extents.c revision 5d60125530b0122f5a0a57481f3064a6250365dd
1/*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 *   Copyright (c) 2005, Bull S.A.
7 *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21 */
22
23/*
24 * Extents support for EXT4
25 *
26 * TODO:
27 *   - ext4*_error() should be used in some situations
28 *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 *   - smart tree reduction
30 */
31
32#include <linux/fs.h>
33#include <linux/time.h>
34#include <linux/jbd2.h>
35#include <linux/highuid.h>
36#include <linux/pagemap.h>
37#include <linux/quotaops.h>
38#include <linux/string.h>
39#include <linux/slab.h>
40#include <asm/uaccess.h>
41#include <linux/fiemap.h>
42#include "ext4_jbd2.h"
43#include "ext4_extents.h"
44#include "xattr.h"
45
46#include <trace/events/ext4.h>
47
48/*
49 * used by extent splitting.
50 */
51#define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
52					due to ENOSPC */
53#define EXT4_EXT_MARK_UNWRIT1	0x2  /* mark first half unwritten */
54#define EXT4_EXT_MARK_UNWRIT2	0x4  /* mark second half unwritten */
55
56#define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
57#define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
58
59static __le32 ext4_extent_block_csum(struct inode *inode,
60				     struct ext4_extent_header *eh)
61{
62	struct ext4_inode_info *ei = EXT4_I(inode);
63	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
64	__u32 csum;
65
66	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
67			   EXT4_EXTENT_TAIL_OFFSET(eh));
68	return cpu_to_le32(csum);
69}
70
71static int ext4_extent_block_csum_verify(struct inode *inode,
72					 struct ext4_extent_header *eh)
73{
74	struct ext4_extent_tail *et;
75
76	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
77		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
78		return 1;
79
80	et = find_ext4_extent_tail(eh);
81	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
82		return 0;
83	return 1;
84}
85
86static void ext4_extent_block_csum_set(struct inode *inode,
87				       struct ext4_extent_header *eh)
88{
89	struct ext4_extent_tail *et;
90
91	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
92		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
93		return;
94
95	et = find_ext4_extent_tail(eh);
96	et->et_checksum = ext4_extent_block_csum(inode, eh);
97}
98
99static int ext4_split_extent(handle_t *handle,
100				struct inode *inode,
101				struct ext4_ext_path *path,
102				struct ext4_map_blocks *map,
103				int split_flag,
104				int flags);
105
106static int ext4_split_extent_at(handle_t *handle,
107			     struct inode *inode,
108			     struct ext4_ext_path *path,
109			     ext4_lblk_t split,
110			     int split_flag,
111			     int flags);
112
113static int ext4_find_delayed_extent(struct inode *inode,
114				    struct extent_status *newes);
115
116static int ext4_ext_truncate_extend_restart(handle_t *handle,
117					    struct inode *inode,
118					    int needed)
119{
120	int err;
121
122	if (!ext4_handle_valid(handle))
123		return 0;
124	if (handle->h_buffer_credits > needed)
125		return 0;
126	err = ext4_journal_extend(handle, needed);
127	if (err <= 0)
128		return err;
129	err = ext4_truncate_restart_trans(handle, inode, needed);
130	if (err == 0)
131		err = -EAGAIN;
132
133	return err;
134}
135
136/*
137 * could return:
138 *  - EROFS
139 *  - ENOMEM
140 */
141static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
142				struct ext4_ext_path *path)
143{
144	if (path->p_bh) {
145		/* path points to block */
146		BUFFER_TRACE(path->p_bh, "get_write_access");
147		return ext4_journal_get_write_access(handle, path->p_bh);
148	}
149	/* path points to leaf/index in inode body */
150	/* we use in-core data, no need to protect them */
151	return 0;
152}
153
154/*
155 * could return:
156 *  - EROFS
157 *  - ENOMEM
158 *  - EIO
159 */
160int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
161		     struct inode *inode, struct ext4_ext_path *path)
162{
163	int err;
164	if (path->p_bh) {
165		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
166		/* path points to block */
167		err = __ext4_handle_dirty_metadata(where, line, handle,
168						   inode, path->p_bh);
169	} else {
170		/* path points to leaf/index in inode body */
171		err = ext4_mark_inode_dirty(handle, inode);
172	}
173	return err;
174}
175
176static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
177			      struct ext4_ext_path *path,
178			      ext4_lblk_t block)
179{
180	if (path) {
181		int depth = path->p_depth;
182		struct ext4_extent *ex;
183
184		/*
185		 * Try to predict block placement assuming that we are
186		 * filling in a file which will eventually be
187		 * non-sparse --- i.e., in the case of libbfd writing
188		 * an ELF object sections out-of-order but in a way
189		 * the eventually results in a contiguous object or
190		 * executable file, or some database extending a table
191		 * space file.  However, this is actually somewhat
192		 * non-ideal if we are writing a sparse file such as
193		 * qemu or KVM writing a raw image file that is going
194		 * to stay fairly sparse, since it will end up
195		 * fragmenting the file system's free space.  Maybe we
196		 * should have some hueristics or some way to allow
197		 * userspace to pass a hint to file system,
198		 * especially if the latter case turns out to be
199		 * common.
200		 */
201		ex = path[depth].p_ext;
202		if (ex) {
203			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
204			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
205
206			if (block > ext_block)
207				return ext_pblk + (block - ext_block);
208			else
209				return ext_pblk - (ext_block - block);
210		}
211
212		/* it looks like index is empty;
213		 * try to find starting block from index itself */
214		if (path[depth].p_bh)
215			return path[depth].p_bh->b_blocknr;
216	}
217
218	/* OK. use inode's group */
219	return ext4_inode_to_goal_block(inode);
220}
221
222/*
223 * Allocation for a meta data block
224 */
225static ext4_fsblk_t
226ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
227			struct ext4_ext_path *path,
228			struct ext4_extent *ex, int *err, unsigned int flags)
229{
230	ext4_fsblk_t goal, newblock;
231
232	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
233	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
234					NULL, err);
235	return newblock;
236}
237
238static inline int ext4_ext_space_block(struct inode *inode, int check)
239{
240	int size;
241
242	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
243			/ sizeof(struct ext4_extent);
244#ifdef AGGRESSIVE_TEST
245	if (!check && size > 6)
246		size = 6;
247#endif
248	return size;
249}
250
251static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
252{
253	int size;
254
255	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
256			/ sizeof(struct ext4_extent_idx);
257#ifdef AGGRESSIVE_TEST
258	if (!check && size > 5)
259		size = 5;
260#endif
261	return size;
262}
263
264static inline int ext4_ext_space_root(struct inode *inode, int check)
265{
266	int size;
267
268	size = sizeof(EXT4_I(inode)->i_data);
269	size -= sizeof(struct ext4_extent_header);
270	size /= sizeof(struct ext4_extent);
271#ifdef AGGRESSIVE_TEST
272	if (!check && size > 3)
273		size = 3;
274#endif
275	return size;
276}
277
278static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
279{
280	int size;
281
282	size = sizeof(EXT4_I(inode)->i_data);
283	size -= sizeof(struct ext4_extent_header);
284	size /= sizeof(struct ext4_extent_idx);
285#ifdef AGGRESSIVE_TEST
286	if (!check && size > 4)
287		size = 4;
288#endif
289	return size;
290}
291
292/*
293 * Calculate the number of metadata blocks needed
294 * to allocate @blocks
295 * Worse case is one block per extent
296 */
297int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
298{
299	struct ext4_inode_info *ei = EXT4_I(inode);
300	int idxs;
301
302	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
303		/ sizeof(struct ext4_extent_idx));
304
305	/*
306	 * If the new delayed allocation block is contiguous with the
307	 * previous da block, it can share index blocks with the
308	 * previous block, so we only need to allocate a new index
309	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
310	 * an additional index block, and at ldxs**3 blocks, yet
311	 * another index blocks.
312	 */
313	if (ei->i_da_metadata_calc_len &&
314	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
315		int num = 0;
316
317		if ((ei->i_da_metadata_calc_len % idxs) == 0)
318			num++;
319		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
320			num++;
321		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
322			num++;
323			ei->i_da_metadata_calc_len = 0;
324		} else
325			ei->i_da_metadata_calc_len++;
326		ei->i_da_metadata_calc_last_lblock++;
327		return num;
328	}
329
330	/*
331	 * In the worst case we need a new set of index blocks at
332	 * every level of the inode's extent tree.
333	 */
334	ei->i_da_metadata_calc_len = 1;
335	ei->i_da_metadata_calc_last_lblock = lblock;
336	return ext_depth(inode) + 1;
337}
338
339static int
340ext4_ext_max_entries(struct inode *inode, int depth)
341{
342	int max;
343
344	if (depth == ext_depth(inode)) {
345		if (depth == 0)
346			max = ext4_ext_space_root(inode, 1);
347		else
348			max = ext4_ext_space_root_idx(inode, 1);
349	} else {
350		if (depth == 0)
351			max = ext4_ext_space_block(inode, 1);
352		else
353			max = ext4_ext_space_block_idx(inode, 1);
354	}
355
356	return max;
357}
358
359static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
360{
361	ext4_fsblk_t block = ext4_ext_pblock(ext);
362	int len = ext4_ext_get_actual_len(ext);
363	ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
364	ext4_lblk_t last = lblock + len - 1;
365
366	if (lblock > last)
367		return 0;
368	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
369}
370
371static int ext4_valid_extent_idx(struct inode *inode,
372				struct ext4_extent_idx *ext_idx)
373{
374	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
375
376	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
377}
378
379static int ext4_valid_extent_entries(struct inode *inode,
380				struct ext4_extent_header *eh,
381				int depth)
382{
383	unsigned short entries;
384	if (eh->eh_entries == 0)
385		return 1;
386
387	entries = le16_to_cpu(eh->eh_entries);
388
389	if (depth == 0) {
390		/* leaf entries */
391		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
392		struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
393		ext4_fsblk_t pblock = 0;
394		ext4_lblk_t lblock = 0;
395		ext4_lblk_t prev = 0;
396		int len = 0;
397		while (entries) {
398			if (!ext4_valid_extent(inode, ext))
399				return 0;
400
401			/* Check for overlapping extents */
402			lblock = le32_to_cpu(ext->ee_block);
403			len = ext4_ext_get_actual_len(ext);
404			if ((lblock <= prev) && prev) {
405				pblock = ext4_ext_pblock(ext);
406				es->s_last_error_block = cpu_to_le64(pblock);
407				return 0;
408			}
409			ext++;
410			entries--;
411			prev = lblock + len - 1;
412		}
413	} else {
414		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
415		while (entries) {
416			if (!ext4_valid_extent_idx(inode, ext_idx))
417				return 0;
418			ext_idx++;
419			entries--;
420		}
421	}
422	return 1;
423}
424
425static int __ext4_ext_check(const char *function, unsigned int line,
426			    struct inode *inode, struct ext4_extent_header *eh,
427			    int depth, ext4_fsblk_t pblk)
428{
429	const char *error_msg;
430	int max = 0;
431
432	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
433		error_msg = "invalid magic";
434		goto corrupted;
435	}
436	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
437		error_msg = "unexpected eh_depth";
438		goto corrupted;
439	}
440	if (unlikely(eh->eh_max == 0)) {
441		error_msg = "invalid eh_max";
442		goto corrupted;
443	}
444	max = ext4_ext_max_entries(inode, depth);
445	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
446		error_msg = "too large eh_max";
447		goto corrupted;
448	}
449	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
450		error_msg = "invalid eh_entries";
451		goto corrupted;
452	}
453	if (!ext4_valid_extent_entries(inode, eh, depth)) {
454		error_msg = "invalid extent entries";
455		goto corrupted;
456	}
457	/* Verify checksum on non-root extent tree nodes */
458	if (ext_depth(inode) != depth &&
459	    !ext4_extent_block_csum_verify(inode, eh)) {
460		error_msg = "extent tree corrupted";
461		goto corrupted;
462	}
463	return 0;
464
465corrupted:
466	ext4_error_inode(inode, function, line, 0,
467			 "pblk %llu bad header/extent: %s - magic %x, "
468			 "entries %u, max %u(%u), depth %u(%u)",
469			 (unsigned long long) pblk, error_msg,
470			 le16_to_cpu(eh->eh_magic),
471			 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
472			 max, le16_to_cpu(eh->eh_depth), depth);
473	return -EIO;
474}
475
476#define ext4_ext_check(inode, eh, depth, pblk)			\
477	__ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
478
479int ext4_ext_check_inode(struct inode *inode)
480{
481	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
482}
483
484static struct buffer_head *
485__read_extent_tree_block(const char *function, unsigned int line,
486			 struct inode *inode, ext4_fsblk_t pblk, int depth,
487			 int flags)
488{
489	struct buffer_head		*bh;
490	int				err;
491
492	bh = sb_getblk(inode->i_sb, pblk);
493	if (unlikely(!bh))
494		return ERR_PTR(-ENOMEM);
495
496	if (!bh_uptodate_or_lock(bh)) {
497		trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
498		err = bh_submit_read(bh);
499		if (err < 0)
500			goto errout;
501	}
502	if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
503		return bh;
504	err = __ext4_ext_check(function, line, inode,
505			       ext_block_hdr(bh), depth, pblk);
506	if (err)
507		goto errout;
508	set_buffer_verified(bh);
509	/*
510	 * If this is a leaf block, cache all of its entries
511	 */
512	if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
513		struct ext4_extent_header *eh = ext_block_hdr(bh);
514		struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
515		ext4_lblk_t prev = 0;
516		int i;
517
518		for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
519			unsigned int status = EXTENT_STATUS_WRITTEN;
520			ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
521			int len = ext4_ext_get_actual_len(ex);
522
523			if (prev && (prev != lblk))
524				ext4_es_cache_extent(inode, prev,
525						     lblk - prev, ~0,
526						     EXTENT_STATUS_HOLE);
527
528			if (ext4_ext_is_unwritten(ex))
529				status = EXTENT_STATUS_UNWRITTEN;
530			ext4_es_cache_extent(inode, lblk, len,
531					     ext4_ext_pblock(ex), status);
532			prev = lblk + len;
533		}
534	}
535	return bh;
536errout:
537	put_bh(bh);
538	return ERR_PTR(err);
539
540}
541
542#define read_extent_tree_block(inode, pblk, depth, flags)		\
543	__read_extent_tree_block(__func__, __LINE__, (inode), (pblk),   \
544				 (depth), (flags))
545
546/*
547 * This function is called to cache a file's extent information in the
548 * extent status tree
549 */
550int ext4_ext_precache(struct inode *inode)
551{
552	struct ext4_inode_info *ei = EXT4_I(inode);
553	struct ext4_ext_path *path = NULL;
554	struct buffer_head *bh;
555	int i = 0, depth, ret = 0;
556
557	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
558		return 0;	/* not an extent-mapped inode */
559
560	down_read(&ei->i_data_sem);
561	depth = ext_depth(inode);
562
563	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
564		       GFP_NOFS);
565	if (path == NULL) {
566		up_read(&ei->i_data_sem);
567		return -ENOMEM;
568	}
569
570	/* Don't cache anything if there are no external extent blocks */
571	if (depth == 0)
572		goto out;
573	path[0].p_hdr = ext_inode_hdr(inode);
574	ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
575	if (ret)
576		goto out;
577	path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
578	while (i >= 0) {
579		/*
580		 * If this is a leaf block or we've reached the end of
581		 * the index block, go up
582		 */
583		if ((i == depth) ||
584		    path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
585			brelse(path[i].p_bh);
586			path[i].p_bh = NULL;
587			i--;
588			continue;
589		}
590		bh = read_extent_tree_block(inode,
591					    ext4_idx_pblock(path[i].p_idx++),
592					    depth - i - 1,
593					    EXT4_EX_FORCE_CACHE);
594		if (IS_ERR(bh)) {
595			ret = PTR_ERR(bh);
596			break;
597		}
598		i++;
599		path[i].p_bh = bh;
600		path[i].p_hdr = ext_block_hdr(bh);
601		path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
602	}
603	ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
604out:
605	up_read(&ei->i_data_sem);
606	ext4_ext_drop_refs(path);
607	kfree(path);
608	return ret;
609}
610
611#ifdef EXT_DEBUG
612static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
613{
614	int k, l = path->p_depth;
615
616	ext_debug("path:");
617	for (k = 0; k <= l; k++, path++) {
618		if (path->p_idx) {
619		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
620			    ext4_idx_pblock(path->p_idx));
621		} else if (path->p_ext) {
622			ext_debug("  %d:[%d]%d:%llu ",
623				  le32_to_cpu(path->p_ext->ee_block),
624				  ext4_ext_is_unwritten(path->p_ext),
625				  ext4_ext_get_actual_len(path->p_ext),
626				  ext4_ext_pblock(path->p_ext));
627		} else
628			ext_debug("  []");
629	}
630	ext_debug("\n");
631}
632
633static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
634{
635	int depth = ext_depth(inode);
636	struct ext4_extent_header *eh;
637	struct ext4_extent *ex;
638	int i;
639
640	if (!path)
641		return;
642
643	eh = path[depth].p_hdr;
644	ex = EXT_FIRST_EXTENT(eh);
645
646	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
647
648	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
649		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
650			  ext4_ext_is_unwritten(ex),
651			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
652	}
653	ext_debug("\n");
654}
655
656static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
657			ext4_fsblk_t newblock, int level)
658{
659	int depth = ext_depth(inode);
660	struct ext4_extent *ex;
661
662	if (depth != level) {
663		struct ext4_extent_idx *idx;
664		idx = path[level].p_idx;
665		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
666			ext_debug("%d: move %d:%llu in new index %llu\n", level,
667					le32_to_cpu(idx->ei_block),
668					ext4_idx_pblock(idx),
669					newblock);
670			idx++;
671		}
672
673		return;
674	}
675
676	ex = path[depth].p_ext;
677	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
678		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
679				le32_to_cpu(ex->ee_block),
680				ext4_ext_pblock(ex),
681				ext4_ext_is_unwritten(ex),
682				ext4_ext_get_actual_len(ex),
683				newblock);
684		ex++;
685	}
686}
687
688#else
689#define ext4_ext_show_path(inode, path)
690#define ext4_ext_show_leaf(inode, path)
691#define ext4_ext_show_move(inode, path, newblock, level)
692#endif
693
694void ext4_ext_drop_refs(struct ext4_ext_path *path)
695{
696	int depth = path->p_depth;
697	int i;
698
699	for (i = 0; i <= depth; i++, path++)
700		if (path->p_bh) {
701			brelse(path->p_bh);
702			path->p_bh = NULL;
703		}
704}
705
706/*
707 * ext4_ext_binsearch_idx:
708 * binary search for the closest index of the given block
709 * the header must be checked before calling this
710 */
711static void
712ext4_ext_binsearch_idx(struct inode *inode,
713			struct ext4_ext_path *path, ext4_lblk_t block)
714{
715	struct ext4_extent_header *eh = path->p_hdr;
716	struct ext4_extent_idx *r, *l, *m;
717
718
719	ext_debug("binsearch for %u(idx):  ", block);
720
721	l = EXT_FIRST_INDEX(eh) + 1;
722	r = EXT_LAST_INDEX(eh);
723	while (l <= r) {
724		m = l + (r - l) / 2;
725		if (block < le32_to_cpu(m->ei_block))
726			r = m - 1;
727		else
728			l = m + 1;
729		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
730				m, le32_to_cpu(m->ei_block),
731				r, le32_to_cpu(r->ei_block));
732	}
733
734	path->p_idx = l - 1;
735	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
736		  ext4_idx_pblock(path->p_idx));
737
738#ifdef CHECK_BINSEARCH
739	{
740		struct ext4_extent_idx *chix, *ix;
741		int k;
742
743		chix = ix = EXT_FIRST_INDEX(eh);
744		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
745		  if (k != 0 &&
746		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
747				printk(KERN_DEBUG "k=%d, ix=0x%p, "
748				       "first=0x%p\n", k,
749				       ix, EXT_FIRST_INDEX(eh));
750				printk(KERN_DEBUG "%u <= %u\n",
751				       le32_to_cpu(ix->ei_block),
752				       le32_to_cpu(ix[-1].ei_block));
753			}
754			BUG_ON(k && le32_to_cpu(ix->ei_block)
755					   <= le32_to_cpu(ix[-1].ei_block));
756			if (block < le32_to_cpu(ix->ei_block))
757				break;
758			chix = ix;
759		}
760		BUG_ON(chix != path->p_idx);
761	}
762#endif
763
764}
765
766/*
767 * ext4_ext_binsearch:
768 * binary search for closest extent of the given block
769 * the header must be checked before calling this
770 */
771static void
772ext4_ext_binsearch(struct inode *inode,
773		struct ext4_ext_path *path, ext4_lblk_t block)
774{
775	struct ext4_extent_header *eh = path->p_hdr;
776	struct ext4_extent *r, *l, *m;
777
778	if (eh->eh_entries == 0) {
779		/*
780		 * this leaf is empty:
781		 * we get such a leaf in split/add case
782		 */
783		return;
784	}
785
786	ext_debug("binsearch for %u:  ", block);
787
788	l = EXT_FIRST_EXTENT(eh) + 1;
789	r = EXT_LAST_EXTENT(eh);
790
791	while (l <= r) {
792		m = l + (r - l) / 2;
793		if (block < le32_to_cpu(m->ee_block))
794			r = m - 1;
795		else
796			l = m + 1;
797		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
798				m, le32_to_cpu(m->ee_block),
799				r, le32_to_cpu(r->ee_block));
800	}
801
802	path->p_ext = l - 1;
803	ext_debug("  -> %d:%llu:[%d]%d ",
804			le32_to_cpu(path->p_ext->ee_block),
805			ext4_ext_pblock(path->p_ext),
806			ext4_ext_is_unwritten(path->p_ext),
807			ext4_ext_get_actual_len(path->p_ext));
808
809#ifdef CHECK_BINSEARCH
810	{
811		struct ext4_extent *chex, *ex;
812		int k;
813
814		chex = ex = EXT_FIRST_EXTENT(eh);
815		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
816			BUG_ON(k && le32_to_cpu(ex->ee_block)
817					  <= le32_to_cpu(ex[-1].ee_block));
818			if (block < le32_to_cpu(ex->ee_block))
819				break;
820			chex = ex;
821		}
822		BUG_ON(chex != path->p_ext);
823	}
824#endif
825
826}
827
828int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
829{
830	struct ext4_extent_header *eh;
831
832	eh = ext_inode_hdr(inode);
833	eh->eh_depth = 0;
834	eh->eh_entries = 0;
835	eh->eh_magic = EXT4_EXT_MAGIC;
836	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
837	ext4_mark_inode_dirty(handle, inode);
838	return 0;
839}
840
841struct ext4_ext_path *
842ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
843		     struct ext4_ext_path *path, int flags)
844{
845	struct ext4_extent_header *eh;
846	struct buffer_head *bh;
847	short int depth, i, ppos = 0, alloc = 0;
848	int ret;
849
850	eh = ext_inode_hdr(inode);
851	depth = ext_depth(inode);
852
853	/* account possible depth increase */
854	if (!path) {
855		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
856				GFP_NOFS);
857		if (!path)
858			return ERR_PTR(-ENOMEM);
859		alloc = 1;
860	}
861	path[0].p_hdr = eh;
862	path[0].p_bh = NULL;
863
864	i = depth;
865	/* walk through the tree */
866	while (i) {
867		ext_debug("depth %d: num %d, max %d\n",
868			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
869
870		ext4_ext_binsearch_idx(inode, path + ppos, block);
871		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
872		path[ppos].p_depth = i;
873		path[ppos].p_ext = NULL;
874
875		bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
876					    flags);
877		if (IS_ERR(bh)) {
878			ret = PTR_ERR(bh);
879			goto err;
880		}
881
882		eh = ext_block_hdr(bh);
883		ppos++;
884		if (unlikely(ppos > depth)) {
885			put_bh(bh);
886			EXT4_ERROR_INODE(inode,
887					 "ppos %d > depth %d", ppos, depth);
888			ret = -EIO;
889			goto err;
890		}
891		path[ppos].p_bh = bh;
892		path[ppos].p_hdr = eh;
893	}
894
895	path[ppos].p_depth = i;
896	path[ppos].p_ext = NULL;
897	path[ppos].p_idx = NULL;
898
899	/* find extent */
900	ext4_ext_binsearch(inode, path + ppos, block);
901	/* if not an empty leaf */
902	if (path[ppos].p_ext)
903		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
904
905	ext4_ext_show_path(inode, path);
906
907	return path;
908
909err:
910	ext4_ext_drop_refs(path);
911	if (alloc)
912		kfree(path);
913	return ERR_PTR(ret);
914}
915
916/*
917 * ext4_ext_insert_index:
918 * insert new index [@logical;@ptr] into the block at @curp;
919 * check where to insert: before @curp or after @curp
920 */
921static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
922				 struct ext4_ext_path *curp,
923				 int logical, ext4_fsblk_t ptr)
924{
925	struct ext4_extent_idx *ix;
926	int len, err;
927
928	err = ext4_ext_get_access(handle, inode, curp);
929	if (err)
930		return err;
931
932	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
933		EXT4_ERROR_INODE(inode,
934				 "logical %d == ei_block %d!",
935				 logical, le32_to_cpu(curp->p_idx->ei_block));
936		return -EIO;
937	}
938
939	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
940			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
941		EXT4_ERROR_INODE(inode,
942				 "eh_entries %d >= eh_max %d!",
943				 le16_to_cpu(curp->p_hdr->eh_entries),
944				 le16_to_cpu(curp->p_hdr->eh_max));
945		return -EIO;
946	}
947
948	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
949		/* insert after */
950		ext_debug("insert new index %d after: %llu\n", logical, ptr);
951		ix = curp->p_idx + 1;
952	} else {
953		/* insert before */
954		ext_debug("insert new index %d before: %llu\n", logical, ptr);
955		ix = curp->p_idx;
956	}
957
958	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
959	BUG_ON(len < 0);
960	if (len > 0) {
961		ext_debug("insert new index %d: "
962				"move %d indices from 0x%p to 0x%p\n",
963				logical, len, ix, ix + 1);
964		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
965	}
966
967	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
968		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
969		return -EIO;
970	}
971
972	ix->ei_block = cpu_to_le32(logical);
973	ext4_idx_store_pblock(ix, ptr);
974	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
975
976	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
977		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
978		return -EIO;
979	}
980
981	err = ext4_ext_dirty(handle, inode, curp);
982	ext4_std_error(inode->i_sb, err);
983
984	return err;
985}
986
987/*
988 * ext4_ext_split:
989 * inserts new subtree into the path, using free index entry
990 * at depth @at:
991 * - allocates all needed blocks (new leaf and all intermediate index blocks)
992 * - makes decision where to split
993 * - moves remaining extents and index entries (right to the split point)
994 *   into the newly allocated blocks
995 * - initializes subtree
996 */
997static int ext4_ext_split(handle_t *handle, struct inode *inode,
998			  unsigned int flags,
999			  struct ext4_ext_path *path,
1000			  struct ext4_extent *newext, int at)
1001{
1002	struct buffer_head *bh = NULL;
1003	int depth = ext_depth(inode);
1004	struct ext4_extent_header *neh;
1005	struct ext4_extent_idx *fidx;
1006	int i = at, k, m, a;
1007	ext4_fsblk_t newblock, oldblock;
1008	__le32 border;
1009	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1010	int err = 0;
1011
1012	/* make decision: where to split? */
1013	/* FIXME: now decision is simplest: at current extent */
1014
1015	/* if current leaf will be split, then we should use
1016	 * border from split point */
1017	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1018		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1019		return -EIO;
1020	}
1021	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1022		border = path[depth].p_ext[1].ee_block;
1023		ext_debug("leaf will be split."
1024				" next leaf starts at %d\n",
1025				  le32_to_cpu(border));
1026	} else {
1027		border = newext->ee_block;
1028		ext_debug("leaf will be added."
1029				" next leaf starts at %d\n",
1030				le32_to_cpu(border));
1031	}
1032
1033	/*
1034	 * If error occurs, then we break processing
1035	 * and mark filesystem read-only. index won't
1036	 * be inserted and tree will be in consistent
1037	 * state. Next mount will repair buffers too.
1038	 */
1039
1040	/*
1041	 * Get array to track all allocated blocks.
1042	 * We need this to handle errors and free blocks
1043	 * upon them.
1044	 */
1045	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1046	if (!ablocks)
1047		return -ENOMEM;
1048
1049	/* allocate all needed blocks */
1050	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1051	for (a = 0; a < depth - at; a++) {
1052		newblock = ext4_ext_new_meta_block(handle, inode, path,
1053						   newext, &err, flags);
1054		if (newblock == 0)
1055			goto cleanup;
1056		ablocks[a] = newblock;
1057	}
1058
1059	/* initialize new leaf */
1060	newblock = ablocks[--a];
1061	if (unlikely(newblock == 0)) {
1062		EXT4_ERROR_INODE(inode, "newblock == 0!");
1063		err = -EIO;
1064		goto cleanup;
1065	}
1066	bh = sb_getblk(inode->i_sb, newblock);
1067	if (unlikely(!bh)) {
1068		err = -ENOMEM;
1069		goto cleanup;
1070	}
1071	lock_buffer(bh);
1072
1073	err = ext4_journal_get_create_access(handle, bh);
1074	if (err)
1075		goto cleanup;
1076
1077	neh = ext_block_hdr(bh);
1078	neh->eh_entries = 0;
1079	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1080	neh->eh_magic = EXT4_EXT_MAGIC;
1081	neh->eh_depth = 0;
1082
1083	/* move remainder of path[depth] to the new leaf */
1084	if (unlikely(path[depth].p_hdr->eh_entries !=
1085		     path[depth].p_hdr->eh_max)) {
1086		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1087				 path[depth].p_hdr->eh_entries,
1088				 path[depth].p_hdr->eh_max);
1089		err = -EIO;
1090		goto cleanup;
1091	}
1092	/* start copy from next extent */
1093	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1094	ext4_ext_show_move(inode, path, newblock, depth);
1095	if (m) {
1096		struct ext4_extent *ex;
1097		ex = EXT_FIRST_EXTENT(neh);
1098		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1099		le16_add_cpu(&neh->eh_entries, m);
1100	}
1101
1102	ext4_extent_block_csum_set(inode, neh);
1103	set_buffer_uptodate(bh);
1104	unlock_buffer(bh);
1105
1106	err = ext4_handle_dirty_metadata(handle, inode, bh);
1107	if (err)
1108		goto cleanup;
1109	brelse(bh);
1110	bh = NULL;
1111
1112	/* correct old leaf */
1113	if (m) {
1114		err = ext4_ext_get_access(handle, inode, path + depth);
1115		if (err)
1116			goto cleanup;
1117		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1118		err = ext4_ext_dirty(handle, inode, path + depth);
1119		if (err)
1120			goto cleanup;
1121
1122	}
1123
1124	/* create intermediate indexes */
1125	k = depth - at - 1;
1126	if (unlikely(k < 0)) {
1127		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1128		err = -EIO;
1129		goto cleanup;
1130	}
1131	if (k)
1132		ext_debug("create %d intermediate indices\n", k);
1133	/* insert new index into current index block */
1134	/* current depth stored in i var */
1135	i = depth - 1;
1136	while (k--) {
1137		oldblock = newblock;
1138		newblock = ablocks[--a];
1139		bh = sb_getblk(inode->i_sb, newblock);
1140		if (unlikely(!bh)) {
1141			err = -ENOMEM;
1142			goto cleanup;
1143		}
1144		lock_buffer(bh);
1145
1146		err = ext4_journal_get_create_access(handle, bh);
1147		if (err)
1148			goto cleanup;
1149
1150		neh = ext_block_hdr(bh);
1151		neh->eh_entries = cpu_to_le16(1);
1152		neh->eh_magic = EXT4_EXT_MAGIC;
1153		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1154		neh->eh_depth = cpu_to_le16(depth - i);
1155		fidx = EXT_FIRST_INDEX(neh);
1156		fidx->ei_block = border;
1157		ext4_idx_store_pblock(fidx, oldblock);
1158
1159		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1160				i, newblock, le32_to_cpu(border), oldblock);
1161
1162		/* move remainder of path[i] to the new index block */
1163		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1164					EXT_LAST_INDEX(path[i].p_hdr))) {
1165			EXT4_ERROR_INODE(inode,
1166					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1167					 le32_to_cpu(path[i].p_ext->ee_block));
1168			err = -EIO;
1169			goto cleanup;
1170		}
1171		/* start copy indexes */
1172		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1173		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1174				EXT_MAX_INDEX(path[i].p_hdr));
1175		ext4_ext_show_move(inode, path, newblock, i);
1176		if (m) {
1177			memmove(++fidx, path[i].p_idx,
1178				sizeof(struct ext4_extent_idx) * m);
1179			le16_add_cpu(&neh->eh_entries, m);
1180		}
1181		ext4_extent_block_csum_set(inode, neh);
1182		set_buffer_uptodate(bh);
1183		unlock_buffer(bh);
1184
1185		err = ext4_handle_dirty_metadata(handle, inode, bh);
1186		if (err)
1187			goto cleanup;
1188		brelse(bh);
1189		bh = NULL;
1190
1191		/* correct old index */
1192		if (m) {
1193			err = ext4_ext_get_access(handle, inode, path + i);
1194			if (err)
1195				goto cleanup;
1196			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1197			err = ext4_ext_dirty(handle, inode, path + i);
1198			if (err)
1199				goto cleanup;
1200		}
1201
1202		i--;
1203	}
1204
1205	/* insert new index */
1206	err = ext4_ext_insert_index(handle, inode, path + at,
1207				    le32_to_cpu(border), newblock);
1208
1209cleanup:
1210	if (bh) {
1211		if (buffer_locked(bh))
1212			unlock_buffer(bh);
1213		brelse(bh);
1214	}
1215
1216	if (err) {
1217		/* free all allocated blocks in error case */
1218		for (i = 0; i < depth; i++) {
1219			if (!ablocks[i])
1220				continue;
1221			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1222					 EXT4_FREE_BLOCKS_METADATA);
1223		}
1224	}
1225	kfree(ablocks);
1226
1227	return err;
1228}
1229
1230/*
1231 * ext4_ext_grow_indepth:
1232 * implements tree growing procedure:
1233 * - allocates new block
1234 * - moves top-level data (index block or leaf) into the new block
1235 * - initializes new top-level, creating index that points to the
1236 *   just created block
1237 */
1238static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1239				 unsigned int flags,
1240				 struct ext4_extent *newext)
1241{
1242	struct ext4_extent_header *neh;
1243	struct buffer_head *bh;
1244	ext4_fsblk_t newblock;
1245	int err = 0;
1246
1247	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1248		newext, &err, flags);
1249	if (newblock == 0)
1250		return err;
1251
1252	bh = sb_getblk(inode->i_sb, newblock);
1253	if (unlikely(!bh))
1254		return -ENOMEM;
1255	lock_buffer(bh);
1256
1257	err = ext4_journal_get_create_access(handle, bh);
1258	if (err) {
1259		unlock_buffer(bh);
1260		goto out;
1261	}
1262
1263	/* move top-level index/leaf into new block */
1264	memmove(bh->b_data, EXT4_I(inode)->i_data,
1265		sizeof(EXT4_I(inode)->i_data));
1266
1267	/* set size of new block */
1268	neh = ext_block_hdr(bh);
1269	/* old root could have indexes or leaves
1270	 * so calculate e_max right way */
1271	if (ext_depth(inode))
1272		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1273	else
1274		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1275	neh->eh_magic = EXT4_EXT_MAGIC;
1276	ext4_extent_block_csum_set(inode, neh);
1277	set_buffer_uptodate(bh);
1278	unlock_buffer(bh);
1279
1280	err = ext4_handle_dirty_metadata(handle, inode, bh);
1281	if (err)
1282		goto out;
1283
1284	/* Update top-level index: num,max,pointer */
1285	neh = ext_inode_hdr(inode);
1286	neh->eh_entries = cpu_to_le16(1);
1287	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1288	if (neh->eh_depth == 0) {
1289		/* Root extent block becomes index block */
1290		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1291		EXT_FIRST_INDEX(neh)->ei_block =
1292			EXT_FIRST_EXTENT(neh)->ee_block;
1293	}
1294	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1295		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1296		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1297		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1298
1299	le16_add_cpu(&neh->eh_depth, 1);
1300	ext4_mark_inode_dirty(handle, inode);
1301out:
1302	brelse(bh);
1303
1304	return err;
1305}
1306
1307/*
1308 * ext4_ext_create_new_leaf:
1309 * finds empty index and adds new leaf.
1310 * if no free index is found, then it requests in-depth growing.
1311 */
1312static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1313				    unsigned int mb_flags,
1314				    unsigned int gb_flags,
1315				    struct ext4_ext_path *path,
1316				    struct ext4_extent *newext)
1317{
1318	struct ext4_ext_path *curp;
1319	int depth, i, err = 0;
1320
1321repeat:
1322	i = depth = ext_depth(inode);
1323
1324	/* walk up to the tree and look for free index entry */
1325	curp = path + depth;
1326	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1327		i--;
1328		curp--;
1329	}
1330
1331	/* we use already allocated block for index block,
1332	 * so subsequent data blocks should be contiguous */
1333	if (EXT_HAS_FREE_INDEX(curp)) {
1334		/* if we found index with free entry, then use that
1335		 * entry: create all needed subtree and add new leaf */
1336		err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1337		if (err)
1338			goto out;
1339
1340		/* refill path */
1341		ext4_ext_drop_refs(path);
1342		path = ext4_ext_find_extent(inode,
1343				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1344				    path, gb_flags);
1345		if (IS_ERR(path))
1346			err = PTR_ERR(path);
1347	} else {
1348		/* tree is full, time to grow in depth */
1349		err = ext4_ext_grow_indepth(handle, inode, mb_flags, newext);
1350		if (err)
1351			goto out;
1352
1353		/* refill path */
1354		ext4_ext_drop_refs(path);
1355		path = ext4_ext_find_extent(inode,
1356				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1357				    path, gb_flags);
1358		if (IS_ERR(path)) {
1359			err = PTR_ERR(path);
1360			goto out;
1361		}
1362
1363		/*
1364		 * only first (depth 0 -> 1) produces free space;
1365		 * in all other cases we have to split the grown tree
1366		 */
1367		depth = ext_depth(inode);
1368		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1369			/* now we need to split */
1370			goto repeat;
1371		}
1372	}
1373
1374out:
1375	return err;
1376}
1377
1378/*
1379 * search the closest allocated block to the left for *logical
1380 * and returns it at @logical + it's physical address at @phys
1381 * if *logical is the smallest allocated block, the function
1382 * returns 0 at @phys
1383 * return value contains 0 (success) or error code
1384 */
1385static int ext4_ext_search_left(struct inode *inode,
1386				struct ext4_ext_path *path,
1387				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1388{
1389	struct ext4_extent_idx *ix;
1390	struct ext4_extent *ex;
1391	int depth, ee_len;
1392
1393	if (unlikely(path == NULL)) {
1394		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1395		return -EIO;
1396	}
1397	depth = path->p_depth;
1398	*phys = 0;
1399
1400	if (depth == 0 && path->p_ext == NULL)
1401		return 0;
1402
1403	/* usually extent in the path covers blocks smaller
1404	 * then *logical, but it can be that extent is the
1405	 * first one in the file */
1406
1407	ex = path[depth].p_ext;
1408	ee_len = ext4_ext_get_actual_len(ex);
1409	if (*logical < le32_to_cpu(ex->ee_block)) {
1410		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1411			EXT4_ERROR_INODE(inode,
1412					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1413					 *logical, le32_to_cpu(ex->ee_block));
1414			return -EIO;
1415		}
1416		while (--depth >= 0) {
1417			ix = path[depth].p_idx;
1418			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1419				EXT4_ERROR_INODE(inode,
1420				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1421				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1422				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1423		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1424				  depth);
1425				return -EIO;
1426			}
1427		}
1428		return 0;
1429	}
1430
1431	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1432		EXT4_ERROR_INODE(inode,
1433				 "logical %d < ee_block %d + ee_len %d!",
1434				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1435		return -EIO;
1436	}
1437
1438	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1439	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1440	return 0;
1441}
1442
1443/*
1444 * search the closest allocated block to the right for *logical
1445 * and returns it at @logical + it's physical address at @phys
1446 * if *logical is the largest allocated block, the function
1447 * returns 0 at @phys
1448 * return value contains 0 (success) or error code
1449 */
1450static int ext4_ext_search_right(struct inode *inode,
1451				 struct ext4_ext_path *path,
1452				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1453				 struct ext4_extent **ret_ex)
1454{
1455	struct buffer_head *bh = NULL;
1456	struct ext4_extent_header *eh;
1457	struct ext4_extent_idx *ix;
1458	struct ext4_extent *ex;
1459	ext4_fsblk_t block;
1460	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1461	int ee_len;
1462
1463	if (unlikely(path == NULL)) {
1464		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1465		return -EIO;
1466	}
1467	depth = path->p_depth;
1468	*phys = 0;
1469
1470	if (depth == 0 && path->p_ext == NULL)
1471		return 0;
1472
1473	/* usually extent in the path covers blocks smaller
1474	 * then *logical, but it can be that extent is the
1475	 * first one in the file */
1476
1477	ex = path[depth].p_ext;
1478	ee_len = ext4_ext_get_actual_len(ex);
1479	if (*logical < le32_to_cpu(ex->ee_block)) {
1480		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1481			EXT4_ERROR_INODE(inode,
1482					 "first_extent(path[%d].p_hdr) != ex",
1483					 depth);
1484			return -EIO;
1485		}
1486		while (--depth >= 0) {
1487			ix = path[depth].p_idx;
1488			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1489				EXT4_ERROR_INODE(inode,
1490						 "ix != EXT_FIRST_INDEX *logical %d!",
1491						 *logical);
1492				return -EIO;
1493			}
1494		}
1495		goto found_extent;
1496	}
1497
1498	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1499		EXT4_ERROR_INODE(inode,
1500				 "logical %d < ee_block %d + ee_len %d!",
1501				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1502		return -EIO;
1503	}
1504
1505	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1506		/* next allocated block in this leaf */
1507		ex++;
1508		goto found_extent;
1509	}
1510
1511	/* go up and search for index to the right */
1512	while (--depth >= 0) {
1513		ix = path[depth].p_idx;
1514		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1515			goto got_index;
1516	}
1517
1518	/* we've gone up to the root and found no index to the right */
1519	return 0;
1520
1521got_index:
1522	/* we've found index to the right, let's
1523	 * follow it and find the closest allocated
1524	 * block to the right */
1525	ix++;
1526	block = ext4_idx_pblock(ix);
1527	while (++depth < path->p_depth) {
1528		/* subtract from p_depth to get proper eh_depth */
1529		bh = read_extent_tree_block(inode, block,
1530					    path->p_depth - depth, 0);
1531		if (IS_ERR(bh))
1532			return PTR_ERR(bh);
1533		eh = ext_block_hdr(bh);
1534		ix = EXT_FIRST_INDEX(eh);
1535		block = ext4_idx_pblock(ix);
1536		put_bh(bh);
1537	}
1538
1539	bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1540	if (IS_ERR(bh))
1541		return PTR_ERR(bh);
1542	eh = ext_block_hdr(bh);
1543	ex = EXT_FIRST_EXTENT(eh);
1544found_extent:
1545	*logical = le32_to_cpu(ex->ee_block);
1546	*phys = ext4_ext_pblock(ex);
1547	*ret_ex = ex;
1548	if (bh)
1549		put_bh(bh);
1550	return 0;
1551}
1552
1553/*
1554 * ext4_ext_next_allocated_block:
1555 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1556 * NOTE: it considers block number from index entry as
1557 * allocated block. Thus, index entries have to be consistent
1558 * with leaves.
1559 */
1560static ext4_lblk_t
1561ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1562{
1563	int depth;
1564
1565	BUG_ON(path == NULL);
1566	depth = path->p_depth;
1567
1568	if (depth == 0 && path->p_ext == NULL)
1569		return EXT_MAX_BLOCKS;
1570
1571	while (depth >= 0) {
1572		if (depth == path->p_depth) {
1573			/* leaf */
1574			if (path[depth].p_ext &&
1575				path[depth].p_ext !=
1576					EXT_LAST_EXTENT(path[depth].p_hdr))
1577			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1578		} else {
1579			/* index */
1580			if (path[depth].p_idx !=
1581					EXT_LAST_INDEX(path[depth].p_hdr))
1582			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1583		}
1584		depth--;
1585	}
1586
1587	return EXT_MAX_BLOCKS;
1588}
1589
1590/*
1591 * ext4_ext_next_leaf_block:
1592 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1593 */
1594static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1595{
1596	int depth;
1597
1598	BUG_ON(path == NULL);
1599	depth = path->p_depth;
1600
1601	/* zero-tree has no leaf blocks at all */
1602	if (depth == 0)
1603		return EXT_MAX_BLOCKS;
1604
1605	/* go to index block */
1606	depth--;
1607
1608	while (depth >= 0) {
1609		if (path[depth].p_idx !=
1610				EXT_LAST_INDEX(path[depth].p_hdr))
1611			return (ext4_lblk_t)
1612				le32_to_cpu(path[depth].p_idx[1].ei_block);
1613		depth--;
1614	}
1615
1616	return EXT_MAX_BLOCKS;
1617}
1618
1619/*
1620 * ext4_ext_correct_indexes:
1621 * if leaf gets modified and modified extent is first in the leaf,
1622 * then we have to correct all indexes above.
1623 * TODO: do we need to correct tree in all cases?
1624 */
1625static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1626				struct ext4_ext_path *path)
1627{
1628	struct ext4_extent_header *eh;
1629	int depth = ext_depth(inode);
1630	struct ext4_extent *ex;
1631	__le32 border;
1632	int k, err = 0;
1633
1634	eh = path[depth].p_hdr;
1635	ex = path[depth].p_ext;
1636
1637	if (unlikely(ex == NULL || eh == NULL)) {
1638		EXT4_ERROR_INODE(inode,
1639				 "ex %p == NULL or eh %p == NULL", ex, eh);
1640		return -EIO;
1641	}
1642
1643	if (depth == 0) {
1644		/* there is no tree at all */
1645		return 0;
1646	}
1647
1648	if (ex != EXT_FIRST_EXTENT(eh)) {
1649		/* we correct tree if first leaf got modified only */
1650		return 0;
1651	}
1652
1653	/*
1654	 * TODO: we need correction if border is smaller than current one
1655	 */
1656	k = depth - 1;
1657	border = path[depth].p_ext->ee_block;
1658	err = ext4_ext_get_access(handle, inode, path + k);
1659	if (err)
1660		return err;
1661	path[k].p_idx->ei_block = border;
1662	err = ext4_ext_dirty(handle, inode, path + k);
1663	if (err)
1664		return err;
1665
1666	while (k--) {
1667		/* change all left-side indexes */
1668		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1669			break;
1670		err = ext4_ext_get_access(handle, inode, path + k);
1671		if (err)
1672			break;
1673		path[k].p_idx->ei_block = border;
1674		err = ext4_ext_dirty(handle, inode, path + k);
1675		if (err)
1676			break;
1677	}
1678
1679	return err;
1680}
1681
1682int
1683ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1684				struct ext4_extent *ex2)
1685{
1686	unsigned short ext1_ee_len, ext2_ee_len;
1687
1688	/*
1689	 * Make sure that both extents are initialized. We don't merge
1690	 * unwritten extents so that we can be sure that end_io code has
1691	 * the extent that was written properly split out and conversion to
1692	 * initialized is trivial.
1693	 */
1694	if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2))
1695		return 0;
1696
1697	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1698	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1699
1700	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1701			le32_to_cpu(ex2->ee_block))
1702		return 0;
1703
1704	/*
1705	 * To allow future support for preallocated extents to be added
1706	 * as an RO_COMPAT feature, refuse to merge to extents if
1707	 * this can result in the top bit of ee_len being set.
1708	 */
1709	if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1710		return 0;
1711	if (ext4_ext_is_unwritten(ex1) &&
1712	    (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
1713	     atomic_read(&EXT4_I(inode)->i_unwritten) ||
1714	     (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN)))
1715		return 0;
1716#ifdef AGGRESSIVE_TEST
1717	if (ext1_ee_len >= 4)
1718		return 0;
1719#endif
1720
1721	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1722		return 1;
1723	return 0;
1724}
1725
1726/*
1727 * This function tries to merge the "ex" extent to the next extent in the tree.
1728 * It always tries to merge towards right. If you want to merge towards
1729 * left, pass "ex - 1" as argument instead of "ex".
1730 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1731 * 1 if they got merged.
1732 */
1733static int ext4_ext_try_to_merge_right(struct inode *inode,
1734				 struct ext4_ext_path *path,
1735				 struct ext4_extent *ex)
1736{
1737	struct ext4_extent_header *eh;
1738	unsigned int depth, len;
1739	int merge_done = 0, unwritten;
1740
1741	depth = ext_depth(inode);
1742	BUG_ON(path[depth].p_hdr == NULL);
1743	eh = path[depth].p_hdr;
1744
1745	while (ex < EXT_LAST_EXTENT(eh)) {
1746		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1747			break;
1748		/* merge with next extent! */
1749		unwritten = ext4_ext_is_unwritten(ex);
1750		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1751				+ ext4_ext_get_actual_len(ex + 1));
1752		if (unwritten)
1753			ext4_ext_mark_unwritten(ex);
1754
1755		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1756			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1757				* sizeof(struct ext4_extent);
1758			memmove(ex + 1, ex + 2, len);
1759		}
1760		le16_add_cpu(&eh->eh_entries, -1);
1761		merge_done = 1;
1762		WARN_ON(eh->eh_entries == 0);
1763		if (!eh->eh_entries)
1764			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1765	}
1766
1767	return merge_done;
1768}
1769
1770/*
1771 * This function does a very simple check to see if we can collapse
1772 * an extent tree with a single extent tree leaf block into the inode.
1773 */
1774static void ext4_ext_try_to_merge_up(handle_t *handle,
1775				     struct inode *inode,
1776				     struct ext4_ext_path *path)
1777{
1778	size_t s;
1779	unsigned max_root = ext4_ext_space_root(inode, 0);
1780	ext4_fsblk_t blk;
1781
1782	if ((path[0].p_depth != 1) ||
1783	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1784	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1785		return;
1786
1787	/*
1788	 * We need to modify the block allocation bitmap and the block
1789	 * group descriptor to release the extent tree block.  If we
1790	 * can't get the journal credits, give up.
1791	 */
1792	if (ext4_journal_extend(handle, 2))
1793		return;
1794
1795	/*
1796	 * Copy the extent data up to the inode
1797	 */
1798	blk = ext4_idx_pblock(path[0].p_idx);
1799	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1800		sizeof(struct ext4_extent_idx);
1801	s += sizeof(struct ext4_extent_header);
1802
1803	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1804	path[0].p_depth = 0;
1805	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1806		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1807	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1808
1809	brelse(path[1].p_bh);
1810	ext4_free_blocks(handle, inode, NULL, blk, 1,
1811			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET |
1812			 EXT4_FREE_BLOCKS_RESERVE);
1813}
1814
1815/*
1816 * This function tries to merge the @ex extent to neighbours in the tree.
1817 * return 1 if merge left else 0.
1818 */
1819static void ext4_ext_try_to_merge(handle_t *handle,
1820				  struct inode *inode,
1821				  struct ext4_ext_path *path,
1822				  struct ext4_extent *ex) {
1823	struct ext4_extent_header *eh;
1824	unsigned int depth;
1825	int merge_done = 0;
1826
1827	depth = ext_depth(inode);
1828	BUG_ON(path[depth].p_hdr == NULL);
1829	eh = path[depth].p_hdr;
1830
1831	if (ex > EXT_FIRST_EXTENT(eh))
1832		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1833
1834	if (!merge_done)
1835		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1836
1837	ext4_ext_try_to_merge_up(handle, inode, path);
1838}
1839
1840/*
1841 * check if a portion of the "newext" extent overlaps with an
1842 * existing extent.
1843 *
1844 * If there is an overlap discovered, it updates the length of the newext
1845 * such that there will be no overlap, and then returns 1.
1846 * If there is no overlap found, it returns 0.
1847 */
1848static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1849					   struct inode *inode,
1850					   struct ext4_extent *newext,
1851					   struct ext4_ext_path *path)
1852{
1853	ext4_lblk_t b1, b2;
1854	unsigned int depth, len1;
1855	unsigned int ret = 0;
1856
1857	b1 = le32_to_cpu(newext->ee_block);
1858	len1 = ext4_ext_get_actual_len(newext);
1859	depth = ext_depth(inode);
1860	if (!path[depth].p_ext)
1861		goto out;
1862	b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1863
1864	/*
1865	 * get the next allocated block if the extent in the path
1866	 * is before the requested block(s)
1867	 */
1868	if (b2 < b1) {
1869		b2 = ext4_ext_next_allocated_block(path);
1870		if (b2 == EXT_MAX_BLOCKS)
1871			goto out;
1872		b2 = EXT4_LBLK_CMASK(sbi, b2);
1873	}
1874
1875	/* check for wrap through zero on extent logical start block*/
1876	if (b1 + len1 < b1) {
1877		len1 = EXT_MAX_BLOCKS - b1;
1878		newext->ee_len = cpu_to_le16(len1);
1879		ret = 1;
1880	}
1881
1882	/* check for overlap */
1883	if (b1 + len1 > b2) {
1884		newext->ee_len = cpu_to_le16(b2 - b1);
1885		ret = 1;
1886	}
1887out:
1888	return ret;
1889}
1890
1891/*
1892 * ext4_ext_insert_extent:
1893 * tries to merge requsted extent into the existing extent or
1894 * inserts requested extent as new one into the tree,
1895 * creating new leaf in the no-space case.
1896 */
1897int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1898				struct ext4_ext_path *path,
1899				struct ext4_extent *newext, int gb_flags)
1900{
1901	struct ext4_extent_header *eh;
1902	struct ext4_extent *ex, *fex;
1903	struct ext4_extent *nearex; /* nearest extent */
1904	struct ext4_ext_path *npath = NULL;
1905	int depth, len, err;
1906	ext4_lblk_t next;
1907	int mb_flags = 0, unwritten;
1908
1909	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1910		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1911		return -EIO;
1912	}
1913	depth = ext_depth(inode);
1914	ex = path[depth].p_ext;
1915	eh = path[depth].p_hdr;
1916	if (unlikely(path[depth].p_hdr == NULL)) {
1917		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1918		return -EIO;
1919	}
1920
1921	/* try to insert block into found extent and return */
1922	if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1923
1924		/*
1925		 * Try to see whether we should rather test the extent on
1926		 * right from ex, or from the left of ex. This is because
1927		 * ext4_ext_find_extent() can return either extent on the
1928		 * left, or on the right from the searched position. This
1929		 * will make merging more effective.
1930		 */
1931		if (ex < EXT_LAST_EXTENT(eh) &&
1932		    (le32_to_cpu(ex->ee_block) +
1933		    ext4_ext_get_actual_len(ex) <
1934		    le32_to_cpu(newext->ee_block))) {
1935			ex += 1;
1936			goto prepend;
1937		} else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1938			   (le32_to_cpu(newext->ee_block) +
1939			   ext4_ext_get_actual_len(newext) <
1940			   le32_to_cpu(ex->ee_block)))
1941			ex -= 1;
1942
1943		/* Try to append newex to the ex */
1944		if (ext4_can_extents_be_merged(inode, ex, newext)) {
1945			ext_debug("append [%d]%d block to %u:[%d]%d"
1946				  "(from %llu)\n",
1947				  ext4_ext_is_unwritten(newext),
1948				  ext4_ext_get_actual_len(newext),
1949				  le32_to_cpu(ex->ee_block),
1950				  ext4_ext_is_unwritten(ex),
1951				  ext4_ext_get_actual_len(ex),
1952				  ext4_ext_pblock(ex));
1953			err = ext4_ext_get_access(handle, inode,
1954						  path + depth);
1955			if (err)
1956				return err;
1957			unwritten = ext4_ext_is_unwritten(ex);
1958			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1959					+ ext4_ext_get_actual_len(newext));
1960			if (unwritten)
1961				ext4_ext_mark_unwritten(ex);
1962			eh = path[depth].p_hdr;
1963			nearex = ex;
1964			goto merge;
1965		}
1966
1967prepend:
1968		/* Try to prepend newex to the ex */
1969		if (ext4_can_extents_be_merged(inode, newext, ex)) {
1970			ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
1971				  "(from %llu)\n",
1972				  le32_to_cpu(newext->ee_block),
1973				  ext4_ext_is_unwritten(newext),
1974				  ext4_ext_get_actual_len(newext),
1975				  le32_to_cpu(ex->ee_block),
1976				  ext4_ext_is_unwritten(ex),
1977				  ext4_ext_get_actual_len(ex),
1978				  ext4_ext_pblock(ex));
1979			err = ext4_ext_get_access(handle, inode,
1980						  path + depth);
1981			if (err)
1982				return err;
1983
1984			unwritten = ext4_ext_is_unwritten(ex);
1985			ex->ee_block = newext->ee_block;
1986			ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
1987			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1988					+ ext4_ext_get_actual_len(newext));
1989			if (unwritten)
1990				ext4_ext_mark_unwritten(ex);
1991			eh = path[depth].p_hdr;
1992			nearex = ex;
1993			goto merge;
1994		}
1995	}
1996
1997	depth = ext_depth(inode);
1998	eh = path[depth].p_hdr;
1999	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
2000		goto has_space;
2001
2002	/* probably next leaf has space for us? */
2003	fex = EXT_LAST_EXTENT(eh);
2004	next = EXT_MAX_BLOCKS;
2005	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2006		next = ext4_ext_next_leaf_block(path);
2007	if (next != EXT_MAX_BLOCKS) {
2008		ext_debug("next leaf block - %u\n", next);
2009		BUG_ON(npath != NULL);
2010		npath = ext4_ext_find_extent(inode, next, NULL, 0);
2011		if (IS_ERR(npath))
2012			return PTR_ERR(npath);
2013		BUG_ON(npath->p_depth != path->p_depth);
2014		eh = npath[depth].p_hdr;
2015		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2016			ext_debug("next leaf isn't full(%d)\n",
2017				  le16_to_cpu(eh->eh_entries));
2018			path = npath;
2019			goto has_space;
2020		}
2021		ext_debug("next leaf has no free space(%d,%d)\n",
2022			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2023	}
2024
2025	/*
2026	 * There is no free space in the found leaf.
2027	 * We're gonna add a new leaf in the tree.
2028	 */
2029	if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2030		mb_flags = EXT4_MB_USE_RESERVED;
2031	err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2032				       path, newext);
2033	if (err)
2034		goto cleanup;
2035	depth = ext_depth(inode);
2036	eh = path[depth].p_hdr;
2037
2038has_space:
2039	nearex = path[depth].p_ext;
2040
2041	err = ext4_ext_get_access(handle, inode, path + depth);
2042	if (err)
2043		goto cleanup;
2044
2045	if (!nearex) {
2046		/* there is no extent in this leaf, create first one */
2047		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2048				le32_to_cpu(newext->ee_block),
2049				ext4_ext_pblock(newext),
2050				ext4_ext_is_unwritten(newext),
2051				ext4_ext_get_actual_len(newext));
2052		nearex = EXT_FIRST_EXTENT(eh);
2053	} else {
2054		if (le32_to_cpu(newext->ee_block)
2055			   > le32_to_cpu(nearex->ee_block)) {
2056			/* Insert after */
2057			ext_debug("insert %u:%llu:[%d]%d before: "
2058					"nearest %p\n",
2059					le32_to_cpu(newext->ee_block),
2060					ext4_ext_pblock(newext),
2061					ext4_ext_is_unwritten(newext),
2062					ext4_ext_get_actual_len(newext),
2063					nearex);
2064			nearex++;
2065		} else {
2066			/* Insert before */
2067			BUG_ON(newext->ee_block == nearex->ee_block);
2068			ext_debug("insert %u:%llu:[%d]%d after: "
2069					"nearest %p\n",
2070					le32_to_cpu(newext->ee_block),
2071					ext4_ext_pblock(newext),
2072					ext4_ext_is_unwritten(newext),
2073					ext4_ext_get_actual_len(newext),
2074					nearex);
2075		}
2076		len = EXT_LAST_EXTENT(eh) - nearex + 1;
2077		if (len > 0) {
2078			ext_debug("insert %u:%llu:[%d]%d: "
2079					"move %d extents from 0x%p to 0x%p\n",
2080					le32_to_cpu(newext->ee_block),
2081					ext4_ext_pblock(newext),
2082					ext4_ext_is_unwritten(newext),
2083					ext4_ext_get_actual_len(newext),
2084					len, nearex, nearex + 1);
2085			memmove(nearex + 1, nearex,
2086				len * sizeof(struct ext4_extent));
2087		}
2088	}
2089
2090	le16_add_cpu(&eh->eh_entries, 1);
2091	path[depth].p_ext = nearex;
2092	nearex->ee_block = newext->ee_block;
2093	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2094	nearex->ee_len = newext->ee_len;
2095
2096merge:
2097	/* try to merge extents */
2098	if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2099		ext4_ext_try_to_merge(handle, inode, path, nearex);
2100
2101
2102	/* time to correct all indexes above */
2103	err = ext4_ext_correct_indexes(handle, inode, path);
2104	if (err)
2105		goto cleanup;
2106
2107	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2108
2109cleanup:
2110	if (npath) {
2111		ext4_ext_drop_refs(npath);
2112		kfree(npath);
2113	}
2114	return err;
2115}
2116
2117static int ext4_fill_fiemap_extents(struct inode *inode,
2118				    ext4_lblk_t block, ext4_lblk_t num,
2119				    struct fiemap_extent_info *fieinfo)
2120{
2121	struct ext4_ext_path *path = NULL;
2122	struct ext4_extent *ex;
2123	struct extent_status es;
2124	ext4_lblk_t next, next_del, start = 0, end = 0;
2125	ext4_lblk_t last = block + num;
2126	int exists, depth = 0, err = 0;
2127	unsigned int flags = 0;
2128	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2129
2130	while (block < last && block != EXT_MAX_BLOCKS) {
2131		num = last - block;
2132		/* find extent for this block */
2133		down_read(&EXT4_I(inode)->i_data_sem);
2134
2135		if (path && ext_depth(inode) != depth) {
2136			/* depth was changed. we have to realloc path */
2137			kfree(path);
2138			path = NULL;
2139		}
2140
2141		path = ext4_ext_find_extent(inode, block, path, 0);
2142		if (IS_ERR(path)) {
2143			up_read(&EXT4_I(inode)->i_data_sem);
2144			err = PTR_ERR(path);
2145			path = NULL;
2146			break;
2147		}
2148
2149		depth = ext_depth(inode);
2150		if (unlikely(path[depth].p_hdr == NULL)) {
2151			up_read(&EXT4_I(inode)->i_data_sem);
2152			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2153			err = -EIO;
2154			break;
2155		}
2156		ex = path[depth].p_ext;
2157		next = ext4_ext_next_allocated_block(path);
2158		ext4_ext_drop_refs(path);
2159
2160		flags = 0;
2161		exists = 0;
2162		if (!ex) {
2163			/* there is no extent yet, so try to allocate
2164			 * all requested space */
2165			start = block;
2166			end = block + num;
2167		} else if (le32_to_cpu(ex->ee_block) > block) {
2168			/* need to allocate space before found extent */
2169			start = block;
2170			end = le32_to_cpu(ex->ee_block);
2171			if (block + num < end)
2172				end = block + num;
2173		} else if (block >= le32_to_cpu(ex->ee_block)
2174					+ ext4_ext_get_actual_len(ex)) {
2175			/* need to allocate space after found extent */
2176			start = block;
2177			end = block + num;
2178			if (end >= next)
2179				end = next;
2180		} else if (block >= le32_to_cpu(ex->ee_block)) {
2181			/*
2182			 * some part of requested space is covered
2183			 * by found extent
2184			 */
2185			start = block;
2186			end = le32_to_cpu(ex->ee_block)
2187				+ ext4_ext_get_actual_len(ex);
2188			if (block + num < end)
2189				end = block + num;
2190			exists = 1;
2191		} else {
2192			BUG();
2193		}
2194		BUG_ON(end <= start);
2195
2196		if (!exists) {
2197			es.es_lblk = start;
2198			es.es_len = end - start;
2199			es.es_pblk = 0;
2200		} else {
2201			es.es_lblk = le32_to_cpu(ex->ee_block);
2202			es.es_len = ext4_ext_get_actual_len(ex);
2203			es.es_pblk = ext4_ext_pblock(ex);
2204			if (ext4_ext_is_unwritten(ex))
2205				flags |= FIEMAP_EXTENT_UNWRITTEN;
2206		}
2207
2208		/*
2209		 * Find delayed extent and update es accordingly. We call
2210		 * it even in !exists case to find out whether es is the
2211		 * last existing extent or not.
2212		 */
2213		next_del = ext4_find_delayed_extent(inode, &es);
2214		if (!exists && next_del) {
2215			exists = 1;
2216			flags |= (FIEMAP_EXTENT_DELALLOC |
2217				  FIEMAP_EXTENT_UNKNOWN);
2218		}
2219		up_read(&EXT4_I(inode)->i_data_sem);
2220
2221		if (unlikely(es.es_len == 0)) {
2222			EXT4_ERROR_INODE(inode, "es.es_len == 0");
2223			err = -EIO;
2224			break;
2225		}
2226
2227		/*
2228		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2229		 * we need to check next == EXT_MAX_BLOCKS because it is
2230		 * possible that an extent is with unwritten and delayed
2231		 * status due to when an extent is delayed allocated and
2232		 * is allocated by fallocate status tree will track both of
2233		 * them in a extent.
2234		 *
2235		 * So we could return a unwritten and delayed extent, and
2236		 * its block is equal to 'next'.
2237		 */
2238		if (next == next_del && next == EXT_MAX_BLOCKS) {
2239			flags |= FIEMAP_EXTENT_LAST;
2240			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2241				     next != EXT_MAX_BLOCKS)) {
2242				EXT4_ERROR_INODE(inode,
2243						 "next extent == %u, next "
2244						 "delalloc extent = %u",
2245						 next, next_del);
2246				err = -EIO;
2247				break;
2248			}
2249		}
2250
2251		if (exists) {
2252			err = fiemap_fill_next_extent(fieinfo,
2253				(__u64)es.es_lblk << blksize_bits,
2254				(__u64)es.es_pblk << blksize_bits,
2255				(__u64)es.es_len << blksize_bits,
2256				flags);
2257			if (err < 0)
2258				break;
2259			if (err == 1) {
2260				err = 0;
2261				break;
2262			}
2263		}
2264
2265		block = es.es_lblk + es.es_len;
2266	}
2267
2268	if (path) {
2269		ext4_ext_drop_refs(path);
2270		kfree(path);
2271	}
2272
2273	return err;
2274}
2275
2276/*
2277 * ext4_ext_put_gap_in_cache:
2278 * calculate boundaries of the gap that the requested block fits into
2279 * and cache this gap
2280 */
2281static void
2282ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2283				ext4_lblk_t block)
2284{
2285	int depth = ext_depth(inode);
2286	unsigned long len = 0;
2287	ext4_lblk_t lblock = 0;
2288	struct ext4_extent *ex;
2289
2290	ex = path[depth].p_ext;
2291	if (ex == NULL) {
2292		/*
2293		 * there is no extent yet, so gap is [0;-] and we
2294		 * don't cache it
2295		 */
2296		ext_debug("cache gap(whole file):");
2297	} else if (block < le32_to_cpu(ex->ee_block)) {
2298		lblock = block;
2299		len = le32_to_cpu(ex->ee_block) - block;
2300		ext_debug("cache gap(before): %u [%u:%u]",
2301				block,
2302				le32_to_cpu(ex->ee_block),
2303				 ext4_ext_get_actual_len(ex));
2304		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2305			ext4_es_insert_extent(inode, lblock, len, ~0,
2306					      EXTENT_STATUS_HOLE);
2307	} else if (block >= le32_to_cpu(ex->ee_block)
2308			+ ext4_ext_get_actual_len(ex)) {
2309		ext4_lblk_t next;
2310		lblock = le32_to_cpu(ex->ee_block)
2311			+ ext4_ext_get_actual_len(ex);
2312
2313		next = ext4_ext_next_allocated_block(path);
2314		ext_debug("cache gap(after): [%u:%u] %u",
2315				le32_to_cpu(ex->ee_block),
2316				ext4_ext_get_actual_len(ex),
2317				block);
2318		BUG_ON(next == lblock);
2319		len = next - lblock;
2320		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2321			ext4_es_insert_extent(inode, lblock, len, ~0,
2322					      EXTENT_STATUS_HOLE);
2323	} else {
2324		BUG();
2325	}
2326
2327	ext_debug(" -> %u:%lu\n", lblock, len);
2328}
2329
2330/*
2331 * ext4_ext_rm_idx:
2332 * removes index from the index block.
2333 */
2334static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2335			struct ext4_ext_path *path, int depth)
2336{
2337	int err;
2338	ext4_fsblk_t leaf;
2339
2340	/* free index block */
2341	depth--;
2342	path = path + depth;
2343	leaf = ext4_idx_pblock(path->p_idx);
2344	if (unlikely(path->p_hdr->eh_entries == 0)) {
2345		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2346		return -EIO;
2347	}
2348	err = ext4_ext_get_access(handle, inode, path);
2349	if (err)
2350		return err;
2351
2352	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2353		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2354		len *= sizeof(struct ext4_extent_idx);
2355		memmove(path->p_idx, path->p_idx + 1, len);
2356	}
2357
2358	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2359	err = ext4_ext_dirty(handle, inode, path);
2360	if (err)
2361		return err;
2362	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2363	trace_ext4_ext_rm_idx(inode, leaf);
2364
2365	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2366			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2367
2368	while (--depth >= 0) {
2369		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2370			break;
2371		path--;
2372		err = ext4_ext_get_access(handle, inode, path);
2373		if (err)
2374			break;
2375		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2376		err = ext4_ext_dirty(handle, inode, path);
2377		if (err)
2378			break;
2379	}
2380	return err;
2381}
2382
2383/*
2384 * ext4_ext_calc_credits_for_single_extent:
2385 * This routine returns max. credits that needed to insert an extent
2386 * to the extent tree.
2387 * When pass the actual path, the caller should calculate credits
2388 * under i_data_sem.
2389 */
2390int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2391						struct ext4_ext_path *path)
2392{
2393	if (path) {
2394		int depth = ext_depth(inode);
2395		int ret = 0;
2396
2397		/* probably there is space in leaf? */
2398		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2399				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2400
2401			/*
2402			 *  There are some space in the leaf tree, no
2403			 *  need to account for leaf block credit
2404			 *
2405			 *  bitmaps and block group descriptor blocks
2406			 *  and other metadata blocks still need to be
2407			 *  accounted.
2408			 */
2409			/* 1 bitmap, 1 block group descriptor */
2410			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2411			return ret;
2412		}
2413	}
2414
2415	return ext4_chunk_trans_blocks(inode, nrblocks);
2416}
2417
2418/*
2419 * How many index/leaf blocks need to change/allocate to add @extents extents?
2420 *
2421 * If we add a single extent, then in the worse case, each tree level
2422 * index/leaf need to be changed in case of the tree split.
2423 *
2424 * If more extents are inserted, they could cause the whole tree split more
2425 * than once, but this is really rare.
2426 */
2427int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2428{
2429	int index;
2430	int depth;
2431
2432	/* If we are converting the inline data, only one is needed here. */
2433	if (ext4_has_inline_data(inode))
2434		return 1;
2435
2436	depth = ext_depth(inode);
2437
2438	if (extents <= 1)
2439		index = depth * 2;
2440	else
2441		index = depth * 3;
2442
2443	return index;
2444}
2445
2446static inline int get_default_free_blocks_flags(struct inode *inode)
2447{
2448	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2449		return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2450	else if (ext4_should_journal_data(inode))
2451		return EXT4_FREE_BLOCKS_FORGET;
2452	return 0;
2453}
2454
2455static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2456			      struct ext4_extent *ex,
2457			      long long *partial_cluster,
2458			      ext4_lblk_t from, ext4_lblk_t to)
2459{
2460	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2461	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2462	ext4_fsblk_t pblk;
2463	int flags = get_default_free_blocks_flags(inode);
2464
2465	/*
2466	 * For bigalloc file systems, we never free a partial cluster
2467	 * at the beginning of the extent.  Instead, we make a note
2468	 * that we tried freeing the cluster, and check to see if we
2469	 * need to free it on a subsequent call to ext4_remove_blocks,
2470	 * or at the end of the ext4_truncate() operation.
2471	 */
2472	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2473
2474	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2475	/*
2476	 * If we have a partial cluster, and it's different from the
2477	 * cluster of the last block, we need to explicitly free the
2478	 * partial cluster here.
2479	 */
2480	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2481	if ((*partial_cluster > 0) &&
2482	    (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2483		ext4_free_blocks(handle, inode, NULL,
2484				 EXT4_C2B(sbi, *partial_cluster),
2485				 sbi->s_cluster_ratio, flags);
2486		*partial_cluster = 0;
2487	}
2488
2489#ifdef EXTENTS_STATS
2490	{
2491		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2492		spin_lock(&sbi->s_ext_stats_lock);
2493		sbi->s_ext_blocks += ee_len;
2494		sbi->s_ext_extents++;
2495		if (ee_len < sbi->s_ext_min)
2496			sbi->s_ext_min = ee_len;
2497		if (ee_len > sbi->s_ext_max)
2498			sbi->s_ext_max = ee_len;
2499		if (ext_depth(inode) > sbi->s_depth_max)
2500			sbi->s_depth_max = ext_depth(inode);
2501		spin_unlock(&sbi->s_ext_stats_lock);
2502	}
2503#endif
2504	if (from >= le32_to_cpu(ex->ee_block)
2505	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2506		/* tail removal */
2507		ext4_lblk_t num;
2508		unsigned int unaligned;
2509
2510		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2511		pblk = ext4_ext_pblock(ex) + ee_len - num;
2512		/*
2513		 * Usually we want to free partial cluster at the end of the
2514		 * extent, except for the situation when the cluster is still
2515		 * used by any other extent (partial_cluster is negative).
2516		 */
2517		if (*partial_cluster < 0 &&
2518		    -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1))
2519			flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2520
2521		ext_debug("free last %u blocks starting %llu partial %lld\n",
2522			  num, pblk, *partial_cluster);
2523		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2524		/*
2525		 * If the block range to be freed didn't start at the
2526		 * beginning of a cluster, and we removed the entire
2527		 * extent and the cluster is not used by any other extent,
2528		 * save the partial cluster here, since we might need to
2529		 * delete if we determine that the truncate operation has
2530		 * removed all of the blocks in the cluster.
2531		 *
2532		 * On the other hand, if we did not manage to free the whole
2533		 * extent, we have to mark the cluster as used (store negative
2534		 * cluster number in partial_cluster).
2535		 */
2536		unaligned = EXT4_PBLK_COFF(sbi, pblk);
2537		if (unaligned && (ee_len == num) &&
2538		    (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk))))
2539			*partial_cluster = EXT4_B2C(sbi, pblk);
2540		else if (unaligned)
2541			*partial_cluster = -((long long)EXT4_B2C(sbi, pblk));
2542		else if (*partial_cluster > 0)
2543			*partial_cluster = 0;
2544	} else
2545		ext4_error(sbi->s_sb, "strange request: removal(2) "
2546			   "%u-%u from %u:%u\n",
2547			   from, to, le32_to_cpu(ex->ee_block), ee_len);
2548	return 0;
2549}
2550
2551
2552/*
2553 * ext4_ext_rm_leaf() Removes the extents associated with the
2554 * blocks appearing between "start" and "end", and splits the extents
2555 * if "start" and "end" appear in the same extent
2556 *
2557 * @handle: The journal handle
2558 * @inode:  The files inode
2559 * @path:   The path to the leaf
2560 * @partial_cluster: The cluster which we'll have to free if all extents
2561 *                   has been released from it. It gets negative in case
2562 *                   that the cluster is still used.
2563 * @start:  The first block to remove
2564 * @end:   The last block to remove
2565 */
2566static int
2567ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2568		 struct ext4_ext_path *path,
2569		 long long *partial_cluster,
2570		 ext4_lblk_t start, ext4_lblk_t end)
2571{
2572	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2573	int err = 0, correct_index = 0;
2574	int depth = ext_depth(inode), credits;
2575	struct ext4_extent_header *eh;
2576	ext4_lblk_t a, b;
2577	unsigned num;
2578	ext4_lblk_t ex_ee_block;
2579	unsigned short ex_ee_len;
2580	unsigned unwritten = 0;
2581	struct ext4_extent *ex;
2582	ext4_fsblk_t pblk;
2583
2584	/* the header must be checked already in ext4_ext_remove_space() */
2585	ext_debug("truncate since %u in leaf to %u\n", start, end);
2586	if (!path[depth].p_hdr)
2587		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2588	eh = path[depth].p_hdr;
2589	if (unlikely(path[depth].p_hdr == NULL)) {
2590		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2591		return -EIO;
2592	}
2593	/* find where to start removing */
2594	ex = path[depth].p_ext;
2595	if (!ex)
2596		ex = EXT_LAST_EXTENT(eh);
2597
2598	ex_ee_block = le32_to_cpu(ex->ee_block);
2599	ex_ee_len = ext4_ext_get_actual_len(ex);
2600
2601	/*
2602	 * If we're starting with an extent other than the last one in the
2603	 * node, we need to see if it shares a cluster with the extent to
2604	 * the right (towards the end of the file). If its leftmost cluster
2605	 * is this extent's rightmost cluster and it is not cluster aligned,
2606	 * we'll mark it as a partial that is not to be deallocated.
2607	 */
2608
2609	if (ex != EXT_LAST_EXTENT(eh)) {
2610		ext4_fsblk_t current_pblk, right_pblk;
2611		long long current_cluster, right_cluster;
2612
2613		current_pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2614		current_cluster = (long long)EXT4_B2C(sbi, current_pblk);
2615		right_pblk = ext4_ext_pblock(ex + 1);
2616		right_cluster = (long long)EXT4_B2C(sbi, right_pblk);
2617		if (current_cluster == right_cluster &&
2618			EXT4_PBLK_COFF(sbi, right_pblk))
2619			*partial_cluster = -right_cluster;
2620	}
2621
2622	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2623
2624	while (ex >= EXT_FIRST_EXTENT(eh) &&
2625			ex_ee_block + ex_ee_len > start) {
2626
2627		if (ext4_ext_is_unwritten(ex))
2628			unwritten = 1;
2629		else
2630			unwritten = 0;
2631
2632		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2633			  unwritten, ex_ee_len);
2634		path[depth].p_ext = ex;
2635
2636		a = ex_ee_block > start ? ex_ee_block : start;
2637		b = ex_ee_block+ex_ee_len - 1 < end ?
2638			ex_ee_block+ex_ee_len - 1 : end;
2639
2640		ext_debug("  border %u:%u\n", a, b);
2641
2642		/* If this extent is beyond the end of the hole, skip it */
2643		if (end < ex_ee_block) {
2644			/*
2645			 * We're going to skip this extent and move to another,
2646			 * so if this extent is not cluster aligned we have
2647			 * to mark the current cluster as used to avoid
2648			 * accidentally freeing it later on
2649			 */
2650			pblk = ext4_ext_pblock(ex);
2651			if (EXT4_PBLK_COFF(sbi, pblk))
2652				*partial_cluster =
2653					-((long long)EXT4_B2C(sbi, pblk));
2654			ex--;
2655			ex_ee_block = le32_to_cpu(ex->ee_block);
2656			ex_ee_len = ext4_ext_get_actual_len(ex);
2657			continue;
2658		} else if (b != ex_ee_block + ex_ee_len - 1) {
2659			EXT4_ERROR_INODE(inode,
2660					 "can not handle truncate %u:%u "
2661					 "on extent %u:%u",
2662					 start, end, ex_ee_block,
2663					 ex_ee_block + ex_ee_len - 1);
2664			err = -EIO;
2665			goto out;
2666		} else if (a != ex_ee_block) {
2667			/* remove tail of the extent */
2668			num = a - ex_ee_block;
2669		} else {
2670			/* remove whole extent: excellent! */
2671			num = 0;
2672		}
2673		/*
2674		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2675		 * descriptor) for each block group; assume two block
2676		 * groups plus ex_ee_len/blocks_per_block_group for
2677		 * the worst case
2678		 */
2679		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2680		if (ex == EXT_FIRST_EXTENT(eh)) {
2681			correct_index = 1;
2682			credits += (ext_depth(inode)) + 1;
2683		}
2684		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2685
2686		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2687		if (err)
2688			goto out;
2689
2690		err = ext4_ext_get_access(handle, inode, path + depth);
2691		if (err)
2692			goto out;
2693
2694		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2695					 a, b);
2696		if (err)
2697			goto out;
2698
2699		if (num == 0)
2700			/* this extent is removed; mark slot entirely unused */
2701			ext4_ext_store_pblock(ex, 0);
2702
2703		ex->ee_len = cpu_to_le16(num);
2704		/*
2705		 * Do not mark unwritten if all the blocks in the
2706		 * extent have been removed.
2707		 */
2708		if (unwritten && num)
2709			ext4_ext_mark_unwritten(ex);
2710		/*
2711		 * If the extent was completely released,
2712		 * we need to remove it from the leaf
2713		 */
2714		if (num == 0) {
2715			if (end != EXT_MAX_BLOCKS - 1) {
2716				/*
2717				 * For hole punching, we need to scoot all the
2718				 * extents up when an extent is removed so that
2719				 * we dont have blank extents in the middle
2720				 */
2721				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2722					sizeof(struct ext4_extent));
2723
2724				/* Now get rid of the one at the end */
2725				memset(EXT_LAST_EXTENT(eh), 0,
2726					sizeof(struct ext4_extent));
2727			}
2728			le16_add_cpu(&eh->eh_entries, -1);
2729		} else if (*partial_cluster > 0)
2730			*partial_cluster = 0;
2731
2732		err = ext4_ext_dirty(handle, inode, path + depth);
2733		if (err)
2734			goto out;
2735
2736		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2737				ext4_ext_pblock(ex));
2738		ex--;
2739		ex_ee_block = le32_to_cpu(ex->ee_block);
2740		ex_ee_len = ext4_ext_get_actual_len(ex);
2741	}
2742
2743	if (correct_index && eh->eh_entries)
2744		err = ext4_ext_correct_indexes(handle, inode, path);
2745
2746	/*
2747	 * If there's a partial cluster and at least one extent remains in
2748	 * the leaf, free the partial cluster if it isn't shared with the
2749	 * current extent.  If there's a partial cluster and no extents
2750	 * remain in the leaf, it can't be freed here.  It can only be
2751	 * freed when it's possible to determine if it's not shared with
2752	 * any other extent - when the next leaf is processed or when space
2753	 * removal is complete.
2754	 */
2755	if (*partial_cluster > 0 && eh->eh_entries &&
2756	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2757	     *partial_cluster)) {
2758		int flags = get_default_free_blocks_flags(inode);
2759
2760		ext4_free_blocks(handle, inode, NULL,
2761				 EXT4_C2B(sbi, *partial_cluster),
2762				 sbi->s_cluster_ratio, flags);
2763		*partial_cluster = 0;
2764	}
2765
2766	/* if this leaf is free, then we should
2767	 * remove it from index block above */
2768	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2769		err = ext4_ext_rm_idx(handle, inode, path, depth);
2770
2771out:
2772	return err;
2773}
2774
2775/*
2776 * ext4_ext_more_to_rm:
2777 * returns 1 if current index has to be freed (even partial)
2778 */
2779static int
2780ext4_ext_more_to_rm(struct ext4_ext_path *path)
2781{
2782	BUG_ON(path->p_idx == NULL);
2783
2784	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2785		return 0;
2786
2787	/*
2788	 * if truncate on deeper level happened, it wasn't partial,
2789	 * so we have to consider current index for truncation
2790	 */
2791	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2792		return 0;
2793	return 1;
2794}
2795
2796int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2797			  ext4_lblk_t end)
2798{
2799	struct super_block *sb = inode->i_sb;
2800	int depth = ext_depth(inode);
2801	struct ext4_ext_path *path = NULL;
2802	long long partial_cluster = 0;
2803	handle_t *handle;
2804	int i = 0, err = 0;
2805
2806	ext_debug("truncate since %u to %u\n", start, end);
2807
2808	/* probably first extent we're gonna free will be last in block */
2809	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2810	if (IS_ERR(handle))
2811		return PTR_ERR(handle);
2812
2813again:
2814	trace_ext4_ext_remove_space(inode, start, end, depth);
2815
2816	/*
2817	 * Check if we are removing extents inside the extent tree. If that
2818	 * is the case, we are going to punch a hole inside the extent tree
2819	 * so we have to check whether we need to split the extent covering
2820	 * the last block to remove so we can easily remove the part of it
2821	 * in ext4_ext_rm_leaf().
2822	 */
2823	if (end < EXT_MAX_BLOCKS - 1) {
2824		struct ext4_extent *ex;
2825		ext4_lblk_t ee_block;
2826
2827		/* find extent for this block */
2828		path = ext4_ext_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2829		if (IS_ERR(path)) {
2830			ext4_journal_stop(handle);
2831			return PTR_ERR(path);
2832		}
2833		depth = ext_depth(inode);
2834		/* Leaf not may not exist only if inode has no blocks at all */
2835		ex = path[depth].p_ext;
2836		if (!ex) {
2837			if (depth) {
2838				EXT4_ERROR_INODE(inode,
2839						 "path[%d].p_hdr == NULL",
2840						 depth);
2841				err = -EIO;
2842			}
2843			goto out;
2844		}
2845
2846		ee_block = le32_to_cpu(ex->ee_block);
2847
2848		/*
2849		 * See if the last block is inside the extent, if so split
2850		 * the extent at 'end' block so we can easily remove the
2851		 * tail of the first part of the split extent in
2852		 * ext4_ext_rm_leaf().
2853		 */
2854		if (end >= ee_block &&
2855		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2856			int split_flag = 0;
2857
2858			if (ext4_ext_is_unwritten(ex))
2859				split_flag = EXT4_EXT_MARK_UNWRIT1 |
2860					     EXT4_EXT_MARK_UNWRIT2;
2861
2862			/*
2863			 * Split the extent in two so that 'end' is the last
2864			 * block in the first new extent. Also we should not
2865			 * fail removing space due to ENOSPC so try to use
2866			 * reserved block if that happens.
2867			 */
2868			err = ext4_split_extent_at(handle, inode, path,
2869					end + 1, split_flag,
2870					EXT4_EX_NOCACHE |
2871					EXT4_GET_BLOCKS_PRE_IO |
2872					EXT4_GET_BLOCKS_METADATA_NOFAIL);
2873
2874			if (err < 0)
2875				goto out;
2876		}
2877	}
2878	/*
2879	 * We start scanning from right side, freeing all the blocks
2880	 * after i_size and walking into the tree depth-wise.
2881	 */
2882	depth = ext_depth(inode);
2883	if (path) {
2884		int k = i = depth;
2885		while (--k > 0)
2886			path[k].p_block =
2887				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2888	} else {
2889		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2890			       GFP_NOFS);
2891		if (path == NULL) {
2892			ext4_journal_stop(handle);
2893			return -ENOMEM;
2894		}
2895		path[0].p_depth = depth;
2896		path[0].p_hdr = ext_inode_hdr(inode);
2897		i = 0;
2898
2899		if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2900			err = -EIO;
2901			goto out;
2902		}
2903	}
2904	err = 0;
2905
2906	while (i >= 0 && err == 0) {
2907		if (i == depth) {
2908			/* this is leaf block */
2909			err = ext4_ext_rm_leaf(handle, inode, path,
2910					       &partial_cluster, start,
2911					       end);
2912			/* root level has p_bh == NULL, brelse() eats this */
2913			brelse(path[i].p_bh);
2914			path[i].p_bh = NULL;
2915			i--;
2916			continue;
2917		}
2918
2919		/* this is index block */
2920		if (!path[i].p_hdr) {
2921			ext_debug("initialize header\n");
2922			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2923		}
2924
2925		if (!path[i].p_idx) {
2926			/* this level hasn't been touched yet */
2927			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2928			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2929			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2930				  path[i].p_hdr,
2931				  le16_to_cpu(path[i].p_hdr->eh_entries));
2932		} else {
2933			/* we were already here, see at next index */
2934			path[i].p_idx--;
2935		}
2936
2937		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2938				i, EXT_FIRST_INDEX(path[i].p_hdr),
2939				path[i].p_idx);
2940		if (ext4_ext_more_to_rm(path + i)) {
2941			struct buffer_head *bh;
2942			/* go to the next level */
2943			ext_debug("move to level %d (block %llu)\n",
2944				  i + 1, ext4_idx_pblock(path[i].p_idx));
2945			memset(path + i + 1, 0, sizeof(*path));
2946			bh = read_extent_tree_block(inode,
2947				ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2948				EXT4_EX_NOCACHE);
2949			if (IS_ERR(bh)) {
2950				/* should we reset i_size? */
2951				err = PTR_ERR(bh);
2952				break;
2953			}
2954			/* Yield here to deal with large extent trees.
2955			 * Should be a no-op if we did IO above. */
2956			cond_resched();
2957			if (WARN_ON(i + 1 > depth)) {
2958				err = -EIO;
2959				break;
2960			}
2961			path[i + 1].p_bh = bh;
2962
2963			/* save actual number of indexes since this
2964			 * number is changed at the next iteration */
2965			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2966			i++;
2967		} else {
2968			/* we finished processing this index, go up */
2969			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2970				/* index is empty, remove it;
2971				 * handle must be already prepared by the
2972				 * truncatei_leaf() */
2973				err = ext4_ext_rm_idx(handle, inode, path, i);
2974			}
2975			/* root level has p_bh == NULL, brelse() eats this */
2976			brelse(path[i].p_bh);
2977			path[i].p_bh = NULL;
2978			i--;
2979			ext_debug("return to level %d\n", i);
2980		}
2981	}
2982
2983	trace_ext4_ext_remove_space_done(inode, start, end, depth,
2984			partial_cluster, path->p_hdr->eh_entries);
2985
2986	/* If we still have something in the partial cluster and we have removed
2987	 * even the first extent, then we should free the blocks in the partial
2988	 * cluster as well. */
2989	if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) {
2990		int flags = get_default_free_blocks_flags(inode);
2991
2992		ext4_free_blocks(handle, inode, NULL,
2993				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2994				 EXT4_SB(sb)->s_cluster_ratio, flags);
2995		partial_cluster = 0;
2996	}
2997
2998	/* TODO: flexible tree reduction should be here */
2999	if (path->p_hdr->eh_entries == 0) {
3000		/*
3001		 * truncate to zero freed all the tree,
3002		 * so we need to correct eh_depth
3003		 */
3004		err = ext4_ext_get_access(handle, inode, path);
3005		if (err == 0) {
3006			ext_inode_hdr(inode)->eh_depth = 0;
3007			ext_inode_hdr(inode)->eh_max =
3008				cpu_to_le16(ext4_ext_space_root(inode, 0));
3009			err = ext4_ext_dirty(handle, inode, path);
3010		}
3011	}
3012out:
3013	ext4_ext_drop_refs(path);
3014	kfree(path);
3015	if (err == -EAGAIN) {
3016		path = NULL;
3017		goto again;
3018	}
3019	ext4_journal_stop(handle);
3020
3021	return err;
3022}
3023
3024/*
3025 * called at mount time
3026 */
3027void ext4_ext_init(struct super_block *sb)
3028{
3029	/*
3030	 * possible initialization would be here
3031	 */
3032
3033	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
3034#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3035		printk(KERN_INFO "EXT4-fs: file extents enabled"
3036#ifdef AGGRESSIVE_TEST
3037		       ", aggressive tests"
3038#endif
3039#ifdef CHECK_BINSEARCH
3040		       ", check binsearch"
3041#endif
3042#ifdef EXTENTS_STATS
3043		       ", stats"
3044#endif
3045		       "\n");
3046#endif
3047#ifdef EXTENTS_STATS
3048		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3049		EXT4_SB(sb)->s_ext_min = 1 << 30;
3050		EXT4_SB(sb)->s_ext_max = 0;
3051#endif
3052	}
3053}
3054
3055/*
3056 * called at umount time
3057 */
3058void ext4_ext_release(struct super_block *sb)
3059{
3060	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3061		return;
3062
3063#ifdef EXTENTS_STATS
3064	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3065		struct ext4_sb_info *sbi = EXT4_SB(sb);
3066		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3067			sbi->s_ext_blocks, sbi->s_ext_extents,
3068			sbi->s_ext_blocks / sbi->s_ext_extents);
3069		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3070			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3071	}
3072#endif
3073}
3074
3075static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3076{
3077	ext4_lblk_t  ee_block;
3078	ext4_fsblk_t ee_pblock;
3079	unsigned int ee_len;
3080
3081	ee_block  = le32_to_cpu(ex->ee_block);
3082	ee_len    = ext4_ext_get_actual_len(ex);
3083	ee_pblock = ext4_ext_pblock(ex);
3084
3085	if (ee_len == 0)
3086		return 0;
3087
3088	return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3089				     EXTENT_STATUS_WRITTEN);
3090}
3091
3092/* FIXME!! we need to try to merge to left or right after zero-out  */
3093static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3094{
3095	ext4_fsblk_t ee_pblock;
3096	unsigned int ee_len;
3097	int ret;
3098
3099	ee_len    = ext4_ext_get_actual_len(ex);
3100	ee_pblock = ext4_ext_pblock(ex);
3101
3102	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
3103	if (ret > 0)
3104		ret = 0;
3105
3106	return ret;
3107}
3108
3109/*
3110 * ext4_split_extent_at() splits an extent at given block.
3111 *
3112 * @handle: the journal handle
3113 * @inode: the file inode
3114 * @path: the path to the extent
3115 * @split: the logical block where the extent is splitted.
3116 * @split_flags: indicates if the extent could be zeroout if split fails, and
3117 *		 the states(init or unwritten) of new extents.
3118 * @flags: flags used to insert new extent to extent tree.
3119 *
3120 *
3121 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3122 * of which are deterimined by split_flag.
3123 *
3124 * There are two cases:
3125 *  a> the extent are splitted into two extent.
3126 *  b> split is not needed, and just mark the extent.
3127 *
3128 * return 0 on success.
3129 */
3130static int ext4_split_extent_at(handle_t *handle,
3131			     struct inode *inode,
3132			     struct ext4_ext_path *path,
3133			     ext4_lblk_t split,
3134			     int split_flag,
3135			     int flags)
3136{
3137	ext4_fsblk_t newblock;
3138	ext4_lblk_t ee_block;
3139	struct ext4_extent *ex, newex, orig_ex, zero_ex;
3140	struct ext4_extent *ex2 = NULL;
3141	unsigned int ee_len, depth;
3142	int err = 0;
3143
3144	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3145	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3146
3147	ext_debug("ext4_split_extents_at: inode %lu, logical"
3148		"block %llu\n", inode->i_ino, (unsigned long long)split);
3149
3150	ext4_ext_show_leaf(inode, path);
3151
3152	depth = ext_depth(inode);
3153	ex = path[depth].p_ext;
3154	ee_block = le32_to_cpu(ex->ee_block);
3155	ee_len = ext4_ext_get_actual_len(ex);
3156	newblock = split - ee_block + ext4_ext_pblock(ex);
3157
3158	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3159	BUG_ON(!ext4_ext_is_unwritten(ex) &&
3160	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
3161			     EXT4_EXT_MARK_UNWRIT1 |
3162			     EXT4_EXT_MARK_UNWRIT2));
3163
3164	err = ext4_ext_get_access(handle, inode, path + depth);
3165	if (err)
3166		goto out;
3167
3168	if (split == ee_block) {
3169		/*
3170		 * case b: block @split is the block that the extent begins with
3171		 * then we just change the state of the extent, and splitting
3172		 * is not needed.
3173		 */
3174		if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3175			ext4_ext_mark_unwritten(ex);
3176		else
3177			ext4_ext_mark_initialized(ex);
3178
3179		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3180			ext4_ext_try_to_merge(handle, inode, path, ex);
3181
3182		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3183		goto out;
3184	}
3185
3186	/* case a */
3187	memcpy(&orig_ex, ex, sizeof(orig_ex));
3188	ex->ee_len = cpu_to_le16(split - ee_block);
3189	if (split_flag & EXT4_EXT_MARK_UNWRIT1)
3190		ext4_ext_mark_unwritten(ex);
3191
3192	/*
3193	 * path may lead to new leaf, not to original leaf any more
3194	 * after ext4_ext_insert_extent() returns,
3195	 */
3196	err = ext4_ext_dirty(handle, inode, path + depth);
3197	if (err)
3198		goto fix_extent_len;
3199
3200	ex2 = &newex;
3201	ex2->ee_block = cpu_to_le32(split);
3202	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
3203	ext4_ext_store_pblock(ex2, newblock);
3204	if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3205		ext4_ext_mark_unwritten(ex2);
3206
3207	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3208	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3209		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3210			if (split_flag & EXT4_EXT_DATA_VALID1) {
3211				err = ext4_ext_zeroout(inode, ex2);
3212				zero_ex.ee_block = ex2->ee_block;
3213				zero_ex.ee_len = cpu_to_le16(
3214						ext4_ext_get_actual_len(ex2));
3215				ext4_ext_store_pblock(&zero_ex,
3216						      ext4_ext_pblock(ex2));
3217			} else {
3218				err = ext4_ext_zeroout(inode, ex);
3219				zero_ex.ee_block = ex->ee_block;
3220				zero_ex.ee_len = cpu_to_le16(
3221						ext4_ext_get_actual_len(ex));
3222				ext4_ext_store_pblock(&zero_ex,
3223						      ext4_ext_pblock(ex));
3224			}
3225		} else {
3226			err = ext4_ext_zeroout(inode, &orig_ex);
3227			zero_ex.ee_block = orig_ex.ee_block;
3228			zero_ex.ee_len = cpu_to_le16(
3229						ext4_ext_get_actual_len(&orig_ex));
3230			ext4_ext_store_pblock(&zero_ex,
3231					      ext4_ext_pblock(&orig_ex));
3232		}
3233
3234		if (err)
3235			goto fix_extent_len;
3236		/* update the extent length and mark as initialized */
3237		ex->ee_len = cpu_to_le16(ee_len);
3238		ext4_ext_try_to_merge(handle, inode, path, ex);
3239		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3240		if (err)
3241			goto fix_extent_len;
3242
3243		/* update extent status tree */
3244		err = ext4_zeroout_es(inode, &zero_ex);
3245
3246		goto out;
3247	} else if (err)
3248		goto fix_extent_len;
3249
3250out:
3251	ext4_ext_show_leaf(inode, path);
3252	return err;
3253
3254fix_extent_len:
3255	ex->ee_len = orig_ex.ee_len;
3256	ext4_ext_dirty(handle, inode, path + depth);
3257	return err;
3258}
3259
3260/*
3261 * ext4_split_extents() splits an extent and mark extent which is covered
3262 * by @map as split_flags indicates
3263 *
3264 * It may result in splitting the extent into multiple extents (up to three)
3265 * There are three possibilities:
3266 *   a> There is no split required
3267 *   b> Splits in two extents: Split is happening at either end of the extent
3268 *   c> Splits in three extents: Somone is splitting in middle of the extent
3269 *
3270 */
3271static int ext4_split_extent(handle_t *handle,
3272			      struct inode *inode,
3273			      struct ext4_ext_path *path,
3274			      struct ext4_map_blocks *map,
3275			      int split_flag,
3276			      int flags)
3277{
3278	ext4_lblk_t ee_block;
3279	struct ext4_extent *ex;
3280	unsigned int ee_len, depth;
3281	int err = 0;
3282	int unwritten;
3283	int split_flag1, flags1;
3284	int allocated = map->m_len;
3285
3286	depth = ext_depth(inode);
3287	ex = path[depth].p_ext;
3288	ee_block = le32_to_cpu(ex->ee_block);
3289	ee_len = ext4_ext_get_actual_len(ex);
3290	unwritten = ext4_ext_is_unwritten(ex);
3291
3292	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3293		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3294		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3295		if (unwritten)
3296			split_flag1 |= EXT4_EXT_MARK_UNWRIT1 |
3297				       EXT4_EXT_MARK_UNWRIT2;
3298		if (split_flag & EXT4_EXT_DATA_VALID2)
3299			split_flag1 |= EXT4_EXT_DATA_VALID1;
3300		err = ext4_split_extent_at(handle, inode, path,
3301				map->m_lblk + map->m_len, split_flag1, flags1);
3302		if (err)
3303			goto out;
3304	} else {
3305		allocated = ee_len - (map->m_lblk - ee_block);
3306	}
3307	/*
3308	 * Update path is required because previous ext4_split_extent_at() may
3309	 * result in split of original leaf or extent zeroout.
3310	 */
3311	ext4_ext_drop_refs(path);
3312	path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3313	if (IS_ERR(path))
3314		return PTR_ERR(path);
3315	depth = ext_depth(inode);
3316	ex = path[depth].p_ext;
3317	if (!ex) {
3318		EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3319				 (unsigned long) map->m_lblk);
3320		return -EIO;
3321	}
3322	unwritten = ext4_ext_is_unwritten(ex);
3323	split_flag1 = 0;
3324
3325	if (map->m_lblk >= ee_block) {
3326		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3327		if (unwritten) {
3328			split_flag1 |= EXT4_EXT_MARK_UNWRIT1;
3329			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3330						     EXT4_EXT_MARK_UNWRIT2);
3331		}
3332		err = ext4_split_extent_at(handle, inode, path,
3333				map->m_lblk, split_flag1, flags);
3334		if (err)
3335			goto out;
3336	}
3337
3338	ext4_ext_show_leaf(inode, path);
3339out:
3340	return err ? err : allocated;
3341}
3342
3343/*
3344 * This function is called by ext4_ext_map_blocks() if someone tries to write
3345 * to an unwritten extent. It may result in splitting the unwritten
3346 * extent into multiple extents (up to three - one initialized and two
3347 * unwritten).
3348 * There are three possibilities:
3349 *   a> There is no split required: Entire extent should be initialized
3350 *   b> Splits in two extents: Write is happening at either end of the extent
3351 *   c> Splits in three extents: Somone is writing in middle of the extent
3352 *
3353 * Pre-conditions:
3354 *  - The extent pointed to by 'path' is unwritten.
3355 *  - The extent pointed to by 'path' contains a superset
3356 *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3357 *
3358 * Post-conditions on success:
3359 *  - the returned value is the number of blocks beyond map->l_lblk
3360 *    that are allocated and initialized.
3361 *    It is guaranteed to be >= map->m_len.
3362 */
3363static int ext4_ext_convert_to_initialized(handle_t *handle,
3364					   struct inode *inode,
3365					   struct ext4_map_blocks *map,
3366					   struct ext4_ext_path *path,
3367					   int flags)
3368{
3369	struct ext4_sb_info *sbi;
3370	struct ext4_extent_header *eh;
3371	struct ext4_map_blocks split_map;
3372	struct ext4_extent zero_ex;
3373	struct ext4_extent *ex, *abut_ex;
3374	ext4_lblk_t ee_block, eof_block;
3375	unsigned int ee_len, depth, map_len = map->m_len;
3376	int allocated = 0, max_zeroout = 0;
3377	int err = 0;
3378	int split_flag = 0;
3379
3380	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3381		"block %llu, max_blocks %u\n", inode->i_ino,
3382		(unsigned long long)map->m_lblk, map_len);
3383
3384	sbi = EXT4_SB(inode->i_sb);
3385	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3386		inode->i_sb->s_blocksize_bits;
3387	if (eof_block < map->m_lblk + map_len)
3388		eof_block = map->m_lblk + map_len;
3389
3390	depth = ext_depth(inode);
3391	eh = path[depth].p_hdr;
3392	ex = path[depth].p_ext;
3393	ee_block = le32_to_cpu(ex->ee_block);
3394	ee_len = ext4_ext_get_actual_len(ex);
3395	zero_ex.ee_len = 0;
3396
3397	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3398
3399	/* Pre-conditions */
3400	BUG_ON(!ext4_ext_is_unwritten(ex));
3401	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3402
3403	/*
3404	 * Attempt to transfer newly initialized blocks from the currently
3405	 * unwritten extent to its neighbor. This is much cheaper
3406	 * than an insertion followed by a merge as those involve costly
3407	 * memmove() calls. Transferring to the left is the common case in
3408	 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3409	 * followed by append writes.
3410	 *
3411	 * Limitations of the current logic:
3412	 *  - L1: we do not deal with writes covering the whole extent.
3413	 *    This would require removing the extent if the transfer
3414	 *    is possible.
3415	 *  - L2: we only attempt to merge with an extent stored in the
3416	 *    same extent tree node.
3417	 */
3418	if ((map->m_lblk == ee_block) &&
3419		/* See if we can merge left */
3420		(map_len < ee_len) &&		/*L1*/
3421		(ex > EXT_FIRST_EXTENT(eh))) {	/*L2*/
3422		ext4_lblk_t prev_lblk;
3423		ext4_fsblk_t prev_pblk, ee_pblk;
3424		unsigned int prev_len;
3425
3426		abut_ex = ex - 1;
3427		prev_lblk = le32_to_cpu(abut_ex->ee_block);
3428		prev_len = ext4_ext_get_actual_len(abut_ex);
3429		prev_pblk = ext4_ext_pblock(abut_ex);
3430		ee_pblk = ext4_ext_pblock(ex);
3431
3432		/*
3433		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3434		 * upon those conditions:
3435		 * - C1: abut_ex is initialized,
3436		 * - C2: abut_ex is logically abutting ex,
3437		 * - C3: abut_ex is physically abutting ex,
3438		 * - C4: abut_ex can receive the additional blocks without
3439		 *   overflowing the (initialized) length limit.
3440		 */
3441		if ((!ext4_ext_is_unwritten(abut_ex)) &&		/*C1*/
3442			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3443			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3444			(prev_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3445			err = ext4_ext_get_access(handle, inode, path + depth);
3446			if (err)
3447				goto out;
3448
3449			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3450				map, ex, abut_ex);
3451
3452			/* Shift the start of ex by 'map_len' blocks */
3453			ex->ee_block = cpu_to_le32(ee_block + map_len);
3454			ext4_ext_store_pblock(ex, ee_pblk + map_len);
3455			ex->ee_len = cpu_to_le16(ee_len - map_len);
3456			ext4_ext_mark_unwritten(ex); /* Restore the flag */
3457
3458			/* Extend abut_ex by 'map_len' blocks */
3459			abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3460
3461			/* Result: number of initialized blocks past m_lblk */
3462			allocated = map_len;
3463		}
3464	} else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3465		   (map_len < ee_len) &&	/*L1*/
3466		   ex < EXT_LAST_EXTENT(eh)) {	/*L2*/
3467		/* See if we can merge right */
3468		ext4_lblk_t next_lblk;
3469		ext4_fsblk_t next_pblk, ee_pblk;
3470		unsigned int next_len;
3471
3472		abut_ex = ex + 1;
3473		next_lblk = le32_to_cpu(abut_ex->ee_block);
3474		next_len = ext4_ext_get_actual_len(abut_ex);
3475		next_pblk = ext4_ext_pblock(abut_ex);
3476		ee_pblk = ext4_ext_pblock(ex);
3477
3478		/*
3479		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3480		 * upon those conditions:
3481		 * - C1: abut_ex is initialized,
3482		 * - C2: abut_ex is logically abutting ex,
3483		 * - C3: abut_ex is physically abutting ex,
3484		 * - C4: abut_ex can receive the additional blocks without
3485		 *   overflowing the (initialized) length limit.
3486		 */
3487		if ((!ext4_ext_is_unwritten(abut_ex)) &&		/*C1*/
3488		    ((map->m_lblk + map_len) == next_lblk) &&		/*C2*/
3489		    ((ee_pblk + ee_len) == next_pblk) &&		/*C3*/
3490		    (next_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3491			err = ext4_ext_get_access(handle, inode, path + depth);
3492			if (err)
3493				goto out;
3494
3495			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3496				map, ex, abut_ex);
3497
3498			/* Shift the start of abut_ex by 'map_len' blocks */
3499			abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3500			ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3501			ex->ee_len = cpu_to_le16(ee_len - map_len);
3502			ext4_ext_mark_unwritten(ex); /* Restore the flag */
3503
3504			/* Extend abut_ex by 'map_len' blocks */
3505			abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3506
3507			/* Result: number of initialized blocks past m_lblk */
3508			allocated = map_len;
3509		}
3510	}
3511	if (allocated) {
3512		/* Mark the block containing both extents as dirty */
3513		ext4_ext_dirty(handle, inode, path + depth);
3514
3515		/* Update path to point to the right extent */
3516		path[depth].p_ext = abut_ex;
3517		goto out;
3518	} else
3519		allocated = ee_len - (map->m_lblk - ee_block);
3520
3521	WARN_ON(map->m_lblk < ee_block);
3522	/*
3523	 * It is safe to convert extent to initialized via explicit
3524	 * zeroout only if extent is fully inside i_size or new_size.
3525	 */
3526	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3527
3528	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3529		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3530			(inode->i_sb->s_blocksize_bits - 10);
3531
3532	/* If extent is less than s_max_zeroout_kb, zeroout directly */
3533	if (max_zeroout && (ee_len <= max_zeroout)) {
3534		err = ext4_ext_zeroout(inode, ex);
3535		if (err)
3536			goto out;
3537		zero_ex.ee_block = ex->ee_block;
3538		zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3539		ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3540
3541		err = ext4_ext_get_access(handle, inode, path + depth);
3542		if (err)
3543			goto out;
3544		ext4_ext_mark_initialized(ex);
3545		ext4_ext_try_to_merge(handle, inode, path, ex);
3546		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3547		goto out;
3548	}
3549
3550	/*
3551	 * four cases:
3552	 * 1. split the extent into three extents.
3553	 * 2. split the extent into two extents, zeroout the first half.
3554	 * 3. split the extent into two extents, zeroout the second half.
3555	 * 4. split the extent into two extents with out zeroout.
3556	 */
3557	split_map.m_lblk = map->m_lblk;
3558	split_map.m_len = map->m_len;
3559
3560	if (max_zeroout && (allocated > map->m_len)) {
3561		if (allocated <= max_zeroout) {
3562			/* case 3 */
3563			zero_ex.ee_block =
3564					 cpu_to_le32(map->m_lblk);
3565			zero_ex.ee_len = cpu_to_le16(allocated);
3566			ext4_ext_store_pblock(&zero_ex,
3567				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3568			err = ext4_ext_zeroout(inode, &zero_ex);
3569			if (err)
3570				goto out;
3571			split_map.m_lblk = map->m_lblk;
3572			split_map.m_len = allocated;
3573		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3574			/* case 2 */
3575			if (map->m_lblk != ee_block) {
3576				zero_ex.ee_block = ex->ee_block;
3577				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3578							ee_block);
3579				ext4_ext_store_pblock(&zero_ex,
3580						      ext4_ext_pblock(ex));
3581				err = ext4_ext_zeroout(inode, &zero_ex);
3582				if (err)
3583					goto out;
3584			}
3585
3586			split_map.m_lblk = ee_block;
3587			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3588			allocated = map->m_len;
3589		}
3590	}
3591
3592	allocated = ext4_split_extent(handle, inode, path,
3593				      &split_map, split_flag, flags);
3594	if (allocated < 0)
3595		err = allocated;
3596
3597out:
3598	/* If we have gotten a failure, don't zero out status tree */
3599	if (!err)
3600		err = ext4_zeroout_es(inode, &zero_ex);
3601	return err ? err : allocated;
3602}
3603
3604/*
3605 * This function is called by ext4_ext_map_blocks() from
3606 * ext4_get_blocks_dio_write() when DIO to write
3607 * to an unwritten extent.
3608 *
3609 * Writing to an unwritten extent may result in splitting the unwritten
3610 * extent into multiple initialized/unwritten extents (up to three)
3611 * There are three possibilities:
3612 *   a> There is no split required: Entire extent should be unwritten
3613 *   b> Splits in two extents: Write is happening at either end of the extent
3614 *   c> Splits in three extents: Somone is writing in middle of the extent
3615 *
3616 * This works the same way in the case of initialized -> unwritten conversion.
3617 *
3618 * One of more index blocks maybe needed if the extent tree grow after
3619 * the unwritten extent split. To prevent ENOSPC occur at the IO
3620 * complete, we need to split the unwritten extent before DIO submit
3621 * the IO. The unwritten extent called at this time will be split
3622 * into three unwritten extent(at most). After IO complete, the part
3623 * being filled will be convert to initialized by the end_io callback function
3624 * via ext4_convert_unwritten_extents().
3625 *
3626 * Returns the size of unwritten extent to be written on success.
3627 */
3628static int ext4_split_convert_extents(handle_t *handle,
3629					struct inode *inode,
3630					struct ext4_map_blocks *map,
3631					struct ext4_ext_path *path,
3632					int flags)
3633{
3634	ext4_lblk_t eof_block;
3635	ext4_lblk_t ee_block;
3636	struct ext4_extent *ex;
3637	unsigned int ee_len;
3638	int split_flag = 0, depth;
3639
3640	ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
3641		  __func__, inode->i_ino,
3642		  (unsigned long long)map->m_lblk, map->m_len);
3643
3644	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3645		inode->i_sb->s_blocksize_bits;
3646	if (eof_block < map->m_lblk + map->m_len)
3647		eof_block = map->m_lblk + map->m_len;
3648	/*
3649	 * It is safe to convert extent to initialized via explicit
3650	 * zeroout only if extent is fully insde i_size or new_size.
3651	 */
3652	depth = ext_depth(inode);
3653	ex = path[depth].p_ext;
3654	ee_block = le32_to_cpu(ex->ee_block);
3655	ee_len = ext4_ext_get_actual_len(ex);
3656
3657	/* Convert to unwritten */
3658	if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
3659		split_flag |= EXT4_EXT_DATA_VALID1;
3660	/* Convert to initialized */
3661	} else if (flags & EXT4_GET_BLOCKS_CONVERT) {
3662		split_flag |= ee_block + ee_len <= eof_block ?
3663			      EXT4_EXT_MAY_ZEROOUT : 0;
3664		split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2);
3665	}
3666	flags |= EXT4_GET_BLOCKS_PRE_IO;
3667	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3668}
3669
3670static int ext4_convert_initialized_extents(handle_t *handle,
3671					    struct inode *inode,
3672					    struct ext4_map_blocks *map,
3673					    struct ext4_ext_path *path)
3674{
3675	struct ext4_extent *ex;
3676	ext4_lblk_t ee_block;
3677	unsigned int ee_len;
3678	int depth;
3679	int err = 0;
3680
3681	depth = ext_depth(inode);
3682	ex = path[depth].p_ext;
3683	ee_block = le32_to_cpu(ex->ee_block);
3684	ee_len = ext4_ext_get_actual_len(ex);
3685
3686	ext_debug("%s: inode %lu, logical"
3687		"block %llu, max_blocks %u\n", __func__, inode->i_ino,
3688		  (unsigned long long)ee_block, ee_len);
3689
3690	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3691		err = ext4_split_convert_extents(handle, inode, map, path,
3692				EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
3693		if (err < 0)
3694			goto out;
3695		ext4_ext_drop_refs(path);
3696		path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3697		if (IS_ERR(path)) {
3698			err = PTR_ERR(path);
3699			goto out;
3700		}
3701		depth = ext_depth(inode);
3702		ex = path[depth].p_ext;
3703		if (!ex) {
3704			EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3705					 (unsigned long) map->m_lblk);
3706			err = -EIO;
3707			goto out;
3708		}
3709	}
3710
3711	err = ext4_ext_get_access(handle, inode, path + depth);
3712	if (err)
3713		goto out;
3714	/* first mark the extent as unwritten */
3715	ext4_ext_mark_unwritten(ex);
3716
3717	/* note: ext4_ext_correct_indexes() isn't needed here because
3718	 * borders are not changed
3719	 */
3720	ext4_ext_try_to_merge(handle, inode, path, ex);
3721
3722	/* Mark modified extent as dirty */
3723	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3724out:
3725	ext4_ext_show_leaf(inode, path);
3726	return err;
3727}
3728
3729
3730static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3731						struct inode *inode,
3732						struct ext4_map_blocks *map,
3733						struct ext4_ext_path *path)
3734{
3735	struct ext4_extent *ex;
3736	ext4_lblk_t ee_block;
3737	unsigned int ee_len;
3738	int depth;
3739	int err = 0;
3740
3741	depth = ext_depth(inode);
3742	ex = path[depth].p_ext;
3743	ee_block = le32_to_cpu(ex->ee_block);
3744	ee_len = ext4_ext_get_actual_len(ex);
3745
3746	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3747		"block %llu, max_blocks %u\n", inode->i_ino,
3748		  (unsigned long long)ee_block, ee_len);
3749
3750	/* If extent is larger than requested it is a clear sign that we still
3751	 * have some extent state machine issues left. So extent_split is still
3752	 * required.
3753	 * TODO: Once all related issues will be fixed this situation should be
3754	 * illegal.
3755	 */
3756	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3757#ifdef EXT4_DEBUG
3758		ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3759			     " len %u; IO logical block %llu, len %u\n",
3760			     inode->i_ino, (unsigned long long)ee_block, ee_len,
3761			     (unsigned long long)map->m_lblk, map->m_len);
3762#endif
3763		err = ext4_split_convert_extents(handle, inode, map, path,
3764						 EXT4_GET_BLOCKS_CONVERT);
3765		if (err < 0)
3766			goto out;
3767		ext4_ext_drop_refs(path);
3768		path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3769		if (IS_ERR(path)) {
3770			err = PTR_ERR(path);
3771			goto out;
3772		}
3773		depth = ext_depth(inode);
3774		ex = path[depth].p_ext;
3775	}
3776
3777	err = ext4_ext_get_access(handle, inode, path + depth);
3778	if (err)
3779		goto out;
3780	/* first mark the extent as initialized */
3781	ext4_ext_mark_initialized(ex);
3782
3783	/* note: ext4_ext_correct_indexes() isn't needed here because
3784	 * borders are not changed
3785	 */
3786	ext4_ext_try_to_merge(handle, inode, path, ex);
3787
3788	/* Mark modified extent as dirty */
3789	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3790out:
3791	ext4_ext_show_leaf(inode, path);
3792	return err;
3793}
3794
3795static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3796			sector_t block, int count)
3797{
3798	int i;
3799	for (i = 0; i < count; i++)
3800                unmap_underlying_metadata(bdev, block + i);
3801}
3802
3803/*
3804 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3805 */
3806static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3807			      ext4_lblk_t lblk,
3808			      struct ext4_ext_path *path,
3809			      unsigned int len)
3810{
3811	int i, depth;
3812	struct ext4_extent_header *eh;
3813	struct ext4_extent *last_ex;
3814
3815	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3816		return 0;
3817
3818	depth = ext_depth(inode);
3819	eh = path[depth].p_hdr;
3820
3821	/*
3822	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3823	 * do not care for this case anymore. Simply remove the flag
3824	 * if there are no extents.
3825	 */
3826	if (unlikely(!eh->eh_entries))
3827		goto out;
3828	last_ex = EXT_LAST_EXTENT(eh);
3829	/*
3830	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3831	 * last block in the last extent in the file.  We test this by
3832	 * first checking to see if the caller to
3833	 * ext4_ext_get_blocks() was interested in the last block (or
3834	 * a block beyond the last block) in the current extent.  If
3835	 * this turns out to be false, we can bail out from this
3836	 * function immediately.
3837	 */
3838	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3839	    ext4_ext_get_actual_len(last_ex))
3840		return 0;
3841	/*
3842	 * If the caller does appear to be planning to write at or
3843	 * beyond the end of the current extent, we then test to see
3844	 * if the current extent is the last extent in the file, by
3845	 * checking to make sure it was reached via the rightmost node
3846	 * at each level of the tree.
3847	 */
3848	for (i = depth-1; i >= 0; i--)
3849		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3850			return 0;
3851out:
3852	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3853	return ext4_mark_inode_dirty(handle, inode);
3854}
3855
3856/**
3857 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3858 *
3859 * Return 1 if there is a delalloc block in the range, otherwise 0.
3860 */
3861int ext4_find_delalloc_range(struct inode *inode,
3862			     ext4_lblk_t lblk_start,
3863			     ext4_lblk_t lblk_end)
3864{
3865	struct extent_status es;
3866
3867	ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3868	if (es.es_len == 0)
3869		return 0; /* there is no delay extent in this tree */
3870	else if (es.es_lblk <= lblk_start &&
3871		 lblk_start < es.es_lblk + es.es_len)
3872		return 1;
3873	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3874		return 1;
3875	else
3876		return 0;
3877}
3878
3879int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3880{
3881	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3882	ext4_lblk_t lblk_start, lblk_end;
3883	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3884	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3885
3886	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3887}
3888
3889/**
3890 * Determines how many complete clusters (out of those specified by the 'map')
3891 * are under delalloc and were reserved quota for.
3892 * This function is called when we are writing out the blocks that were
3893 * originally written with their allocation delayed, but then the space was
3894 * allocated using fallocate() before the delayed allocation could be resolved.
3895 * The cases to look for are:
3896 * ('=' indicated delayed allocated blocks
3897 *  '-' indicates non-delayed allocated blocks)
3898 * (a) partial clusters towards beginning and/or end outside of allocated range
3899 *     are not delalloc'ed.
3900 *	Ex:
3901 *	|----c---=|====c====|====c====|===-c----|
3902 *	         |++++++ allocated ++++++|
3903 *	==> 4 complete clusters in above example
3904 *
3905 * (b) partial cluster (outside of allocated range) towards either end is
3906 *     marked for delayed allocation. In this case, we will exclude that
3907 *     cluster.
3908 *	Ex:
3909 *	|----====c========|========c========|
3910 *	     |++++++ allocated ++++++|
3911 *	==> 1 complete clusters in above example
3912 *
3913 *	Ex:
3914 *	|================c================|
3915 *            |++++++ allocated ++++++|
3916 *	==> 0 complete clusters in above example
3917 *
3918 * The ext4_da_update_reserve_space will be called only if we
3919 * determine here that there were some "entire" clusters that span
3920 * this 'allocated' range.
3921 * In the non-bigalloc case, this function will just end up returning num_blks
3922 * without ever calling ext4_find_delalloc_range.
3923 */
3924static unsigned int
3925get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3926			   unsigned int num_blks)
3927{
3928	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3929	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3930	ext4_lblk_t lblk_from, lblk_to, c_offset;
3931	unsigned int allocated_clusters = 0;
3932
3933	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3934	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3935
3936	/* max possible clusters for this allocation */
3937	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3938
3939	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3940
3941	/* Check towards left side */
3942	c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3943	if (c_offset) {
3944		lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3945		lblk_to = lblk_from + c_offset - 1;
3946
3947		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3948			allocated_clusters--;
3949	}
3950
3951	/* Now check towards right. */
3952	c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3953	if (allocated_clusters && c_offset) {
3954		lblk_from = lblk_start + num_blks;
3955		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3956
3957		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3958			allocated_clusters--;
3959	}
3960
3961	return allocated_clusters;
3962}
3963
3964static int
3965ext4_ext_convert_initialized_extent(handle_t *handle, struct inode *inode,
3966			struct ext4_map_blocks *map,
3967			struct ext4_ext_path *path, int flags,
3968			unsigned int allocated, ext4_fsblk_t newblock)
3969{
3970	int ret = 0;
3971	int err = 0;
3972
3973	/*
3974	 * Make sure that the extent is no bigger than we support with
3975	 * unwritten extent
3976	 */
3977	if (map->m_len > EXT_UNWRITTEN_MAX_LEN)
3978		map->m_len = EXT_UNWRITTEN_MAX_LEN / 2;
3979
3980	ret = ext4_convert_initialized_extents(handle, inode, map,
3981						path);
3982	if (ret >= 0) {
3983		ext4_update_inode_fsync_trans(handle, inode, 1);
3984		err = check_eofblocks_fl(handle, inode, map->m_lblk,
3985					 path, map->m_len);
3986	} else
3987		err = ret;
3988	map->m_flags |= EXT4_MAP_UNWRITTEN;
3989	if (allocated > map->m_len)
3990		allocated = map->m_len;
3991	map->m_len = allocated;
3992
3993	return err ? err : allocated;
3994}
3995
3996static int
3997ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode,
3998			struct ext4_map_blocks *map,
3999			struct ext4_ext_path *path, int flags,
4000			unsigned int allocated, ext4_fsblk_t newblock)
4001{
4002	int ret = 0;
4003	int err = 0;
4004	ext4_io_end_t *io = ext4_inode_aio(inode);
4005
4006	ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical "
4007		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
4008		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
4009		  flags, allocated);
4010	ext4_ext_show_leaf(inode, path);
4011
4012	/*
4013	 * When writing into unwritten space, we should not fail to
4014	 * allocate metadata blocks for the new extent block if needed.
4015	 */
4016	flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
4017
4018	trace_ext4_ext_handle_unwritten_extents(inode, map, flags,
4019						    allocated, newblock);
4020
4021	/* get_block() before submit the IO, split the extent */
4022	if (flags & EXT4_GET_BLOCKS_PRE_IO) {
4023		ret = ext4_split_convert_extents(handle, inode, map,
4024					 path, flags | EXT4_GET_BLOCKS_CONVERT);
4025		if (ret <= 0)
4026			goto out;
4027		/*
4028		 * Flag the inode(non aio case) or end_io struct (aio case)
4029		 * that this IO needs to conversion to written when IO is
4030		 * completed
4031		 */
4032		if (io)
4033			ext4_set_io_unwritten_flag(inode, io);
4034		else
4035			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
4036		map->m_flags |= EXT4_MAP_UNWRITTEN;
4037		goto out;
4038	}
4039	/* IO end_io complete, convert the filled extent to written */
4040	if (flags & EXT4_GET_BLOCKS_CONVERT) {
4041		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
4042							path);
4043		if (ret >= 0) {
4044			ext4_update_inode_fsync_trans(handle, inode, 1);
4045			err = check_eofblocks_fl(handle, inode, map->m_lblk,
4046						 path, map->m_len);
4047		} else
4048			err = ret;
4049		map->m_flags |= EXT4_MAP_MAPPED;
4050		map->m_pblk = newblock;
4051		if (allocated > map->m_len)
4052			allocated = map->m_len;
4053		map->m_len = allocated;
4054		goto out2;
4055	}
4056	/* buffered IO case */
4057	/*
4058	 * repeat fallocate creation request
4059	 * we already have an unwritten extent
4060	 */
4061	if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) {
4062		map->m_flags |= EXT4_MAP_UNWRITTEN;
4063		goto map_out;
4064	}
4065
4066	/* buffered READ or buffered write_begin() lookup */
4067	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4068		/*
4069		 * We have blocks reserved already.  We
4070		 * return allocated blocks so that delalloc
4071		 * won't do block reservation for us.  But
4072		 * the buffer head will be unmapped so that
4073		 * a read from the block returns 0s.
4074		 */
4075		map->m_flags |= EXT4_MAP_UNWRITTEN;
4076		goto out1;
4077	}
4078
4079	/* buffered write, writepage time, convert*/
4080	ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags);
4081	if (ret >= 0)
4082		ext4_update_inode_fsync_trans(handle, inode, 1);
4083out:
4084	if (ret <= 0) {
4085		err = ret;
4086		goto out2;
4087	} else
4088		allocated = ret;
4089	map->m_flags |= EXT4_MAP_NEW;
4090	/*
4091	 * if we allocated more blocks than requested
4092	 * we need to make sure we unmap the extra block
4093	 * allocated. The actual needed block will get
4094	 * unmapped later when we find the buffer_head marked
4095	 * new.
4096	 */
4097	if (allocated > map->m_len) {
4098		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
4099					newblock + map->m_len,
4100					allocated - map->m_len);
4101		allocated = map->m_len;
4102	}
4103	map->m_len = allocated;
4104
4105	/*
4106	 * If we have done fallocate with the offset that is already
4107	 * delayed allocated, we would have block reservation
4108	 * and quota reservation done in the delayed write path.
4109	 * But fallocate would have already updated quota and block
4110	 * count for this offset. So cancel these reservation
4111	 */
4112	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4113		unsigned int reserved_clusters;
4114		reserved_clusters = get_reserved_cluster_alloc(inode,
4115				map->m_lblk, map->m_len);
4116		if (reserved_clusters)
4117			ext4_da_update_reserve_space(inode,
4118						     reserved_clusters,
4119						     0);
4120	}
4121
4122map_out:
4123	map->m_flags |= EXT4_MAP_MAPPED;
4124	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
4125		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
4126					 map->m_len);
4127		if (err < 0)
4128			goto out2;
4129	}
4130out1:
4131	if (allocated > map->m_len)
4132		allocated = map->m_len;
4133	ext4_ext_show_leaf(inode, path);
4134	map->m_pblk = newblock;
4135	map->m_len = allocated;
4136out2:
4137	return err ? err : allocated;
4138}
4139
4140/*
4141 * get_implied_cluster_alloc - check to see if the requested
4142 * allocation (in the map structure) overlaps with a cluster already
4143 * allocated in an extent.
4144 *	@sb	The filesystem superblock structure
4145 *	@map	The requested lblk->pblk mapping
4146 *	@ex	The extent structure which might contain an implied
4147 *			cluster allocation
4148 *
4149 * This function is called by ext4_ext_map_blocks() after we failed to
4150 * find blocks that were already in the inode's extent tree.  Hence,
4151 * we know that the beginning of the requested region cannot overlap
4152 * the extent from the inode's extent tree.  There are three cases we
4153 * want to catch.  The first is this case:
4154 *
4155 *		 |--- cluster # N--|
4156 *    |--- extent ---|	|---- requested region ---|
4157 *			|==========|
4158 *
4159 * The second case that we need to test for is this one:
4160 *
4161 *   |--------- cluster # N ----------------|
4162 *	   |--- requested region --|   |------- extent ----|
4163 *	   |=======================|
4164 *
4165 * The third case is when the requested region lies between two extents
4166 * within the same cluster:
4167 *          |------------- cluster # N-------------|
4168 * |----- ex -----|                  |---- ex_right ----|
4169 *                  |------ requested region ------|
4170 *                  |================|
4171 *
4172 * In each of the above cases, we need to set the map->m_pblk and
4173 * map->m_len so it corresponds to the return the extent labelled as
4174 * "|====|" from cluster #N, since it is already in use for data in
4175 * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
4176 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4177 * as a new "allocated" block region.  Otherwise, we will return 0 and
4178 * ext4_ext_map_blocks() will then allocate one or more new clusters
4179 * by calling ext4_mb_new_blocks().
4180 */
4181static int get_implied_cluster_alloc(struct super_block *sb,
4182				     struct ext4_map_blocks *map,
4183				     struct ext4_extent *ex,
4184				     struct ext4_ext_path *path)
4185{
4186	struct ext4_sb_info *sbi = EXT4_SB(sb);
4187	ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4188	ext4_lblk_t ex_cluster_start, ex_cluster_end;
4189	ext4_lblk_t rr_cluster_start;
4190	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4191	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4192	unsigned short ee_len = ext4_ext_get_actual_len(ex);
4193
4194	/* The extent passed in that we are trying to match */
4195	ex_cluster_start = EXT4_B2C(sbi, ee_block);
4196	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4197
4198	/* The requested region passed into ext4_map_blocks() */
4199	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4200
4201	if ((rr_cluster_start == ex_cluster_end) ||
4202	    (rr_cluster_start == ex_cluster_start)) {
4203		if (rr_cluster_start == ex_cluster_end)
4204			ee_start += ee_len - 1;
4205		map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
4206		map->m_len = min(map->m_len,
4207				 (unsigned) sbi->s_cluster_ratio - c_offset);
4208		/*
4209		 * Check for and handle this case:
4210		 *
4211		 *   |--------- cluster # N-------------|
4212		 *		       |------- extent ----|
4213		 *	   |--- requested region ---|
4214		 *	   |===========|
4215		 */
4216
4217		if (map->m_lblk < ee_block)
4218			map->m_len = min(map->m_len, ee_block - map->m_lblk);
4219
4220		/*
4221		 * Check for the case where there is already another allocated
4222		 * block to the right of 'ex' but before the end of the cluster.
4223		 *
4224		 *          |------------- cluster # N-------------|
4225		 * |----- ex -----|                  |---- ex_right ----|
4226		 *                  |------ requested region ------|
4227		 *                  |================|
4228		 */
4229		if (map->m_lblk > ee_block) {
4230			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4231			map->m_len = min(map->m_len, next - map->m_lblk);
4232		}
4233
4234		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4235		return 1;
4236	}
4237
4238	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4239	return 0;
4240}
4241
4242
4243/*
4244 * Block allocation/map/preallocation routine for extents based files
4245 *
4246 *
4247 * Need to be called with
4248 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4249 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4250 *
4251 * return > 0, number of of blocks already mapped/allocated
4252 *          if create == 0 and these are pre-allocated blocks
4253 *          	buffer head is unmapped
4254 *          otherwise blocks are mapped
4255 *
4256 * return = 0, if plain look up failed (blocks have not been allocated)
4257 *          buffer head is unmapped
4258 *
4259 * return < 0, error case.
4260 */
4261int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4262			struct ext4_map_blocks *map, int flags)
4263{
4264	struct ext4_ext_path *path = NULL;
4265	struct ext4_extent newex, *ex, *ex2;
4266	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4267	ext4_fsblk_t newblock = 0;
4268	int free_on_err = 0, err = 0, depth, ret;
4269	unsigned int allocated = 0, offset = 0;
4270	unsigned int allocated_clusters = 0;
4271	struct ext4_allocation_request ar;
4272	ext4_io_end_t *io = ext4_inode_aio(inode);
4273	ext4_lblk_t cluster_offset;
4274	int set_unwritten = 0;
4275
4276	ext_debug("blocks %u/%u requested for inode %lu\n",
4277		  map->m_lblk, map->m_len, inode->i_ino);
4278	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4279
4280	/* find extent for this block */
4281	path = ext4_ext_find_extent(inode, map->m_lblk, NULL, 0);
4282	if (IS_ERR(path)) {
4283		err = PTR_ERR(path);
4284		path = NULL;
4285		goto out2;
4286	}
4287
4288	depth = ext_depth(inode);
4289
4290	/*
4291	 * consistent leaf must not be empty;
4292	 * this situation is possible, though, _during_ tree modification;
4293	 * this is why assert can't be put in ext4_ext_find_extent()
4294	 */
4295	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4296		EXT4_ERROR_INODE(inode, "bad extent address "
4297				 "lblock: %lu, depth: %d pblock %lld",
4298				 (unsigned long) map->m_lblk, depth,
4299				 path[depth].p_block);
4300		err = -EIO;
4301		goto out2;
4302	}
4303
4304	ex = path[depth].p_ext;
4305	if (ex) {
4306		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4307		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4308		unsigned short ee_len;
4309
4310
4311		/*
4312		 * unwritten extents are treated as holes, except that
4313		 * we split out initialized portions during a write.
4314		 */
4315		ee_len = ext4_ext_get_actual_len(ex);
4316
4317		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4318
4319		/* if found extent covers block, simply return it */
4320		if (in_range(map->m_lblk, ee_block, ee_len)) {
4321			newblock = map->m_lblk - ee_block + ee_start;
4322			/* number of remaining blocks in the extent */
4323			allocated = ee_len - (map->m_lblk - ee_block);
4324			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4325				  ee_block, ee_len, newblock);
4326
4327			/*
4328			 * If the extent is initialized check whether the
4329			 * caller wants to convert it to unwritten.
4330			 */
4331			if ((!ext4_ext_is_unwritten(ex)) &&
4332			    (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
4333				allocated = ext4_ext_convert_initialized_extent(
4334						handle, inode, map, path, flags,
4335						allocated, newblock);
4336				goto out2;
4337			} else if (!ext4_ext_is_unwritten(ex))
4338				goto out;
4339
4340			ret = ext4_ext_handle_unwritten_extents(
4341				handle, inode, map, path, flags,
4342				allocated, newblock);
4343			if (ret < 0)
4344				err = ret;
4345			else
4346				allocated = ret;
4347			goto out2;
4348		}
4349	}
4350
4351	if ((sbi->s_cluster_ratio > 1) &&
4352	    ext4_find_delalloc_cluster(inode, map->m_lblk))
4353		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4354
4355	/*
4356	 * requested block isn't allocated yet;
4357	 * we couldn't try to create block if create flag is zero
4358	 */
4359	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4360		/*
4361		 * put just found gap into cache to speed up
4362		 * subsequent requests
4363		 */
4364		if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4365			ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4366		goto out2;
4367	}
4368
4369	/*
4370	 * Okay, we need to do block allocation.
4371	 */
4372	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4373	newex.ee_block = cpu_to_le32(map->m_lblk);
4374	cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4375
4376	/*
4377	 * If we are doing bigalloc, check to see if the extent returned
4378	 * by ext4_ext_find_extent() implies a cluster we can use.
4379	 */
4380	if (cluster_offset && ex &&
4381	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4382		ar.len = allocated = map->m_len;
4383		newblock = map->m_pblk;
4384		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4385		goto got_allocated_blocks;
4386	}
4387
4388	/* find neighbour allocated blocks */
4389	ar.lleft = map->m_lblk;
4390	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4391	if (err)
4392		goto out2;
4393	ar.lright = map->m_lblk;
4394	ex2 = NULL;
4395	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4396	if (err)
4397		goto out2;
4398
4399	/* Check if the extent after searching to the right implies a
4400	 * cluster we can use. */
4401	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4402	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4403		ar.len = allocated = map->m_len;
4404		newblock = map->m_pblk;
4405		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4406		goto got_allocated_blocks;
4407	}
4408
4409	/*
4410	 * See if request is beyond maximum number of blocks we can have in
4411	 * a single extent. For an initialized extent this limit is
4412	 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is
4413	 * EXT_UNWRITTEN_MAX_LEN.
4414	 */
4415	if (map->m_len > EXT_INIT_MAX_LEN &&
4416	    !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4417		map->m_len = EXT_INIT_MAX_LEN;
4418	else if (map->m_len > EXT_UNWRITTEN_MAX_LEN &&
4419		 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4420		map->m_len = EXT_UNWRITTEN_MAX_LEN;
4421
4422	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4423	newex.ee_len = cpu_to_le16(map->m_len);
4424	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4425	if (err)
4426		allocated = ext4_ext_get_actual_len(&newex);
4427	else
4428		allocated = map->m_len;
4429
4430	/* allocate new block */
4431	ar.inode = inode;
4432	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4433	ar.logical = map->m_lblk;
4434	/*
4435	 * We calculate the offset from the beginning of the cluster
4436	 * for the logical block number, since when we allocate a
4437	 * physical cluster, the physical block should start at the
4438	 * same offset from the beginning of the cluster.  This is
4439	 * needed so that future calls to get_implied_cluster_alloc()
4440	 * work correctly.
4441	 */
4442	offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4443	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4444	ar.goal -= offset;
4445	ar.logical -= offset;
4446	if (S_ISREG(inode->i_mode))
4447		ar.flags = EXT4_MB_HINT_DATA;
4448	else
4449		/* disable in-core preallocation for non-regular files */
4450		ar.flags = 0;
4451	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4452		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4453	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4454	if (!newblock)
4455		goto out2;
4456	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4457		  ar.goal, newblock, allocated);
4458	free_on_err = 1;
4459	allocated_clusters = ar.len;
4460	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4461	if (ar.len > allocated)
4462		ar.len = allocated;
4463
4464got_allocated_blocks:
4465	/* try to insert new extent into found leaf and return */
4466	ext4_ext_store_pblock(&newex, newblock + offset);
4467	newex.ee_len = cpu_to_le16(ar.len);
4468	/* Mark unwritten */
4469	if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){
4470		ext4_ext_mark_unwritten(&newex);
4471		map->m_flags |= EXT4_MAP_UNWRITTEN;
4472		/*
4473		 * io_end structure was created for every IO write to an
4474		 * unwritten extent. To avoid unnecessary conversion,
4475		 * here we flag the IO that really needs the conversion.
4476		 * For non asycn direct IO case, flag the inode state
4477		 * that we need to perform conversion when IO is done.
4478		 */
4479		if (flags & EXT4_GET_BLOCKS_PRE_IO)
4480			set_unwritten = 1;
4481	}
4482
4483	err = 0;
4484	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4485		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4486					 path, ar.len);
4487	if (!err)
4488		err = ext4_ext_insert_extent(handle, inode, path,
4489					     &newex, flags);
4490
4491	if (!err && set_unwritten) {
4492		if (io)
4493			ext4_set_io_unwritten_flag(inode, io);
4494		else
4495			ext4_set_inode_state(inode,
4496					     EXT4_STATE_DIO_UNWRITTEN);
4497	}
4498
4499	if (err && free_on_err) {
4500		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4501			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4502		/* free data blocks we just allocated */
4503		/* not a good idea to call discard here directly,
4504		 * but otherwise we'd need to call it every free() */
4505		ext4_discard_preallocations(inode);
4506		ext4_free_blocks(handle, inode, NULL, newblock,
4507				 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4508		goto out2;
4509	}
4510
4511	/* previous routine could use block we allocated */
4512	newblock = ext4_ext_pblock(&newex);
4513	allocated = ext4_ext_get_actual_len(&newex);
4514	if (allocated > map->m_len)
4515		allocated = map->m_len;
4516	map->m_flags |= EXT4_MAP_NEW;
4517
4518	/*
4519	 * Update reserved blocks/metadata blocks after successful
4520	 * block allocation which had been deferred till now.
4521	 */
4522	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4523		unsigned int reserved_clusters;
4524		/*
4525		 * Check how many clusters we had reserved this allocated range
4526		 */
4527		reserved_clusters = get_reserved_cluster_alloc(inode,
4528						map->m_lblk, allocated);
4529		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4530			if (reserved_clusters) {
4531				/*
4532				 * We have clusters reserved for this range.
4533				 * But since we are not doing actual allocation
4534				 * and are simply using blocks from previously
4535				 * allocated cluster, we should release the
4536				 * reservation and not claim quota.
4537				 */
4538				ext4_da_update_reserve_space(inode,
4539						reserved_clusters, 0);
4540			}
4541		} else {
4542			BUG_ON(allocated_clusters < reserved_clusters);
4543			if (reserved_clusters < allocated_clusters) {
4544				struct ext4_inode_info *ei = EXT4_I(inode);
4545				int reservation = allocated_clusters -
4546						  reserved_clusters;
4547				/*
4548				 * It seems we claimed few clusters outside of
4549				 * the range of this allocation. We should give
4550				 * it back to the reservation pool. This can
4551				 * happen in the following case:
4552				 *
4553				 * * Suppose s_cluster_ratio is 4 (i.e., each
4554				 *   cluster has 4 blocks. Thus, the clusters
4555				 *   are [0-3],[4-7],[8-11]...
4556				 * * First comes delayed allocation write for
4557				 *   logical blocks 10 & 11. Since there were no
4558				 *   previous delayed allocated blocks in the
4559				 *   range [8-11], we would reserve 1 cluster
4560				 *   for this write.
4561				 * * Next comes write for logical blocks 3 to 8.
4562				 *   In this case, we will reserve 2 clusters
4563				 *   (for [0-3] and [4-7]; and not for [8-11] as
4564				 *   that range has a delayed allocated blocks.
4565				 *   Thus total reserved clusters now becomes 3.
4566				 * * Now, during the delayed allocation writeout
4567				 *   time, we will first write blocks [3-8] and
4568				 *   allocate 3 clusters for writing these
4569				 *   blocks. Also, we would claim all these
4570				 *   three clusters above.
4571				 * * Now when we come here to writeout the
4572				 *   blocks [10-11], we would expect to claim
4573				 *   the reservation of 1 cluster we had made
4574				 *   (and we would claim it since there are no
4575				 *   more delayed allocated blocks in the range
4576				 *   [8-11]. But our reserved cluster count had
4577				 *   already gone to 0.
4578				 *
4579				 *   Thus, at the step 4 above when we determine
4580				 *   that there are still some unwritten delayed
4581				 *   allocated blocks outside of our current
4582				 *   block range, we should increment the
4583				 *   reserved clusters count so that when the
4584				 *   remaining blocks finally gets written, we
4585				 *   could claim them.
4586				 */
4587				dquot_reserve_block(inode,
4588						EXT4_C2B(sbi, reservation));
4589				spin_lock(&ei->i_block_reservation_lock);
4590				ei->i_reserved_data_blocks += reservation;
4591				spin_unlock(&ei->i_block_reservation_lock);
4592			}
4593			/*
4594			 * We will claim quota for all newly allocated blocks.
4595			 * We're updating the reserved space *after* the
4596			 * correction above so we do not accidentally free
4597			 * all the metadata reservation because we might
4598			 * actually need it later on.
4599			 */
4600			ext4_da_update_reserve_space(inode, allocated_clusters,
4601							1);
4602		}
4603	}
4604
4605	/*
4606	 * Cache the extent and update transaction to commit on fdatasync only
4607	 * when it is _not_ an unwritten extent.
4608	 */
4609	if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0)
4610		ext4_update_inode_fsync_trans(handle, inode, 1);
4611	else
4612		ext4_update_inode_fsync_trans(handle, inode, 0);
4613out:
4614	if (allocated > map->m_len)
4615		allocated = map->m_len;
4616	ext4_ext_show_leaf(inode, path);
4617	map->m_flags |= EXT4_MAP_MAPPED;
4618	map->m_pblk = newblock;
4619	map->m_len = allocated;
4620out2:
4621	if (path) {
4622		ext4_ext_drop_refs(path);
4623		kfree(path);
4624	}
4625
4626	trace_ext4_ext_map_blocks_exit(inode, flags, map,
4627				       err ? err : allocated);
4628	ext4_es_lru_add(inode);
4629	return err ? err : allocated;
4630}
4631
4632void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4633{
4634	struct super_block *sb = inode->i_sb;
4635	ext4_lblk_t last_block;
4636	int err = 0;
4637
4638	/*
4639	 * TODO: optimization is possible here.
4640	 * Probably we need not scan at all,
4641	 * because page truncation is enough.
4642	 */
4643
4644	/* we have to know where to truncate from in crash case */
4645	EXT4_I(inode)->i_disksize = inode->i_size;
4646	ext4_mark_inode_dirty(handle, inode);
4647
4648	last_block = (inode->i_size + sb->s_blocksize - 1)
4649			>> EXT4_BLOCK_SIZE_BITS(sb);
4650retry:
4651	err = ext4_es_remove_extent(inode, last_block,
4652				    EXT_MAX_BLOCKS - last_block);
4653	if (err == -ENOMEM) {
4654		cond_resched();
4655		congestion_wait(BLK_RW_ASYNC, HZ/50);
4656		goto retry;
4657	}
4658	if (err) {
4659		ext4_std_error(inode->i_sb, err);
4660		return;
4661	}
4662	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4663	ext4_std_error(inode->i_sb, err);
4664}
4665
4666static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
4667				  ext4_lblk_t len, int flags, int mode)
4668{
4669	struct inode *inode = file_inode(file);
4670	handle_t *handle;
4671	int ret = 0;
4672	int ret2 = 0;
4673	int retries = 0;
4674	struct ext4_map_blocks map;
4675	unsigned int credits;
4676
4677	map.m_lblk = offset;
4678	/*
4679	 * Don't normalize the request if it can fit in one extent so
4680	 * that it doesn't get unnecessarily split into multiple
4681	 * extents.
4682	 */
4683	if (len <= EXT_UNWRITTEN_MAX_LEN)
4684		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4685
4686	/*
4687	 * credits to insert 1 extent into extent tree
4688	 */
4689	credits = ext4_chunk_trans_blocks(inode, len);
4690
4691retry:
4692	while (ret >= 0 && ret < len) {
4693		map.m_lblk = map.m_lblk + ret;
4694		map.m_len = len = len - ret;
4695		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4696					    credits);
4697		if (IS_ERR(handle)) {
4698			ret = PTR_ERR(handle);
4699			break;
4700		}
4701		ret = ext4_map_blocks(handle, inode, &map, flags);
4702		if (ret <= 0) {
4703			ext4_debug("inode #%lu: block %u: len %u: "
4704				   "ext4_ext_map_blocks returned %d",
4705				   inode->i_ino, map.m_lblk,
4706				   map.m_len, ret);
4707			ext4_mark_inode_dirty(handle, inode);
4708			ret2 = ext4_journal_stop(handle);
4709			break;
4710		}
4711		ret2 = ext4_journal_stop(handle);
4712		if (ret2)
4713			break;
4714	}
4715	if (ret == -ENOSPC &&
4716			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4717		ret = 0;
4718		goto retry;
4719	}
4720
4721	return ret > 0 ? ret2 : ret;
4722}
4723
4724static long ext4_zero_range(struct file *file, loff_t offset,
4725			    loff_t len, int mode)
4726{
4727	struct inode *inode = file_inode(file);
4728	handle_t *handle = NULL;
4729	unsigned int max_blocks;
4730	loff_t new_size = 0;
4731	int ret = 0;
4732	int flags;
4733	int partial;
4734	loff_t start, end;
4735	ext4_lblk_t lblk;
4736	struct address_space *mapping = inode->i_mapping;
4737	unsigned int blkbits = inode->i_blkbits;
4738
4739	trace_ext4_zero_range(inode, offset, len, mode);
4740
4741	if (!S_ISREG(inode->i_mode))
4742		return -EINVAL;
4743
4744	/*
4745	 * Write out all dirty pages to avoid race conditions
4746	 * Then release them.
4747	 */
4748	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4749		ret = filemap_write_and_wait_range(mapping, offset,
4750						   offset + len - 1);
4751		if (ret)
4752			return ret;
4753	}
4754
4755	/*
4756	 * Round up offset. This is not fallocate, we neet to zero out
4757	 * blocks, so convert interior block aligned part of the range to
4758	 * unwritten and possibly manually zero out unaligned parts of the
4759	 * range.
4760	 */
4761	start = round_up(offset, 1 << blkbits);
4762	end = round_down((offset + len), 1 << blkbits);
4763
4764	if (start < offset || end > offset + len)
4765		return -EINVAL;
4766	partial = (offset + len) & ((1 << blkbits) - 1);
4767
4768	lblk = start >> blkbits;
4769	max_blocks = (end >> blkbits);
4770	if (max_blocks < lblk)
4771		max_blocks = 0;
4772	else
4773		max_blocks -= lblk;
4774
4775	flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT |
4776		EXT4_GET_BLOCKS_CONVERT_UNWRITTEN;
4777	if (mode & FALLOC_FL_KEEP_SIZE)
4778		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4779
4780	mutex_lock(&inode->i_mutex);
4781
4782	/*
4783	 * Indirect files do not support unwritten extnets
4784	 */
4785	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4786		ret = -EOPNOTSUPP;
4787		goto out_mutex;
4788	}
4789
4790	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4791	     offset + len > i_size_read(inode)) {
4792		new_size = offset + len;
4793		ret = inode_newsize_ok(inode, new_size);
4794		if (ret)
4795			goto out_mutex;
4796		/*
4797		 * If we have a partial block after EOF we have to allocate
4798		 * the entire block.
4799		 */
4800		if (partial)
4801			max_blocks += 1;
4802	}
4803
4804	if (max_blocks > 0) {
4805
4806		/* Now release the pages and zero block aligned part of pages*/
4807		truncate_pagecache_range(inode, start, end - 1);
4808
4809		/* Wait all existing dio workers, newcomers will block on i_mutex */
4810		ext4_inode_block_unlocked_dio(inode);
4811		inode_dio_wait(inode);
4812
4813		/*
4814		 * Remove entire range from the extent status tree.
4815		 */
4816		ret = ext4_es_remove_extent(inode, lblk, max_blocks);
4817		if (ret)
4818			goto out_dio;
4819
4820		ret = ext4_alloc_file_blocks(file, lblk, max_blocks, flags,
4821					     mode);
4822		if (ret)
4823			goto out_dio;
4824	}
4825
4826	handle = ext4_journal_start(inode, EXT4_HT_MISC, 4);
4827	if (IS_ERR(handle)) {
4828		ret = PTR_ERR(handle);
4829		ext4_std_error(inode->i_sb, ret);
4830		goto out_dio;
4831	}
4832
4833	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4834
4835	if (new_size) {
4836		if (new_size > i_size_read(inode))
4837			i_size_write(inode, new_size);
4838		if (new_size > EXT4_I(inode)->i_disksize)
4839			ext4_update_i_disksize(inode, new_size);
4840	} else {
4841		/*
4842		* Mark that we allocate beyond EOF so the subsequent truncate
4843		* can proceed even if the new size is the same as i_size.
4844		*/
4845		if ((offset + len) > i_size_read(inode))
4846			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4847	}
4848
4849	ext4_mark_inode_dirty(handle, inode);
4850
4851	/* Zero out partial block at the edges of the range */
4852	ret = ext4_zero_partial_blocks(handle, inode, offset, len);
4853
4854	if (file->f_flags & O_SYNC)
4855		ext4_handle_sync(handle);
4856
4857	ext4_journal_stop(handle);
4858out_dio:
4859	ext4_inode_resume_unlocked_dio(inode);
4860out_mutex:
4861	mutex_unlock(&inode->i_mutex);
4862	return ret;
4863}
4864
4865/*
4866 * preallocate space for a file. This implements ext4's fallocate file
4867 * operation, which gets called from sys_fallocate system call.
4868 * For block-mapped files, posix_fallocate should fall back to the method
4869 * of writing zeroes to the required new blocks (the same behavior which is
4870 * expected for file systems which do not support fallocate() system call).
4871 */
4872long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4873{
4874	struct inode *inode = file_inode(file);
4875	handle_t *handle;
4876	loff_t new_size = 0;
4877	unsigned int max_blocks;
4878	int ret = 0;
4879	int flags;
4880	ext4_lblk_t lblk;
4881	struct timespec tv;
4882	unsigned int blkbits = inode->i_blkbits;
4883
4884	/* Return error if mode is not supported */
4885	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4886		     FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
4887		return -EOPNOTSUPP;
4888
4889	if (mode & FALLOC_FL_PUNCH_HOLE)
4890		return ext4_punch_hole(inode, offset, len);
4891
4892	ret = ext4_convert_inline_data(inode);
4893	if (ret)
4894		return ret;
4895
4896	/*
4897	 * currently supporting (pre)allocate mode for extent-based
4898	 * files _only_
4899	 */
4900	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4901		return -EOPNOTSUPP;
4902
4903	if (mode & FALLOC_FL_COLLAPSE_RANGE)
4904		return ext4_collapse_range(inode, offset, len);
4905
4906	if (mode & FALLOC_FL_ZERO_RANGE)
4907		return ext4_zero_range(file, offset, len, mode);
4908
4909	trace_ext4_fallocate_enter(inode, offset, len, mode);
4910	lblk = offset >> blkbits;
4911	/*
4912	 * We can't just convert len to max_blocks because
4913	 * If blocksize = 4096 offset = 3072 and len = 2048
4914	 */
4915	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4916		- lblk;
4917
4918	flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4919	if (mode & FALLOC_FL_KEEP_SIZE)
4920		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4921
4922	mutex_lock(&inode->i_mutex);
4923
4924	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4925	     offset + len > i_size_read(inode)) {
4926		new_size = offset + len;
4927		ret = inode_newsize_ok(inode, new_size);
4928		if (ret)
4929			goto out;
4930	}
4931
4932	ret = ext4_alloc_file_blocks(file, lblk, max_blocks, flags, mode);
4933	if (ret)
4934		goto out;
4935
4936	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4937	if (IS_ERR(handle))
4938		goto out;
4939
4940	tv = inode->i_ctime = ext4_current_time(inode);
4941
4942	if (new_size) {
4943		if (new_size > i_size_read(inode)) {
4944			i_size_write(inode, new_size);
4945			inode->i_mtime = tv;
4946		}
4947		if (new_size > EXT4_I(inode)->i_disksize)
4948			ext4_update_i_disksize(inode, new_size);
4949	} else {
4950		/*
4951		* Mark that we allocate beyond EOF so the subsequent truncate
4952		* can proceed even if the new size is the same as i_size.
4953		*/
4954		if ((offset + len) > i_size_read(inode))
4955			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4956	}
4957	ext4_mark_inode_dirty(handle, inode);
4958	if (file->f_flags & O_SYNC)
4959		ext4_handle_sync(handle);
4960
4961	ext4_journal_stop(handle);
4962out:
4963	mutex_unlock(&inode->i_mutex);
4964	trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4965	return ret;
4966}
4967
4968/*
4969 * This function convert a range of blocks to written extents
4970 * The caller of this function will pass the start offset and the size.
4971 * all unwritten extents within this range will be converted to
4972 * written extents.
4973 *
4974 * This function is called from the direct IO end io call back
4975 * function, to convert the fallocated extents after IO is completed.
4976 * Returns 0 on success.
4977 */
4978int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4979				   loff_t offset, ssize_t len)
4980{
4981	unsigned int max_blocks;
4982	int ret = 0;
4983	int ret2 = 0;
4984	struct ext4_map_blocks map;
4985	unsigned int credits, blkbits = inode->i_blkbits;
4986
4987	map.m_lblk = offset >> blkbits;
4988	/*
4989	 * We can't just convert len to max_blocks because
4990	 * If blocksize = 4096 offset = 3072 and len = 2048
4991	 */
4992	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4993		      map.m_lblk);
4994	/*
4995	 * This is somewhat ugly but the idea is clear: When transaction is
4996	 * reserved, everything goes into it. Otherwise we rather start several
4997	 * smaller transactions for conversion of each extent separately.
4998	 */
4999	if (handle) {
5000		handle = ext4_journal_start_reserved(handle,
5001						     EXT4_HT_EXT_CONVERT);
5002		if (IS_ERR(handle))
5003			return PTR_ERR(handle);
5004		credits = 0;
5005	} else {
5006		/*
5007		 * credits to insert 1 extent into extent tree
5008		 */
5009		credits = ext4_chunk_trans_blocks(inode, max_blocks);
5010	}
5011	while (ret >= 0 && ret < max_blocks) {
5012		map.m_lblk += ret;
5013		map.m_len = (max_blocks -= ret);
5014		if (credits) {
5015			handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
5016						    credits);
5017			if (IS_ERR(handle)) {
5018				ret = PTR_ERR(handle);
5019				break;
5020			}
5021		}
5022		ret = ext4_map_blocks(handle, inode, &map,
5023				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
5024		if (ret <= 0)
5025			ext4_warning(inode->i_sb,
5026				     "inode #%lu: block %u: len %u: "
5027				     "ext4_ext_map_blocks returned %d",
5028				     inode->i_ino, map.m_lblk,
5029				     map.m_len, ret);
5030		ext4_mark_inode_dirty(handle, inode);
5031		if (credits)
5032			ret2 = ext4_journal_stop(handle);
5033		if (ret <= 0 || ret2)
5034			break;
5035	}
5036	if (!credits)
5037		ret2 = ext4_journal_stop(handle);
5038	return ret > 0 ? ret2 : ret;
5039}
5040
5041/*
5042 * If newes is not existing extent (newes->ec_pblk equals zero) find
5043 * delayed extent at start of newes and update newes accordingly and
5044 * return start of the next delayed extent.
5045 *
5046 * If newes is existing extent (newes->ec_pblk is not equal zero)
5047 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
5048 * extent found. Leave newes unmodified.
5049 */
5050static int ext4_find_delayed_extent(struct inode *inode,
5051				    struct extent_status *newes)
5052{
5053	struct extent_status es;
5054	ext4_lblk_t block, next_del;
5055
5056	if (newes->es_pblk == 0) {
5057		ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
5058				newes->es_lblk + newes->es_len - 1, &es);
5059
5060		/*
5061		 * No extent in extent-tree contains block @newes->es_pblk,
5062		 * then the block may stay in 1)a hole or 2)delayed-extent.
5063		 */
5064		if (es.es_len == 0)
5065			/* A hole found. */
5066			return 0;
5067
5068		if (es.es_lblk > newes->es_lblk) {
5069			/* A hole found. */
5070			newes->es_len = min(es.es_lblk - newes->es_lblk,
5071					    newes->es_len);
5072			return 0;
5073		}
5074
5075		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
5076	}
5077
5078	block = newes->es_lblk + newes->es_len;
5079	ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
5080	if (es.es_len == 0)
5081		next_del = EXT_MAX_BLOCKS;
5082	else
5083		next_del = es.es_lblk;
5084
5085	return next_del;
5086}
5087/* fiemap flags we can handle specified here */
5088#define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
5089
5090static int ext4_xattr_fiemap(struct inode *inode,
5091				struct fiemap_extent_info *fieinfo)
5092{
5093	__u64 physical = 0;
5094	__u64 length;
5095	__u32 flags = FIEMAP_EXTENT_LAST;
5096	int blockbits = inode->i_sb->s_blocksize_bits;
5097	int error = 0;
5098
5099	/* in-inode? */
5100	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
5101		struct ext4_iloc iloc;
5102		int offset;	/* offset of xattr in inode */
5103
5104		error = ext4_get_inode_loc(inode, &iloc);
5105		if (error)
5106			return error;
5107		physical = (__u64)iloc.bh->b_blocknr << blockbits;
5108		offset = EXT4_GOOD_OLD_INODE_SIZE +
5109				EXT4_I(inode)->i_extra_isize;
5110		physical += offset;
5111		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
5112		flags |= FIEMAP_EXTENT_DATA_INLINE;
5113		brelse(iloc.bh);
5114	} else { /* external block */
5115		physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
5116		length = inode->i_sb->s_blocksize;
5117	}
5118
5119	if (physical)
5120		error = fiemap_fill_next_extent(fieinfo, 0, physical,
5121						length, flags);
5122	return (error < 0 ? error : 0);
5123}
5124
5125int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5126		__u64 start, __u64 len)
5127{
5128	ext4_lblk_t start_blk;
5129	int error = 0;
5130
5131	if (ext4_has_inline_data(inode)) {
5132		int has_inline = 1;
5133
5134		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
5135
5136		if (has_inline)
5137			return error;
5138	}
5139
5140	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
5141		error = ext4_ext_precache(inode);
5142		if (error)
5143			return error;
5144	}
5145
5146	/* fallback to generic here if not in extents fmt */
5147	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5148		return generic_block_fiemap(inode, fieinfo, start, len,
5149			ext4_get_block);
5150
5151	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5152		return -EBADR;
5153
5154	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5155		error = ext4_xattr_fiemap(inode, fieinfo);
5156	} else {
5157		ext4_lblk_t len_blks;
5158		__u64 last_blk;
5159
5160		start_blk = start >> inode->i_sb->s_blocksize_bits;
5161		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5162		if (last_blk >= EXT_MAX_BLOCKS)
5163			last_blk = EXT_MAX_BLOCKS-1;
5164		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5165
5166		/*
5167		 * Walk the extent tree gathering extent information
5168		 * and pushing extents back to the user.
5169		 */
5170		error = ext4_fill_fiemap_extents(inode, start_blk,
5171						 len_blks, fieinfo);
5172	}
5173	ext4_es_lru_add(inode);
5174	return error;
5175}
5176
5177/*
5178 * ext4_access_path:
5179 * Function to access the path buffer for marking it dirty.
5180 * It also checks if there are sufficient credits left in the journal handle
5181 * to update path.
5182 */
5183static int
5184ext4_access_path(handle_t *handle, struct inode *inode,
5185		struct ext4_ext_path *path)
5186{
5187	int credits, err;
5188
5189	if (!ext4_handle_valid(handle))
5190		return 0;
5191
5192	/*
5193	 * Check if need to extend journal credits
5194	 * 3 for leaf, sb, and inode plus 2 (bmap and group
5195	 * descriptor) for each block group; assume two block
5196	 * groups
5197	 */
5198	if (handle->h_buffer_credits < 7) {
5199		credits = ext4_writepage_trans_blocks(inode);
5200		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
5201		/* EAGAIN is success */
5202		if (err && err != -EAGAIN)
5203			return err;
5204	}
5205
5206	err = ext4_ext_get_access(handle, inode, path);
5207	return err;
5208}
5209
5210/*
5211 * ext4_ext_shift_path_extents:
5212 * Shift the extents of a path structure lying between path[depth].p_ext
5213 * and EXT_LAST_EXTENT(path[depth].p_hdr) downwards, by subtracting shift
5214 * from starting block for each extent.
5215 */
5216static int
5217ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
5218			    struct inode *inode, handle_t *handle,
5219			    ext4_lblk_t *start)
5220{
5221	int depth, err = 0;
5222	struct ext4_extent *ex_start, *ex_last;
5223	bool update = 0;
5224	depth = path->p_depth;
5225
5226	while (depth >= 0) {
5227		if (depth == path->p_depth) {
5228			ex_start = path[depth].p_ext;
5229			if (!ex_start)
5230				return -EIO;
5231
5232			ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
5233			if (!ex_last)
5234				return -EIO;
5235
5236			err = ext4_access_path(handle, inode, path + depth);
5237			if (err)
5238				goto out;
5239
5240			if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
5241				update = 1;
5242
5243			*start = le32_to_cpu(ex_last->ee_block) +
5244				ext4_ext_get_actual_len(ex_last);
5245
5246			while (ex_start <= ex_last) {
5247				le32_add_cpu(&ex_start->ee_block, -shift);
5248				/* Try to merge to the left. */
5249				if ((ex_start >
5250				     EXT_FIRST_EXTENT(path[depth].p_hdr)) &&
5251				    ext4_ext_try_to_merge_right(inode,
5252							path, ex_start - 1))
5253					ex_last--;
5254				else
5255					ex_start++;
5256			}
5257			err = ext4_ext_dirty(handle, inode, path + depth);
5258			if (err)
5259				goto out;
5260
5261			if (--depth < 0 || !update)
5262				break;
5263		}
5264
5265		/* Update index too */
5266		err = ext4_access_path(handle, inode, path + depth);
5267		if (err)
5268			goto out;
5269
5270		le32_add_cpu(&path[depth].p_idx->ei_block, -shift);
5271		err = ext4_ext_dirty(handle, inode, path + depth);
5272		if (err)
5273			goto out;
5274
5275		/* we are done if current index is not a starting index */
5276		if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
5277			break;
5278
5279		depth--;
5280	}
5281
5282out:
5283	return err;
5284}
5285
5286/*
5287 * ext4_ext_shift_extents:
5288 * All the extents which lies in the range from start to the last allocated
5289 * block for the file are shifted downwards by shift blocks.
5290 * On success, 0 is returned, error otherwise.
5291 */
5292static int
5293ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5294		       ext4_lblk_t start, ext4_lblk_t shift)
5295{
5296	struct ext4_ext_path *path;
5297	int ret = 0, depth;
5298	struct ext4_extent *extent;
5299	ext4_lblk_t stop_block, current_block;
5300	ext4_lblk_t ex_start, ex_end;
5301
5302	/* Let path point to the last extent */
5303	path = ext4_ext_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0);
5304	if (IS_ERR(path))
5305		return PTR_ERR(path);
5306
5307	depth = path->p_depth;
5308	extent = path[depth].p_ext;
5309	if (!extent) {
5310		ext4_ext_drop_refs(path);
5311		kfree(path);
5312		return ret;
5313	}
5314
5315	stop_block = le32_to_cpu(extent->ee_block) +
5316			ext4_ext_get_actual_len(extent);
5317	ext4_ext_drop_refs(path);
5318	kfree(path);
5319
5320	/* Nothing to shift, if hole is at the end of file */
5321	if (start >= stop_block)
5322		return ret;
5323
5324	/*
5325	 * Don't start shifting extents until we make sure the hole is big
5326	 * enough to accomodate the shift.
5327	 */
5328	path = ext4_ext_find_extent(inode, start - 1, NULL, 0);
5329	if (IS_ERR(path))
5330		return PTR_ERR(path);
5331	depth = path->p_depth;
5332	extent =  path[depth].p_ext;
5333	if (extent) {
5334		ex_start = le32_to_cpu(extent->ee_block);
5335		ex_end = le32_to_cpu(extent->ee_block) +
5336			ext4_ext_get_actual_len(extent);
5337	} else {
5338		ex_start = 0;
5339		ex_end = 0;
5340	}
5341	ext4_ext_drop_refs(path);
5342	kfree(path);
5343
5344	if ((start == ex_start && shift > ex_start) ||
5345	    (shift > start - ex_end))
5346		return -EINVAL;
5347
5348	/* Its safe to start updating extents */
5349	while (start < stop_block) {
5350		path = ext4_ext_find_extent(inode, start, NULL, 0);
5351		if (IS_ERR(path))
5352			return PTR_ERR(path);
5353		depth = path->p_depth;
5354		extent = path[depth].p_ext;
5355		if (!extent) {
5356			EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
5357					 (unsigned long) start);
5358			return -EIO;
5359		}
5360
5361		current_block = le32_to_cpu(extent->ee_block);
5362		if (start > current_block) {
5363			/* Hole, move to the next extent */
5364			ret = mext_next_extent(inode, path, &extent);
5365			if (ret != 0) {
5366				ext4_ext_drop_refs(path);
5367				kfree(path);
5368				if (ret == 1)
5369					ret = 0;
5370				break;
5371			}
5372		}
5373		ret = ext4_ext_shift_path_extents(path, shift, inode,
5374				handle, &start);
5375		ext4_ext_drop_refs(path);
5376		kfree(path);
5377		if (ret)
5378			break;
5379	}
5380
5381	return ret;
5382}
5383
5384/*
5385 * ext4_collapse_range:
5386 * This implements the fallocate's collapse range functionality for ext4
5387 * Returns: 0 and non-zero on error.
5388 */
5389int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5390{
5391	struct super_block *sb = inode->i_sb;
5392	ext4_lblk_t punch_start, punch_stop;
5393	handle_t *handle;
5394	unsigned int credits;
5395	loff_t new_size, ioffset;
5396	int ret;
5397
5398	/* Collapse range works only on fs block size aligned offsets. */
5399	if (offset & (EXT4_BLOCK_SIZE(sb) - 1) ||
5400	    len & (EXT4_BLOCK_SIZE(sb) - 1))
5401		return -EINVAL;
5402
5403	if (!S_ISREG(inode->i_mode))
5404		return -EINVAL;
5405
5406	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1)
5407		return -EOPNOTSUPP;
5408
5409	trace_ext4_collapse_range(inode, offset, len);
5410
5411	punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5412	punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5413
5414	/* Call ext4_force_commit to flush all data in case of data=journal. */
5415	if (ext4_should_journal_data(inode)) {
5416		ret = ext4_force_commit(inode->i_sb);
5417		if (ret)
5418			return ret;
5419	}
5420
5421	/*
5422	 * Need to round down offset to be aligned with page size boundary
5423	 * for page size > block size.
5424	 */
5425	ioffset = round_down(offset, PAGE_SIZE);
5426
5427	/* Write out all dirty pages */
5428	ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
5429					   LLONG_MAX);
5430	if (ret)
5431		return ret;
5432
5433	/* Take mutex lock */
5434	mutex_lock(&inode->i_mutex);
5435
5436	/*
5437	 * There is no need to overlap collapse range with EOF, in which case
5438	 * it is effectively a truncate operation
5439	 */
5440	if (offset + len >= i_size_read(inode)) {
5441		ret = -EINVAL;
5442		goto out_mutex;
5443	}
5444
5445	/* Currently just for extent based files */
5446	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5447		ret = -EOPNOTSUPP;
5448		goto out_mutex;
5449	}
5450
5451	truncate_pagecache(inode, ioffset);
5452
5453	/* Wait for existing dio to complete */
5454	ext4_inode_block_unlocked_dio(inode);
5455	inode_dio_wait(inode);
5456
5457	credits = ext4_writepage_trans_blocks(inode);
5458	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5459	if (IS_ERR(handle)) {
5460		ret = PTR_ERR(handle);
5461		goto out_dio;
5462	}
5463
5464	down_write(&EXT4_I(inode)->i_data_sem);
5465	ext4_discard_preallocations(inode);
5466
5467	ret = ext4_es_remove_extent(inode, punch_start,
5468				    EXT_MAX_BLOCKS - punch_start);
5469	if (ret) {
5470		up_write(&EXT4_I(inode)->i_data_sem);
5471		goto out_stop;
5472	}
5473
5474	ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5475	if (ret) {
5476		up_write(&EXT4_I(inode)->i_data_sem);
5477		goto out_stop;
5478	}
5479	ext4_discard_preallocations(inode);
5480
5481	ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5482				     punch_stop - punch_start);
5483	if (ret) {
5484		up_write(&EXT4_I(inode)->i_data_sem);
5485		goto out_stop;
5486	}
5487
5488	new_size = i_size_read(inode) - len;
5489	i_size_write(inode, new_size);
5490	EXT4_I(inode)->i_disksize = new_size;
5491
5492	up_write(&EXT4_I(inode)->i_data_sem);
5493	if (IS_SYNC(inode))
5494		ext4_handle_sync(handle);
5495	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
5496	ext4_mark_inode_dirty(handle, inode);
5497
5498out_stop:
5499	ext4_journal_stop(handle);
5500out_dio:
5501	ext4_inode_resume_unlocked_dio(inode);
5502out_mutex:
5503	mutex_unlock(&inode->i_mutex);
5504	return ret;
5505}
5506