extents.c revision 65922cb5ced76ba7182e955d4aada96f93446b1a
1/*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 *   Copyright (c) 2005, Bull S.A.
7 *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21 */
22
23/*
24 * Extents support for EXT4
25 *
26 * TODO:
27 *   - ext4*_error() should be used in some situations
28 *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 *   - smart tree reduction
30 */
31
32#include <linux/module.h>
33#include <linux/fs.h>
34#include <linux/time.h>
35#include <linux/jbd2.h>
36#include <linux/highuid.h>
37#include <linux/pagemap.h>
38#include <linux/quotaops.h>
39#include <linux/string.h>
40#include <linux/slab.h>
41#include <linux/falloc.h>
42#include <asm/uaccess.h>
43#include <linux/fiemap.h>
44#include "ext4_jbd2.h"
45#include "ext4_extents.h"
46
47#include <trace/events/ext4.h>
48
49static int ext4_ext_truncate_extend_restart(handle_t *handle,
50					    struct inode *inode,
51					    int needed)
52{
53	int err;
54
55	if (!ext4_handle_valid(handle))
56		return 0;
57	if (handle->h_buffer_credits > needed)
58		return 0;
59	err = ext4_journal_extend(handle, needed);
60	if (err <= 0)
61		return err;
62	err = ext4_truncate_restart_trans(handle, inode, needed);
63	if (err == 0)
64		err = -EAGAIN;
65
66	return err;
67}
68
69/*
70 * could return:
71 *  - EROFS
72 *  - ENOMEM
73 */
74static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
75				struct ext4_ext_path *path)
76{
77	if (path->p_bh) {
78		/* path points to block */
79		return ext4_journal_get_write_access(handle, path->p_bh);
80	}
81	/* path points to leaf/index in inode body */
82	/* we use in-core data, no need to protect them */
83	return 0;
84}
85
86/*
87 * could return:
88 *  - EROFS
89 *  - ENOMEM
90 *  - EIO
91 */
92static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
93				struct ext4_ext_path *path)
94{
95	int err;
96	if (path->p_bh) {
97		/* path points to block */
98		err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
99	} else {
100		/* path points to leaf/index in inode body */
101		err = ext4_mark_inode_dirty(handle, inode);
102	}
103	return err;
104}
105
106static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
107			      struct ext4_ext_path *path,
108			      ext4_lblk_t block)
109{
110	struct ext4_inode_info *ei = EXT4_I(inode);
111	ext4_fsblk_t bg_start;
112	ext4_fsblk_t last_block;
113	ext4_grpblk_t colour;
114	ext4_group_t block_group;
115	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
116	int depth;
117
118	if (path) {
119		struct ext4_extent *ex;
120		depth = path->p_depth;
121
122		/*
123		 * Try to predict block placement assuming that we are
124		 * filling in a file which will eventually be
125		 * non-sparse --- i.e., in the case of libbfd writing
126		 * an ELF object sections out-of-order but in a way
127		 * the eventually results in a contiguous object or
128		 * executable file, or some database extending a table
129		 * space file.  However, this is actually somewhat
130		 * non-ideal if we are writing a sparse file such as
131		 * qemu or KVM writing a raw image file that is going
132		 * to stay fairly sparse, since it will end up
133		 * fragmenting the file system's free space.  Maybe we
134		 * should have some hueristics or some way to allow
135		 * userspace to pass a hint to file system,
136		 * especiially if the latter case turns out to be
137		 * common.
138		 */
139		ex = path[depth].p_ext;
140		if (ex) {
141			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
142			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
143
144			if (block > ext_block)
145				return ext_pblk + (block - ext_block);
146			else
147				return ext_pblk - (ext_block - block);
148		}
149
150		/* it looks like index is empty;
151		 * try to find starting block from index itself */
152		if (path[depth].p_bh)
153			return path[depth].p_bh->b_blocknr;
154	}
155
156	/* OK. use inode's group */
157	block_group = ei->i_block_group;
158	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
159		/*
160		 * If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
161		 * block groups per flexgroup, reserve the first block
162		 * group for directories and special files.  Regular
163		 * files will start at the second block group.  This
164		 * tends to speed up directory access and improves
165		 * fsck times.
166		 */
167		block_group &= ~(flex_size-1);
168		if (S_ISREG(inode->i_mode))
169			block_group++;
170	}
171	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
172	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
173
174	/*
175	 * If we are doing delayed allocation, we don't need take
176	 * colour into account.
177	 */
178	if (test_opt(inode->i_sb, DELALLOC))
179		return bg_start;
180
181	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
182		colour = (current->pid % 16) *
183			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
184	else
185		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
186	return bg_start + colour + block;
187}
188
189/*
190 * Allocation for a meta data block
191 */
192static ext4_fsblk_t
193ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
194			struct ext4_ext_path *path,
195			struct ext4_extent *ex, int *err)
196{
197	ext4_fsblk_t goal, newblock;
198
199	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
200	newblock = ext4_new_meta_blocks(handle, inode, goal, NULL, err);
201	return newblock;
202}
203
204static inline int ext4_ext_space_block(struct inode *inode, int check)
205{
206	int size;
207
208	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
209			/ sizeof(struct ext4_extent);
210	if (!check) {
211#ifdef AGGRESSIVE_TEST
212		if (size > 6)
213			size = 6;
214#endif
215	}
216	return size;
217}
218
219static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
220{
221	int size;
222
223	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
224			/ sizeof(struct ext4_extent_idx);
225	if (!check) {
226#ifdef AGGRESSIVE_TEST
227		if (size > 5)
228			size = 5;
229#endif
230	}
231	return size;
232}
233
234static inline int ext4_ext_space_root(struct inode *inode, int check)
235{
236	int size;
237
238	size = sizeof(EXT4_I(inode)->i_data);
239	size -= sizeof(struct ext4_extent_header);
240	size /= sizeof(struct ext4_extent);
241	if (!check) {
242#ifdef AGGRESSIVE_TEST
243		if (size > 3)
244			size = 3;
245#endif
246	}
247	return size;
248}
249
250static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
251{
252	int size;
253
254	size = sizeof(EXT4_I(inode)->i_data);
255	size -= sizeof(struct ext4_extent_header);
256	size /= sizeof(struct ext4_extent_idx);
257	if (!check) {
258#ifdef AGGRESSIVE_TEST
259		if (size > 4)
260			size = 4;
261#endif
262	}
263	return size;
264}
265
266/*
267 * Calculate the number of metadata blocks needed
268 * to allocate @blocks
269 * Worse case is one block per extent
270 */
271int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
272{
273	struct ext4_inode_info *ei = EXT4_I(inode);
274	int idxs, num = 0;
275
276	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
277		/ sizeof(struct ext4_extent_idx));
278
279	/*
280	 * If the new delayed allocation block is contiguous with the
281	 * previous da block, it can share index blocks with the
282	 * previous block, so we only need to allocate a new index
283	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
284	 * an additional index block, and at ldxs**3 blocks, yet
285	 * another index blocks.
286	 */
287	if (ei->i_da_metadata_calc_len &&
288	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
289		if ((ei->i_da_metadata_calc_len % idxs) == 0)
290			num++;
291		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
292			num++;
293		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
294			num++;
295			ei->i_da_metadata_calc_len = 0;
296		} else
297			ei->i_da_metadata_calc_len++;
298		ei->i_da_metadata_calc_last_lblock++;
299		return num;
300	}
301
302	/*
303	 * In the worst case we need a new set of index blocks at
304	 * every level of the inode's extent tree.
305	 */
306	ei->i_da_metadata_calc_len = 1;
307	ei->i_da_metadata_calc_last_lblock = lblock;
308	return ext_depth(inode) + 1;
309}
310
311static int
312ext4_ext_max_entries(struct inode *inode, int depth)
313{
314	int max;
315
316	if (depth == ext_depth(inode)) {
317		if (depth == 0)
318			max = ext4_ext_space_root(inode, 1);
319		else
320			max = ext4_ext_space_root_idx(inode, 1);
321	} else {
322		if (depth == 0)
323			max = ext4_ext_space_block(inode, 1);
324		else
325			max = ext4_ext_space_block_idx(inode, 1);
326	}
327
328	return max;
329}
330
331static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
332{
333	ext4_fsblk_t block = ext4_ext_pblock(ext);
334	int len = ext4_ext_get_actual_len(ext);
335
336	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
337}
338
339static int ext4_valid_extent_idx(struct inode *inode,
340				struct ext4_extent_idx *ext_idx)
341{
342	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
343
344	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
345}
346
347static int ext4_valid_extent_entries(struct inode *inode,
348				struct ext4_extent_header *eh,
349				int depth)
350{
351	struct ext4_extent *ext;
352	struct ext4_extent_idx *ext_idx;
353	unsigned short entries;
354	if (eh->eh_entries == 0)
355		return 1;
356
357	entries = le16_to_cpu(eh->eh_entries);
358
359	if (depth == 0) {
360		/* leaf entries */
361		ext = EXT_FIRST_EXTENT(eh);
362		while (entries) {
363			if (!ext4_valid_extent(inode, ext))
364				return 0;
365			ext++;
366			entries--;
367		}
368	} else {
369		ext_idx = EXT_FIRST_INDEX(eh);
370		while (entries) {
371			if (!ext4_valid_extent_idx(inode, ext_idx))
372				return 0;
373			ext_idx++;
374			entries--;
375		}
376	}
377	return 1;
378}
379
380static int __ext4_ext_check(const char *function, unsigned int line,
381			    struct inode *inode, struct ext4_extent_header *eh,
382			    int depth)
383{
384	const char *error_msg;
385	int max = 0;
386
387	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
388		error_msg = "invalid magic";
389		goto corrupted;
390	}
391	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
392		error_msg = "unexpected eh_depth";
393		goto corrupted;
394	}
395	if (unlikely(eh->eh_max == 0)) {
396		error_msg = "invalid eh_max";
397		goto corrupted;
398	}
399	max = ext4_ext_max_entries(inode, depth);
400	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
401		error_msg = "too large eh_max";
402		goto corrupted;
403	}
404	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
405		error_msg = "invalid eh_entries";
406		goto corrupted;
407	}
408	if (!ext4_valid_extent_entries(inode, eh, depth)) {
409		error_msg = "invalid extent entries";
410		goto corrupted;
411	}
412	return 0;
413
414corrupted:
415	ext4_error_inode(inode, function, line, 0,
416			"bad header/extent: %s - magic %x, "
417			"entries %u, max %u(%u), depth %u(%u)",
418			error_msg, le16_to_cpu(eh->eh_magic),
419			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
420			max, le16_to_cpu(eh->eh_depth), depth);
421
422	return -EIO;
423}
424
425#define ext4_ext_check(inode, eh, depth)	\
426	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
427
428int ext4_ext_check_inode(struct inode *inode)
429{
430	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
431}
432
433#ifdef EXT_DEBUG
434static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
435{
436	int k, l = path->p_depth;
437
438	ext_debug("path:");
439	for (k = 0; k <= l; k++, path++) {
440		if (path->p_idx) {
441		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
442			    ext4_idx_pblock(path->p_idx));
443		} else if (path->p_ext) {
444			ext_debug("  %d:[%d]%d:%llu ",
445				  le32_to_cpu(path->p_ext->ee_block),
446				  ext4_ext_is_uninitialized(path->p_ext),
447				  ext4_ext_get_actual_len(path->p_ext),
448				  ext4_ext_pblock(path->p_ext));
449		} else
450			ext_debug("  []");
451	}
452	ext_debug("\n");
453}
454
455static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
456{
457	int depth = ext_depth(inode);
458	struct ext4_extent_header *eh;
459	struct ext4_extent *ex;
460	int i;
461
462	if (!path)
463		return;
464
465	eh = path[depth].p_hdr;
466	ex = EXT_FIRST_EXTENT(eh);
467
468	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
469
470	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
471		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
472			  ext4_ext_is_uninitialized(ex),
473			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
474	}
475	ext_debug("\n");
476}
477#else
478#define ext4_ext_show_path(inode, path)
479#define ext4_ext_show_leaf(inode, path)
480#endif
481
482void ext4_ext_drop_refs(struct ext4_ext_path *path)
483{
484	int depth = path->p_depth;
485	int i;
486
487	for (i = 0; i <= depth; i++, path++)
488		if (path->p_bh) {
489			brelse(path->p_bh);
490			path->p_bh = NULL;
491		}
492}
493
494/*
495 * ext4_ext_binsearch_idx:
496 * binary search for the closest index of the given block
497 * the header must be checked before calling this
498 */
499static void
500ext4_ext_binsearch_idx(struct inode *inode,
501			struct ext4_ext_path *path, ext4_lblk_t block)
502{
503	struct ext4_extent_header *eh = path->p_hdr;
504	struct ext4_extent_idx *r, *l, *m;
505
506
507	ext_debug("binsearch for %u(idx):  ", block);
508
509	l = EXT_FIRST_INDEX(eh) + 1;
510	r = EXT_LAST_INDEX(eh);
511	while (l <= r) {
512		m = l + (r - l) / 2;
513		if (block < le32_to_cpu(m->ei_block))
514			r = m - 1;
515		else
516			l = m + 1;
517		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
518				m, le32_to_cpu(m->ei_block),
519				r, le32_to_cpu(r->ei_block));
520	}
521
522	path->p_idx = l - 1;
523	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
524		  ext4_idx_pblock(path->p_idx));
525
526#ifdef CHECK_BINSEARCH
527	{
528		struct ext4_extent_idx *chix, *ix;
529		int k;
530
531		chix = ix = EXT_FIRST_INDEX(eh);
532		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
533		  if (k != 0 &&
534		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
535				printk(KERN_DEBUG "k=%d, ix=0x%p, "
536				       "first=0x%p\n", k,
537				       ix, EXT_FIRST_INDEX(eh));
538				printk(KERN_DEBUG "%u <= %u\n",
539				       le32_to_cpu(ix->ei_block),
540				       le32_to_cpu(ix[-1].ei_block));
541			}
542			BUG_ON(k && le32_to_cpu(ix->ei_block)
543					   <= le32_to_cpu(ix[-1].ei_block));
544			if (block < le32_to_cpu(ix->ei_block))
545				break;
546			chix = ix;
547		}
548		BUG_ON(chix != path->p_idx);
549	}
550#endif
551
552}
553
554/*
555 * ext4_ext_binsearch:
556 * binary search for closest extent of the given block
557 * the header must be checked before calling this
558 */
559static void
560ext4_ext_binsearch(struct inode *inode,
561		struct ext4_ext_path *path, ext4_lblk_t block)
562{
563	struct ext4_extent_header *eh = path->p_hdr;
564	struct ext4_extent *r, *l, *m;
565
566	if (eh->eh_entries == 0) {
567		/*
568		 * this leaf is empty:
569		 * we get such a leaf in split/add case
570		 */
571		return;
572	}
573
574	ext_debug("binsearch for %u:  ", block);
575
576	l = EXT_FIRST_EXTENT(eh) + 1;
577	r = EXT_LAST_EXTENT(eh);
578
579	while (l <= r) {
580		m = l + (r - l) / 2;
581		if (block < le32_to_cpu(m->ee_block))
582			r = m - 1;
583		else
584			l = m + 1;
585		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
586				m, le32_to_cpu(m->ee_block),
587				r, le32_to_cpu(r->ee_block));
588	}
589
590	path->p_ext = l - 1;
591	ext_debug("  -> %d:%llu:[%d]%d ",
592			le32_to_cpu(path->p_ext->ee_block),
593			ext4_ext_pblock(path->p_ext),
594			ext4_ext_is_uninitialized(path->p_ext),
595			ext4_ext_get_actual_len(path->p_ext));
596
597#ifdef CHECK_BINSEARCH
598	{
599		struct ext4_extent *chex, *ex;
600		int k;
601
602		chex = ex = EXT_FIRST_EXTENT(eh);
603		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
604			BUG_ON(k && le32_to_cpu(ex->ee_block)
605					  <= le32_to_cpu(ex[-1].ee_block));
606			if (block < le32_to_cpu(ex->ee_block))
607				break;
608			chex = ex;
609		}
610		BUG_ON(chex != path->p_ext);
611	}
612#endif
613
614}
615
616int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
617{
618	struct ext4_extent_header *eh;
619
620	eh = ext_inode_hdr(inode);
621	eh->eh_depth = 0;
622	eh->eh_entries = 0;
623	eh->eh_magic = EXT4_EXT_MAGIC;
624	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
625	ext4_mark_inode_dirty(handle, inode);
626	ext4_ext_invalidate_cache(inode);
627	return 0;
628}
629
630struct ext4_ext_path *
631ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
632					struct ext4_ext_path *path)
633{
634	struct ext4_extent_header *eh;
635	struct buffer_head *bh;
636	short int depth, i, ppos = 0, alloc = 0;
637
638	eh = ext_inode_hdr(inode);
639	depth = ext_depth(inode);
640
641	/* account possible depth increase */
642	if (!path) {
643		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
644				GFP_NOFS);
645		if (!path)
646			return ERR_PTR(-ENOMEM);
647		alloc = 1;
648	}
649	path[0].p_hdr = eh;
650	path[0].p_bh = NULL;
651
652	i = depth;
653	/* walk through the tree */
654	while (i) {
655		int need_to_validate = 0;
656
657		ext_debug("depth %d: num %d, max %d\n",
658			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
659
660		ext4_ext_binsearch_idx(inode, path + ppos, block);
661		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
662		path[ppos].p_depth = i;
663		path[ppos].p_ext = NULL;
664
665		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
666		if (unlikely(!bh))
667			goto err;
668		if (!bh_uptodate_or_lock(bh)) {
669			trace_ext4_ext_load_extent(inode, block,
670						path[ppos].p_block);
671			if (bh_submit_read(bh) < 0) {
672				put_bh(bh);
673				goto err;
674			}
675			/* validate the extent entries */
676			need_to_validate = 1;
677		}
678		eh = ext_block_hdr(bh);
679		ppos++;
680		if (unlikely(ppos > depth)) {
681			put_bh(bh);
682			EXT4_ERROR_INODE(inode,
683					 "ppos %d > depth %d", ppos, depth);
684			goto err;
685		}
686		path[ppos].p_bh = bh;
687		path[ppos].p_hdr = eh;
688		i--;
689
690		if (need_to_validate && ext4_ext_check(inode, eh, i))
691			goto err;
692	}
693
694	path[ppos].p_depth = i;
695	path[ppos].p_ext = NULL;
696	path[ppos].p_idx = NULL;
697
698	/* find extent */
699	ext4_ext_binsearch(inode, path + ppos, block);
700	/* if not an empty leaf */
701	if (path[ppos].p_ext)
702		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
703
704	ext4_ext_show_path(inode, path);
705
706	return path;
707
708err:
709	ext4_ext_drop_refs(path);
710	if (alloc)
711		kfree(path);
712	return ERR_PTR(-EIO);
713}
714
715/*
716 * ext4_ext_insert_index:
717 * insert new index [@logical;@ptr] into the block at @curp;
718 * check where to insert: before @curp or after @curp
719 */
720static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
721				 struct ext4_ext_path *curp,
722				 int logical, ext4_fsblk_t ptr)
723{
724	struct ext4_extent_idx *ix;
725	int len, err;
726
727	err = ext4_ext_get_access(handle, inode, curp);
728	if (err)
729		return err;
730
731	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
732		EXT4_ERROR_INODE(inode,
733				 "logical %d == ei_block %d!",
734				 logical, le32_to_cpu(curp->p_idx->ei_block));
735		return -EIO;
736	}
737	len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
738	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
739		/* insert after */
740		if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
741			len = (len - 1) * sizeof(struct ext4_extent_idx);
742			len = len < 0 ? 0 : len;
743			ext_debug("insert new index %d after: %llu. "
744					"move %d from 0x%p to 0x%p\n",
745					logical, ptr, len,
746					(curp->p_idx + 1), (curp->p_idx + 2));
747			memmove(curp->p_idx + 2, curp->p_idx + 1, len);
748		}
749		ix = curp->p_idx + 1;
750	} else {
751		/* insert before */
752		len = len * sizeof(struct ext4_extent_idx);
753		len = len < 0 ? 0 : len;
754		ext_debug("insert new index %d before: %llu. "
755				"move %d from 0x%p to 0x%p\n",
756				logical, ptr, len,
757				curp->p_idx, (curp->p_idx + 1));
758		memmove(curp->p_idx + 1, curp->p_idx, len);
759		ix = curp->p_idx;
760	}
761
762	ix->ei_block = cpu_to_le32(logical);
763	ext4_idx_store_pblock(ix, ptr);
764	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
765
766	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
767			     > le16_to_cpu(curp->p_hdr->eh_max))) {
768		EXT4_ERROR_INODE(inode,
769				 "logical %d == ei_block %d!",
770				 logical, le32_to_cpu(curp->p_idx->ei_block));
771		return -EIO;
772	}
773	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
774		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
775		return -EIO;
776	}
777
778	err = ext4_ext_dirty(handle, inode, curp);
779	ext4_std_error(inode->i_sb, err);
780
781	return err;
782}
783
784/*
785 * ext4_ext_split:
786 * inserts new subtree into the path, using free index entry
787 * at depth @at:
788 * - allocates all needed blocks (new leaf and all intermediate index blocks)
789 * - makes decision where to split
790 * - moves remaining extents and index entries (right to the split point)
791 *   into the newly allocated blocks
792 * - initializes subtree
793 */
794static int ext4_ext_split(handle_t *handle, struct inode *inode,
795				struct ext4_ext_path *path,
796				struct ext4_extent *newext, int at)
797{
798	struct buffer_head *bh = NULL;
799	int depth = ext_depth(inode);
800	struct ext4_extent_header *neh;
801	struct ext4_extent_idx *fidx;
802	struct ext4_extent *ex;
803	int i = at, k, m, a;
804	ext4_fsblk_t newblock, oldblock;
805	__le32 border;
806	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
807	int err = 0;
808
809	/* make decision: where to split? */
810	/* FIXME: now decision is simplest: at current extent */
811
812	/* if current leaf will be split, then we should use
813	 * border from split point */
814	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
815		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
816		return -EIO;
817	}
818	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
819		border = path[depth].p_ext[1].ee_block;
820		ext_debug("leaf will be split."
821				" next leaf starts at %d\n",
822				  le32_to_cpu(border));
823	} else {
824		border = newext->ee_block;
825		ext_debug("leaf will be added."
826				" next leaf starts at %d\n",
827				le32_to_cpu(border));
828	}
829
830	/*
831	 * If error occurs, then we break processing
832	 * and mark filesystem read-only. index won't
833	 * be inserted and tree will be in consistent
834	 * state. Next mount will repair buffers too.
835	 */
836
837	/*
838	 * Get array to track all allocated blocks.
839	 * We need this to handle errors and free blocks
840	 * upon them.
841	 */
842	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
843	if (!ablocks)
844		return -ENOMEM;
845
846	/* allocate all needed blocks */
847	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
848	for (a = 0; a < depth - at; a++) {
849		newblock = ext4_ext_new_meta_block(handle, inode, path,
850						   newext, &err);
851		if (newblock == 0)
852			goto cleanup;
853		ablocks[a] = newblock;
854	}
855
856	/* initialize new leaf */
857	newblock = ablocks[--a];
858	if (unlikely(newblock == 0)) {
859		EXT4_ERROR_INODE(inode, "newblock == 0!");
860		err = -EIO;
861		goto cleanup;
862	}
863	bh = sb_getblk(inode->i_sb, newblock);
864	if (!bh) {
865		err = -EIO;
866		goto cleanup;
867	}
868	lock_buffer(bh);
869
870	err = ext4_journal_get_create_access(handle, bh);
871	if (err)
872		goto cleanup;
873
874	neh = ext_block_hdr(bh);
875	neh->eh_entries = 0;
876	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
877	neh->eh_magic = EXT4_EXT_MAGIC;
878	neh->eh_depth = 0;
879	ex = EXT_FIRST_EXTENT(neh);
880
881	/* move remainder of path[depth] to the new leaf */
882	if (unlikely(path[depth].p_hdr->eh_entries !=
883		     path[depth].p_hdr->eh_max)) {
884		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
885				 path[depth].p_hdr->eh_entries,
886				 path[depth].p_hdr->eh_max);
887		err = -EIO;
888		goto cleanup;
889	}
890	/* start copy from next extent */
891	/* TODO: we could do it by single memmove */
892	m = 0;
893	path[depth].p_ext++;
894	while (path[depth].p_ext <=
895			EXT_MAX_EXTENT(path[depth].p_hdr)) {
896		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
897				le32_to_cpu(path[depth].p_ext->ee_block),
898				ext4_ext_pblock(path[depth].p_ext),
899				ext4_ext_is_uninitialized(path[depth].p_ext),
900				ext4_ext_get_actual_len(path[depth].p_ext),
901				newblock);
902		/*memmove(ex++, path[depth].p_ext++,
903				sizeof(struct ext4_extent));
904		neh->eh_entries++;*/
905		path[depth].p_ext++;
906		m++;
907	}
908	if (m) {
909		memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
910		le16_add_cpu(&neh->eh_entries, m);
911	}
912
913	set_buffer_uptodate(bh);
914	unlock_buffer(bh);
915
916	err = ext4_handle_dirty_metadata(handle, inode, bh);
917	if (err)
918		goto cleanup;
919	brelse(bh);
920	bh = NULL;
921
922	/* correct old leaf */
923	if (m) {
924		err = ext4_ext_get_access(handle, inode, path + depth);
925		if (err)
926			goto cleanup;
927		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
928		err = ext4_ext_dirty(handle, inode, path + depth);
929		if (err)
930			goto cleanup;
931
932	}
933
934	/* create intermediate indexes */
935	k = depth - at - 1;
936	if (unlikely(k < 0)) {
937		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
938		err = -EIO;
939		goto cleanup;
940	}
941	if (k)
942		ext_debug("create %d intermediate indices\n", k);
943	/* insert new index into current index block */
944	/* current depth stored in i var */
945	i = depth - 1;
946	while (k--) {
947		oldblock = newblock;
948		newblock = ablocks[--a];
949		bh = sb_getblk(inode->i_sb, newblock);
950		if (!bh) {
951			err = -EIO;
952			goto cleanup;
953		}
954		lock_buffer(bh);
955
956		err = ext4_journal_get_create_access(handle, bh);
957		if (err)
958			goto cleanup;
959
960		neh = ext_block_hdr(bh);
961		neh->eh_entries = cpu_to_le16(1);
962		neh->eh_magic = EXT4_EXT_MAGIC;
963		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
964		neh->eh_depth = cpu_to_le16(depth - i);
965		fidx = EXT_FIRST_INDEX(neh);
966		fidx->ei_block = border;
967		ext4_idx_store_pblock(fidx, oldblock);
968
969		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
970				i, newblock, le32_to_cpu(border), oldblock);
971		/* copy indexes */
972		m = 0;
973		path[i].p_idx++;
974
975		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
976				EXT_MAX_INDEX(path[i].p_hdr));
977		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
978					EXT_LAST_INDEX(path[i].p_hdr))) {
979			EXT4_ERROR_INODE(inode,
980					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
981					 le32_to_cpu(path[i].p_ext->ee_block));
982			err = -EIO;
983			goto cleanup;
984		}
985		while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
986			ext_debug("%d: move %d:%llu in new index %llu\n", i,
987					le32_to_cpu(path[i].p_idx->ei_block),
988					ext4_idx_pblock(path[i].p_idx),
989					newblock);
990			/*memmove(++fidx, path[i].p_idx++,
991					sizeof(struct ext4_extent_idx));
992			neh->eh_entries++;
993			BUG_ON(neh->eh_entries > neh->eh_max);*/
994			path[i].p_idx++;
995			m++;
996		}
997		if (m) {
998			memmove(++fidx, path[i].p_idx - m,
999				sizeof(struct ext4_extent_idx) * m);
1000			le16_add_cpu(&neh->eh_entries, m);
1001		}
1002		set_buffer_uptodate(bh);
1003		unlock_buffer(bh);
1004
1005		err = ext4_handle_dirty_metadata(handle, inode, bh);
1006		if (err)
1007			goto cleanup;
1008		brelse(bh);
1009		bh = NULL;
1010
1011		/* correct old index */
1012		if (m) {
1013			err = ext4_ext_get_access(handle, inode, path + i);
1014			if (err)
1015				goto cleanup;
1016			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1017			err = ext4_ext_dirty(handle, inode, path + i);
1018			if (err)
1019				goto cleanup;
1020		}
1021
1022		i--;
1023	}
1024
1025	/* insert new index */
1026	err = ext4_ext_insert_index(handle, inode, path + at,
1027				    le32_to_cpu(border), newblock);
1028
1029cleanup:
1030	if (bh) {
1031		if (buffer_locked(bh))
1032			unlock_buffer(bh);
1033		brelse(bh);
1034	}
1035
1036	if (err) {
1037		/* free all allocated blocks in error case */
1038		for (i = 0; i < depth; i++) {
1039			if (!ablocks[i])
1040				continue;
1041			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1042					 EXT4_FREE_BLOCKS_METADATA);
1043		}
1044	}
1045	kfree(ablocks);
1046
1047	return err;
1048}
1049
1050/*
1051 * ext4_ext_grow_indepth:
1052 * implements tree growing procedure:
1053 * - allocates new block
1054 * - moves top-level data (index block or leaf) into the new block
1055 * - initializes new top-level, creating index that points to the
1056 *   just created block
1057 */
1058static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1059					struct ext4_ext_path *path,
1060					struct ext4_extent *newext)
1061{
1062	struct ext4_ext_path *curp = path;
1063	struct ext4_extent_header *neh;
1064	struct buffer_head *bh;
1065	ext4_fsblk_t newblock;
1066	int err = 0;
1067
1068	newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err);
1069	if (newblock == 0)
1070		return err;
1071
1072	bh = sb_getblk(inode->i_sb, newblock);
1073	if (!bh) {
1074		err = -EIO;
1075		ext4_std_error(inode->i_sb, err);
1076		return err;
1077	}
1078	lock_buffer(bh);
1079
1080	err = ext4_journal_get_create_access(handle, bh);
1081	if (err) {
1082		unlock_buffer(bh);
1083		goto out;
1084	}
1085
1086	/* move top-level index/leaf into new block */
1087	memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1088
1089	/* set size of new block */
1090	neh = ext_block_hdr(bh);
1091	/* old root could have indexes or leaves
1092	 * so calculate e_max right way */
1093	if (ext_depth(inode))
1094		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1095	else
1096		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1097	neh->eh_magic = EXT4_EXT_MAGIC;
1098	set_buffer_uptodate(bh);
1099	unlock_buffer(bh);
1100
1101	err = ext4_handle_dirty_metadata(handle, inode, bh);
1102	if (err)
1103		goto out;
1104
1105	/* create index in new top-level index: num,max,pointer */
1106	err = ext4_ext_get_access(handle, inode, curp);
1107	if (err)
1108		goto out;
1109
1110	curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1111	curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1112	curp->p_hdr->eh_entries = cpu_to_le16(1);
1113	curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1114
1115	if (path[0].p_hdr->eh_depth)
1116		curp->p_idx->ei_block =
1117			EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1118	else
1119		curp->p_idx->ei_block =
1120			EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1121	ext4_idx_store_pblock(curp->p_idx, newblock);
1122
1123	neh = ext_inode_hdr(inode);
1124	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1125		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1126		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1127		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1128
1129	neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1130	err = ext4_ext_dirty(handle, inode, curp);
1131out:
1132	brelse(bh);
1133
1134	return err;
1135}
1136
1137/*
1138 * ext4_ext_create_new_leaf:
1139 * finds empty index and adds new leaf.
1140 * if no free index is found, then it requests in-depth growing.
1141 */
1142static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1143					struct ext4_ext_path *path,
1144					struct ext4_extent *newext)
1145{
1146	struct ext4_ext_path *curp;
1147	int depth, i, err = 0;
1148
1149repeat:
1150	i = depth = ext_depth(inode);
1151
1152	/* walk up to the tree and look for free index entry */
1153	curp = path + depth;
1154	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1155		i--;
1156		curp--;
1157	}
1158
1159	/* we use already allocated block for index block,
1160	 * so subsequent data blocks should be contiguous */
1161	if (EXT_HAS_FREE_INDEX(curp)) {
1162		/* if we found index with free entry, then use that
1163		 * entry: create all needed subtree and add new leaf */
1164		err = ext4_ext_split(handle, inode, path, newext, i);
1165		if (err)
1166			goto out;
1167
1168		/* refill path */
1169		ext4_ext_drop_refs(path);
1170		path = ext4_ext_find_extent(inode,
1171				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1172				    path);
1173		if (IS_ERR(path))
1174			err = PTR_ERR(path);
1175	} else {
1176		/* tree is full, time to grow in depth */
1177		err = ext4_ext_grow_indepth(handle, inode, path, newext);
1178		if (err)
1179			goto out;
1180
1181		/* refill path */
1182		ext4_ext_drop_refs(path);
1183		path = ext4_ext_find_extent(inode,
1184				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1185				    path);
1186		if (IS_ERR(path)) {
1187			err = PTR_ERR(path);
1188			goto out;
1189		}
1190
1191		/*
1192		 * only first (depth 0 -> 1) produces free space;
1193		 * in all other cases we have to split the grown tree
1194		 */
1195		depth = ext_depth(inode);
1196		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1197			/* now we need to split */
1198			goto repeat;
1199		}
1200	}
1201
1202out:
1203	return err;
1204}
1205
1206/*
1207 * search the closest allocated block to the left for *logical
1208 * and returns it at @logical + it's physical address at @phys
1209 * if *logical is the smallest allocated block, the function
1210 * returns 0 at @phys
1211 * return value contains 0 (success) or error code
1212 */
1213static int ext4_ext_search_left(struct inode *inode,
1214				struct ext4_ext_path *path,
1215				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1216{
1217	struct ext4_extent_idx *ix;
1218	struct ext4_extent *ex;
1219	int depth, ee_len;
1220
1221	if (unlikely(path == NULL)) {
1222		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1223		return -EIO;
1224	}
1225	depth = path->p_depth;
1226	*phys = 0;
1227
1228	if (depth == 0 && path->p_ext == NULL)
1229		return 0;
1230
1231	/* usually extent in the path covers blocks smaller
1232	 * then *logical, but it can be that extent is the
1233	 * first one in the file */
1234
1235	ex = path[depth].p_ext;
1236	ee_len = ext4_ext_get_actual_len(ex);
1237	if (*logical < le32_to_cpu(ex->ee_block)) {
1238		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1239			EXT4_ERROR_INODE(inode,
1240					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1241					 *logical, le32_to_cpu(ex->ee_block));
1242			return -EIO;
1243		}
1244		while (--depth >= 0) {
1245			ix = path[depth].p_idx;
1246			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1247				EXT4_ERROR_INODE(inode,
1248				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1249				  ix != NULL ? ix->ei_block : 0,
1250				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1251				    EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block : 0,
1252				  depth);
1253				return -EIO;
1254			}
1255		}
1256		return 0;
1257	}
1258
1259	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1260		EXT4_ERROR_INODE(inode,
1261				 "logical %d < ee_block %d + ee_len %d!",
1262				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1263		return -EIO;
1264	}
1265
1266	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1267	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1268	return 0;
1269}
1270
1271/*
1272 * search the closest allocated block to the right for *logical
1273 * and returns it at @logical + it's physical address at @phys
1274 * if *logical is the smallest allocated block, the function
1275 * returns 0 at @phys
1276 * return value contains 0 (success) or error code
1277 */
1278static int ext4_ext_search_right(struct inode *inode,
1279				 struct ext4_ext_path *path,
1280				 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1281{
1282	struct buffer_head *bh = NULL;
1283	struct ext4_extent_header *eh;
1284	struct ext4_extent_idx *ix;
1285	struct ext4_extent *ex;
1286	ext4_fsblk_t block;
1287	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1288	int ee_len;
1289
1290	if (unlikely(path == NULL)) {
1291		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1292		return -EIO;
1293	}
1294	depth = path->p_depth;
1295	*phys = 0;
1296
1297	if (depth == 0 && path->p_ext == NULL)
1298		return 0;
1299
1300	/* usually extent in the path covers blocks smaller
1301	 * then *logical, but it can be that extent is the
1302	 * first one in the file */
1303
1304	ex = path[depth].p_ext;
1305	ee_len = ext4_ext_get_actual_len(ex);
1306	if (*logical < le32_to_cpu(ex->ee_block)) {
1307		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1308			EXT4_ERROR_INODE(inode,
1309					 "first_extent(path[%d].p_hdr) != ex",
1310					 depth);
1311			return -EIO;
1312		}
1313		while (--depth >= 0) {
1314			ix = path[depth].p_idx;
1315			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1316				EXT4_ERROR_INODE(inode,
1317						 "ix != EXT_FIRST_INDEX *logical %d!",
1318						 *logical);
1319				return -EIO;
1320			}
1321		}
1322		*logical = le32_to_cpu(ex->ee_block);
1323		*phys = ext4_ext_pblock(ex);
1324		return 0;
1325	}
1326
1327	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1328		EXT4_ERROR_INODE(inode,
1329				 "logical %d < ee_block %d + ee_len %d!",
1330				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1331		return -EIO;
1332	}
1333
1334	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1335		/* next allocated block in this leaf */
1336		ex++;
1337		*logical = le32_to_cpu(ex->ee_block);
1338		*phys = ext4_ext_pblock(ex);
1339		return 0;
1340	}
1341
1342	/* go up and search for index to the right */
1343	while (--depth >= 0) {
1344		ix = path[depth].p_idx;
1345		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1346			goto got_index;
1347	}
1348
1349	/* we've gone up to the root and found no index to the right */
1350	return 0;
1351
1352got_index:
1353	/* we've found index to the right, let's
1354	 * follow it and find the closest allocated
1355	 * block to the right */
1356	ix++;
1357	block = ext4_idx_pblock(ix);
1358	while (++depth < path->p_depth) {
1359		bh = sb_bread(inode->i_sb, block);
1360		if (bh == NULL)
1361			return -EIO;
1362		eh = ext_block_hdr(bh);
1363		/* subtract from p_depth to get proper eh_depth */
1364		if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1365			put_bh(bh);
1366			return -EIO;
1367		}
1368		ix = EXT_FIRST_INDEX(eh);
1369		block = ext4_idx_pblock(ix);
1370		put_bh(bh);
1371	}
1372
1373	bh = sb_bread(inode->i_sb, block);
1374	if (bh == NULL)
1375		return -EIO;
1376	eh = ext_block_hdr(bh);
1377	if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1378		put_bh(bh);
1379		return -EIO;
1380	}
1381	ex = EXT_FIRST_EXTENT(eh);
1382	*logical = le32_to_cpu(ex->ee_block);
1383	*phys = ext4_ext_pblock(ex);
1384	put_bh(bh);
1385	return 0;
1386}
1387
1388/*
1389 * ext4_ext_next_allocated_block:
1390 * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1391 * NOTE: it considers block number from index entry as
1392 * allocated block. Thus, index entries have to be consistent
1393 * with leaves.
1394 */
1395static ext4_lblk_t
1396ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1397{
1398	int depth;
1399
1400	BUG_ON(path == NULL);
1401	depth = path->p_depth;
1402
1403	if (depth == 0 && path->p_ext == NULL)
1404		return EXT_MAX_BLOCK;
1405
1406	while (depth >= 0) {
1407		if (depth == path->p_depth) {
1408			/* leaf */
1409			if (path[depth].p_ext !=
1410					EXT_LAST_EXTENT(path[depth].p_hdr))
1411			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1412		} else {
1413			/* index */
1414			if (path[depth].p_idx !=
1415					EXT_LAST_INDEX(path[depth].p_hdr))
1416			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1417		}
1418		depth--;
1419	}
1420
1421	return EXT_MAX_BLOCK;
1422}
1423
1424/*
1425 * ext4_ext_next_leaf_block:
1426 * returns first allocated block from next leaf or EXT_MAX_BLOCK
1427 */
1428static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1429					struct ext4_ext_path *path)
1430{
1431	int depth;
1432
1433	BUG_ON(path == NULL);
1434	depth = path->p_depth;
1435
1436	/* zero-tree has no leaf blocks at all */
1437	if (depth == 0)
1438		return EXT_MAX_BLOCK;
1439
1440	/* go to index block */
1441	depth--;
1442
1443	while (depth >= 0) {
1444		if (path[depth].p_idx !=
1445				EXT_LAST_INDEX(path[depth].p_hdr))
1446			return (ext4_lblk_t)
1447				le32_to_cpu(path[depth].p_idx[1].ei_block);
1448		depth--;
1449	}
1450
1451	return EXT_MAX_BLOCK;
1452}
1453
1454/*
1455 * ext4_ext_correct_indexes:
1456 * if leaf gets modified and modified extent is first in the leaf,
1457 * then we have to correct all indexes above.
1458 * TODO: do we need to correct tree in all cases?
1459 */
1460static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1461				struct ext4_ext_path *path)
1462{
1463	struct ext4_extent_header *eh;
1464	int depth = ext_depth(inode);
1465	struct ext4_extent *ex;
1466	__le32 border;
1467	int k, err = 0;
1468
1469	eh = path[depth].p_hdr;
1470	ex = path[depth].p_ext;
1471
1472	if (unlikely(ex == NULL || eh == NULL)) {
1473		EXT4_ERROR_INODE(inode,
1474				 "ex %p == NULL or eh %p == NULL", ex, eh);
1475		return -EIO;
1476	}
1477
1478	if (depth == 0) {
1479		/* there is no tree at all */
1480		return 0;
1481	}
1482
1483	if (ex != EXT_FIRST_EXTENT(eh)) {
1484		/* we correct tree if first leaf got modified only */
1485		return 0;
1486	}
1487
1488	/*
1489	 * TODO: we need correction if border is smaller than current one
1490	 */
1491	k = depth - 1;
1492	border = path[depth].p_ext->ee_block;
1493	err = ext4_ext_get_access(handle, inode, path + k);
1494	if (err)
1495		return err;
1496	path[k].p_idx->ei_block = border;
1497	err = ext4_ext_dirty(handle, inode, path + k);
1498	if (err)
1499		return err;
1500
1501	while (k--) {
1502		/* change all left-side indexes */
1503		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1504			break;
1505		err = ext4_ext_get_access(handle, inode, path + k);
1506		if (err)
1507			break;
1508		path[k].p_idx->ei_block = border;
1509		err = ext4_ext_dirty(handle, inode, path + k);
1510		if (err)
1511			break;
1512	}
1513
1514	return err;
1515}
1516
1517int
1518ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1519				struct ext4_extent *ex2)
1520{
1521	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1522
1523	/*
1524	 * Make sure that either both extents are uninitialized, or
1525	 * both are _not_.
1526	 */
1527	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1528		return 0;
1529
1530	if (ext4_ext_is_uninitialized(ex1))
1531		max_len = EXT_UNINIT_MAX_LEN;
1532	else
1533		max_len = EXT_INIT_MAX_LEN;
1534
1535	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1536	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1537
1538	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1539			le32_to_cpu(ex2->ee_block))
1540		return 0;
1541
1542	/*
1543	 * To allow future support for preallocated extents to be added
1544	 * as an RO_COMPAT feature, refuse to merge to extents if
1545	 * this can result in the top bit of ee_len being set.
1546	 */
1547	if (ext1_ee_len + ext2_ee_len > max_len)
1548		return 0;
1549#ifdef AGGRESSIVE_TEST
1550	if (ext1_ee_len >= 4)
1551		return 0;
1552#endif
1553
1554	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1555		return 1;
1556	return 0;
1557}
1558
1559/*
1560 * This function tries to merge the "ex" extent to the next extent in the tree.
1561 * It always tries to merge towards right. If you want to merge towards
1562 * left, pass "ex - 1" as argument instead of "ex".
1563 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1564 * 1 if they got merged.
1565 */
1566static int ext4_ext_try_to_merge(struct inode *inode,
1567				 struct ext4_ext_path *path,
1568				 struct ext4_extent *ex)
1569{
1570	struct ext4_extent_header *eh;
1571	unsigned int depth, len;
1572	int merge_done = 0;
1573	int uninitialized = 0;
1574
1575	depth = ext_depth(inode);
1576	BUG_ON(path[depth].p_hdr == NULL);
1577	eh = path[depth].p_hdr;
1578
1579	while (ex < EXT_LAST_EXTENT(eh)) {
1580		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1581			break;
1582		/* merge with next extent! */
1583		if (ext4_ext_is_uninitialized(ex))
1584			uninitialized = 1;
1585		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1586				+ ext4_ext_get_actual_len(ex + 1));
1587		if (uninitialized)
1588			ext4_ext_mark_uninitialized(ex);
1589
1590		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1591			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1592				* sizeof(struct ext4_extent);
1593			memmove(ex + 1, ex + 2, len);
1594		}
1595		le16_add_cpu(&eh->eh_entries, -1);
1596		merge_done = 1;
1597		WARN_ON(eh->eh_entries == 0);
1598		if (!eh->eh_entries)
1599			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1600	}
1601
1602	return merge_done;
1603}
1604
1605/*
1606 * check if a portion of the "newext" extent overlaps with an
1607 * existing extent.
1608 *
1609 * If there is an overlap discovered, it updates the length of the newext
1610 * such that there will be no overlap, and then returns 1.
1611 * If there is no overlap found, it returns 0.
1612 */
1613static unsigned int ext4_ext_check_overlap(struct inode *inode,
1614					   struct ext4_extent *newext,
1615					   struct ext4_ext_path *path)
1616{
1617	ext4_lblk_t b1, b2;
1618	unsigned int depth, len1;
1619	unsigned int ret = 0;
1620
1621	b1 = le32_to_cpu(newext->ee_block);
1622	len1 = ext4_ext_get_actual_len(newext);
1623	depth = ext_depth(inode);
1624	if (!path[depth].p_ext)
1625		goto out;
1626	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1627
1628	/*
1629	 * get the next allocated block if the extent in the path
1630	 * is before the requested block(s)
1631	 */
1632	if (b2 < b1) {
1633		b2 = ext4_ext_next_allocated_block(path);
1634		if (b2 == EXT_MAX_BLOCK)
1635			goto out;
1636	}
1637
1638	/* check for wrap through zero on extent logical start block*/
1639	if (b1 + len1 < b1) {
1640		len1 = EXT_MAX_BLOCK - b1;
1641		newext->ee_len = cpu_to_le16(len1);
1642		ret = 1;
1643	}
1644
1645	/* check for overlap */
1646	if (b1 + len1 > b2) {
1647		newext->ee_len = cpu_to_le16(b2 - b1);
1648		ret = 1;
1649	}
1650out:
1651	return ret;
1652}
1653
1654/*
1655 * ext4_ext_insert_extent:
1656 * tries to merge requsted extent into the existing extent or
1657 * inserts requested extent as new one into the tree,
1658 * creating new leaf in the no-space case.
1659 */
1660int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1661				struct ext4_ext_path *path,
1662				struct ext4_extent *newext, int flag)
1663{
1664	struct ext4_extent_header *eh;
1665	struct ext4_extent *ex, *fex;
1666	struct ext4_extent *nearex; /* nearest extent */
1667	struct ext4_ext_path *npath = NULL;
1668	int depth, len, err;
1669	ext4_lblk_t next;
1670	unsigned uninitialized = 0;
1671
1672	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1673		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1674		return -EIO;
1675	}
1676	depth = ext_depth(inode);
1677	ex = path[depth].p_ext;
1678	if (unlikely(path[depth].p_hdr == NULL)) {
1679		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1680		return -EIO;
1681	}
1682
1683	/* try to insert block into found extent and return */
1684	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1685		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1686		ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1687			  ext4_ext_is_uninitialized(newext),
1688			  ext4_ext_get_actual_len(newext),
1689			  le32_to_cpu(ex->ee_block),
1690			  ext4_ext_is_uninitialized(ex),
1691			  ext4_ext_get_actual_len(ex),
1692			  ext4_ext_pblock(ex));
1693		err = ext4_ext_get_access(handle, inode, path + depth);
1694		if (err)
1695			return err;
1696
1697		/*
1698		 * ext4_can_extents_be_merged should have checked that either
1699		 * both extents are uninitialized, or both aren't. Thus we
1700		 * need to check only one of them here.
1701		 */
1702		if (ext4_ext_is_uninitialized(ex))
1703			uninitialized = 1;
1704		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1705					+ ext4_ext_get_actual_len(newext));
1706		if (uninitialized)
1707			ext4_ext_mark_uninitialized(ex);
1708		eh = path[depth].p_hdr;
1709		nearex = ex;
1710		goto merge;
1711	}
1712
1713repeat:
1714	depth = ext_depth(inode);
1715	eh = path[depth].p_hdr;
1716	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1717		goto has_space;
1718
1719	/* probably next leaf has space for us? */
1720	fex = EXT_LAST_EXTENT(eh);
1721	next = ext4_ext_next_leaf_block(inode, path);
1722	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1723	    && next != EXT_MAX_BLOCK) {
1724		ext_debug("next leaf block - %d\n", next);
1725		BUG_ON(npath != NULL);
1726		npath = ext4_ext_find_extent(inode, next, NULL);
1727		if (IS_ERR(npath))
1728			return PTR_ERR(npath);
1729		BUG_ON(npath->p_depth != path->p_depth);
1730		eh = npath[depth].p_hdr;
1731		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1732			ext_debug("next leaf isnt full(%d)\n",
1733				  le16_to_cpu(eh->eh_entries));
1734			path = npath;
1735			goto repeat;
1736		}
1737		ext_debug("next leaf has no free space(%d,%d)\n",
1738			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1739	}
1740
1741	/*
1742	 * There is no free space in the found leaf.
1743	 * We're gonna add a new leaf in the tree.
1744	 */
1745	err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1746	if (err)
1747		goto cleanup;
1748	depth = ext_depth(inode);
1749	eh = path[depth].p_hdr;
1750
1751has_space:
1752	nearex = path[depth].p_ext;
1753
1754	err = ext4_ext_get_access(handle, inode, path + depth);
1755	if (err)
1756		goto cleanup;
1757
1758	if (!nearex) {
1759		/* there is no extent in this leaf, create first one */
1760		ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1761				le32_to_cpu(newext->ee_block),
1762				ext4_ext_pblock(newext),
1763				ext4_ext_is_uninitialized(newext),
1764				ext4_ext_get_actual_len(newext));
1765		path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1766	} else if (le32_to_cpu(newext->ee_block)
1767			   > le32_to_cpu(nearex->ee_block)) {
1768/*		BUG_ON(newext->ee_block == nearex->ee_block); */
1769		if (nearex != EXT_LAST_EXTENT(eh)) {
1770			len = EXT_MAX_EXTENT(eh) - nearex;
1771			len = (len - 1) * sizeof(struct ext4_extent);
1772			len = len < 0 ? 0 : len;
1773			ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1774					"move %d from 0x%p to 0x%p\n",
1775					le32_to_cpu(newext->ee_block),
1776					ext4_ext_pblock(newext),
1777					ext4_ext_is_uninitialized(newext),
1778					ext4_ext_get_actual_len(newext),
1779					nearex, len, nearex + 1, nearex + 2);
1780			memmove(nearex + 2, nearex + 1, len);
1781		}
1782		path[depth].p_ext = nearex + 1;
1783	} else {
1784		BUG_ON(newext->ee_block == nearex->ee_block);
1785		len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1786		len = len < 0 ? 0 : len;
1787		ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1788				"move %d from 0x%p to 0x%p\n",
1789				le32_to_cpu(newext->ee_block),
1790				ext4_ext_pblock(newext),
1791				ext4_ext_is_uninitialized(newext),
1792				ext4_ext_get_actual_len(newext),
1793				nearex, len, nearex + 1, nearex + 2);
1794		memmove(nearex + 1, nearex, len);
1795		path[depth].p_ext = nearex;
1796	}
1797
1798	le16_add_cpu(&eh->eh_entries, 1);
1799	nearex = path[depth].p_ext;
1800	nearex->ee_block = newext->ee_block;
1801	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1802	nearex->ee_len = newext->ee_len;
1803
1804merge:
1805	/* try to merge extents to the right */
1806	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1807		ext4_ext_try_to_merge(inode, path, nearex);
1808
1809	/* try to merge extents to the left */
1810
1811	/* time to correct all indexes above */
1812	err = ext4_ext_correct_indexes(handle, inode, path);
1813	if (err)
1814		goto cleanup;
1815
1816	err = ext4_ext_dirty(handle, inode, path + depth);
1817
1818cleanup:
1819	if (npath) {
1820		ext4_ext_drop_refs(npath);
1821		kfree(npath);
1822	}
1823	ext4_ext_invalidate_cache(inode);
1824	return err;
1825}
1826
1827static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1828			       ext4_lblk_t num, ext_prepare_callback func,
1829			       void *cbdata)
1830{
1831	struct ext4_ext_path *path = NULL;
1832	struct ext4_ext_cache cbex;
1833	struct ext4_extent *ex;
1834	ext4_lblk_t next, start = 0, end = 0;
1835	ext4_lblk_t last = block + num;
1836	int depth, exists, err = 0;
1837
1838	BUG_ON(func == NULL);
1839	BUG_ON(inode == NULL);
1840
1841	while (block < last && block != EXT_MAX_BLOCK) {
1842		num = last - block;
1843		/* find extent for this block */
1844		down_read(&EXT4_I(inode)->i_data_sem);
1845		path = ext4_ext_find_extent(inode, block, path);
1846		up_read(&EXT4_I(inode)->i_data_sem);
1847		if (IS_ERR(path)) {
1848			err = PTR_ERR(path);
1849			path = NULL;
1850			break;
1851		}
1852
1853		depth = ext_depth(inode);
1854		if (unlikely(path[depth].p_hdr == NULL)) {
1855			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1856			err = -EIO;
1857			break;
1858		}
1859		ex = path[depth].p_ext;
1860		next = ext4_ext_next_allocated_block(path);
1861
1862		exists = 0;
1863		if (!ex) {
1864			/* there is no extent yet, so try to allocate
1865			 * all requested space */
1866			start = block;
1867			end = block + num;
1868		} else if (le32_to_cpu(ex->ee_block) > block) {
1869			/* need to allocate space before found extent */
1870			start = block;
1871			end = le32_to_cpu(ex->ee_block);
1872			if (block + num < end)
1873				end = block + num;
1874		} else if (block >= le32_to_cpu(ex->ee_block)
1875					+ ext4_ext_get_actual_len(ex)) {
1876			/* need to allocate space after found extent */
1877			start = block;
1878			end = block + num;
1879			if (end >= next)
1880				end = next;
1881		} else if (block >= le32_to_cpu(ex->ee_block)) {
1882			/*
1883			 * some part of requested space is covered
1884			 * by found extent
1885			 */
1886			start = block;
1887			end = le32_to_cpu(ex->ee_block)
1888				+ ext4_ext_get_actual_len(ex);
1889			if (block + num < end)
1890				end = block + num;
1891			exists = 1;
1892		} else {
1893			BUG();
1894		}
1895		BUG_ON(end <= start);
1896
1897		if (!exists) {
1898			cbex.ec_block = start;
1899			cbex.ec_len = end - start;
1900			cbex.ec_start = 0;
1901		} else {
1902			cbex.ec_block = le32_to_cpu(ex->ee_block);
1903			cbex.ec_len = ext4_ext_get_actual_len(ex);
1904			cbex.ec_start = ext4_ext_pblock(ex);
1905		}
1906
1907		if (unlikely(cbex.ec_len == 0)) {
1908			EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1909			err = -EIO;
1910			break;
1911		}
1912		err = func(inode, path, &cbex, ex, cbdata);
1913		ext4_ext_drop_refs(path);
1914
1915		if (err < 0)
1916			break;
1917
1918		if (err == EXT_REPEAT)
1919			continue;
1920		else if (err == EXT_BREAK) {
1921			err = 0;
1922			break;
1923		}
1924
1925		if (ext_depth(inode) != depth) {
1926			/* depth was changed. we have to realloc path */
1927			kfree(path);
1928			path = NULL;
1929		}
1930
1931		block = cbex.ec_block + cbex.ec_len;
1932	}
1933
1934	if (path) {
1935		ext4_ext_drop_refs(path);
1936		kfree(path);
1937	}
1938
1939	return err;
1940}
1941
1942static void
1943ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1944			__u32 len, ext4_fsblk_t start)
1945{
1946	struct ext4_ext_cache *cex;
1947	BUG_ON(len == 0);
1948	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1949	cex = &EXT4_I(inode)->i_cached_extent;
1950	cex->ec_block = block;
1951	cex->ec_len = len;
1952	cex->ec_start = start;
1953	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1954}
1955
1956/*
1957 * ext4_ext_put_gap_in_cache:
1958 * calculate boundaries of the gap that the requested block fits into
1959 * and cache this gap
1960 */
1961static void
1962ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1963				ext4_lblk_t block)
1964{
1965	int depth = ext_depth(inode);
1966	unsigned long len;
1967	ext4_lblk_t lblock;
1968	struct ext4_extent *ex;
1969
1970	ex = path[depth].p_ext;
1971	if (ex == NULL) {
1972		/* there is no extent yet, so gap is [0;-] */
1973		lblock = 0;
1974		len = EXT_MAX_BLOCK;
1975		ext_debug("cache gap(whole file):");
1976	} else if (block < le32_to_cpu(ex->ee_block)) {
1977		lblock = block;
1978		len = le32_to_cpu(ex->ee_block) - block;
1979		ext_debug("cache gap(before): %u [%u:%u]",
1980				block,
1981				le32_to_cpu(ex->ee_block),
1982				 ext4_ext_get_actual_len(ex));
1983	} else if (block >= le32_to_cpu(ex->ee_block)
1984			+ ext4_ext_get_actual_len(ex)) {
1985		ext4_lblk_t next;
1986		lblock = le32_to_cpu(ex->ee_block)
1987			+ ext4_ext_get_actual_len(ex);
1988
1989		next = ext4_ext_next_allocated_block(path);
1990		ext_debug("cache gap(after): [%u:%u] %u",
1991				le32_to_cpu(ex->ee_block),
1992				ext4_ext_get_actual_len(ex),
1993				block);
1994		BUG_ON(next == lblock);
1995		len = next - lblock;
1996	} else {
1997		lblock = len = 0;
1998		BUG();
1999	}
2000
2001	ext_debug(" -> %u:%lu\n", lblock, len);
2002	ext4_ext_put_in_cache(inode, lblock, len, 0);
2003}
2004
2005/*
2006 * Return 0 if cache is invalid; 1 if the cache is valid
2007 */
2008static int
2009ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2010			struct ext4_extent *ex)
2011{
2012	struct ext4_ext_cache *cex;
2013	int ret = 0;
2014
2015	/*
2016	 * We borrow i_block_reservation_lock to protect i_cached_extent
2017	 */
2018	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2019	cex = &EXT4_I(inode)->i_cached_extent;
2020
2021	/* has cache valid data? */
2022	if (cex->ec_len == 0)
2023		goto errout;
2024
2025	if (in_range(block, cex->ec_block, cex->ec_len)) {
2026		ex->ee_block = cpu_to_le32(cex->ec_block);
2027		ext4_ext_store_pblock(ex, cex->ec_start);
2028		ex->ee_len = cpu_to_le16(cex->ec_len);
2029		ext_debug("%u cached by %u:%u:%llu\n",
2030				block,
2031				cex->ec_block, cex->ec_len, cex->ec_start);
2032		ret = 1;
2033	}
2034errout:
2035	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2036	return ret;
2037}
2038
2039/*
2040 * ext4_ext_rm_idx:
2041 * removes index from the index block.
2042 * It's used in truncate case only, thus all requests are for
2043 * last index in the block only.
2044 */
2045static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2046			struct ext4_ext_path *path)
2047{
2048	int err;
2049	ext4_fsblk_t leaf;
2050
2051	/* free index block */
2052	path--;
2053	leaf = ext4_idx_pblock(path->p_idx);
2054	if (unlikely(path->p_hdr->eh_entries == 0)) {
2055		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2056		return -EIO;
2057	}
2058	err = ext4_ext_get_access(handle, inode, path);
2059	if (err)
2060		return err;
2061	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2062	err = ext4_ext_dirty(handle, inode, path);
2063	if (err)
2064		return err;
2065	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2066	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2067			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2068	return err;
2069}
2070
2071/*
2072 * ext4_ext_calc_credits_for_single_extent:
2073 * This routine returns max. credits that needed to insert an extent
2074 * to the extent tree.
2075 * When pass the actual path, the caller should calculate credits
2076 * under i_data_sem.
2077 */
2078int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2079						struct ext4_ext_path *path)
2080{
2081	if (path) {
2082		int depth = ext_depth(inode);
2083		int ret = 0;
2084
2085		/* probably there is space in leaf? */
2086		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2087				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2088
2089			/*
2090			 *  There are some space in the leaf tree, no
2091			 *  need to account for leaf block credit
2092			 *
2093			 *  bitmaps and block group descriptor blocks
2094			 *  and other metadat blocks still need to be
2095			 *  accounted.
2096			 */
2097			/* 1 bitmap, 1 block group descriptor */
2098			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2099			return ret;
2100		}
2101	}
2102
2103	return ext4_chunk_trans_blocks(inode, nrblocks);
2104}
2105
2106/*
2107 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2108 *
2109 * if nrblocks are fit in a single extent (chunk flag is 1), then
2110 * in the worse case, each tree level index/leaf need to be changed
2111 * if the tree split due to insert a new extent, then the old tree
2112 * index/leaf need to be updated too
2113 *
2114 * If the nrblocks are discontiguous, they could cause
2115 * the whole tree split more than once, but this is really rare.
2116 */
2117int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2118{
2119	int index;
2120	int depth = ext_depth(inode);
2121
2122	if (chunk)
2123		index = depth * 2;
2124	else
2125		index = depth * 3;
2126
2127	return index;
2128}
2129
2130static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2131				struct ext4_extent *ex,
2132				ext4_lblk_t from, ext4_lblk_t to)
2133{
2134	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2135	int flags = EXT4_FREE_BLOCKS_FORGET;
2136
2137	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2138		flags |= EXT4_FREE_BLOCKS_METADATA;
2139#ifdef EXTENTS_STATS
2140	{
2141		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2142		spin_lock(&sbi->s_ext_stats_lock);
2143		sbi->s_ext_blocks += ee_len;
2144		sbi->s_ext_extents++;
2145		if (ee_len < sbi->s_ext_min)
2146			sbi->s_ext_min = ee_len;
2147		if (ee_len > sbi->s_ext_max)
2148			sbi->s_ext_max = ee_len;
2149		if (ext_depth(inode) > sbi->s_depth_max)
2150			sbi->s_depth_max = ext_depth(inode);
2151		spin_unlock(&sbi->s_ext_stats_lock);
2152	}
2153#endif
2154	if (from >= le32_to_cpu(ex->ee_block)
2155	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2156		/* tail removal */
2157		ext4_lblk_t num;
2158		ext4_fsblk_t start;
2159
2160		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2161		start = ext4_ext_pblock(ex) + ee_len - num;
2162		ext_debug("free last %u blocks starting %llu\n", num, start);
2163		ext4_free_blocks(handle, inode, NULL, start, num, flags);
2164	} else if (from == le32_to_cpu(ex->ee_block)
2165		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2166		printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
2167			from, to, le32_to_cpu(ex->ee_block), ee_len);
2168	} else {
2169		printk(KERN_INFO "strange request: removal(2) "
2170				"%u-%u from %u:%u\n",
2171				from, to, le32_to_cpu(ex->ee_block), ee_len);
2172	}
2173	return 0;
2174}
2175
2176static int
2177ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2178		struct ext4_ext_path *path, ext4_lblk_t start)
2179{
2180	int err = 0, correct_index = 0;
2181	int depth = ext_depth(inode), credits;
2182	struct ext4_extent_header *eh;
2183	ext4_lblk_t a, b, block;
2184	unsigned num;
2185	ext4_lblk_t ex_ee_block;
2186	unsigned short ex_ee_len;
2187	unsigned uninitialized = 0;
2188	struct ext4_extent *ex;
2189
2190	/* the header must be checked already in ext4_ext_remove_space() */
2191	ext_debug("truncate since %u in leaf\n", start);
2192	if (!path[depth].p_hdr)
2193		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2194	eh = path[depth].p_hdr;
2195	if (unlikely(path[depth].p_hdr == NULL)) {
2196		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2197		return -EIO;
2198	}
2199	/* find where to start removing */
2200	ex = EXT_LAST_EXTENT(eh);
2201
2202	ex_ee_block = le32_to_cpu(ex->ee_block);
2203	ex_ee_len = ext4_ext_get_actual_len(ex);
2204
2205	while (ex >= EXT_FIRST_EXTENT(eh) &&
2206			ex_ee_block + ex_ee_len > start) {
2207
2208		if (ext4_ext_is_uninitialized(ex))
2209			uninitialized = 1;
2210		else
2211			uninitialized = 0;
2212
2213		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2214			 uninitialized, ex_ee_len);
2215		path[depth].p_ext = ex;
2216
2217		a = ex_ee_block > start ? ex_ee_block : start;
2218		b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
2219			ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
2220
2221		ext_debug("  border %u:%u\n", a, b);
2222
2223		if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
2224			block = 0;
2225			num = 0;
2226			BUG();
2227		} else if (a != ex_ee_block) {
2228			/* remove tail of the extent */
2229			block = ex_ee_block;
2230			num = a - block;
2231		} else if (b != ex_ee_block + ex_ee_len - 1) {
2232			/* remove head of the extent */
2233			block = a;
2234			num = b - a;
2235			/* there is no "make a hole" API yet */
2236			BUG();
2237		} else {
2238			/* remove whole extent: excellent! */
2239			block = ex_ee_block;
2240			num = 0;
2241			BUG_ON(a != ex_ee_block);
2242			BUG_ON(b != ex_ee_block + ex_ee_len - 1);
2243		}
2244
2245		/*
2246		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2247		 * descriptor) for each block group; assume two block
2248		 * groups plus ex_ee_len/blocks_per_block_group for
2249		 * the worst case
2250		 */
2251		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2252		if (ex == EXT_FIRST_EXTENT(eh)) {
2253			correct_index = 1;
2254			credits += (ext_depth(inode)) + 1;
2255		}
2256		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2257
2258		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2259		if (err)
2260			goto out;
2261
2262		err = ext4_ext_get_access(handle, inode, path + depth);
2263		if (err)
2264			goto out;
2265
2266		err = ext4_remove_blocks(handle, inode, ex, a, b);
2267		if (err)
2268			goto out;
2269
2270		if (num == 0) {
2271			/* this extent is removed; mark slot entirely unused */
2272			ext4_ext_store_pblock(ex, 0);
2273			le16_add_cpu(&eh->eh_entries, -1);
2274		}
2275
2276		ex->ee_block = cpu_to_le32(block);
2277		ex->ee_len = cpu_to_le16(num);
2278		/*
2279		 * Do not mark uninitialized if all the blocks in the
2280		 * extent have been removed.
2281		 */
2282		if (uninitialized && num)
2283			ext4_ext_mark_uninitialized(ex);
2284
2285		err = ext4_ext_dirty(handle, inode, path + depth);
2286		if (err)
2287			goto out;
2288
2289		ext_debug("new extent: %u:%u:%llu\n", block, num,
2290				ext4_ext_pblock(ex));
2291		ex--;
2292		ex_ee_block = le32_to_cpu(ex->ee_block);
2293		ex_ee_len = ext4_ext_get_actual_len(ex);
2294	}
2295
2296	if (correct_index && eh->eh_entries)
2297		err = ext4_ext_correct_indexes(handle, inode, path);
2298
2299	/* if this leaf is free, then we should
2300	 * remove it from index block above */
2301	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2302		err = ext4_ext_rm_idx(handle, inode, path + depth);
2303
2304out:
2305	return err;
2306}
2307
2308/*
2309 * ext4_ext_more_to_rm:
2310 * returns 1 if current index has to be freed (even partial)
2311 */
2312static int
2313ext4_ext_more_to_rm(struct ext4_ext_path *path)
2314{
2315	BUG_ON(path->p_idx == NULL);
2316
2317	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2318		return 0;
2319
2320	/*
2321	 * if truncate on deeper level happened, it wasn't partial,
2322	 * so we have to consider current index for truncation
2323	 */
2324	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2325		return 0;
2326	return 1;
2327}
2328
2329static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2330{
2331	struct super_block *sb = inode->i_sb;
2332	int depth = ext_depth(inode);
2333	struct ext4_ext_path *path;
2334	handle_t *handle;
2335	int i, err;
2336
2337	ext_debug("truncate since %u\n", start);
2338
2339	/* probably first extent we're gonna free will be last in block */
2340	handle = ext4_journal_start(inode, depth + 1);
2341	if (IS_ERR(handle))
2342		return PTR_ERR(handle);
2343
2344again:
2345	ext4_ext_invalidate_cache(inode);
2346
2347	/*
2348	 * We start scanning from right side, freeing all the blocks
2349	 * after i_size and walking into the tree depth-wise.
2350	 */
2351	depth = ext_depth(inode);
2352	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2353	if (path == NULL) {
2354		ext4_journal_stop(handle);
2355		return -ENOMEM;
2356	}
2357	path[0].p_depth = depth;
2358	path[0].p_hdr = ext_inode_hdr(inode);
2359	if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2360		err = -EIO;
2361		goto out;
2362	}
2363	i = err = 0;
2364
2365	while (i >= 0 && err == 0) {
2366		if (i == depth) {
2367			/* this is leaf block */
2368			err = ext4_ext_rm_leaf(handle, inode, path, start);
2369			/* root level has p_bh == NULL, brelse() eats this */
2370			brelse(path[i].p_bh);
2371			path[i].p_bh = NULL;
2372			i--;
2373			continue;
2374		}
2375
2376		/* this is index block */
2377		if (!path[i].p_hdr) {
2378			ext_debug("initialize header\n");
2379			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2380		}
2381
2382		if (!path[i].p_idx) {
2383			/* this level hasn't been touched yet */
2384			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2385			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2386			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2387				  path[i].p_hdr,
2388				  le16_to_cpu(path[i].p_hdr->eh_entries));
2389		} else {
2390			/* we were already here, see at next index */
2391			path[i].p_idx--;
2392		}
2393
2394		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2395				i, EXT_FIRST_INDEX(path[i].p_hdr),
2396				path[i].p_idx);
2397		if (ext4_ext_more_to_rm(path + i)) {
2398			struct buffer_head *bh;
2399			/* go to the next level */
2400			ext_debug("move to level %d (block %llu)\n",
2401				  i + 1, ext4_idx_pblock(path[i].p_idx));
2402			memset(path + i + 1, 0, sizeof(*path));
2403			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2404			if (!bh) {
2405				/* should we reset i_size? */
2406				err = -EIO;
2407				break;
2408			}
2409			if (WARN_ON(i + 1 > depth)) {
2410				err = -EIO;
2411				break;
2412			}
2413			if (ext4_ext_check(inode, ext_block_hdr(bh),
2414							depth - i - 1)) {
2415				err = -EIO;
2416				break;
2417			}
2418			path[i + 1].p_bh = bh;
2419
2420			/* save actual number of indexes since this
2421			 * number is changed at the next iteration */
2422			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2423			i++;
2424		} else {
2425			/* we finished processing this index, go up */
2426			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2427				/* index is empty, remove it;
2428				 * handle must be already prepared by the
2429				 * truncatei_leaf() */
2430				err = ext4_ext_rm_idx(handle, inode, path + i);
2431			}
2432			/* root level has p_bh == NULL, brelse() eats this */
2433			brelse(path[i].p_bh);
2434			path[i].p_bh = NULL;
2435			i--;
2436			ext_debug("return to level %d\n", i);
2437		}
2438	}
2439
2440	/* TODO: flexible tree reduction should be here */
2441	if (path->p_hdr->eh_entries == 0) {
2442		/*
2443		 * truncate to zero freed all the tree,
2444		 * so we need to correct eh_depth
2445		 */
2446		err = ext4_ext_get_access(handle, inode, path);
2447		if (err == 0) {
2448			ext_inode_hdr(inode)->eh_depth = 0;
2449			ext_inode_hdr(inode)->eh_max =
2450				cpu_to_le16(ext4_ext_space_root(inode, 0));
2451			err = ext4_ext_dirty(handle, inode, path);
2452		}
2453	}
2454out:
2455	ext4_ext_drop_refs(path);
2456	kfree(path);
2457	if (err == -EAGAIN)
2458		goto again;
2459	ext4_journal_stop(handle);
2460
2461	return err;
2462}
2463
2464/*
2465 * called at mount time
2466 */
2467void ext4_ext_init(struct super_block *sb)
2468{
2469	/*
2470	 * possible initialization would be here
2471	 */
2472
2473	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2474#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2475		printk(KERN_INFO "EXT4-fs: file extents enabled");
2476#ifdef AGGRESSIVE_TEST
2477		printk(", aggressive tests");
2478#endif
2479#ifdef CHECK_BINSEARCH
2480		printk(", check binsearch");
2481#endif
2482#ifdef EXTENTS_STATS
2483		printk(", stats");
2484#endif
2485		printk("\n");
2486#endif
2487#ifdef EXTENTS_STATS
2488		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2489		EXT4_SB(sb)->s_ext_min = 1 << 30;
2490		EXT4_SB(sb)->s_ext_max = 0;
2491#endif
2492	}
2493}
2494
2495/*
2496 * called at umount time
2497 */
2498void ext4_ext_release(struct super_block *sb)
2499{
2500	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2501		return;
2502
2503#ifdef EXTENTS_STATS
2504	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2505		struct ext4_sb_info *sbi = EXT4_SB(sb);
2506		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2507			sbi->s_ext_blocks, sbi->s_ext_extents,
2508			sbi->s_ext_blocks / sbi->s_ext_extents);
2509		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2510			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2511	}
2512#endif
2513}
2514
2515/* FIXME!! we need to try to merge to left or right after zero-out  */
2516static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2517{
2518	ext4_fsblk_t ee_pblock;
2519	unsigned int ee_len;
2520	int ret;
2521
2522	ee_len    = ext4_ext_get_actual_len(ex);
2523	ee_pblock = ext4_ext_pblock(ex);
2524
2525	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2526	if (ret > 0)
2527		ret = 0;
2528
2529	return ret;
2530}
2531
2532#define EXT4_EXT_ZERO_LEN 7
2533/*
2534 * This function is called by ext4_ext_map_blocks() if someone tries to write
2535 * to an uninitialized extent. It may result in splitting the uninitialized
2536 * extent into multiple extents (upto three - one initialized and two
2537 * uninitialized).
2538 * There are three possibilities:
2539 *   a> There is no split required: Entire extent should be initialized
2540 *   b> Splits in two extents: Write is happening at either end of the extent
2541 *   c> Splits in three extents: Somone is writing in middle of the extent
2542 */
2543static int ext4_ext_convert_to_initialized(handle_t *handle,
2544					   struct inode *inode,
2545					   struct ext4_map_blocks *map,
2546					   struct ext4_ext_path *path)
2547{
2548	struct ext4_extent *ex, newex, orig_ex;
2549	struct ext4_extent *ex1 = NULL;
2550	struct ext4_extent *ex2 = NULL;
2551	struct ext4_extent *ex3 = NULL;
2552	struct ext4_extent_header *eh;
2553	ext4_lblk_t ee_block, eof_block;
2554	unsigned int allocated, ee_len, depth;
2555	ext4_fsblk_t newblock;
2556	int err = 0;
2557	int ret = 0;
2558	int may_zeroout;
2559
2560	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2561		"block %llu, max_blocks %u\n", inode->i_ino,
2562		(unsigned long long)map->m_lblk, map->m_len);
2563
2564	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2565		inode->i_sb->s_blocksize_bits;
2566	if (eof_block < map->m_lblk + map->m_len)
2567		eof_block = map->m_lblk + map->m_len;
2568
2569	depth = ext_depth(inode);
2570	eh = path[depth].p_hdr;
2571	ex = path[depth].p_ext;
2572	ee_block = le32_to_cpu(ex->ee_block);
2573	ee_len = ext4_ext_get_actual_len(ex);
2574	allocated = ee_len - (map->m_lblk - ee_block);
2575	newblock = map->m_lblk - ee_block + ext4_ext_pblock(ex);
2576
2577	ex2 = ex;
2578	orig_ex.ee_block = ex->ee_block;
2579	orig_ex.ee_len   = cpu_to_le16(ee_len);
2580	ext4_ext_store_pblock(&orig_ex, ext4_ext_pblock(ex));
2581
2582	/*
2583	 * It is safe to convert extent to initialized via explicit
2584	 * zeroout only if extent is fully insde i_size or new_size.
2585	 */
2586	may_zeroout = ee_block + ee_len <= eof_block;
2587
2588	err = ext4_ext_get_access(handle, inode, path + depth);
2589	if (err)
2590		goto out;
2591	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2592	if (ee_len <= 2*EXT4_EXT_ZERO_LEN && may_zeroout) {
2593		err =  ext4_ext_zeroout(inode, &orig_ex);
2594		if (err)
2595			goto fix_extent_len;
2596		/* update the extent length and mark as initialized */
2597		ex->ee_block = orig_ex.ee_block;
2598		ex->ee_len   = orig_ex.ee_len;
2599		ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2600		ext4_ext_dirty(handle, inode, path + depth);
2601		/* zeroed the full extent */
2602		return allocated;
2603	}
2604
2605	/* ex1: ee_block to map->m_lblk - 1 : uninitialized */
2606	if (map->m_lblk > ee_block) {
2607		ex1 = ex;
2608		ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
2609		ext4_ext_mark_uninitialized(ex1);
2610		ex2 = &newex;
2611	}
2612	/*
2613	 * for sanity, update the length of the ex2 extent before
2614	 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2615	 * overlap of blocks.
2616	 */
2617	if (!ex1 && allocated > map->m_len)
2618		ex2->ee_len = cpu_to_le16(map->m_len);
2619	/* ex3: to ee_block + ee_len : uninitialised */
2620	if (allocated > map->m_len) {
2621		unsigned int newdepth;
2622		/* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */
2623		if (allocated <= EXT4_EXT_ZERO_LEN && may_zeroout) {
2624			/*
2625			 * map->m_lblk == ee_block is handled by the zerouout
2626			 * at the beginning.
2627			 * Mark first half uninitialized.
2628			 * Mark second half initialized and zero out the
2629			 * initialized extent
2630			 */
2631			ex->ee_block = orig_ex.ee_block;
2632			ex->ee_len   = cpu_to_le16(ee_len - allocated);
2633			ext4_ext_mark_uninitialized(ex);
2634			ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2635			ext4_ext_dirty(handle, inode, path + depth);
2636
2637			ex3 = &newex;
2638			ex3->ee_block = cpu_to_le32(map->m_lblk);
2639			ext4_ext_store_pblock(ex3, newblock);
2640			ex3->ee_len = cpu_to_le16(allocated);
2641			err = ext4_ext_insert_extent(handle, inode, path,
2642							ex3, 0);
2643			if (err == -ENOSPC) {
2644				err =  ext4_ext_zeroout(inode, &orig_ex);
2645				if (err)
2646					goto fix_extent_len;
2647				ex->ee_block = orig_ex.ee_block;
2648				ex->ee_len   = orig_ex.ee_len;
2649				ext4_ext_store_pblock(ex,
2650					ext4_ext_pblock(&orig_ex));
2651				ext4_ext_dirty(handle, inode, path + depth);
2652				/* blocks available from map->m_lblk */
2653				return allocated;
2654
2655			} else if (err)
2656				goto fix_extent_len;
2657
2658			/*
2659			 * We need to zero out the second half because
2660			 * an fallocate request can update file size and
2661			 * converting the second half to initialized extent
2662			 * implies that we can leak some junk data to user
2663			 * space.
2664			 */
2665			err =  ext4_ext_zeroout(inode, ex3);
2666			if (err) {
2667				/*
2668				 * We should actually mark the
2669				 * second half as uninit and return error
2670				 * Insert would have changed the extent
2671				 */
2672				depth = ext_depth(inode);
2673				ext4_ext_drop_refs(path);
2674				path = ext4_ext_find_extent(inode, map->m_lblk,
2675							    path);
2676				if (IS_ERR(path)) {
2677					err = PTR_ERR(path);
2678					return err;
2679				}
2680				/* get the second half extent details */
2681				ex = path[depth].p_ext;
2682				err = ext4_ext_get_access(handle, inode,
2683								path + depth);
2684				if (err)
2685					return err;
2686				ext4_ext_mark_uninitialized(ex);
2687				ext4_ext_dirty(handle, inode, path + depth);
2688				return err;
2689			}
2690
2691			/* zeroed the second half */
2692			return allocated;
2693		}
2694		ex3 = &newex;
2695		ex3->ee_block = cpu_to_le32(map->m_lblk + map->m_len);
2696		ext4_ext_store_pblock(ex3, newblock + map->m_len);
2697		ex3->ee_len = cpu_to_le16(allocated - map->m_len);
2698		ext4_ext_mark_uninitialized(ex3);
2699		err = ext4_ext_insert_extent(handle, inode, path, ex3, 0);
2700		if (err == -ENOSPC && may_zeroout) {
2701			err =  ext4_ext_zeroout(inode, &orig_ex);
2702			if (err)
2703				goto fix_extent_len;
2704			/* update the extent length and mark as initialized */
2705			ex->ee_block = orig_ex.ee_block;
2706			ex->ee_len   = orig_ex.ee_len;
2707			ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2708			ext4_ext_dirty(handle, inode, path + depth);
2709			/* zeroed the full extent */
2710			/* blocks available from map->m_lblk */
2711			return allocated;
2712
2713		} else if (err)
2714			goto fix_extent_len;
2715		/*
2716		 * The depth, and hence eh & ex might change
2717		 * as part of the insert above.
2718		 */
2719		newdepth = ext_depth(inode);
2720		/*
2721		 * update the extent length after successful insert of the
2722		 * split extent
2723		 */
2724		ee_len -= ext4_ext_get_actual_len(ex3);
2725		orig_ex.ee_len = cpu_to_le16(ee_len);
2726		may_zeroout = ee_block + ee_len <= eof_block;
2727
2728		depth = newdepth;
2729		ext4_ext_drop_refs(path);
2730		path = ext4_ext_find_extent(inode, map->m_lblk, path);
2731		if (IS_ERR(path)) {
2732			err = PTR_ERR(path);
2733			goto out;
2734		}
2735		eh = path[depth].p_hdr;
2736		ex = path[depth].p_ext;
2737		if (ex2 != &newex)
2738			ex2 = ex;
2739
2740		err = ext4_ext_get_access(handle, inode, path + depth);
2741		if (err)
2742			goto out;
2743
2744		allocated = map->m_len;
2745
2746		/* If extent has less than EXT4_EXT_ZERO_LEN and we are trying
2747		 * to insert a extent in the middle zerout directly
2748		 * otherwise give the extent a chance to merge to left
2749		 */
2750		if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN &&
2751			map->m_lblk != ee_block && may_zeroout) {
2752			err =  ext4_ext_zeroout(inode, &orig_ex);
2753			if (err)
2754				goto fix_extent_len;
2755			/* update the extent length and mark as initialized */
2756			ex->ee_block = orig_ex.ee_block;
2757			ex->ee_len   = orig_ex.ee_len;
2758			ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2759			ext4_ext_dirty(handle, inode, path + depth);
2760			/* zero out the first half */
2761			/* blocks available from map->m_lblk */
2762			return allocated;
2763		}
2764	}
2765	/*
2766	 * If there was a change of depth as part of the
2767	 * insertion of ex3 above, we need to update the length
2768	 * of the ex1 extent again here
2769	 */
2770	if (ex1 && ex1 != ex) {
2771		ex1 = ex;
2772		ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
2773		ext4_ext_mark_uninitialized(ex1);
2774		ex2 = &newex;
2775	}
2776	/* ex2: map->m_lblk to map->m_lblk + maxblocks-1 : initialised */
2777	ex2->ee_block = cpu_to_le32(map->m_lblk);
2778	ext4_ext_store_pblock(ex2, newblock);
2779	ex2->ee_len = cpu_to_le16(allocated);
2780	if (ex2 != ex)
2781		goto insert;
2782	/*
2783	 * New (initialized) extent starts from the first block
2784	 * in the current extent. i.e., ex2 == ex
2785	 * We have to see if it can be merged with the extent
2786	 * on the left.
2787	 */
2788	if (ex2 > EXT_FIRST_EXTENT(eh)) {
2789		/*
2790		 * To merge left, pass "ex2 - 1" to try_to_merge(),
2791		 * since it merges towards right _only_.
2792		 */
2793		ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2794		if (ret) {
2795			err = ext4_ext_correct_indexes(handle, inode, path);
2796			if (err)
2797				goto out;
2798			depth = ext_depth(inode);
2799			ex2--;
2800		}
2801	}
2802	/*
2803	 * Try to Merge towards right. This might be required
2804	 * only when the whole extent is being written to.
2805	 * i.e. ex2 == ex and ex3 == NULL.
2806	 */
2807	if (!ex3) {
2808		ret = ext4_ext_try_to_merge(inode, path, ex2);
2809		if (ret) {
2810			err = ext4_ext_correct_indexes(handle, inode, path);
2811			if (err)
2812				goto out;
2813		}
2814	}
2815	/* Mark modified extent as dirty */
2816	err = ext4_ext_dirty(handle, inode, path + depth);
2817	goto out;
2818insert:
2819	err = ext4_ext_insert_extent(handle, inode, path, &newex, 0);
2820	if (err == -ENOSPC && may_zeroout) {
2821		err =  ext4_ext_zeroout(inode, &orig_ex);
2822		if (err)
2823			goto fix_extent_len;
2824		/* update the extent length and mark as initialized */
2825		ex->ee_block = orig_ex.ee_block;
2826		ex->ee_len   = orig_ex.ee_len;
2827		ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2828		ext4_ext_dirty(handle, inode, path + depth);
2829		/* zero out the first half */
2830		return allocated;
2831	} else if (err)
2832		goto fix_extent_len;
2833out:
2834	ext4_ext_show_leaf(inode, path);
2835	return err ? err : allocated;
2836
2837fix_extent_len:
2838	ex->ee_block = orig_ex.ee_block;
2839	ex->ee_len   = orig_ex.ee_len;
2840	ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2841	ext4_ext_mark_uninitialized(ex);
2842	ext4_ext_dirty(handle, inode, path + depth);
2843	return err;
2844}
2845
2846/*
2847 * This function is called by ext4_ext_map_blocks() from
2848 * ext4_get_blocks_dio_write() when DIO to write
2849 * to an uninitialized extent.
2850 *
2851 * Writing to an uninitized extent may result in splitting the uninitialized
2852 * extent into multiple /initialized uninitialized extents (up to three)
2853 * There are three possibilities:
2854 *   a> There is no split required: Entire extent should be uninitialized
2855 *   b> Splits in two extents: Write is happening at either end of the extent
2856 *   c> Splits in three extents: Somone is writing in middle of the extent
2857 *
2858 * One of more index blocks maybe needed if the extent tree grow after
2859 * the uninitialized extent split. To prevent ENOSPC occur at the IO
2860 * complete, we need to split the uninitialized extent before DIO submit
2861 * the IO. The uninitialized extent called at this time will be split
2862 * into three uninitialized extent(at most). After IO complete, the part
2863 * being filled will be convert to initialized by the end_io callback function
2864 * via ext4_convert_unwritten_extents().
2865 *
2866 * Returns the size of uninitialized extent to be written on success.
2867 */
2868static int ext4_split_unwritten_extents(handle_t *handle,
2869					struct inode *inode,
2870					struct ext4_map_blocks *map,
2871					struct ext4_ext_path *path,
2872					int flags)
2873{
2874	struct ext4_extent *ex, newex, orig_ex;
2875	struct ext4_extent *ex1 = NULL;
2876	struct ext4_extent *ex2 = NULL;
2877	struct ext4_extent *ex3 = NULL;
2878	ext4_lblk_t ee_block, eof_block;
2879	unsigned int allocated, ee_len, depth;
2880	ext4_fsblk_t newblock;
2881	int err = 0;
2882	int may_zeroout;
2883
2884	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
2885		"block %llu, max_blocks %u\n", inode->i_ino,
2886		(unsigned long long)map->m_lblk, map->m_len);
2887
2888	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2889		inode->i_sb->s_blocksize_bits;
2890	if (eof_block < map->m_lblk + map->m_len)
2891		eof_block = map->m_lblk + map->m_len;
2892
2893	depth = ext_depth(inode);
2894	ex = path[depth].p_ext;
2895	ee_block = le32_to_cpu(ex->ee_block);
2896	ee_len = ext4_ext_get_actual_len(ex);
2897	allocated = ee_len - (map->m_lblk - ee_block);
2898	newblock = map->m_lblk - ee_block + ext4_ext_pblock(ex);
2899
2900	ex2 = ex;
2901	orig_ex.ee_block = ex->ee_block;
2902	orig_ex.ee_len   = cpu_to_le16(ee_len);
2903	ext4_ext_store_pblock(&orig_ex, ext4_ext_pblock(ex));
2904
2905	/*
2906	 * It is safe to convert extent to initialized via explicit
2907	 * zeroout only if extent is fully insde i_size or new_size.
2908	 */
2909	may_zeroout = ee_block + ee_len <= eof_block;
2910
2911	/*
2912 	 * If the uninitialized extent begins at the same logical
2913 	 * block where the write begins, and the write completely
2914 	 * covers the extent, then we don't need to split it.
2915 	 */
2916	if ((map->m_lblk == ee_block) && (allocated <= map->m_len))
2917		return allocated;
2918
2919	err = ext4_ext_get_access(handle, inode, path + depth);
2920	if (err)
2921		goto out;
2922	/* ex1: ee_block to map->m_lblk - 1 : uninitialized */
2923	if (map->m_lblk > ee_block) {
2924		ex1 = ex;
2925		ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
2926		ext4_ext_mark_uninitialized(ex1);
2927		ex2 = &newex;
2928	}
2929	/*
2930	 * for sanity, update the length of the ex2 extent before
2931	 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2932	 * overlap of blocks.
2933	 */
2934	if (!ex1 && allocated > map->m_len)
2935		ex2->ee_len = cpu_to_le16(map->m_len);
2936	/* ex3: to ee_block + ee_len : uninitialised */
2937	if (allocated > map->m_len) {
2938		unsigned int newdepth;
2939		ex3 = &newex;
2940		ex3->ee_block = cpu_to_le32(map->m_lblk + map->m_len);
2941		ext4_ext_store_pblock(ex3, newblock + map->m_len);
2942		ex3->ee_len = cpu_to_le16(allocated - map->m_len);
2943		ext4_ext_mark_uninitialized(ex3);
2944		err = ext4_ext_insert_extent(handle, inode, path, ex3, flags);
2945		if (err == -ENOSPC && may_zeroout) {
2946			err =  ext4_ext_zeroout(inode, &orig_ex);
2947			if (err)
2948				goto fix_extent_len;
2949			/* update the extent length and mark as initialized */
2950			ex->ee_block = orig_ex.ee_block;
2951			ex->ee_len   = orig_ex.ee_len;
2952			ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2953			ext4_ext_dirty(handle, inode, path + depth);
2954			/* zeroed the full extent */
2955			/* blocks available from map->m_lblk */
2956			return allocated;
2957
2958		} else if (err)
2959			goto fix_extent_len;
2960		/*
2961		 * The depth, and hence eh & ex might change
2962		 * as part of the insert above.
2963		 */
2964		newdepth = ext_depth(inode);
2965		/*
2966		 * update the extent length after successful insert of the
2967		 * split extent
2968		 */
2969		ee_len -= ext4_ext_get_actual_len(ex3);
2970		orig_ex.ee_len = cpu_to_le16(ee_len);
2971		may_zeroout = ee_block + ee_len <= eof_block;
2972
2973		depth = newdepth;
2974		ext4_ext_drop_refs(path);
2975		path = ext4_ext_find_extent(inode, map->m_lblk, path);
2976		if (IS_ERR(path)) {
2977			err = PTR_ERR(path);
2978			goto out;
2979		}
2980		ex = path[depth].p_ext;
2981		if (ex2 != &newex)
2982			ex2 = ex;
2983
2984		err = ext4_ext_get_access(handle, inode, path + depth);
2985		if (err)
2986			goto out;
2987
2988		allocated = map->m_len;
2989	}
2990	/*
2991	 * If there was a change of depth as part of the
2992	 * insertion of ex3 above, we need to update the length
2993	 * of the ex1 extent again here
2994	 */
2995	if (ex1 && ex1 != ex) {
2996		ex1 = ex;
2997		ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
2998		ext4_ext_mark_uninitialized(ex1);
2999		ex2 = &newex;
3000	}
3001	/*
3002	 * ex2: map->m_lblk to map->m_lblk + map->m_len-1 : to be written
3003	 * using direct I/O, uninitialised still.
3004	 */
3005	ex2->ee_block = cpu_to_le32(map->m_lblk);
3006	ext4_ext_store_pblock(ex2, newblock);
3007	ex2->ee_len = cpu_to_le16(allocated);
3008	ext4_ext_mark_uninitialized(ex2);
3009	if (ex2 != ex)
3010		goto insert;
3011	/* Mark modified extent as dirty */
3012	err = ext4_ext_dirty(handle, inode, path + depth);
3013	ext_debug("out here\n");
3014	goto out;
3015insert:
3016	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3017	if (err == -ENOSPC && may_zeroout) {
3018		err =  ext4_ext_zeroout(inode, &orig_ex);
3019		if (err)
3020			goto fix_extent_len;
3021		/* update the extent length and mark as initialized */
3022		ex->ee_block = orig_ex.ee_block;
3023		ex->ee_len   = orig_ex.ee_len;
3024		ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
3025		ext4_ext_dirty(handle, inode, path + depth);
3026		/* zero out the first half */
3027		return allocated;
3028	} else if (err)
3029		goto fix_extent_len;
3030out:
3031	ext4_ext_show_leaf(inode, path);
3032	return err ? err : allocated;
3033
3034fix_extent_len:
3035	ex->ee_block = orig_ex.ee_block;
3036	ex->ee_len   = orig_ex.ee_len;
3037	ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
3038	ext4_ext_mark_uninitialized(ex);
3039	ext4_ext_dirty(handle, inode, path + depth);
3040	return err;
3041}
3042static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3043					      struct inode *inode,
3044					      struct ext4_ext_path *path)
3045{
3046	struct ext4_extent *ex;
3047	struct ext4_extent_header *eh;
3048	int depth;
3049	int err = 0;
3050	int ret = 0;
3051
3052	depth = ext_depth(inode);
3053	eh = path[depth].p_hdr;
3054	ex = path[depth].p_ext;
3055
3056	err = ext4_ext_get_access(handle, inode, path + depth);
3057	if (err)
3058		goto out;
3059	/* first mark the extent as initialized */
3060	ext4_ext_mark_initialized(ex);
3061
3062	/*
3063	 * We have to see if it can be merged with the extent
3064	 * on the left.
3065	 */
3066	if (ex > EXT_FIRST_EXTENT(eh)) {
3067		/*
3068		 * To merge left, pass "ex - 1" to try_to_merge(),
3069		 * since it merges towards right _only_.
3070		 */
3071		ret = ext4_ext_try_to_merge(inode, path, ex - 1);
3072		if (ret) {
3073			err = ext4_ext_correct_indexes(handle, inode, path);
3074			if (err)
3075				goto out;
3076			depth = ext_depth(inode);
3077			ex--;
3078		}
3079	}
3080	/*
3081	 * Try to Merge towards right.
3082	 */
3083	ret = ext4_ext_try_to_merge(inode, path, ex);
3084	if (ret) {
3085		err = ext4_ext_correct_indexes(handle, inode, path);
3086		if (err)
3087			goto out;
3088		depth = ext_depth(inode);
3089	}
3090	/* Mark modified extent as dirty */
3091	err = ext4_ext_dirty(handle, inode, path + depth);
3092out:
3093	ext4_ext_show_leaf(inode, path);
3094	return err;
3095}
3096
3097static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3098			sector_t block, int count)
3099{
3100	int i;
3101	for (i = 0; i < count; i++)
3102                unmap_underlying_metadata(bdev, block + i);
3103}
3104
3105/*
3106 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3107 */
3108static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3109			      ext4_lblk_t lblk,
3110			      struct ext4_ext_path *path,
3111			      unsigned int len)
3112{
3113	int i, depth;
3114	struct ext4_extent_header *eh;
3115	struct ext4_extent *last_ex;
3116
3117	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3118		return 0;
3119
3120	depth = ext_depth(inode);
3121	eh = path[depth].p_hdr;
3122
3123	if (unlikely(!eh->eh_entries)) {
3124		EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3125				 "EOFBLOCKS_FL set");
3126		return -EIO;
3127	}
3128	last_ex = EXT_LAST_EXTENT(eh);
3129	/*
3130	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3131	 * last block in the last extent in the file.  We test this by
3132	 * first checking to see if the caller to
3133	 * ext4_ext_get_blocks() was interested in the last block (or
3134	 * a block beyond the last block) in the current extent.  If
3135	 * this turns out to be false, we can bail out from this
3136	 * function immediately.
3137	 */
3138	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3139	    ext4_ext_get_actual_len(last_ex))
3140		return 0;
3141	/*
3142	 * If the caller does appear to be planning to write at or
3143	 * beyond the end of the current extent, we then test to see
3144	 * if the current extent is the last extent in the file, by
3145	 * checking to make sure it was reached via the rightmost node
3146	 * at each level of the tree.
3147	 */
3148	for (i = depth-1; i >= 0; i--)
3149		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3150			return 0;
3151	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3152	return ext4_mark_inode_dirty(handle, inode);
3153}
3154
3155static int
3156ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3157			struct ext4_map_blocks *map,
3158			struct ext4_ext_path *path, int flags,
3159			unsigned int allocated, ext4_fsblk_t newblock)
3160{
3161	int ret = 0;
3162	int err = 0;
3163	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3164
3165	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3166		  "block %llu, max_blocks %u, flags %d, allocated %u",
3167		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3168		  flags, allocated);
3169	ext4_ext_show_leaf(inode, path);
3170
3171	/* get_block() before submit the IO, split the extent */
3172	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3173		ret = ext4_split_unwritten_extents(handle, inode, map,
3174						   path, flags);
3175		/*
3176		 * Flag the inode(non aio case) or end_io struct (aio case)
3177		 * that this IO needs to convertion to written when IO is
3178		 * completed
3179		 */
3180		if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3181			io->flag = EXT4_IO_END_UNWRITTEN;
3182			atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3183		} else
3184			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3185		if (ext4_should_dioread_nolock(inode))
3186			map->m_flags |= EXT4_MAP_UNINIT;
3187		goto out;
3188	}
3189	/* IO end_io complete, convert the filled extent to written */
3190	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3191		ret = ext4_convert_unwritten_extents_endio(handle, inode,
3192							path);
3193		if (ret >= 0) {
3194			ext4_update_inode_fsync_trans(handle, inode, 1);
3195			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3196						 path, map->m_len);
3197		} else
3198			err = ret;
3199		goto out2;
3200	}
3201	/* buffered IO case */
3202	/*
3203	 * repeat fallocate creation request
3204	 * we already have an unwritten extent
3205	 */
3206	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3207		goto map_out;
3208
3209	/* buffered READ or buffered write_begin() lookup */
3210	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3211		/*
3212		 * We have blocks reserved already.  We
3213		 * return allocated blocks so that delalloc
3214		 * won't do block reservation for us.  But
3215		 * the buffer head will be unmapped so that
3216		 * a read from the block returns 0s.
3217		 */
3218		map->m_flags |= EXT4_MAP_UNWRITTEN;
3219		goto out1;
3220	}
3221
3222	/* buffered write, writepage time, convert*/
3223	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3224	if (ret >= 0) {
3225		ext4_update_inode_fsync_trans(handle, inode, 1);
3226		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3227					 map->m_len);
3228		if (err < 0)
3229			goto out2;
3230	}
3231
3232out:
3233	if (ret <= 0) {
3234		err = ret;
3235		goto out2;
3236	} else
3237		allocated = ret;
3238	map->m_flags |= EXT4_MAP_NEW;
3239	/*
3240	 * if we allocated more blocks than requested
3241	 * we need to make sure we unmap the extra block
3242	 * allocated. The actual needed block will get
3243	 * unmapped later when we find the buffer_head marked
3244	 * new.
3245	 */
3246	if (allocated > map->m_len) {
3247		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3248					newblock + map->m_len,
3249					allocated - map->m_len);
3250		allocated = map->m_len;
3251	}
3252
3253	/*
3254	 * If we have done fallocate with the offset that is already
3255	 * delayed allocated, we would have block reservation
3256	 * and quota reservation done in the delayed write path.
3257	 * But fallocate would have already updated quota and block
3258	 * count for this offset. So cancel these reservation
3259	 */
3260	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3261		ext4_da_update_reserve_space(inode, allocated, 0);
3262
3263map_out:
3264	map->m_flags |= EXT4_MAP_MAPPED;
3265out1:
3266	if (allocated > map->m_len)
3267		allocated = map->m_len;
3268	ext4_ext_show_leaf(inode, path);
3269	map->m_pblk = newblock;
3270	map->m_len = allocated;
3271out2:
3272	if (path) {
3273		ext4_ext_drop_refs(path);
3274		kfree(path);
3275	}
3276	return err ? err : allocated;
3277}
3278
3279/*
3280 * Block allocation/map/preallocation routine for extents based files
3281 *
3282 *
3283 * Need to be called with
3284 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3285 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3286 *
3287 * return > 0, number of of blocks already mapped/allocated
3288 *          if create == 0 and these are pre-allocated blocks
3289 *          	buffer head is unmapped
3290 *          otherwise blocks are mapped
3291 *
3292 * return = 0, if plain look up failed (blocks have not been allocated)
3293 *          buffer head is unmapped
3294 *
3295 * return < 0, error case.
3296 */
3297int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3298			struct ext4_map_blocks *map, int flags)
3299{
3300	struct ext4_ext_path *path = NULL;
3301	struct ext4_extent newex, *ex;
3302	ext4_fsblk_t newblock = 0;
3303	int err = 0, depth, ret;
3304	unsigned int allocated = 0;
3305	struct ext4_allocation_request ar;
3306	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3307
3308	ext_debug("blocks %u/%u requested for inode %lu\n",
3309		  map->m_lblk, map->m_len, inode->i_ino);
3310	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3311
3312	/* check in cache */
3313	if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3314		if (!newex.ee_start_lo && !newex.ee_start_hi) {
3315			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3316				/*
3317				 * block isn't allocated yet and
3318				 * user doesn't want to allocate it
3319				 */
3320				goto out2;
3321			}
3322			/* we should allocate requested block */
3323		} else {
3324			/* block is already allocated */
3325			newblock = map->m_lblk
3326				   - le32_to_cpu(newex.ee_block)
3327				   + ext4_ext_pblock(&newex);
3328			/* number of remaining blocks in the extent */
3329			allocated = ext4_ext_get_actual_len(&newex) -
3330				(map->m_lblk - le32_to_cpu(newex.ee_block));
3331			goto out;
3332		}
3333	}
3334
3335	/* find extent for this block */
3336	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3337	if (IS_ERR(path)) {
3338		err = PTR_ERR(path);
3339		path = NULL;
3340		goto out2;
3341	}
3342
3343	depth = ext_depth(inode);
3344
3345	/*
3346	 * consistent leaf must not be empty;
3347	 * this situation is possible, though, _during_ tree modification;
3348	 * this is why assert can't be put in ext4_ext_find_extent()
3349	 */
3350	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3351		EXT4_ERROR_INODE(inode, "bad extent address "
3352				 "lblock: %lu, depth: %d pblock %lld",
3353				 (unsigned long) map->m_lblk, depth,
3354				 path[depth].p_block);
3355		err = -EIO;
3356		goto out2;
3357	}
3358
3359	ex = path[depth].p_ext;
3360	if (ex) {
3361		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3362		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3363		unsigned short ee_len;
3364
3365		/*
3366		 * Uninitialized extents are treated as holes, except that
3367		 * we split out initialized portions during a write.
3368		 */
3369		ee_len = ext4_ext_get_actual_len(ex);
3370		/* if found extent covers block, simply return it */
3371		if (in_range(map->m_lblk, ee_block, ee_len)) {
3372			newblock = map->m_lblk - ee_block + ee_start;
3373			/* number of remaining blocks in the extent */
3374			allocated = ee_len - (map->m_lblk - ee_block);
3375			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3376				  ee_block, ee_len, newblock);
3377
3378			/* Do not put uninitialized extent in the cache */
3379			if (!ext4_ext_is_uninitialized(ex)) {
3380				ext4_ext_put_in_cache(inode, ee_block,
3381							ee_len, ee_start);
3382				goto out;
3383			}
3384			ret = ext4_ext_handle_uninitialized_extents(handle,
3385					inode, map, path, flags, allocated,
3386					newblock);
3387			return ret;
3388		}
3389	}
3390
3391	/*
3392	 * requested block isn't allocated yet;
3393	 * we couldn't try to create block if create flag is zero
3394	 */
3395	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3396		/*
3397		 * put just found gap into cache to speed up
3398		 * subsequent requests
3399		 */
3400		ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3401		goto out2;
3402	}
3403	/*
3404	 * Okay, we need to do block allocation.
3405	 */
3406
3407	/* find neighbour allocated blocks */
3408	ar.lleft = map->m_lblk;
3409	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3410	if (err)
3411		goto out2;
3412	ar.lright = map->m_lblk;
3413	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
3414	if (err)
3415		goto out2;
3416
3417	/*
3418	 * See if request is beyond maximum number of blocks we can have in
3419	 * a single extent. For an initialized extent this limit is
3420	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3421	 * EXT_UNINIT_MAX_LEN.
3422	 */
3423	if (map->m_len > EXT_INIT_MAX_LEN &&
3424	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3425		map->m_len = EXT_INIT_MAX_LEN;
3426	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3427		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3428		map->m_len = EXT_UNINIT_MAX_LEN;
3429
3430	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3431	newex.ee_block = cpu_to_le32(map->m_lblk);
3432	newex.ee_len = cpu_to_le16(map->m_len);
3433	err = ext4_ext_check_overlap(inode, &newex, path);
3434	if (err)
3435		allocated = ext4_ext_get_actual_len(&newex);
3436	else
3437		allocated = map->m_len;
3438
3439	/* allocate new block */
3440	ar.inode = inode;
3441	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3442	ar.logical = map->m_lblk;
3443	ar.len = allocated;
3444	if (S_ISREG(inode->i_mode))
3445		ar.flags = EXT4_MB_HINT_DATA;
3446	else
3447		/* disable in-core preallocation for non-regular files */
3448		ar.flags = 0;
3449	newblock = ext4_mb_new_blocks(handle, &ar, &err);
3450	if (!newblock)
3451		goto out2;
3452	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3453		  ar.goal, newblock, allocated);
3454
3455	/* try to insert new extent into found leaf and return */
3456	ext4_ext_store_pblock(&newex, newblock);
3457	newex.ee_len = cpu_to_le16(ar.len);
3458	/* Mark uninitialized */
3459	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3460		ext4_ext_mark_uninitialized(&newex);
3461		/*
3462		 * io_end structure was created for every IO write to an
3463		 * uninitialized extent. To avoid unecessary conversion,
3464		 * here we flag the IO that really needs the conversion.
3465		 * For non asycn direct IO case, flag the inode state
3466		 * that we need to perform convertion when IO is done.
3467		 */
3468		if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3469			if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3470				io->flag = EXT4_IO_END_UNWRITTEN;
3471				atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3472			} else
3473				ext4_set_inode_state(inode,
3474						     EXT4_STATE_DIO_UNWRITTEN);
3475		}
3476		if (ext4_should_dioread_nolock(inode))
3477			map->m_flags |= EXT4_MAP_UNINIT;
3478	}
3479
3480	err = check_eofblocks_fl(handle, inode, map->m_lblk, path, ar.len);
3481	if (err)
3482		goto out2;
3483
3484	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3485	if (err) {
3486		/* free data blocks we just allocated */
3487		/* not a good idea to call discard here directly,
3488		 * but otherwise we'd need to call it every free() */
3489		ext4_discard_preallocations(inode);
3490		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
3491				 ext4_ext_get_actual_len(&newex), 0);
3492		goto out2;
3493	}
3494
3495	/* previous routine could use block we allocated */
3496	newblock = ext4_ext_pblock(&newex);
3497	allocated = ext4_ext_get_actual_len(&newex);
3498	if (allocated > map->m_len)
3499		allocated = map->m_len;
3500	map->m_flags |= EXT4_MAP_NEW;
3501
3502	/*
3503	 * Update reserved blocks/metadata blocks after successful
3504	 * block allocation which had been deferred till now.
3505	 */
3506	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3507		ext4_da_update_reserve_space(inode, allocated, 1);
3508
3509	/*
3510	 * Cache the extent and update transaction to commit on fdatasync only
3511	 * when it is _not_ an uninitialized extent.
3512	 */
3513	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
3514		ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
3515		ext4_update_inode_fsync_trans(handle, inode, 1);
3516	} else
3517		ext4_update_inode_fsync_trans(handle, inode, 0);
3518out:
3519	if (allocated > map->m_len)
3520		allocated = map->m_len;
3521	ext4_ext_show_leaf(inode, path);
3522	map->m_flags |= EXT4_MAP_MAPPED;
3523	map->m_pblk = newblock;
3524	map->m_len = allocated;
3525out2:
3526	if (path) {
3527		ext4_ext_drop_refs(path);
3528		kfree(path);
3529	}
3530	trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
3531		newblock, map->m_len, err ? err : allocated);
3532	return err ? err : allocated;
3533}
3534
3535void ext4_ext_truncate(struct inode *inode)
3536{
3537	struct address_space *mapping = inode->i_mapping;
3538	struct super_block *sb = inode->i_sb;
3539	ext4_lblk_t last_block;
3540	handle_t *handle;
3541	int err = 0;
3542
3543	/*
3544	 * finish any pending end_io work so we won't run the risk of
3545	 * converting any truncated blocks to initialized later
3546	 */
3547	ext4_flush_completed_IO(inode);
3548
3549	/*
3550	 * probably first extent we're gonna free will be last in block
3551	 */
3552	err = ext4_writepage_trans_blocks(inode);
3553	handle = ext4_journal_start(inode, err);
3554	if (IS_ERR(handle))
3555		return;
3556
3557	if (inode->i_size & (sb->s_blocksize - 1))
3558		ext4_block_truncate_page(handle, mapping, inode->i_size);
3559
3560	if (ext4_orphan_add(handle, inode))
3561		goto out_stop;
3562
3563	down_write(&EXT4_I(inode)->i_data_sem);
3564	ext4_ext_invalidate_cache(inode);
3565
3566	ext4_discard_preallocations(inode);
3567
3568	/*
3569	 * TODO: optimization is possible here.
3570	 * Probably we need not scan at all,
3571	 * because page truncation is enough.
3572	 */
3573
3574	/* we have to know where to truncate from in crash case */
3575	EXT4_I(inode)->i_disksize = inode->i_size;
3576	ext4_mark_inode_dirty(handle, inode);
3577
3578	last_block = (inode->i_size + sb->s_blocksize - 1)
3579			>> EXT4_BLOCK_SIZE_BITS(sb);
3580	err = ext4_ext_remove_space(inode, last_block);
3581
3582	/* In a multi-transaction truncate, we only make the final
3583	 * transaction synchronous.
3584	 */
3585	if (IS_SYNC(inode))
3586		ext4_handle_sync(handle);
3587
3588out_stop:
3589	up_write(&EXT4_I(inode)->i_data_sem);
3590	/*
3591	 * If this was a simple ftruncate() and the file will remain alive,
3592	 * then we need to clear up the orphan record which we created above.
3593	 * However, if this was a real unlink then we were called by
3594	 * ext4_delete_inode(), and we allow that function to clean up the
3595	 * orphan info for us.
3596	 */
3597	if (inode->i_nlink)
3598		ext4_orphan_del(handle, inode);
3599
3600	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3601	ext4_mark_inode_dirty(handle, inode);
3602	ext4_journal_stop(handle);
3603}
3604
3605static void ext4_falloc_update_inode(struct inode *inode,
3606				int mode, loff_t new_size, int update_ctime)
3607{
3608	struct timespec now;
3609
3610	if (update_ctime) {
3611		now = current_fs_time(inode->i_sb);
3612		if (!timespec_equal(&inode->i_ctime, &now))
3613			inode->i_ctime = now;
3614	}
3615	/*
3616	 * Update only when preallocation was requested beyond
3617	 * the file size.
3618	 */
3619	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3620		if (new_size > i_size_read(inode))
3621			i_size_write(inode, new_size);
3622		if (new_size > EXT4_I(inode)->i_disksize)
3623			ext4_update_i_disksize(inode, new_size);
3624	} else {
3625		/*
3626		 * Mark that we allocate beyond EOF so the subsequent truncate
3627		 * can proceed even if the new size is the same as i_size.
3628		 */
3629		if (new_size > i_size_read(inode))
3630			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3631	}
3632
3633}
3634
3635/*
3636 * preallocate space for a file. This implements ext4's fallocate file
3637 * operation, which gets called from sys_fallocate system call.
3638 * For block-mapped files, posix_fallocate should fall back to the method
3639 * of writing zeroes to the required new blocks (the same behavior which is
3640 * expected for file systems which do not support fallocate() system call).
3641 */
3642long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
3643{
3644	struct inode *inode = file->f_path.dentry->d_inode;
3645	handle_t *handle;
3646	loff_t new_size;
3647	unsigned int max_blocks;
3648	int ret = 0;
3649	int ret2 = 0;
3650	int retries = 0;
3651	struct ext4_map_blocks map;
3652	unsigned int credits, blkbits = inode->i_blkbits;
3653
3654	/* We only support the FALLOC_FL_KEEP_SIZE mode */
3655	if (mode & ~FALLOC_FL_KEEP_SIZE)
3656		return -EOPNOTSUPP;
3657
3658	/*
3659	 * currently supporting (pre)allocate mode for extent-based
3660	 * files _only_
3661	 */
3662	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3663		return -EOPNOTSUPP;
3664
3665	trace_ext4_fallocate_enter(inode, offset, len, mode);
3666	map.m_lblk = offset >> blkbits;
3667	/*
3668	 * We can't just convert len to max_blocks because
3669	 * If blocksize = 4096 offset = 3072 and len = 2048
3670	 */
3671	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3672		- map.m_lblk;
3673	/*
3674	 * credits to insert 1 extent into extent tree
3675	 */
3676	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3677	mutex_lock(&inode->i_mutex);
3678	ret = inode_newsize_ok(inode, (len + offset));
3679	if (ret) {
3680		mutex_unlock(&inode->i_mutex);
3681		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
3682		return ret;
3683	}
3684retry:
3685	while (ret >= 0 && ret < max_blocks) {
3686		map.m_lblk = map.m_lblk + ret;
3687		map.m_len = max_blocks = max_blocks - ret;
3688		handle = ext4_journal_start(inode, credits);
3689		if (IS_ERR(handle)) {
3690			ret = PTR_ERR(handle);
3691			break;
3692		}
3693		ret = ext4_map_blocks(handle, inode, &map,
3694				      EXT4_GET_BLOCKS_CREATE_UNINIT_EXT);
3695		if (ret <= 0) {
3696#ifdef EXT4FS_DEBUG
3697			WARN_ON(ret <= 0);
3698			printk(KERN_ERR "%s: ext4_ext_map_blocks "
3699				    "returned error inode#%lu, block=%u, "
3700				    "max_blocks=%u", __func__,
3701				    inode->i_ino, map.m_lblk, max_blocks);
3702#endif
3703			ext4_mark_inode_dirty(handle, inode);
3704			ret2 = ext4_journal_stop(handle);
3705			break;
3706		}
3707		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3708						blkbits) >> blkbits))
3709			new_size = offset + len;
3710		else
3711			new_size = (map.m_lblk + ret) << blkbits;
3712
3713		ext4_falloc_update_inode(inode, mode, new_size,
3714					 (map.m_flags & EXT4_MAP_NEW));
3715		ext4_mark_inode_dirty(handle, inode);
3716		ret2 = ext4_journal_stop(handle);
3717		if (ret2)
3718			break;
3719	}
3720	if (ret == -ENOSPC &&
3721			ext4_should_retry_alloc(inode->i_sb, &retries)) {
3722		ret = 0;
3723		goto retry;
3724	}
3725	mutex_unlock(&inode->i_mutex);
3726	trace_ext4_fallocate_exit(inode, offset, max_blocks,
3727				ret > 0 ? ret2 : ret);
3728	return ret > 0 ? ret2 : ret;
3729}
3730
3731/*
3732 * This function convert a range of blocks to written extents
3733 * The caller of this function will pass the start offset and the size.
3734 * all unwritten extents within this range will be converted to
3735 * written extents.
3736 *
3737 * This function is called from the direct IO end io call back
3738 * function, to convert the fallocated extents after IO is completed.
3739 * Returns 0 on success.
3740 */
3741int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
3742				    ssize_t len)
3743{
3744	handle_t *handle;
3745	unsigned int max_blocks;
3746	int ret = 0;
3747	int ret2 = 0;
3748	struct ext4_map_blocks map;
3749	unsigned int credits, blkbits = inode->i_blkbits;
3750
3751	map.m_lblk = offset >> blkbits;
3752	/*
3753	 * We can't just convert len to max_blocks because
3754	 * If blocksize = 4096 offset = 3072 and len = 2048
3755	 */
3756	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
3757		      map.m_lblk);
3758	/*
3759	 * credits to insert 1 extent into extent tree
3760	 */
3761	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3762	while (ret >= 0 && ret < max_blocks) {
3763		map.m_lblk += ret;
3764		map.m_len = (max_blocks -= ret);
3765		handle = ext4_journal_start(inode, credits);
3766		if (IS_ERR(handle)) {
3767			ret = PTR_ERR(handle);
3768			break;
3769		}
3770		ret = ext4_map_blocks(handle, inode, &map,
3771				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
3772		if (ret <= 0) {
3773			WARN_ON(ret <= 0);
3774			printk(KERN_ERR "%s: ext4_ext_map_blocks "
3775				    "returned error inode#%lu, block=%u, "
3776				    "max_blocks=%u", __func__,
3777				    inode->i_ino, map.m_lblk, map.m_len);
3778		}
3779		ext4_mark_inode_dirty(handle, inode);
3780		ret2 = ext4_journal_stop(handle);
3781		if (ret <= 0 || ret2 )
3782			break;
3783	}
3784	return ret > 0 ? ret2 : ret;
3785}
3786
3787/*
3788 * Callback function called for each extent to gather FIEMAP information.
3789 */
3790static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path,
3791		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
3792		       void *data)
3793{
3794	__u64	logical;
3795	__u64	physical;
3796	__u64	length;
3797	loff_t	size;
3798	__u32	flags = 0;
3799	int		ret = 0;
3800	struct fiemap_extent_info *fieinfo = data;
3801	unsigned char blksize_bits;
3802
3803	blksize_bits = inode->i_sb->s_blocksize_bits;
3804	logical = (__u64)newex->ec_block << blksize_bits;
3805
3806	if (newex->ec_start == 0) {
3807		/*
3808		 * No extent in extent-tree contains block @newex->ec_start,
3809		 * then the block may stay in 1)a hole or 2)delayed-extent.
3810		 *
3811		 * Holes or delayed-extents are processed as follows.
3812		 * 1. lookup dirty pages with specified range in pagecache.
3813		 *    If no page is got, then there is no delayed-extent and
3814		 *    return with EXT_CONTINUE.
3815		 * 2. find the 1st mapped buffer,
3816		 * 3. check if the mapped buffer is both in the request range
3817		 *    and a delayed buffer. If not, there is no delayed-extent,
3818		 *    then return.
3819		 * 4. a delayed-extent is found, the extent will be collected.
3820		 */
3821		ext4_lblk_t	end = 0;
3822		pgoff_t		last_offset;
3823		pgoff_t		offset;
3824		pgoff_t		index;
3825		struct page	**pages = NULL;
3826		struct buffer_head *bh = NULL;
3827		struct buffer_head *head = NULL;
3828		unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
3829
3830		pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
3831		if (pages == NULL)
3832			return -ENOMEM;
3833
3834		offset = logical >> PAGE_SHIFT;
3835repeat:
3836		last_offset = offset;
3837		head = NULL;
3838		ret = find_get_pages_tag(inode->i_mapping, &offset,
3839					PAGECACHE_TAG_DIRTY, nr_pages, pages);
3840
3841		if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
3842			/* First time, try to find a mapped buffer. */
3843			if (ret == 0) {
3844out:
3845				for (index = 0; index < ret; index++)
3846					page_cache_release(pages[index]);
3847				/* just a hole. */
3848				kfree(pages);
3849				return EXT_CONTINUE;
3850			}
3851
3852			/* Try to find the 1st mapped buffer. */
3853			end = ((__u64)pages[0]->index << PAGE_SHIFT) >>
3854				  blksize_bits;
3855			if (!page_has_buffers(pages[0]))
3856				goto out;
3857			head = page_buffers(pages[0]);
3858			if (!head)
3859				goto out;
3860
3861			bh = head;
3862			do {
3863				if (buffer_mapped(bh)) {
3864					/* get the 1st mapped buffer. */
3865					if (end > newex->ec_block +
3866						newex->ec_len)
3867						/* The buffer is out of
3868						 * the request range.
3869						 */
3870						goto out;
3871					goto found_mapped_buffer;
3872				}
3873				bh = bh->b_this_page;
3874				end++;
3875			} while (bh != head);
3876
3877			/* No mapped buffer found. */
3878			goto out;
3879		} else {
3880			/*Find contiguous delayed buffers. */
3881			if (ret > 0 && pages[0]->index == last_offset)
3882				head = page_buffers(pages[0]);
3883			bh = head;
3884		}
3885
3886found_mapped_buffer:
3887		if (bh != NULL && buffer_delay(bh)) {
3888			/* 1st or contiguous delayed buffer found. */
3889			if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
3890				/*
3891				 * 1st delayed buffer found, record
3892				 * the start of extent.
3893				 */
3894				flags |= FIEMAP_EXTENT_DELALLOC;
3895				newex->ec_block = end;
3896				logical = (__u64)end << blksize_bits;
3897			}
3898			/* Find contiguous delayed buffers. */
3899			do {
3900				if (!buffer_delay(bh))
3901					goto found_delayed_extent;
3902				bh = bh->b_this_page;
3903				end++;
3904			} while (bh != head);
3905
3906			for (index = 1; index < ret; index++) {
3907				if (!page_has_buffers(pages[index])) {
3908					bh = NULL;
3909					break;
3910				}
3911				head = page_buffers(pages[index]);
3912				if (!head) {
3913					bh = NULL;
3914					break;
3915				}
3916				if (pages[index]->index !=
3917					pages[0]->index + index) {
3918					/* Blocks are not contiguous. */
3919					bh = NULL;
3920					break;
3921				}
3922				bh = head;
3923				do {
3924					if (!buffer_delay(bh))
3925						/* Delayed-extent ends. */
3926						goto found_delayed_extent;
3927					bh = bh->b_this_page;
3928					end++;
3929				} while (bh != head);
3930			}
3931		} else if (!(flags & FIEMAP_EXTENT_DELALLOC))
3932			/* a hole found. */
3933			goto out;
3934
3935found_delayed_extent:
3936		newex->ec_len = min(end - newex->ec_block,
3937						(ext4_lblk_t)EXT_INIT_MAX_LEN);
3938		if (ret == nr_pages && bh != NULL &&
3939			newex->ec_len < EXT_INIT_MAX_LEN &&
3940			buffer_delay(bh)) {
3941			/* Have not collected an extent and continue. */
3942			for (index = 0; index < ret; index++)
3943				page_cache_release(pages[index]);
3944			goto repeat;
3945		}
3946
3947		for (index = 0; index < ret; index++)
3948			page_cache_release(pages[index]);
3949		kfree(pages);
3950	}
3951
3952	physical = (__u64)newex->ec_start << blksize_bits;
3953	length =   (__u64)newex->ec_len << blksize_bits;
3954
3955	if (ex && ext4_ext_is_uninitialized(ex))
3956		flags |= FIEMAP_EXTENT_UNWRITTEN;
3957
3958	size = i_size_read(inode);
3959	if (logical + length >= size)
3960		flags |= FIEMAP_EXTENT_LAST;
3961
3962	ret = fiemap_fill_next_extent(fieinfo, logical, physical,
3963					length, flags);
3964	if (ret < 0)
3965		return ret;
3966	if (ret == 1)
3967		return EXT_BREAK;
3968	return EXT_CONTINUE;
3969}
3970
3971/* fiemap flags we can handle specified here */
3972#define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
3973
3974static int ext4_xattr_fiemap(struct inode *inode,
3975				struct fiemap_extent_info *fieinfo)
3976{
3977	__u64 physical = 0;
3978	__u64 length;
3979	__u32 flags = FIEMAP_EXTENT_LAST;
3980	int blockbits = inode->i_sb->s_blocksize_bits;
3981	int error = 0;
3982
3983	/* in-inode? */
3984	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
3985		struct ext4_iloc iloc;
3986		int offset;	/* offset of xattr in inode */
3987
3988		error = ext4_get_inode_loc(inode, &iloc);
3989		if (error)
3990			return error;
3991		physical = iloc.bh->b_blocknr << blockbits;
3992		offset = EXT4_GOOD_OLD_INODE_SIZE +
3993				EXT4_I(inode)->i_extra_isize;
3994		physical += offset;
3995		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
3996		flags |= FIEMAP_EXTENT_DATA_INLINE;
3997		brelse(iloc.bh);
3998	} else { /* external block */
3999		physical = EXT4_I(inode)->i_file_acl << blockbits;
4000		length = inode->i_sb->s_blocksize;
4001	}
4002
4003	if (physical)
4004		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4005						length, flags);
4006	return (error < 0 ? error : 0);
4007}
4008
4009int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4010		__u64 start, __u64 len)
4011{
4012	ext4_lblk_t start_blk;
4013	int error = 0;
4014
4015	/* fallback to generic here if not in extents fmt */
4016	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4017		return generic_block_fiemap(inode, fieinfo, start, len,
4018			ext4_get_block);
4019
4020	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4021		return -EBADR;
4022
4023	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4024		error = ext4_xattr_fiemap(inode, fieinfo);
4025	} else {
4026		ext4_lblk_t len_blks;
4027		__u64 last_blk;
4028
4029		start_blk = start >> inode->i_sb->s_blocksize_bits;
4030		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4031		if (last_blk >= EXT_MAX_BLOCK)
4032			last_blk = EXT_MAX_BLOCK-1;
4033		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4034
4035		/*
4036		 * Walk the extent tree gathering extent information.
4037		 * ext4_ext_fiemap_cb will push extents back to user.
4038		 */
4039		error = ext4_ext_walk_space(inode, start_blk, len_blks,
4040					  ext4_ext_fiemap_cb, fieinfo);
4041	}
4042
4043	return error;
4044}
4045
4046