extents.c revision 2656497b26d45c1ca51a7727ab92c8307cb99305
1/*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 *   Copyright (c) 2005, Bull S.A.
7 *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21 */
22
23/*
24 * Extents support for EXT4
25 *
26 * TODO:
27 *   - ext4*_error() should be used in some situations
28 *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 *   - smart tree reduction
30 */
31
32#include <linux/fs.h>
33#include <linux/time.h>
34#include <linux/jbd2.h>
35#include <linux/highuid.h>
36#include <linux/pagemap.h>
37#include <linux/quotaops.h>
38#include <linux/string.h>
39#include <linux/slab.h>
40#include <linux/falloc.h>
41#include <asm/uaccess.h>
42#include <linux/fiemap.h>
43#include "ext4_jbd2.h"
44#include "ext4_extents.h"
45#include "xattr.h"
46
47#include <trace/events/ext4.h>
48
49/*
50 * used by extent splitting.
51 */
52#define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
53					due to ENOSPC */
54#define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
55#define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
56
57#define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
58#define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
59
60static __le32 ext4_extent_block_csum(struct inode *inode,
61				     struct ext4_extent_header *eh)
62{
63	struct ext4_inode_info *ei = EXT4_I(inode);
64	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65	__u32 csum;
66
67	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68			   EXT4_EXTENT_TAIL_OFFSET(eh));
69	return cpu_to_le32(csum);
70}
71
72static int ext4_extent_block_csum_verify(struct inode *inode,
73					 struct ext4_extent_header *eh)
74{
75	struct ext4_extent_tail *et;
76
77	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
79		return 1;
80
81	et = find_ext4_extent_tail(eh);
82	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
83		return 0;
84	return 1;
85}
86
87static void ext4_extent_block_csum_set(struct inode *inode,
88				       struct ext4_extent_header *eh)
89{
90	struct ext4_extent_tail *et;
91
92	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
94		return;
95
96	et = find_ext4_extent_tail(eh);
97	et->et_checksum = ext4_extent_block_csum(inode, eh);
98}
99
100static int ext4_split_extent(handle_t *handle,
101				struct inode *inode,
102				struct ext4_ext_path *path,
103				struct ext4_map_blocks *map,
104				int split_flag,
105				int flags);
106
107static int ext4_split_extent_at(handle_t *handle,
108			     struct inode *inode,
109			     struct ext4_ext_path *path,
110			     ext4_lblk_t split,
111			     int split_flag,
112			     int flags);
113
114static int ext4_find_delayed_extent(struct inode *inode,
115				    struct extent_status *newes);
116
117static int ext4_ext_truncate_extend_restart(handle_t *handle,
118					    struct inode *inode,
119					    int needed)
120{
121	int err;
122
123	if (!ext4_handle_valid(handle))
124		return 0;
125	if (handle->h_buffer_credits > needed)
126		return 0;
127	err = ext4_journal_extend(handle, needed);
128	if (err <= 0)
129		return err;
130	err = ext4_truncate_restart_trans(handle, inode, needed);
131	if (err == 0)
132		err = -EAGAIN;
133
134	return err;
135}
136
137/*
138 * could return:
139 *  - EROFS
140 *  - ENOMEM
141 */
142static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143				struct ext4_ext_path *path)
144{
145	if (path->p_bh) {
146		/* path points to block */
147		return ext4_journal_get_write_access(handle, path->p_bh);
148	}
149	/* path points to leaf/index in inode body */
150	/* we use in-core data, no need to protect them */
151	return 0;
152}
153
154/*
155 * could return:
156 *  - EROFS
157 *  - ENOMEM
158 *  - EIO
159 */
160int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
161		     struct inode *inode, struct ext4_ext_path *path)
162{
163	int err;
164	if (path->p_bh) {
165		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
166		/* path points to block */
167		err = __ext4_handle_dirty_metadata(where, line, handle,
168						   inode, path->p_bh);
169	} else {
170		/* path points to leaf/index in inode body */
171		err = ext4_mark_inode_dirty(handle, inode);
172	}
173	return err;
174}
175
176static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
177			      struct ext4_ext_path *path,
178			      ext4_lblk_t block)
179{
180	if (path) {
181		int depth = path->p_depth;
182		struct ext4_extent *ex;
183
184		/*
185		 * Try to predict block placement assuming that we are
186		 * filling in a file which will eventually be
187		 * non-sparse --- i.e., in the case of libbfd writing
188		 * an ELF object sections out-of-order but in a way
189		 * the eventually results in a contiguous object or
190		 * executable file, or some database extending a table
191		 * space file.  However, this is actually somewhat
192		 * non-ideal if we are writing a sparse file such as
193		 * qemu or KVM writing a raw image file that is going
194		 * to stay fairly sparse, since it will end up
195		 * fragmenting the file system's free space.  Maybe we
196		 * should have some hueristics or some way to allow
197		 * userspace to pass a hint to file system,
198		 * especially if the latter case turns out to be
199		 * common.
200		 */
201		ex = path[depth].p_ext;
202		if (ex) {
203			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
204			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
205
206			if (block > ext_block)
207				return ext_pblk + (block - ext_block);
208			else
209				return ext_pblk - (ext_block - block);
210		}
211
212		/* it looks like index is empty;
213		 * try to find starting block from index itself */
214		if (path[depth].p_bh)
215			return path[depth].p_bh->b_blocknr;
216	}
217
218	/* OK. use inode's group */
219	return ext4_inode_to_goal_block(inode);
220}
221
222/*
223 * Allocation for a meta data block
224 */
225static ext4_fsblk_t
226ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
227			struct ext4_ext_path *path,
228			struct ext4_extent *ex, int *err, unsigned int flags)
229{
230	ext4_fsblk_t goal, newblock;
231
232	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
233	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
234					NULL, err);
235	return newblock;
236}
237
238static inline int ext4_ext_space_block(struct inode *inode, int check)
239{
240	int size;
241
242	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
243			/ sizeof(struct ext4_extent);
244#ifdef AGGRESSIVE_TEST
245	if (!check && size > 6)
246		size = 6;
247#endif
248	return size;
249}
250
251static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
252{
253	int size;
254
255	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
256			/ sizeof(struct ext4_extent_idx);
257#ifdef AGGRESSIVE_TEST
258	if (!check && size > 5)
259		size = 5;
260#endif
261	return size;
262}
263
264static inline int ext4_ext_space_root(struct inode *inode, int check)
265{
266	int size;
267
268	size = sizeof(EXT4_I(inode)->i_data);
269	size -= sizeof(struct ext4_extent_header);
270	size /= sizeof(struct ext4_extent);
271#ifdef AGGRESSIVE_TEST
272	if (!check && size > 3)
273		size = 3;
274#endif
275	return size;
276}
277
278static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
279{
280	int size;
281
282	size = sizeof(EXT4_I(inode)->i_data);
283	size -= sizeof(struct ext4_extent_header);
284	size /= sizeof(struct ext4_extent_idx);
285#ifdef AGGRESSIVE_TEST
286	if (!check && size > 4)
287		size = 4;
288#endif
289	return size;
290}
291
292/*
293 * Calculate the number of metadata blocks needed
294 * to allocate @blocks
295 * Worse case is one block per extent
296 */
297int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
298{
299	struct ext4_inode_info *ei = EXT4_I(inode);
300	int idxs;
301
302	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
303		/ sizeof(struct ext4_extent_idx));
304
305	/*
306	 * If the new delayed allocation block is contiguous with the
307	 * previous da block, it can share index blocks with the
308	 * previous block, so we only need to allocate a new index
309	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
310	 * an additional index block, and at ldxs**3 blocks, yet
311	 * another index blocks.
312	 */
313	if (ei->i_da_metadata_calc_len &&
314	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
315		int num = 0;
316
317		if ((ei->i_da_metadata_calc_len % idxs) == 0)
318			num++;
319		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
320			num++;
321		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
322			num++;
323			ei->i_da_metadata_calc_len = 0;
324		} else
325			ei->i_da_metadata_calc_len++;
326		ei->i_da_metadata_calc_last_lblock++;
327		return num;
328	}
329
330	/*
331	 * In the worst case we need a new set of index blocks at
332	 * every level of the inode's extent tree.
333	 */
334	ei->i_da_metadata_calc_len = 1;
335	ei->i_da_metadata_calc_last_lblock = lblock;
336	return ext_depth(inode) + 1;
337}
338
339static int
340ext4_ext_max_entries(struct inode *inode, int depth)
341{
342	int max;
343
344	if (depth == ext_depth(inode)) {
345		if (depth == 0)
346			max = ext4_ext_space_root(inode, 1);
347		else
348			max = ext4_ext_space_root_idx(inode, 1);
349	} else {
350		if (depth == 0)
351			max = ext4_ext_space_block(inode, 1);
352		else
353			max = ext4_ext_space_block_idx(inode, 1);
354	}
355
356	return max;
357}
358
359static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
360{
361	ext4_fsblk_t block = ext4_ext_pblock(ext);
362	int len = ext4_ext_get_actual_len(ext);
363
364	if (len == 0)
365		return 0;
366	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
367}
368
369static int ext4_valid_extent_idx(struct inode *inode,
370				struct ext4_extent_idx *ext_idx)
371{
372	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
373
374	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
375}
376
377static int ext4_valid_extent_entries(struct inode *inode,
378				struct ext4_extent_header *eh,
379				int depth)
380{
381	unsigned short entries;
382	if (eh->eh_entries == 0)
383		return 1;
384
385	entries = le16_to_cpu(eh->eh_entries);
386
387	if (depth == 0) {
388		/* leaf entries */
389		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
390		while (entries) {
391			if (!ext4_valid_extent(inode, ext))
392				return 0;
393			ext++;
394			entries--;
395		}
396	} else {
397		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
398		while (entries) {
399			if (!ext4_valid_extent_idx(inode, ext_idx))
400				return 0;
401			ext_idx++;
402			entries--;
403		}
404	}
405	return 1;
406}
407
408static int __ext4_ext_check(const char *function, unsigned int line,
409			    struct inode *inode, struct ext4_extent_header *eh,
410			    int depth)
411{
412	const char *error_msg;
413	int max = 0;
414
415	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
416		error_msg = "invalid magic";
417		goto corrupted;
418	}
419	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
420		error_msg = "unexpected eh_depth";
421		goto corrupted;
422	}
423	if (unlikely(eh->eh_max == 0)) {
424		error_msg = "invalid eh_max";
425		goto corrupted;
426	}
427	max = ext4_ext_max_entries(inode, depth);
428	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
429		error_msg = "too large eh_max";
430		goto corrupted;
431	}
432	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
433		error_msg = "invalid eh_entries";
434		goto corrupted;
435	}
436	if (!ext4_valid_extent_entries(inode, eh, depth)) {
437		error_msg = "invalid extent entries";
438		goto corrupted;
439	}
440	/* Verify checksum on non-root extent tree nodes */
441	if (ext_depth(inode) != depth &&
442	    !ext4_extent_block_csum_verify(inode, eh)) {
443		error_msg = "extent tree corrupted";
444		goto corrupted;
445	}
446	return 0;
447
448corrupted:
449	ext4_error_inode(inode, function, line, 0,
450			"bad header/extent: %s - magic %x, "
451			"entries %u, max %u(%u), depth %u(%u)",
452			error_msg, le16_to_cpu(eh->eh_magic),
453			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
454			max, le16_to_cpu(eh->eh_depth), depth);
455
456	return -EIO;
457}
458
459#define ext4_ext_check(inode, eh, depth)	\
460	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
461
462int ext4_ext_check_inode(struct inode *inode)
463{
464	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
465}
466
467static int __ext4_ext_check_block(const char *function, unsigned int line,
468				  struct inode *inode,
469				  struct ext4_extent_header *eh,
470				  int depth,
471				  struct buffer_head *bh)
472{
473	int ret;
474
475	if (buffer_verified(bh))
476		return 0;
477	ret = ext4_ext_check(inode, eh, depth);
478	if (ret)
479		return ret;
480	set_buffer_verified(bh);
481	return ret;
482}
483
484#define ext4_ext_check_block(inode, eh, depth, bh)	\
485	__ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
486
487#ifdef EXT_DEBUG
488static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
489{
490	int k, l = path->p_depth;
491
492	ext_debug("path:");
493	for (k = 0; k <= l; k++, path++) {
494		if (path->p_idx) {
495		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
496			    ext4_idx_pblock(path->p_idx));
497		} else if (path->p_ext) {
498			ext_debug("  %d:[%d]%d:%llu ",
499				  le32_to_cpu(path->p_ext->ee_block),
500				  ext4_ext_is_uninitialized(path->p_ext),
501				  ext4_ext_get_actual_len(path->p_ext),
502				  ext4_ext_pblock(path->p_ext));
503		} else
504			ext_debug("  []");
505	}
506	ext_debug("\n");
507}
508
509static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
510{
511	int depth = ext_depth(inode);
512	struct ext4_extent_header *eh;
513	struct ext4_extent *ex;
514	int i;
515
516	if (!path)
517		return;
518
519	eh = path[depth].p_hdr;
520	ex = EXT_FIRST_EXTENT(eh);
521
522	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
523
524	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
525		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
526			  ext4_ext_is_uninitialized(ex),
527			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
528	}
529	ext_debug("\n");
530}
531
532static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
533			ext4_fsblk_t newblock, int level)
534{
535	int depth = ext_depth(inode);
536	struct ext4_extent *ex;
537
538	if (depth != level) {
539		struct ext4_extent_idx *idx;
540		idx = path[level].p_idx;
541		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
542			ext_debug("%d: move %d:%llu in new index %llu\n", level,
543					le32_to_cpu(idx->ei_block),
544					ext4_idx_pblock(idx),
545					newblock);
546			idx++;
547		}
548
549		return;
550	}
551
552	ex = path[depth].p_ext;
553	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
554		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
555				le32_to_cpu(ex->ee_block),
556				ext4_ext_pblock(ex),
557				ext4_ext_is_uninitialized(ex),
558				ext4_ext_get_actual_len(ex),
559				newblock);
560		ex++;
561	}
562}
563
564#else
565#define ext4_ext_show_path(inode, path)
566#define ext4_ext_show_leaf(inode, path)
567#define ext4_ext_show_move(inode, path, newblock, level)
568#endif
569
570void ext4_ext_drop_refs(struct ext4_ext_path *path)
571{
572	int depth = path->p_depth;
573	int i;
574
575	for (i = 0; i <= depth; i++, path++)
576		if (path->p_bh) {
577			brelse(path->p_bh);
578			path->p_bh = NULL;
579		}
580}
581
582/*
583 * ext4_ext_binsearch_idx:
584 * binary search for the closest index of the given block
585 * the header must be checked before calling this
586 */
587static void
588ext4_ext_binsearch_idx(struct inode *inode,
589			struct ext4_ext_path *path, ext4_lblk_t block)
590{
591	struct ext4_extent_header *eh = path->p_hdr;
592	struct ext4_extent_idx *r, *l, *m;
593
594
595	ext_debug("binsearch for %u(idx):  ", block);
596
597	l = EXT_FIRST_INDEX(eh) + 1;
598	r = EXT_LAST_INDEX(eh);
599	while (l <= r) {
600		m = l + (r - l) / 2;
601		if (block < le32_to_cpu(m->ei_block))
602			r = m - 1;
603		else
604			l = m + 1;
605		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
606				m, le32_to_cpu(m->ei_block),
607				r, le32_to_cpu(r->ei_block));
608	}
609
610	path->p_idx = l - 1;
611	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
612		  ext4_idx_pblock(path->p_idx));
613
614#ifdef CHECK_BINSEARCH
615	{
616		struct ext4_extent_idx *chix, *ix;
617		int k;
618
619		chix = ix = EXT_FIRST_INDEX(eh);
620		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
621		  if (k != 0 &&
622		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
623				printk(KERN_DEBUG "k=%d, ix=0x%p, "
624				       "first=0x%p\n", k,
625				       ix, EXT_FIRST_INDEX(eh));
626				printk(KERN_DEBUG "%u <= %u\n",
627				       le32_to_cpu(ix->ei_block),
628				       le32_to_cpu(ix[-1].ei_block));
629			}
630			BUG_ON(k && le32_to_cpu(ix->ei_block)
631					   <= le32_to_cpu(ix[-1].ei_block));
632			if (block < le32_to_cpu(ix->ei_block))
633				break;
634			chix = ix;
635		}
636		BUG_ON(chix != path->p_idx);
637	}
638#endif
639
640}
641
642/*
643 * ext4_ext_binsearch:
644 * binary search for closest extent of the given block
645 * the header must be checked before calling this
646 */
647static void
648ext4_ext_binsearch(struct inode *inode,
649		struct ext4_ext_path *path, ext4_lblk_t block)
650{
651	struct ext4_extent_header *eh = path->p_hdr;
652	struct ext4_extent *r, *l, *m;
653
654	if (eh->eh_entries == 0) {
655		/*
656		 * this leaf is empty:
657		 * we get such a leaf in split/add case
658		 */
659		return;
660	}
661
662	ext_debug("binsearch for %u:  ", block);
663
664	l = EXT_FIRST_EXTENT(eh) + 1;
665	r = EXT_LAST_EXTENT(eh);
666
667	while (l <= r) {
668		m = l + (r - l) / 2;
669		if (block < le32_to_cpu(m->ee_block))
670			r = m - 1;
671		else
672			l = m + 1;
673		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
674				m, le32_to_cpu(m->ee_block),
675				r, le32_to_cpu(r->ee_block));
676	}
677
678	path->p_ext = l - 1;
679	ext_debug("  -> %d:%llu:[%d]%d ",
680			le32_to_cpu(path->p_ext->ee_block),
681			ext4_ext_pblock(path->p_ext),
682			ext4_ext_is_uninitialized(path->p_ext),
683			ext4_ext_get_actual_len(path->p_ext));
684
685#ifdef CHECK_BINSEARCH
686	{
687		struct ext4_extent *chex, *ex;
688		int k;
689
690		chex = ex = EXT_FIRST_EXTENT(eh);
691		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
692			BUG_ON(k && le32_to_cpu(ex->ee_block)
693					  <= le32_to_cpu(ex[-1].ee_block));
694			if (block < le32_to_cpu(ex->ee_block))
695				break;
696			chex = ex;
697		}
698		BUG_ON(chex != path->p_ext);
699	}
700#endif
701
702}
703
704int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
705{
706	struct ext4_extent_header *eh;
707
708	eh = ext_inode_hdr(inode);
709	eh->eh_depth = 0;
710	eh->eh_entries = 0;
711	eh->eh_magic = EXT4_EXT_MAGIC;
712	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
713	ext4_mark_inode_dirty(handle, inode);
714	return 0;
715}
716
717struct ext4_ext_path *
718ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
719					struct ext4_ext_path *path)
720{
721	struct ext4_extent_header *eh;
722	struct buffer_head *bh;
723	short int depth, i, ppos = 0, alloc = 0;
724	int ret;
725
726	eh = ext_inode_hdr(inode);
727	depth = ext_depth(inode);
728
729	/* account possible depth increase */
730	if (!path) {
731		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
732				GFP_NOFS);
733		if (!path)
734			return ERR_PTR(-ENOMEM);
735		alloc = 1;
736	}
737	path[0].p_hdr = eh;
738	path[0].p_bh = NULL;
739
740	i = depth;
741	/* walk through the tree */
742	while (i) {
743		ext_debug("depth %d: num %d, max %d\n",
744			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
745
746		ext4_ext_binsearch_idx(inode, path + ppos, block);
747		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
748		path[ppos].p_depth = i;
749		path[ppos].p_ext = NULL;
750
751		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
752		if (unlikely(!bh)) {
753			ret = -ENOMEM;
754			goto err;
755		}
756		if (!bh_uptodate_or_lock(bh)) {
757			trace_ext4_ext_load_extent(inode, block,
758						path[ppos].p_block);
759			ret = bh_submit_read(bh);
760			if (ret < 0) {
761				put_bh(bh);
762				goto err;
763			}
764		}
765		eh = ext_block_hdr(bh);
766		ppos++;
767		if (unlikely(ppos > depth)) {
768			put_bh(bh);
769			EXT4_ERROR_INODE(inode,
770					 "ppos %d > depth %d", ppos, depth);
771			ret = -EIO;
772			goto err;
773		}
774		path[ppos].p_bh = bh;
775		path[ppos].p_hdr = eh;
776		i--;
777
778		ret = ext4_ext_check_block(inode, eh, i, bh);
779		if (ret < 0)
780			goto err;
781	}
782
783	path[ppos].p_depth = i;
784	path[ppos].p_ext = NULL;
785	path[ppos].p_idx = NULL;
786
787	/* find extent */
788	ext4_ext_binsearch(inode, path + ppos, block);
789	/* if not an empty leaf */
790	if (path[ppos].p_ext)
791		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
792
793	ext4_ext_show_path(inode, path);
794
795	return path;
796
797err:
798	ext4_ext_drop_refs(path);
799	if (alloc)
800		kfree(path);
801	return ERR_PTR(ret);
802}
803
804/*
805 * ext4_ext_insert_index:
806 * insert new index [@logical;@ptr] into the block at @curp;
807 * check where to insert: before @curp or after @curp
808 */
809static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
810				 struct ext4_ext_path *curp,
811				 int logical, ext4_fsblk_t ptr)
812{
813	struct ext4_extent_idx *ix;
814	int len, err;
815
816	err = ext4_ext_get_access(handle, inode, curp);
817	if (err)
818		return err;
819
820	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
821		EXT4_ERROR_INODE(inode,
822				 "logical %d == ei_block %d!",
823				 logical, le32_to_cpu(curp->p_idx->ei_block));
824		return -EIO;
825	}
826
827	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
828			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
829		EXT4_ERROR_INODE(inode,
830				 "eh_entries %d >= eh_max %d!",
831				 le16_to_cpu(curp->p_hdr->eh_entries),
832				 le16_to_cpu(curp->p_hdr->eh_max));
833		return -EIO;
834	}
835
836	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
837		/* insert after */
838		ext_debug("insert new index %d after: %llu\n", logical, ptr);
839		ix = curp->p_idx + 1;
840	} else {
841		/* insert before */
842		ext_debug("insert new index %d before: %llu\n", logical, ptr);
843		ix = curp->p_idx;
844	}
845
846	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
847	BUG_ON(len < 0);
848	if (len > 0) {
849		ext_debug("insert new index %d: "
850				"move %d indices from 0x%p to 0x%p\n",
851				logical, len, ix, ix + 1);
852		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
853	}
854
855	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
856		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
857		return -EIO;
858	}
859
860	ix->ei_block = cpu_to_le32(logical);
861	ext4_idx_store_pblock(ix, ptr);
862	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
863
864	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
865		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
866		return -EIO;
867	}
868
869	err = ext4_ext_dirty(handle, inode, curp);
870	ext4_std_error(inode->i_sb, err);
871
872	return err;
873}
874
875/*
876 * ext4_ext_split:
877 * inserts new subtree into the path, using free index entry
878 * at depth @at:
879 * - allocates all needed blocks (new leaf and all intermediate index blocks)
880 * - makes decision where to split
881 * - moves remaining extents and index entries (right to the split point)
882 *   into the newly allocated blocks
883 * - initializes subtree
884 */
885static int ext4_ext_split(handle_t *handle, struct inode *inode,
886			  unsigned int flags,
887			  struct ext4_ext_path *path,
888			  struct ext4_extent *newext, int at)
889{
890	struct buffer_head *bh = NULL;
891	int depth = ext_depth(inode);
892	struct ext4_extent_header *neh;
893	struct ext4_extent_idx *fidx;
894	int i = at, k, m, a;
895	ext4_fsblk_t newblock, oldblock;
896	__le32 border;
897	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
898	int err = 0;
899
900	/* make decision: where to split? */
901	/* FIXME: now decision is simplest: at current extent */
902
903	/* if current leaf will be split, then we should use
904	 * border from split point */
905	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
906		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
907		return -EIO;
908	}
909	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
910		border = path[depth].p_ext[1].ee_block;
911		ext_debug("leaf will be split."
912				" next leaf starts at %d\n",
913				  le32_to_cpu(border));
914	} else {
915		border = newext->ee_block;
916		ext_debug("leaf will be added."
917				" next leaf starts at %d\n",
918				le32_to_cpu(border));
919	}
920
921	/*
922	 * If error occurs, then we break processing
923	 * and mark filesystem read-only. index won't
924	 * be inserted and tree will be in consistent
925	 * state. Next mount will repair buffers too.
926	 */
927
928	/*
929	 * Get array to track all allocated blocks.
930	 * We need this to handle errors and free blocks
931	 * upon them.
932	 */
933	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
934	if (!ablocks)
935		return -ENOMEM;
936
937	/* allocate all needed blocks */
938	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
939	for (a = 0; a < depth - at; a++) {
940		newblock = ext4_ext_new_meta_block(handle, inode, path,
941						   newext, &err, flags);
942		if (newblock == 0)
943			goto cleanup;
944		ablocks[a] = newblock;
945	}
946
947	/* initialize new leaf */
948	newblock = ablocks[--a];
949	if (unlikely(newblock == 0)) {
950		EXT4_ERROR_INODE(inode, "newblock == 0!");
951		err = -EIO;
952		goto cleanup;
953	}
954	bh = sb_getblk(inode->i_sb, newblock);
955	if (unlikely(!bh)) {
956		err = -ENOMEM;
957		goto cleanup;
958	}
959	lock_buffer(bh);
960
961	err = ext4_journal_get_create_access(handle, bh);
962	if (err)
963		goto cleanup;
964
965	neh = ext_block_hdr(bh);
966	neh->eh_entries = 0;
967	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
968	neh->eh_magic = EXT4_EXT_MAGIC;
969	neh->eh_depth = 0;
970
971	/* move remainder of path[depth] to the new leaf */
972	if (unlikely(path[depth].p_hdr->eh_entries !=
973		     path[depth].p_hdr->eh_max)) {
974		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
975				 path[depth].p_hdr->eh_entries,
976				 path[depth].p_hdr->eh_max);
977		err = -EIO;
978		goto cleanup;
979	}
980	/* start copy from next extent */
981	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
982	ext4_ext_show_move(inode, path, newblock, depth);
983	if (m) {
984		struct ext4_extent *ex;
985		ex = EXT_FIRST_EXTENT(neh);
986		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
987		le16_add_cpu(&neh->eh_entries, m);
988	}
989
990	ext4_extent_block_csum_set(inode, neh);
991	set_buffer_uptodate(bh);
992	unlock_buffer(bh);
993
994	err = ext4_handle_dirty_metadata(handle, inode, bh);
995	if (err)
996		goto cleanup;
997	brelse(bh);
998	bh = NULL;
999
1000	/* correct old leaf */
1001	if (m) {
1002		err = ext4_ext_get_access(handle, inode, path + depth);
1003		if (err)
1004			goto cleanup;
1005		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1006		err = ext4_ext_dirty(handle, inode, path + depth);
1007		if (err)
1008			goto cleanup;
1009
1010	}
1011
1012	/* create intermediate indexes */
1013	k = depth - at - 1;
1014	if (unlikely(k < 0)) {
1015		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1016		err = -EIO;
1017		goto cleanup;
1018	}
1019	if (k)
1020		ext_debug("create %d intermediate indices\n", k);
1021	/* insert new index into current index block */
1022	/* current depth stored in i var */
1023	i = depth - 1;
1024	while (k--) {
1025		oldblock = newblock;
1026		newblock = ablocks[--a];
1027		bh = sb_getblk(inode->i_sb, newblock);
1028		if (unlikely(!bh)) {
1029			err = -ENOMEM;
1030			goto cleanup;
1031		}
1032		lock_buffer(bh);
1033
1034		err = ext4_journal_get_create_access(handle, bh);
1035		if (err)
1036			goto cleanup;
1037
1038		neh = ext_block_hdr(bh);
1039		neh->eh_entries = cpu_to_le16(1);
1040		neh->eh_magic = EXT4_EXT_MAGIC;
1041		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1042		neh->eh_depth = cpu_to_le16(depth - i);
1043		fidx = EXT_FIRST_INDEX(neh);
1044		fidx->ei_block = border;
1045		ext4_idx_store_pblock(fidx, oldblock);
1046
1047		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1048				i, newblock, le32_to_cpu(border), oldblock);
1049
1050		/* move remainder of path[i] to the new index block */
1051		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1052					EXT_LAST_INDEX(path[i].p_hdr))) {
1053			EXT4_ERROR_INODE(inode,
1054					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1055					 le32_to_cpu(path[i].p_ext->ee_block));
1056			err = -EIO;
1057			goto cleanup;
1058		}
1059		/* start copy indexes */
1060		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1061		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1062				EXT_MAX_INDEX(path[i].p_hdr));
1063		ext4_ext_show_move(inode, path, newblock, i);
1064		if (m) {
1065			memmove(++fidx, path[i].p_idx,
1066				sizeof(struct ext4_extent_idx) * m);
1067			le16_add_cpu(&neh->eh_entries, m);
1068		}
1069		ext4_extent_block_csum_set(inode, neh);
1070		set_buffer_uptodate(bh);
1071		unlock_buffer(bh);
1072
1073		err = ext4_handle_dirty_metadata(handle, inode, bh);
1074		if (err)
1075			goto cleanup;
1076		brelse(bh);
1077		bh = NULL;
1078
1079		/* correct old index */
1080		if (m) {
1081			err = ext4_ext_get_access(handle, inode, path + i);
1082			if (err)
1083				goto cleanup;
1084			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1085			err = ext4_ext_dirty(handle, inode, path + i);
1086			if (err)
1087				goto cleanup;
1088		}
1089
1090		i--;
1091	}
1092
1093	/* insert new index */
1094	err = ext4_ext_insert_index(handle, inode, path + at,
1095				    le32_to_cpu(border), newblock);
1096
1097cleanup:
1098	if (bh) {
1099		if (buffer_locked(bh))
1100			unlock_buffer(bh);
1101		brelse(bh);
1102	}
1103
1104	if (err) {
1105		/* free all allocated blocks in error case */
1106		for (i = 0; i < depth; i++) {
1107			if (!ablocks[i])
1108				continue;
1109			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1110					 EXT4_FREE_BLOCKS_METADATA);
1111		}
1112	}
1113	kfree(ablocks);
1114
1115	return err;
1116}
1117
1118/*
1119 * ext4_ext_grow_indepth:
1120 * implements tree growing procedure:
1121 * - allocates new block
1122 * - moves top-level data (index block or leaf) into the new block
1123 * - initializes new top-level, creating index that points to the
1124 *   just created block
1125 */
1126static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1127				 unsigned int flags,
1128				 struct ext4_extent *newext)
1129{
1130	struct ext4_extent_header *neh;
1131	struct buffer_head *bh;
1132	ext4_fsblk_t newblock;
1133	int err = 0;
1134
1135	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1136		newext, &err, flags);
1137	if (newblock == 0)
1138		return err;
1139
1140	bh = sb_getblk(inode->i_sb, newblock);
1141	if (unlikely(!bh))
1142		return -ENOMEM;
1143	lock_buffer(bh);
1144
1145	err = ext4_journal_get_create_access(handle, bh);
1146	if (err) {
1147		unlock_buffer(bh);
1148		goto out;
1149	}
1150
1151	/* move top-level index/leaf into new block */
1152	memmove(bh->b_data, EXT4_I(inode)->i_data,
1153		sizeof(EXT4_I(inode)->i_data));
1154
1155	/* set size of new block */
1156	neh = ext_block_hdr(bh);
1157	/* old root could have indexes or leaves
1158	 * so calculate e_max right way */
1159	if (ext_depth(inode))
1160		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1161	else
1162		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1163	neh->eh_magic = EXT4_EXT_MAGIC;
1164	ext4_extent_block_csum_set(inode, neh);
1165	set_buffer_uptodate(bh);
1166	unlock_buffer(bh);
1167
1168	err = ext4_handle_dirty_metadata(handle, inode, bh);
1169	if (err)
1170		goto out;
1171
1172	/* Update top-level index: num,max,pointer */
1173	neh = ext_inode_hdr(inode);
1174	neh->eh_entries = cpu_to_le16(1);
1175	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1176	if (neh->eh_depth == 0) {
1177		/* Root extent block becomes index block */
1178		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1179		EXT_FIRST_INDEX(neh)->ei_block =
1180			EXT_FIRST_EXTENT(neh)->ee_block;
1181	}
1182	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1183		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1184		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1185		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1186
1187	le16_add_cpu(&neh->eh_depth, 1);
1188	ext4_mark_inode_dirty(handle, inode);
1189out:
1190	brelse(bh);
1191
1192	return err;
1193}
1194
1195/*
1196 * ext4_ext_create_new_leaf:
1197 * finds empty index and adds new leaf.
1198 * if no free index is found, then it requests in-depth growing.
1199 */
1200static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1201				    unsigned int flags,
1202				    struct ext4_ext_path *path,
1203				    struct ext4_extent *newext)
1204{
1205	struct ext4_ext_path *curp;
1206	int depth, i, err = 0;
1207
1208repeat:
1209	i = depth = ext_depth(inode);
1210
1211	/* walk up to the tree and look for free index entry */
1212	curp = path + depth;
1213	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1214		i--;
1215		curp--;
1216	}
1217
1218	/* we use already allocated block for index block,
1219	 * so subsequent data blocks should be contiguous */
1220	if (EXT_HAS_FREE_INDEX(curp)) {
1221		/* if we found index with free entry, then use that
1222		 * entry: create all needed subtree and add new leaf */
1223		err = ext4_ext_split(handle, inode, flags, path, newext, i);
1224		if (err)
1225			goto out;
1226
1227		/* refill path */
1228		ext4_ext_drop_refs(path);
1229		path = ext4_ext_find_extent(inode,
1230				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1231				    path);
1232		if (IS_ERR(path))
1233			err = PTR_ERR(path);
1234	} else {
1235		/* tree is full, time to grow in depth */
1236		err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1237		if (err)
1238			goto out;
1239
1240		/* refill path */
1241		ext4_ext_drop_refs(path);
1242		path = ext4_ext_find_extent(inode,
1243				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1244				    path);
1245		if (IS_ERR(path)) {
1246			err = PTR_ERR(path);
1247			goto out;
1248		}
1249
1250		/*
1251		 * only first (depth 0 -> 1) produces free space;
1252		 * in all other cases we have to split the grown tree
1253		 */
1254		depth = ext_depth(inode);
1255		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1256			/* now we need to split */
1257			goto repeat;
1258		}
1259	}
1260
1261out:
1262	return err;
1263}
1264
1265/*
1266 * search the closest allocated block to the left for *logical
1267 * and returns it at @logical + it's physical address at @phys
1268 * if *logical is the smallest allocated block, the function
1269 * returns 0 at @phys
1270 * return value contains 0 (success) or error code
1271 */
1272static int ext4_ext_search_left(struct inode *inode,
1273				struct ext4_ext_path *path,
1274				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1275{
1276	struct ext4_extent_idx *ix;
1277	struct ext4_extent *ex;
1278	int depth, ee_len;
1279
1280	if (unlikely(path == NULL)) {
1281		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1282		return -EIO;
1283	}
1284	depth = path->p_depth;
1285	*phys = 0;
1286
1287	if (depth == 0 && path->p_ext == NULL)
1288		return 0;
1289
1290	/* usually extent in the path covers blocks smaller
1291	 * then *logical, but it can be that extent is the
1292	 * first one in the file */
1293
1294	ex = path[depth].p_ext;
1295	ee_len = ext4_ext_get_actual_len(ex);
1296	if (*logical < le32_to_cpu(ex->ee_block)) {
1297		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1298			EXT4_ERROR_INODE(inode,
1299					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1300					 *logical, le32_to_cpu(ex->ee_block));
1301			return -EIO;
1302		}
1303		while (--depth >= 0) {
1304			ix = path[depth].p_idx;
1305			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1306				EXT4_ERROR_INODE(inode,
1307				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1308				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1309				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1310		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1311				  depth);
1312				return -EIO;
1313			}
1314		}
1315		return 0;
1316	}
1317
1318	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1319		EXT4_ERROR_INODE(inode,
1320				 "logical %d < ee_block %d + ee_len %d!",
1321				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1322		return -EIO;
1323	}
1324
1325	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1326	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1327	return 0;
1328}
1329
1330/*
1331 * search the closest allocated block to the right for *logical
1332 * and returns it at @logical + it's physical address at @phys
1333 * if *logical is the largest allocated block, the function
1334 * returns 0 at @phys
1335 * return value contains 0 (success) or error code
1336 */
1337static int ext4_ext_search_right(struct inode *inode,
1338				 struct ext4_ext_path *path,
1339				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1340				 struct ext4_extent **ret_ex)
1341{
1342	struct buffer_head *bh = NULL;
1343	struct ext4_extent_header *eh;
1344	struct ext4_extent_idx *ix;
1345	struct ext4_extent *ex;
1346	ext4_fsblk_t block;
1347	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1348	int ee_len;
1349
1350	if (unlikely(path == NULL)) {
1351		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1352		return -EIO;
1353	}
1354	depth = path->p_depth;
1355	*phys = 0;
1356
1357	if (depth == 0 && path->p_ext == NULL)
1358		return 0;
1359
1360	/* usually extent in the path covers blocks smaller
1361	 * then *logical, but it can be that extent is the
1362	 * first one in the file */
1363
1364	ex = path[depth].p_ext;
1365	ee_len = ext4_ext_get_actual_len(ex);
1366	if (*logical < le32_to_cpu(ex->ee_block)) {
1367		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1368			EXT4_ERROR_INODE(inode,
1369					 "first_extent(path[%d].p_hdr) != ex",
1370					 depth);
1371			return -EIO;
1372		}
1373		while (--depth >= 0) {
1374			ix = path[depth].p_idx;
1375			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1376				EXT4_ERROR_INODE(inode,
1377						 "ix != EXT_FIRST_INDEX *logical %d!",
1378						 *logical);
1379				return -EIO;
1380			}
1381		}
1382		goto found_extent;
1383	}
1384
1385	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1386		EXT4_ERROR_INODE(inode,
1387				 "logical %d < ee_block %d + ee_len %d!",
1388				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1389		return -EIO;
1390	}
1391
1392	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1393		/* next allocated block in this leaf */
1394		ex++;
1395		goto found_extent;
1396	}
1397
1398	/* go up and search for index to the right */
1399	while (--depth >= 0) {
1400		ix = path[depth].p_idx;
1401		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1402			goto got_index;
1403	}
1404
1405	/* we've gone up to the root and found no index to the right */
1406	return 0;
1407
1408got_index:
1409	/* we've found index to the right, let's
1410	 * follow it and find the closest allocated
1411	 * block to the right */
1412	ix++;
1413	block = ext4_idx_pblock(ix);
1414	while (++depth < path->p_depth) {
1415		bh = sb_bread(inode->i_sb, block);
1416		if (bh == NULL)
1417			return -EIO;
1418		eh = ext_block_hdr(bh);
1419		/* subtract from p_depth to get proper eh_depth */
1420		if (ext4_ext_check_block(inode, eh,
1421					 path->p_depth - depth, bh)) {
1422			put_bh(bh);
1423			return -EIO;
1424		}
1425		ix = EXT_FIRST_INDEX(eh);
1426		block = ext4_idx_pblock(ix);
1427		put_bh(bh);
1428	}
1429
1430	bh = sb_bread(inode->i_sb, block);
1431	if (bh == NULL)
1432		return -EIO;
1433	eh = ext_block_hdr(bh);
1434	if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1435		put_bh(bh);
1436		return -EIO;
1437	}
1438	ex = EXT_FIRST_EXTENT(eh);
1439found_extent:
1440	*logical = le32_to_cpu(ex->ee_block);
1441	*phys = ext4_ext_pblock(ex);
1442	*ret_ex = ex;
1443	if (bh)
1444		put_bh(bh);
1445	return 0;
1446}
1447
1448/*
1449 * ext4_ext_next_allocated_block:
1450 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1451 * NOTE: it considers block number from index entry as
1452 * allocated block. Thus, index entries have to be consistent
1453 * with leaves.
1454 */
1455static ext4_lblk_t
1456ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1457{
1458	int depth;
1459
1460	BUG_ON(path == NULL);
1461	depth = path->p_depth;
1462
1463	if (depth == 0 && path->p_ext == NULL)
1464		return EXT_MAX_BLOCKS;
1465
1466	while (depth >= 0) {
1467		if (depth == path->p_depth) {
1468			/* leaf */
1469			if (path[depth].p_ext &&
1470				path[depth].p_ext !=
1471					EXT_LAST_EXTENT(path[depth].p_hdr))
1472			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1473		} else {
1474			/* index */
1475			if (path[depth].p_idx !=
1476					EXT_LAST_INDEX(path[depth].p_hdr))
1477			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1478		}
1479		depth--;
1480	}
1481
1482	return EXT_MAX_BLOCKS;
1483}
1484
1485/*
1486 * ext4_ext_next_leaf_block:
1487 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1488 */
1489static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1490{
1491	int depth;
1492
1493	BUG_ON(path == NULL);
1494	depth = path->p_depth;
1495
1496	/* zero-tree has no leaf blocks at all */
1497	if (depth == 0)
1498		return EXT_MAX_BLOCKS;
1499
1500	/* go to index block */
1501	depth--;
1502
1503	while (depth >= 0) {
1504		if (path[depth].p_idx !=
1505				EXT_LAST_INDEX(path[depth].p_hdr))
1506			return (ext4_lblk_t)
1507				le32_to_cpu(path[depth].p_idx[1].ei_block);
1508		depth--;
1509	}
1510
1511	return EXT_MAX_BLOCKS;
1512}
1513
1514/*
1515 * ext4_ext_correct_indexes:
1516 * if leaf gets modified and modified extent is first in the leaf,
1517 * then we have to correct all indexes above.
1518 * TODO: do we need to correct tree in all cases?
1519 */
1520static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1521				struct ext4_ext_path *path)
1522{
1523	struct ext4_extent_header *eh;
1524	int depth = ext_depth(inode);
1525	struct ext4_extent *ex;
1526	__le32 border;
1527	int k, err = 0;
1528
1529	eh = path[depth].p_hdr;
1530	ex = path[depth].p_ext;
1531
1532	if (unlikely(ex == NULL || eh == NULL)) {
1533		EXT4_ERROR_INODE(inode,
1534				 "ex %p == NULL or eh %p == NULL", ex, eh);
1535		return -EIO;
1536	}
1537
1538	if (depth == 0) {
1539		/* there is no tree at all */
1540		return 0;
1541	}
1542
1543	if (ex != EXT_FIRST_EXTENT(eh)) {
1544		/* we correct tree if first leaf got modified only */
1545		return 0;
1546	}
1547
1548	/*
1549	 * TODO: we need correction if border is smaller than current one
1550	 */
1551	k = depth - 1;
1552	border = path[depth].p_ext->ee_block;
1553	err = ext4_ext_get_access(handle, inode, path + k);
1554	if (err)
1555		return err;
1556	path[k].p_idx->ei_block = border;
1557	err = ext4_ext_dirty(handle, inode, path + k);
1558	if (err)
1559		return err;
1560
1561	while (k--) {
1562		/* change all left-side indexes */
1563		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1564			break;
1565		err = ext4_ext_get_access(handle, inode, path + k);
1566		if (err)
1567			break;
1568		path[k].p_idx->ei_block = border;
1569		err = ext4_ext_dirty(handle, inode, path + k);
1570		if (err)
1571			break;
1572	}
1573
1574	return err;
1575}
1576
1577int
1578ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1579				struct ext4_extent *ex2)
1580{
1581	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1582
1583	/*
1584	 * Make sure that both extents are initialized. We don't merge
1585	 * uninitialized extents so that we can be sure that end_io code has
1586	 * the extent that was written properly split out and conversion to
1587	 * initialized is trivial.
1588	 */
1589	if (ext4_ext_is_uninitialized(ex1) || ext4_ext_is_uninitialized(ex2))
1590		return 0;
1591
1592	if (ext4_ext_is_uninitialized(ex1))
1593		max_len = EXT_UNINIT_MAX_LEN;
1594	else
1595		max_len = EXT_INIT_MAX_LEN;
1596
1597	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1598	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1599
1600	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1601			le32_to_cpu(ex2->ee_block))
1602		return 0;
1603
1604	/*
1605	 * To allow future support for preallocated extents to be added
1606	 * as an RO_COMPAT feature, refuse to merge to extents if
1607	 * this can result in the top bit of ee_len being set.
1608	 */
1609	if (ext1_ee_len + ext2_ee_len > max_len)
1610		return 0;
1611#ifdef AGGRESSIVE_TEST
1612	if (ext1_ee_len >= 4)
1613		return 0;
1614#endif
1615
1616	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1617		return 1;
1618	return 0;
1619}
1620
1621/*
1622 * This function tries to merge the "ex" extent to the next extent in the tree.
1623 * It always tries to merge towards right. If you want to merge towards
1624 * left, pass "ex - 1" as argument instead of "ex".
1625 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1626 * 1 if they got merged.
1627 */
1628static int ext4_ext_try_to_merge_right(struct inode *inode,
1629				 struct ext4_ext_path *path,
1630				 struct ext4_extent *ex)
1631{
1632	struct ext4_extent_header *eh;
1633	unsigned int depth, len;
1634	int merge_done = 0;
1635	int uninitialized = 0;
1636
1637	depth = ext_depth(inode);
1638	BUG_ON(path[depth].p_hdr == NULL);
1639	eh = path[depth].p_hdr;
1640
1641	while (ex < EXT_LAST_EXTENT(eh)) {
1642		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1643			break;
1644		/* merge with next extent! */
1645		if (ext4_ext_is_uninitialized(ex))
1646			uninitialized = 1;
1647		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1648				+ ext4_ext_get_actual_len(ex + 1));
1649		if (uninitialized)
1650			ext4_ext_mark_uninitialized(ex);
1651
1652		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1653			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1654				* sizeof(struct ext4_extent);
1655			memmove(ex + 1, ex + 2, len);
1656		}
1657		le16_add_cpu(&eh->eh_entries, -1);
1658		merge_done = 1;
1659		WARN_ON(eh->eh_entries == 0);
1660		if (!eh->eh_entries)
1661			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1662	}
1663
1664	return merge_done;
1665}
1666
1667/*
1668 * This function does a very simple check to see if we can collapse
1669 * an extent tree with a single extent tree leaf block into the inode.
1670 */
1671static void ext4_ext_try_to_merge_up(handle_t *handle,
1672				     struct inode *inode,
1673				     struct ext4_ext_path *path)
1674{
1675	size_t s;
1676	unsigned max_root = ext4_ext_space_root(inode, 0);
1677	ext4_fsblk_t blk;
1678
1679	if ((path[0].p_depth != 1) ||
1680	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1681	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1682		return;
1683
1684	/*
1685	 * We need to modify the block allocation bitmap and the block
1686	 * group descriptor to release the extent tree block.  If we
1687	 * can't get the journal credits, give up.
1688	 */
1689	if (ext4_journal_extend(handle, 2))
1690		return;
1691
1692	/*
1693	 * Copy the extent data up to the inode
1694	 */
1695	blk = ext4_idx_pblock(path[0].p_idx);
1696	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1697		sizeof(struct ext4_extent_idx);
1698	s += sizeof(struct ext4_extent_header);
1699
1700	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1701	path[0].p_depth = 0;
1702	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1703		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1704	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1705
1706	brelse(path[1].p_bh);
1707	ext4_free_blocks(handle, inode, NULL, blk, 1,
1708			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1709}
1710
1711/*
1712 * This function tries to merge the @ex extent to neighbours in the tree.
1713 * return 1 if merge left else 0.
1714 */
1715static void ext4_ext_try_to_merge(handle_t *handle,
1716				  struct inode *inode,
1717				  struct ext4_ext_path *path,
1718				  struct ext4_extent *ex) {
1719	struct ext4_extent_header *eh;
1720	unsigned int depth;
1721	int merge_done = 0;
1722
1723	depth = ext_depth(inode);
1724	BUG_ON(path[depth].p_hdr == NULL);
1725	eh = path[depth].p_hdr;
1726
1727	if (ex > EXT_FIRST_EXTENT(eh))
1728		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1729
1730	if (!merge_done)
1731		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1732
1733	ext4_ext_try_to_merge_up(handle, inode, path);
1734}
1735
1736/*
1737 * check if a portion of the "newext" extent overlaps with an
1738 * existing extent.
1739 *
1740 * If there is an overlap discovered, it updates the length of the newext
1741 * such that there will be no overlap, and then returns 1.
1742 * If there is no overlap found, it returns 0.
1743 */
1744static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1745					   struct inode *inode,
1746					   struct ext4_extent *newext,
1747					   struct ext4_ext_path *path)
1748{
1749	ext4_lblk_t b1, b2;
1750	unsigned int depth, len1;
1751	unsigned int ret = 0;
1752
1753	b1 = le32_to_cpu(newext->ee_block);
1754	len1 = ext4_ext_get_actual_len(newext);
1755	depth = ext_depth(inode);
1756	if (!path[depth].p_ext)
1757		goto out;
1758	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1759	b2 &= ~(sbi->s_cluster_ratio - 1);
1760
1761	/*
1762	 * get the next allocated block if the extent in the path
1763	 * is before the requested block(s)
1764	 */
1765	if (b2 < b1) {
1766		b2 = ext4_ext_next_allocated_block(path);
1767		if (b2 == EXT_MAX_BLOCKS)
1768			goto out;
1769		b2 &= ~(sbi->s_cluster_ratio - 1);
1770	}
1771
1772	/* check for wrap through zero on extent logical start block*/
1773	if (b1 + len1 < b1) {
1774		len1 = EXT_MAX_BLOCKS - b1;
1775		newext->ee_len = cpu_to_le16(len1);
1776		ret = 1;
1777	}
1778
1779	/* check for overlap */
1780	if (b1 + len1 > b2) {
1781		newext->ee_len = cpu_to_le16(b2 - b1);
1782		ret = 1;
1783	}
1784out:
1785	return ret;
1786}
1787
1788/*
1789 * ext4_ext_insert_extent:
1790 * tries to merge requsted extent into the existing extent or
1791 * inserts requested extent as new one into the tree,
1792 * creating new leaf in the no-space case.
1793 */
1794int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1795				struct ext4_ext_path *path,
1796				struct ext4_extent *newext, int flag)
1797{
1798	struct ext4_extent_header *eh;
1799	struct ext4_extent *ex, *fex;
1800	struct ext4_extent *nearex; /* nearest extent */
1801	struct ext4_ext_path *npath = NULL;
1802	int depth, len, err;
1803	ext4_lblk_t next;
1804	unsigned uninitialized = 0;
1805	int flags = 0;
1806
1807	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1808		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1809		return -EIO;
1810	}
1811	depth = ext_depth(inode);
1812	ex = path[depth].p_ext;
1813	eh = path[depth].p_hdr;
1814	if (unlikely(path[depth].p_hdr == NULL)) {
1815		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1816		return -EIO;
1817	}
1818
1819	/* try to insert block into found extent and return */
1820	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)) {
1821
1822		/*
1823		 * Try to see whether we should rather test the extent on
1824		 * right from ex, or from the left of ex. This is because
1825		 * ext4_ext_find_extent() can return either extent on the
1826		 * left, or on the right from the searched position. This
1827		 * will make merging more effective.
1828		 */
1829		if (ex < EXT_LAST_EXTENT(eh) &&
1830		    (le32_to_cpu(ex->ee_block) +
1831		    ext4_ext_get_actual_len(ex) <
1832		    le32_to_cpu(newext->ee_block))) {
1833			ex += 1;
1834			goto prepend;
1835		} else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1836			   (le32_to_cpu(newext->ee_block) +
1837			   ext4_ext_get_actual_len(newext) <
1838			   le32_to_cpu(ex->ee_block)))
1839			ex -= 1;
1840
1841		/* Try to append newex to the ex */
1842		if (ext4_can_extents_be_merged(inode, ex, newext)) {
1843			ext_debug("append [%d]%d block to %u:[%d]%d"
1844				  "(from %llu)\n",
1845				  ext4_ext_is_uninitialized(newext),
1846				  ext4_ext_get_actual_len(newext),
1847				  le32_to_cpu(ex->ee_block),
1848				  ext4_ext_is_uninitialized(ex),
1849				  ext4_ext_get_actual_len(ex),
1850				  ext4_ext_pblock(ex));
1851			err = ext4_ext_get_access(handle, inode,
1852						  path + depth);
1853			if (err)
1854				return err;
1855
1856			/*
1857			 * ext4_can_extents_be_merged should have checked
1858			 * that either both extents are uninitialized, or
1859			 * both aren't. Thus we need to check only one of
1860			 * them here.
1861			 */
1862			if (ext4_ext_is_uninitialized(ex))
1863				uninitialized = 1;
1864			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1865					+ ext4_ext_get_actual_len(newext));
1866			if (uninitialized)
1867				ext4_ext_mark_uninitialized(ex);
1868			eh = path[depth].p_hdr;
1869			nearex = ex;
1870			goto merge;
1871		}
1872
1873prepend:
1874		/* Try to prepend newex to the ex */
1875		if (ext4_can_extents_be_merged(inode, newext, ex)) {
1876			ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
1877				  "(from %llu)\n",
1878				  le32_to_cpu(newext->ee_block),
1879				  ext4_ext_is_uninitialized(newext),
1880				  ext4_ext_get_actual_len(newext),
1881				  le32_to_cpu(ex->ee_block),
1882				  ext4_ext_is_uninitialized(ex),
1883				  ext4_ext_get_actual_len(ex),
1884				  ext4_ext_pblock(ex));
1885			err = ext4_ext_get_access(handle, inode,
1886						  path + depth);
1887			if (err)
1888				return err;
1889
1890			/*
1891			 * ext4_can_extents_be_merged should have checked
1892			 * that either both extents are uninitialized, or
1893			 * both aren't. Thus we need to check only one of
1894			 * them here.
1895			 */
1896			if (ext4_ext_is_uninitialized(ex))
1897				uninitialized = 1;
1898			ex->ee_block = newext->ee_block;
1899			ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
1900			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1901					+ ext4_ext_get_actual_len(newext));
1902			if (uninitialized)
1903				ext4_ext_mark_uninitialized(ex);
1904			eh = path[depth].p_hdr;
1905			nearex = ex;
1906			goto merge;
1907		}
1908	}
1909
1910	depth = ext_depth(inode);
1911	eh = path[depth].p_hdr;
1912	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1913		goto has_space;
1914
1915	/* probably next leaf has space for us? */
1916	fex = EXT_LAST_EXTENT(eh);
1917	next = EXT_MAX_BLOCKS;
1918	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1919		next = ext4_ext_next_leaf_block(path);
1920	if (next != EXT_MAX_BLOCKS) {
1921		ext_debug("next leaf block - %u\n", next);
1922		BUG_ON(npath != NULL);
1923		npath = ext4_ext_find_extent(inode, next, NULL);
1924		if (IS_ERR(npath))
1925			return PTR_ERR(npath);
1926		BUG_ON(npath->p_depth != path->p_depth);
1927		eh = npath[depth].p_hdr;
1928		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1929			ext_debug("next leaf isn't full(%d)\n",
1930				  le16_to_cpu(eh->eh_entries));
1931			path = npath;
1932			goto has_space;
1933		}
1934		ext_debug("next leaf has no free space(%d,%d)\n",
1935			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1936	}
1937
1938	/*
1939	 * There is no free space in the found leaf.
1940	 * We're gonna add a new leaf in the tree.
1941	 */
1942	if (flag & EXT4_GET_BLOCKS_METADATA_NOFAIL)
1943		flags = EXT4_MB_USE_RESERVED;
1944	err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1945	if (err)
1946		goto cleanup;
1947	depth = ext_depth(inode);
1948	eh = path[depth].p_hdr;
1949
1950has_space:
1951	nearex = path[depth].p_ext;
1952
1953	err = ext4_ext_get_access(handle, inode, path + depth);
1954	if (err)
1955		goto cleanup;
1956
1957	if (!nearex) {
1958		/* there is no extent in this leaf, create first one */
1959		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1960				le32_to_cpu(newext->ee_block),
1961				ext4_ext_pblock(newext),
1962				ext4_ext_is_uninitialized(newext),
1963				ext4_ext_get_actual_len(newext));
1964		nearex = EXT_FIRST_EXTENT(eh);
1965	} else {
1966		if (le32_to_cpu(newext->ee_block)
1967			   > le32_to_cpu(nearex->ee_block)) {
1968			/* Insert after */
1969			ext_debug("insert %u:%llu:[%d]%d before: "
1970					"nearest %p\n",
1971					le32_to_cpu(newext->ee_block),
1972					ext4_ext_pblock(newext),
1973					ext4_ext_is_uninitialized(newext),
1974					ext4_ext_get_actual_len(newext),
1975					nearex);
1976			nearex++;
1977		} else {
1978			/* Insert before */
1979			BUG_ON(newext->ee_block == nearex->ee_block);
1980			ext_debug("insert %u:%llu:[%d]%d after: "
1981					"nearest %p\n",
1982					le32_to_cpu(newext->ee_block),
1983					ext4_ext_pblock(newext),
1984					ext4_ext_is_uninitialized(newext),
1985					ext4_ext_get_actual_len(newext),
1986					nearex);
1987		}
1988		len = EXT_LAST_EXTENT(eh) - nearex + 1;
1989		if (len > 0) {
1990			ext_debug("insert %u:%llu:[%d]%d: "
1991					"move %d extents from 0x%p to 0x%p\n",
1992					le32_to_cpu(newext->ee_block),
1993					ext4_ext_pblock(newext),
1994					ext4_ext_is_uninitialized(newext),
1995					ext4_ext_get_actual_len(newext),
1996					len, nearex, nearex + 1);
1997			memmove(nearex + 1, nearex,
1998				len * sizeof(struct ext4_extent));
1999		}
2000	}
2001
2002	le16_add_cpu(&eh->eh_entries, 1);
2003	path[depth].p_ext = nearex;
2004	nearex->ee_block = newext->ee_block;
2005	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2006	nearex->ee_len = newext->ee_len;
2007
2008merge:
2009	/* try to merge extents */
2010	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
2011		ext4_ext_try_to_merge(handle, inode, path, nearex);
2012
2013
2014	/* time to correct all indexes above */
2015	err = ext4_ext_correct_indexes(handle, inode, path);
2016	if (err)
2017		goto cleanup;
2018
2019	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2020
2021cleanup:
2022	if (npath) {
2023		ext4_ext_drop_refs(npath);
2024		kfree(npath);
2025	}
2026	return err;
2027}
2028
2029static int ext4_fill_fiemap_extents(struct inode *inode,
2030				    ext4_lblk_t block, ext4_lblk_t num,
2031				    struct fiemap_extent_info *fieinfo)
2032{
2033	struct ext4_ext_path *path = NULL;
2034	struct ext4_extent *ex;
2035	struct extent_status es;
2036	ext4_lblk_t next, next_del, start = 0, end = 0;
2037	ext4_lblk_t last = block + num;
2038	int exists, depth = 0, err = 0;
2039	unsigned int flags = 0;
2040	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2041
2042	while (block < last && block != EXT_MAX_BLOCKS) {
2043		num = last - block;
2044		/* find extent for this block */
2045		down_read(&EXT4_I(inode)->i_data_sem);
2046
2047		if (path && ext_depth(inode) != depth) {
2048			/* depth was changed. we have to realloc path */
2049			kfree(path);
2050			path = NULL;
2051		}
2052
2053		path = ext4_ext_find_extent(inode, block, path);
2054		if (IS_ERR(path)) {
2055			up_read(&EXT4_I(inode)->i_data_sem);
2056			err = PTR_ERR(path);
2057			path = NULL;
2058			break;
2059		}
2060
2061		depth = ext_depth(inode);
2062		if (unlikely(path[depth].p_hdr == NULL)) {
2063			up_read(&EXT4_I(inode)->i_data_sem);
2064			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2065			err = -EIO;
2066			break;
2067		}
2068		ex = path[depth].p_ext;
2069		next = ext4_ext_next_allocated_block(path);
2070		ext4_ext_drop_refs(path);
2071
2072		flags = 0;
2073		exists = 0;
2074		if (!ex) {
2075			/* there is no extent yet, so try to allocate
2076			 * all requested space */
2077			start = block;
2078			end = block + num;
2079		} else if (le32_to_cpu(ex->ee_block) > block) {
2080			/* need to allocate space before found extent */
2081			start = block;
2082			end = le32_to_cpu(ex->ee_block);
2083			if (block + num < end)
2084				end = block + num;
2085		} else if (block >= le32_to_cpu(ex->ee_block)
2086					+ ext4_ext_get_actual_len(ex)) {
2087			/* need to allocate space after found extent */
2088			start = block;
2089			end = block + num;
2090			if (end >= next)
2091				end = next;
2092		} else if (block >= le32_to_cpu(ex->ee_block)) {
2093			/*
2094			 * some part of requested space is covered
2095			 * by found extent
2096			 */
2097			start = block;
2098			end = le32_to_cpu(ex->ee_block)
2099				+ ext4_ext_get_actual_len(ex);
2100			if (block + num < end)
2101				end = block + num;
2102			exists = 1;
2103		} else {
2104			BUG();
2105		}
2106		BUG_ON(end <= start);
2107
2108		if (!exists) {
2109			es.es_lblk = start;
2110			es.es_len = end - start;
2111			es.es_pblk = 0;
2112		} else {
2113			es.es_lblk = le32_to_cpu(ex->ee_block);
2114			es.es_len = ext4_ext_get_actual_len(ex);
2115			es.es_pblk = ext4_ext_pblock(ex);
2116			if (ext4_ext_is_uninitialized(ex))
2117				flags |= FIEMAP_EXTENT_UNWRITTEN;
2118		}
2119
2120		/*
2121		 * Find delayed extent and update es accordingly. We call
2122		 * it even in !exists case to find out whether es is the
2123		 * last existing extent or not.
2124		 */
2125		next_del = ext4_find_delayed_extent(inode, &es);
2126		if (!exists && next_del) {
2127			exists = 1;
2128			flags |= FIEMAP_EXTENT_DELALLOC;
2129		}
2130		up_read(&EXT4_I(inode)->i_data_sem);
2131
2132		if (unlikely(es.es_len == 0)) {
2133			EXT4_ERROR_INODE(inode, "es.es_len == 0");
2134			err = -EIO;
2135			break;
2136		}
2137
2138		/*
2139		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2140		 * we need to check next == EXT_MAX_BLOCKS because it is
2141		 * possible that an extent is with unwritten and delayed
2142		 * status due to when an extent is delayed allocated and
2143		 * is allocated by fallocate status tree will track both of
2144		 * them in a extent.
2145		 *
2146		 * So we could return a unwritten and delayed extent, and
2147		 * its block is equal to 'next'.
2148		 */
2149		if (next == next_del && next == EXT_MAX_BLOCKS) {
2150			flags |= FIEMAP_EXTENT_LAST;
2151			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2152				     next != EXT_MAX_BLOCKS)) {
2153				EXT4_ERROR_INODE(inode,
2154						 "next extent == %u, next "
2155						 "delalloc extent = %u",
2156						 next, next_del);
2157				err = -EIO;
2158				break;
2159			}
2160		}
2161
2162		if (exists) {
2163			err = fiemap_fill_next_extent(fieinfo,
2164				(__u64)es.es_lblk << blksize_bits,
2165				(__u64)es.es_pblk << blksize_bits,
2166				(__u64)es.es_len << blksize_bits,
2167				flags);
2168			if (err < 0)
2169				break;
2170			if (err == 1) {
2171				err = 0;
2172				break;
2173			}
2174		}
2175
2176		block = es.es_lblk + es.es_len;
2177	}
2178
2179	if (path) {
2180		ext4_ext_drop_refs(path);
2181		kfree(path);
2182	}
2183
2184	return err;
2185}
2186
2187/*
2188 * ext4_ext_put_gap_in_cache:
2189 * calculate boundaries of the gap that the requested block fits into
2190 * and cache this gap
2191 */
2192static void
2193ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2194				ext4_lblk_t block)
2195{
2196	int depth = ext_depth(inode);
2197	unsigned long len;
2198	ext4_lblk_t lblock;
2199	struct ext4_extent *ex;
2200
2201	ex = path[depth].p_ext;
2202	if (ex == NULL) {
2203		/*
2204		 * there is no extent yet, so gap is [0;-] and we
2205		 * don't cache it
2206		 */
2207		ext_debug("cache gap(whole file):");
2208	} else if (block < le32_to_cpu(ex->ee_block)) {
2209		lblock = block;
2210		len = le32_to_cpu(ex->ee_block) - block;
2211		ext_debug("cache gap(before): %u [%u:%u]",
2212				block,
2213				le32_to_cpu(ex->ee_block),
2214				 ext4_ext_get_actual_len(ex));
2215		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2216			ext4_es_insert_extent(inode, lblock, len, ~0,
2217					      EXTENT_STATUS_HOLE);
2218	} else if (block >= le32_to_cpu(ex->ee_block)
2219			+ ext4_ext_get_actual_len(ex)) {
2220		ext4_lblk_t next;
2221		lblock = le32_to_cpu(ex->ee_block)
2222			+ ext4_ext_get_actual_len(ex);
2223
2224		next = ext4_ext_next_allocated_block(path);
2225		ext_debug("cache gap(after): [%u:%u] %u",
2226				le32_to_cpu(ex->ee_block),
2227				ext4_ext_get_actual_len(ex),
2228				block);
2229		BUG_ON(next == lblock);
2230		len = next - lblock;
2231		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2232			ext4_es_insert_extent(inode, lblock, len, ~0,
2233					      EXTENT_STATUS_HOLE);
2234	} else {
2235		lblock = len = 0;
2236		BUG();
2237	}
2238
2239	ext_debug(" -> %u:%lu\n", lblock, len);
2240}
2241
2242/*
2243 * ext4_ext_rm_idx:
2244 * removes index from the index block.
2245 */
2246static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2247			struct ext4_ext_path *path, int depth)
2248{
2249	int err;
2250	ext4_fsblk_t leaf;
2251
2252	/* free index block */
2253	depth--;
2254	path = path + depth;
2255	leaf = ext4_idx_pblock(path->p_idx);
2256	if (unlikely(path->p_hdr->eh_entries == 0)) {
2257		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2258		return -EIO;
2259	}
2260	err = ext4_ext_get_access(handle, inode, path);
2261	if (err)
2262		return err;
2263
2264	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2265		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2266		len *= sizeof(struct ext4_extent_idx);
2267		memmove(path->p_idx, path->p_idx + 1, len);
2268	}
2269
2270	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2271	err = ext4_ext_dirty(handle, inode, path);
2272	if (err)
2273		return err;
2274	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2275	trace_ext4_ext_rm_idx(inode, leaf);
2276
2277	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2278			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2279
2280	while (--depth >= 0) {
2281		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2282			break;
2283		path--;
2284		err = ext4_ext_get_access(handle, inode, path);
2285		if (err)
2286			break;
2287		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2288		err = ext4_ext_dirty(handle, inode, path);
2289		if (err)
2290			break;
2291	}
2292	return err;
2293}
2294
2295/*
2296 * ext4_ext_calc_credits_for_single_extent:
2297 * This routine returns max. credits that needed to insert an extent
2298 * to the extent tree.
2299 * When pass the actual path, the caller should calculate credits
2300 * under i_data_sem.
2301 */
2302int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2303						struct ext4_ext_path *path)
2304{
2305	if (path) {
2306		int depth = ext_depth(inode);
2307		int ret = 0;
2308
2309		/* probably there is space in leaf? */
2310		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2311				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2312
2313			/*
2314			 *  There are some space in the leaf tree, no
2315			 *  need to account for leaf block credit
2316			 *
2317			 *  bitmaps and block group descriptor blocks
2318			 *  and other metadata blocks still need to be
2319			 *  accounted.
2320			 */
2321			/* 1 bitmap, 1 block group descriptor */
2322			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2323			return ret;
2324		}
2325	}
2326
2327	return ext4_chunk_trans_blocks(inode, nrblocks);
2328}
2329
2330/*
2331 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2332 *
2333 * if nrblocks are fit in a single extent (chunk flag is 1), then
2334 * in the worse case, each tree level index/leaf need to be changed
2335 * if the tree split due to insert a new extent, then the old tree
2336 * index/leaf need to be updated too
2337 *
2338 * If the nrblocks are discontiguous, they could cause
2339 * the whole tree split more than once, but this is really rare.
2340 */
2341int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2342{
2343	int index;
2344	int depth;
2345
2346	/* If we are converting the inline data, only one is needed here. */
2347	if (ext4_has_inline_data(inode))
2348		return 1;
2349
2350	depth = ext_depth(inode);
2351
2352	if (chunk)
2353		index = depth * 2;
2354	else
2355		index = depth * 3;
2356
2357	return index;
2358}
2359
2360static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2361			      struct ext4_extent *ex,
2362			      ext4_fsblk_t *partial_cluster,
2363			      ext4_lblk_t from, ext4_lblk_t to)
2364{
2365	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2366	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2367	ext4_fsblk_t pblk;
2368	int flags = 0;
2369
2370	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2371		flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2372	else if (ext4_should_journal_data(inode))
2373		flags |= EXT4_FREE_BLOCKS_FORGET;
2374
2375	/*
2376	 * For bigalloc file systems, we never free a partial cluster
2377	 * at the beginning of the extent.  Instead, we make a note
2378	 * that we tried freeing the cluster, and check to see if we
2379	 * need to free it on a subsequent call to ext4_remove_blocks,
2380	 * or at the end of the ext4_truncate() operation.
2381	 */
2382	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2383
2384	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2385	/*
2386	 * If we have a partial cluster, and it's different from the
2387	 * cluster of the last block, we need to explicitly free the
2388	 * partial cluster here.
2389	 */
2390	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2391	if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2392		ext4_free_blocks(handle, inode, NULL,
2393				 EXT4_C2B(sbi, *partial_cluster),
2394				 sbi->s_cluster_ratio, flags);
2395		*partial_cluster = 0;
2396	}
2397
2398#ifdef EXTENTS_STATS
2399	{
2400		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2401		spin_lock(&sbi->s_ext_stats_lock);
2402		sbi->s_ext_blocks += ee_len;
2403		sbi->s_ext_extents++;
2404		if (ee_len < sbi->s_ext_min)
2405			sbi->s_ext_min = ee_len;
2406		if (ee_len > sbi->s_ext_max)
2407			sbi->s_ext_max = ee_len;
2408		if (ext_depth(inode) > sbi->s_depth_max)
2409			sbi->s_depth_max = ext_depth(inode);
2410		spin_unlock(&sbi->s_ext_stats_lock);
2411	}
2412#endif
2413	if (from >= le32_to_cpu(ex->ee_block)
2414	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2415		/* tail removal */
2416		ext4_lblk_t num;
2417
2418		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2419		pblk = ext4_ext_pblock(ex) + ee_len - num;
2420		ext_debug("free last %u blocks starting %llu\n", num, pblk);
2421		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2422		/*
2423		 * If the block range to be freed didn't start at the
2424		 * beginning of a cluster, and we removed the entire
2425		 * extent, save the partial cluster here, since we
2426		 * might need to delete if we determine that the
2427		 * truncate operation has removed all of the blocks in
2428		 * the cluster.
2429		 */
2430		if (pblk & (sbi->s_cluster_ratio - 1) &&
2431		    (ee_len == num))
2432			*partial_cluster = EXT4_B2C(sbi, pblk);
2433		else
2434			*partial_cluster = 0;
2435	} else if (from == le32_to_cpu(ex->ee_block)
2436		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2437		/* head removal */
2438		ext4_lblk_t num;
2439		ext4_fsblk_t start;
2440
2441		num = to - from;
2442		start = ext4_ext_pblock(ex);
2443
2444		ext_debug("free first %u blocks starting %llu\n", num, start);
2445		ext4_free_blocks(handle, inode, NULL, start, num, flags);
2446
2447	} else {
2448		printk(KERN_INFO "strange request: removal(2) "
2449				"%u-%u from %u:%u\n",
2450				from, to, le32_to_cpu(ex->ee_block), ee_len);
2451	}
2452	return 0;
2453}
2454
2455
2456/*
2457 * ext4_ext_rm_leaf() Removes the extents associated with the
2458 * blocks appearing between "start" and "end", and splits the extents
2459 * if "start" and "end" appear in the same extent
2460 *
2461 * @handle: The journal handle
2462 * @inode:  The files inode
2463 * @path:   The path to the leaf
2464 * @start:  The first block to remove
2465 * @end:   The last block to remove
2466 */
2467static int
2468ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2469		 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2470		 ext4_lblk_t start, ext4_lblk_t end)
2471{
2472	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2473	int err = 0, correct_index = 0;
2474	int depth = ext_depth(inode), credits;
2475	struct ext4_extent_header *eh;
2476	ext4_lblk_t a, b;
2477	unsigned num;
2478	ext4_lblk_t ex_ee_block;
2479	unsigned short ex_ee_len;
2480	unsigned uninitialized = 0;
2481	struct ext4_extent *ex;
2482
2483	/* the header must be checked already in ext4_ext_remove_space() */
2484	ext_debug("truncate since %u in leaf to %u\n", start, end);
2485	if (!path[depth].p_hdr)
2486		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2487	eh = path[depth].p_hdr;
2488	if (unlikely(path[depth].p_hdr == NULL)) {
2489		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2490		return -EIO;
2491	}
2492	/* find where to start removing */
2493	ex = EXT_LAST_EXTENT(eh);
2494
2495	ex_ee_block = le32_to_cpu(ex->ee_block);
2496	ex_ee_len = ext4_ext_get_actual_len(ex);
2497
2498	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2499
2500	while (ex >= EXT_FIRST_EXTENT(eh) &&
2501			ex_ee_block + ex_ee_len > start) {
2502
2503		if (ext4_ext_is_uninitialized(ex))
2504			uninitialized = 1;
2505		else
2506			uninitialized = 0;
2507
2508		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2509			 uninitialized, ex_ee_len);
2510		path[depth].p_ext = ex;
2511
2512		a = ex_ee_block > start ? ex_ee_block : start;
2513		b = ex_ee_block+ex_ee_len - 1 < end ?
2514			ex_ee_block+ex_ee_len - 1 : end;
2515
2516		ext_debug("  border %u:%u\n", a, b);
2517
2518		/* If this extent is beyond the end of the hole, skip it */
2519		if (end < ex_ee_block) {
2520			ex--;
2521			ex_ee_block = le32_to_cpu(ex->ee_block);
2522			ex_ee_len = ext4_ext_get_actual_len(ex);
2523			continue;
2524		} else if (b != ex_ee_block + ex_ee_len - 1) {
2525			EXT4_ERROR_INODE(inode,
2526					 "can not handle truncate %u:%u "
2527					 "on extent %u:%u",
2528					 start, end, ex_ee_block,
2529					 ex_ee_block + ex_ee_len - 1);
2530			err = -EIO;
2531			goto out;
2532		} else if (a != ex_ee_block) {
2533			/* remove tail of the extent */
2534			num = a - ex_ee_block;
2535		} else {
2536			/* remove whole extent: excellent! */
2537			num = 0;
2538		}
2539		/*
2540		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2541		 * descriptor) for each block group; assume two block
2542		 * groups plus ex_ee_len/blocks_per_block_group for
2543		 * the worst case
2544		 */
2545		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2546		if (ex == EXT_FIRST_EXTENT(eh)) {
2547			correct_index = 1;
2548			credits += (ext_depth(inode)) + 1;
2549		}
2550		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2551
2552		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2553		if (err)
2554			goto out;
2555
2556		err = ext4_ext_get_access(handle, inode, path + depth);
2557		if (err)
2558			goto out;
2559
2560		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2561					 a, b);
2562		if (err)
2563			goto out;
2564
2565		if (num == 0)
2566			/* this extent is removed; mark slot entirely unused */
2567			ext4_ext_store_pblock(ex, 0);
2568
2569		ex->ee_len = cpu_to_le16(num);
2570		/*
2571		 * Do not mark uninitialized if all the blocks in the
2572		 * extent have been removed.
2573		 */
2574		if (uninitialized && num)
2575			ext4_ext_mark_uninitialized(ex);
2576		/*
2577		 * If the extent was completely released,
2578		 * we need to remove it from the leaf
2579		 */
2580		if (num == 0) {
2581			if (end != EXT_MAX_BLOCKS - 1) {
2582				/*
2583				 * For hole punching, we need to scoot all the
2584				 * extents up when an extent is removed so that
2585				 * we dont have blank extents in the middle
2586				 */
2587				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2588					sizeof(struct ext4_extent));
2589
2590				/* Now get rid of the one at the end */
2591				memset(EXT_LAST_EXTENT(eh), 0,
2592					sizeof(struct ext4_extent));
2593			}
2594			le16_add_cpu(&eh->eh_entries, -1);
2595		} else
2596			*partial_cluster = 0;
2597
2598		err = ext4_ext_dirty(handle, inode, path + depth);
2599		if (err)
2600			goto out;
2601
2602		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2603				ext4_ext_pblock(ex));
2604		ex--;
2605		ex_ee_block = le32_to_cpu(ex->ee_block);
2606		ex_ee_len = ext4_ext_get_actual_len(ex);
2607	}
2608
2609	if (correct_index && eh->eh_entries)
2610		err = ext4_ext_correct_indexes(handle, inode, path);
2611
2612	/*
2613	 * If there is still a entry in the leaf node, check to see if
2614	 * it references the partial cluster.  This is the only place
2615	 * where it could; if it doesn't, we can free the cluster.
2616	 */
2617	if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2618	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2619	     *partial_cluster)) {
2620		int flags = EXT4_FREE_BLOCKS_FORGET;
2621
2622		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2623			flags |= EXT4_FREE_BLOCKS_METADATA;
2624
2625		ext4_free_blocks(handle, inode, NULL,
2626				 EXT4_C2B(sbi, *partial_cluster),
2627				 sbi->s_cluster_ratio, flags);
2628		*partial_cluster = 0;
2629	}
2630
2631	/* if this leaf is free, then we should
2632	 * remove it from index block above */
2633	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2634		err = ext4_ext_rm_idx(handle, inode, path, depth);
2635
2636out:
2637	return err;
2638}
2639
2640/*
2641 * ext4_ext_more_to_rm:
2642 * returns 1 if current index has to be freed (even partial)
2643 */
2644static int
2645ext4_ext_more_to_rm(struct ext4_ext_path *path)
2646{
2647	BUG_ON(path->p_idx == NULL);
2648
2649	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2650		return 0;
2651
2652	/*
2653	 * if truncate on deeper level happened, it wasn't partial,
2654	 * so we have to consider current index for truncation
2655	 */
2656	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2657		return 0;
2658	return 1;
2659}
2660
2661int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2662			  ext4_lblk_t end)
2663{
2664	struct super_block *sb = inode->i_sb;
2665	int depth = ext_depth(inode);
2666	struct ext4_ext_path *path = NULL;
2667	ext4_fsblk_t partial_cluster = 0;
2668	handle_t *handle;
2669	int i = 0, err = 0;
2670
2671	ext_debug("truncate since %u to %u\n", start, end);
2672
2673	/* probably first extent we're gonna free will be last in block */
2674	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2675	if (IS_ERR(handle))
2676		return PTR_ERR(handle);
2677
2678again:
2679	trace_ext4_ext_remove_space(inode, start, depth);
2680
2681	/*
2682	 * Check if we are removing extents inside the extent tree. If that
2683	 * is the case, we are going to punch a hole inside the extent tree
2684	 * so we have to check whether we need to split the extent covering
2685	 * the last block to remove so we can easily remove the part of it
2686	 * in ext4_ext_rm_leaf().
2687	 */
2688	if (end < EXT_MAX_BLOCKS - 1) {
2689		struct ext4_extent *ex;
2690		ext4_lblk_t ee_block;
2691
2692		/* find extent for this block */
2693		path = ext4_ext_find_extent(inode, end, NULL);
2694		if (IS_ERR(path)) {
2695			ext4_journal_stop(handle);
2696			return PTR_ERR(path);
2697		}
2698		depth = ext_depth(inode);
2699		/* Leaf not may not exist only if inode has no blocks at all */
2700		ex = path[depth].p_ext;
2701		if (!ex) {
2702			if (depth) {
2703				EXT4_ERROR_INODE(inode,
2704						 "path[%d].p_hdr == NULL",
2705						 depth);
2706				err = -EIO;
2707			}
2708			goto out;
2709		}
2710
2711		ee_block = le32_to_cpu(ex->ee_block);
2712
2713		/*
2714		 * See if the last block is inside the extent, if so split
2715		 * the extent at 'end' block so we can easily remove the
2716		 * tail of the first part of the split extent in
2717		 * ext4_ext_rm_leaf().
2718		 */
2719		if (end >= ee_block &&
2720		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2721			int split_flag = 0;
2722
2723			if (ext4_ext_is_uninitialized(ex))
2724				split_flag = EXT4_EXT_MARK_UNINIT1 |
2725					     EXT4_EXT_MARK_UNINIT2;
2726
2727			/*
2728			 * Split the extent in two so that 'end' is the last
2729			 * block in the first new extent. Also we should not
2730			 * fail removing space due to ENOSPC so try to use
2731			 * reserved block if that happens.
2732			 */
2733			err = ext4_split_extent_at(handle, inode, path,
2734					end + 1, split_flag,
2735					EXT4_GET_BLOCKS_PRE_IO |
2736					EXT4_GET_BLOCKS_METADATA_NOFAIL);
2737
2738			if (err < 0)
2739				goto out;
2740		}
2741	}
2742	/*
2743	 * We start scanning from right side, freeing all the blocks
2744	 * after i_size and walking into the tree depth-wise.
2745	 */
2746	depth = ext_depth(inode);
2747	if (path) {
2748		int k = i = depth;
2749		while (--k > 0)
2750			path[k].p_block =
2751				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2752	} else {
2753		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2754			       GFP_NOFS);
2755		if (path == NULL) {
2756			ext4_journal_stop(handle);
2757			return -ENOMEM;
2758		}
2759		path[0].p_depth = depth;
2760		path[0].p_hdr = ext_inode_hdr(inode);
2761		i = 0;
2762
2763		if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2764			err = -EIO;
2765			goto out;
2766		}
2767	}
2768	err = 0;
2769
2770	while (i >= 0 && err == 0) {
2771		if (i == depth) {
2772			/* this is leaf block */
2773			err = ext4_ext_rm_leaf(handle, inode, path,
2774					       &partial_cluster, start,
2775					       end);
2776			/* root level has p_bh == NULL, brelse() eats this */
2777			brelse(path[i].p_bh);
2778			path[i].p_bh = NULL;
2779			i--;
2780			continue;
2781		}
2782
2783		/* this is index block */
2784		if (!path[i].p_hdr) {
2785			ext_debug("initialize header\n");
2786			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2787		}
2788
2789		if (!path[i].p_idx) {
2790			/* this level hasn't been touched yet */
2791			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2792			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2793			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2794				  path[i].p_hdr,
2795				  le16_to_cpu(path[i].p_hdr->eh_entries));
2796		} else {
2797			/* we were already here, see at next index */
2798			path[i].p_idx--;
2799		}
2800
2801		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2802				i, EXT_FIRST_INDEX(path[i].p_hdr),
2803				path[i].p_idx);
2804		if (ext4_ext_more_to_rm(path + i)) {
2805			struct buffer_head *bh;
2806			/* go to the next level */
2807			ext_debug("move to level %d (block %llu)\n",
2808				  i + 1, ext4_idx_pblock(path[i].p_idx));
2809			memset(path + i + 1, 0, sizeof(*path));
2810			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2811			if (!bh) {
2812				/* should we reset i_size? */
2813				err = -EIO;
2814				break;
2815			}
2816			if (WARN_ON(i + 1 > depth)) {
2817				err = -EIO;
2818				break;
2819			}
2820			if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2821							depth - i - 1, bh)) {
2822				err = -EIO;
2823				break;
2824			}
2825			path[i + 1].p_bh = bh;
2826
2827			/* save actual number of indexes since this
2828			 * number is changed at the next iteration */
2829			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2830			i++;
2831		} else {
2832			/* we finished processing this index, go up */
2833			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2834				/* index is empty, remove it;
2835				 * handle must be already prepared by the
2836				 * truncatei_leaf() */
2837				err = ext4_ext_rm_idx(handle, inode, path, i);
2838			}
2839			/* root level has p_bh == NULL, brelse() eats this */
2840			brelse(path[i].p_bh);
2841			path[i].p_bh = NULL;
2842			i--;
2843			ext_debug("return to level %d\n", i);
2844		}
2845	}
2846
2847	trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2848			path->p_hdr->eh_entries);
2849
2850	/* If we still have something in the partial cluster and we have removed
2851	 * even the first extent, then we should free the blocks in the partial
2852	 * cluster as well. */
2853	if (partial_cluster && path->p_hdr->eh_entries == 0) {
2854		int flags = EXT4_FREE_BLOCKS_FORGET;
2855
2856		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2857			flags |= EXT4_FREE_BLOCKS_METADATA;
2858
2859		ext4_free_blocks(handle, inode, NULL,
2860				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2861				 EXT4_SB(sb)->s_cluster_ratio, flags);
2862		partial_cluster = 0;
2863	}
2864
2865	/* TODO: flexible tree reduction should be here */
2866	if (path->p_hdr->eh_entries == 0) {
2867		/*
2868		 * truncate to zero freed all the tree,
2869		 * so we need to correct eh_depth
2870		 */
2871		err = ext4_ext_get_access(handle, inode, path);
2872		if (err == 0) {
2873			ext_inode_hdr(inode)->eh_depth = 0;
2874			ext_inode_hdr(inode)->eh_max =
2875				cpu_to_le16(ext4_ext_space_root(inode, 0));
2876			err = ext4_ext_dirty(handle, inode, path);
2877		}
2878	}
2879out:
2880	ext4_ext_drop_refs(path);
2881	kfree(path);
2882	if (err == -EAGAIN) {
2883		path = NULL;
2884		goto again;
2885	}
2886	ext4_journal_stop(handle);
2887
2888	return err;
2889}
2890
2891/*
2892 * called at mount time
2893 */
2894void ext4_ext_init(struct super_block *sb)
2895{
2896	/*
2897	 * possible initialization would be here
2898	 */
2899
2900	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2901#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2902		printk(KERN_INFO "EXT4-fs: file extents enabled"
2903#ifdef AGGRESSIVE_TEST
2904		       ", aggressive tests"
2905#endif
2906#ifdef CHECK_BINSEARCH
2907		       ", check binsearch"
2908#endif
2909#ifdef EXTENTS_STATS
2910		       ", stats"
2911#endif
2912		       "\n");
2913#endif
2914#ifdef EXTENTS_STATS
2915		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2916		EXT4_SB(sb)->s_ext_min = 1 << 30;
2917		EXT4_SB(sb)->s_ext_max = 0;
2918#endif
2919	}
2920}
2921
2922/*
2923 * called at umount time
2924 */
2925void ext4_ext_release(struct super_block *sb)
2926{
2927	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2928		return;
2929
2930#ifdef EXTENTS_STATS
2931	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2932		struct ext4_sb_info *sbi = EXT4_SB(sb);
2933		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2934			sbi->s_ext_blocks, sbi->s_ext_extents,
2935			sbi->s_ext_blocks / sbi->s_ext_extents);
2936		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2937			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2938	}
2939#endif
2940}
2941
2942/* FIXME!! we need to try to merge to left or right after zero-out  */
2943static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2944{
2945	ext4_fsblk_t ee_pblock;
2946	unsigned int ee_len;
2947	int ret;
2948
2949	ee_len    = ext4_ext_get_actual_len(ex);
2950	ee_pblock = ext4_ext_pblock(ex);
2951
2952	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2953	if (ret > 0)
2954		ret = 0;
2955
2956	return ret;
2957}
2958
2959/*
2960 * ext4_split_extent_at() splits an extent at given block.
2961 *
2962 * @handle: the journal handle
2963 * @inode: the file inode
2964 * @path: the path to the extent
2965 * @split: the logical block where the extent is splitted.
2966 * @split_flags: indicates if the extent could be zeroout if split fails, and
2967 *		 the states(init or uninit) of new extents.
2968 * @flags: flags used to insert new extent to extent tree.
2969 *
2970 *
2971 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2972 * of which are deterimined by split_flag.
2973 *
2974 * There are two cases:
2975 *  a> the extent are splitted into two extent.
2976 *  b> split is not needed, and just mark the extent.
2977 *
2978 * return 0 on success.
2979 */
2980static int ext4_split_extent_at(handle_t *handle,
2981			     struct inode *inode,
2982			     struct ext4_ext_path *path,
2983			     ext4_lblk_t split,
2984			     int split_flag,
2985			     int flags)
2986{
2987	ext4_fsblk_t newblock;
2988	ext4_lblk_t ee_block;
2989	struct ext4_extent *ex, newex, orig_ex, zero_ex;
2990	struct ext4_extent *ex2 = NULL;
2991	unsigned int ee_len, depth;
2992	int err = 0;
2993
2994	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
2995	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
2996
2997	ext_debug("ext4_split_extents_at: inode %lu, logical"
2998		"block %llu\n", inode->i_ino, (unsigned long long)split);
2999
3000	ext4_ext_show_leaf(inode, path);
3001
3002	depth = ext_depth(inode);
3003	ex = path[depth].p_ext;
3004	ee_block = le32_to_cpu(ex->ee_block);
3005	ee_len = ext4_ext_get_actual_len(ex);
3006	newblock = split - ee_block + ext4_ext_pblock(ex);
3007
3008	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3009	BUG_ON(!ext4_ext_is_uninitialized(ex) &&
3010	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
3011			     EXT4_EXT_MARK_UNINIT1 |
3012			     EXT4_EXT_MARK_UNINIT2));
3013
3014	err = ext4_ext_get_access(handle, inode, path + depth);
3015	if (err)
3016		goto out;
3017
3018	if (split == ee_block) {
3019		/*
3020		 * case b: block @split is the block that the extent begins with
3021		 * then we just change the state of the extent, and splitting
3022		 * is not needed.
3023		 */
3024		if (split_flag & EXT4_EXT_MARK_UNINIT2)
3025			ext4_ext_mark_uninitialized(ex);
3026		else
3027			ext4_ext_mark_initialized(ex);
3028
3029		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3030			ext4_ext_try_to_merge(handle, inode, path, ex);
3031
3032		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3033		goto out;
3034	}
3035
3036	/* case a */
3037	memcpy(&orig_ex, ex, sizeof(orig_ex));
3038	ex->ee_len = cpu_to_le16(split - ee_block);
3039	if (split_flag & EXT4_EXT_MARK_UNINIT1)
3040		ext4_ext_mark_uninitialized(ex);
3041
3042	/*
3043	 * path may lead to new leaf, not to original leaf any more
3044	 * after ext4_ext_insert_extent() returns,
3045	 */
3046	err = ext4_ext_dirty(handle, inode, path + depth);
3047	if (err)
3048		goto fix_extent_len;
3049
3050	ex2 = &newex;
3051	ex2->ee_block = cpu_to_le32(split);
3052	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
3053	ext4_ext_store_pblock(ex2, newblock);
3054	if (split_flag & EXT4_EXT_MARK_UNINIT2)
3055		ext4_ext_mark_uninitialized(ex2);
3056
3057	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3058	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3059		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3060			if (split_flag & EXT4_EXT_DATA_VALID1) {
3061				err = ext4_ext_zeroout(inode, ex2);
3062				zero_ex.ee_block = ex2->ee_block;
3063				zero_ex.ee_len = cpu_to_le16(
3064						ext4_ext_get_actual_len(ex2));
3065				ext4_ext_store_pblock(&zero_ex,
3066						      ext4_ext_pblock(ex2));
3067			} else {
3068				err = ext4_ext_zeroout(inode, ex);
3069				zero_ex.ee_block = ex->ee_block;
3070				zero_ex.ee_len = cpu_to_le16(
3071						ext4_ext_get_actual_len(ex));
3072				ext4_ext_store_pblock(&zero_ex,
3073						      ext4_ext_pblock(ex));
3074			}
3075		} else {
3076			err = ext4_ext_zeroout(inode, &orig_ex);
3077			zero_ex.ee_block = orig_ex.ee_block;
3078			zero_ex.ee_len = cpu_to_le16(
3079						ext4_ext_get_actual_len(&orig_ex));
3080			ext4_ext_store_pblock(&zero_ex,
3081					      ext4_ext_pblock(&orig_ex));
3082		}
3083
3084		if (err)
3085			goto fix_extent_len;
3086		/* update the extent length and mark as initialized */
3087		ex->ee_len = cpu_to_le16(ee_len);
3088		ext4_ext_try_to_merge(handle, inode, path, ex);
3089		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3090		if (err)
3091			goto fix_extent_len;
3092
3093		/* update extent status tree */
3094		err = ext4_es_zeroout(inode, &zero_ex);
3095
3096		goto out;
3097	} else if (err)
3098		goto fix_extent_len;
3099
3100out:
3101	ext4_ext_show_leaf(inode, path);
3102	return err;
3103
3104fix_extent_len:
3105	ex->ee_len = orig_ex.ee_len;
3106	ext4_ext_dirty(handle, inode, path + depth);
3107	return err;
3108}
3109
3110/*
3111 * ext4_split_extents() splits an extent and mark extent which is covered
3112 * by @map as split_flags indicates
3113 *
3114 * It may result in splitting the extent into multiple extents (upto three)
3115 * There are three possibilities:
3116 *   a> There is no split required
3117 *   b> Splits in two extents: Split is happening at either end of the extent
3118 *   c> Splits in three extents: Somone is splitting in middle of the extent
3119 *
3120 */
3121static int ext4_split_extent(handle_t *handle,
3122			      struct inode *inode,
3123			      struct ext4_ext_path *path,
3124			      struct ext4_map_blocks *map,
3125			      int split_flag,
3126			      int flags)
3127{
3128	ext4_lblk_t ee_block;
3129	struct ext4_extent *ex;
3130	unsigned int ee_len, depth;
3131	int err = 0;
3132	int uninitialized;
3133	int split_flag1, flags1;
3134	int allocated = map->m_len;
3135
3136	depth = ext_depth(inode);
3137	ex = path[depth].p_ext;
3138	ee_block = le32_to_cpu(ex->ee_block);
3139	ee_len = ext4_ext_get_actual_len(ex);
3140	uninitialized = ext4_ext_is_uninitialized(ex);
3141
3142	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3143		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3144		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3145		if (uninitialized)
3146			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3147				       EXT4_EXT_MARK_UNINIT2;
3148		if (split_flag & EXT4_EXT_DATA_VALID2)
3149			split_flag1 |= EXT4_EXT_DATA_VALID1;
3150		err = ext4_split_extent_at(handle, inode, path,
3151				map->m_lblk + map->m_len, split_flag1, flags1);
3152		if (err)
3153			goto out;
3154	} else {
3155		allocated = ee_len - (map->m_lblk - ee_block);
3156	}
3157	/*
3158	 * Update path is required because previous ext4_split_extent_at() may
3159	 * result in split of original leaf or extent zeroout.
3160	 */
3161	ext4_ext_drop_refs(path);
3162	path = ext4_ext_find_extent(inode, map->m_lblk, path);
3163	if (IS_ERR(path))
3164		return PTR_ERR(path);
3165	depth = ext_depth(inode);
3166	ex = path[depth].p_ext;
3167	uninitialized = ext4_ext_is_uninitialized(ex);
3168	split_flag1 = 0;
3169
3170	if (map->m_lblk >= ee_block) {
3171		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3172		if (uninitialized) {
3173			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3174			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3175						     EXT4_EXT_MARK_UNINIT2);
3176		}
3177		err = ext4_split_extent_at(handle, inode, path,
3178				map->m_lblk, split_flag1, flags);
3179		if (err)
3180			goto out;
3181	}
3182
3183	ext4_ext_show_leaf(inode, path);
3184out:
3185	return err ? err : allocated;
3186}
3187
3188/*
3189 * This function is called by ext4_ext_map_blocks() if someone tries to write
3190 * to an uninitialized extent. It may result in splitting the uninitialized
3191 * extent into multiple extents (up to three - one initialized and two
3192 * uninitialized).
3193 * There are three possibilities:
3194 *   a> There is no split required: Entire extent should be initialized
3195 *   b> Splits in two extents: Write is happening at either end of the extent
3196 *   c> Splits in three extents: Somone is writing in middle of the extent
3197 *
3198 * Pre-conditions:
3199 *  - The extent pointed to by 'path' is uninitialized.
3200 *  - The extent pointed to by 'path' contains a superset
3201 *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3202 *
3203 * Post-conditions on success:
3204 *  - the returned value is the number of blocks beyond map->l_lblk
3205 *    that are allocated and initialized.
3206 *    It is guaranteed to be >= map->m_len.
3207 */
3208static int ext4_ext_convert_to_initialized(handle_t *handle,
3209					   struct inode *inode,
3210					   struct ext4_map_blocks *map,
3211					   struct ext4_ext_path *path,
3212					   int flags)
3213{
3214	struct ext4_sb_info *sbi;
3215	struct ext4_extent_header *eh;
3216	struct ext4_map_blocks split_map;
3217	struct ext4_extent zero_ex;
3218	struct ext4_extent *ex, *abut_ex;
3219	ext4_lblk_t ee_block, eof_block;
3220	unsigned int ee_len, depth, map_len = map->m_len;
3221	int allocated = 0, max_zeroout = 0;
3222	int err = 0;
3223	int split_flag = 0;
3224
3225	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3226		"block %llu, max_blocks %u\n", inode->i_ino,
3227		(unsigned long long)map->m_lblk, map_len);
3228
3229	sbi = EXT4_SB(inode->i_sb);
3230	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3231		inode->i_sb->s_blocksize_bits;
3232	if (eof_block < map->m_lblk + map_len)
3233		eof_block = map->m_lblk + map_len;
3234
3235	depth = ext_depth(inode);
3236	eh = path[depth].p_hdr;
3237	ex = path[depth].p_ext;
3238	ee_block = le32_to_cpu(ex->ee_block);
3239	ee_len = ext4_ext_get_actual_len(ex);
3240	zero_ex.ee_len = 0;
3241
3242	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3243
3244	/* Pre-conditions */
3245	BUG_ON(!ext4_ext_is_uninitialized(ex));
3246	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3247
3248	/*
3249	 * Attempt to transfer newly initialized blocks from the currently
3250	 * uninitialized extent to its neighbor. This is much cheaper
3251	 * than an insertion followed by a merge as those involve costly
3252	 * memmove() calls. Transferring to the left is the common case in
3253	 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3254	 * followed by append writes.
3255	 *
3256	 * Limitations of the current logic:
3257	 *  - L1: we do not deal with writes covering the whole extent.
3258	 *    This would require removing the extent if the transfer
3259	 *    is possible.
3260	 *  - L2: we only attempt to merge with an extent stored in the
3261	 *    same extent tree node.
3262	 */
3263	if ((map->m_lblk == ee_block) &&
3264		/* See if we can merge left */
3265		(map_len < ee_len) &&		/*L1*/
3266		(ex > EXT_FIRST_EXTENT(eh))) {	/*L2*/
3267		ext4_lblk_t prev_lblk;
3268		ext4_fsblk_t prev_pblk, ee_pblk;
3269		unsigned int prev_len;
3270
3271		abut_ex = ex - 1;
3272		prev_lblk = le32_to_cpu(abut_ex->ee_block);
3273		prev_len = ext4_ext_get_actual_len(abut_ex);
3274		prev_pblk = ext4_ext_pblock(abut_ex);
3275		ee_pblk = ext4_ext_pblock(ex);
3276
3277		/*
3278		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3279		 * upon those conditions:
3280		 * - C1: abut_ex is initialized,
3281		 * - C2: abut_ex is logically abutting ex,
3282		 * - C3: abut_ex is physically abutting ex,
3283		 * - C4: abut_ex can receive the additional blocks without
3284		 *   overflowing the (initialized) length limit.
3285		 */
3286		if ((!ext4_ext_is_uninitialized(abut_ex)) &&		/*C1*/
3287			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3288			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3289			(prev_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3290			err = ext4_ext_get_access(handle, inode, path + depth);
3291			if (err)
3292				goto out;
3293
3294			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3295				map, ex, abut_ex);
3296
3297			/* Shift the start of ex by 'map_len' blocks */
3298			ex->ee_block = cpu_to_le32(ee_block + map_len);
3299			ext4_ext_store_pblock(ex, ee_pblk + map_len);
3300			ex->ee_len = cpu_to_le16(ee_len - map_len);
3301			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3302
3303			/* Extend abut_ex by 'map_len' blocks */
3304			abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3305
3306			/* Result: number of initialized blocks past m_lblk */
3307			allocated = map_len;
3308		}
3309	} else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3310		   (map_len < ee_len) &&	/*L1*/
3311		   ex < EXT_LAST_EXTENT(eh)) {	/*L2*/
3312		/* See if we can merge right */
3313		ext4_lblk_t next_lblk;
3314		ext4_fsblk_t next_pblk, ee_pblk;
3315		unsigned int next_len;
3316
3317		abut_ex = ex + 1;
3318		next_lblk = le32_to_cpu(abut_ex->ee_block);
3319		next_len = ext4_ext_get_actual_len(abut_ex);
3320		next_pblk = ext4_ext_pblock(abut_ex);
3321		ee_pblk = ext4_ext_pblock(ex);
3322
3323		/*
3324		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3325		 * upon those conditions:
3326		 * - C1: abut_ex is initialized,
3327		 * - C2: abut_ex is logically abutting ex,
3328		 * - C3: abut_ex is physically abutting ex,
3329		 * - C4: abut_ex can receive the additional blocks without
3330		 *   overflowing the (initialized) length limit.
3331		 */
3332		if ((!ext4_ext_is_uninitialized(abut_ex)) &&		/*C1*/
3333		    ((map->m_lblk + map_len) == next_lblk) &&		/*C2*/
3334		    ((ee_pblk + ee_len) == next_pblk) &&		/*C3*/
3335		    (next_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3336			err = ext4_ext_get_access(handle, inode, path + depth);
3337			if (err)
3338				goto out;
3339
3340			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3341				map, ex, abut_ex);
3342
3343			/* Shift the start of abut_ex by 'map_len' blocks */
3344			abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3345			ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3346			ex->ee_len = cpu_to_le16(ee_len - map_len);
3347			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3348
3349			/* Extend abut_ex by 'map_len' blocks */
3350			abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3351
3352			/* Result: number of initialized blocks past m_lblk */
3353			allocated = map_len;
3354		}
3355	}
3356	if (allocated) {
3357		/* Mark the block containing both extents as dirty */
3358		ext4_ext_dirty(handle, inode, path + depth);
3359
3360		/* Update path to point to the right extent */
3361		path[depth].p_ext = abut_ex;
3362		goto out;
3363	} else
3364		allocated = ee_len - (map->m_lblk - ee_block);
3365
3366	WARN_ON(map->m_lblk < ee_block);
3367	/*
3368	 * It is safe to convert extent to initialized via explicit
3369	 * zeroout only if extent is fully insde i_size or new_size.
3370	 */
3371	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3372
3373	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3374		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3375			(inode->i_sb->s_blocksize_bits - 10);
3376
3377	/* If extent is less than s_max_zeroout_kb, zeroout directly */
3378	if (max_zeroout && (ee_len <= max_zeroout)) {
3379		err = ext4_ext_zeroout(inode, ex);
3380		if (err)
3381			goto out;
3382		zero_ex.ee_block = ex->ee_block;
3383		zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3384		ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3385
3386		err = ext4_ext_get_access(handle, inode, path + depth);
3387		if (err)
3388			goto out;
3389		ext4_ext_mark_initialized(ex);
3390		ext4_ext_try_to_merge(handle, inode, path, ex);
3391		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3392		goto out;
3393	}
3394
3395	/*
3396	 * four cases:
3397	 * 1. split the extent into three extents.
3398	 * 2. split the extent into two extents, zeroout the first half.
3399	 * 3. split the extent into two extents, zeroout the second half.
3400	 * 4. split the extent into two extents with out zeroout.
3401	 */
3402	split_map.m_lblk = map->m_lblk;
3403	split_map.m_len = map->m_len;
3404
3405	if (max_zeroout && (allocated > map->m_len)) {
3406		if (allocated <= max_zeroout) {
3407			/* case 3 */
3408			zero_ex.ee_block =
3409					 cpu_to_le32(map->m_lblk);
3410			zero_ex.ee_len = cpu_to_le16(allocated);
3411			ext4_ext_store_pblock(&zero_ex,
3412				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3413			err = ext4_ext_zeroout(inode, &zero_ex);
3414			if (err)
3415				goto out;
3416			split_map.m_lblk = map->m_lblk;
3417			split_map.m_len = allocated;
3418		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3419			/* case 2 */
3420			if (map->m_lblk != ee_block) {
3421				zero_ex.ee_block = ex->ee_block;
3422				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3423							ee_block);
3424				ext4_ext_store_pblock(&zero_ex,
3425						      ext4_ext_pblock(ex));
3426				err = ext4_ext_zeroout(inode, &zero_ex);
3427				if (err)
3428					goto out;
3429			}
3430
3431			split_map.m_lblk = ee_block;
3432			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3433			allocated = map->m_len;
3434		}
3435	}
3436
3437	allocated = ext4_split_extent(handle, inode, path,
3438				      &split_map, split_flag, flags);
3439	if (allocated < 0)
3440		err = allocated;
3441
3442out:
3443	/* If we have gotten a failure, don't zero out status tree */
3444	if (!err)
3445		err = ext4_es_zeroout(inode, &zero_ex);
3446	return err ? err : allocated;
3447}
3448
3449/*
3450 * This function is called by ext4_ext_map_blocks() from
3451 * ext4_get_blocks_dio_write() when DIO to write
3452 * to an uninitialized extent.
3453 *
3454 * Writing to an uninitialized extent may result in splitting the uninitialized
3455 * extent into multiple initialized/uninitialized extents (up to three)
3456 * There are three possibilities:
3457 *   a> There is no split required: Entire extent should be uninitialized
3458 *   b> Splits in two extents: Write is happening at either end of the extent
3459 *   c> Splits in three extents: Somone is writing in middle of the extent
3460 *
3461 * One of more index blocks maybe needed if the extent tree grow after
3462 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3463 * complete, we need to split the uninitialized extent before DIO submit
3464 * the IO. The uninitialized extent called at this time will be split
3465 * into three uninitialized extent(at most). After IO complete, the part
3466 * being filled will be convert to initialized by the end_io callback function
3467 * via ext4_convert_unwritten_extents().
3468 *
3469 * Returns the size of uninitialized extent to be written on success.
3470 */
3471static int ext4_split_unwritten_extents(handle_t *handle,
3472					struct inode *inode,
3473					struct ext4_map_blocks *map,
3474					struct ext4_ext_path *path,
3475					int flags)
3476{
3477	ext4_lblk_t eof_block;
3478	ext4_lblk_t ee_block;
3479	struct ext4_extent *ex;
3480	unsigned int ee_len;
3481	int split_flag = 0, depth;
3482
3483	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3484		"block %llu, max_blocks %u\n", inode->i_ino,
3485		(unsigned long long)map->m_lblk, map->m_len);
3486
3487	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3488		inode->i_sb->s_blocksize_bits;
3489	if (eof_block < map->m_lblk + map->m_len)
3490		eof_block = map->m_lblk + map->m_len;
3491	/*
3492	 * It is safe to convert extent to initialized via explicit
3493	 * zeroout only if extent is fully insde i_size or new_size.
3494	 */
3495	depth = ext_depth(inode);
3496	ex = path[depth].p_ext;
3497	ee_block = le32_to_cpu(ex->ee_block);
3498	ee_len = ext4_ext_get_actual_len(ex);
3499
3500	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3501	split_flag |= EXT4_EXT_MARK_UNINIT2;
3502	if (flags & EXT4_GET_BLOCKS_CONVERT)
3503		split_flag |= EXT4_EXT_DATA_VALID2;
3504	flags |= EXT4_GET_BLOCKS_PRE_IO;
3505	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3506}
3507
3508static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3509						struct inode *inode,
3510						struct ext4_map_blocks *map,
3511						struct ext4_ext_path *path)
3512{
3513	struct ext4_extent *ex;
3514	ext4_lblk_t ee_block;
3515	unsigned int ee_len;
3516	int depth;
3517	int err = 0;
3518
3519	depth = ext_depth(inode);
3520	ex = path[depth].p_ext;
3521	ee_block = le32_to_cpu(ex->ee_block);
3522	ee_len = ext4_ext_get_actual_len(ex);
3523
3524	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3525		"block %llu, max_blocks %u\n", inode->i_ino,
3526		  (unsigned long long)ee_block, ee_len);
3527
3528	/* If extent is larger than requested it is a clear sign that we still
3529	 * have some extent state machine issues left. So extent_split is still
3530	 * required.
3531	 * TODO: Once all related issues will be fixed this situation should be
3532	 * illegal.
3533	 */
3534	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3535#ifdef EXT4_DEBUG
3536		ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3537			     " len %u; IO logical block %llu, len %u\n",
3538			     inode->i_ino, (unsigned long long)ee_block, ee_len,
3539			     (unsigned long long)map->m_lblk, map->m_len);
3540#endif
3541		err = ext4_split_unwritten_extents(handle, inode, map, path,
3542						   EXT4_GET_BLOCKS_CONVERT);
3543		if (err < 0)
3544			goto out;
3545		ext4_ext_drop_refs(path);
3546		path = ext4_ext_find_extent(inode, map->m_lblk, path);
3547		if (IS_ERR(path)) {
3548			err = PTR_ERR(path);
3549			goto out;
3550		}
3551		depth = ext_depth(inode);
3552		ex = path[depth].p_ext;
3553	}
3554
3555	err = ext4_ext_get_access(handle, inode, path + depth);
3556	if (err)
3557		goto out;
3558	/* first mark the extent as initialized */
3559	ext4_ext_mark_initialized(ex);
3560
3561	/* note: ext4_ext_correct_indexes() isn't needed here because
3562	 * borders are not changed
3563	 */
3564	ext4_ext_try_to_merge(handle, inode, path, ex);
3565
3566	/* Mark modified extent as dirty */
3567	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3568out:
3569	ext4_ext_show_leaf(inode, path);
3570	return err;
3571}
3572
3573static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3574			sector_t block, int count)
3575{
3576	int i;
3577	for (i = 0; i < count; i++)
3578                unmap_underlying_metadata(bdev, block + i);
3579}
3580
3581/*
3582 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3583 */
3584static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3585			      ext4_lblk_t lblk,
3586			      struct ext4_ext_path *path,
3587			      unsigned int len)
3588{
3589	int i, depth;
3590	struct ext4_extent_header *eh;
3591	struct ext4_extent *last_ex;
3592
3593	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3594		return 0;
3595
3596	depth = ext_depth(inode);
3597	eh = path[depth].p_hdr;
3598
3599	/*
3600	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3601	 * do not care for this case anymore. Simply remove the flag
3602	 * if there are no extents.
3603	 */
3604	if (unlikely(!eh->eh_entries))
3605		goto out;
3606	last_ex = EXT_LAST_EXTENT(eh);
3607	/*
3608	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3609	 * last block in the last extent in the file.  We test this by
3610	 * first checking to see if the caller to
3611	 * ext4_ext_get_blocks() was interested in the last block (or
3612	 * a block beyond the last block) in the current extent.  If
3613	 * this turns out to be false, we can bail out from this
3614	 * function immediately.
3615	 */
3616	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3617	    ext4_ext_get_actual_len(last_ex))
3618		return 0;
3619	/*
3620	 * If the caller does appear to be planning to write at or
3621	 * beyond the end of the current extent, we then test to see
3622	 * if the current extent is the last extent in the file, by
3623	 * checking to make sure it was reached via the rightmost node
3624	 * at each level of the tree.
3625	 */
3626	for (i = depth-1; i >= 0; i--)
3627		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3628			return 0;
3629out:
3630	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3631	return ext4_mark_inode_dirty(handle, inode);
3632}
3633
3634/**
3635 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3636 *
3637 * Return 1 if there is a delalloc block in the range, otherwise 0.
3638 */
3639int ext4_find_delalloc_range(struct inode *inode,
3640			     ext4_lblk_t lblk_start,
3641			     ext4_lblk_t lblk_end)
3642{
3643	struct extent_status es;
3644
3645	ext4_es_find_delayed_extent(inode, lblk_start, &es);
3646	if (es.es_len == 0)
3647		return 0; /* there is no delay extent in this tree */
3648	else if (es.es_lblk <= lblk_start &&
3649		 lblk_start < es.es_lblk + es.es_len)
3650		return 1;
3651	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3652		return 1;
3653	else
3654		return 0;
3655}
3656
3657int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3658{
3659	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3660	ext4_lblk_t lblk_start, lblk_end;
3661	lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3662	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3663
3664	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3665}
3666
3667/**
3668 * Determines how many complete clusters (out of those specified by the 'map')
3669 * are under delalloc and were reserved quota for.
3670 * This function is called when we are writing out the blocks that were
3671 * originally written with their allocation delayed, but then the space was
3672 * allocated using fallocate() before the delayed allocation could be resolved.
3673 * The cases to look for are:
3674 * ('=' indicated delayed allocated blocks
3675 *  '-' indicates non-delayed allocated blocks)
3676 * (a) partial clusters towards beginning and/or end outside of allocated range
3677 *     are not delalloc'ed.
3678 *	Ex:
3679 *	|----c---=|====c====|====c====|===-c----|
3680 *	         |++++++ allocated ++++++|
3681 *	==> 4 complete clusters in above example
3682 *
3683 * (b) partial cluster (outside of allocated range) towards either end is
3684 *     marked for delayed allocation. In this case, we will exclude that
3685 *     cluster.
3686 *	Ex:
3687 *	|----====c========|========c========|
3688 *	     |++++++ allocated ++++++|
3689 *	==> 1 complete clusters in above example
3690 *
3691 *	Ex:
3692 *	|================c================|
3693 *            |++++++ allocated ++++++|
3694 *	==> 0 complete clusters in above example
3695 *
3696 * The ext4_da_update_reserve_space will be called only if we
3697 * determine here that there were some "entire" clusters that span
3698 * this 'allocated' range.
3699 * In the non-bigalloc case, this function will just end up returning num_blks
3700 * without ever calling ext4_find_delalloc_range.
3701 */
3702static unsigned int
3703get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3704			   unsigned int num_blks)
3705{
3706	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3707	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3708	ext4_lblk_t lblk_from, lblk_to, c_offset;
3709	unsigned int allocated_clusters = 0;
3710
3711	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3712	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3713
3714	/* max possible clusters for this allocation */
3715	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3716
3717	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3718
3719	/* Check towards left side */
3720	c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3721	if (c_offset) {
3722		lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3723		lblk_to = lblk_from + c_offset - 1;
3724
3725		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3726			allocated_clusters--;
3727	}
3728
3729	/* Now check towards right. */
3730	c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3731	if (allocated_clusters && c_offset) {
3732		lblk_from = lblk_start + num_blks;
3733		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3734
3735		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3736			allocated_clusters--;
3737	}
3738
3739	return allocated_clusters;
3740}
3741
3742static int
3743ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3744			struct ext4_map_blocks *map,
3745			struct ext4_ext_path *path, int flags,
3746			unsigned int allocated, ext4_fsblk_t newblock)
3747{
3748	int ret = 0;
3749	int err = 0;
3750	ext4_io_end_t *io = ext4_inode_aio(inode);
3751
3752	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3753		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
3754		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3755		  flags, allocated);
3756	ext4_ext_show_leaf(inode, path);
3757
3758	/*
3759	 * When writing into uninitialized space, we should not fail to
3760	 * allocate metadata blocks for the new extent block if needed.
3761	 */
3762	flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
3763
3764	trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3765						    allocated, newblock);
3766
3767	/* get_block() before submit the IO, split the extent */
3768	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3769		ret = ext4_split_unwritten_extents(handle, inode, map,
3770						   path, flags);
3771		if (ret <= 0)
3772			goto out;
3773		/*
3774		 * Flag the inode(non aio case) or end_io struct (aio case)
3775		 * that this IO needs to conversion to written when IO is
3776		 * completed
3777		 */
3778		if (io)
3779			ext4_set_io_unwritten_flag(inode, io);
3780		else
3781			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3782		map->m_flags |= EXT4_MAP_UNWRITTEN;
3783		if (ext4_should_dioread_nolock(inode))
3784			map->m_flags |= EXT4_MAP_UNINIT;
3785		goto out;
3786	}
3787	/* IO end_io complete, convert the filled extent to written */
3788	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3789		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3790							path);
3791		if (ret >= 0) {
3792			ext4_update_inode_fsync_trans(handle, inode, 1);
3793			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3794						 path, map->m_len);
3795		} else
3796			err = ret;
3797		map->m_flags |= EXT4_MAP_MAPPED;
3798		if (allocated > map->m_len)
3799			allocated = map->m_len;
3800		map->m_len = allocated;
3801		goto out2;
3802	}
3803	/* buffered IO case */
3804	/*
3805	 * repeat fallocate creation request
3806	 * we already have an unwritten extent
3807	 */
3808	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
3809		map->m_flags |= EXT4_MAP_UNWRITTEN;
3810		goto map_out;
3811	}
3812
3813	/* buffered READ or buffered write_begin() lookup */
3814	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3815		/*
3816		 * We have blocks reserved already.  We
3817		 * return allocated blocks so that delalloc
3818		 * won't do block reservation for us.  But
3819		 * the buffer head will be unmapped so that
3820		 * a read from the block returns 0s.
3821		 */
3822		map->m_flags |= EXT4_MAP_UNWRITTEN;
3823		goto out1;
3824	}
3825
3826	/* buffered write, writepage time, convert*/
3827	ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags);
3828	if (ret >= 0)
3829		ext4_update_inode_fsync_trans(handle, inode, 1);
3830out:
3831	if (ret <= 0) {
3832		err = ret;
3833		goto out2;
3834	} else
3835		allocated = ret;
3836	map->m_flags |= EXT4_MAP_NEW;
3837	/*
3838	 * if we allocated more blocks than requested
3839	 * we need to make sure we unmap the extra block
3840	 * allocated. The actual needed block will get
3841	 * unmapped later when we find the buffer_head marked
3842	 * new.
3843	 */
3844	if (allocated > map->m_len) {
3845		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3846					newblock + map->m_len,
3847					allocated - map->m_len);
3848		allocated = map->m_len;
3849	}
3850	map->m_len = allocated;
3851
3852	/*
3853	 * If we have done fallocate with the offset that is already
3854	 * delayed allocated, we would have block reservation
3855	 * and quota reservation done in the delayed write path.
3856	 * But fallocate would have already updated quota and block
3857	 * count for this offset. So cancel these reservation
3858	 */
3859	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3860		unsigned int reserved_clusters;
3861		reserved_clusters = get_reserved_cluster_alloc(inode,
3862				map->m_lblk, map->m_len);
3863		if (reserved_clusters)
3864			ext4_da_update_reserve_space(inode,
3865						     reserved_clusters,
3866						     0);
3867	}
3868
3869map_out:
3870	map->m_flags |= EXT4_MAP_MAPPED;
3871	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3872		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3873					 map->m_len);
3874		if (err < 0)
3875			goto out2;
3876	}
3877out1:
3878	if (allocated > map->m_len)
3879		allocated = map->m_len;
3880	ext4_ext_show_leaf(inode, path);
3881	map->m_pblk = newblock;
3882	map->m_len = allocated;
3883out2:
3884	if (path) {
3885		ext4_ext_drop_refs(path);
3886		kfree(path);
3887	}
3888	return err ? err : allocated;
3889}
3890
3891/*
3892 * get_implied_cluster_alloc - check to see if the requested
3893 * allocation (in the map structure) overlaps with a cluster already
3894 * allocated in an extent.
3895 *	@sb	The filesystem superblock structure
3896 *	@map	The requested lblk->pblk mapping
3897 *	@ex	The extent structure which might contain an implied
3898 *			cluster allocation
3899 *
3900 * This function is called by ext4_ext_map_blocks() after we failed to
3901 * find blocks that were already in the inode's extent tree.  Hence,
3902 * we know that the beginning of the requested region cannot overlap
3903 * the extent from the inode's extent tree.  There are three cases we
3904 * want to catch.  The first is this case:
3905 *
3906 *		 |--- cluster # N--|
3907 *    |--- extent ---|	|---- requested region ---|
3908 *			|==========|
3909 *
3910 * The second case that we need to test for is this one:
3911 *
3912 *   |--------- cluster # N ----------------|
3913 *	   |--- requested region --|   |------- extent ----|
3914 *	   |=======================|
3915 *
3916 * The third case is when the requested region lies between two extents
3917 * within the same cluster:
3918 *          |------------- cluster # N-------------|
3919 * |----- ex -----|                  |---- ex_right ----|
3920 *                  |------ requested region ------|
3921 *                  |================|
3922 *
3923 * In each of the above cases, we need to set the map->m_pblk and
3924 * map->m_len so it corresponds to the return the extent labelled as
3925 * "|====|" from cluster #N, since it is already in use for data in
3926 * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
3927 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3928 * as a new "allocated" block region.  Otherwise, we will return 0 and
3929 * ext4_ext_map_blocks() will then allocate one or more new clusters
3930 * by calling ext4_mb_new_blocks().
3931 */
3932static int get_implied_cluster_alloc(struct super_block *sb,
3933				     struct ext4_map_blocks *map,
3934				     struct ext4_extent *ex,
3935				     struct ext4_ext_path *path)
3936{
3937	struct ext4_sb_info *sbi = EXT4_SB(sb);
3938	ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3939	ext4_lblk_t ex_cluster_start, ex_cluster_end;
3940	ext4_lblk_t rr_cluster_start;
3941	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3942	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3943	unsigned short ee_len = ext4_ext_get_actual_len(ex);
3944
3945	/* The extent passed in that we are trying to match */
3946	ex_cluster_start = EXT4_B2C(sbi, ee_block);
3947	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3948
3949	/* The requested region passed into ext4_map_blocks() */
3950	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3951
3952	if ((rr_cluster_start == ex_cluster_end) ||
3953	    (rr_cluster_start == ex_cluster_start)) {
3954		if (rr_cluster_start == ex_cluster_end)
3955			ee_start += ee_len - 1;
3956		map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3957			c_offset;
3958		map->m_len = min(map->m_len,
3959				 (unsigned) sbi->s_cluster_ratio - c_offset);
3960		/*
3961		 * Check for and handle this case:
3962		 *
3963		 *   |--------- cluster # N-------------|
3964		 *		       |------- extent ----|
3965		 *	   |--- requested region ---|
3966		 *	   |===========|
3967		 */
3968
3969		if (map->m_lblk < ee_block)
3970			map->m_len = min(map->m_len, ee_block - map->m_lblk);
3971
3972		/*
3973		 * Check for the case where there is already another allocated
3974		 * block to the right of 'ex' but before the end of the cluster.
3975		 *
3976		 *          |------------- cluster # N-------------|
3977		 * |----- ex -----|                  |---- ex_right ----|
3978		 *                  |------ requested region ------|
3979		 *                  |================|
3980		 */
3981		if (map->m_lblk > ee_block) {
3982			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3983			map->m_len = min(map->m_len, next - map->m_lblk);
3984		}
3985
3986		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3987		return 1;
3988	}
3989
3990	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3991	return 0;
3992}
3993
3994
3995/*
3996 * Block allocation/map/preallocation routine for extents based files
3997 *
3998 *
3999 * Need to be called with
4000 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4001 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4002 *
4003 * return > 0, number of of blocks already mapped/allocated
4004 *          if create == 0 and these are pre-allocated blocks
4005 *          	buffer head is unmapped
4006 *          otherwise blocks are mapped
4007 *
4008 * return = 0, if plain look up failed (blocks have not been allocated)
4009 *          buffer head is unmapped
4010 *
4011 * return < 0, error case.
4012 */
4013int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4014			struct ext4_map_blocks *map, int flags)
4015{
4016	struct ext4_ext_path *path = NULL;
4017	struct ext4_extent newex, *ex, *ex2;
4018	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4019	ext4_fsblk_t newblock = 0;
4020	int free_on_err = 0, err = 0, depth;
4021	unsigned int allocated = 0, offset = 0;
4022	unsigned int allocated_clusters = 0;
4023	struct ext4_allocation_request ar;
4024	ext4_io_end_t *io = ext4_inode_aio(inode);
4025	ext4_lblk_t cluster_offset;
4026	int set_unwritten = 0;
4027
4028	ext_debug("blocks %u/%u requested for inode %lu\n",
4029		  map->m_lblk, map->m_len, inode->i_ino);
4030	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4031
4032	/* find extent for this block */
4033	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
4034	if (IS_ERR(path)) {
4035		err = PTR_ERR(path);
4036		path = NULL;
4037		goto out2;
4038	}
4039
4040	depth = ext_depth(inode);
4041
4042	/*
4043	 * consistent leaf must not be empty;
4044	 * this situation is possible, though, _during_ tree modification;
4045	 * this is why assert can't be put in ext4_ext_find_extent()
4046	 */
4047	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4048		EXT4_ERROR_INODE(inode, "bad extent address "
4049				 "lblock: %lu, depth: %d pblock %lld",
4050				 (unsigned long) map->m_lblk, depth,
4051				 path[depth].p_block);
4052		err = -EIO;
4053		goto out2;
4054	}
4055
4056	ex = path[depth].p_ext;
4057	if (ex) {
4058		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4059		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4060		unsigned short ee_len;
4061
4062		/*
4063		 * Uninitialized extents are treated as holes, except that
4064		 * we split out initialized portions during a write.
4065		 */
4066		ee_len = ext4_ext_get_actual_len(ex);
4067
4068		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4069
4070		/* if found extent covers block, simply return it */
4071		if (in_range(map->m_lblk, ee_block, ee_len)) {
4072			newblock = map->m_lblk - ee_block + ee_start;
4073			/* number of remaining blocks in the extent */
4074			allocated = ee_len - (map->m_lblk - ee_block);
4075			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4076				  ee_block, ee_len, newblock);
4077
4078			if (!ext4_ext_is_uninitialized(ex))
4079				goto out;
4080
4081			allocated = ext4_ext_handle_uninitialized_extents(
4082				handle, inode, map, path, flags,
4083				allocated, newblock);
4084			goto out3;
4085		}
4086	}
4087
4088	if ((sbi->s_cluster_ratio > 1) &&
4089	    ext4_find_delalloc_cluster(inode, map->m_lblk))
4090		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4091
4092	/*
4093	 * requested block isn't allocated yet;
4094	 * we couldn't try to create block if create flag is zero
4095	 */
4096	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4097		/*
4098		 * put just found gap into cache to speed up
4099		 * subsequent requests
4100		 */
4101		if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4102			ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4103		goto out2;
4104	}
4105
4106	/*
4107	 * Okay, we need to do block allocation.
4108	 */
4109	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4110	newex.ee_block = cpu_to_le32(map->m_lblk);
4111	cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4112
4113	/*
4114	 * If we are doing bigalloc, check to see if the extent returned
4115	 * by ext4_ext_find_extent() implies a cluster we can use.
4116	 */
4117	if (cluster_offset && ex &&
4118	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4119		ar.len = allocated = map->m_len;
4120		newblock = map->m_pblk;
4121		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4122		goto got_allocated_blocks;
4123	}
4124
4125	/* find neighbour allocated blocks */
4126	ar.lleft = map->m_lblk;
4127	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4128	if (err)
4129		goto out2;
4130	ar.lright = map->m_lblk;
4131	ex2 = NULL;
4132	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4133	if (err)
4134		goto out2;
4135
4136	/* Check if the extent after searching to the right implies a
4137	 * cluster we can use. */
4138	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4139	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4140		ar.len = allocated = map->m_len;
4141		newblock = map->m_pblk;
4142		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4143		goto got_allocated_blocks;
4144	}
4145
4146	/*
4147	 * See if request is beyond maximum number of blocks we can have in
4148	 * a single extent. For an initialized extent this limit is
4149	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4150	 * EXT_UNINIT_MAX_LEN.
4151	 */
4152	if (map->m_len > EXT_INIT_MAX_LEN &&
4153	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4154		map->m_len = EXT_INIT_MAX_LEN;
4155	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4156		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4157		map->m_len = EXT_UNINIT_MAX_LEN;
4158
4159	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4160	newex.ee_len = cpu_to_le16(map->m_len);
4161	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4162	if (err)
4163		allocated = ext4_ext_get_actual_len(&newex);
4164	else
4165		allocated = map->m_len;
4166
4167	/* allocate new block */
4168	ar.inode = inode;
4169	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4170	ar.logical = map->m_lblk;
4171	/*
4172	 * We calculate the offset from the beginning of the cluster
4173	 * for the logical block number, since when we allocate a
4174	 * physical cluster, the physical block should start at the
4175	 * same offset from the beginning of the cluster.  This is
4176	 * needed so that future calls to get_implied_cluster_alloc()
4177	 * work correctly.
4178	 */
4179	offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4180	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4181	ar.goal -= offset;
4182	ar.logical -= offset;
4183	if (S_ISREG(inode->i_mode))
4184		ar.flags = EXT4_MB_HINT_DATA;
4185	else
4186		/* disable in-core preallocation for non-regular files */
4187		ar.flags = 0;
4188	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4189		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4190	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4191	if (!newblock)
4192		goto out2;
4193	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4194		  ar.goal, newblock, allocated);
4195	free_on_err = 1;
4196	allocated_clusters = ar.len;
4197	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4198	if (ar.len > allocated)
4199		ar.len = allocated;
4200
4201got_allocated_blocks:
4202	/* try to insert new extent into found leaf and return */
4203	ext4_ext_store_pblock(&newex, newblock + offset);
4204	newex.ee_len = cpu_to_le16(ar.len);
4205	/* Mark uninitialized */
4206	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4207		ext4_ext_mark_uninitialized(&newex);
4208		map->m_flags |= EXT4_MAP_UNWRITTEN;
4209		/*
4210		 * io_end structure was created for every IO write to an
4211		 * uninitialized extent. To avoid unnecessary conversion,
4212		 * here we flag the IO that really needs the conversion.
4213		 * For non asycn direct IO case, flag the inode state
4214		 * that we need to perform conversion when IO is done.
4215		 */
4216		if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4217			set_unwritten = 1;
4218		if (ext4_should_dioread_nolock(inode))
4219			map->m_flags |= EXT4_MAP_UNINIT;
4220	}
4221
4222	err = 0;
4223	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4224		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4225					 path, ar.len);
4226	if (!err)
4227		err = ext4_ext_insert_extent(handle, inode, path,
4228					     &newex, flags);
4229
4230	if (!err && set_unwritten) {
4231		if (io)
4232			ext4_set_io_unwritten_flag(inode, io);
4233		else
4234			ext4_set_inode_state(inode,
4235					     EXT4_STATE_DIO_UNWRITTEN);
4236	}
4237
4238	if (err && free_on_err) {
4239		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4240			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4241		/* free data blocks we just allocated */
4242		/* not a good idea to call discard here directly,
4243		 * but otherwise we'd need to call it every free() */
4244		ext4_discard_preallocations(inode);
4245		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4246				 ext4_ext_get_actual_len(&newex), fb_flags);
4247		goto out2;
4248	}
4249
4250	/* previous routine could use block we allocated */
4251	newblock = ext4_ext_pblock(&newex);
4252	allocated = ext4_ext_get_actual_len(&newex);
4253	if (allocated > map->m_len)
4254		allocated = map->m_len;
4255	map->m_flags |= EXT4_MAP_NEW;
4256
4257	/*
4258	 * Update reserved blocks/metadata blocks after successful
4259	 * block allocation which had been deferred till now.
4260	 */
4261	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4262		unsigned int reserved_clusters;
4263		/*
4264		 * Check how many clusters we had reserved this allocated range
4265		 */
4266		reserved_clusters = get_reserved_cluster_alloc(inode,
4267						map->m_lblk, allocated);
4268		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4269			if (reserved_clusters) {
4270				/*
4271				 * We have clusters reserved for this range.
4272				 * But since we are not doing actual allocation
4273				 * and are simply using blocks from previously
4274				 * allocated cluster, we should release the
4275				 * reservation and not claim quota.
4276				 */
4277				ext4_da_update_reserve_space(inode,
4278						reserved_clusters, 0);
4279			}
4280		} else {
4281			BUG_ON(allocated_clusters < reserved_clusters);
4282			if (reserved_clusters < allocated_clusters) {
4283				struct ext4_inode_info *ei = EXT4_I(inode);
4284				int reservation = allocated_clusters -
4285						  reserved_clusters;
4286				/*
4287				 * It seems we claimed few clusters outside of
4288				 * the range of this allocation. We should give
4289				 * it back to the reservation pool. This can
4290				 * happen in the following case:
4291				 *
4292				 * * Suppose s_cluster_ratio is 4 (i.e., each
4293				 *   cluster has 4 blocks. Thus, the clusters
4294				 *   are [0-3],[4-7],[8-11]...
4295				 * * First comes delayed allocation write for
4296				 *   logical blocks 10 & 11. Since there were no
4297				 *   previous delayed allocated blocks in the
4298				 *   range [8-11], we would reserve 1 cluster
4299				 *   for this write.
4300				 * * Next comes write for logical blocks 3 to 8.
4301				 *   In this case, we will reserve 2 clusters
4302				 *   (for [0-3] and [4-7]; and not for [8-11] as
4303				 *   that range has a delayed allocated blocks.
4304				 *   Thus total reserved clusters now becomes 3.
4305				 * * Now, during the delayed allocation writeout
4306				 *   time, we will first write blocks [3-8] and
4307				 *   allocate 3 clusters for writing these
4308				 *   blocks. Also, we would claim all these
4309				 *   three clusters above.
4310				 * * Now when we come here to writeout the
4311				 *   blocks [10-11], we would expect to claim
4312				 *   the reservation of 1 cluster we had made
4313				 *   (and we would claim it since there are no
4314				 *   more delayed allocated blocks in the range
4315				 *   [8-11]. But our reserved cluster count had
4316				 *   already gone to 0.
4317				 *
4318				 *   Thus, at the step 4 above when we determine
4319				 *   that there are still some unwritten delayed
4320				 *   allocated blocks outside of our current
4321				 *   block range, we should increment the
4322				 *   reserved clusters count so that when the
4323				 *   remaining blocks finally gets written, we
4324				 *   could claim them.
4325				 */
4326				dquot_reserve_block(inode,
4327						EXT4_C2B(sbi, reservation));
4328				spin_lock(&ei->i_block_reservation_lock);
4329				ei->i_reserved_data_blocks += reservation;
4330				spin_unlock(&ei->i_block_reservation_lock);
4331			}
4332			/*
4333			 * We will claim quota for all newly allocated blocks.
4334			 * We're updating the reserved space *after* the
4335			 * correction above so we do not accidentally free
4336			 * all the metadata reservation because we might
4337			 * actually need it later on.
4338			 */
4339			ext4_da_update_reserve_space(inode, allocated_clusters,
4340							1);
4341		}
4342	}
4343
4344	/*
4345	 * Cache the extent and update transaction to commit on fdatasync only
4346	 * when it is _not_ an uninitialized extent.
4347	 */
4348	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
4349		ext4_update_inode_fsync_trans(handle, inode, 1);
4350	else
4351		ext4_update_inode_fsync_trans(handle, inode, 0);
4352out:
4353	if (allocated > map->m_len)
4354		allocated = map->m_len;
4355	ext4_ext_show_leaf(inode, path);
4356	map->m_flags |= EXT4_MAP_MAPPED;
4357	map->m_pblk = newblock;
4358	map->m_len = allocated;
4359out2:
4360	if (path) {
4361		ext4_ext_drop_refs(path);
4362		kfree(path);
4363	}
4364
4365out3:
4366	trace_ext4_ext_map_blocks_exit(inode, map, err ? err : allocated);
4367
4368	return err ? err : allocated;
4369}
4370
4371void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4372{
4373	struct super_block *sb = inode->i_sb;
4374	ext4_lblk_t last_block;
4375	int err = 0;
4376
4377	/*
4378	 * TODO: optimization is possible here.
4379	 * Probably we need not scan at all,
4380	 * because page truncation is enough.
4381	 */
4382
4383	/* we have to know where to truncate from in crash case */
4384	EXT4_I(inode)->i_disksize = inode->i_size;
4385	ext4_mark_inode_dirty(handle, inode);
4386
4387	last_block = (inode->i_size + sb->s_blocksize - 1)
4388			>> EXT4_BLOCK_SIZE_BITS(sb);
4389	err = ext4_es_remove_extent(inode, last_block,
4390				    EXT_MAX_BLOCKS - last_block);
4391	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4392}
4393
4394static void ext4_falloc_update_inode(struct inode *inode,
4395				int mode, loff_t new_size, int update_ctime)
4396{
4397	struct timespec now;
4398
4399	if (update_ctime) {
4400		now = current_fs_time(inode->i_sb);
4401		if (!timespec_equal(&inode->i_ctime, &now))
4402			inode->i_ctime = now;
4403	}
4404	/*
4405	 * Update only when preallocation was requested beyond
4406	 * the file size.
4407	 */
4408	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4409		if (new_size > i_size_read(inode))
4410			i_size_write(inode, new_size);
4411		if (new_size > EXT4_I(inode)->i_disksize)
4412			ext4_update_i_disksize(inode, new_size);
4413	} else {
4414		/*
4415		 * Mark that we allocate beyond EOF so the subsequent truncate
4416		 * can proceed even if the new size is the same as i_size.
4417		 */
4418		if (new_size > i_size_read(inode))
4419			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4420	}
4421
4422}
4423
4424/*
4425 * preallocate space for a file. This implements ext4's fallocate file
4426 * operation, which gets called from sys_fallocate system call.
4427 * For block-mapped files, posix_fallocate should fall back to the method
4428 * of writing zeroes to the required new blocks (the same behavior which is
4429 * expected for file systems which do not support fallocate() system call).
4430 */
4431long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4432{
4433	struct inode *inode = file_inode(file);
4434	handle_t *handle;
4435	loff_t new_size;
4436	unsigned int max_blocks;
4437	int ret = 0;
4438	int ret2 = 0;
4439	int retries = 0;
4440	int flags;
4441	struct ext4_map_blocks map;
4442	unsigned int credits, blkbits = inode->i_blkbits;
4443
4444	/* Return error if mode is not supported */
4445	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4446		return -EOPNOTSUPP;
4447
4448	if (mode & FALLOC_FL_PUNCH_HOLE)
4449		return ext4_punch_hole(file, offset, len);
4450
4451	ret = ext4_convert_inline_data(inode);
4452	if (ret)
4453		return ret;
4454
4455	/*
4456	 * currently supporting (pre)allocate mode for extent-based
4457	 * files _only_
4458	 */
4459	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4460		return -EOPNOTSUPP;
4461
4462	trace_ext4_fallocate_enter(inode, offset, len, mode);
4463	map.m_lblk = offset >> blkbits;
4464	/*
4465	 * We can't just convert len to max_blocks because
4466	 * If blocksize = 4096 offset = 3072 and len = 2048
4467	 */
4468	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4469		- map.m_lblk;
4470	/*
4471	 * credits to insert 1 extent into extent tree
4472	 */
4473	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4474	mutex_lock(&inode->i_mutex);
4475	ret = inode_newsize_ok(inode, (len + offset));
4476	if (ret) {
4477		mutex_unlock(&inode->i_mutex);
4478		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4479		return ret;
4480	}
4481	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4482	if (mode & FALLOC_FL_KEEP_SIZE)
4483		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4484	/*
4485	 * Don't normalize the request if it can fit in one extent so
4486	 * that it doesn't get unnecessarily split into multiple
4487	 * extents.
4488	 */
4489	if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4490		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4491
4492retry:
4493	while (ret >= 0 && ret < max_blocks) {
4494		map.m_lblk = map.m_lblk + ret;
4495		map.m_len = max_blocks = max_blocks - ret;
4496		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4497					    credits);
4498		if (IS_ERR(handle)) {
4499			ret = PTR_ERR(handle);
4500			break;
4501		}
4502		ret = ext4_map_blocks(handle, inode, &map, flags);
4503		if (ret <= 0) {
4504#ifdef EXT4FS_DEBUG
4505			ext4_warning(inode->i_sb,
4506				     "inode #%lu: block %u: len %u: "
4507				     "ext4_ext_map_blocks returned %d",
4508				     inode->i_ino, map.m_lblk,
4509				     map.m_len, ret);
4510#endif
4511			ext4_mark_inode_dirty(handle, inode);
4512			ret2 = ext4_journal_stop(handle);
4513			break;
4514		}
4515		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4516						blkbits) >> blkbits))
4517			new_size = offset + len;
4518		else
4519			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4520
4521		ext4_falloc_update_inode(inode, mode, new_size,
4522					 (map.m_flags & EXT4_MAP_NEW));
4523		ext4_mark_inode_dirty(handle, inode);
4524		if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4525			ext4_handle_sync(handle);
4526		ret2 = ext4_journal_stop(handle);
4527		if (ret2)
4528			break;
4529	}
4530	if (ret == -ENOSPC &&
4531			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4532		ret = 0;
4533		goto retry;
4534	}
4535	mutex_unlock(&inode->i_mutex);
4536	trace_ext4_fallocate_exit(inode, offset, max_blocks,
4537				ret > 0 ? ret2 : ret);
4538	return ret > 0 ? ret2 : ret;
4539}
4540
4541/*
4542 * This function convert a range of blocks to written extents
4543 * The caller of this function will pass the start offset and the size.
4544 * all unwritten extents within this range will be converted to
4545 * written extents.
4546 *
4547 * This function is called from the direct IO end io call back
4548 * function, to convert the fallocated extents after IO is completed.
4549 * Returns 0 on success.
4550 */
4551int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4552				    ssize_t len)
4553{
4554	handle_t *handle;
4555	unsigned int max_blocks;
4556	int ret = 0;
4557	int ret2 = 0;
4558	struct ext4_map_blocks map;
4559	unsigned int credits, blkbits = inode->i_blkbits;
4560
4561	map.m_lblk = offset >> blkbits;
4562	/*
4563	 * We can't just convert len to max_blocks because
4564	 * If blocksize = 4096 offset = 3072 and len = 2048
4565	 */
4566	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4567		      map.m_lblk);
4568	/*
4569	 * credits to insert 1 extent into extent tree
4570	 */
4571	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4572	while (ret >= 0 && ret < max_blocks) {
4573		map.m_lblk += ret;
4574		map.m_len = (max_blocks -= ret);
4575		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
4576		if (IS_ERR(handle)) {
4577			ret = PTR_ERR(handle);
4578			break;
4579		}
4580		ret = ext4_map_blocks(handle, inode, &map,
4581				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4582		if (ret <= 0)
4583			ext4_warning(inode->i_sb,
4584				     "inode #%lu: block %u: len %u: "
4585				     "ext4_ext_map_blocks returned %d",
4586				     inode->i_ino, map.m_lblk,
4587				     map.m_len, ret);
4588		ext4_mark_inode_dirty(handle, inode);
4589		ret2 = ext4_journal_stop(handle);
4590		if (ret <= 0 || ret2 )
4591			break;
4592	}
4593	return ret > 0 ? ret2 : ret;
4594}
4595
4596/*
4597 * If newes is not existing extent (newes->ec_pblk equals zero) find
4598 * delayed extent at start of newes and update newes accordingly and
4599 * return start of the next delayed extent.
4600 *
4601 * If newes is existing extent (newes->ec_pblk is not equal zero)
4602 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4603 * extent found. Leave newes unmodified.
4604 */
4605static int ext4_find_delayed_extent(struct inode *inode,
4606				    struct extent_status *newes)
4607{
4608	struct extent_status es;
4609	ext4_lblk_t block, next_del;
4610
4611	ext4_es_find_delayed_extent(inode, newes->es_lblk, &es);
4612
4613	if (newes->es_pblk == 0) {
4614		/*
4615		 * No extent in extent-tree contains block @newes->es_pblk,
4616		 * then the block may stay in 1)a hole or 2)delayed-extent.
4617		 */
4618		if (es.es_len == 0)
4619			/* A hole found. */
4620			return 0;
4621
4622		if (es.es_lblk > newes->es_lblk) {
4623			/* A hole found. */
4624			newes->es_len = min(es.es_lblk - newes->es_lblk,
4625					    newes->es_len);
4626			return 0;
4627		}
4628
4629		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
4630	}
4631
4632	block = newes->es_lblk + newes->es_len;
4633	ext4_es_find_delayed_extent(inode, block, &es);
4634	if (es.es_len == 0)
4635		next_del = EXT_MAX_BLOCKS;
4636	else
4637		next_del = es.es_lblk;
4638
4639	return next_del;
4640}
4641/* fiemap flags we can handle specified here */
4642#define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4643
4644static int ext4_xattr_fiemap(struct inode *inode,
4645				struct fiemap_extent_info *fieinfo)
4646{
4647	__u64 physical = 0;
4648	__u64 length;
4649	__u32 flags = FIEMAP_EXTENT_LAST;
4650	int blockbits = inode->i_sb->s_blocksize_bits;
4651	int error = 0;
4652
4653	/* in-inode? */
4654	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4655		struct ext4_iloc iloc;
4656		int offset;	/* offset of xattr in inode */
4657
4658		error = ext4_get_inode_loc(inode, &iloc);
4659		if (error)
4660			return error;
4661		physical = iloc.bh->b_blocknr << blockbits;
4662		offset = EXT4_GOOD_OLD_INODE_SIZE +
4663				EXT4_I(inode)->i_extra_isize;
4664		physical += offset;
4665		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4666		flags |= FIEMAP_EXTENT_DATA_INLINE;
4667		brelse(iloc.bh);
4668	} else { /* external block */
4669		physical = EXT4_I(inode)->i_file_acl << blockbits;
4670		length = inode->i_sb->s_blocksize;
4671	}
4672
4673	if (physical)
4674		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4675						length, flags);
4676	return (error < 0 ? error : 0);
4677}
4678
4679int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4680		__u64 start, __u64 len)
4681{
4682	ext4_lblk_t start_blk;
4683	int error = 0;
4684
4685	if (ext4_has_inline_data(inode)) {
4686		int has_inline = 1;
4687
4688		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4689
4690		if (has_inline)
4691			return error;
4692	}
4693
4694	/* fallback to generic here if not in extents fmt */
4695	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4696		return generic_block_fiemap(inode, fieinfo, start, len,
4697			ext4_get_block);
4698
4699	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4700		return -EBADR;
4701
4702	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4703		error = ext4_xattr_fiemap(inode, fieinfo);
4704	} else {
4705		ext4_lblk_t len_blks;
4706		__u64 last_blk;
4707
4708		start_blk = start >> inode->i_sb->s_blocksize_bits;
4709		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4710		if (last_blk >= EXT_MAX_BLOCKS)
4711			last_blk = EXT_MAX_BLOCKS-1;
4712		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4713
4714		/*
4715		 * Walk the extent tree gathering extent information
4716		 * and pushing extents back to the user.
4717		 */
4718		error = ext4_fill_fiemap_extents(inode, start_blk,
4719						 len_blks, fieinfo);
4720	}
4721
4722	return error;
4723}
4724