth, needed;
1530
1531	if (path) {
1532		/* probably there is space in leaf? */
1533		depth = ext_depth(inode);
1534		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
1535				< le16_to_cpu(path[depth].p_hdr->eh_max))
1536			return 1;
1537	}
1538
1539	/*
1540	 * given 32-bit logical block (4294967296 blocks), max. tree
1541	 * can be 4 levels in depth -- 4 * 340^4 == 53453440000.
1542	 * Let's also add one more level for imbalance.
1543	 */
1544	depth = 5;
1545
1546	/* allocation of new data block(s) */
1547	needed = 2;
1548
1549	/*
1550	 * tree can be full, so it would need to grow in depth:
1551	 * we need one credit to modify old root, credits for
1552	 * new root will be added in split accounting
1553	 */
1554	needed += 1;
1555
1556	/*
1557	 * Index split can happen, we would need:
1558	 *    allocate intermediate indexes (bitmap + group)
1559	 *  + change two blocks at each level, but root (already included)
1560	 */
1561	needed += (depth * 2) + (depth * 2);
1562
1563	/* any allocation modifies superblock */
1564	needed += 1;
1565
1566	return needed;
1567}
1568
1569static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
1570				struct ext4_extent *ex,
1571				unsigned long from, unsigned long to)
1572{
1573	struct buffer_head *bh;
1574	int i;
1575
1576#ifdef EXTENTS_STATS
1577	{
1578		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1579		unsigned short ee_len =  le16_to_cpu(ex->ee_len);
1580		spin_lock(&sbi->s_ext_stats_lock);
1581		sbi->s_ext_blocks += ee_len;
1582		sbi->s_ext_extents++;
1583		if (ee_len < sbi->s_ext_min)
1584			sbi->s_ext_min = ee_len;
1585		if (ee_len > sbi->s_ext_max)
1586			sbi->s_ext_max = ee_len;
1587		if (ext_depth(inode) > sbi->s_depth_max)
1588			sbi->s_depth_max = ext_depth(inode);
1589		spin_unlock(&sbi->s_ext_stats_lock);
1590	}
1591#endif
1592	if (from >= le32_to_cpu(ex->ee_block)
1593	    && to == le32_to_cpu(ex->ee_block) + le16_to_cpu(ex->ee_len) - 1) {
1594		/* tail removal */
1595		unsigned long num;
1596		ext4_fsblk_t start;
1597		num = le32_to_cpu(ex->ee_block) + le16_to_cpu(ex->ee_len) - from;
1598		start = ext_pblock(ex) + le16_to_cpu(ex->ee_len) - num;
1599		ext_debug("free last %lu blocks starting %llu\n", num, start);
1600		for (i = 0; i < num; i++) {
1601			bh = sb_find_get_block(inode->i_sb, start + i);
1602			ext4_forget(handle, 0, inode, bh, start + i);
1603		}
1604		ext4_free_blocks(handle, inode, start, num);
1605	} else if (from == le32_to_cpu(ex->ee_block)
1606		   && to <= le32_to_cpu(ex->ee_block) + le16_to_cpu(ex->ee_len) - 1) {
1607		printk("strange request: removal %lu-%lu from %u:%u\n",
1608		       from, to, le32_to_cpu(ex->ee_block), le16_to_cpu(ex->ee_len));
1609	} else {
1610		printk("strange request: removal(2) %lu-%lu from %u:%u\n",
1611		       from, to, le32_to_cpu(ex->ee_block), le16_to_cpu(ex->ee_len));
1612	}
1613	return 0;
1614}
1615
1616static int
1617ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
1618		struct ext4_ext_path *path, unsigned long start)
1619{
1620	int err = 0, correct_index = 0;
1621	int depth = ext_depth(inode), credits;
1622	struct ext4_extent_header *eh;
1623	unsigned a, b, block, num;
1624	unsigned long ex_ee_block;
1625	unsigned short ex_ee_len;
1626	struct ext4_extent *ex;
1627
1628	ext_debug("truncate since %lu in leaf\n", start);
1629	if (!path[depth].p_hdr)
1630		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
1631	eh = path[depth].p_hdr;
1632	BUG_ON(eh == NULL);
1633	BUG_ON(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max));
1634	BUG_ON(eh->eh_magic != EXT4_EXT_MAGIC);
1635
1636	/* find where to start removing */
1637	ex = EXT_LAST_EXTENT(eh);
1638
1639	ex_ee_block = le32_to_cpu(ex->ee_block);
1640	ex_ee_len = le16_to_cpu(ex->ee_len);
1641
1642	while (ex >= EXT_FIRST_EXTENT(eh) &&
1643			ex_ee_block + ex_ee_len > start) {
1644		ext_debug("remove ext %lu:%u\n", ex_ee_block, ex_ee_len);
1645		path[depth].p_ext = ex;
1646
1647		a = ex_ee_block > start ? ex_ee_block : start;
1648		b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
1649			ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
1650
1651		ext_debug("  border %u:%u\n", a, b);
1652
1653		if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
1654			block = 0;
1655			num = 0;
1656			BUG();
1657		} else if (a != ex_ee_block) {
1658			/* remove tail of the extent */
1659			block = ex_ee_block;
1660			num = a - block;
1661		} else if (b != ex_ee_block + ex_ee_len - 1) {
1662			/* remove head of the extent */
1663			block = a;
1664			num = b - a;
1665			/* there is no "make a hole" API yet */
1666			BUG();
1667		} else {
1668			/* remove whole extent: excellent! */
1669			block = ex_ee_block;
1670			num = 0;
1671			BUG_ON(a != ex_ee_block);
1672			BUG_ON(b != ex_ee_block + ex_ee_len - 1);
1673		}
1674
1675		/* at present, extent can't cross block group: */
1676		/* leaf + bitmap + group desc + sb + inode */
1677		credits = 5;
1678		if (ex == EXT_FIRST_EXTENT(eh)) {
1679			correct_index = 1;
1680			credits += (ext_depth(inode)) + 1;
1681		}
1682#ifdef CONFIG_QUOTA
1683		credits += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
1684#endif
1685
1686		handle = ext4_ext_journal_restart(handle, credits);
1687		if (IS_ERR(handle)) {
1688			err = PTR_ERR(handle);
1689			goto out;
1690		}
1691
1692		err = ext4_ext_get_access(handle, inode, path + depth);
1693		if (err)
1694			goto out;
1695
1696		err = ext4_remove_blocks(handle, inode, ex, a, b);
1697		if (err)
1698			goto out;
1699
1700		if (num == 0) {
1701			/* this extent is removed; mark slot entirely unused */
1702			ext4_ext_store_pblock(ex, 0);
1703			eh->eh_entries = cpu_to_le16(le16_to_cpu(eh->eh_entries)-1);
1704		}
1705
1706		ex->ee_block = cpu_to_le32(block);
1707		ex->ee_len = cpu_to_le16(num);
1708
1709		err = ext4_ext_dirty(handle, inode, path + depth);
1710		if (err)
1711			goto out;
1712
1713		ext_debug("new extent: %u:%u:%llu\n", block, num,
1714				ext_pblock(ex));
1715		ex--;
1716		ex_ee_block = le32_to_cpu(ex->ee_block);
1717		ex_ee_len = le16_to_cpu(ex->ee_len);
1718	}
1719
1720	if (correct_index && eh->eh_entries)
1721		err = ext4_ext_correct_indexes(handle, inode, path);
1722
1723	/* if this leaf is free, then we should
1724	 * remove it from index block above */
1725	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
1726		err = ext4_ext_rm_idx(handle, inode, path + depth);
1727
1728out:
1729	return err;
1730}
1731
1732/*
1733 * ext4_ext_more_to_rm:
1734 * returns 1 if current index has to be freed (even partial)
1735 */
1736static int
1737ext4_ext_more_to_rm(struct ext4_ext_path *path)
1738{
1739	BUG_ON(path->p_idx == NULL);
1740
1741	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
1742		return 0;
1743
1744	/*
1745	 * if truncate on deeper level happened, it wasn't partial,
1746	 * so we have to consider current index for truncation
1747	 */
1748	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
1749		return 0;
1750	return 1;
1751}
1752
1753int ext4_ext_remove_space(struct inode *inode, unsigned long start)
1754{
1755	struct super_block *sb = inode->i_sb;
1756	int depth = ext_depth(inode);
1757	struct ext4_ext_path *path;
1758	handle_t *handle;
1759	int i = 0, err = 0;
1760
1761	ext_debug("truncate since %lu\n", start);
1762
1763	/* probably first extent we're gonna free will be last in block */
1764	handle = ext4_journal_start(inode, depth + 1);
1765	if (IS_ERR(handle))
1766		return PTR_ERR(handle);
1767
1768	ext4_ext_invalidate_cache(inode);
1769
1770	/*
1771	 * We start scanning from right side, freeing all the blocks
1772	 * after i_size and walking into the tree depth-wise.
1773	 */
1774	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_KERNEL);
1775	if (path == NULL) {
1776		ext4_journal_stop(handle);
1777		return -ENOMEM;
1778	}
1779	path[0].p_hdr = ext_inode_hdr(inode);
1780	if (ext4_ext_check_header(__FUNCTION__, inode, path[0].p_hdr)) {
1781		err = -EIO;
1782		goto out;
1783	}
1784	path[0].p_depth = depth;
1785
1786	while (i >= 0 && err == 0) {
1787		if (i == depth) {
1788			/* this is leaf block */
1789			err = ext4_ext_rm_leaf(handle, inode, path, start);
1790			/* root level has p_bh == NULL, brelse() eats this */
1791			brelse(path[i].p_bh);
1792			path[i].p_bh = NULL;
1793			i--;
1794			continue;
1795		}
1796
1797		/* this is index block */
1798		if (!path[i].p_hdr) {
1799			ext_debug("initialize header\n");
1800			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
1801			if (ext4_ext_check_header(__FUNCTION__, inode,
1802							path[i].p_hdr)) {
1803				err = -EIO;
1804				goto out;
1805			}
1806		}
1807
1808		BUG_ON(le16_to_cpu(path[i].p_hdr->eh_entries)
1809			   > le16_to_cpu(path[i].p_hdr->eh_max));
1810		BUG_ON(path[i].p_hdr->eh_magic != EXT4_EXT_MAGIC);
1811
1812		if (!path[i].p_idx) {
1813			/* this level hasn't been touched yet */
1814			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
1815			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
1816			ext_debug("init index ptr: hdr 0x%p, num %d\n",
1817				  path[i].p_hdr,
1818				  le16_to_cpu(path[i].p_hdr->eh_entries));
1819		} else {
1820			/* we were already here, see at next index */
1821			path[i].p_idx--;
1822		}
1823
1824		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
1825				i, EXT_FIRST_INDEX(path[i].p_hdr),
1826				path[i].p_idx);
1827		if (ext4_ext_more_to_rm(path + i)) {
1828			/* go to the next level */
1829			ext_debug("move to level %d (block %llu)\n",
1830				  i + 1, idx_pblock(path[i].p_idx));
1831			memset(path + i + 1, 0, sizeof(*path));
1832			path[i+1].p_bh =
1833				sb_bread(sb, idx_pblock(path[i].p_idx));
1834			if (!path[i+1].p_bh) {
1835				/* should we reset i_size? */
1836				err = -EIO;
1837				break;
1838			}
1839
1840			/* save actual number of indexes since this
1841			 * number is changed at the next iteration */
1842			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
1843			i++;
1844		} else {
1845			/* we finished processing this index, go up */
1846			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
1847				/* index is empty, remove it;
1848				 * handle must be already prepared by the
1849				 * truncatei_leaf() */
1850				err = ext4_ext_rm_idx(handle, inode, path + i);
1851			}
1852			/* root level has p_bh == NULL, brelse() eats this */
1853			brelse(path[i].p_bh);
1854			path[i].p_bh = NULL;
1855			i--;
1856			ext_debug("return to level %d\n", i);
1857		}
1858	}
1859
1860	/* TODO: flexible tree reduction should be here */
1861	if (path->p_hdr->eh_entries == 0) {
1862		/*
1863		 * truncate to zero freed all the tree,
1864		 * so we need to correct eh_depth
1865		 */
1866		err = ext4_ext_get_access(handle, inode, path);
1867		if (err == 0) {
1868			ext_inode_hdr(inode)->eh_depth = 0;
1869			ext_inode_hdr(inode)->eh_max =
1870				cpu_to_le16(ext4_ext_space_root(inode));
1871			err = ext4_ext_dirty(handle, inode, path);
1872		}
1873	}
1874out:
1875	ext4_ext_tree_changed(inode);
1876	ext4_ext_drop_refs(path);
1877	kfree(path);
1878	ext4_journal_stop(handle);
1879
1880	return err;
1881}
1882
1883/*
1884 * called at mount time
1885 */
1886void ext4_ext_init(struct super_block *sb)
1887{
1888	/*
1889	 * possible initialization would be here
1890	 */
1891
1892	if (test_opt(sb, EXTENTS)) {
1893		printk("EXT4-fs: file extents enabled");
1894#ifdef AGRESSIVE_TEST
1895		printk(", agressive tests");
1896#endif
1897#ifdef CHECK_BINSEARCH
1898		printk(", check binsearch");
1899#endif
1900#ifdef EXTENTS_STATS
1901		printk(", stats");
1902#endif
1903		printk("\n");
1904#ifdef EXTENTS_STATS
1905		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
1906		EXT4_SB(sb)->s_ext_min = 1 << 30;
1907		EXT4_SB(sb)->s_ext_max = 0;
1908#endif
1909	}
1910}
1911
1912/*
1913 * called at umount time
1914 */
1915void ext4_ext_release(struct super_block *sb)
1916{
1917	if (!test_opt(sb, EXTENTS))
1918		return;
1919
1920#ifdef EXTENTS_STATS
1921	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
1922		struct ext4_sb_info *sbi = EXT4_SB(sb);
1923		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
1924			sbi->s_ext_blocks, sbi->s_ext_extents,
1925			sbi->s_ext_blocks / sbi->s_ext_extents);
1926		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
1927			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
1928	}
1929#endif
1930}
1931
1932int ext4_ext_get_blocks(handle_t *handle, struct inode *inode,
1933			ext4_fsblk_t iblock,
1934			unsigned long max_blocks, struct buffer_head *bh_result,
1935			int create, int extend_disksize)
1936{
1937	struct ext4_ext_path *path = NULL;
1938	struct ext4_extent newex, *ex;
1939	ext4_fsblk_t goal, newblock;
1940	int err = 0, depth;
1941	unsigned long allocated = 0;
1942
1943	__clear_bit(BH_New, &bh_result->b_state);
1944	ext_debug("blocks %d/%lu requested for inode %u\n", (int) iblock,
1945			max_blocks, (unsigned) inode->i_ino);
1946	mutex_lock(&EXT4_I(inode)->truncate_mutex);
1947
1948	/* check in cache */
1949	goal = ext4_ext_in_cache(inode, iblock, &newex);
1950	if (goal) {
1951		if (goal == EXT4_EXT_CACHE_GAP) {
1952			if (!create) {
1953				/* block isn't allocated yet and
1954				 * user doesn't want to allocate it */
1955				goto out2;
1956			}
1957			/* we should allocate requested block */
1958		} else if (goal == EXT4_EXT_CACHE_EXTENT) {
1959			/* block is already allocated */
1960		        newblock = iblock
1961		                   - le32_to_cpu(newex.ee_block)
1962			           + ext_pblock(&newex);
1963			/* number of remaining blocks in the extent */
1964			allocated = le16_to_cpu(newex.ee_len) -
1965					(iblock - le32_to_cpu(newex.ee_block));
1966			goto out;
1967		} else {
1968			BUG();
1969		}
1970	}
1971
1972	/* find extent for this block */
1973	path = ext4_ext_find_extent(inode, iblock, NULL);
1974	if (IS_ERR(path)) {
1975		err = PTR_ERR(path);
1976		path = NULL;
1977		goto out2;
1978	}
1979
1980	depth = ext_depth(inode);
1981
1982	/*
1983	 * consistent leaf must not be empty;
1984	 * this situation is possible, though, _during_ tree modification;
1985	 * this is why assert can't be put in ext4_ext_find_extent()
1986	 */
1987	BUG_ON(path[depth].p_ext == NULL && depth != 0);
1988
1989	ex = path[depth].p_ext;
1990	if (ex) {
1991	        unsigned long ee_block = le32_to_cpu(ex->ee_block);
1992		ext4_fsblk_t ee_start = ext_pblock(ex);
1993		unsigned short ee_len  = le16_to_cpu(ex->ee_len);
1994
1995		/*
1996		 * Allow future support for preallocated extents to be added
1997		 * as an RO_COMPAT feature:
1998		 * Uninitialized extents are treated as holes, except that
1999		 * we avoid (fail) allocating new blocks during a write.
2000		 */
2001		if (ee_len > EXT_MAX_LEN)
2002			goto out2;
2003		/* if found extent covers block, simply return it */
2004	        if (iblock >= ee_block && iblock < ee_block + ee_len) {
2005			newblock = iblock - ee_block + ee_start;
2006			/* number of remaining blocks in the extent */
2007			allocated = ee_len - (iblock - ee_block);
2008			ext_debug("%d fit into %lu:%d -> %llu\n", (int) iblock,
2009					ee_block, ee_len, newblock);
2010			ext4_ext_put_in_cache(inode, ee_block, ee_len,
2011						ee_start, EXT4_EXT_CACHE_EXTENT);
2012			goto out;
2013		}
2014	}
2015
2016	/*
2017	 * requested block isn't allocated yet;
2018	 * we couldn't try to create block if create flag is zero
2019	 */
2020	if (!create) {
2021		/* put just found gap into cache to speed up
2022		 * subsequent requests */
2023		ext4_ext_put_gap_in_cache(inode, path, iblock);
2024		goto out2;
2025	}
2026	/*
2027	 * Okay, we need to do block allocation.  Lazily initialize the block
2028	 * allocation info here if necessary.
2029	 */
2030	if (S_ISREG(inode->i_mode) && (!EXT4_I(inode)->i_block_alloc_info))
2031		ext4_init_block_alloc_info(inode);
2032
2033	/* allocate new block */
2034	goal = ext4_ext_find_goal(inode, path, iblock);
2035	allocated = max_blocks;
2036	newblock = ext4_new_blocks(handle, inode, goal, &allocated, &err);
2037	if (!newblock)
2038		goto out2;
2039	ext_debug("allocate new block: goal %llu, found %llu/%lu\n",
2040			goal, newblock, allocated);
2041
2042	/* try to insert new extent into found leaf and return */
2043	newex.ee_block = cpu_to_le32(iblock);
2044	ext4_ext_store_pblock(&newex, newblock);
2045	newex.ee_len = cpu_to_le16(allocated);
2046	err = ext4_ext_insert_extent(handle, inode, path, &newex);
2047	if (err)
2048		goto out2;
2049
2050	if (extend_disksize && inode->i_size > EXT4_I(inode)->i_disksize)
2051		EXT4_I(inode)->i_disksize = inode->i_size;
2052
2053	/* previous routine could use block we allocated */
2054	newblock = ext_pblock(&newex);
2055	__set_bit(BH_New, &bh_result->b_state);
2056
2057	ext4_ext_put_in_cache(inode, iblock, allocated, newblock,
2058				EXT4_EXT_CACHE_EXTENT);
2059out:
2060	if (allocated > max_blocks)
2061		allocated = max_blocks;
2062	ext4_ext_show_leaf(inode, path);
2063	__set_bit(BH_Mapped, &bh_result->b_state);
2064	bh_result->b_bdev = inode->i_sb->s_bdev;
2065	bh_result->b_blocknr = newblock;
2066out2:
2067	if (path) {
2068		ext4_ext_drop_refs(path);
2069		kfree(path);
2070	}
2071	mutex_unlock(&EXT4_I(inode)->truncate_mutex);
2072
2073	return err ? err : allocated;
2074}
2075
2076void ext4_ext_truncate(struct inode * inode, struct page *page)
2077{
2078	struct address_space *mapping = inode->i_mapping;
2079	struct super_block *sb = inode->i_sb;
2080	unsigned long last_block;
2081	handle_t *handle;
2082	int err = 0;
2083
2084	/*
2085	 * probably first extent we're gonna free will be last in block
2086	 */
2087	err = ext4_writepage_trans_blocks(inode) + 3;
2088	handle = ext4_journal_start(inode, err);
2089	if (IS_ERR(handle)) {
2090		if (page) {
2091			clear_highpage(page);
2092			flush_dcache_page(page);
2093			unlock_page(page);
2094			page_cache_release(page);
2095		}
2096		return;
2097	}
2098
2099	if (page)
2100		ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2101
2102	mutex_lock(&EXT4_I(inode)->truncate_mutex);
2103	ext4_ext_invalidate_cache(inode);
2104
2105	/*
2106	 * TODO: optimization is possible here.
2107	 * Probably we need not scan at all,
2108	 * because page truncation is enough.
2109	 */
2110	if (ext4_orphan_add(handle, inode))
2111		goto out_stop;
2112
2113	/* we have to know where to truncate from in crash case */
2114	EXT4_I(inode)->i_disksize = inode->i_size;
2115	ext4_mark_inode_dirty(handle, inode);
2116
2117	last_block = (inode->i_size + sb->s_blocksize - 1)
2118			>> EXT4_BLOCK_SIZE_BITS(sb);
2119	err = ext4_ext_remove_space(inode, last_block);
2120
2121	/* In a multi-transaction truncate, we only make the final
2122	 * transaction synchronous. */
2123	if (IS_SYNC(inode))
2124		handle->h_sync = 1;
2125
2126out_stop:
2127	/*
2128	 * If this was a simple ftruncate() and the file will remain alive,
2129	 * then we need to clear up the orphan record which we created above.
2130	 * However, if this was a real unlink then we were called by
2131	 * ext4_delete_inode(), and we allow that function to clean up the
2132	 * orphan info for us.
2133	 */
2134	if (inode->i_nlink)
2135		ext4_orphan_del(handle, inode);
2136
2137	mutex_unlock(&EXT4_I(inode)->truncate_mutex);
2138	ext4_journal_stop(handle);
2139}
2140
2141/*
2142 * ext4_ext_writepage_trans_blocks:
2143 * calculate max number of blocks we could modify
2144 * in order to allocate new block for an inode
2145 */
2146int ext4_ext_writepage_trans_blocks(struct inode *inode, int num)
2147{
2148	int needed;
2149
2150	needed = ext4_ext_calc_credits_for_insert(inode, NULL);
2151
2152	/* caller wants to allocate num blocks, but note it includes sb */
2153	needed = needed * num - (num - 1);
2154
2155#ifdef CONFIG_QUOTA
2156	needed += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
2157#endif
2158
2159	return needed;
2160}
2161
2162EXPORT_SYMBOL(ext4_mark_inode_dirty);
2163EXPORT_SYMBOL(ext4_ext_invalidate_cache);
2164EXPORT_SYMBOL(ext4_ext_insert_extent);
2165EXPORT_SYMBOL(ext4_ext_walk_space);
2166EXPORT_SYMBOL(ext4_ext_find_goal);
2167EXPORT_SYMBOL(ext4_ext_calc_credits_for_insert);
2168
2169