extents.c revision 3889fd57ea3c58209354862523275774fca9db03
1/*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 *   Copyright (c) 2005, Bull S.A.
7 *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21 */
22
23/*
24 * Extents support for EXT4
25 *
26 * TODO:
27 *   - ext4*_error() should be used in some situations
28 *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 *   - smart tree reduction
30 */
31
32#include <linux/module.h>
33#include <linux/fs.h>
34#include <linux/time.h>
35#include <linux/jbd2.h>
36#include <linux/highuid.h>
37#include <linux/pagemap.h>
38#include <linux/quotaops.h>
39#include <linux/string.h>
40#include <linux/slab.h>
41#include <linux/falloc.h>
42#include <asm/uaccess.h>
43#include <linux/fiemap.h>
44#include "ext4_jbd2.h"
45#include "ext4_extents.h"
46
47static int ext4_ext_truncate_extend_restart(handle_t *handle,
48					    struct inode *inode,
49					    int needed)
50{
51	int err;
52
53	if (!ext4_handle_valid(handle))
54		return 0;
55	if (handle->h_buffer_credits > needed)
56		return 0;
57	err = ext4_journal_extend(handle, needed);
58	if (err <= 0)
59		return err;
60	err = ext4_truncate_restart_trans(handle, inode, needed);
61	if (err == 0)
62		err = -EAGAIN;
63
64	return err;
65}
66
67/*
68 * could return:
69 *  - EROFS
70 *  - ENOMEM
71 */
72static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
73				struct ext4_ext_path *path)
74{
75	if (path->p_bh) {
76		/* path points to block */
77		return ext4_journal_get_write_access(handle, path->p_bh);
78	}
79	/* path points to leaf/index in inode body */
80	/* we use in-core data, no need to protect them */
81	return 0;
82}
83
84/*
85 * could return:
86 *  - EROFS
87 *  - ENOMEM
88 *  - EIO
89 */
90static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
91				struct ext4_ext_path *path)
92{
93	int err;
94	if (path->p_bh) {
95		/* path points to block */
96		err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
97	} else {
98		/* path points to leaf/index in inode body */
99		err = ext4_mark_inode_dirty(handle, inode);
100	}
101	return err;
102}
103
104static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
105			      struct ext4_ext_path *path,
106			      ext4_lblk_t block)
107{
108	struct ext4_inode_info *ei = EXT4_I(inode);
109	ext4_fsblk_t bg_start;
110	ext4_fsblk_t last_block;
111	ext4_grpblk_t colour;
112	ext4_group_t block_group;
113	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
114	int depth;
115
116	if (path) {
117		struct ext4_extent *ex;
118		depth = path->p_depth;
119
120		/*
121		 * Try to predict block placement assuming that we are
122		 * filling in a file which will eventually be
123		 * non-sparse --- i.e., in the case of libbfd writing
124		 * an ELF object sections out-of-order but in a way
125		 * the eventually results in a contiguous object or
126		 * executable file, or some database extending a table
127		 * space file.  However, this is actually somewhat
128		 * non-ideal if we are writing a sparse file such as
129		 * qemu or KVM writing a raw image file that is going
130		 * to stay fairly sparse, since it will end up
131		 * fragmenting the file system's free space.  Maybe we
132		 * should have some hueristics or some way to allow
133		 * userspace to pass a hint to file system,
134		 * especiially if the latter case turns out to be
135		 * common.
136		 */
137		ex = path[depth].p_ext;
138		if (ex) {
139			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
140			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
141
142			if (block > ext_block)
143				return ext_pblk + (block - ext_block);
144			else
145				return ext_pblk - (ext_block - block);
146		}
147
148		/* it looks like index is empty;
149		 * try to find starting block from index itself */
150		if (path[depth].p_bh)
151			return path[depth].p_bh->b_blocknr;
152	}
153
154	/* OK. use inode's group */
155	block_group = ei->i_block_group;
156	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
157		/*
158		 * If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
159		 * block groups per flexgroup, reserve the first block
160		 * group for directories and special files.  Regular
161		 * files will start at the second block group.  This
162		 * tends to speed up directory access and improves
163		 * fsck times.
164		 */
165		block_group &= ~(flex_size-1);
166		if (S_ISREG(inode->i_mode))
167			block_group++;
168	}
169	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
170	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
171
172	/*
173	 * If we are doing delayed allocation, we don't need take
174	 * colour into account.
175	 */
176	if (test_opt(inode->i_sb, DELALLOC))
177		return bg_start;
178
179	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
180		colour = (current->pid % 16) *
181			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
182	else
183		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
184	return bg_start + colour + block;
185}
186
187/*
188 * Allocation for a meta data block
189 */
190static ext4_fsblk_t
191ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
192			struct ext4_ext_path *path,
193			struct ext4_extent *ex, int *err)
194{
195	ext4_fsblk_t goal, newblock;
196
197	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
198	newblock = ext4_new_meta_blocks(handle, inode, goal, NULL, err);
199	return newblock;
200}
201
202static inline int ext4_ext_space_block(struct inode *inode, int check)
203{
204	int size;
205
206	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
207			/ sizeof(struct ext4_extent);
208	if (!check) {
209#ifdef AGGRESSIVE_TEST
210		if (size > 6)
211			size = 6;
212#endif
213	}
214	return size;
215}
216
217static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
218{
219	int size;
220
221	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
222			/ sizeof(struct ext4_extent_idx);
223	if (!check) {
224#ifdef AGGRESSIVE_TEST
225		if (size > 5)
226			size = 5;
227#endif
228	}
229	return size;
230}
231
232static inline int ext4_ext_space_root(struct inode *inode, int check)
233{
234	int size;
235
236	size = sizeof(EXT4_I(inode)->i_data);
237	size -= sizeof(struct ext4_extent_header);
238	size /= sizeof(struct ext4_extent);
239	if (!check) {
240#ifdef AGGRESSIVE_TEST
241		if (size > 3)
242			size = 3;
243#endif
244	}
245	return size;
246}
247
248static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
249{
250	int size;
251
252	size = sizeof(EXT4_I(inode)->i_data);
253	size -= sizeof(struct ext4_extent_header);
254	size /= sizeof(struct ext4_extent_idx);
255	if (!check) {
256#ifdef AGGRESSIVE_TEST
257		if (size > 4)
258			size = 4;
259#endif
260	}
261	return size;
262}
263
264/*
265 * Calculate the number of metadata blocks needed
266 * to allocate @blocks
267 * Worse case is one block per extent
268 */
269int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
270{
271	struct ext4_inode_info *ei = EXT4_I(inode);
272	int idxs, num = 0;
273
274	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
275		/ sizeof(struct ext4_extent_idx));
276
277	/*
278	 * If the new delayed allocation block is contiguous with the
279	 * previous da block, it can share index blocks with the
280	 * previous block, so we only need to allocate a new index
281	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
282	 * an additional index block, and at ldxs**3 blocks, yet
283	 * another index blocks.
284	 */
285	if (ei->i_da_metadata_calc_len &&
286	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
287		if ((ei->i_da_metadata_calc_len % idxs) == 0)
288			num++;
289		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
290			num++;
291		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
292			num++;
293			ei->i_da_metadata_calc_len = 0;
294		} else
295			ei->i_da_metadata_calc_len++;
296		ei->i_da_metadata_calc_last_lblock++;
297		return num;
298	}
299
300	/*
301	 * In the worst case we need a new set of index blocks at
302	 * every level of the inode's extent tree.
303	 */
304	ei->i_da_metadata_calc_len = 1;
305	ei->i_da_metadata_calc_last_lblock = lblock;
306	return ext_depth(inode) + 1;
307}
308
309static int
310ext4_ext_max_entries(struct inode *inode, int depth)
311{
312	int max;
313
314	if (depth == ext_depth(inode)) {
315		if (depth == 0)
316			max = ext4_ext_space_root(inode, 1);
317		else
318			max = ext4_ext_space_root_idx(inode, 1);
319	} else {
320		if (depth == 0)
321			max = ext4_ext_space_block(inode, 1);
322		else
323			max = ext4_ext_space_block_idx(inode, 1);
324	}
325
326	return max;
327}
328
329static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
330{
331	ext4_fsblk_t block = ext4_ext_pblock(ext);
332	int len = ext4_ext_get_actual_len(ext);
333
334	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
335}
336
337static int ext4_valid_extent_idx(struct inode *inode,
338				struct ext4_extent_idx *ext_idx)
339{
340	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
341
342	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
343}
344
345static int ext4_valid_extent_entries(struct inode *inode,
346				struct ext4_extent_header *eh,
347				int depth)
348{
349	struct ext4_extent *ext;
350	struct ext4_extent_idx *ext_idx;
351	unsigned short entries;
352	if (eh->eh_entries == 0)
353		return 1;
354
355	entries = le16_to_cpu(eh->eh_entries);
356
357	if (depth == 0) {
358		/* leaf entries */
359		ext = EXT_FIRST_EXTENT(eh);
360		while (entries) {
361			if (!ext4_valid_extent(inode, ext))
362				return 0;
363			ext++;
364			entries--;
365		}
366	} else {
367		ext_idx = EXT_FIRST_INDEX(eh);
368		while (entries) {
369			if (!ext4_valid_extent_idx(inode, ext_idx))
370				return 0;
371			ext_idx++;
372			entries--;
373		}
374	}
375	return 1;
376}
377
378static int __ext4_ext_check(const char *function, unsigned int line,
379			    struct inode *inode, struct ext4_extent_header *eh,
380			    int depth)
381{
382	const char *error_msg;
383	int max = 0;
384
385	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
386		error_msg = "invalid magic";
387		goto corrupted;
388	}
389	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
390		error_msg = "unexpected eh_depth";
391		goto corrupted;
392	}
393	if (unlikely(eh->eh_max == 0)) {
394		error_msg = "invalid eh_max";
395		goto corrupted;
396	}
397	max = ext4_ext_max_entries(inode, depth);
398	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
399		error_msg = "too large eh_max";
400		goto corrupted;
401	}
402	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
403		error_msg = "invalid eh_entries";
404		goto corrupted;
405	}
406	if (!ext4_valid_extent_entries(inode, eh, depth)) {
407		error_msg = "invalid extent entries";
408		goto corrupted;
409	}
410	return 0;
411
412corrupted:
413	ext4_error_inode(inode, function, line, 0,
414			"bad header/extent: %s - magic %x, "
415			"entries %u, max %u(%u), depth %u(%u)",
416			error_msg, le16_to_cpu(eh->eh_magic),
417			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
418			max, le16_to_cpu(eh->eh_depth), depth);
419
420	return -EIO;
421}
422
423#define ext4_ext_check(inode, eh, depth)	\
424	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
425
426int ext4_ext_check_inode(struct inode *inode)
427{
428	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
429}
430
431#ifdef EXT_DEBUG
432static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
433{
434	int k, l = path->p_depth;
435
436	ext_debug("path:");
437	for (k = 0; k <= l; k++, path++) {
438		if (path->p_idx) {
439		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
440			    ext4_idx_pblock(path->p_idx));
441		} else if (path->p_ext) {
442			ext_debug("  %d:[%d]%d:%llu ",
443				  le32_to_cpu(path->p_ext->ee_block),
444				  ext4_ext_is_uninitialized(path->p_ext),
445				  ext4_ext_get_actual_len(path->p_ext),
446				  ext4_ext_pblock(path->p_ext));
447		} else
448			ext_debug("  []");
449	}
450	ext_debug("\n");
451}
452
453static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
454{
455	int depth = ext_depth(inode);
456	struct ext4_extent_header *eh;
457	struct ext4_extent *ex;
458	int i;
459
460	if (!path)
461		return;
462
463	eh = path[depth].p_hdr;
464	ex = EXT_FIRST_EXTENT(eh);
465
466	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
467
468	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
469		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
470			  ext4_ext_is_uninitialized(ex),
471			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
472	}
473	ext_debug("\n");
474}
475#else
476#define ext4_ext_show_path(inode, path)
477#define ext4_ext_show_leaf(inode, path)
478#endif
479
480void ext4_ext_drop_refs(struct ext4_ext_path *path)
481{
482	int depth = path->p_depth;
483	int i;
484
485	for (i = 0; i <= depth; i++, path++)
486		if (path->p_bh) {
487			brelse(path->p_bh);
488			path->p_bh = NULL;
489		}
490}
491
492/*
493 * ext4_ext_binsearch_idx:
494 * binary search for the closest index of the given block
495 * the header must be checked before calling this
496 */
497static void
498ext4_ext_binsearch_idx(struct inode *inode,
499			struct ext4_ext_path *path, ext4_lblk_t block)
500{
501	struct ext4_extent_header *eh = path->p_hdr;
502	struct ext4_extent_idx *r, *l, *m;
503
504
505	ext_debug("binsearch for %u(idx):  ", block);
506
507	l = EXT_FIRST_INDEX(eh) + 1;
508	r = EXT_LAST_INDEX(eh);
509	while (l <= r) {
510		m = l + (r - l) / 2;
511		if (block < le32_to_cpu(m->ei_block))
512			r = m - 1;
513		else
514			l = m + 1;
515		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
516				m, le32_to_cpu(m->ei_block),
517				r, le32_to_cpu(r->ei_block));
518	}
519
520	path->p_idx = l - 1;
521	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
522		  ext4_idx_pblock(path->p_idx));
523
524#ifdef CHECK_BINSEARCH
525	{
526		struct ext4_extent_idx *chix, *ix;
527		int k;
528
529		chix = ix = EXT_FIRST_INDEX(eh);
530		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
531		  if (k != 0 &&
532		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
533				printk(KERN_DEBUG "k=%d, ix=0x%p, "
534				       "first=0x%p\n", k,
535				       ix, EXT_FIRST_INDEX(eh));
536				printk(KERN_DEBUG "%u <= %u\n",
537				       le32_to_cpu(ix->ei_block),
538				       le32_to_cpu(ix[-1].ei_block));
539			}
540			BUG_ON(k && le32_to_cpu(ix->ei_block)
541					   <= le32_to_cpu(ix[-1].ei_block));
542			if (block < le32_to_cpu(ix->ei_block))
543				break;
544			chix = ix;
545		}
546		BUG_ON(chix != path->p_idx);
547	}
548#endif
549
550}
551
552/*
553 * ext4_ext_binsearch:
554 * binary search for closest extent of the given block
555 * the header must be checked before calling this
556 */
557static void
558ext4_ext_binsearch(struct inode *inode,
559		struct ext4_ext_path *path, ext4_lblk_t block)
560{
561	struct ext4_extent_header *eh = path->p_hdr;
562	struct ext4_extent *r, *l, *m;
563
564	if (eh->eh_entries == 0) {
565		/*
566		 * this leaf is empty:
567		 * we get such a leaf in split/add case
568		 */
569		return;
570	}
571
572	ext_debug("binsearch for %u:  ", block);
573
574	l = EXT_FIRST_EXTENT(eh) + 1;
575	r = EXT_LAST_EXTENT(eh);
576
577	while (l <= r) {
578		m = l + (r - l) / 2;
579		if (block < le32_to_cpu(m->ee_block))
580			r = m - 1;
581		else
582			l = m + 1;
583		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
584				m, le32_to_cpu(m->ee_block),
585				r, le32_to_cpu(r->ee_block));
586	}
587
588	path->p_ext = l - 1;
589	ext_debug("  -> %d:%llu:[%d]%d ",
590			le32_to_cpu(path->p_ext->ee_block),
591			ext4_ext_pblock(path->p_ext),
592			ext4_ext_is_uninitialized(path->p_ext),
593			ext4_ext_get_actual_len(path->p_ext));
594
595#ifdef CHECK_BINSEARCH
596	{
597		struct ext4_extent *chex, *ex;
598		int k;
599
600		chex = ex = EXT_FIRST_EXTENT(eh);
601		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
602			BUG_ON(k && le32_to_cpu(ex->ee_block)
603					  <= le32_to_cpu(ex[-1].ee_block));
604			if (block < le32_to_cpu(ex->ee_block))
605				break;
606			chex = ex;
607		}
608		BUG_ON(chex != path->p_ext);
609	}
610#endif
611
612}
613
614int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
615{
616	struct ext4_extent_header *eh;
617
618	eh = ext_inode_hdr(inode);
619	eh->eh_depth = 0;
620	eh->eh_entries = 0;
621	eh->eh_magic = EXT4_EXT_MAGIC;
622	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
623	ext4_mark_inode_dirty(handle, inode);
624	ext4_ext_invalidate_cache(inode);
625	return 0;
626}
627
628struct ext4_ext_path *
629ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
630					struct ext4_ext_path *path)
631{
632	struct ext4_extent_header *eh;
633	struct buffer_head *bh;
634	short int depth, i, ppos = 0, alloc = 0;
635
636	eh = ext_inode_hdr(inode);
637	depth = ext_depth(inode);
638
639	/* account possible depth increase */
640	if (!path) {
641		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
642				GFP_NOFS);
643		if (!path)
644			return ERR_PTR(-ENOMEM);
645		alloc = 1;
646	}
647	path[0].p_hdr = eh;
648	path[0].p_bh = NULL;
649
650	i = depth;
651	/* walk through the tree */
652	while (i) {
653		int need_to_validate = 0;
654
655		ext_debug("depth %d: num %d, max %d\n",
656			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
657
658		ext4_ext_binsearch_idx(inode, path + ppos, block);
659		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
660		path[ppos].p_depth = i;
661		path[ppos].p_ext = NULL;
662
663		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
664		if (unlikely(!bh))
665			goto err;
666		if (!bh_uptodate_or_lock(bh)) {
667			if (bh_submit_read(bh) < 0) {
668				put_bh(bh);
669				goto err;
670			}
671			/* validate the extent entries */
672			need_to_validate = 1;
673		}
674		eh = ext_block_hdr(bh);
675		ppos++;
676		if (unlikely(ppos > depth)) {
677			put_bh(bh);
678			EXT4_ERROR_INODE(inode,
679					 "ppos %d > depth %d", ppos, depth);
680			goto err;
681		}
682		path[ppos].p_bh = bh;
683		path[ppos].p_hdr = eh;
684		i--;
685
686		if (need_to_validate && ext4_ext_check(inode, eh, i))
687			goto err;
688	}
689
690	path[ppos].p_depth = i;
691	path[ppos].p_ext = NULL;
692	path[ppos].p_idx = NULL;
693
694	/* find extent */
695	ext4_ext_binsearch(inode, path + ppos, block);
696	/* if not an empty leaf */
697	if (path[ppos].p_ext)
698		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
699
700	ext4_ext_show_path(inode, path);
701
702	return path;
703
704err:
705	ext4_ext_drop_refs(path);
706	if (alloc)
707		kfree(path);
708	return ERR_PTR(-EIO);
709}
710
711/*
712 * ext4_ext_insert_index:
713 * insert new index [@logical;@ptr] into the block at @curp;
714 * check where to insert: before @curp or after @curp
715 */
716static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
717				 struct ext4_ext_path *curp,
718				 int logical, ext4_fsblk_t ptr)
719{
720	struct ext4_extent_idx *ix;
721	int len, err;
722
723	err = ext4_ext_get_access(handle, inode, curp);
724	if (err)
725		return err;
726
727	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
728		EXT4_ERROR_INODE(inode,
729				 "logical %d == ei_block %d!",
730				 logical, le32_to_cpu(curp->p_idx->ei_block));
731		return -EIO;
732	}
733	len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
734	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
735		/* insert after */
736		if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
737			len = (len - 1) * sizeof(struct ext4_extent_idx);
738			len = len < 0 ? 0 : len;
739			ext_debug("insert new index %d after: %llu. "
740					"move %d from 0x%p to 0x%p\n",
741					logical, ptr, len,
742					(curp->p_idx + 1), (curp->p_idx + 2));
743			memmove(curp->p_idx + 2, curp->p_idx + 1, len);
744		}
745		ix = curp->p_idx + 1;
746	} else {
747		/* insert before */
748		len = len * sizeof(struct ext4_extent_idx);
749		len = len < 0 ? 0 : len;
750		ext_debug("insert new index %d before: %llu. "
751				"move %d from 0x%p to 0x%p\n",
752				logical, ptr, len,
753				curp->p_idx, (curp->p_idx + 1));
754		memmove(curp->p_idx + 1, curp->p_idx, len);
755		ix = curp->p_idx;
756	}
757
758	ix->ei_block = cpu_to_le32(logical);
759	ext4_idx_store_pblock(ix, ptr);
760	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
761
762	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
763			     > le16_to_cpu(curp->p_hdr->eh_max))) {
764		EXT4_ERROR_INODE(inode,
765				 "logical %d == ei_block %d!",
766				 logical, le32_to_cpu(curp->p_idx->ei_block));
767		return -EIO;
768	}
769	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
770		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
771		return -EIO;
772	}
773
774	err = ext4_ext_dirty(handle, inode, curp);
775	ext4_std_error(inode->i_sb, err);
776
777	return err;
778}
779
780/*
781 * ext4_ext_split:
782 * inserts new subtree into the path, using free index entry
783 * at depth @at:
784 * - allocates all needed blocks (new leaf and all intermediate index blocks)
785 * - makes decision where to split
786 * - moves remaining extents and index entries (right to the split point)
787 *   into the newly allocated blocks
788 * - initializes subtree
789 */
790static int ext4_ext_split(handle_t *handle, struct inode *inode,
791				struct ext4_ext_path *path,
792				struct ext4_extent *newext, int at)
793{
794	struct buffer_head *bh = NULL;
795	int depth = ext_depth(inode);
796	struct ext4_extent_header *neh;
797	struct ext4_extent_idx *fidx;
798	struct ext4_extent *ex;
799	int i = at, k, m, a;
800	ext4_fsblk_t newblock, oldblock;
801	__le32 border;
802	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
803	int err = 0;
804
805	/* make decision: where to split? */
806	/* FIXME: now decision is simplest: at current extent */
807
808	/* if current leaf will be split, then we should use
809	 * border from split point */
810	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
811		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
812		return -EIO;
813	}
814	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
815		border = path[depth].p_ext[1].ee_block;
816		ext_debug("leaf will be split."
817				" next leaf starts at %d\n",
818				  le32_to_cpu(border));
819	} else {
820		border = newext->ee_block;
821		ext_debug("leaf will be added."
822				" next leaf starts at %d\n",
823				le32_to_cpu(border));
824	}
825
826	/*
827	 * If error occurs, then we break processing
828	 * and mark filesystem read-only. index won't
829	 * be inserted and tree will be in consistent
830	 * state. Next mount will repair buffers too.
831	 */
832
833	/*
834	 * Get array to track all allocated blocks.
835	 * We need this to handle errors and free blocks
836	 * upon them.
837	 */
838	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
839	if (!ablocks)
840		return -ENOMEM;
841
842	/* allocate all needed blocks */
843	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
844	for (a = 0; a < depth - at; a++) {
845		newblock = ext4_ext_new_meta_block(handle, inode, path,
846						   newext, &err);
847		if (newblock == 0)
848			goto cleanup;
849		ablocks[a] = newblock;
850	}
851
852	/* initialize new leaf */
853	newblock = ablocks[--a];
854	if (unlikely(newblock == 0)) {
855		EXT4_ERROR_INODE(inode, "newblock == 0!");
856		err = -EIO;
857		goto cleanup;
858	}
859	bh = sb_getblk(inode->i_sb, newblock);
860	if (!bh) {
861		err = -EIO;
862		goto cleanup;
863	}
864	lock_buffer(bh);
865
866	err = ext4_journal_get_create_access(handle, bh);
867	if (err)
868		goto cleanup;
869
870	neh = ext_block_hdr(bh);
871	neh->eh_entries = 0;
872	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
873	neh->eh_magic = EXT4_EXT_MAGIC;
874	neh->eh_depth = 0;
875	ex = EXT_FIRST_EXTENT(neh);
876
877	/* move remainder of path[depth] to the new leaf */
878	if (unlikely(path[depth].p_hdr->eh_entries !=
879		     path[depth].p_hdr->eh_max)) {
880		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
881				 path[depth].p_hdr->eh_entries,
882				 path[depth].p_hdr->eh_max);
883		err = -EIO;
884		goto cleanup;
885	}
886	/* start copy from next extent */
887	/* TODO: we could do it by single memmove */
888	m = 0;
889	path[depth].p_ext++;
890	while (path[depth].p_ext <=
891			EXT_MAX_EXTENT(path[depth].p_hdr)) {
892		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
893				le32_to_cpu(path[depth].p_ext->ee_block),
894				ext4_ext_pblock(path[depth].p_ext),
895				ext4_ext_is_uninitialized(path[depth].p_ext),
896				ext4_ext_get_actual_len(path[depth].p_ext),
897				newblock);
898		/*memmove(ex++, path[depth].p_ext++,
899				sizeof(struct ext4_extent));
900		neh->eh_entries++;*/
901		path[depth].p_ext++;
902		m++;
903	}
904	if (m) {
905		memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
906		le16_add_cpu(&neh->eh_entries, m);
907	}
908
909	set_buffer_uptodate(bh);
910	unlock_buffer(bh);
911
912	err = ext4_handle_dirty_metadata(handle, inode, bh);
913	if (err)
914		goto cleanup;
915	brelse(bh);
916	bh = NULL;
917
918	/* correct old leaf */
919	if (m) {
920		err = ext4_ext_get_access(handle, inode, path + depth);
921		if (err)
922			goto cleanup;
923		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
924		err = ext4_ext_dirty(handle, inode, path + depth);
925		if (err)
926			goto cleanup;
927
928	}
929
930	/* create intermediate indexes */
931	k = depth - at - 1;
932	if (unlikely(k < 0)) {
933		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
934		err = -EIO;
935		goto cleanup;
936	}
937	if (k)
938		ext_debug("create %d intermediate indices\n", k);
939	/* insert new index into current index block */
940	/* current depth stored in i var */
941	i = depth - 1;
942	while (k--) {
943		oldblock = newblock;
944		newblock = ablocks[--a];
945		bh = sb_getblk(inode->i_sb, newblock);
946		if (!bh) {
947			err = -EIO;
948			goto cleanup;
949		}
950		lock_buffer(bh);
951
952		err = ext4_journal_get_create_access(handle, bh);
953		if (err)
954			goto cleanup;
955
956		neh = ext_block_hdr(bh);
957		neh->eh_entries = cpu_to_le16(1);
958		neh->eh_magic = EXT4_EXT_MAGIC;
959		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
960		neh->eh_depth = cpu_to_le16(depth - i);
961		fidx = EXT_FIRST_INDEX(neh);
962		fidx->ei_block = border;
963		ext4_idx_store_pblock(fidx, oldblock);
964
965		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
966				i, newblock, le32_to_cpu(border), oldblock);
967		/* copy indexes */
968		m = 0;
969		path[i].p_idx++;
970
971		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
972				EXT_MAX_INDEX(path[i].p_hdr));
973		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
974					EXT_LAST_INDEX(path[i].p_hdr))) {
975			EXT4_ERROR_INODE(inode,
976					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
977					 le32_to_cpu(path[i].p_ext->ee_block));
978			err = -EIO;
979			goto cleanup;
980		}
981		while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
982			ext_debug("%d: move %d:%llu in new index %llu\n", i,
983					le32_to_cpu(path[i].p_idx->ei_block),
984					ext4_idx_pblock(path[i].p_idx),
985					newblock);
986			/*memmove(++fidx, path[i].p_idx++,
987					sizeof(struct ext4_extent_idx));
988			neh->eh_entries++;
989			BUG_ON(neh->eh_entries > neh->eh_max);*/
990			path[i].p_idx++;
991			m++;
992		}
993		if (m) {
994			memmove(++fidx, path[i].p_idx - m,
995				sizeof(struct ext4_extent_idx) * m);
996			le16_add_cpu(&neh->eh_entries, m);
997		}
998		set_buffer_uptodate(bh);
999		unlock_buffer(bh);
1000
1001		err = ext4_handle_dirty_metadata(handle, inode, bh);
1002		if (err)
1003			goto cleanup;
1004		brelse(bh);
1005		bh = NULL;
1006
1007		/* correct old index */
1008		if (m) {
1009			err = ext4_ext_get_access(handle, inode, path + i);
1010			if (err)
1011				goto cleanup;
1012			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1013			err = ext4_ext_dirty(handle, inode, path + i);
1014			if (err)
1015				goto cleanup;
1016		}
1017
1018		i--;
1019	}
1020
1021	/* insert new index */
1022	err = ext4_ext_insert_index(handle, inode, path + at,
1023				    le32_to_cpu(border), newblock);
1024
1025cleanup:
1026	if (bh) {
1027		if (buffer_locked(bh))
1028			unlock_buffer(bh);
1029		brelse(bh);
1030	}
1031
1032	if (err) {
1033		/* free all allocated blocks in error case */
1034		for (i = 0; i < depth; i++) {
1035			if (!ablocks[i])
1036				continue;
1037			ext4_free_blocks(handle, inode, 0, ablocks[i], 1,
1038					 EXT4_FREE_BLOCKS_METADATA);
1039		}
1040	}
1041	kfree(ablocks);
1042
1043	return err;
1044}
1045
1046/*
1047 * ext4_ext_grow_indepth:
1048 * implements tree growing procedure:
1049 * - allocates new block
1050 * - moves top-level data (index block or leaf) into the new block
1051 * - initializes new top-level, creating index that points to the
1052 *   just created block
1053 */
1054static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1055					struct ext4_ext_path *path,
1056					struct ext4_extent *newext)
1057{
1058	struct ext4_ext_path *curp = path;
1059	struct ext4_extent_header *neh;
1060	struct buffer_head *bh;
1061	ext4_fsblk_t newblock;
1062	int err = 0;
1063
1064	newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err);
1065	if (newblock == 0)
1066		return err;
1067
1068	bh = sb_getblk(inode->i_sb, newblock);
1069	if (!bh) {
1070		err = -EIO;
1071		ext4_std_error(inode->i_sb, err);
1072		return err;
1073	}
1074	lock_buffer(bh);
1075
1076	err = ext4_journal_get_create_access(handle, bh);
1077	if (err) {
1078		unlock_buffer(bh);
1079		goto out;
1080	}
1081
1082	/* move top-level index/leaf into new block */
1083	memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1084
1085	/* set size of new block */
1086	neh = ext_block_hdr(bh);
1087	/* old root could have indexes or leaves
1088	 * so calculate e_max right way */
1089	if (ext_depth(inode))
1090		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1091	else
1092		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1093	neh->eh_magic = EXT4_EXT_MAGIC;
1094	set_buffer_uptodate(bh);
1095	unlock_buffer(bh);
1096
1097	err = ext4_handle_dirty_metadata(handle, inode, bh);
1098	if (err)
1099		goto out;
1100
1101	/* create index in new top-level index: num,max,pointer */
1102	err = ext4_ext_get_access(handle, inode, curp);
1103	if (err)
1104		goto out;
1105
1106	curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1107	curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1108	curp->p_hdr->eh_entries = cpu_to_le16(1);
1109	curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1110
1111	if (path[0].p_hdr->eh_depth)
1112		curp->p_idx->ei_block =
1113			EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1114	else
1115		curp->p_idx->ei_block =
1116			EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1117	ext4_idx_store_pblock(curp->p_idx, newblock);
1118
1119	neh = ext_inode_hdr(inode);
1120	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1121		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1122		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1123		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1124
1125	neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1126	err = ext4_ext_dirty(handle, inode, curp);
1127out:
1128	brelse(bh);
1129
1130	return err;
1131}
1132
1133/*
1134 * ext4_ext_create_new_leaf:
1135 * finds empty index and adds new leaf.
1136 * if no free index is found, then it requests in-depth growing.
1137 */
1138static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1139					struct ext4_ext_path *path,
1140					struct ext4_extent *newext)
1141{
1142	struct ext4_ext_path *curp;
1143	int depth, i, err = 0;
1144
1145repeat:
1146	i = depth = ext_depth(inode);
1147
1148	/* walk up to the tree and look for free index entry */
1149	curp = path + depth;
1150	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1151		i--;
1152		curp--;
1153	}
1154
1155	/* we use already allocated block for index block,
1156	 * so subsequent data blocks should be contiguous */
1157	if (EXT_HAS_FREE_INDEX(curp)) {
1158		/* if we found index with free entry, then use that
1159		 * entry: create all needed subtree and add new leaf */
1160		err = ext4_ext_split(handle, inode, path, newext, i);
1161		if (err)
1162			goto out;
1163
1164		/* refill path */
1165		ext4_ext_drop_refs(path);
1166		path = ext4_ext_find_extent(inode,
1167				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1168				    path);
1169		if (IS_ERR(path))
1170			err = PTR_ERR(path);
1171	} else {
1172		/* tree is full, time to grow in depth */
1173		err = ext4_ext_grow_indepth(handle, inode, path, newext);
1174		if (err)
1175			goto out;
1176
1177		/* refill path */
1178		ext4_ext_drop_refs(path);
1179		path = ext4_ext_find_extent(inode,
1180				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1181				    path);
1182		if (IS_ERR(path)) {
1183			err = PTR_ERR(path);
1184			goto out;
1185		}
1186
1187		/*
1188		 * only first (depth 0 -> 1) produces free space;
1189		 * in all other cases we have to split the grown tree
1190		 */
1191		depth = ext_depth(inode);
1192		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1193			/* now we need to split */
1194			goto repeat;
1195		}
1196	}
1197
1198out:
1199	return err;
1200}
1201
1202/*
1203 * search the closest allocated block to the left for *logical
1204 * and returns it at @logical + it's physical address at @phys
1205 * if *logical is the smallest allocated block, the function
1206 * returns 0 at @phys
1207 * return value contains 0 (success) or error code
1208 */
1209static int ext4_ext_search_left(struct inode *inode,
1210				struct ext4_ext_path *path,
1211				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1212{
1213	struct ext4_extent_idx *ix;
1214	struct ext4_extent *ex;
1215	int depth, ee_len;
1216
1217	if (unlikely(path == NULL)) {
1218		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1219		return -EIO;
1220	}
1221	depth = path->p_depth;
1222	*phys = 0;
1223
1224	if (depth == 0 && path->p_ext == NULL)
1225		return 0;
1226
1227	/* usually extent in the path covers blocks smaller
1228	 * then *logical, but it can be that extent is the
1229	 * first one in the file */
1230
1231	ex = path[depth].p_ext;
1232	ee_len = ext4_ext_get_actual_len(ex);
1233	if (*logical < le32_to_cpu(ex->ee_block)) {
1234		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1235			EXT4_ERROR_INODE(inode,
1236					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1237					 *logical, le32_to_cpu(ex->ee_block));
1238			return -EIO;
1239		}
1240		while (--depth >= 0) {
1241			ix = path[depth].p_idx;
1242			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1243				EXT4_ERROR_INODE(inode,
1244				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1245				  ix != NULL ? ix->ei_block : 0,
1246				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1247				    EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block : 0,
1248				  depth);
1249				return -EIO;
1250			}
1251		}
1252		return 0;
1253	}
1254
1255	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1256		EXT4_ERROR_INODE(inode,
1257				 "logical %d < ee_block %d + ee_len %d!",
1258				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1259		return -EIO;
1260	}
1261
1262	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1263	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1264	return 0;
1265}
1266
1267/*
1268 * search the closest allocated block to the right for *logical
1269 * and returns it at @logical + it's physical address at @phys
1270 * if *logical is the smallest allocated block, the function
1271 * returns 0 at @phys
1272 * return value contains 0 (success) or error code
1273 */
1274static int ext4_ext_search_right(struct inode *inode,
1275				 struct ext4_ext_path *path,
1276				 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1277{
1278	struct buffer_head *bh = NULL;
1279	struct ext4_extent_header *eh;
1280	struct ext4_extent_idx *ix;
1281	struct ext4_extent *ex;
1282	ext4_fsblk_t block;
1283	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1284	int ee_len;
1285
1286	if (unlikely(path == NULL)) {
1287		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1288		return -EIO;
1289	}
1290	depth = path->p_depth;
1291	*phys = 0;
1292
1293	if (depth == 0 && path->p_ext == NULL)
1294		return 0;
1295
1296	/* usually extent in the path covers blocks smaller
1297	 * then *logical, but it can be that extent is the
1298	 * first one in the file */
1299
1300	ex = path[depth].p_ext;
1301	ee_len = ext4_ext_get_actual_len(ex);
1302	if (*logical < le32_to_cpu(ex->ee_block)) {
1303		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1304			EXT4_ERROR_INODE(inode,
1305					 "first_extent(path[%d].p_hdr) != ex",
1306					 depth);
1307			return -EIO;
1308		}
1309		while (--depth >= 0) {
1310			ix = path[depth].p_idx;
1311			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1312				EXT4_ERROR_INODE(inode,
1313						 "ix != EXT_FIRST_INDEX *logical %d!",
1314						 *logical);
1315				return -EIO;
1316			}
1317		}
1318		*logical = le32_to_cpu(ex->ee_block);
1319		*phys = ext4_ext_pblock(ex);
1320		return 0;
1321	}
1322
1323	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1324		EXT4_ERROR_INODE(inode,
1325				 "logical %d < ee_block %d + ee_len %d!",
1326				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1327		return -EIO;
1328	}
1329
1330	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1331		/* next allocated block in this leaf */
1332		ex++;
1333		*logical = le32_to_cpu(ex->ee_block);
1334		*phys = ext4_ext_pblock(ex);
1335		return 0;
1336	}
1337
1338	/* go up and search for index to the right */
1339	while (--depth >= 0) {
1340		ix = path[depth].p_idx;
1341		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1342			goto got_index;
1343	}
1344
1345	/* we've gone up to the root and found no index to the right */
1346	return 0;
1347
1348got_index:
1349	/* we've found index to the right, let's
1350	 * follow it and find the closest allocated
1351	 * block to the right */
1352	ix++;
1353	block = ext4_idx_pblock(ix);
1354	while (++depth < path->p_depth) {
1355		bh = sb_bread(inode->i_sb, block);
1356		if (bh == NULL)
1357			return -EIO;
1358		eh = ext_block_hdr(bh);
1359		/* subtract from p_depth to get proper eh_depth */
1360		if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1361			put_bh(bh);
1362			return -EIO;
1363		}
1364		ix = EXT_FIRST_INDEX(eh);
1365		block = ext4_idx_pblock(ix);
1366		put_bh(bh);
1367	}
1368
1369	bh = sb_bread(inode->i_sb, block);
1370	if (bh == NULL)
1371		return -EIO;
1372	eh = ext_block_hdr(bh);
1373	if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1374		put_bh(bh);
1375		return -EIO;
1376	}
1377	ex = EXT_FIRST_EXTENT(eh);
1378	*logical = le32_to_cpu(ex->ee_block);
1379	*phys = ext4_ext_pblock(ex);
1380	put_bh(bh);
1381	return 0;
1382}
1383
1384/*
1385 * ext4_ext_next_allocated_block:
1386 * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1387 * NOTE: it considers block number from index entry as
1388 * allocated block. Thus, index entries have to be consistent
1389 * with leaves.
1390 */
1391static ext4_lblk_t
1392ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1393{
1394	int depth;
1395
1396	BUG_ON(path == NULL);
1397	depth = path->p_depth;
1398
1399	if (depth == 0 && path->p_ext == NULL)
1400		return EXT_MAX_BLOCK;
1401
1402	while (depth >= 0) {
1403		if (depth == path->p_depth) {
1404			/* leaf */
1405			if (path[depth].p_ext !=
1406					EXT_LAST_EXTENT(path[depth].p_hdr))
1407			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1408		} else {
1409			/* index */
1410			if (path[depth].p_idx !=
1411					EXT_LAST_INDEX(path[depth].p_hdr))
1412			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1413		}
1414		depth--;
1415	}
1416
1417	return EXT_MAX_BLOCK;
1418}
1419
1420/*
1421 * ext4_ext_next_leaf_block:
1422 * returns first allocated block from next leaf or EXT_MAX_BLOCK
1423 */
1424static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1425					struct ext4_ext_path *path)
1426{
1427	int depth;
1428
1429	BUG_ON(path == NULL);
1430	depth = path->p_depth;
1431
1432	/* zero-tree has no leaf blocks at all */
1433	if (depth == 0)
1434		return EXT_MAX_BLOCK;
1435
1436	/* go to index block */
1437	depth--;
1438
1439	while (depth >= 0) {
1440		if (path[depth].p_idx !=
1441				EXT_LAST_INDEX(path[depth].p_hdr))
1442			return (ext4_lblk_t)
1443				le32_to_cpu(path[depth].p_idx[1].ei_block);
1444		depth--;
1445	}
1446
1447	return EXT_MAX_BLOCK;
1448}
1449
1450/*
1451 * ext4_ext_correct_indexes:
1452 * if leaf gets modified and modified extent is first in the leaf,
1453 * then we have to correct all indexes above.
1454 * TODO: do we need to correct tree in all cases?
1455 */
1456static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1457				struct ext4_ext_path *path)
1458{
1459	struct ext4_extent_header *eh;
1460	int depth = ext_depth(inode);
1461	struct ext4_extent *ex;
1462	__le32 border;
1463	int k, err = 0;
1464
1465	eh = path[depth].p_hdr;
1466	ex = path[depth].p_ext;
1467
1468	if (unlikely(ex == NULL || eh == NULL)) {
1469		EXT4_ERROR_INODE(inode,
1470				 "ex %p == NULL or eh %p == NULL", ex, eh);
1471		return -EIO;
1472	}
1473
1474	if (depth == 0) {
1475		/* there is no tree at all */
1476		return 0;
1477	}
1478
1479	if (ex != EXT_FIRST_EXTENT(eh)) {
1480		/* we correct tree if first leaf got modified only */
1481		return 0;
1482	}
1483
1484	/*
1485	 * TODO: we need correction if border is smaller than current one
1486	 */
1487	k = depth - 1;
1488	border = path[depth].p_ext->ee_block;
1489	err = ext4_ext_get_access(handle, inode, path + k);
1490	if (err)
1491		return err;
1492	path[k].p_idx->ei_block = border;
1493	err = ext4_ext_dirty(handle, inode, path + k);
1494	if (err)
1495		return err;
1496
1497	while (k--) {
1498		/* change all left-side indexes */
1499		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1500			break;
1501		err = ext4_ext_get_access(handle, inode, path + k);
1502		if (err)
1503			break;
1504		path[k].p_idx->ei_block = border;
1505		err = ext4_ext_dirty(handle, inode, path + k);
1506		if (err)
1507			break;
1508	}
1509
1510	return err;
1511}
1512
1513int
1514ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1515				struct ext4_extent *ex2)
1516{
1517	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1518
1519	/*
1520	 * Make sure that either both extents are uninitialized, or
1521	 * both are _not_.
1522	 */
1523	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1524		return 0;
1525
1526	if (ext4_ext_is_uninitialized(ex1))
1527		max_len = EXT_UNINIT_MAX_LEN;
1528	else
1529		max_len = EXT_INIT_MAX_LEN;
1530
1531	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1532	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1533
1534	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1535			le32_to_cpu(ex2->ee_block))
1536		return 0;
1537
1538	/*
1539	 * To allow future support for preallocated extents to be added
1540	 * as an RO_COMPAT feature, refuse to merge to extents if
1541	 * this can result in the top bit of ee_len being set.
1542	 */
1543	if (ext1_ee_len + ext2_ee_len > max_len)
1544		return 0;
1545#ifdef AGGRESSIVE_TEST
1546	if (ext1_ee_len >= 4)
1547		return 0;
1548#endif
1549
1550	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1551		return 1;
1552	return 0;
1553}
1554
1555/*
1556 * This function tries to merge the "ex" extent to the next extent in the tree.
1557 * It always tries to merge towards right. If you want to merge towards
1558 * left, pass "ex - 1" as argument instead of "ex".
1559 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1560 * 1 if they got merged.
1561 */
1562static int ext4_ext_try_to_merge(struct inode *inode,
1563				 struct ext4_ext_path *path,
1564				 struct ext4_extent *ex)
1565{
1566	struct ext4_extent_header *eh;
1567	unsigned int depth, len;
1568	int merge_done = 0;
1569	int uninitialized = 0;
1570
1571	depth = ext_depth(inode);
1572	BUG_ON(path[depth].p_hdr == NULL);
1573	eh = path[depth].p_hdr;
1574
1575	while (ex < EXT_LAST_EXTENT(eh)) {
1576		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1577			break;
1578		/* merge with next extent! */
1579		if (ext4_ext_is_uninitialized(ex))
1580			uninitialized = 1;
1581		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1582				+ ext4_ext_get_actual_len(ex + 1));
1583		if (uninitialized)
1584			ext4_ext_mark_uninitialized(ex);
1585
1586		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1587			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1588				* sizeof(struct ext4_extent);
1589			memmove(ex + 1, ex + 2, len);
1590		}
1591		le16_add_cpu(&eh->eh_entries, -1);
1592		merge_done = 1;
1593		WARN_ON(eh->eh_entries == 0);
1594		if (!eh->eh_entries)
1595			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1596	}
1597
1598	return merge_done;
1599}
1600
1601/*
1602 * check if a portion of the "newext" extent overlaps with an
1603 * existing extent.
1604 *
1605 * If there is an overlap discovered, it updates the length of the newext
1606 * such that there will be no overlap, and then returns 1.
1607 * If there is no overlap found, it returns 0.
1608 */
1609static unsigned int ext4_ext_check_overlap(struct inode *inode,
1610					   struct ext4_extent *newext,
1611					   struct ext4_ext_path *path)
1612{
1613	ext4_lblk_t b1, b2;
1614	unsigned int depth, len1;
1615	unsigned int ret = 0;
1616
1617	b1 = le32_to_cpu(newext->ee_block);
1618	len1 = ext4_ext_get_actual_len(newext);
1619	depth = ext_depth(inode);
1620	if (!path[depth].p_ext)
1621		goto out;
1622	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1623
1624	/*
1625	 * get the next allocated block if the extent in the path
1626	 * is before the requested block(s)
1627	 */
1628	if (b2 < b1) {
1629		b2 = ext4_ext_next_allocated_block(path);
1630		if (b2 == EXT_MAX_BLOCK)
1631			goto out;
1632	}
1633
1634	/* check for wrap through zero on extent logical start block*/
1635	if (b1 + len1 < b1) {
1636		len1 = EXT_MAX_BLOCK - b1;
1637		newext->ee_len = cpu_to_le16(len1);
1638		ret = 1;
1639	}
1640
1641	/* check for overlap */
1642	if (b1 + len1 > b2) {
1643		newext->ee_len = cpu_to_le16(b2 - b1);
1644		ret = 1;
1645	}
1646out:
1647	return ret;
1648}
1649
1650/*
1651 * ext4_ext_insert_extent:
1652 * tries to merge requsted extent into the existing extent or
1653 * inserts requested extent as new one into the tree,
1654 * creating new leaf in the no-space case.
1655 */
1656int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1657				struct ext4_ext_path *path,
1658				struct ext4_extent *newext, int flag)
1659{
1660	struct ext4_extent_header *eh;
1661	struct ext4_extent *ex, *fex;
1662	struct ext4_extent *nearex; /* nearest extent */
1663	struct ext4_ext_path *npath = NULL;
1664	int depth, len, err;
1665	ext4_lblk_t next;
1666	unsigned uninitialized = 0;
1667
1668	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1669		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1670		return -EIO;
1671	}
1672	depth = ext_depth(inode);
1673	ex = path[depth].p_ext;
1674	if (unlikely(path[depth].p_hdr == NULL)) {
1675		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1676		return -EIO;
1677	}
1678
1679	/* try to insert block into found extent and return */
1680	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1681		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1682		ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1683			  ext4_ext_is_uninitialized(newext),
1684			  ext4_ext_get_actual_len(newext),
1685			  le32_to_cpu(ex->ee_block),
1686			  ext4_ext_is_uninitialized(ex),
1687			  ext4_ext_get_actual_len(ex),
1688			  ext4_ext_pblock(ex));
1689		err = ext4_ext_get_access(handle, inode, path + depth);
1690		if (err)
1691			return err;
1692
1693		/*
1694		 * ext4_can_extents_be_merged should have checked that either
1695		 * both extents are uninitialized, or both aren't. Thus we
1696		 * need to check only one of them here.
1697		 */
1698		if (ext4_ext_is_uninitialized(ex))
1699			uninitialized = 1;
1700		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1701					+ ext4_ext_get_actual_len(newext));
1702		if (uninitialized)
1703			ext4_ext_mark_uninitialized(ex);
1704		eh = path[depth].p_hdr;
1705		nearex = ex;
1706		goto merge;
1707	}
1708
1709repeat:
1710	depth = ext_depth(inode);
1711	eh = path[depth].p_hdr;
1712	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1713		goto has_space;
1714
1715	/* probably next leaf has space for us? */
1716	fex = EXT_LAST_EXTENT(eh);
1717	next = ext4_ext_next_leaf_block(inode, path);
1718	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1719	    && next != EXT_MAX_BLOCK) {
1720		ext_debug("next leaf block - %d\n", next);
1721		BUG_ON(npath != NULL);
1722		npath = ext4_ext_find_extent(inode, next, NULL);
1723		if (IS_ERR(npath))
1724			return PTR_ERR(npath);
1725		BUG_ON(npath->p_depth != path->p_depth);
1726		eh = npath[depth].p_hdr;
1727		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1728			ext_debug("next leaf isnt full(%d)\n",
1729				  le16_to_cpu(eh->eh_entries));
1730			path = npath;
1731			goto repeat;
1732		}
1733		ext_debug("next leaf has no free space(%d,%d)\n",
1734			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1735	}
1736
1737	/*
1738	 * There is no free space in the found leaf.
1739	 * We're gonna add a new leaf in the tree.
1740	 */
1741	err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1742	if (err)
1743		goto cleanup;
1744	depth = ext_depth(inode);
1745	eh = path[depth].p_hdr;
1746
1747has_space:
1748	nearex = path[depth].p_ext;
1749
1750	err = ext4_ext_get_access(handle, inode, path + depth);
1751	if (err)
1752		goto cleanup;
1753
1754	if (!nearex) {
1755		/* there is no extent in this leaf, create first one */
1756		ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1757				le32_to_cpu(newext->ee_block),
1758				ext4_ext_pblock(newext),
1759				ext4_ext_is_uninitialized(newext),
1760				ext4_ext_get_actual_len(newext));
1761		path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1762	} else if (le32_to_cpu(newext->ee_block)
1763			   > le32_to_cpu(nearex->ee_block)) {
1764/*		BUG_ON(newext->ee_block == nearex->ee_block); */
1765		if (nearex != EXT_LAST_EXTENT(eh)) {
1766			len = EXT_MAX_EXTENT(eh) - nearex;
1767			len = (len - 1) * sizeof(struct ext4_extent);
1768			len = len < 0 ? 0 : len;
1769			ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1770					"move %d from 0x%p to 0x%p\n",
1771					le32_to_cpu(newext->ee_block),
1772					ext4_ext_pblock(newext),
1773					ext4_ext_is_uninitialized(newext),
1774					ext4_ext_get_actual_len(newext),
1775					nearex, len, nearex + 1, nearex + 2);
1776			memmove(nearex + 2, nearex + 1, len);
1777		}
1778		path[depth].p_ext = nearex + 1;
1779	} else {
1780		BUG_ON(newext->ee_block == nearex->ee_block);
1781		len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1782		len = len < 0 ? 0 : len;
1783		ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1784				"move %d from 0x%p to 0x%p\n",
1785				le32_to_cpu(newext->ee_block),
1786				ext4_ext_pblock(newext),
1787				ext4_ext_is_uninitialized(newext),
1788				ext4_ext_get_actual_len(newext),
1789				nearex, len, nearex + 1, nearex + 2);
1790		memmove(nearex + 1, nearex, len);
1791		path[depth].p_ext = nearex;
1792	}
1793
1794	le16_add_cpu(&eh->eh_entries, 1);
1795	nearex = path[depth].p_ext;
1796	nearex->ee_block = newext->ee_block;
1797	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1798	nearex->ee_len = newext->ee_len;
1799
1800merge:
1801	/* try to merge extents to the right */
1802	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1803		ext4_ext_try_to_merge(inode, path, nearex);
1804
1805	/* try to merge extents to the left */
1806
1807	/* time to correct all indexes above */
1808	err = ext4_ext_correct_indexes(handle, inode, path);
1809	if (err)
1810		goto cleanup;
1811
1812	err = ext4_ext_dirty(handle, inode, path + depth);
1813
1814cleanup:
1815	if (npath) {
1816		ext4_ext_drop_refs(npath);
1817		kfree(npath);
1818	}
1819	ext4_ext_invalidate_cache(inode);
1820	return err;
1821}
1822
1823static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1824			       ext4_lblk_t num, ext_prepare_callback func,
1825			       void *cbdata)
1826{
1827	struct ext4_ext_path *path = NULL;
1828	struct ext4_ext_cache cbex;
1829	struct ext4_extent *ex;
1830	ext4_lblk_t next, start = 0, end = 0;
1831	ext4_lblk_t last = block + num;
1832	int depth, exists, err = 0;
1833
1834	BUG_ON(func == NULL);
1835	BUG_ON(inode == NULL);
1836
1837	while (block < last && block != EXT_MAX_BLOCK) {
1838		num = last - block;
1839		/* find extent for this block */
1840		down_read(&EXT4_I(inode)->i_data_sem);
1841		path = ext4_ext_find_extent(inode, block, path);
1842		up_read(&EXT4_I(inode)->i_data_sem);
1843		if (IS_ERR(path)) {
1844			err = PTR_ERR(path);
1845			path = NULL;
1846			break;
1847		}
1848
1849		depth = ext_depth(inode);
1850		if (unlikely(path[depth].p_hdr == NULL)) {
1851			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1852			err = -EIO;
1853			break;
1854		}
1855		ex = path[depth].p_ext;
1856		next = ext4_ext_next_allocated_block(path);
1857
1858		exists = 0;
1859		if (!ex) {
1860			/* there is no extent yet, so try to allocate
1861			 * all requested space */
1862			start = block;
1863			end = block + num;
1864		} else if (le32_to_cpu(ex->ee_block) > block) {
1865			/* need to allocate space before found extent */
1866			start = block;
1867			end = le32_to_cpu(ex->ee_block);
1868			if (block + num < end)
1869				end = block + num;
1870		} else if (block >= le32_to_cpu(ex->ee_block)
1871					+ ext4_ext_get_actual_len(ex)) {
1872			/* need to allocate space after found extent */
1873			start = block;
1874			end = block + num;
1875			if (end >= next)
1876				end = next;
1877		} else if (block >= le32_to_cpu(ex->ee_block)) {
1878			/*
1879			 * some part of requested space is covered
1880			 * by found extent
1881			 */
1882			start = block;
1883			end = le32_to_cpu(ex->ee_block)
1884				+ ext4_ext_get_actual_len(ex);
1885			if (block + num < end)
1886				end = block + num;
1887			exists = 1;
1888		} else {
1889			BUG();
1890		}
1891		BUG_ON(end <= start);
1892
1893		if (!exists) {
1894			cbex.ec_block = start;
1895			cbex.ec_len = end - start;
1896			cbex.ec_start = 0;
1897		} else {
1898			cbex.ec_block = le32_to_cpu(ex->ee_block);
1899			cbex.ec_len = ext4_ext_get_actual_len(ex);
1900			cbex.ec_start = ext4_ext_pblock(ex);
1901		}
1902
1903		if (unlikely(cbex.ec_len == 0)) {
1904			EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1905			err = -EIO;
1906			break;
1907		}
1908		err = func(inode, path, &cbex, ex, cbdata);
1909		ext4_ext_drop_refs(path);
1910
1911		if (err < 0)
1912			break;
1913
1914		if (err == EXT_REPEAT)
1915			continue;
1916		else if (err == EXT_BREAK) {
1917			err = 0;
1918			break;
1919		}
1920
1921		if (ext_depth(inode) != depth) {
1922			/* depth was changed. we have to realloc path */
1923			kfree(path);
1924			path = NULL;
1925		}
1926
1927		block = cbex.ec_block + cbex.ec_len;
1928	}
1929
1930	if (path) {
1931		ext4_ext_drop_refs(path);
1932		kfree(path);
1933	}
1934
1935	return err;
1936}
1937
1938static void
1939ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1940			__u32 len, ext4_fsblk_t start)
1941{
1942	struct ext4_ext_cache *cex;
1943	BUG_ON(len == 0);
1944	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1945	cex = &EXT4_I(inode)->i_cached_extent;
1946	cex->ec_block = block;
1947	cex->ec_len = len;
1948	cex->ec_start = start;
1949	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1950}
1951
1952/*
1953 * ext4_ext_put_gap_in_cache:
1954 * calculate boundaries of the gap that the requested block fits into
1955 * and cache this gap
1956 */
1957static void
1958ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1959				ext4_lblk_t block)
1960{
1961	int depth = ext_depth(inode);
1962	unsigned long len;
1963	ext4_lblk_t lblock;
1964	struct ext4_extent *ex;
1965
1966	ex = path[depth].p_ext;
1967	if (ex == NULL) {
1968		/* there is no extent yet, so gap is [0;-] */
1969		lblock = 0;
1970		len = EXT_MAX_BLOCK;
1971		ext_debug("cache gap(whole file):");
1972	} else if (block < le32_to_cpu(ex->ee_block)) {
1973		lblock = block;
1974		len = le32_to_cpu(ex->ee_block) - block;
1975		ext_debug("cache gap(before): %u [%u:%u]",
1976				block,
1977				le32_to_cpu(ex->ee_block),
1978				 ext4_ext_get_actual_len(ex));
1979	} else if (block >= le32_to_cpu(ex->ee_block)
1980			+ ext4_ext_get_actual_len(ex)) {
1981		ext4_lblk_t next;
1982		lblock = le32_to_cpu(ex->ee_block)
1983			+ ext4_ext_get_actual_len(ex);
1984
1985		next = ext4_ext_next_allocated_block(path);
1986		ext_debug("cache gap(after): [%u:%u] %u",
1987				le32_to_cpu(ex->ee_block),
1988				ext4_ext_get_actual_len(ex),
1989				block);
1990		BUG_ON(next == lblock);
1991		len = next - lblock;
1992	} else {
1993		lblock = len = 0;
1994		BUG();
1995	}
1996
1997	ext_debug(" -> %u:%lu\n", lblock, len);
1998	ext4_ext_put_in_cache(inode, lblock, len, 0);
1999}
2000
2001/*
2002 * Return 0 if cache is invalid; 1 if the cache is valid
2003 */
2004static int
2005ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2006			struct ext4_extent *ex)
2007{
2008	struct ext4_ext_cache *cex;
2009	int ret = 0;
2010
2011	/*
2012	 * We borrow i_block_reservation_lock to protect i_cached_extent
2013	 */
2014	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2015	cex = &EXT4_I(inode)->i_cached_extent;
2016
2017	/* has cache valid data? */
2018	if (cex->ec_len == 0)
2019		goto errout;
2020
2021	if (in_range(block, cex->ec_block, cex->ec_len)) {
2022		ex->ee_block = cpu_to_le32(cex->ec_block);
2023		ext4_ext_store_pblock(ex, cex->ec_start);
2024		ex->ee_len = cpu_to_le16(cex->ec_len);
2025		ext_debug("%u cached by %u:%u:%llu\n",
2026				block,
2027				cex->ec_block, cex->ec_len, cex->ec_start);
2028		ret = 1;
2029	}
2030errout:
2031	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2032	return ret;
2033}
2034
2035/*
2036 * ext4_ext_rm_idx:
2037 * removes index from the index block.
2038 * It's used in truncate case only, thus all requests are for
2039 * last index in the block only.
2040 */
2041static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2042			struct ext4_ext_path *path)
2043{
2044	int err;
2045	ext4_fsblk_t leaf;
2046
2047	/* free index block */
2048	path--;
2049	leaf = ext4_idx_pblock(path->p_idx);
2050	if (unlikely(path->p_hdr->eh_entries == 0)) {
2051		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2052		return -EIO;
2053	}
2054	err = ext4_ext_get_access(handle, inode, path);
2055	if (err)
2056		return err;
2057	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2058	err = ext4_ext_dirty(handle, inode, path);
2059	if (err)
2060		return err;
2061	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2062	ext4_free_blocks(handle, inode, 0, leaf, 1,
2063			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2064	return err;
2065}
2066
2067/*
2068 * ext4_ext_calc_credits_for_single_extent:
2069 * This routine returns max. credits that needed to insert an extent
2070 * to the extent tree.
2071 * When pass the actual path, the caller should calculate credits
2072 * under i_data_sem.
2073 */
2074int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2075						struct ext4_ext_path *path)
2076{
2077	if (path) {
2078		int depth = ext_depth(inode);
2079		int ret = 0;
2080
2081		/* probably there is space in leaf? */
2082		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2083				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2084
2085			/*
2086			 *  There are some space in the leaf tree, no
2087			 *  need to account for leaf block credit
2088			 *
2089			 *  bitmaps and block group descriptor blocks
2090			 *  and other metadat blocks still need to be
2091			 *  accounted.
2092			 */
2093			/* 1 bitmap, 1 block group descriptor */
2094			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2095			return ret;
2096		}
2097	}
2098
2099	return ext4_chunk_trans_blocks(inode, nrblocks);
2100}
2101
2102/*
2103 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2104 *
2105 * if nrblocks are fit in a single extent (chunk flag is 1), then
2106 * in the worse case, each tree level index/leaf need to be changed
2107 * if the tree split due to insert a new extent, then the old tree
2108 * index/leaf need to be updated too
2109 *
2110 * If the nrblocks are discontiguous, they could cause
2111 * the whole tree split more than once, but this is really rare.
2112 */
2113int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2114{
2115	int index;
2116	int depth = ext_depth(inode);
2117
2118	if (chunk)
2119		index = depth * 2;
2120	else
2121		index = depth * 3;
2122
2123	return index;
2124}
2125
2126static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2127				struct ext4_extent *ex,
2128				ext4_lblk_t from, ext4_lblk_t to)
2129{
2130	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2131	int flags = EXT4_FREE_BLOCKS_FORGET;
2132
2133	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2134		flags |= EXT4_FREE_BLOCKS_METADATA;
2135#ifdef EXTENTS_STATS
2136	{
2137		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2138		spin_lock(&sbi->s_ext_stats_lock);
2139		sbi->s_ext_blocks += ee_len;
2140		sbi->s_ext_extents++;
2141		if (ee_len < sbi->s_ext_min)
2142			sbi->s_ext_min = ee_len;
2143		if (ee_len > sbi->s_ext_max)
2144			sbi->s_ext_max = ee_len;
2145		if (ext_depth(inode) > sbi->s_depth_max)
2146			sbi->s_depth_max = ext_depth(inode);
2147		spin_unlock(&sbi->s_ext_stats_lock);
2148	}
2149#endif
2150	if (from >= le32_to_cpu(ex->ee_block)
2151	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2152		/* tail removal */
2153		ext4_lblk_t num;
2154		ext4_fsblk_t start;
2155
2156		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2157		start = ext4_ext_pblock(ex) + ee_len - num;
2158		ext_debug("free last %u blocks starting %llu\n", num, start);
2159		ext4_free_blocks(handle, inode, 0, start, num, flags);
2160	} else if (from == le32_to_cpu(ex->ee_block)
2161		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2162		printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
2163			from, to, le32_to_cpu(ex->ee_block), ee_len);
2164	} else {
2165		printk(KERN_INFO "strange request: removal(2) "
2166				"%u-%u from %u:%u\n",
2167				from, to, le32_to_cpu(ex->ee_block), ee_len);
2168	}
2169	return 0;
2170}
2171
2172static int
2173ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2174		struct ext4_ext_path *path, ext4_lblk_t start)
2175{
2176	int err = 0, correct_index = 0;
2177	int depth = ext_depth(inode), credits;
2178	struct ext4_extent_header *eh;
2179	ext4_lblk_t a, b, block;
2180	unsigned num;
2181	ext4_lblk_t ex_ee_block;
2182	unsigned short ex_ee_len;
2183	unsigned uninitialized = 0;
2184	struct ext4_extent *ex;
2185
2186	/* the header must be checked already in ext4_ext_remove_space() */
2187	ext_debug("truncate since %u in leaf\n", start);
2188	if (!path[depth].p_hdr)
2189		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2190	eh = path[depth].p_hdr;
2191	if (unlikely(path[depth].p_hdr == NULL)) {
2192		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2193		return -EIO;
2194	}
2195	/* find where to start removing */
2196	ex = EXT_LAST_EXTENT(eh);
2197
2198	ex_ee_block = le32_to_cpu(ex->ee_block);
2199	ex_ee_len = ext4_ext_get_actual_len(ex);
2200
2201	while (ex >= EXT_FIRST_EXTENT(eh) &&
2202			ex_ee_block + ex_ee_len > start) {
2203
2204		if (ext4_ext_is_uninitialized(ex))
2205			uninitialized = 1;
2206		else
2207			uninitialized = 0;
2208
2209		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2210			 uninitialized, ex_ee_len);
2211		path[depth].p_ext = ex;
2212
2213		a = ex_ee_block > start ? ex_ee_block : start;
2214		b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
2215			ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
2216
2217		ext_debug("  border %u:%u\n", a, b);
2218
2219		if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
2220			block = 0;
2221			num = 0;
2222			BUG();
2223		} else if (a != ex_ee_block) {
2224			/* remove tail of the extent */
2225			block = ex_ee_block;
2226			num = a - block;
2227		} else if (b != ex_ee_block + ex_ee_len - 1) {
2228			/* remove head of the extent */
2229			block = a;
2230			num = b - a;
2231			/* there is no "make a hole" API yet */
2232			BUG();
2233		} else {
2234			/* remove whole extent: excellent! */
2235			block = ex_ee_block;
2236			num = 0;
2237			BUG_ON(a != ex_ee_block);
2238			BUG_ON(b != ex_ee_block + ex_ee_len - 1);
2239		}
2240
2241		/*
2242		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2243		 * descriptor) for each block group; assume two block
2244		 * groups plus ex_ee_len/blocks_per_block_group for
2245		 * the worst case
2246		 */
2247		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2248		if (ex == EXT_FIRST_EXTENT(eh)) {
2249			correct_index = 1;
2250			credits += (ext_depth(inode)) + 1;
2251		}
2252		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2253
2254		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2255		if (err)
2256			goto out;
2257
2258		err = ext4_ext_get_access(handle, inode, path + depth);
2259		if (err)
2260			goto out;
2261
2262		err = ext4_remove_blocks(handle, inode, ex, a, b);
2263		if (err)
2264			goto out;
2265
2266		if (num == 0) {
2267			/* this extent is removed; mark slot entirely unused */
2268			ext4_ext_store_pblock(ex, 0);
2269			le16_add_cpu(&eh->eh_entries, -1);
2270		}
2271
2272		ex->ee_block = cpu_to_le32(block);
2273		ex->ee_len = cpu_to_le16(num);
2274		/*
2275		 * Do not mark uninitialized if all the blocks in the
2276		 * extent have been removed.
2277		 */
2278		if (uninitialized && num)
2279			ext4_ext_mark_uninitialized(ex);
2280
2281		err = ext4_ext_dirty(handle, inode, path + depth);
2282		if (err)
2283			goto out;
2284
2285		ext_debug("new extent: %u:%u:%llu\n", block, num,
2286				ext4_ext_pblock(ex));
2287		ex--;
2288		ex_ee_block = le32_to_cpu(ex->ee_block);
2289		ex_ee_len = ext4_ext_get_actual_len(ex);
2290	}
2291
2292	if (correct_index && eh->eh_entries)
2293		err = ext4_ext_correct_indexes(handle, inode, path);
2294
2295	/* if this leaf is free, then we should
2296	 * remove it from index block above */
2297	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2298		err = ext4_ext_rm_idx(handle, inode, path + depth);
2299
2300out:
2301	return err;
2302}
2303
2304/*
2305 * ext4_ext_more_to_rm:
2306 * returns 1 if current index has to be freed (even partial)
2307 */
2308static int
2309ext4_ext_more_to_rm(struct ext4_ext_path *path)
2310{
2311	BUG_ON(path->p_idx == NULL);
2312
2313	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2314		return 0;
2315
2316	/*
2317	 * if truncate on deeper level happened, it wasn't partial,
2318	 * so we have to consider current index for truncation
2319	 */
2320	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2321		return 0;
2322	return 1;
2323}
2324
2325static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2326{
2327	struct super_block *sb = inode->i_sb;
2328	int depth = ext_depth(inode);
2329	struct ext4_ext_path *path;
2330	handle_t *handle;
2331	int i, err;
2332
2333	ext_debug("truncate since %u\n", start);
2334
2335	/* probably first extent we're gonna free will be last in block */
2336	handle = ext4_journal_start(inode, depth + 1);
2337	if (IS_ERR(handle))
2338		return PTR_ERR(handle);
2339
2340again:
2341	ext4_ext_invalidate_cache(inode);
2342
2343	/*
2344	 * We start scanning from right side, freeing all the blocks
2345	 * after i_size and walking into the tree depth-wise.
2346	 */
2347	depth = ext_depth(inode);
2348	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2349	if (path == NULL) {
2350		ext4_journal_stop(handle);
2351		return -ENOMEM;
2352	}
2353	path[0].p_depth = depth;
2354	path[0].p_hdr = ext_inode_hdr(inode);
2355	if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2356		err = -EIO;
2357		goto out;
2358	}
2359	i = err = 0;
2360
2361	while (i >= 0 && err == 0) {
2362		if (i == depth) {
2363			/* this is leaf block */
2364			err = ext4_ext_rm_leaf(handle, inode, path, start);
2365			/* root level has p_bh == NULL, brelse() eats this */
2366			brelse(path[i].p_bh);
2367			path[i].p_bh = NULL;
2368			i--;
2369			continue;
2370		}
2371
2372		/* this is index block */
2373		if (!path[i].p_hdr) {
2374			ext_debug("initialize header\n");
2375			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2376		}
2377
2378		if (!path[i].p_idx) {
2379			/* this level hasn't been touched yet */
2380			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2381			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2382			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2383				  path[i].p_hdr,
2384				  le16_to_cpu(path[i].p_hdr->eh_entries));
2385		} else {
2386			/* we were already here, see at next index */
2387			path[i].p_idx--;
2388		}
2389
2390		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2391				i, EXT_FIRST_INDEX(path[i].p_hdr),
2392				path[i].p_idx);
2393		if (ext4_ext_more_to_rm(path + i)) {
2394			struct buffer_head *bh;
2395			/* go to the next level */
2396			ext_debug("move to level %d (block %llu)\n",
2397				  i + 1, ext4_idx_pblock(path[i].p_idx));
2398			memset(path + i + 1, 0, sizeof(*path));
2399			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2400			if (!bh) {
2401				/* should we reset i_size? */
2402				err = -EIO;
2403				break;
2404			}
2405			if (WARN_ON(i + 1 > depth)) {
2406				err = -EIO;
2407				break;
2408			}
2409			if (ext4_ext_check(inode, ext_block_hdr(bh),
2410							depth - i - 1)) {
2411				err = -EIO;
2412				break;
2413			}
2414			path[i + 1].p_bh = bh;
2415
2416			/* save actual number of indexes since this
2417			 * number is changed at the next iteration */
2418			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2419			i++;
2420		} else {
2421			/* we finished processing this index, go up */
2422			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2423				/* index is empty, remove it;
2424				 * handle must be already prepared by the
2425				 * truncatei_leaf() */
2426				err = ext4_ext_rm_idx(handle, inode, path + i);
2427			}
2428			/* root level has p_bh == NULL, brelse() eats this */
2429			brelse(path[i].p_bh);
2430			path[i].p_bh = NULL;
2431			i--;
2432			ext_debug("return to level %d\n", i);
2433		}
2434	}
2435
2436	/* TODO: flexible tree reduction should be here */
2437	if (path->p_hdr->eh_entries == 0) {
2438		/*
2439		 * truncate to zero freed all the tree,
2440		 * so we need to correct eh_depth
2441		 */
2442		err = ext4_ext_get_access(handle, inode, path);
2443		if (err == 0) {
2444			ext_inode_hdr(inode)->eh_depth = 0;
2445			ext_inode_hdr(inode)->eh_max =
2446				cpu_to_le16(ext4_ext_space_root(inode, 0));
2447			err = ext4_ext_dirty(handle, inode, path);
2448		}
2449	}
2450out:
2451	ext4_ext_drop_refs(path);
2452	kfree(path);
2453	if (err == -EAGAIN)
2454		goto again;
2455	ext4_journal_stop(handle);
2456
2457	return err;
2458}
2459
2460/*
2461 * called at mount time
2462 */
2463void ext4_ext_init(struct super_block *sb)
2464{
2465	/*
2466	 * possible initialization would be here
2467	 */
2468
2469	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2470#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2471		printk(KERN_INFO "EXT4-fs: file extents enabled");
2472#ifdef AGGRESSIVE_TEST
2473		printk(", aggressive tests");
2474#endif
2475#ifdef CHECK_BINSEARCH
2476		printk(", check binsearch");
2477#endif
2478#ifdef EXTENTS_STATS
2479		printk(", stats");
2480#endif
2481		printk("\n");
2482#endif
2483#ifdef EXTENTS_STATS
2484		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2485		EXT4_SB(sb)->s_ext_min = 1 << 30;
2486		EXT4_SB(sb)->s_ext_max = 0;
2487#endif
2488	}
2489}
2490
2491/*
2492 * called at umount time
2493 */
2494void ext4_ext_release(struct super_block *sb)
2495{
2496	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2497		return;
2498
2499#ifdef EXTENTS_STATS
2500	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2501		struct ext4_sb_info *sbi = EXT4_SB(sb);
2502		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2503			sbi->s_ext_blocks, sbi->s_ext_extents,
2504			sbi->s_ext_blocks / sbi->s_ext_extents);
2505		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2506			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2507	}
2508#endif
2509}
2510
2511/* FIXME!! we need to try to merge to left or right after zero-out  */
2512static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2513{
2514	ext4_fsblk_t ee_pblock;
2515	unsigned int ee_len;
2516	int ret;
2517
2518	ee_len    = ext4_ext_get_actual_len(ex);
2519	ee_pblock = ext4_ext_pblock(ex);
2520
2521	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2522	if (ret > 0)
2523		ret = 0;
2524
2525	return ret;
2526}
2527
2528#define EXT4_EXT_ZERO_LEN 7
2529/*
2530 * This function is called by ext4_ext_map_blocks() if someone tries to write
2531 * to an uninitialized extent. It may result in splitting the uninitialized
2532 * extent into multiple extents (upto three - one initialized and two
2533 * uninitialized).
2534 * There are three possibilities:
2535 *   a> There is no split required: Entire extent should be initialized
2536 *   b> Splits in two extents: Write is happening at either end of the extent
2537 *   c> Splits in three extents: Somone is writing in middle of the extent
2538 */
2539static int ext4_ext_convert_to_initialized(handle_t *handle,
2540					   struct inode *inode,
2541					   struct ext4_map_blocks *map,
2542					   struct ext4_ext_path *path)
2543{
2544	struct ext4_extent *ex, newex, orig_ex;
2545	struct ext4_extent *ex1 = NULL;
2546	struct ext4_extent *ex2 = NULL;
2547	struct ext4_extent *ex3 = NULL;
2548	struct ext4_extent_header *eh;
2549	ext4_lblk_t ee_block, eof_block;
2550	unsigned int allocated, ee_len, depth;
2551	ext4_fsblk_t newblock;
2552	int err = 0;
2553	int ret = 0;
2554	int may_zeroout;
2555
2556	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2557		"block %llu, max_blocks %u\n", inode->i_ino,
2558		(unsigned long long)map->m_lblk, map->m_len);
2559
2560	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2561		inode->i_sb->s_blocksize_bits;
2562	if (eof_block < map->m_lblk + map->m_len)
2563		eof_block = map->m_lblk + map->m_len;
2564
2565	depth = ext_depth(inode);
2566	eh = path[depth].p_hdr;
2567	ex = path[depth].p_ext;
2568	ee_block = le32_to_cpu(ex->ee_block);
2569	ee_len = ext4_ext_get_actual_len(ex);
2570	allocated = ee_len - (map->m_lblk - ee_block);
2571	newblock = map->m_lblk - ee_block + ext4_ext_pblock(ex);
2572
2573	ex2 = ex;
2574	orig_ex.ee_block = ex->ee_block;
2575	orig_ex.ee_len   = cpu_to_le16(ee_len);
2576	ext4_ext_store_pblock(&orig_ex, ext4_ext_pblock(ex));
2577
2578	/*
2579	 * It is safe to convert extent to initialized via explicit
2580	 * zeroout only if extent is fully insde i_size or new_size.
2581	 */
2582	may_zeroout = ee_block + ee_len <= eof_block;
2583
2584	err = ext4_ext_get_access(handle, inode, path + depth);
2585	if (err)
2586		goto out;
2587	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2588	if (ee_len <= 2*EXT4_EXT_ZERO_LEN && may_zeroout) {
2589		err =  ext4_ext_zeroout(inode, &orig_ex);
2590		if (err)
2591			goto fix_extent_len;
2592		/* update the extent length and mark as initialized */
2593		ex->ee_block = orig_ex.ee_block;
2594		ex->ee_len   = orig_ex.ee_len;
2595		ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2596		ext4_ext_dirty(handle, inode, path + depth);
2597		/* zeroed the full extent */
2598		return allocated;
2599	}
2600
2601	/* ex1: ee_block to map->m_lblk - 1 : uninitialized */
2602	if (map->m_lblk > ee_block) {
2603		ex1 = ex;
2604		ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
2605		ext4_ext_mark_uninitialized(ex1);
2606		ex2 = &newex;
2607	}
2608	/*
2609	 * for sanity, update the length of the ex2 extent before
2610	 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2611	 * overlap of blocks.
2612	 */
2613	if (!ex1 && allocated > map->m_len)
2614		ex2->ee_len = cpu_to_le16(map->m_len);
2615	/* ex3: to ee_block + ee_len : uninitialised */
2616	if (allocated > map->m_len) {
2617		unsigned int newdepth;
2618		/* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */
2619		if (allocated <= EXT4_EXT_ZERO_LEN && may_zeroout) {
2620			/*
2621			 * map->m_lblk == ee_block is handled by the zerouout
2622			 * at the beginning.
2623			 * Mark first half uninitialized.
2624			 * Mark second half initialized and zero out the
2625			 * initialized extent
2626			 */
2627			ex->ee_block = orig_ex.ee_block;
2628			ex->ee_len   = cpu_to_le16(ee_len - allocated);
2629			ext4_ext_mark_uninitialized(ex);
2630			ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2631			ext4_ext_dirty(handle, inode, path + depth);
2632
2633			ex3 = &newex;
2634			ex3->ee_block = cpu_to_le32(map->m_lblk);
2635			ext4_ext_store_pblock(ex3, newblock);
2636			ex3->ee_len = cpu_to_le16(allocated);
2637			err = ext4_ext_insert_extent(handle, inode, path,
2638							ex3, 0);
2639			if (err == -ENOSPC) {
2640				err =  ext4_ext_zeroout(inode, &orig_ex);
2641				if (err)
2642					goto fix_extent_len;
2643				ex->ee_block = orig_ex.ee_block;
2644				ex->ee_len   = orig_ex.ee_len;
2645				ext4_ext_store_pblock(ex,
2646					ext4_ext_pblock(&orig_ex));
2647				ext4_ext_dirty(handle, inode, path + depth);
2648				/* blocks available from map->m_lblk */
2649				return allocated;
2650
2651			} else if (err)
2652				goto fix_extent_len;
2653
2654			/*
2655			 * We need to zero out the second half because
2656			 * an fallocate request can update file size and
2657			 * converting the second half to initialized extent
2658			 * implies that we can leak some junk data to user
2659			 * space.
2660			 */
2661			err =  ext4_ext_zeroout(inode, ex3);
2662			if (err) {
2663				/*
2664				 * We should actually mark the
2665				 * second half as uninit and return error
2666				 * Insert would have changed the extent
2667				 */
2668				depth = ext_depth(inode);
2669				ext4_ext_drop_refs(path);
2670				path = ext4_ext_find_extent(inode, map->m_lblk,
2671							    path);
2672				if (IS_ERR(path)) {
2673					err = PTR_ERR(path);
2674					return err;
2675				}
2676				/* get the second half extent details */
2677				ex = path[depth].p_ext;
2678				err = ext4_ext_get_access(handle, inode,
2679								path + depth);
2680				if (err)
2681					return err;
2682				ext4_ext_mark_uninitialized(ex);
2683				ext4_ext_dirty(handle, inode, path + depth);
2684				return err;
2685			}
2686
2687			/* zeroed the second half */
2688			return allocated;
2689		}
2690		ex3 = &newex;
2691		ex3->ee_block = cpu_to_le32(map->m_lblk + map->m_len);
2692		ext4_ext_store_pblock(ex3, newblock + map->m_len);
2693		ex3->ee_len = cpu_to_le16(allocated - map->m_len);
2694		ext4_ext_mark_uninitialized(ex3);
2695		err = ext4_ext_insert_extent(handle, inode, path, ex3, 0);
2696		if (err == -ENOSPC && may_zeroout) {
2697			err =  ext4_ext_zeroout(inode, &orig_ex);
2698			if (err)
2699				goto fix_extent_len;
2700			/* update the extent length and mark as initialized */
2701			ex->ee_block = orig_ex.ee_block;
2702			ex->ee_len   = orig_ex.ee_len;
2703			ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2704			ext4_ext_dirty(handle, inode, path + depth);
2705			/* zeroed the full extent */
2706			/* blocks available from map->m_lblk */
2707			return allocated;
2708
2709		} else if (err)
2710			goto fix_extent_len;
2711		/*
2712		 * The depth, and hence eh & ex might change
2713		 * as part of the insert above.
2714		 */
2715		newdepth = ext_depth(inode);
2716		/*
2717		 * update the extent length after successful insert of the
2718		 * split extent
2719		 */
2720		ee_len -= ext4_ext_get_actual_len(ex3);
2721		orig_ex.ee_len = cpu_to_le16(ee_len);
2722		may_zeroout = ee_block + ee_len <= eof_block;
2723
2724		depth = newdepth;
2725		ext4_ext_drop_refs(path);
2726		path = ext4_ext_find_extent(inode, map->m_lblk, path);
2727		if (IS_ERR(path)) {
2728			err = PTR_ERR(path);
2729			goto out;
2730		}
2731		eh = path[depth].p_hdr;
2732		ex = path[depth].p_ext;
2733		if (ex2 != &newex)
2734			ex2 = ex;
2735
2736		err = ext4_ext_get_access(handle, inode, path + depth);
2737		if (err)
2738			goto out;
2739
2740		allocated = map->m_len;
2741
2742		/* If extent has less than EXT4_EXT_ZERO_LEN and we are trying
2743		 * to insert a extent in the middle zerout directly
2744		 * otherwise give the extent a chance to merge to left
2745		 */
2746		if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN &&
2747			map->m_lblk != ee_block && may_zeroout) {
2748			err =  ext4_ext_zeroout(inode, &orig_ex);
2749			if (err)
2750				goto fix_extent_len;
2751			/* update the extent length and mark as initialized */
2752			ex->ee_block = orig_ex.ee_block;
2753			ex->ee_len   = orig_ex.ee_len;
2754			ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2755			ext4_ext_dirty(handle, inode, path + depth);
2756			/* zero out the first half */
2757			/* blocks available from map->m_lblk */
2758			return allocated;
2759		}
2760	}
2761	/*
2762	 * If there was a change of depth as part of the
2763	 * insertion of ex3 above, we need to update the length
2764	 * of the ex1 extent again here
2765	 */
2766	if (ex1 && ex1 != ex) {
2767		ex1 = ex;
2768		ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
2769		ext4_ext_mark_uninitialized(ex1);
2770		ex2 = &newex;
2771	}
2772	/* ex2: map->m_lblk to map->m_lblk + maxblocks-1 : initialised */
2773	ex2->ee_block = cpu_to_le32(map->m_lblk);
2774	ext4_ext_store_pblock(ex2, newblock);
2775	ex2->ee_len = cpu_to_le16(allocated);
2776	if (ex2 != ex)
2777		goto insert;
2778	/*
2779	 * New (initialized) extent starts from the first block
2780	 * in the current extent. i.e., ex2 == ex
2781	 * We have to see if it can be merged with the extent
2782	 * on the left.
2783	 */
2784	if (ex2 > EXT_FIRST_EXTENT(eh)) {
2785		/*
2786		 * To merge left, pass "ex2 - 1" to try_to_merge(),
2787		 * since it merges towards right _only_.
2788		 */
2789		ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2790		if (ret) {
2791			err = ext4_ext_correct_indexes(handle, inode, path);
2792			if (err)
2793				goto out;
2794			depth = ext_depth(inode);
2795			ex2--;
2796		}
2797	}
2798	/*
2799	 * Try to Merge towards right. This might be required
2800	 * only when the whole extent is being written to.
2801	 * i.e. ex2 == ex and ex3 == NULL.
2802	 */
2803	if (!ex3) {
2804		ret = ext4_ext_try_to_merge(inode, path, ex2);
2805		if (ret) {
2806			err = ext4_ext_correct_indexes(handle, inode, path);
2807			if (err)
2808				goto out;
2809		}
2810	}
2811	/* Mark modified extent as dirty */
2812	err = ext4_ext_dirty(handle, inode, path + depth);
2813	goto out;
2814insert:
2815	err = ext4_ext_insert_extent(handle, inode, path, &newex, 0);
2816	if (err == -ENOSPC && may_zeroout) {
2817		err =  ext4_ext_zeroout(inode, &orig_ex);
2818		if (err)
2819			goto fix_extent_len;
2820		/* update the extent length and mark as initialized */
2821		ex->ee_block = orig_ex.ee_block;
2822		ex->ee_len   = orig_ex.ee_len;
2823		ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2824		ext4_ext_dirty(handle, inode, path + depth);
2825		/* zero out the first half */
2826		return allocated;
2827	} else if (err)
2828		goto fix_extent_len;
2829out:
2830	ext4_ext_show_leaf(inode, path);
2831	return err ? err : allocated;
2832
2833fix_extent_len:
2834	ex->ee_block = orig_ex.ee_block;
2835	ex->ee_len   = orig_ex.ee_len;
2836	ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2837	ext4_ext_mark_uninitialized(ex);
2838	ext4_ext_dirty(handle, inode, path + depth);
2839	return err;
2840}
2841
2842/*
2843 * This function is called by ext4_ext_map_blocks() from
2844 * ext4_get_blocks_dio_write() when DIO to write
2845 * to an uninitialized extent.
2846 *
2847 * Writing to an uninitized extent may result in splitting the uninitialized
2848 * extent into multiple /intialized unintialized extents (up to three)
2849 * There are three possibilities:
2850 *   a> There is no split required: Entire extent should be uninitialized
2851 *   b> Splits in two extents: Write is happening at either end of the extent
2852 *   c> Splits in three extents: Somone is writing in middle of the extent
2853 *
2854 * One of more index blocks maybe needed if the extent tree grow after
2855 * the unintialized extent split. To prevent ENOSPC occur at the IO
2856 * complete, we need to split the uninitialized extent before DIO submit
2857 * the IO. The uninitialized extent called at this time will be split
2858 * into three uninitialized extent(at most). After IO complete, the part
2859 * being filled will be convert to initialized by the end_io callback function
2860 * via ext4_convert_unwritten_extents().
2861 *
2862 * Returns the size of uninitialized extent to be written on success.
2863 */
2864static int ext4_split_unwritten_extents(handle_t *handle,
2865					struct inode *inode,
2866					struct ext4_map_blocks *map,
2867					struct ext4_ext_path *path,
2868					int flags)
2869{
2870	struct ext4_extent *ex, newex, orig_ex;
2871	struct ext4_extent *ex1 = NULL;
2872	struct ext4_extent *ex2 = NULL;
2873	struct ext4_extent *ex3 = NULL;
2874	ext4_lblk_t ee_block, eof_block;
2875	unsigned int allocated, ee_len, depth;
2876	ext4_fsblk_t newblock;
2877	int err = 0;
2878	int may_zeroout;
2879
2880	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
2881		"block %llu, max_blocks %u\n", inode->i_ino,
2882		(unsigned long long)map->m_lblk, map->m_len);
2883
2884	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2885		inode->i_sb->s_blocksize_bits;
2886	if (eof_block < map->m_lblk + map->m_len)
2887		eof_block = map->m_lblk + map->m_len;
2888
2889	depth = ext_depth(inode);
2890	ex = path[depth].p_ext;
2891	ee_block = le32_to_cpu(ex->ee_block);
2892	ee_len = ext4_ext_get_actual_len(ex);
2893	allocated = ee_len - (map->m_lblk - ee_block);
2894	newblock = map->m_lblk - ee_block + ext4_ext_pblock(ex);
2895
2896	ex2 = ex;
2897	orig_ex.ee_block = ex->ee_block;
2898	orig_ex.ee_len   = cpu_to_le16(ee_len);
2899	ext4_ext_store_pblock(&orig_ex, ext4_ext_pblock(ex));
2900
2901	/*
2902	 * It is safe to convert extent to initialized via explicit
2903	 * zeroout only if extent is fully insde i_size or new_size.
2904	 */
2905	may_zeroout = ee_block + ee_len <= eof_block;
2906
2907	/*
2908 	 * If the uninitialized extent begins at the same logical
2909 	 * block where the write begins, and the write completely
2910 	 * covers the extent, then we don't need to split it.
2911 	 */
2912	if ((map->m_lblk == ee_block) && (allocated <= map->m_len))
2913		return allocated;
2914
2915	err = ext4_ext_get_access(handle, inode, path + depth);
2916	if (err)
2917		goto out;
2918	/* ex1: ee_block to map->m_lblk - 1 : uninitialized */
2919	if (map->m_lblk > ee_block) {
2920		ex1 = ex;
2921		ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
2922		ext4_ext_mark_uninitialized(ex1);
2923		ex2 = &newex;
2924	}
2925	/*
2926	 * for sanity, update the length of the ex2 extent before
2927	 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2928	 * overlap of blocks.
2929	 */
2930	if (!ex1 && allocated > map->m_len)
2931		ex2->ee_len = cpu_to_le16(map->m_len);
2932	/* ex3: to ee_block + ee_len : uninitialised */
2933	if (allocated > map->m_len) {
2934		unsigned int newdepth;
2935		ex3 = &newex;
2936		ex3->ee_block = cpu_to_le32(map->m_lblk + map->m_len);
2937		ext4_ext_store_pblock(ex3, newblock + map->m_len);
2938		ex3->ee_len = cpu_to_le16(allocated - map->m_len);
2939		ext4_ext_mark_uninitialized(ex3);
2940		err = ext4_ext_insert_extent(handle, inode, path, ex3, flags);
2941		if (err == -ENOSPC && may_zeroout) {
2942			err =  ext4_ext_zeroout(inode, &orig_ex);
2943			if (err)
2944				goto fix_extent_len;
2945			/* update the extent length and mark as initialized */
2946			ex->ee_block = orig_ex.ee_block;
2947			ex->ee_len   = orig_ex.ee_len;
2948			ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2949			ext4_ext_dirty(handle, inode, path + depth);
2950			/* zeroed the full extent */
2951			/* blocks available from map->m_lblk */
2952			return allocated;
2953
2954		} else if (err)
2955			goto fix_extent_len;
2956		/*
2957		 * The depth, and hence eh & ex might change
2958		 * as part of the insert above.
2959		 */
2960		newdepth = ext_depth(inode);
2961		/*
2962		 * update the extent length after successful insert of the
2963		 * split extent
2964		 */
2965		ee_len -= ext4_ext_get_actual_len(ex3);
2966		orig_ex.ee_len = cpu_to_le16(ee_len);
2967		may_zeroout = ee_block + ee_len <= eof_block;
2968
2969		depth = newdepth;
2970		ext4_ext_drop_refs(path);
2971		path = ext4_ext_find_extent(inode, map->m_lblk, path);
2972		if (IS_ERR(path)) {
2973			err = PTR_ERR(path);
2974			goto out;
2975		}
2976		ex = path[depth].p_ext;
2977		if (ex2 != &newex)
2978			ex2 = ex;
2979
2980		err = ext4_ext_get_access(handle, inode, path + depth);
2981		if (err)
2982			goto out;
2983
2984		allocated = map->m_len;
2985	}
2986	/*
2987	 * If there was a change of depth as part of the
2988	 * insertion of ex3 above, we need to update the length
2989	 * of the ex1 extent again here
2990	 */
2991	if (ex1 && ex1 != ex) {
2992		ex1 = ex;
2993		ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
2994		ext4_ext_mark_uninitialized(ex1);
2995		ex2 = &newex;
2996	}
2997	/*
2998	 * ex2: map->m_lblk to map->m_lblk + map->m_len-1 : to be written
2999	 * using direct I/O, uninitialised still.
3000	 */
3001	ex2->ee_block = cpu_to_le32(map->m_lblk);
3002	ext4_ext_store_pblock(ex2, newblock);
3003	ex2->ee_len = cpu_to_le16(allocated);
3004	ext4_ext_mark_uninitialized(ex2);
3005	if (ex2 != ex)
3006		goto insert;
3007	/* Mark modified extent as dirty */
3008	err = ext4_ext_dirty(handle, inode, path + depth);
3009	ext_debug("out here\n");
3010	goto out;
3011insert:
3012	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3013	if (err == -ENOSPC && may_zeroout) {
3014		err =  ext4_ext_zeroout(inode, &orig_ex);
3015		if (err)
3016			goto fix_extent_len;
3017		/* update the extent length and mark as initialized */
3018		ex->ee_block = orig_ex.ee_block;
3019		ex->ee_len   = orig_ex.ee_len;
3020		ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
3021		ext4_ext_dirty(handle, inode, path + depth);
3022		/* zero out the first half */
3023		return allocated;
3024	} else if (err)
3025		goto fix_extent_len;
3026out:
3027	ext4_ext_show_leaf(inode, path);
3028	return err ? err : allocated;
3029
3030fix_extent_len:
3031	ex->ee_block = orig_ex.ee_block;
3032	ex->ee_len   = orig_ex.ee_len;
3033	ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
3034	ext4_ext_mark_uninitialized(ex);
3035	ext4_ext_dirty(handle, inode, path + depth);
3036	return err;
3037}
3038static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3039					      struct inode *inode,
3040					      struct ext4_ext_path *path)
3041{
3042	struct ext4_extent *ex;
3043	struct ext4_extent_header *eh;
3044	int depth;
3045	int err = 0;
3046	int ret = 0;
3047
3048	depth = ext_depth(inode);
3049	eh = path[depth].p_hdr;
3050	ex = path[depth].p_ext;
3051
3052	err = ext4_ext_get_access(handle, inode, path + depth);
3053	if (err)
3054		goto out;
3055	/* first mark the extent as initialized */
3056	ext4_ext_mark_initialized(ex);
3057
3058	/*
3059	 * We have to see if it can be merged with the extent
3060	 * on the left.
3061	 */
3062	if (ex > EXT_FIRST_EXTENT(eh)) {
3063		/*
3064		 * To merge left, pass "ex - 1" to try_to_merge(),
3065		 * since it merges towards right _only_.
3066		 */
3067		ret = ext4_ext_try_to_merge(inode, path, ex - 1);
3068		if (ret) {
3069			err = ext4_ext_correct_indexes(handle, inode, path);
3070			if (err)
3071				goto out;
3072			depth = ext_depth(inode);
3073			ex--;
3074		}
3075	}
3076	/*
3077	 * Try to Merge towards right.
3078	 */
3079	ret = ext4_ext_try_to_merge(inode, path, ex);
3080	if (ret) {
3081		err = ext4_ext_correct_indexes(handle, inode, path);
3082		if (err)
3083			goto out;
3084		depth = ext_depth(inode);
3085	}
3086	/* Mark modified extent as dirty */
3087	err = ext4_ext_dirty(handle, inode, path + depth);
3088out:
3089	ext4_ext_show_leaf(inode, path);
3090	return err;
3091}
3092
3093static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3094			sector_t block, int count)
3095{
3096	int i;
3097	for (i = 0; i < count; i++)
3098                unmap_underlying_metadata(bdev, block + i);
3099}
3100
3101/*
3102 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3103 */
3104static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3105			      struct ext4_map_blocks *map,
3106			      struct ext4_ext_path *path,
3107			      unsigned int len)
3108{
3109	int i, depth;
3110	struct ext4_extent_header *eh;
3111	struct ext4_extent *ex, *last_ex;
3112
3113	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3114		return 0;
3115
3116	depth = ext_depth(inode);
3117	eh = path[depth].p_hdr;
3118	ex = path[depth].p_ext;
3119
3120	if (unlikely(!eh->eh_entries)) {
3121		EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3122				 "EOFBLOCKS_FL set");
3123		return -EIO;
3124	}
3125	last_ex = EXT_LAST_EXTENT(eh);
3126	/*
3127	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3128	 * last block in the last extent in the file.  We test this by
3129	 * first checking to see if the caller to
3130	 * ext4_ext_get_blocks() was interested in the last block (or
3131	 * a block beyond the last block) in the current extent.  If
3132	 * this turns out to be false, we can bail out from this
3133	 * function immediately.
3134	 */
3135	if (map->m_lblk + len < le32_to_cpu(last_ex->ee_block) +
3136	    ext4_ext_get_actual_len(last_ex))
3137		return 0;
3138	/*
3139	 * If the caller does appear to be planning to write at or
3140	 * beyond the end of the current extent, we then test to see
3141	 * if the current extent is the last extent in the file, by
3142	 * checking to make sure it was reached via the rightmost node
3143	 * at each level of the tree.
3144	 */
3145	for (i = depth-1; i >= 0; i--)
3146		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3147			return 0;
3148	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3149	return ext4_mark_inode_dirty(handle, inode);
3150}
3151
3152static int
3153ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3154			struct ext4_map_blocks *map,
3155			struct ext4_ext_path *path, int flags,
3156			unsigned int allocated, ext4_fsblk_t newblock)
3157{
3158	int ret = 0;
3159	int err = 0;
3160	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3161
3162	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3163		  "block %llu, max_blocks %u, flags %d, allocated %u",
3164		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3165		  flags, allocated);
3166	ext4_ext_show_leaf(inode, path);
3167
3168	/* get_block() before submit the IO, split the extent */
3169	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3170		ret = ext4_split_unwritten_extents(handle, inode, map,
3171						   path, flags);
3172		/*
3173		 * Flag the inode(non aio case) or end_io struct (aio case)
3174		 * that this IO needs to convertion to written when IO is
3175		 * completed
3176		 */
3177		if (io)
3178			io->flag = EXT4_IO_END_UNWRITTEN;
3179		else
3180			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3181		if (ext4_should_dioread_nolock(inode))
3182			map->m_flags |= EXT4_MAP_UNINIT;
3183		goto out;
3184	}
3185	/* IO end_io complete, convert the filled extent to written */
3186	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3187		ret = ext4_convert_unwritten_extents_endio(handle, inode,
3188							path);
3189		if (ret >= 0) {
3190			ext4_update_inode_fsync_trans(handle, inode, 1);
3191			err = check_eofblocks_fl(handle, inode, map, path,
3192						 map->m_len);
3193		} else
3194			err = ret;
3195		goto out2;
3196	}
3197	/* buffered IO case */
3198	/*
3199	 * repeat fallocate creation request
3200	 * we already have an unwritten extent
3201	 */
3202	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3203		goto map_out;
3204
3205	/* buffered READ or buffered write_begin() lookup */
3206	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3207		/*
3208		 * We have blocks reserved already.  We
3209		 * return allocated blocks so that delalloc
3210		 * won't do block reservation for us.  But
3211		 * the buffer head will be unmapped so that
3212		 * a read from the block returns 0s.
3213		 */
3214		map->m_flags |= EXT4_MAP_UNWRITTEN;
3215		goto out1;
3216	}
3217
3218	/* buffered write, writepage time, convert*/
3219	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3220	if (ret >= 0) {
3221		ext4_update_inode_fsync_trans(handle, inode, 1);
3222		err = check_eofblocks_fl(handle, inode, map, path, map->m_len);
3223		if (err < 0)
3224			goto out2;
3225	}
3226
3227out:
3228	if (ret <= 0) {
3229		err = ret;
3230		goto out2;
3231	} else
3232		allocated = ret;
3233	map->m_flags |= EXT4_MAP_NEW;
3234	/*
3235	 * if we allocated more blocks than requested
3236	 * we need to make sure we unmap the extra block
3237	 * allocated. The actual needed block will get
3238	 * unmapped later when we find the buffer_head marked
3239	 * new.
3240	 */
3241	if (allocated > map->m_len) {
3242		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3243					newblock + map->m_len,
3244					allocated - map->m_len);
3245		allocated = map->m_len;
3246	}
3247
3248	/*
3249	 * If we have done fallocate with the offset that is already
3250	 * delayed allocated, we would have block reservation
3251	 * and quota reservation done in the delayed write path.
3252	 * But fallocate would have already updated quota and block
3253	 * count for this offset. So cancel these reservation
3254	 */
3255	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3256		ext4_da_update_reserve_space(inode, allocated, 0);
3257
3258map_out:
3259	map->m_flags |= EXT4_MAP_MAPPED;
3260out1:
3261	if (allocated > map->m_len)
3262		allocated = map->m_len;
3263	ext4_ext_show_leaf(inode, path);
3264	map->m_pblk = newblock;
3265	map->m_len = allocated;
3266out2:
3267	if (path) {
3268		ext4_ext_drop_refs(path);
3269		kfree(path);
3270	}
3271	return err ? err : allocated;
3272}
3273
3274/*
3275 * Block allocation/map/preallocation routine for extents based files
3276 *
3277 *
3278 * Need to be called with
3279 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3280 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3281 *
3282 * return > 0, number of of blocks already mapped/allocated
3283 *          if create == 0 and these are pre-allocated blocks
3284 *          	buffer head is unmapped
3285 *          otherwise blocks are mapped
3286 *
3287 * return = 0, if plain look up failed (blocks have not been allocated)
3288 *          buffer head is unmapped
3289 *
3290 * return < 0, error case.
3291 */
3292int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3293			struct ext4_map_blocks *map, int flags)
3294{
3295	struct ext4_ext_path *path = NULL;
3296	struct ext4_extent_header *eh;
3297	struct ext4_extent newex, *ex;
3298	ext4_fsblk_t newblock;
3299	int err = 0, depth, ret;
3300	unsigned int allocated = 0;
3301	struct ext4_allocation_request ar;
3302	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3303
3304	ext_debug("blocks %u/%u requested for inode %lu\n",
3305		  map->m_lblk, map->m_len, inode->i_ino);
3306
3307	/* check in cache */
3308	if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3309		if (!newex.ee_start_lo && !newex.ee_start_hi) {
3310			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3311				/*
3312				 * block isn't allocated yet and
3313				 * user doesn't want to allocate it
3314				 */
3315				goto out2;
3316			}
3317			/* we should allocate requested block */
3318		} else {
3319			/* block is already allocated */
3320			newblock = map->m_lblk
3321				   - le32_to_cpu(newex.ee_block)
3322				   + ext4_ext_pblock(&newex);
3323			/* number of remaining blocks in the extent */
3324			allocated = ext4_ext_get_actual_len(&newex) -
3325				(map->m_lblk - le32_to_cpu(newex.ee_block));
3326			goto out;
3327		}
3328	}
3329
3330	/* find extent for this block */
3331	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3332	if (IS_ERR(path)) {
3333		err = PTR_ERR(path);
3334		path = NULL;
3335		goto out2;
3336	}
3337
3338	depth = ext_depth(inode);
3339
3340	/*
3341	 * consistent leaf must not be empty;
3342	 * this situation is possible, though, _during_ tree modification;
3343	 * this is why assert can't be put in ext4_ext_find_extent()
3344	 */
3345	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3346		EXT4_ERROR_INODE(inode, "bad extent address "
3347				 "lblock: %lu, depth: %d pblock %lld",
3348				 (unsigned long) map->m_lblk, depth,
3349				 path[depth].p_block);
3350		err = -EIO;
3351		goto out2;
3352	}
3353	eh = path[depth].p_hdr;
3354
3355	ex = path[depth].p_ext;
3356	if (ex) {
3357		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3358		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3359		unsigned short ee_len;
3360
3361		/*
3362		 * Uninitialized extents are treated as holes, except that
3363		 * we split out initialized portions during a write.
3364		 */
3365		ee_len = ext4_ext_get_actual_len(ex);
3366		/* if found extent covers block, simply return it */
3367		if (in_range(map->m_lblk, ee_block, ee_len)) {
3368			newblock = map->m_lblk - ee_block + ee_start;
3369			/* number of remaining blocks in the extent */
3370			allocated = ee_len - (map->m_lblk - ee_block);
3371			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3372				  ee_block, ee_len, newblock);
3373
3374			/* Do not put uninitialized extent in the cache */
3375			if (!ext4_ext_is_uninitialized(ex)) {
3376				ext4_ext_put_in_cache(inode, ee_block,
3377							ee_len, ee_start);
3378				goto out;
3379			}
3380			ret = ext4_ext_handle_uninitialized_extents(handle,
3381					inode, map, path, flags, allocated,
3382					newblock);
3383			return ret;
3384		}
3385	}
3386
3387	/*
3388	 * requested block isn't allocated yet;
3389	 * we couldn't try to create block if create flag is zero
3390	 */
3391	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3392		/*
3393		 * put just found gap into cache to speed up
3394		 * subsequent requests
3395		 */
3396		ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3397		goto out2;
3398	}
3399	/*
3400	 * Okay, we need to do block allocation.
3401	 */
3402
3403	/* find neighbour allocated blocks */
3404	ar.lleft = map->m_lblk;
3405	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3406	if (err)
3407		goto out2;
3408	ar.lright = map->m_lblk;
3409	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
3410	if (err)
3411		goto out2;
3412
3413	/*
3414	 * See if request is beyond maximum number of blocks we can have in
3415	 * a single extent. For an initialized extent this limit is
3416	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3417	 * EXT_UNINIT_MAX_LEN.
3418	 */
3419	if (map->m_len > EXT_INIT_MAX_LEN &&
3420	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3421		map->m_len = EXT_INIT_MAX_LEN;
3422	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3423		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3424		map->m_len = EXT_UNINIT_MAX_LEN;
3425
3426	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3427	newex.ee_block = cpu_to_le32(map->m_lblk);
3428	newex.ee_len = cpu_to_le16(map->m_len);
3429	err = ext4_ext_check_overlap(inode, &newex, path);
3430	if (err)
3431		allocated = ext4_ext_get_actual_len(&newex);
3432	else
3433		allocated = map->m_len;
3434
3435	/* allocate new block */
3436	ar.inode = inode;
3437	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3438	ar.logical = map->m_lblk;
3439	ar.len = allocated;
3440	if (S_ISREG(inode->i_mode))
3441		ar.flags = EXT4_MB_HINT_DATA;
3442	else
3443		/* disable in-core preallocation for non-regular files */
3444		ar.flags = 0;
3445	newblock = ext4_mb_new_blocks(handle, &ar, &err);
3446	if (!newblock)
3447		goto out2;
3448	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3449		  ar.goal, newblock, allocated);
3450
3451	/* try to insert new extent into found leaf and return */
3452	ext4_ext_store_pblock(&newex, newblock);
3453	newex.ee_len = cpu_to_le16(ar.len);
3454	/* Mark uninitialized */
3455	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3456		ext4_ext_mark_uninitialized(&newex);
3457		/*
3458		 * io_end structure was created for every IO write to an
3459		 * uninitialized extent. To avoid unecessary conversion,
3460		 * here we flag the IO that really needs the conversion.
3461		 * For non asycn direct IO case, flag the inode state
3462		 * that we need to perform convertion when IO is done.
3463		 */
3464		if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3465			if (io)
3466				io->flag = EXT4_IO_END_UNWRITTEN;
3467			else
3468				ext4_set_inode_state(inode,
3469						     EXT4_STATE_DIO_UNWRITTEN);
3470		}
3471		if (ext4_should_dioread_nolock(inode))
3472			map->m_flags |= EXT4_MAP_UNINIT;
3473	}
3474
3475	err = check_eofblocks_fl(handle, inode, map, path, ar.len);
3476	if (err)
3477		goto out2;
3478
3479	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3480	if (err) {
3481		/* free data blocks we just allocated */
3482		/* not a good idea to call discard here directly,
3483		 * but otherwise we'd need to call it every free() */
3484		ext4_discard_preallocations(inode);
3485		ext4_free_blocks(handle, inode, 0, ext4_ext_pblock(&newex),
3486				 ext4_ext_get_actual_len(&newex), 0);
3487		goto out2;
3488	}
3489
3490	/* previous routine could use block we allocated */
3491	newblock = ext4_ext_pblock(&newex);
3492	allocated = ext4_ext_get_actual_len(&newex);
3493	if (allocated > map->m_len)
3494		allocated = map->m_len;
3495	map->m_flags |= EXT4_MAP_NEW;
3496
3497	/*
3498	 * Update reserved blocks/metadata blocks after successful
3499	 * block allocation which had been deferred till now.
3500	 */
3501	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3502		ext4_da_update_reserve_space(inode, allocated, 1);
3503
3504	/*
3505	 * Cache the extent and update transaction to commit on fdatasync only
3506	 * when it is _not_ an uninitialized extent.
3507	 */
3508	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
3509		ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
3510		ext4_update_inode_fsync_trans(handle, inode, 1);
3511	} else
3512		ext4_update_inode_fsync_trans(handle, inode, 0);
3513out:
3514	if (allocated > map->m_len)
3515		allocated = map->m_len;
3516	ext4_ext_show_leaf(inode, path);
3517	map->m_flags |= EXT4_MAP_MAPPED;
3518	map->m_pblk = newblock;
3519	map->m_len = allocated;
3520out2:
3521	if (path) {
3522		ext4_ext_drop_refs(path);
3523		kfree(path);
3524	}
3525	return err ? err : allocated;
3526}
3527
3528void ext4_ext_truncate(struct inode *inode)
3529{
3530	struct address_space *mapping = inode->i_mapping;
3531	struct super_block *sb = inode->i_sb;
3532	ext4_lblk_t last_block;
3533	handle_t *handle;
3534	int err = 0;
3535
3536	/*
3537	 * finish any pending end_io work so we won't run the risk of
3538	 * converting any truncated blocks to initialized later
3539	 */
3540	ext4_flush_completed_IO(inode);
3541
3542	/*
3543	 * probably first extent we're gonna free will be last in block
3544	 */
3545	err = ext4_writepage_trans_blocks(inode);
3546	handle = ext4_journal_start(inode, err);
3547	if (IS_ERR(handle))
3548		return;
3549
3550	if (inode->i_size & (sb->s_blocksize - 1))
3551		ext4_block_truncate_page(handle, mapping, inode->i_size);
3552
3553	if (ext4_orphan_add(handle, inode))
3554		goto out_stop;
3555
3556	down_write(&EXT4_I(inode)->i_data_sem);
3557	ext4_ext_invalidate_cache(inode);
3558
3559	ext4_discard_preallocations(inode);
3560
3561	/*
3562	 * TODO: optimization is possible here.
3563	 * Probably we need not scan at all,
3564	 * because page truncation is enough.
3565	 */
3566
3567	/* we have to know where to truncate from in crash case */
3568	EXT4_I(inode)->i_disksize = inode->i_size;
3569	ext4_mark_inode_dirty(handle, inode);
3570
3571	last_block = (inode->i_size + sb->s_blocksize - 1)
3572			>> EXT4_BLOCK_SIZE_BITS(sb);
3573	err = ext4_ext_remove_space(inode, last_block);
3574
3575	/* In a multi-transaction truncate, we only make the final
3576	 * transaction synchronous.
3577	 */
3578	if (IS_SYNC(inode))
3579		ext4_handle_sync(handle);
3580
3581out_stop:
3582	up_write(&EXT4_I(inode)->i_data_sem);
3583	/*
3584	 * If this was a simple ftruncate() and the file will remain alive,
3585	 * then we need to clear up the orphan record which we created above.
3586	 * However, if this was a real unlink then we were called by
3587	 * ext4_delete_inode(), and we allow that function to clean up the
3588	 * orphan info for us.
3589	 */
3590	if (inode->i_nlink)
3591		ext4_orphan_del(handle, inode);
3592
3593	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3594	ext4_mark_inode_dirty(handle, inode);
3595	ext4_journal_stop(handle);
3596}
3597
3598static void ext4_falloc_update_inode(struct inode *inode,
3599				int mode, loff_t new_size, int update_ctime)
3600{
3601	struct timespec now;
3602
3603	if (update_ctime) {
3604		now = current_fs_time(inode->i_sb);
3605		if (!timespec_equal(&inode->i_ctime, &now))
3606			inode->i_ctime = now;
3607	}
3608	/*
3609	 * Update only when preallocation was requested beyond
3610	 * the file size.
3611	 */
3612	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3613		if (new_size > i_size_read(inode))
3614			i_size_write(inode, new_size);
3615		if (new_size > EXT4_I(inode)->i_disksize)
3616			ext4_update_i_disksize(inode, new_size);
3617	} else {
3618		/*
3619		 * Mark that we allocate beyond EOF so the subsequent truncate
3620		 * can proceed even if the new size is the same as i_size.
3621		 */
3622		if (new_size > i_size_read(inode))
3623			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3624	}
3625
3626}
3627
3628/*
3629 * preallocate space for a file. This implements ext4's fallocate inode
3630 * operation, which gets called from sys_fallocate system call.
3631 * For block-mapped files, posix_fallocate should fall back to the method
3632 * of writing zeroes to the required new blocks (the same behavior which is
3633 * expected for file systems which do not support fallocate() system call).
3634 */
3635long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len)
3636{
3637	handle_t *handle;
3638	loff_t new_size;
3639	unsigned int max_blocks;
3640	int ret = 0;
3641	int ret2 = 0;
3642	int retries = 0;
3643	struct ext4_map_blocks map;
3644	unsigned int credits, blkbits = inode->i_blkbits;
3645
3646	/*
3647	 * currently supporting (pre)allocate mode for extent-based
3648	 * files _only_
3649	 */
3650	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3651		return -EOPNOTSUPP;
3652
3653	/* preallocation to directories is currently not supported */
3654	if (S_ISDIR(inode->i_mode))
3655		return -ENODEV;
3656
3657	map.m_lblk = offset >> blkbits;
3658	/*
3659	 * We can't just convert len to max_blocks because
3660	 * If blocksize = 4096 offset = 3072 and len = 2048
3661	 */
3662	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3663		- map.m_lblk;
3664	/*
3665	 * credits to insert 1 extent into extent tree
3666	 */
3667	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3668	mutex_lock(&inode->i_mutex);
3669	ret = inode_newsize_ok(inode, (len + offset));
3670	if (ret) {
3671		mutex_unlock(&inode->i_mutex);
3672		return ret;
3673	}
3674retry:
3675	while (ret >= 0 && ret < max_blocks) {
3676		map.m_lblk = map.m_lblk + ret;
3677		map.m_len = max_blocks = max_blocks - ret;
3678		handle = ext4_journal_start(inode, credits);
3679		if (IS_ERR(handle)) {
3680			ret = PTR_ERR(handle);
3681			break;
3682		}
3683		ret = ext4_map_blocks(handle, inode, &map,
3684				      EXT4_GET_BLOCKS_CREATE_UNINIT_EXT);
3685		if (ret <= 0) {
3686#ifdef EXT4FS_DEBUG
3687			WARN_ON(ret <= 0);
3688			printk(KERN_ERR "%s: ext4_ext_map_blocks "
3689				    "returned error inode#%lu, block=%u, "
3690				    "max_blocks=%u", __func__,
3691				    inode->i_ino, map.m_lblk, max_blocks);
3692#endif
3693			ext4_mark_inode_dirty(handle, inode);
3694			ret2 = ext4_journal_stop(handle);
3695			break;
3696		}
3697		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3698						blkbits) >> blkbits))
3699			new_size = offset + len;
3700		else
3701			new_size = (map.m_lblk + ret) << blkbits;
3702
3703		ext4_falloc_update_inode(inode, mode, new_size,
3704					 (map.m_flags & EXT4_MAP_NEW));
3705		ext4_mark_inode_dirty(handle, inode);
3706		ret2 = ext4_journal_stop(handle);
3707		if (ret2)
3708			break;
3709	}
3710	if (ret == -ENOSPC &&
3711			ext4_should_retry_alloc(inode->i_sb, &retries)) {
3712		ret = 0;
3713		goto retry;
3714	}
3715	mutex_unlock(&inode->i_mutex);
3716	return ret > 0 ? ret2 : ret;
3717}
3718
3719/*
3720 * This function convert a range of blocks to written extents
3721 * The caller of this function will pass the start offset and the size.
3722 * all unwritten extents within this range will be converted to
3723 * written extents.
3724 *
3725 * This function is called from the direct IO end io call back
3726 * function, to convert the fallocated extents after IO is completed.
3727 * Returns 0 on success.
3728 */
3729int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
3730				    ssize_t len)
3731{
3732	handle_t *handle;
3733	unsigned int max_blocks;
3734	int ret = 0;
3735	int ret2 = 0;
3736	struct ext4_map_blocks map;
3737	unsigned int credits, blkbits = inode->i_blkbits;
3738
3739	map.m_lblk = offset >> blkbits;
3740	/*
3741	 * We can't just convert len to max_blocks because
3742	 * If blocksize = 4096 offset = 3072 and len = 2048
3743	 */
3744	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
3745		      map.m_lblk);
3746	/*
3747	 * credits to insert 1 extent into extent tree
3748	 */
3749	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3750	while (ret >= 0 && ret < max_blocks) {
3751		map.m_lblk += ret;
3752		map.m_len = (max_blocks -= ret);
3753		handle = ext4_journal_start(inode, credits);
3754		if (IS_ERR(handle)) {
3755			ret = PTR_ERR(handle);
3756			break;
3757		}
3758		ret = ext4_map_blocks(handle, inode, &map,
3759				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
3760		if (ret <= 0) {
3761			WARN_ON(ret <= 0);
3762			printk(KERN_ERR "%s: ext4_ext_map_blocks "
3763				    "returned error inode#%lu, block=%u, "
3764				    "max_blocks=%u", __func__,
3765				    inode->i_ino, map.m_lblk, map.m_len);
3766		}
3767		ext4_mark_inode_dirty(handle, inode);
3768		ret2 = ext4_journal_stop(handle);
3769		if (ret <= 0 || ret2 )
3770			break;
3771	}
3772	return ret > 0 ? ret2 : ret;
3773}
3774/*
3775 * Callback function called for each extent to gather FIEMAP information.
3776 */
3777static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path,
3778		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
3779		       void *data)
3780{
3781	struct fiemap_extent_info *fieinfo = data;
3782	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
3783	__u64	logical;
3784	__u64	physical;
3785	__u64	length;
3786	__u32	flags = 0;
3787	int	error;
3788
3789	logical =  (__u64)newex->ec_block << blksize_bits;
3790
3791	if (newex->ec_start == 0) {
3792		pgoff_t offset;
3793		struct page *page;
3794		struct buffer_head *bh = NULL;
3795
3796		offset = logical >> PAGE_SHIFT;
3797		page = find_get_page(inode->i_mapping, offset);
3798		if (!page || !page_has_buffers(page))
3799			return EXT_CONTINUE;
3800
3801		bh = page_buffers(page);
3802
3803		if (!bh)
3804			return EXT_CONTINUE;
3805
3806		if (buffer_delay(bh)) {
3807			flags |= FIEMAP_EXTENT_DELALLOC;
3808			page_cache_release(page);
3809		} else {
3810			page_cache_release(page);
3811			return EXT_CONTINUE;
3812		}
3813	}
3814
3815	physical = (__u64)newex->ec_start << blksize_bits;
3816	length =   (__u64)newex->ec_len << blksize_bits;
3817
3818	if (ex && ext4_ext_is_uninitialized(ex))
3819		flags |= FIEMAP_EXTENT_UNWRITTEN;
3820
3821	/*
3822	 * If this extent reaches EXT_MAX_BLOCK, it must be last.
3823	 *
3824	 * Or if ext4_ext_next_allocated_block is EXT_MAX_BLOCK,
3825	 * this also indicates no more allocated blocks.
3826	 *
3827	 * XXX this might miss a single-block extent at EXT_MAX_BLOCK
3828	 */
3829	if (ext4_ext_next_allocated_block(path) == EXT_MAX_BLOCK ||
3830	    newex->ec_block + newex->ec_len - 1 == EXT_MAX_BLOCK) {
3831		loff_t size = i_size_read(inode);
3832		loff_t bs = EXT4_BLOCK_SIZE(inode->i_sb);
3833
3834		flags |= FIEMAP_EXTENT_LAST;
3835		if ((flags & FIEMAP_EXTENT_DELALLOC) &&
3836		    logical+length > size)
3837			length = (size - logical + bs - 1) & ~(bs-1);
3838	}
3839
3840	error = fiemap_fill_next_extent(fieinfo, logical, physical,
3841					length, flags);
3842	if (error < 0)
3843		return error;
3844	if (error == 1)
3845		return EXT_BREAK;
3846
3847	return EXT_CONTINUE;
3848}
3849
3850/* fiemap flags we can handle specified here */
3851#define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
3852
3853static int ext4_xattr_fiemap(struct inode *inode,
3854				struct fiemap_extent_info *fieinfo)
3855{
3856	__u64 physical = 0;
3857	__u64 length;
3858	__u32 flags = FIEMAP_EXTENT_LAST;
3859	int blockbits = inode->i_sb->s_blocksize_bits;
3860	int error = 0;
3861
3862	/* in-inode? */
3863	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
3864		struct ext4_iloc iloc;
3865		int offset;	/* offset of xattr in inode */
3866
3867		error = ext4_get_inode_loc(inode, &iloc);
3868		if (error)
3869			return error;
3870		physical = iloc.bh->b_blocknr << blockbits;
3871		offset = EXT4_GOOD_OLD_INODE_SIZE +
3872				EXT4_I(inode)->i_extra_isize;
3873		physical += offset;
3874		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
3875		flags |= FIEMAP_EXTENT_DATA_INLINE;
3876		brelse(iloc.bh);
3877	} else { /* external block */
3878		physical = EXT4_I(inode)->i_file_acl << blockbits;
3879		length = inode->i_sb->s_blocksize;
3880	}
3881
3882	if (physical)
3883		error = fiemap_fill_next_extent(fieinfo, 0, physical,
3884						length, flags);
3885	return (error < 0 ? error : 0);
3886}
3887
3888int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3889		__u64 start, __u64 len)
3890{
3891	ext4_lblk_t start_blk;
3892	int error = 0;
3893
3894	/* fallback to generic here if not in extents fmt */
3895	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3896		return generic_block_fiemap(inode, fieinfo, start, len,
3897			ext4_get_block);
3898
3899	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
3900		return -EBADR;
3901
3902	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
3903		error = ext4_xattr_fiemap(inode, fieinfo);
3904	} else {
3905		ext4_lblk_t len_blks;
3906		__u64 last_blk;
3907
3908		start_blk = start >> inode->i_sb->s_blocksize_bits;
3909		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
3910		if (last_blk >= EXT_MAX_BLOCK)
3911			last_blk = EXT_MAX_BLOCK-1;
3912		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
3913
3914		/*
3915		 * Walk the extent tree gathering extent information.
3916		 * ext4_ext_fiemap_cb will push extents back to user.
3917		 */
3918		error = ext4_ext_walk_space(inode, start_blk, len_blks,
3919					  ext4_ext_fiemap_cb, fieinfo);
3920	}
3921
3922	return error;
3923}
3924
3925