extents.c revision 91dd8c114499e9818f2d5919ef0b9eee61810220
1/*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 *   Copyright (c) 2005, Bull S.A.
7 *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21 */
22
23/*
24 * Extents support for EXT4
25 *
26 * TODO:
27 *   - ext4*_error() should be used in some situations
28 *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 *   - smart tree reduction
30 */
31
32#include <linux/fs.h>
33#include <linux/time.h>
34#include <linux/jbd2.h>
35#include <linux/highuid.h>
36#include <linux/pagemap.h>
37#include <linux/quotaops.h>
38#include <linux/string.h>
39#include <linux/slab.h>
40#include <linux/falloc.h>
41#include <asm/uaccess.h>
42#include <linux/fiemap.h>
43#include "ext4_jbd2.h"
44
45#include <trace/events/ext4.h>
46
47/*
48 * used by extent splitting.
49 */
50#define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
51					due to ENOSPC */
52#define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
53#define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
54
55#define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
56#define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
57
58static __le32 ext4_extent_block_csum(struct inode *inode,
59				     struct ext4_extent_header *eh)
60{
61	struct ext4_inode_info *ei = EXT4_I(inode);
62	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
63	__u32 csum;
64
65	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
66			   EXT4_EXTENT_TAIL_OFFSET(eh));
67	return cpu_to_le32(csum);
68}
69
70static int ext4_extent_block_csum_verify(struct inode *inode,
71					 struct ext4_extent_header *eh)
72{
73	struct ext4_extent_tail *et;
74
75	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
76		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
77		return 1;
78
79	et = find_ext4_extent_tail(eh);
80	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
81		return 0;
82	return 1;
83}
84
85static void ext4_extent_block_csum_set(struct inode *inode,
86				       struct ext4_extent_header *eh)
87{
88	struct ext4_extent_tail *et;
89
90	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
91		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
92		return;
93
94	et = find_ext4_extent_tail(eh);
95	et->et_checksum = ext4_extent_block_csum(inode, eh);
96}
97
98static int ext4_split_extent(handle_t *handle,
99				struct inode *inode,
100				struct ext4_ext_path *path,
101				struct ext4_map_blocks *map,
102				int split_flag,
103				int flags);
104
105static int ext4_split_extent_at(handle_t *handle,
106			     struct inode *inode,
107			     struct ext4_ext_path *path,
108			     ext4_lblk_t split,
109			     int split_flag,
110			     int flags);
111
112static int ext4_find_delayed_extent(struct inode *inode,
113				    struct ext4_ext_cache *newex);
114
115static int ext4_ext_truncate_extend_restart(handle_t *handle,
116					    struct inode *inode,
117					    int needed)
118{
119	int err;
120
121	if (!ext4_handle_valid(handle))
122		return 0;
123	if (handle->h_buffer_credits > needed)
124		return 0;
125	err = ext4_journal_extend(handle, needed);
126	if (err <= 0)
127		return err;
128	err = ext4_truncate_restart_trans(handle, inode, needed);
129	if (err == 0)
130		err = -EAGAIN;
131
132	return err;
133}
134
135/*
136 * could return:
137 *  - EROFS
138 *  - ENOMEM
139 */
140static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
141				struct ext4_ext_path *path)
142{
143	if (path->p_bh) {
144		/* path points to block */
145		return ext4_journal_get_write_access(handle, path->p_bh);
146	}
147	/* path points to leaf/index in inode body */
148	/* we use in-core data, no need to protect them */
149	return 0;
150}
151
152/*
153 * could return:
154 *  - EROFS
155 *  - ENOMEM
156 *  - EIO
157 */
158#define ext4_ext_dirty(handle, inode, path) \
159		__ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
160static int __ext4_ext_dirty(const char *where, unsigned int line,
161			    handle_t *handle, struct inode *inode,
162			    struct ext4_ext_path *path)
163{
164	int err;
165	if (path->p_bh) {
166		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
167		/* path points to block */
168		err = __ext4_handle_dirty_metadata(where, line, handle,
169						   inode, path->p_bh);
170	} else {
171		/* path points to leaf/index in inode body */
172		err = ext4_mark_inode_dirty(handle, inode);
173	}
174	return err;
175}
176
177static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
178			      struct ext4_ext_path *path,
179			      ext4_lblk_t block)
180{
181	if (path) {
182		int depth = path->p_depth;
183		struct ext4_extent *ex;
184
185		/*
186		 * Try to predict block placement assuming that we are
187		 * filling in a file which will eventually be
188		 * non-sparse --- i.e., in the case of libbfd writing
189		 * an ELF object sections out-of-order but in a way
190		 * the eventually results in a contiguous object or
191		 * executable file, or some database extending a table
192		 * space file.  However, this is actually somewhat
193		 * non-ideal if we are writing a sparse file such as
194		 * qemu or KVM writing a raw image file that is going
195		 * to stay fairly sparse, since it will end up
196		 * fragmenting the file system's free space.  Maybe we
197		 * should have some hueristics or some way to allow
198		 * userspace to pass a hint to file system,
199		 * especially if the latter case turns out to be
200		 * common.
201		 */
202		ex = path[depth].p_ext;
203		if (ex) {
204			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
205			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
206
207			if (block > ext_block)
208				return ext_pblk + (block - ext_block);
209			else
210				return ext_pblk - (ext_block - block);
211		}
212
213		/* it looks like index is empty;
214		 * try to find starting block from index itself */
215		if (path[depth].p_bh)
216			return path[depth].p_bh->b_blocknr;
217	}
218
219	/* OK. use inode's group */
220	return ext4_inode_to_goal_block(inode);
221}
222
223/*
224 * Allocation for a meta data block
225 */
226static ext4_fsblk_t
227ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
228			struct ext4_ext_path *path,
229			struct ext4_extent *ex, int *err, unsigned int flags)
230{
231	ext4_fsblk_t goal, newblock;
232
233	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
234	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
235					NULL, err);
236	return newblock;
237}
238
239static inline int ext4_ext_space_block(struct inode *inode, int check)
240{
241	int size;
242
243	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
244			/ sizeof(struct ext4_extent);
245#ifdef AGGRESSIVE_TEST
246	if (!check && size > 6)
247		size = 6;
248#endif
249	return size;
250}
251
252static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
253{
254	int size;
255
256	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
257			/ sizeof(struct ext4_extent_idx);
258#ifdef AGGRESSIVE_TEST
259	if (!check && size > 5)
260		size = 5;
261#endif
262	return size;
263}
264
265static inline int ext4_ext_space_root(struct inode *inode, int check)
266{
267	int size;
268
269	size = sizeof(EXT4_I(inode)->i_data);
270	size -= sizeof(struct ext4_extent_header);
271	size /= sizeof(struct ext4_extent);
272#ifdef AGGRESSIVE_TEST
273	if (!check && size > 3)
274		size = 3;
275#endif
276	return size;
277}
278
279static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
280{
281	int size;
282
283	size = sizeof(EXT4_I(inode)->i_data);
284	size -= sizeof(struct ext4_extent_header);
285	size /= sizeof(struct ext4_extent_idx);
286#ifdef AGGRESSIVE_TEST
287	if (!check && size > 4)
288		size = 4;
289#endif
290	return size;
291}
292
293/*
294 * Calculate the number of metadata blocks needed
295 * to allocate @blocks
296 * Worse case is one block per extent
297 */
298int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
299{
300	struct ext4_inode_info *ei = EXT4_I(inode);
301	int idxs;
302
303	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
304		/ sizeof(struct ext4_extent_idx));
305
306	/*
307	 * If the new delayed allocation block is contiguous with the
308	 * previous da block, it can share index blocks with the
309	 * previous block, so we only need to allocate a new index
310	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
311	 * an additional index block, and at ldxs**3 blocks, yet
312	 * another index blocks.
313	 */
314	if (ei->i_da_metadata_calc_len &&
315	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
316		int num = 0;
317
318		if ((ei->i_da_metadata_calc_len % idxs) == 0)
319			num++;
320		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
321			num++;
322		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
323			num++;
324			ei->i_da_metadata_calc_len = 0;
325		} else
326			ei->i_da_metadata_calc_len++;
327		ei->i_da_metadata_calc_last_lblock++;
328		return num;
329	}
330
331	/*
332	 * In the worst case we need a new set of index blocks at
333	 * every level of the inode's extent tree.
334	 */
335	ei->i_da_metadata_calc_len = 1;
336	ei->i_da_metadata_calc_last_lblock = lblock;
337	return ext_depth(inode) + 1;
338}
339
340static int
341ext4_ext_max_entries(struct inode *inode, int depth)
342{
343	int max;
344
345	if (depth == ext_depth(inode)) {
346		if (depth == 0)
347			max = ext4_ext_space_root(inode, 1);
348		else
349			max = ext4_ext_space_root_idx(inode, 1);
350	} else {
351		if (depth == 0)
352			max = ext4_ext_space_block(inode, 1);
353		else
354			max = ext4_ext_space_block_idx(inode, 1);
355	}
356
357	return max;
358}
359
360static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
361{
362	ext4_fsblk_t block = ext4_ext_pblock(ext);
363	int len = ext4_ext_get_actual_len(ext);
364
365	if (len == 0)
366		return 0;
367	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
368}
369
370static int ext4_valid_extent_idx(struct inode *inode,
371				struct ext4_extent_idx *ext_idx)
372{
373	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
374
375	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
376}
377
378static int ext4_valid_extent_entries(struct inode *inode,
379				struct ext4_extent_header *eh,
380				int depth)
381{
382	unsigned short entries;
383	if (eh->eh_entries == 0)
384		return 1;
385
386	entries = le16_to_cpu(eh->eh_entries);
387
388	if (depth == 0) {
389		/* leaf entries */
390		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
391		while (entries) {
392			if (!ext4_valid_extent(inode, ext))
393				return 0;
394			ext++;
395			entries--;
396		}
397	} else {
398		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
399		while (entries) {
400			if (!ext4_valid_extent_idx(inode, ext_idx))
401				return 0;
402			ext_idx++;
403			entries--;
404		}
405	}
406	return 1;
407}
408
409static int __ext4_ext_check(const char *function, unsigned int line,
410			    struct inode *inode, struct ext4_extent_header *eh,
411			    int depth)
412{
413	const char *error_msg;
414	int max = 0;
415
416	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
417		error_msg = "invalid magic";
418		goto corrupted;
419	}
420	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
421		error_msg = "unexpected eh_depth";
422		goto corrupted;
423	}
424	if (unlikely(eh->eh_max == 0)) {
425		error_msg = "invalid eh_max";
426		goto corrupted;
427	}
428	max = ext4_ext_max_entries(inode, depth);
429	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
430		error_msg = "too large eh_max";
431		goto corrupted;
432	}
433	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
434		error_msg = "invalid eh_entries";
435		goto corrupted;
436	}
437	if (!ext4_valid_extent_entries(inode, eh, depth)) {
438		error_msg = "invalid extent entries";
439		goto corrupted;
440	}
441	/* Verify checksum on non-root extent tree nodes */
442	if (ext_depth(inode) != depth &&
443	    !ext4_extent_block_csum_verify(inode, eh)) {
444		error_msg = "extent tree corrupted";
445		goto corrupted;
446	}
447	return 0;
448
449corrupted:
450	ext4_error_inode(inode, function, line, 0,
451			"bad header/extent: %s - magic %x, "
452			"entries %u, max %u(%u), depth %u(%u)",
453			error_msg, le16_to_cpu(eh->eh_magic),
454			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
455			max, le16_to_cpu(eh->eh_depth), depth);
456
457	return -EIO;
458}
459
460#define ext4_ext_check(inode, eh, depth)	\
461	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
462
463int ext4_ext_check_inode(struct inode *inode)
464{
465	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
466}
467
468static int __ext4_ext_check_block(const char *function, unsigned int line,
469				  struct inode *inode,
470				  struct ext4_extent_header *eh,
471				  int depth,
472				  struct buffer_head *bh)
473{
474	int ret;
475
476	if (buffer_verified(bh))
477		return 0;
478	ret = ext4_ext_check(inode, eh, depth);
479	if (ret)
480		return ret;
481	set_buffer_verified(bh);
482	return ret;
483}
484
485#define ext4_ext_check_block(inode, eh, depth, bh)	\
486	__ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
487
488#ifdef EXT_DEBUG
489static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
490{
491	int k, l = path->p_depth;
492
493	ext_debug("path:");
494	for (k = 0; k <= l; k++, path++) {
495		if (path->p_idx) {
496		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
497			    ext4_idx_pblock(path->p_idx));
498		} else if (path->p_ext) {
499			ext_debug("  %d:[%d]%d:%llu ",
500				  le32_to_cpu(path->p_ext->ee_block),
501				  ext4_ext_is_uninitialized(path->p_ext),
502				  ext4_ext_get_actual_len(path->p_ext),
503				  ext4_ext_pblock(path->p_ext));
504		} else
505			ext_debug("  []");
506	}
507	ext_debug("\n");
508}
509
510static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
511{
512	int depth = ext_depth(inode);
513	struct ext4_extent_header *eh;
514	struct ext4_extent *ex;
515	int i;
516
517	if (!path)
518		return;
519
520	eh = path[depth].p_hdr;
521	ex = EXT_FIRST_EXTENT(eh);
522
523	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
524
525	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
526		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
527			  ext4_ext_is_uninitialized(ex),
528			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
529	}
530	ext_debug("\n");
531}
532
533static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
534			ext4_fsblk_t newblock, int level)
535{
536	int depth = ext_depth(inode);
537	struct ext4_extent *ex;
538
539	if (depth != level) {
540		struct ext4_extent_idx *idx;
541		idx = path[level].p_idx;
542		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
543			ext_debug("%d: move %d:%llu in new index %llu\n", level,
544					le32_to_cpu(idx->ei_block),
545					ext4_idx_pblock(idx),
546					newblock);
547			idx++;
548		}
549
550		return;
551	}
552
553	ex = path[depth].p_ext;
554	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
555		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
556				le32_to_cpu(ex->ee_block),
557				ext4_ext_pblock(ex),
558				ext4_ext_is_uninitialized(ex),
559				ext4_ext_get_actual_len(ex),
560				newblock);
561		ex++;
562	}
563}
564
565#else
566#define ext4_ext_show_path(inode, path)
567#define ext4_ext_show_leaf(inode, path)
568#define ext4_ext_show_move(inode, path, newblock, level)
569#endif
570
571void ext4_ext_drop_refs(struct ext4_ext_path *path)
572{
573	int depth = path->p_depth;
574	int i;
575
576	for (i = 0; i <= depth; i++, path++)
577		if (path->p_bh) {
578			brelse(path->p_bh);
579			path->p_bh = NULL;
580		}
581}
582
583/*
584 * ext4_ext_binsearch_idx:
585 * binary search for the closest index of the given block
586 * the header must be checked before calling this
587 */
588static void
589ext4_ext_binsearch_idx(struct inode *inode,
590			struct ext4_ext_path *path, ext4_lblk_t block)
591{
592	struct ext4_extent_header *eh = path->p_hdr;
593	struct ext4_extent_idx *r, *l, *m;
594
595
596	ext_debug("binsearch for %u(idx):  ", block);
597
598	l = EXT_FIRST_INDEX(eh) + 1;
599	r = EXT_LAST_INDEX(eh);
600	while (l <= r) {
601		m = l + (r - l) / 2;
602		if (block < le32_to_cpu(m->ei_block))
603			r = m - 1;
604		else
605			l = m + 1;
606		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
607				m, le32_to_cpu(m->ei_block),
608				r, le32_to_cpu(r->ei_block));
609	}
610
611	path->p_idx = l - 1;
612	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
613		  ext4_idx_pblock(path->p_idx));
614
615#ifdef CHECK_BINSEARCH
616	{
617		struct ext4_extent_idx *chix, *ix;
618		int k;
619
620		chix = ix = EXT_FIRST_INDEX(eh);
621		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
622		  if (k != 0 &&
623		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
624				printk(KERN_DEBUG "k=%d, ix=0x%p, "
625				       "first=0x%p\n", k,
626				       ix, EXT_FIRST_INDEX(eh));
627				printk(KERN_DEBUG "%u <= %u\n",
628				       le32_to_cpu(ix->ei_block),
629				       le32_to_cpu(ix[-1].ei_block));
630			}
631			BUG_ON(k && le32_to_cpu(ix->ei_block)
632					   <= le32_to_cpu(ix[-1].ei_block));
633			if (block < le32_to_cpu(ix->ei_block))
634				break;
635			chix = ix;
636		}
637		BUG_ON(chix != path->p_idx);
638	}
639#endif
640
641}
642
643/*
644 * ext4_ext_binsearch:
645 * binary search for closest extent of the given block
646 * the header must be checked before calling this
647 */
648static void
649ext4_ext_binsearch(struct inode *inode,
650		struct ext4_ext_path *path, ext4_lblk_t block)
651{
652	struct ext4_extent_header *eh = path->p_hdr;
653	struct ext4_extent *r, *l, *m;
654
655	if (eh->eh_entries == 0) {
656		/*
657		 * this leaf is empty:
658		 * we get such a leaf in split/add case
659		 */
660		return;
661	}
662
663	ext_debug("binsearch for %u:  ", block);
664
665	l = EXT_FIRST_EXTENT(eh) + 1;
666	r = EXT_LAST_EXTENT(eh);
667
668	while (l <= r) {
669		m = l + (r - l) / 2;
670		if (block < le32_to_cpu(m->ee_block))
671			r = m - 1;
672		else
673			l = m + 1;
674		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
675				m, le32_to_cpu(m->ee_block),
676				r, le32_to_cpu(r->ee_block));
677	}
678
679	path->p_ext = l - 1;
680	ext_debug("  -> %d:%llu:[%d]%d ",
681			le32_to_cpu(path->p_ext->ee_block),
682			ext4_ext_pblock(path->p_ext),
683			ext4_ext_is_uninitialized(path->p_ext),
684			ext4_ext_get_actual_len(path->p_ext));
685
686#ifdef CHECK_BINSEARCH
687	{
688		struct ext4_extent *chex, *ex;
689		int k;
690
691		chex = ex = EXT_FIRST_EXTENT(eh);
692		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
693			BUG_ON(k && le32_to_cpu(ex->ee_block)
694					  <= le32_to_cpu(ex[-1].ee_block));
695			if (block < le32_to_cpu(ex->ee_block))
696				break;
697			chex = ex;
698		}
699		BUG_ON(chex != path->p_ext);
700	}
701#endif
702
703}
704
705int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
706{
707	struct ext4_extent_header *eh;
708
709	eh = ext_inode_hdr(inode);
710	eh->eh_depth = 0;
711	eh->eh_entries = 0;
712	eh->eh_magic = EXT4_EXT_MAGIC;
713	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
714	ext4_mark_inode_dirty(handle, inode);
715	ext4_ext_invalidate_cache(inode);
716	return 0;
717}
718
719struct ext4_ext_path *
720ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
721					struct ext4_ext_path *path)
722{
723	struct ext4_extent_header *eh;
724	struct buffer_head *bh;
725	short int depth, i, ppos = 0, alloc = 0;
726
727	eh = ext_inode_hdr(inode);
728	depth = ext_depth(inode);
729
730	/* account possible depth increase */
731	if (!path) {
732		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
733				GFP_NOFS);
734		if (!path)
735			return ERR_PTR(-ENOMEM);
736		alloc = 1;
737	}
738	path[0].p_hdr = eh;
739	path[0].p_bh = NULL;
740
741	i = depth;
742	/* walk through the tree */
743	while (i) {
744		ext_debug("depth %d: num %d, max %d\n",
745			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
746
747		ext4_ext_binsearch_idx(inode, path + ppos, block);
748		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
749		path[ppos].p_depth = i;
750		path[ppos].p_ext = NULL;
751
752		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
753		if (unlikely(!bh))
754			goto err;
755		if (!bh_uptodate_or_lock(bh)) {
756			trace_ext4_ext_load_extent(inode, block,
757						path[ppos].p_block);
758			if (bh_submit_read(bh) < 0) {
759				put_bh(bh);
760				goto err;
761			}
762		}
763		eh = ext_block_hdr(bh);
764		ppos++;
765		if (unlikely(ppos > depth)) {
766			put_bh(bh);
767			EXT4_ERROR_INODE(inode,
768					 "ppos %d > depth %d", ppos, depth);
769			goto err;
770		}
771		path[ppos].p_bh = bh;
772		path[ppos].p_hdr = eh;
773		i--;
774
775		if (ext4_ext_check_block(inode, eh, i, bh))
776			goto err;
777	}
778
779	path[ppos].p_depth = i;
780	path[ppos].p_ext = NULL;
781	path[ppos].p_idx = NULL;
782
783	/* find extent */
784	ext4_ext_binsearch(inode, path + ppos, block);
785	/* if not an empty leaf */
786	if (path[ppos].p_ext)
787		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
788
789	ext4_ext_show_path(inode, path);
790
791	return path;
792
793err:
794	ext4_ext_drop_refs(path);
795	if (alloc)
796		kfree(path);
797	return ERR_PTR(-EIO);
798}
799
800/*
801 * ext4_ext_insert_index:
802 * insert new index [@logical;@ptr] into the block at @curp;
803 * check where to insert: before @curp or after @curp
804 */
805static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
806				 struct ext4_ext_path *curp,
807				 int logical, ext4_fsblk_t ptr)
808{
809	struct ext4_extent_idx *ix;
810	int len, err;
811
812	err = ext4_ext_get_access(handle, inode, curp);
813	if (err)
814		return err;
815
816	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
817		EXT4_ERROR_INODE(inode,
818				 "logical %d == ei_block %d!",
819				 logical, le32_to_cpu(curp->p_idx->ei_block));
820		return -EIO;
821	}
822
823	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
824			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
825		EXT4_ERROR_INODE(inode,
826				 "eh_entries %d >= eh_max %d!",
827				 le16_to_cpu(curp->p_hdr->eh_entries),
828				 le16_to_cpu(curp->p_hdr->eh_max));
829		return -EIO;
830	}
831
832	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
833		/* insert after */
834		ext_debug("insert new index %d after: %llu\n", logical, ptr);
835		ix = curp->p_idx + 1;
836	} else {
837		/* insert before */
838		ext_debug("insert new index %d before: %llu\n", logical, ptr);
839		ix = curp->p_idx;
840	}
841
842	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
843	BUG_ON(len < 0);
844	if (len > 0) {
845		ext_debug("insert new index %d: "
846				"move %d indices from 0x%p to 0x%p\n",
847				logical, len, ix, ix + 1);
848		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
849	}
850
851	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
852		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
853		return -EIO;
854	}
855
856	ix->ei_block = cpu_to_le32(logical);
857	ext4_idx_store_pblock(ix, ptr);
858	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
859
860	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
861		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
862		return -EIO;
863	}
864
865	err = ext4_ext_dirty(handle, inode, curp);
866	ext4_std_error(inode->i_sb, err);
867
868	return err;
869}
870
871/*
872 * ext4_ext_split:
873 * inserts new subtree into the path, using free index entry
874 * at depth @at:
875 * - allocates all needed blocks (new leaf and all intermediate index blocks)
876 * - makes decision where to split
877 * - moves remaining extents and index entries (right to the split point)
878 *   into the newly allocated blocks
879 * - initializes subtree
880 */
881static int ext4_ext_split(handle_t *handle, struct inode *inode,
882			  unsigned int flags,
883			  struct ext4_ext_path *path,
884			  struct ext4_extent *newext, int at)
885{
886	struct buffer_head *bh = NULL;
887	int depth = ext_depth(inode);
888	struct ext4_extent_header *neh;
889	struct ext4_extent_idx *fidx;
890	int i = at, k, m, a;
891	ext4_fsblk_t newblock, oldblock;
892	__le32 border;
893	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
894	int err = 0;
895
896	/* make decision: where to split? */
897	/* FIXME: now decision is simplest: at current extent */
898
899	/* if current leaf will be split, then we should use
900	 * border from split point */
901	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
902		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
903		return -EIO;
904	}
905	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
906		border = path[depth].p_ext[1].ee_block;
907		ext_debug("leaf will be split."
908				" next leaf starts at %d\n",
909				  le32_to_cpu(border));
910	} else {
911		border = newext->ee_block;
912		ext_debug("leaf will be added."
913				" next leaf starts at %d\n",
914				le32_to_cpu(border));
915	}
916
917	/*
918	 * If error occurs, then we break processing
919	 * and mark filesystem read-only. index won't
920	 * be inserted and tree will be in consistent
921	 * state. Next mount will repair buffers too.
922	 */
923
924	/*
925	 * Get array to track all allocated blocks.
926	 * We need this to handle errors and free blocks
927	 * upon them.
928	 */
929	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
930	if (!ablocks)
931		return -ENOMEM;
932
933	/* allocate all needed blocks */
934	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
935	for (a = 0; a < depth - at; a++) {
936		newblock = ext4_ext_new_meta_block(handle, inode, path,
937						   newext, &err, flags);
938		if (newblock == 0)
939			goto cleanup;
940		ablocks[a] = newblock;
941	}
942
943	/* initialize new leaf */
944	newblock = ablocks[--a];
945	if (unlikely(newblock == 0)) {
946		EXT4_ERROR_INODE(inode, "newblock == 0!");
947		err = -EIO;
948		goto cleanup;
949	}
950	bh = sb_getblk(inode->i_sb, newblock);
951	if (!bh) {
952		err = -EIO;
953		goto cleanup;
954	}
955	lock_buffer(bh);
956
957	err = ext4_journal_get_create_access(handle, bh);
958	if (err)
959		goto cleanup;
960
961	neh = ext_block_hdr(bh);
962	neh->eh_entries = 0;
963	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
964	neh->eh_magic = EXT4_EXT_MAGIC;
965	neh->eh_depth = 0;
966
967	/* move remainder of path[depth] to the new leaf */
968	if (unlikely(path[depth].p_hdr->eh_entries !=
969		     path[depth].p_hdr->eh_max)) {
970		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
971				 path[depth].p_hdr->eh_entries,
972				 path[depth].p_hdr->eh_max);
973		err = -EIO;
974		goto cleanup;
975	}
976	/* start copy from next extent */
977	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
978	ext4_ext_show_move(inode, path, newblock, depth);
979	if (m) {
980		struct ext4_extent *ex;
981		ex = EXT_FIRST_EXTENT(neh);
982		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
983		le16_add_cpu(&neh->eh_entries, m);
984	}
985
986	ext4_extent_block_csum_set(inode, neh);
987	set_buffer_uptodate(bh);
988	unlock_buffer(bh);
989
990	err = ext4_handle_dirty_metadata(handle, inode, bh);
991	if (err)
992		goto cleanup;
993	brelse(bh);
994	bh = NULL;
995
996	/* correct old leaf */
997	if (m) {
998		err = ext4_ext_get_access(handle, inode, path + depth);
999		if (err)
1000			goto cleanup;
1001		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1002		err = ext4_ext_dirty(handle, inode, path + depth);
1003		if (err)
1004			goto cleanup;
1005
1006	}
1007
1008	/* create intermediate indexes */
1009	k = depth - at - 1;
1010	if (unlikely(k < 0)) {
1011		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1012		err = -EIO;
1013		goto cleanup;
1014	}
1015	if (k)
1016		ext_debug("create %d intermediate indices\n", k);
1017	/* insert new index into current index block */
1018	/* current depth stored in i var */
1019	i = depth - 1;
1020	while (k--) {
1021		oldblock = newblock;
1022		newblock = ablocks[--a];
1023		bh = sb_getblk(inode->i_sb, newblock);
1024		if (!bh) {
1025			err = -EIO;
1026			goto cleanup;
1027		}
1028		lock_buffer(bh);
1029
1030		err = ext4_journal_get_create_access(handle, bh);
1031		if (err)
1032			goto cleanup;
1033
1034		neh = ext_block_hdr(bh);
1035		neh->eh_entries = cpu_to_le16(1);
1036		neh->eh_magic = EXT4_EXT_MAGIC;
1037		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1038		neh->eh_depth = cpu_to_le16(depth - i);
1039		fidx = EXT_FIRST_INDEX(neh);
1040		fidx->ei_block = border;
1041		ext4_idx_store_pblock(fidx, oldblock);
1042
1043		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1044				i, newblock, le32_to_cpu(border), oldblock);
1045
1046		/* move remainder of path[i] to the new index block */
1047		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1048					EXT_LAST_INDEX(path[i].p_hdr))) {
1049			EXT4_ERROR_INODE(inode,
1050					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1051					 le32_to_cpu(path[i].p_ext->ee_block));
1052			err = -EIO;
1053			goto cleanup;
1054		}
1055		/* start copy indexes */
1056		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1057		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1058				EXT_MAX_INDEX(path[i].p_hdr));
1059		ext4_ext_show_move(inode, path, newblock, i);
1060		if (m) {
1061			memmove(++fidx, path[i].p_idx,
1062				sizeof(struct ext4_extent_idx) * m);
1063			le16_add_cpu(&neh->eh_entries, m);
1064		}
1065		ext4_extent_block_csum_set(inode, neh);
1066		set_buffer_uptodate(bh);
1067		unlock_buffer(bh);
1068
1069		err = ext4_handle_dirty_metadata(handle, inode, bh);
1070		if (err)
1071			goto cleanup;
1072		brelse(bh);
1073		bh = NULL;
1074
1075		/* correct old index */
1076		if (m) {
1077			err = ext4_ext_get_access(handle, inode, path + i);
1078			if (err)
1079				goto cleanup;
1080			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1081			err = ext4_ext_dirty(handle, inode, path + i);
1082			if (err)
1083				goto cleanup;
1084		}
1085
1086		i--;
1087	}
1088
1089	/* insert new index */
1090	err = ext4_ext_insert_index(handle, inode, path + at,
1091				    le32_to_cpu(border), newblock);
1092
1093cleanup:
1094	if (bh) {
1095		if (buffer_locked(bh))
1096			unlock_buffer(bh);
1097		brelse(bh);
1098	}
1099
1100	if (err) {
1101		/* free all allocated blocks in error case */
1102		for (i = 0; i < depth; i++) {
1103			if (!ablocks[i])
1104				continue;
1105			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1106					 EXT4_FREE_BLOCKS_METADATA);
1107		}
1108	}
1109	kfree(ablocks);
1110
1111	return err;
1112}
1113
1114/*
1115 * ext4_ext_grow_indepth:
1116 * implements tree growing procedure:
1117 * - allocates new block
1118 * - moves top-level data (index block or leaf) into the new block
1119 * - initializes new top-level, creating index that points to the
1120 *   just created block
1121 */
1122static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1123				 unsigned int flags,
1124				 struct ext4_extent *newext)
1125{
1126	struct ext4_extent_header *neh;
1127	struct buffer_head *bh;
1128	ext4_fsblk_t newblock;
1129	int err = 0;
1130
1131	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1132		newext, &err, flags);
1133	if (newblock == 0)
1134		return err;
1135
1136	bh = sb_getblk(inode->i_sb, newblock);
1137	if (!bh) {
1138		err = -EIO;
1139		ext4_std_error(inode->i_sb, err);
1140		return err;
1141	}
1142	lock_buffer(bh);
1143
1144	err = ext4_journal_get_create_access(handle, bh);
1145	if (err) {
1146		unlock_buffer(bh);
1147		goto out;
1148	}
1149
1150	/* move top-level index/leaf into new block */
1151	memmove(bh->b_data, EXT4_I(inode)->i_data,
1152		sizeof(EXT4_I(inode)->i_data));
1153
1154	/* set size of new block */
1155	neh = ext_block_hdr(bh);
1156	/* old root could have indexes or leaves
1157	 * so calculate e_max right way */
1158	if (ext_depth(inode))
1159		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1160	else
1161		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1162	neh->eh_magic = EXT4_EXT_MAGIC;
1163	ext4_extent_block_csum_set(inode, neh);
1164	set_buffer_uptodate(bh);
1165	unlock_buffer(bh);
1166
1167	err = ext4_handle_dirty_metadata(handle, inode, bh);
1168	if (err)
1169		goto out;
1170
1171	/* Update top-level index: num,max,pointer */
1172	neh = ext_inode_hdr(inode);
1173	neh->eh_entries = cpu_to_le16(1);
1174	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1175	if (neh->eh_depth == 0) {
1176		/* Root extent block becomes index block */
1177		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1178		EXT_FIRST_INDEX(neh)->ei_block =
1179			EXT_FIRST_EXTENT(neh)->ee_block;
1180	}
1181	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1182		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1183		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1184		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1185
1186	le16_add_cpu(&neh->eh_depth, 1);
1187	ext4_mark_inode_dirty(handle, inode);
1188out:
1189	brelse(bh);
1190
1191	return err;
1192}
1193
1194/*
1195 * ext4_ext_create_new_leaf:
1196 * finds empty index and adds new leaf.
1197 * if no free index is found, then it requests in-depth growing.
1198 */
1199static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1200				    unsigned int flags,
1201				    struct ext4_ext_path *path,
1202				    struct ext4_extent *newext)
1203{
1204	struct ext4_ext_path *curp;
1205	int depth, i, err = 0;
1206
1207repeat:
1208	i = depth = ext_depth(inode);
1209
1210	/* walk up to the tree and look for free index entry */
1211	curp = path + depth;
1212	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1213		i--;
1214		curp--;
1215	}
1216
1217	/* we use already allocated block for index block,
1218	 * so subsequent data blocks should be contiguous */
1219	if (EXT_HAS_FREE_INDEX(curp)) {
1220		/* if we found index with free entry, then use that
1221		 * entry: create all needed subtree and add new leaf */
1222		err = ext4_ext_split(handle, inode, flags, path, newext, i);
1223		if (err)
1224			goto out;
1225
1226		/* refill path */
1227		ext4_ext_drop_refs(path);
1228		path = ext4_ext_find_extent(inode,
1229				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1230				    path);
1231		if (IS_ERR(path))
1232			err = PTR_ERR(path);
1233	} else {
1234		/* tree is full, time to grow in depth */
1235		err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1236		if (err)
1237			goto out;
1238
1239		/* refill path */
1240		ext4_ext_drop_refs(path);
1241		path = ext4_ext_find_extent(inode,
1242				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1243				    path);
1244		if (IS_ERR(path)) {
1245			err = PTR_ERR(path);
1246			goto out;
1247		}
1248
1249		/*
1250		 * only first (depth 0 -> 1) produces free space;
1251		 * in all other cases we have to split the grown tree
1252		 */
1253		depth = ext_depth(inode);
1254		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1255			/* now we need to split */
1256			goto repeat;
1257		}
1258	}
1259
1260out:
1261	return err;
1262}
1263
1264/*
1265 * search the closest allocated block to the left for *logical
1266 * and returns it at @logical + it's physical address at @phys
1267 * if *logical is the smallest allocated block, the function
1268 * returns 0 at @phys
1269 * return value contains 0 (success) or error code
1270 */
1271static int ext4_ext_search_left(struct inode *inode,
1272				struct ext4_ext_path *path,
1273				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1274{
1275	struct ext4_extent_idx *ix;
1276	struct ext4_extent *ex;
1277	int depth, ee_len;
1278
1279	if (unlikely(path == NULL)) {
1280		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1281		return -EIO;
1282	}
1283	depth = path->p_depth;
1284	*phys = 0;
1285
1286	if (depth == 0 && path->p_ext == NULL)
1287		return 0;
1288
1289	/* usually extent in the path covers blocks smaller
1290	 * then *logical, but it can be that extent is the
1291	 * first one in the file */
1292
1293	ex = path[depth].p_ext;
1294	ee_len = ext4_ext_get_actual_len(ex);
1295	if (*logical < le32_to_cpu(ex->ee_block)) {
1296		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1297			EXT4_ERROR_INODE(inode,
1298					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1299					 *logical, le32_to_cpu(ex->ee_block));
1300			return -EIO;
1301		}
1302		while (--depth >= 0) {
1303			ix = path[depth].p_idx;
1304			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1305				EXT4_ERROR_INODE(inode,
1306				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1307				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1308				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1309		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1310				  depth);
1311				return -EIO;
1312			}
1313		}
1314		return 0;
1315	}
1316
1317	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1318		EXT4_ERROR_INODE(inode,
1319				 "logical %d < ee_block %d + ee_len %d!",
1320				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1321		return -EIO;
1322	}
1323
1324	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1325	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1326	return 0;
1327}
1328
1329/*
1330 * search the closest allocated block to the right for *logical
1331 * and returns it at @logical + it's physical address at @phys
1332 * if *logical is the largest allocated block, the function
1333 * returns 0 at @phys
1334 * return value contains 0 (success) or error code
1335 */
1336static int ext4_ext_search_right(struct inode *inode,
1337				 struct ext4_ext_path *path,
1338				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1339				 struct ext4_extent **ret_ex)
1340{
1341	struct buffer_head *bh = NULL;
1342	struct ext4_extent_header *eh;
1343	struct ext4_extent_idx *ix;
1344	struct ext4_extent *ex;
1345	ext4_fsblk_t block;
1346	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1347	int ee_len;
1348
1349	if (unlikely(path == NULL)) {
1350		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1351		return -EIO;
1352	}
1353	depth = path->p_depth;
1354	*phys = 0;
1355
1356	if (depth == 0 && path->p_ext == NULL)
1357		return 0;
1358
1359	/* usually extent in the path covers blocks smaller
1360	 * then *logical, but it can be that extent is the
1361	 * first one in the file */
1362
1363	ex = path[depth].p_ext;
1364	ee_len = ext4_ext_get_actual_len(ex);
1365	if (*logical < le32_to_cpu(ex->ee_block)) {
1366		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1367			EXT4_ERROR_INODE(inode,
1368					 "first_extent(path[%d].p_hdr) != ex",
1369					 depth);
1370			return -EIO;
1371		}
1372		while (--depth >= 0) {
1373			ix = path[depth].p_idx;
1374			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1375				EXT4_ERROR_INODE(inode,
1376						 "ix != EXT_FIRST_INDEX *logical %d!",
1377						 *logical);
1378				return -EIO;
1379			}
1380		}
1381		goto found_extent;
1382	}
1383
1384	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1385		EXT4_ERROR_INODE(inode,
1386				 "logical %d < ee_block %d + ee_len %d!",
1387				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1388		return -EIO;
1389	}
1390
1391	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1392		/* next allocated block in this leaf */
1393		ex++;
1394		goto found_extent;
1395	}
1396
1397	/* go up and search for index to the right */
1398	while (--depth >= 0) {
1399		ix = path[depth].p_idx;
1400		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1401			goto got_index;
1402	}
1403
1404	/* we've gone up to the root and found no index to the right */
1405	return 0;
1406
1407got_index:
1408	/* we've found index to the right, let's
1409	 * follow it and find the closest allocated
1410	 * block to the right */
1411	ix++;
1412	block = ext4_idx_pblock(ix);
1413	while (++depth < path->p_depth) {
1414		bh = sb_bread(inode->i_sb, block);
1415		if (bh == NULL)
1416			return -EIO;
1417		eh = ext_block_hdr(bh);
1418		/* subtract from p_depth to get proper eh_depth */
1419		if (ext4_ext_check_block(inode, eh,
1420					 path->p_depth - depth, bh)) {
1421			put_bh(bh);
1422			return -EIO;
1423		}
1424		ix = EXT_FIRST_INDEX(eh);
1425		block = ext4_idx_pblock(ix);
1426		put_bh(bh);
1427	}
1428
1429	bh = sb_bread(inode->i_sb, block);
1430	if (bh == NULL)
1431		return -EIO;
1432	eh = ext_block_hdr(bh);
1433	if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1434		put_bh(bh);
1435		return -EIO;
1436	}
1437	ex = EXT_FIRST_EXTENT(eh);
1438found_extent:
1439	*logical = le32_to_cpu(ex->ee_block);
1440	*phys = ext4_ext_pblock(ex);
1441	*ret_ex = ex;
1442	if (bh)
1443		put_bh(bh);
1444	return 0;
1445}
1446
1447/*
1448 * ext4_ext_next_allocated_block:
1449 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1450 * NOTE: it considers block number from index entry as
1451 * allocated block. Thus, index entries have to be consistent
1452 * with leaves.
1453 */
1454static ext4_lblk_t
1455ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1456{
1457	int depth;
1458
1459	BUG_ON(path == NULL);
1460	depth = path->p_depth;
1461
1462	if (depth == 0 && path->p_ext == NULL)
1463		return EXT_MAX_BLOCKS;
1464
1465	while (depth >= 0) {
1466		if (depth == path->p_depth) {
1467			/* leaf */
1468			if (path[depth].p_ext &&
1469				path[depth].p_ext !=
1470					EXT_LAST_EXTENT(path[depth].p_hdr))
1471			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1472		} else {
1473			/* index */
1474			if (path[depth].p_idx !=
1475					EXT_LAST_INDEX(path[depth].p_hdr))
1476			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1477		}
1478		depth--;
1479	}
1480
1481	return EXT_MAX_BLOCKS;
1482}
1483
1484/*
1485 * ext4_ext_next_leaf_block:
1486 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1487 */
1488static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1489{
1490	int depth;
1491
1492	BUG_ON(path == NULL);
1493	depth = path->p_depth;
1494
1495	/* zero-tree has no leaf blocks at all */
1496	if (depth == 0)
1497		return EXT_MAX_BLOCKS;
1498
1499	/* go to index block */
1500	depth--;
1501
1502	while (depth >= 0) {
1503		if (path[depth].p_idx !=
1504				EXT_LAST_INDEX(path[depth].p_hdr))
1505			return (ext4_lblk_t)
1506				le32_to_cpu(path[depth].p_idx[1].ei_block);
1507		depth--;
1508	}
1509
1510	return EXT_MAX_BLOCKS;
1511}
1512
1513/*
1514 * ext4_ext_correct_indexes:
1515 * if leaf gets modified and modified extent is first in the leaf,
1516 * then we have to correct all indexes above.
1517 * TODO: do we need to correct tree in all cases?
1518 */
1519static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1520				struct ext4_ext_path *path)
1521{
1522	struct ext4_extent_header *eh;
1523	int depth = ext_depth(inode);
1524	struct ext4_extent *ex;
1525	__le32 border;
1526	int k, err = 0;
1527
1528	eh = path[depth].p_hdr;
1529	ex = path[depth].p_ext;
1530
1531	if (unlikely(ex == NULL || eh == NULL)) {
1532		EXT4_ERROR_INODE(inode,
1533				 "ex %p == NULL or eh %p == NULL", ex, eh);
1534		return -EIO;
1535	}
1536
1537	if (depth == 0) {
1538		/* there is no tree at all */
1539		return 0;
1540	}
1541
1542	if (ex != EXT_FIRST_EXTENT(eh)) {
1543		/* we correct tree if first leaf got modified only */
1544		return 0;
1545	}
1546
1547	/*
1548	 * TODO: we need correction if border is smaller than current one
1549	 */
1550	k = depth - 1;
1551	border = path[depth].p_ext->ee_block;
1552	err = ext4_ext_get_access(handle, inode, path + k);
1553	if (err)
1554		return err;
1555	path[k].p_idx->ei_block = border;
1556	err = ext4_ext_dirty(handle, inode, path + k);
1557	if (err)
1558		return err;
1559
1560	while (k--) {
1561		/* change all left-side indexes */
1562		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1563			break;
1564		err = ext4_ext_get_access(handle, inode, path + k);
1565		if (err)
1566			break;
1567		path[k].p_idx->ei_block = border;
1568		err = ext4_ext_dirty(handle, inode, path + k);
1569		if (err)
1570			break;
1571	}
1572
1573	return err;
1574}
1575
1576int
1577ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1578				struct ext4_extent *ex2)
1579{
1580	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1581
1582	/*
1583	 * Make sure that either both extents are uninitialized, or
1584	 * both are _not_.
1585	 */
1586	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1587		return 0;
1588
1589	if (ext4_ext_is_uninitialized(ex1))
1590		max_len = EXT_UNINIT_MAX_LEN;
1591	else
1592		max_len = EXT_INIT_MAX_LEN;
1593
1594	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1595	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1596
1597	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1598			le32_to_cpu(ex2->ee_block))
1599		return 0;
1600
1601	/*
1602	 * To allow future support for preallocated extents to be added
1603	 * as an RO_COMPAT feature, refuse to merge to extents if
1604	 * this can result in the top bit of ee_len being set.
1605	 */
1606	if (ext1_ee_len + ext2_ee_len > max_len)
1607		return 0;
1608#ifdef AGGRESSIVE_TEST
1609	if (ext1_ee_len >= 4)
1610		return 0;
1611#endif
1612
1613	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1614		return 1;
1615	return 0;
1616}
1617
1618/*
1619 * This function tries to merge the "ex" extent to the next extent in the tree.
1620 * It always tries to merge towards right. If you want to merge towards
1621 * left, pass "ex - 1" as argument instead of "ex".
1622 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1623 * 1 if they got merged.
1624 */
1625static int ext4_ext_try_to_merge_right(struct inode *inode,
1626				 struct ext4_ext_path *path,
1627				 struct ext4_extent *ex)
1628{
1629	struct ext4_extent_header *eh;
1630	unsigned int depth, len;
1631	int merge_done = 0;
1632	int uninitialized = 0;
1633
1634	depth = ext_depth(inode);
1635	BUG_ON(path[depth].p_hdr == NULL);
1636	eh = path[depth].p_hdr;
1637
1638	while (ex < EXT_LAST_EXTENT(eh)) {
1639		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1640			break;
1641		/* merge with next extent! */
1642		if (ext4_ext_is_uninitialized(ex))
1643			uninitialized = 1;
1644		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1645				+ ext4_ext_get_actual_len(ex + 1));
1646		if (uninitialized)
1647			ext4_ext_mark_uninitialized(ex);
1648
1649		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1650			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1651				* sizeof(struct ext4_extent);
1652			memmove(ex + 1, ex + 2, len);
1653		}
1654		le16_add_cpu(&eh->eh_entries, -1);
1655		merge_done = 1;
1656		WARN_ON(eh->eh_entries == 0);
1657		if (!eh->eh_entries)
1658			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1659	}
1660
1661	return merge_done;
1662}
1663
1664/*
1665 * This function does a very simple check to see if we can collapse
1666 * an extent tree with a single extent tree leaf block into the inode.
1667 */
1668static void ext4_ext_try_to_merge_up(handle_t *handle,
1669				     struct inode *inode,
1670				     struct ext4_ext_path *path)
1671{
1672	size_t s;
1673	unsigned max_root = ext4_ext_space_root(inode, 0);
1674	ext4_fsblk_t blk;
1675
1676	if ((path[0].p_depth != 1) ||
1677	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1678	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1679		return;
1680
1681	/*
1682	 * We need to modify the block allocation bitmap and the block
1683	 * group descriptor to release the extent tree block.  If we
1684	 * can't get the journal credits, give up.
1685	 */
1686	if (ext4_journal_extend(handle, 2))
1687		return;
1688
1689	/*
1690	 * Copy the extent data up to the inode
1691	 */
1692	blk = ext4_idx_pblock(path[0].p_idx);
1693	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1694		sizeof(struct ext4_extent_idx);
1695	s += sizeof(struct ext4_extent_header);
1696
1697	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1698	path[0].p_depth = 0;
1699	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1700		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1701	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1702
1703	brelse(path[1].p_bh);
1704	ext4_free_blocks(handle, inode, NULL, blk, 1,
1705			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1706}
1707
1708/*
1709 * This function tries to merge the @ex extent to neighbours in the tree.
1710 * return 1 if merge left else 0.
1711 */
1712static void ext4_ext_try_to_merge(handle_t *handle,
1713				  struct inode *inode,
1714				  struct ext4_ext_path *path,
1715				  struct ext4_extent *ex) {
1716	struct ext4_extent_header *eh;
1717	unsigned int depth;
1718	int merge_done = 0;
1719
1720	depth = ext_depth(inode);
1721	BUG_ON(path[depth].p_hdr == NULL);
1722	eh = path[depth].p_hdr;
1723
1724	if (ex > EXT_FIRST_EXTENT(eh))
1725		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1726
1727	if (!merge_done)
1728		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1729
1730	ext4_ext_try_to_merge_up(handle, inode, path);
1731}
1732
1733/*
1734 * check if a portion of the "newext" extent overlaps with an
1735 * existing extent.
1736 *
1737 * If there is an overlap discovered, it updates the length of the newext
1738 * such that there will be no overlap, and then returns 1.
1739 * If there is no overlap found, it returns 0.
1740 */
1741static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1742					   struct inode *inode,
1743					   struct ext4_extent *newext,
1744					   struct ext4_ext_path *path)
1745{
1746	ext4_lblk_t b1, b2;
1747	unsigned int depth, len1;
1748	unsigned int ret = 0;
1749
1750	b1 = le32_to_cpu(newext->ee_block);
1751	len1 = ext4_ext_get_actual_len(newext);
1752	depth = ext_depth(inode);
1753	if (!path[depth].p_ext)
1754		goto out;
1755	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1756	b2 &= ~(sbi->s_cluster_ratio - 1);
1757
1758	/*
1759	 * get the next allocated block if the extent in the path
1760	 * is before the requested block(s)
1761	 */
1762	if (b2 < b1) {
1763		b2 = ext4_ext_next_allocated_block(path);
1764		if (b2 == EXT_MAX_BLOCKS)
1765			goto out;
1766		b2 &= ~(sbi->s_cluster_ratio - 1);
1767	}
1768
1769	/* check for wrap through zero on extent logical start block*/
1770	if (b1 + len1 < b1) {
1771		len1 = EXT_MAX_BLOCKS - b1;
1772		newext->ee_len = cpu_to_le16(len1);
1773		ret = 1;
1774	}
1775
1776	/* check for overlap */
1777	if (b1 + len1 > b2) {
1778		newext->ee_len = cpu_to_le16(b2 - b1);
1779		ret = 1;
1780	}
1781out:
1782	return ret;
1783}
1784
1785/*
1786 * ext4_ext_insert_extent:
1787 * tries to merge requsted extent into the existing extent or
1788 * inserts requested extent as new one into the tree,
1789 * creating new leaf in the no-space case.
1790 */
1791int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1792				struct ext4_ext_path *path,
1793				struct ext4_extent *newext, int flag)
1794{
1795	struct ext4_extent_header *eh;
1796	struct ext4_extent *ex, *fex;
1797	struct ext4_extent *nearex; /* nearest extent */
1798	struct ext4_ext_path *npath = NULL;
1799	int depth, len, err;
1800	ext4_lblk_t next;
1801	unsigned uninitialized = 0;
1802	int flags = 0;
1803
1804	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1805		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1806		return -EIO;
1807	}
1808	depth = ext_depth(inode);
1809	ex = path[depth].p_ext;
1810	if (unlikely(path[depth].p_hdr == NULL)) {
1811		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1812		return -EIO;
1813	}
1814
1815	/* try to insert block into found extent and return */
1816	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1817		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1818		ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1819			  ext4_ext_is_uninitialized(newext),
1820			  ext4_ext_get_actual_len(newext),
1821			  le32_to_cpu(ex->ee_block),
1822			  ext4_ext_is_uninitialized(ex),
1823			  ext4_ext_get_actual_len(ex),
1824			  ext4_ext_pblock(ex));
1825		err = ext4_ext_get_access(handle, inode, path + depth);
1826		if (err)
1827			return err;
1828
1829		/*
1830		 * ext4_can_extents_be_merged should have checked that either
1831		 * both extents are uninitialized, or both aren't. Thus we
1832		 * need to check only one of them here.
1833		 */
1834		if (ext4_ext_is_uninitialized(ex))
1835			uninitialized = 1;
1836		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1837					+ ext4_ext_get_actual_len(newext));
1838		if (uninitialized)
1839			ext4_ext_mark_uninitialized(ex);
1840		eh = path[depth].p_hdr;
1841		nearex = ex;
1842		goto merge;
1843	}
1844
1845	depth = ext_depth(inode);
1846	eh = path[depth].p_hdr;
1847	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1848		goto has_space;
1849
1850	/* probably next leaf has space for us? */
1851	fex = EXT_LAST_EXTENT(eh);
1852	next = EXT_MAX_BLOCKS;
1853	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1854		next = ext4_ext_next_leaf_block(path);
1855	if (next != EXT_MAX_BLOCKS) {
1856		ext_debug("next leaf block - %u\n", next);
1857		BUG_ON(npath != NULL);
1858		npath = ext4_ext_find_extent(inode, next, NULL);
1859		if (IS_ERR(npath))
1860			return PTR_ERR(npath);
1861		BUG_ON(npath->p_depth != path->p_depth);
1862		eh = npath[depth].p_hdr;
1863		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1864			ext_debug("next leaf isn't full(%d)\n",
1865				  le16_to_cpu(eh->eh_entries));
1866			path = npath;
1867			goto has_space;
1868		}
1869		ext_debug("next leaf has no free space(%d,%d)\n",
1870			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1871	}
1872
1873	/*
1874	 * There is no free space in the found leaf.
1875	 * We're gonna add a new leaf in the tree.
1876	 */
1877	if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1878		flags = EXT4_MB_USE_ROOT_BLOCKS;
1879	err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1880	if (err)
1881		goto cleanup;
1882	depth = ext_depth(inode);
1883	eh = path[depth].p_hdr;
1884
1885has_space:
1886	nearex = path[depth].p_ext;
1887
1888	err = ext4_ext_get_access(handle, inode, path + depth);
1889	if (err)
1890		goto cleanup;
1891
1892	if (!nearex) {
1893		/* there is no extent in this leaf, create first one */
1894		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1895				le32_to_cpu(newext->ee_block),
1896				ext4_ext_pblock(newext),
1897				ext4_ext_is_uninitialized(newext),
1898				ext4_ext_get_actual_len(newext));
1899		nearex = EXT_FIRST_EXTENT(eh);
1900	} else {
1901		if (le32_to_cpu(newext->ee_block)
1902			   > le32_to_cpu(nearex->ee_block)) {
1903			/* Insert after */
1904			ext_debug("insert %u:%llu:[%d]%d before: "
1905					"nearest %p\n",
1906					le32_to_cpu(newext->ee_block),
1907					ext4_ext_pblock(newext),
1908					ext4_ext_is_uninitialized(newext),
1909					ext4_ext_get_actual_len(newext),
1910					nearex);
1911			nearex++;
1912		} else {
1913			/* Insert before */
1914			BUG_ON(newext->ee_block == nearex->ee_block);
1915			ext_debug("insert %u:%llu:[%d]%d after: "
1916					"nearest %p\n",
1917					le32_to_cpu(newext->ee_block),
1918					ext4_ext_pblock(newext),
1919					ext4_ext_is_uninitialized(newext),
1920					ext4_ext_get_actual_len(newext),
1921					nearex);
1922		}
1923		len = EXT_LAST_EXTENT(eh) - nearex + 1;
1924		if (len > 0) {
1925			ext_debug("insert %u:%llu:[%d]%d: "
1926					"move %d extents from 0x%p to 0x%p\n",
1927					le32_to_cpu(newext->ee_block),
1928					ext4_ext_pblock(newext),
1929					ext4_ext_is_uninitialized(newext),
1930					ext4_ext_get_actual_len(newext),
1931					len, nearex, nearex + 1);
1932			memmove(nearex + 1, nearex,
1933				len * sizeof(struct ext4_extent));
1934		}
1935	}
1936
1937	le16_add_cpu(&eh->eh_entries, 1);
1938	path[depth].p_ext = nearex;
1939	nearex->ee_block = newext->ee_block;
1940	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1941	nearex->ee_len = newext->ee_len;
1942
1943merge:
1944	/* try to merge extents */
1945	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1946		ext4_ext_try_to_merge(handle, inode, path, nearex);
1947
1948
1949	/* time to correct all indexes above */
1950	err = ext4_ext_correct_indexes(handle, inode, path);
1951	if (err)
1952		goto cleanup;
1953
1954	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
1955
1956cleanup:
1957	if (npath) {
1958		ext4_ext_drop_refs(npath);
1959		kfree(npath);
1960	}
1961	ext4_ext_invalidate_cache(inode);
1962	return err;
1963}
1964
1965static int ext4_fill_fiemap_extents(struct inode *inode,
1966				    ext4_lblk_t block, ext4_lblk_t num,
1967				    struct fiemap_extent_info *fieinfo)
1968{
1969	struct ext4_ext_path *path = NULL;
1970	struct ext4_ext_cache cbex;
1971	struct ext4_extent *ex;
1972	ext4_lblk_t next, next_del, start = 0, end = 0;
1973	ext4_lblk_t last = block + num;
1974	int exists, depth = 0, err = 0;
1975	unsigned int flags = 0;
1976	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
1977
1978	while (block < last && block != EXT_MAX_BLOCKS) {
1979		num = last - block;
1980		/* find extent for this block */
1981		down_read(&EXT4_I(inode)->i_data_sem);
1982
1983		if (path && ext_depth(inode) != depth) {
1984			/* depth was changed. we have to realloc path */
1985			kfree(path);
1986			path = NULL;
1987		}
1988
1989		path = ext4_ext_find_extent(inode, block, path);
1990		if (IS_ERR(path)) {
1991			up_read(&EXT4_I(inode)->i_data_sem);
1992			err = PTR_ERR(path);
1993			path = NULL;
1994			break;
1995		}
1996
1997		depth = ext_depth(inode);
1998		if (unlikely(path[depth].p_hdr == NULL)) {
1999			up_read(&EXT4_I(inode)->i_data_sem);
2000			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2001			err = -EIO;
2002			break;
2003		}
2004		ex = path[depth].p_ext;
2005		next = ext4_ext_next_allocated_block(path);
2006		ext4_ext_drop_refs(path);
2007
2008		flags = 0;
2009		exists = 0;
2010		if (!ex) {
2011			/* there is no extent yet, so try to allocate
2012			 * all requested space */
2013			start = block;
2014			end = block + num;
2015		} else if (le32_to_cpu(ex->ee_block) > block) {
2016			/* need to allocate space before found extent */
2017			start = block;
2018			end = le32_to_cpu(ex->ee_block);
2019			if (block + num < end)
2020				end = block + num;
2021		} else if (block >= le32_to_cpu(ex->ee_block)
2022					+ ext4_ext_get_actual_len(ex)) {
2023			/* need to allocate space after found extent */
2024			start = block;
2025			end = block + num;
2026			if (end >= next)
2027				end = next;
2028		} else if (block >= le32_to_cpu(ex->ee_block)) {
2029			/*
2030			 * some part of requested space is covered
2031			 * by found extent
2032			 */
2033			start = block;
2034			end = le32_to_cpu(ex->ee_block)
2035				+ ext4_ext_get_actual_len(ex);
2036			if (block + num < end)
2037				end = block + num;
2038			exists = 1;
2039		} else {
2040			BUG();
2041		}
2042		BUG_ON(end <= start);
2043
2044		if (!exists) {
2045			cbex.ec_block = start;
2046			cbex.ec_len = end - start;
2047			cbex.ec_start = 0;
2048		} else {
2049			cbex.ec_block = le32_to_cpu(ex->ee_block);
2050			cbex.ec_len = ext4_ext_get_actual_len(ex);
2051			cbex.ec_start = ext4_ext_pblock(ex);
2052			if (ext4_ext_is_uninitialized(ex))
2053				flags |= FIEMAP_EXTENT_UNWRITTEN;
2054		}
2055
2056		/*
2057		 * Find delayed extent and update cbex accordingly. We call
2058		 * it even in !exists case to find out whether cbex is the
2059		 * last existing extent or not.
2060		 */
2061		next_del = ext4_find_delayed_extent(inode, &cbex);
2062		if (!exists && next_del) {
2063			exists = 1;
2064			flags |= FIEMAP_EXTENT_DELALLOC;
2065		}
2066		up_read(&EXT4_I(inode)->i_data_sem);
2067
2068		if (unlikely(cbex.ec_len == 0)) {
2069			EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
2070			err = -EIO;
2071			break;
2072		}
2073
2074		/* This is possible iff next == next_del == EXT_MAX_BLOCKS */
2075		if (next == next_del) {
2076			flags |= FIEMAP_EXTENT_LAST;
2077			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2078				     next != EXT_MAX_BLOCKS)) {
2079				EXT4_ERROR_INODE(inode,
2080						 "next extent == %u, next "
2081						 "delalloc extent = %u",
2082						 next, next_del);
2083				err = -EIO;
2084				break;
2085			}
2086		}
2087
2088		if (exists) {
2089			err = fiemap_fill_next_extent(fieinfo,
2090				(__u64)cbex.ec_block << blksize_bits,
2091				(__u64)cbex.ec_start << blksize_bits,
2092				(__u64)cbex.ec_len << blksize_bits,
2093				flags);
2094			if (err < 0)
2095				break;
2096			if (err == 1) {
2097				err = 0;
2098				break;
2099			}
2100		}
2101
2102		block = cbex.ec_block + cbex.ec_len;
2103	}
2104
2105	if (path) {
2106		ext4_ext_drop_refs(path);
2107		kfree(path);
2108	}
2109
2110	return err;
2111}
2112
2113static void
2114ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
2115			__u32 len, ext4_fsblk_t start)
2116{
2117	struct ext4_ext_cache *cex;
2118	BUG_ON(len == 0);
2119	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2120	trace_ext4_ext_put_in_cache(inode, block, len, start);
2121	cex = &EXT4_I(inode)->i_cached_extent;
2122	cex->ec_block = block;
2123	cex->ec_len = len;
2124	cex->ec_start = start;
2125	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2126}
2127
2128/*
2129 * ext4_ext_put_gap_in_cache:
2130 * calculate boundaries of the gap that the requested block fits into
2131 * and cache this gap
2132 */
2133static void
2134ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2135				ext4_lblk_t block)
2136{
2137	int depth = ext_depth(inode);
2138	unsigned long len;
2139	ext4_lblk_t lblock;
2140	struct ext4_extent *ex;
2141
2142	ex = path[depth].p_ext;
2143	if (ex == NULL) {
2144		/* there is no extent yet, so gap is [0;-] */
2145		lblock = 0;
2146		len = EXT_MAX_BLOCKS;
2147		ext_debug("cache gap(whole file):");
2148	} else if (block < le32_to_cpu(ex->ee_block)) {
2149		lblock = block;
2150		len = le32_to_cpu(ex->ee_block) - block;
2151		ext_debug("cache gap(before): %u [%u:%u]",
2152				block,
2153				le32_to_cpu(ex->ee_block),
2154				 ext4_ext_get_actual_len(ex));
2155	} else if (block >= le32_to_cpu(ex->ee_block)
2156			+ ext4_ext_get_actual_len(ex)) {
2157		ext4_lblk_t next;
2158		lblock = le32_to_cpu(ex->ee_block)
2159			+ ext4_ext_get_actual_len(ex);
2160
2161		next = ext4_ext_next_allocated_block(path);
2162		ext_debug("cache gap(after): [%u:%u] %u",
2163				le32_to_cpu(ex->ee_block),
2164				ext4_ext_get_actual_len(ex),
2165				block);
2166		BUG_ON(next == lblock);
2167		len = next - lblock;
2168	} else {
2169		lblock = len = 0;
2170		BUG();
2171	}
2172
2173	ext_debug(" -> %u:%lu\n", lblock, len);
2174	ext4_ext_put_in_cache(inode, lblock, len, 0);
2175}
2176
2177/*
2178 * ext4_ext_in_cache()
2179 * Checks to see if the given block is in the cache.
2180 * If it is, the cached extent is stored in the given
2181 * cache extent pointer.
2182 *
2183 * @inode: The files inode
2184 * @block: The block to look for in the cache
2185 * @ex:    Pointer where the cached extent will be stored
2186 *         if it contains block
2187 *
2188 * Return 0 if cache is invalid; 1 if the cache is valid
2189 */
2190static int
2191ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2192		  struct ext4_extent *ex)
2193{
2194	struct ext4_ext_cache *cex;
2195	struct ext4_sb_info *sbi;
2196	int ret = 0;
2197
2198	/*
2199	 * We borrow i_block_reservation_lock to protect i_cached_extent
2200	 */
2201	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2202	cex = &EXT4_I(inode)->i_cached_extent;
2203	sbi = EXT4_SB(inode->i_sb);
2204
2205	/* has cache valid data? */
2206	if (cex->ec_len == 0)
2207		goto errout;
2208
2209	if (in_range(block, cex->ec_block, cex->ec_len)) {
2210		ex->ee_block = cpu_to_le32(cex->ec_block);
2211		ext4_ext_store_pblock(ex, cex->ec_start);
2212		ex->ee_len = cpu_to_le16(cex->ec_len);
2213		ext_debug("%u cached by %u:%u:%llu\n",
2214				block,
2215				cex->ec_block, cex->ec_len, cex->ec_start);
2216		ret = 1;
2217	}
2218errout:
2219	trace_ext4_ext_in_cache(inode, block, ret);
2220	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2221	return ret;
2222}
2223
2224/*
2225 * ext4_ext_rm_idx:
2226 * removes index from the index block.
2227 */
2228static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2229			struct ext4_ext_path *path)
2230{
2231	int err;
2232	ext4_fsblk_t leaf;
2233
2234	/* free index block */
2235	path--;
2236	leaf = ext4_idx_pblock(path->p_idx);
2237	if (unlikely(path->p_hdr->eh_entries == 0)) {
2238		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2239		return -EIO;
2240	}
2241	err = ext4_ext_get_access(handle, inode, path);
2242	if (err)
2243		return err;
2244
2245	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2246		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2247		len *= sizeof(struct ext4_extent_idx);
2248		memmove(path->p_idx, path->p_idx + 1, len);
2249	}
2250
2251	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2252	err = ext4_ext_dirty(handle, inode, path);
2253	if (err)
2254		return err;
2255	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2256	trace_ext4_ext_rm_idx(inode, leaf);
2257
2258	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2259			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2260	return err;
2261}
2262
2263/*
2264 * ext4_ext_calc_credits_for_single_extent:
2265 * This routine returns max. credits that needed to insert an extent
2266 * to the extent tree.
2267 * When pass the actual path, the caller should calculate credits
2268 * under i_data_sem.
2269 */
2270int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2271						struct ext4_ext_path *path)
2272{
2273	if (path) {
2274		int depth = ext_depth(inode);
2275		int ret = 0;
2276
2277		/* probably there is space in leaf? */
2278		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2279				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2280
2281			/*
2282			 *  There are some space in the leaf tree, no
2283			 *  need to account for leaf block credit
2284			 *
2285			 *  bitmaps and block group descriptor blocks
2286			 *  and other metadata blocks still need to be
2287			 *  accounted.
2288			 */
2289			/* 1 bitmap, 1 block group descriptor */
2290			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2291			return ret;
2292		}
2293	}
2294
2295	return ext4_chunk_trans_blocks(inode, nrblocks);
2296}
2297
2298/*
2299 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2300 *
2301 * if nrblocks are fit in a single extent (chunk flag is 1), then
2302 * in the worse case, each tree level index/leaf need to be changed
2303 * if the tree split due to insert a new extent, then the old tree
2304 * index/leaf need to be updated too
2305 *
2306 * If the nrblocks are discontiguous, they could cause
2307 * the whole tree split more than once, but this is really rare.
2308 */
2309int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2310{
2311	int index;
2312	int depth = ext_depth(inode);
2313
2314	if (chunk)
2315		index = depth * 2;
2316	else
2317		index = depth * 3;
2318
2319	return index;
2320}
2321
2322static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2323			      struct ext4_extent *ex,
2324			      ext4_fsblk_t *partial_cluster,
2325			      ext4_lblk_t from, ext4_lblk_t to)
2326{
2327	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2328	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2329	ext4_fsblk_t pblk;
2330	int flags = 0;
2331
2332	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2333		flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2334	else if (ext4_should_journal_data(inode))
2335		flags |= EXT4_FREE_BLOCKS_FORGET;
2336
2337	/*
2338	 * For bigalloc file systems, we never free a partial cluster
2339	 * at the beginning of the extent.  Instead, we make a note
2340	 * that we tried freeing the cluster, and check to see if we
2341	 * need to free it on a subsequent call to ext4_remove_blocks,
2342	 * or at the end of the ext4_truncate() operation.
2343	 */
2344	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2345
2346	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2347	/*
2348	 * If we have a partial cluster, and it's different from the
2349	 * cluster of the last block, we need to explicitly free the
2350	 * partial cluster here.
2351	 */
2352	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2353	if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2354		ext4_free_blocks(handle, inode, NULL,
2355				 EXT4_C2B(sbi, *partial_cluster),
2356				 sbi->s_cluster_ratio, flags);
2357		*partial_cluster = 0;
2358	}
2359
2360#ifdef EXTENTS_STATS
2361	{
2362		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2363		spin_lock(&sbi->s_ext_stats_lock);
2364		sbi->s_ext_blocks += ee_len;
2365		sbi->s_ext_extents++;
2366		if (ee_len < sbi->s_ext_min)
2367			sbi->s_ext_min = ee_len;
2368		if (ee_len > sbi->s_ext_max)
2369			sbi->s_ext_max = ee_len;
2370		if (ext_depth(inode) > sbi->s_depth_max)
2371			sbi->s_depth_max = ext_depth(inode);
2372		spin_unlock(&sbi->s_ext_stats_lock);
2373	}
2374#endif
2375	if (from >= le32_to_cpu(ex->ee_block)
2376	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2377		/* tail removal */
2378		ext4_lblk_t num;
2379
2380		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2381		pblk = ext4_ext_pblock(ex) + ee_len - num;
2382		ext_debug("free last %u blocks starting %llu\n", num, pblk);
2383		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2384		/*
2385		 * If the block range to be freed didn't start at the
2386		 * beginning of a cluster, and we removed the entire
2387		 * extent, save the partial cluster here, since we
2388		 * might need to delete if we determine that the
2389		 * truncate operation has removed all of the blocks in
2390		 * the cluster.
2391		 */
2392		if (pblk & (sbi->s_cluster_ratio - 1) &&
2393		    (ee_len == num))
2394			*partial_cluster = EXT4_B2C(sbi, pblk);
2395		else
2396			*partial_cluster = 0;
2397	} else if (from == le32_to_cpu(ex->ee_block)
2398		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2399		/* head removal */
2400		ext4_lblk_t num;
2401		ext4_fsblk_t start;
2402
2403		num = to - from;
2404		start = ext4_ext_pblock(ex);
2405
2406		ext_debug("free first %u blocks starting %llu\n", num, start);
2407		ext4_free_blocks(handle, inode, NULL, start, num, flags);
2408
2409	} else {
2410		printk(KERN_INFO "strange request: removal(2) "
2411				"%u-%u from %u:%u\n",
2412				from, to, le32_to_cpu(ex->ee_block), ee_len);
2413	}
2414	return 0;
2415}
2416
2417
2418/*
2419 * ext4_ext_rm_leaf() Removes the extents associated with the
2420 * blocks appearing between "start" and "end", and splits the extents
2421 * if "start" and "end" appear in the same extent
2422 *
2423 * @handle: The journal handle
2424 * @inode:  The files inode
2425 * @path:   The path to the leaf
2426 * @start:  The first block to remove
2427 * @end:   The last block to remove
2428 */
2429static int
2430ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2431		 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2432		 ext4_lblk_t start, ext4_lblk_t end)
2433{
2434	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2435	int err = 0, correct_index = 0;
2436	int depth = ext_depth(inode), credits;
2437	struct ext4_extent_header *eh;
2438	ext4_lblk_t a, b;
2439	unsigned num;
2440	ext4_lblk_t ex_ee_block;
2441	unsigned short ex_ee_len;
2442	unsigned uninitialized = 0;
2443	struct ext4_extent *ex;
2444
2445	/* the header must be checked already in ext4_ext_remove_space() */
2446	ext_debug("truncate since %u in leaf to %u\n", start, end);
2447	if (!path[depth].p_hdr)
2448		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2449	eh = path[depth].p_hdr;
2450	if (unlikely(path[depth].p_hdr == NULL)) {
2451		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2452		return -EIO;
2453	}
2454	/* find where to start removing */
2455	ex = EXT_LAST_EXTENT(eh);
2456
2457	ex_ee_block = le32_to_cpu(ex->ee_block);
2458	ex_ee_len = ext4_ext_get_actual_len(ex);
2459
2460	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2461
2462	while (ex >= EXT_FIRST_EXTENT(eh) &&
2463			ex_ee_block + ex_ee_len > start) {
2464
2465		if (ext4_ext_is_uninitialized(ex))
2466			uninitialized = 1;
2467		else
2468			uninitialized = 0;
2469
2470		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2471			 uninitialized, ex_ee_len);
2472		path[depth].p_ext = ex;
2473
2474		a = ex_ee_block > start ? ex_ee_block : start;
2475		b = ex_ee_block+ex_ee_len - 1 < end ?
2476			ex_ee_block+ex_ee_len - 1 : end;
2477
2478		ext_debug("  border %u:%u\n", a, b);
2479
2480		/* If this extent is beyond the end of the hole, skip it */
2481		if (end < ex_ee_block) {
2482			ex--;
2483			ex_ee_block = le32_to_cpu(ex->ee_block);
2484			ex_ee_len = ext4_ext_get_actual_len(ex);
2485			continue;
2486		} else if (b != ex_ee_block + ex_ee_len - 1) {
2487			EXT4_ERROR_INODE(inode,
2488					 "can not handle truncate %u:%u "
2489					 "on extent %u:%u",
2490					 start, end, ex_ee_block,
2491					 ex_ee_block + ex_ee_len - 1);
2492			err = -EIO;
2493			goto out;
2494		} else if (a != ex_ee_block) {
2495			/* remove tail of the extent */
2496			num = a - ex_ee_block;
2497		} else {
2498			/* remove whole extent: excellent! */
2499			num = 0;
2500		}
2501		/*
2502		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2503		 * descriptor) for each block group; assume two block
2504		 * groups plus ex_ee_len/blocks_per_block_group for
2505		 * the worst case
2506		 */
2507		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2508		if (ex == EXT_FIRST_EXTENT(eh)) {
2509			correct_index = 1;
2510			credits += (ext_depth(inode)) + 1;
2511		}
2512		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2513
2514		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2515		if (err)
2516			goto out;
2517
2518		err = ext4_ext_get_access(handle, inode, path + depth);
2519		if (err)
2520			goto out;
2521
2522		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2523					 a, b);
2524		if (err)
2525			goto out;
2526
2527		if (num == 0)
2528			/* this extent is removed; mark slot entirely unused */
2529			ext4_ext_store_pblock(ex, 0);
2530
2531		ex->ee_len = cpu_to_le16(num);
2532		/*
2533		 * Do not mark uninitialized if all the blocks in the
2534		 * extent have been removed.
2535		 */
2536		if (uninitialized && num)
2537			ext4_ext_mark_uninitialized(ex);
2538		/*
2539		 * If the extent was completely released,
2540		 * we need to remove it from the leaf
2541		 */
2542		if (num == 0) {
2543			if (end != EXT_MAX_BLOCKS - 1) {
2544				/*
2545				 * For hole punching, we need to scoot all the
2546				 * extents up when an extent is removed so that
2547				 * we dont have blank extents in the middle
2548				 */
2549				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2550					sizeof(struct ext4_extent));
2551
2552				/* Now get rid of the one at the end */
2553				memset(EXT_LAST_EXTENT(eh), 0,
2554					sizeof(struct ext4_extent));
2555			}
2556			le16_add_cpu(&eh->eh_entries, -1);
2557		} else
2558			*partial_cluster = 0;
2559
2560		err = ext4_ext_dirty(handle, inode, path + depth);
2561		if (err)
2562			goto out;
2563
2564		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2565				ext4_ext_pblock(ex));
2566		ex--;
2567		ex_ee_block = le32_to_cpu(ex->ee_block);
2568		ex_ee_len = ext4_ext_get_actual_len(ex);
2569	}
2570
2571	if (correct_index && eh->eh_entries)
2572		err = ext4_ext_correct_indexes(handle, inode, path);
2573
2574	/*
2575	 * If there is still a entry in the leaf node, check to see if
2576	 * it references the partial cluster.  This is the only place
2577	 * where it could; if it doesn't, we can free the cluster.
2578	 */
2579	if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2580	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2581	     *partial_cluster)) {
2582		int flags = EXT4_FREE_BLOCKS_FORGET;
2583
2584		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2585			flags |= EXT4_FREE_BLOCKS_METADATA;
2586
2587		ext4_free_blocks(handle, inode, NULL,
2588				 EXT4_C2B(sbi, *partial_cluster),
2589				 sbi->s_cluster_ratio, flags);
2590		*partial_cluster = 0;
2591	}
2592
2593	/* if this leaf is free, then we should
2594	 * remove it from index block above */
2595	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2596		err = ext4_ext_rm_idx(handle, inode, path + depth);
2597
2598out:
2599	return err;
2600}
2601
2602/*
2603 * ext4_ext_more_to_rm:
2604 * returns 1 if current index has to be freed (even partial)
2605 */
2606static int
2607ext4_ext_more_to_rm(struct ext4_ext_path *path)
2608{
2609	BUG_ON(path->p_idx == NULL);
2610
2611	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2612		return 0;
2613
2614	/*
2615	 * if truncate on deeper level happened, it wasn't partial,
2616	 * so we have to consider current index for truncation
2617	 */
2618	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2619		return 0;
2620	return 1;
2621}
2622
2623static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2624				 ext4_lblk_t end)
2625{
2626	struct super_block *sb = inode->i_sb;
2627	int depth = ext_depth(inode);
2628	struct ext4_ext_path *path = NULL;
2629	ext4_fsblk_t partial_cluster = 0;
2630	handle_t *handle;
2631	int i = 0, err = 0;
2632
2633	ext_debug("truncate since %u to %u\n", start, end);
2634
2635	/* probably first extent we're gonna free will be last in block */
2636	handle = ext4_journal_start(inode, depth + 1);
2637	if (IS_ERR(handle))
2638		return PTR_ERR(handle);
2639
2640again:
2641	ext4_ext_invalidate_cache(inode);
2642
2643	trace_ext4_ext_remove_space(inode, start, depth);
2644
2645	/*
2646	 * Check if we are removing extents inside the extent tree. If that
2647	 * is the case, we are going to punch a hole inside the extent tree
2648	 * so we have to check whether we need to split the extent covering
2649	 * the last block to remove so we can easily remove the part of it
2650	 * in ext4_ext_rm_leaf().
2651	 */
2652	if (end < EXT_MAX_BLOCKS - 1) {
2653		struct ext4_extent *ex;
2654		ext4_lblk_t ee_block;
2655
2656		/* find extent for this block */
2657		path = ext4_ext_find_extent(inode, end, NULL);
2658		if (IS_ERR(path)) {
2659			ext4_journal_stop(handle);
2660			return PTR_ERR(path);
2661		}
2662		depth = ext_depth(inode);
2663		/* Leaf not may not exist only if inode has no blocks at all */
2664		ex = path[depth].p_ext;
2665		if (!ex) {
2666			if (depth) {
2667				EXT4_ERROR_INODE(inode,
2668						 "path[%d].p_hdr == NULL",
2669						 depth);
2670				err = -EIO;
2671			}
2672			goto out;
2673		}
2674
2675		ee_block = le32_to_cpu(ex->ee_block);
2676
2677		/*
2678		 * See if the last block is inside the extent, if so split
2679		 * the extent at 'end' block so we can easily remove the
2680		 * tail of the first part of the split extent in
2681		 * ext4_ext_rm_leaf().
2682		 */
2683		if (end >= ee_block &&
2684		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2685			int split_flag = 0;
2686
2687			if (ext4_ext_is_uninitialized(ex))
2688				split_flag = EXT4_EXT_MARK_UNINIT1 |
2689					     EXT4_EXT_MARK_UNINIT2;
2690
2691			/*
2692			 * Split the extent in two so that 'end' is the last
2693			 * block in the first new extent
2694			 */
2695			err = ext4_split_extent_at(handle, inode, path,
2696						end + 1, split_flag,
2697						EXT4_GET_BLOCKS_PRE_IO |
2698						EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2699
2700			if (err < 0)
2701				goto out;
2702		}
2703	}
2704	/*
2705	 * We start scanning from right side, freeing all the blocks
2706	 * after i_size and walking into the tree depth-wise.
2707	 */
2708	depth = ext_depth(inode);
2709	if (path) {
2710		int k = i = depth;
2711		while (--k > 0)
2712			path[k].p_block =
2713				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2714	} else {
2715		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2716			       GFP_NOFS);
2717		if (path == NULL) {
2718			ext4_journal_stop(handle);
2719			return -ENOMEM;
2720		}
2721		path[0].p_depth = depth;
2722		path[0].p_hdr = ext_inode_hdr(inode);
2723		i = 0;
2724
2725		if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2726			err = -EIO;
2727			goto out;
2728		}
2729	}
2730	err = 0;
2731
2732	while (i >= 0 && err == 0) {
2733		if (i == depth) {
2734			/* this is leaf block */
2735			err = ext4_ext_rm_leaf(handle, inode, path,
2736					       &partial_cluster, start,
2737					       end);
2738			/* root level has p_bh == NULL, brelse() eats this */
2739			brelse(path[i].p_bh);
2740			path[i].p_bh = NULL;
2741			i--;
2742			continue;
2743		}
2744
2745		/* this is index block */
2746		if (!path[i].p_hdr) {
2747			ext_debug("initialize header\n");
2748			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2749		}
2750
2751		if (!path[i].p_idx) {
2752			/* this level hasn't been touched yet */
2753			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2754			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2755			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2756				  path[i].p_hdr,
2757				  le16_to_cpu(path[i].p_hdr->eh_entries));
2758		} else {
2759			/* we were already here, see at next index */
2760			path[i].p_idx--;
2761		}
2762
2763		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2764				i, EXT_FIRST_INDEX(path[i].p_hdr),
2765				path[i].p_idx);
2766		if (ext4_ext_more_to_rm(path + i)) {
2767			struct buffer_head *bh;
2768			/* go to the next level */
2769			ext_debug("move to level %d (block %llu)\n",
2770				  i + 1, ext4_idx_pblock(path[i].p_idx));
2771			memset(path + i + 1, 0, sizeof(*path));
2772			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2773			if (!bh) {
2774				/* should we reset i_size? */
2775				err = -EIO;
2776				break;
2777			}
2778			if (WARN_ON(i + 1 > depth)) {
2779				err = -EIO;
2780				break;
2781			}
2782			if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2783							depth - i - 1, bh)) {
2784				err = -EIO;
2785				break;
2786			}
2787			path[i + 1].p_bh = bh;
2788
2789			/* save actual number of indexes since this
2790			 * number is changed at the next iteration */
2791			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2792			i++;
2793		} else {
2794			/* we finished processing this index, go up */
2795			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2796				/* index is empty, remove it;
2797				 * handle must be already prepared by the
2798				 * truncatei_leaf() */
2799				err = ext4_ext_rm_idx(handle, inode, path + i);
2800			}
2801			/* root level has p_bh == NULL, brelse() eats this */
2802			brelse(path[i].p_bh);
2803			path[i].p_bh = NULL;
2804			i--;
2805			ext_debug("return to level %d\n", i);
2806		}
2807	}
2808
2809	trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2810			path->p_hdr->eh_entries);
2811
2812	/* If we still have something in the partial cluster and we have removed
2813	 * even the first extent, then we should free the blocks in the partial
2814	 * cluster as well. */
2815	if (partial_cluster && path->p_hdr->eh_entries == 0) {
2816		int flags = EXT4_FREE_BLOCKS_FORGET;
2817
2818		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2819			flags |= EXT4_FREE_BLOCKS_METADATA;
2820
2821		ext4_free_blocks(handle, inode, NULL,
2822				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2823				 EXT4_SB(sb)->s_cluster_ratio, flags);
2824		partial_cluster = 0;
2825	}
2826
2827	/* TODO: flexible tree reduction should be here */
2828	if (path->p_hdr->eh_entries == 0) {
2829		/*
2830		 * truncate to zero freed all the tree,
2831		 * so we need to correct eh_depth
2832		 */
2833		err = ext4_ext_get_access(handle, inode, path);
2834		if (err == 0) {
2835			ext_inode_hdr(inode)->eh_depth = 0;
2836			ext_inode_hdr(inode)->eh_max =
2837				cpu_to_le16(ext4_ext_space_root(inode, 0));
2838			err = ext4_ext_dirty(handle, inode, path);
2839		}
2840	}
2841out:
2842	ext4_ext_drop_refs(path);
2843	kfree(path);
2844	if (err == -EAGAIN) {
2845		path = NULL;
2846		goto again;
2847	}
2848	ext4_journal_stop(handle);
2849
2850	return err;
2851}
2852
2853/*
2854 * called at mount time
2855 */
2856void ext4_ext_init(struct super_block *sb)
2857{
2858	/*
2859	 * possible initialization would be here
2860	 */
2861
2862	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2863#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2864		printk(KERN_INFO "EXT4-fs: file extents enabled"
2865#ifdef AGGRESSIVE_TEST
2866		       ", aggressive tests"
2867#endif
2868#ifdef CHECK_BINSEARCH
2869		       ", check binsearch"
2870#endif
2871#ifdef EXTENTS_STATS
2872		       ", stats"
2873#endif
2874		       "\n");
2875#endif
2876#ifdef EXTENTS_STATS
2877		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2878		EXT4_SB(sb)->s_ext_min = 1 << 30;
2879		EXT4_SB(sb)->s_ext_max = 0;
2880#endif
2881	}
2882}
2883
2884/*
2885 * called at umount time
2886 */
2887void ext4_ext_release(struct super_block *sb)
2888{
2889	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2890		return;
2891
2892#ifdef EXTENTS_STATS
2893	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2894		struct ext4_sb_info *sbi = EXT4_SB(sb);
2895		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2896			sbi->s_ext_blocks, sbi->s_ext_extents,
2897			sbi->s_ext_blocks / sbi->s_ext_extents);
2898		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2899			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2900	}
2901#endif
2902}
2903
2904/* FIXME!! we need to try to merge to left or right after zero-out  */
2905static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2906{
2907	ext4_fsblk_t ee_pblock;
2908	unsigned int ee_len;
2909	int ret;
2910
2911	ee_len    = ext4_ext_get_actual_len(ex);
2912	ee_pblock = ext4_ext_pblock(ex);
2913
2914	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2915	if (ret > 0)
2916		ret = 0;
2917
2918	return ret;
2919}
2920
2921/*
2922 * ext4_split_extent_at() splits an extent at given block.
2923 *
2924 * @handle: the journal handle
2925 * @inode: the file inode
2926 * @path: the path to the extent
2927 * @split: the logical block where the extent is splitted.
2928 * @split_flags: indicates if the extent could be zeroout if split fails, and
2929 *		 the states(init or uninit) of new extents.
2930 * @flags: flags used to insert new extent to extent tree.
2931 *
2932 *
2933 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2934 * of which are deterimined by split_flag.
2935 *
2936 * There are two cases:
2937 *  a> the extent are splitted into two extent.
2938 *  b> split is not needed, and just mark the extent.
2939 *
2940 * return 0 on success.
2941 */
2942static int ext4_split_extent_at(handle_t *handle,
2943			     struct inode *inode,
2944			     struct ext4_ext_path *path,
2945			     ext4_lblk_t split,
2946			     int split_flag,
2947			     int flags)
2948{
2949	ext4_fsblk_t newblock;
2950	ext4_lblk_t ee_block;
2951	struct ext4_extent *ex, newex, orig_ex;
2952	struct ext4_extent *ex2 = NULL;
2953	unsigned int ee_len, depth;
2954	int err = 0;
2955
2956	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
2957	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
2958
2959	ext_debug("ext4_split_extents_at: inode %lu, logical"
2960		"block %llu\n", inode->i_ino, (unsigned long long)split);
2961
2962	ext4_ext_show_leaf(inode, path);
2963
2964	depth = ext_depth(inode);
2965	ex = path[depth].p_ext;
2966	ee_block = le32_to_cpu(ex->ee_block);
2967	ee_len = ext4_ext_get_actual_len(ex);
2968	newblock = split - ee_block + ext4_ext_pblock(ex);
2969
2970	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2971
2972	err = ext4_ext_get_access(handle, inode, path + depth);
2973	if (err)
2974		goto out;
2975
2976	if (split == ee_block) {
2977		/*
2978		 * case b: block @split is the block that the extent begins with
2979		 * then we just change the state of the extent, and splitting
2980		 * is not needed.
2981		 */
2982		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2983			ext4_ext_mark_uninitialized(ex);
2984		else
2985			ext4_ext_mark_initialized(ex);
2986
2987		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2988			ext4_ext_try_to_merge(handle, inode, path, ex);
2989
2990		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2991		goto out;
2992	}
2993
2994	/* case a */
2995	memcpy(&orig_ex, ex, sizeof(orig_ex));
2996	ex->ee_len = cpu_to_le16(split - ee_block);
2997	if (split_flag & EXT4_EXT_MARK_UNINIT1)
2998		ext4_ext_mark_uninitialized(ex);
2999
3000	/*
3001	 * path may lead to new leaf, not to original leaf any more
3002	 * after ext4_ext_insert_extent() returns,
3003	 */
3004	err = ext4_ext_dirty(handle, inode, path + depth);
3005	if (err)
3006		goto fix_extent_len;
3007
3008	ex2 = &newex;
3009	ex2->ee_block = cpu_to_le32(split);
3010	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
3011	ext4_ext_store_pblock(ex2, newblock);
3012	if (split_flag & EXT4_EXT_MARK_UNINIT2)
3013		ext4_ext_mark_uninitialized(ex2);
3014
3015	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3016	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3017		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3018			if (split_flag & EXT4_EXT_DATA_VALID1)
3019				err = ext4_ext_zeroout(inode, ex2);
3020			else
3021				err = ext4_ext_zeroout(inode, ex);
3022		} else
3023			err = ext4_ext_zeroout(inode, &orig_ex);
3024
3025		if (err)
3026			goto fix_extent_len;
3027		/* update the extent length and mark as initialized */
3028		ex->ee_len = cpu_to_le16(ee_len);
3029		ext4_ext_try_to_merge(handle, inode, path, ex);
3030		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3031		goto out;
3032	} else if (err)
3033		goto fix_extent_len;
3034
3035out:
3036	ext4_ext_show_leaf(inode, path);
3037	return err;
3038
3039fix_extent_len:
3040	ex->ee_len = orig_ex.ee_len;
3041	ext4_ext_dirty(handle, inode, path + depth);
3042	return err;
3043}
3044
3045/*
3046 * ext4_split_extents() splits an extent and mark extent which is covered
3047 * by @map as split_flags indicates
3048 *
3049 * It may result in splitting the extent into multiple extents (upto three)
3050 * There are three possibilities:
3051 *   a> There is no split required
3052 *   b> Splits in two extents: Split is happening at either end of the extent
3053 *   c> Splits in three extents: Somone is splitting in middle of the extent
3054 *
3055 */
3056static int ext4_split_extent(handle_t *handle,
3057			      struct inode *inode,
3058			      struct ext4_ext_path *path,
3059			      struct ext4_map_blocks *map,
3060			      int split_flag,
3061			      int flags)
3062{
3063	ext4_lblk_t ee_block;
3064	struct ext4_extent *ex;
3065	unsigned int ee_len, depth;
3066	int err = 0;
3067	int uninitialized;
3068	int split_flag1, flags1;
3069
3070	depth = ext_depth(inode);
3071	ex = path[depth].p_ext;
3072	ee_block = le32_to_cpu(ex->ee_block);
3073	ee_len = ext4_ext_get_actual_len(ex);
3074	uninitialized = ext4_ext_is_uninitialized(ex);
3075
3076	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3077		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3078		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3079		if (uninitialized)
3080			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3081				       EXT4_EXT_MARK_UNINIT2;
3082		if (split_flag & EXT4_EXT_DATA_VALID2)
3083			split_flag1 |= EXT4_EXT_DATA_VALID1;
3084		err = ext4_split_extent_at(handle, inode, path,
3085				map->m_lblk + map->m_len, split_flag1, flags1);
3086		if (err)
3087			goto out;
3088	}
3089
3090	ext4_ext_drop_refs(path);
3091	path = ext4_ext_find_extent(inode, map->m_lblk, path);
3092	if (IS_ERR(path))
3093		return PTR_ERR(path);
3094
3095	if (map->m_lblk >= ee_block) {
3096		split_flag1 = split_flag & (EXT4_EXT_MAY_ZEROOUT |
3097					    EXT4_EXT_DATA_VALID2);
3098		if (uninitialized)
3099			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3100		if (split_flag & EXT4_EXT_MARK_UNINIT2)
3101			split_flag1 |= EXT4_EXT_MARK_UNINIT2;
3102		err = ext4_split_extent_at(handle, inode, path,
3103				map->m_lblk, split_flag1, flags);
3104		if (err)
3105			goto out;
3106	}
3107
3108	ext4_ext_show_leaf(inode, path);
3109out:
3110	return err ? err : map->m_len;
3111}
3112
3113/*
3114 * This function is called by ext4_ext_map_blocks() if someone tries to write
3115 * to an uninitialized extent. It may result in splitting the uninitialized
3116 * extent into multiple extents (up to three - one initialized and two
3117 * uninitialized).
3118 * There are three possibilities:
3119 *   a> There is no split required: Entire extent should be initialized
3120 *   b> Splits in two extents: Write is happening at either end of the extent
3121 *   c> Splits in three extents: Somone is writing in middle of the extent
3122 *
3123 * Pre-conditions:
3124 *  - The extent pointed to by 'path' is uninitialized.
3125 *  - The extent pointed to by 'path' contains a superset
3126 *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3127 *
3128 * Post-conditions on success:
3129 *  - the returned value is the number of blocks beyond map->l_lblk
3130 *    that are allocated and initialized.
3131 *    It is guaranteed to be >= map->m_len.
3132 */
3133static int ext4_ext_convert_to_initialized(handle_t *handle,
3134					   struct inode *inode,
3135					   struct ext4_map_blocks *map,
3136					   struct ext4_ext_path *path)
3137{
3138	struct ext4_sb_info *sbi;
3139	struct ext4_extent_header *eh;
3140	struct ext4_map_blocks split_map;
3141	struct ext4_extent zero_ex;
3142	struct ext4_extent *ex;
3143	ext4_lblk_t ee_block, eof_block;
3144	unsigned int ee_len, depth;
3145	int allocated, max_zeroout = 0;
3146	int err = 0;
3147	int split_flag = 0;
3148
3149	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3150		"block %llu, max_blocks %u\n", inode->i_ino,
3151		(unsigned long long)map->m_lblk, map->m_len);
3152
3153	sbi = EXT4_SB(inode->i_sb);
3154	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3155		inode->i_sb->s_blocksize_bits;
3156	if (eof_block < map->m_lblk + map->m_len)
3157		eof_block = map->m_lblk + map->m_len;
3158
3159	depth = ext_depth(inode);
3160	eh = path[depth].p_hdr;
3161	ex = path[depth].p_ext;
3162	ee_block = le32_to_cpu(ex->ee_block);
3163	ee_len = ext4_ext_get_actual_len(ex);
3164	allocated = ee_len - (map->m_lblk - ee_block);
3165
3166	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3167
3168	/* Pre-conditions */
3169	BUG_ON(!ext4_ext_is_uninitialized(ex));
3170	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3171
3172	/*
3173	 * Attempt to transfer newly initialized blocks from the currently
3174	 * uninitialized extent to its left neighbor. This is much cheaper
3175	 * than an insertion followed by a merge as those involve costly
3176	 * memmove() calls. This is the common case in steady state for
3177	 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3178	 * writes.
3179	 *
3180	 * Limitations of the current logic:
3181	 *  - L1: we only deal with writes at the start of the extent.
3182	 *    The approach could be extended to writes at the end
3183	 *    of the extent but this scenario was deemed less common.
3184	 *  - L2: we do not deal with writes covering the whole extent.
3185	 *    This would require removing the extent if the transfer
3186	 *    is possible.
3187	 *  - L3: we only attempt to merge with an extent stored in the
3188	 *    same extent tree node.
3189	 */
3190	if ((map->m_lblk == ee_block) &&	/*L1*/
3191		(map->m_len < ee_len) &&	/*L2*/
3192		(ex > EXT_FIRST_EXTENT(eh))) {	/*L3*/
3193		struct ext4_extent *prev_ex;
3194		ext4_lblk_t prev_lblk;
3195		ext4_fsblk_t prev_pblk, ee_pblk;
3196		unsigned int prev_len, write_len;
3197
3198		prev_ex = ex - 1;
3199		prev_lblk = le32_to_cpu(prev_ex->ee_block);
3200		prev_len = ext4_ext_get_actual_len(prev_ex);
3201		prev_pblk = ext4_ext_pblock(prev_ex);
3202		ee_pblk = ext4_ext_pblock(ex);
3203		write_len = map->m_len;
3204
3205		/*
3206		 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3207		 * upon those conditions:
3208		 * - C1: prev_ex is initialized,
3209		 * - C2: prev_ex is logically abutting ex,
3210		 * - C3: prev_ex is physically abutting ex,
3211		 * - C4: prev_ex can receive the additional blocks without
3212		 *   overflowing the (initialized) length limit.
3213		 */
3214		if ((!ext4_ext_is_uninitialized(prev_ex)) &&		/*C1*/
3215			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3216			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3217			(prev_len < (EXT_INIT_MAX_LEN - write_len))) {	/*C4*/
3218			err = ext4_ext_get_access(handle, inode, path + depth);
3219			if (err)
3220				goto out;
3221
3222			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3223				map, ex, prev_ex);
3224
3225			/* Shift the start of ex by 'write_len' blocks */
3226			ex->ee_block = cpu_to_le32(ee_block + write_len);
3227			ext4_ext_store_pblock(ex, ee_pblk + write_len);
3228			ex->ee_len = cpu_to_le16(ee_len - write_len);
3229			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3230
3231			/* Extend prev_ex by 'write_len' blocks */
3232			prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3233
3234			/* Mark the block containing both extents as dirty */
3235			ext4_ext_dirty(handle, inode, path + depth);
3236
3237			/* Update path to point to the right extent */
3238			path[depth].p_ext = prev_ex;
3239
3240			/* Result: number of initialized blocks past m_lblk */
3241			allocated = write_len;
3242			goto out;
3243		}
3244	}
3245
3246	WARN_ON(map->m_lblk < ee_block);
3247	/*
3248	 * It is safe to convert extent to initialized via explicit
3249	 * zeroout only if extent is fully insde i_size or new_size.
3250	 */
3251	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3252
3253	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3254		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3255			inode->i_sb->s_blocksize_bits;
3256
3257	/* If extent is less than s_max_zeroout_kb, zeroout directly */
3258	if (max_zeroout && (ee_len <= max_zeroout)) {
3259		err = ext4_ext_zeroout(inode, ex);
3260		if (err)
3261			goto out;
3262
3263		err = ext4_ext_get_access(handle, inode, path + depth);
3264		if (err)
3265			goto out;
3266		ext4_ext_mark_initialized(ex);
3267		ext4_ext_try_to_merge(handle, inode, path, ex);
3268		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3269		goto out;
3270	}
3271
3272	/*
3273	 * four cases:
3274	 * 1. split the extent into three extents.
3275	 * 2. split the extent into two extents, zeroout the first half.
3276	 * 3. split the extent into two extents, zeroout the second half.
3277	 * 4. split the extent into two extents with out zeroout.
3278	 */
3279	split_map.m_lblk = map->m_lblk;
3280	split_map.m_len = map->m_len;
3281
3282	if (max_zeroout && (allocated > map->m_len)) {
3283		if (allocated <= max_zeroout) {
3284			/* case 3 */
3285			zero_ex.ee_block =
3286					 cpu_to_le32(map->m_lblk);
3287			zero_ex.ee_len = cpu_to_le16(allocated);
3288			ext4_ext_store_pblock(&zero_ex,
3289				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3290			err = ext4_ext_zeroout(inode, &zero_ex);
3291			if (err)
3292				goto out;
3293			split_map.m_lblk = map->m_lblk;
3294			split_map.m_len = allocated;
3295		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3296			/* case 2 */
3297			if (map->m_lblk != ee_block) {
3298				zero_ex.ee_block = ex->ee_block;
3299				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3300							ee_block);
3301				ext4_ext_store_pblock(&zero_ex,
3302						      ext4_ext_pblock(ex));
3303				err = ext4_ext_zeroout(inode, &zero_ex);
3304				if (err)
3305					goto out;
3306			}
3307
3308			split_map.m_lblk = ee_block;
3309			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3310			allocated = map->m_len;
3311		}
3312	}
3313
3314	allocated = ext4_split_extent(handle, inode, path,
3315				      &split_map, split_flag, 0);
3316	if (allocated < 0)
3317		err = allocated;
3318
3319out:
3320	return err ? err : allocated;
3321}
3322
3323/*
3324 * This function is called by ext4_ext_map_blocks() from
3325 * ext4_get_blocks_dio_write() when DIO to write
3326 * to an uninitialized extent.
3327 *
3328 * Writing to an uninitialized extent may result in splitting the uninitialized
3329 * extent into multiple initialized/uninitialized extents (up to three)
3330 * There are three possibilities:
3331 *   a> There is no split required: Entire extent should be uninitialized
3332 *   b> Splits in two extents: Write is happening at either end of the extent
3333 *   c> Splits in three extents: Somone is writing in middle of the extent
3334 *
3335 * One of more index blocks maybe needed if the extent tree grow after
3336 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3337 * complete, we need to split the uninitialized extent before DIO submit
3338 * the IO. The uninitialized extent called at this time will be split
3339 * into three uninitialized extent(at most). After IO complete, the part
3340 * being filled will be convert to initialized by the end_io callback function
3341 * via ext4_convert_unwritten_extents().
3342 *
3343 * Returns the size of uninitialized extent to be written on success.
3344 */
3345static int ext4_split_unwritten_extents(handle_t *handle,
3346					struct inode *inode,
3347					struct ext4_map_blocks *map,
3348					struct ext4_ext_path *path,
3349					int flags)
3350{
3351	ext4_lblk_t eof_block;
3352	ext4_lblk_t ee_block;
3353	struct ext4_extent *ex;
3354	unsigned int ee_len;
3355	int split_flag = 0, depth;
3356
3357	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3358		"block %llu, max_blocks %u\n", inode->i_ino,
3359		(unsigned long long)map->m_lblk, map->m_len);
3360
3361	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3362		inode->i_sb->s_blocksize_bits;
3363	if (eof_block < map->m_lblk + map->m_len)
3364		eof_block = map->m_lblk + map->m_len;
3365	/*
3366	 * It is safe to convert extent to initialized via explicit
3367	 * zeroout only if extent is fully insde i_size or new_size.
3368	 */
3369	depth = ext_depth(inode);
3370	ex = path[depth].p_ext;
3371	ee_block = le32_to_cpu(ex->ee_block);
3372	ee_len = ext4_ext_get_actual_len(ex);
3373
3374	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3375	split_flag |= EXT4_EXT_MARK_UNINIT2;
3376	if (flags & EXT4_GET_BLOCKS_CONVERT)
3377		split_flag |= EXT4_EXT_DATA_VALID2;
3378	flags |= EXT4_GET_BLOCKS_PRE_IO;
3379	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3380}
3381
3382static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3383						struct inode *inode,
3384						struct ext4_map_blocks *map,
3385						struct ext4_ext_path *path)
3386{
3387	struct ext4_extent *ex;
3388	ext4_lblk_t ee_block;
3389	unsigned int ee_len;
3390	int depth;
3391	int err = 0;
3392
3393	depth = ext_depth(inode);
3394	ex = path[depth].p_ext;
3395	ee_block = le32_to_cpu(ex->ee_block);
3396	ee_len = ext4_ext_get_actual_len(ex);
3397
3398	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3399		"block %llu, max_blocks %u\n", inode->i_ino,
3400		  (unsigned long long)ee_block, ee_len);
3401
3402	/* If extent is larger than requested then split is required */
3403	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3404		err = ext4_split_unwritten_extents(handle, inode, map, path,
3405						   EXT4_GET_BLOCKS_CONVERT);
3406		if (err < 0)
3407			goto out;
3408		ext4_ext_drop_refs(path);
3409		path = ext4_ext_find_extent(inode, map->m_lblk, path);
3410		if (IS_ERR(path)) {
3411			err = PTR_ERR(path);
3412			goto out;
3413		}
3414		depth = ext_depth(inode);
3415		ex = path[depth].p_ext;
3416	}
3417
3418	err = ext4_ext_get_access(handle, inode, path + depth);
3419	if (err)
3420		goto out;
3421	/* first mark the extent as initialized */
3422	ext4_ext_mark_initialized(ex);
3423
3424	/* note: ext4_ext_correct_indexes() isn't needed here because
3425	 * borders are not changed
3426	 */
3427	ext4_ext_try_to_merge(handle, inode, path, ex);
3428
3429	/* Mark modified extent as dirty */
3430	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3431out:
3432	ext4_ext_show_leaf(inode, path);
3433	return err;
3434}
3435
3436static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3437			sector_t block, int count)
3438{
3439	int i;
3440	for (i = 0; i < count; i++)
3441                unmap_underlying_metadata(bdev, block + i);
3442}
3443
3444/*
3445 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3446 */
3447static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3448			      ext4_lblk_t lblk,
3449			      struct ext4_ext_path *path,
3450			      unsigned int len)
3451{
3452	int i, depth;
3453	struct ext4_extent_header *eh;
3454	struct ext4_extent *last_ex;
3455
3456	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3457		return 0;
3458
3459	depth = ext_depth(inode);
3460	eh = path[depth].p_hdr;
3461
3462	/*
3463	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3464	 * do not care for this case anymore. Simply remove the flag
3465	 * if there are no extents.
3466	 */
3467	if (unlikely(!eh->eh_entries))
3468		goto out;
3469	last_ex = EXT_LAST_EXTENT(eh);
3470	/*
3471	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3472	 * last block in the last extent in the file.  We test this by
3473	 * first checking to see if the caller to
3474	 * ext4_ext_get_blocks() was interested in the last block (or
3475	 * a block beyond the last block) in the current extent.  If
3476	 * this turns out to be false, we can bail out from this
3477	 * function immediately.
3478	 */
3479	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3480	    ext4_ext_get_actual_len(last_ex))
3481		return 0;
3482	/*
3483	 * If the caller does appear to be planning to write at or
3484	 * beyond the end of the current extent, we then test to see
3485	 * if the current extent is the last extent in the file, by
3486	 * checking to make sure it was reached via the rightmost node
3487	 * at each level of the tree.
3488	 */
3489	for (i = depth-1; i >= 0; i--)
3490		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3491			return 0;
3492out:
3493	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3494	return ext4_mark_inode_dirty(handle, inode);
3495}
3496
3497/**
3498 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3499 *
3500 * Return 1 if there is a delalloc block in the range, otherwise 0.
3501 */
3502static int ext4_find_delalloc_range(struct inode *inode,
3503				    ext4_lblk_t lblk_start,
3504				    ext4_lblk_t lblk_end)
3505{
3506	struct extent_status es;
3507
3508	es.start = lblk_start;
3509	ext4_es_find_extent(inode, &es);
3510	if (es.len == 0)
3511		return 0; /* there is no delay extent in this tree */
3512	else if (es.start <= lblk_start && lblk_start < es.start + es.len)
3513		return 1;
3514	else if (lblk_start <= es.start && es.start <= lblk_end)
3515		return 1;
3516	else
3517		return 0;
3518}
3519
3520int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3521{
3522	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3523	ext4_lblk_t lblk_start, lblk_end;
3524	lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3525	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3526
3527	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3528}
3529
3530/**
3531 * Determines how many complete clusters (out of those specified by the 'map')
3532 * are under delalloc and were reserved quota for.
3533 * This function is called when we are writing out the blocks that were
3534 * originally written with their allocation delayed, but then the space was
3535 * allocated using fallocate() before the delayed allocation could be resolved.
3536 * The cases to look for are:
3537 * ('=' indicated delayed allocated blocks
3538 *  '-' indicates non-delayed allocated blocks)
3539 * (a) partial clusters towards beginning and/or end outside of allocated range
3540 *     are not delalloc'ed.
3541 *	Ex:
3542 *	|----c---=|====c====|====c====|===-c----|
3543 *	         |++++++ allocated ++++++|
3544 *	==> 4 complete clusters in above example
3545 *
3546 * (b) partial cluster (outside of allocated range) towards either end is
3547 *     marked for delayed allocation. In this case, we will exclude that
3548 *     cluster.
3549 *	Ex:
3550 *	|----====c========|========c========|
3551 *	     |++++++ allocated ++++++|
3552 *	==> 1 complete clusters in above example
3553 *
3554 *	Ex:
3555 *	|================c================|
3556 *            |++++++ allocated ++++++|
3557 *	==> 0 complete clusters in above example
3558 *
3559 * The ext4_da_update_reserve_space will be called only if we
3560 * determine here that there were some "entire" clusters that span
3561 * this 'allocated' range.
3562 * In the non-bigalloc case, this function will just end up returning num_blks
3563 * without ever calling ext4_find_delalloc_range.
3564 */
3565static unsigned int
3566get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3567			   unsigned int num_blks)
3568{
3569	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3570	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3571	ext4_lblk_t lblk_from, lblk_to, c_offset;
3572	unsigned int allocated_clusters = 0;
3573
3574	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3575	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3576
3577	/* max possible clusters for this allocation */
3578	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3579
3580	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3581
3582	/* Check towards left side */
3583	c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3584	if (c_offset) {
3585		lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3586		lblk_to = lblk_from + c_offset - 1;
3587
3588		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3589			allocated_clusters--;
3590	}
3591
3592	/* Now check towards right. */
3593	c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3594	if (allocated_clusters && c_offset) {
3595		lblk_from = lblk_start + num_blks;
3596		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3597
3598		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3599			allocated_clusters--;
3600	}
3601
3602	return allocated_clusters;
3603}
3604
3605static int
3606ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3607			struct ext4_map_blocks *map,
3608			struct ext4_ext_path *path, int flags,
3609			unsigned int allocated, ext4_fsblk_t newblock)
3610{
3611	int ret = 0;
3612	int err = 0;
3613	ext4_io_end_t *io = ext4_inode_aio(inode);
3614
3615	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3616		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
3617		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3618		  flags, allocated);
3619	ext4_ext_show_leaf(inode, path);
3620
3621	trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3622						    allocated, newblock);
3623
3624	/* get_block() before submit the IO, split the extent */
3625	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3626		ret = ext4_split_unwritten_extents(handle, inode, map,
3627						   path, flags);
3628		if (ret <= 0)
3629			goto out;
3630		/*
3631		 * Flag the inode(non aio case) or end_io struct (aio case)
3632		 * that this IO needs to conversion to written when IO is
3633		 * completed
3634		 */
3635		if (io)
3636			ext4_set_io_unwritten_flag(inode, io);
3637		else
3638			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3639		if (ext4_should_dioread_nolock(inode))
3640			map->m_flags |= EXT4_MAP_UNINIT;
3641		goto out;
3642	}
3643	/* IO end_io complete, convert the filled extent to written */
3644	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3645		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3646							path);
3647		if (ret >= 0) {
3648			ext4_update_inode_fsync_trans(handle, inode, 1);
3649			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3650						 path, map->m_len);
3651		} else
3652			err = ret;
3653		goto out2;
3654	}
3655	/* buffered IO case */
3656	/*
3657	 * repeat fallocate creation request
3658	 * we already have an unwritten extent
3659	 */
3660	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3661		goto map_out;
3662
3663	/* buffered READ or buffered write_begin() lookup */
3664	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3665		/*
3666		 * We have blocks reserved already.  We
3667		 * return allocated blocks so that delalloc
3668		 * won't do block reservation for us.  But
3669		 * the buffer head will be unmapped so that
3670		 * a read from the block returns 0s.
3671		 */
3672		map->m_flags |= EXT4_MAP_UNWRITTEN;
3673		goto out1;
3674	}
3675
3676	/* buffered write, writepage time, convert*/
3677	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3678	if (ret >= 0)
3679		ext4_update_inode_fsync_trans(handle, inode, 1);
3680out:
3681	if (ret <= 0) {
3682		err = ret;
3683		goto out2;
3684	} else
3685		allocated = ret;
3686	map->m_flags |= EXT4_MAP_NEW;
3687	/*
3688	 * if we allocated more blocks than requested
3689	 * we need to make sure we unmap the extra block
3690	 * allocated. The actual needed block will get
3691	 * unmapped later when we find the buffer_head marked
3692	 * new.
3693	 */
3694	if (allocated > map->m_len) {
3695		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3696					newblock + map->m_len,
3697					allocated - map->m_len);
3698		allocated = map->m_len;
3699	}
3700
3701	/*
3702	 * If we have done fallocate with the offset that is already
3703	 * delayed allocated, we would have block reservation
3704	 * and quota reservation done in the delayed write path.
3705	 * But fallocate would have already updated quota and block
3706	 * count for this offset. So cancel these reservation
3707	 */
3708	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3709		unsigned int reserved_clusters;
3710		reserved_clusters = get_reserved_cluster_alloc(inode,
3711				map->m_lblk, map->m_len);
3712		if (reserved_clusters)
3713			ext4_da_update_reserve_space(inode,
3714						     reserved_clusters,
3715						     0);
3716	}
3717
3718map_out:
3719	map->m_flags |= EXT4_MAP_MAPPED;
3720	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3721		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3722					 map->m_len);
3723		if (err < 0)
3724			goto out2;
3725	}
3726out1:
3727	if (allocated > map->m_len)
3728		allocated = map->m_len;
3729	ext4_ext_show_leaf(inode, path);
3730	map->m_pblk = newblock;
3731	map->m_len = allocated;
3732out2:
3733	if (path) {
3734		ext4_ext_drop_refs(path);
3735		kfree(path);
3736	}
3737	return err ? err : allocated;
3738}
3739
3740/*
3741 * get_implied_cluster_alloc - check to see if the requested
3742 * allocation (in the map structure) overlaps with a cluster already
3743 * allocated in an extent.
3744 *	@sb	The filesystem superblock structure
3745 *	@map	The requested lblk->pblk mapping
3746 *	@ex	The extent structure which might contain an implied
3747 *			cluster allocation
3748 *
3749 * This function is called by ext4_ext_map_blocks() after we failed to
3750 * find blocks that were already in the inode's extent tree.  Hence,
3751 * we know that the beginning of the requested region cannot overlap
3752 * the extent from the inode's extent tree.  There are three cases we
3753 * want to catch.  The first is this case:
3754 *
3755 *		 |--- cluster # N--|
3756 *    |--- extent ---|	|---- requested region ---|
3757 *			|==========|
3758 *
3759 * The second case that we need to test for is this one:
3760 *
3761 *   |--------- cluster # N ----------------|
3762 *	   |--- requested region --|   |------- extent ----|
3763 *	   |=======================|
3764 *
3765 * The third case is when the requested region lies between two extents
3766 * within the same cluster:
3767 *          |------------- cluster # N-------------|
3768 * |----- ex -----|                  |---- ex_right ----|
3769 *                  |------ requested region ------|
3770 *                  |================|
3771 *
3772 * In each of the above cases, we need to set the map->m_pblk and
3773 * map->m_len so it corresponds to the return the extent labelled as
3774 * "|====|" from cluster #N, since it is already in use for data in
3775 * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
3776 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3777 * as a new "allocated" block region.  Otherwise, we will return 0 and
3778 * ext4_ext_map_blocks() will then allocate one or more new clusters
3779 * by calling ext4_mb_new_blocks().
3780 */
3781static int get_implied_cluster_alloc(struct super_block *sb,
3782				     struct ext4_map_blocks *map,
3783				     struct ext4_extent *ex,
3784				     struct ext4_ext_path *path)
3785{
3786	struct ext4_sb_info *sbi = EXT4_SB(sb);
3787	ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3788	ext4_lblk_t ex_cluster_start, ex_cluster_end;
3789	ext4_lblk_t rr_cluster_start;
3790	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3791	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3792	unsigned short ee_len = ext4_ext_get_actual_len(ex);
3793
3794	/* The extent passed in that we are trying to match */
3795	ex_cluster_start = EXT4_B2C(sbi, ee_block);
3796	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3797
3798	/* The requested region passed into ext4_map_blocks() */
3799	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3800
3801	if ((rr_cluster_start == ex_cluster_end) ||
3802	    (rr_cluster_start == ex_cluster_start)) {
3803		if (rr_cluster_start == ex_cluster_end)
3804			ee_start += ee_len - 1;
3805		map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3806			c_offset;
3807		map->m_len = min(map->m_len,
3808				 (unsigned) sbi->s_cluster_ratio - c_offset);
3809		/*
3810		 * Check for and handle this case:
3811		 *
3812		 *   |--------- cluster # N-------------|
3813		 *		       |------- extent ----|
3814		 *	   |--- requested region ---|
3815		 *	   |===========|
3816		 */
3817
3818		if (map->m_lblk < ee_block)
3819			map->m_len = min(map->m_len, ee_block - map->m_lblk);
3820
3821		/*
3822		 * Check for the case where there is already another allocated
3823		 * block to the right of 'ex' but before the end of the cluster.
3824		 *
3825		 *          |------------- cluster # N-------------|
3826		 * |----- ex -----|                  |---- ex_right ----|
3827		 *                  |------ requested region ------|
3828		 *                  |================|
3829		 */
3830		if (map->m_lblk > ee_block) {
3831			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3832			map->m_len = min(map->m_len, next - map->m_lblk);
3833		}
3834
3835		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3836		return 1;
3837	}
3838
3839	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3840	return 0;
3841}
3842
3843
3844/*
3845 * Block allocation/map/preallocation routine for extents based files
3846 *
3847 *
3848 * Need to be called with
3849 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3850 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3851 *
3852 * return > 0, number of of blocks already mapped/allocated
3853 *          if create == 0 and these are pre-allocated blocks
3854 *          	buffer head is unmapped
3855 *          otherwise blocks are mapped
3856 *
3857 * return = 0, if plain look up failed (blocks have not been allocated)
3858 *          buffer head is unmapped
3859 *
3860 * return < 0, error case.
3861 */
3862int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3863			struct ext4_map_blocks *map, int flags)
3864{
3865	struct ext4_ext_path *path = NULL;
3866	struct ext4_extent newex, *ex, *ex2;
3867	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3868	ext4_fsblk_t newblock = 0;
3869	int free_on_err = 0, err = 0, depth;
3870	unsigned int allocated = 0, offset = 0;
3871	unsigned int allocated_clusters = 0;
3872	struct ext4_allocation_request ar;
3873	ext4_io_end_t *io = ext4_inode_aio(inode);
3874	ext4_lblk_t cluster_offset;
3875	int set_unwritten = 0;
3876
3877	ext_debug("blocks %u/%u requested for inode %lu\n",
3878		  map->m_lblk, map->m_len, inode->i_ino);
3879	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3880
3881	/* check in cache */
3882	if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3883		if (!newex.ee_start_lo && !newex.ee_start_hi) {
3884			if ((sbi->s_cluster_ratio > 1) &&
3885			    ext4_find_delalloc_cluster(inode, map->m_lblk))
3886				map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3887
3888			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3889				/*
3890				 * block isn't allocated yet and
3891				 * user doesn't want to allocate it
3892				 */
3893				goto out2;
3894			}
3895			/* we should allocate requested block */
3896		} else {
3897			/* block is already allocated */
3898			if (sbi->s_cluster_ratio > 1)
3899				map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3900			newblock = map->m_lblk
3901				   - le32_to_cpu(newex.ee_block)
3902				   + ext4_ext_pblock(&newex);
3903			/* number of remaining blocks in the extent */
3904			allocated = ext4_ext_get_actual_len(&newex) -
3905				(map->m_lblk - le32_to_cpu(newex.ee_block));
3906			goto out;
3907		}
3908	}
3909
3910	/* find extent for this block */
3911	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3912	if (IS_ERR(path)) {
3913		err = PTR_ERR(path);
3914		path = NULL;
3915		goto out2;
3916	}
3917
3918	depth = ext_depth(inode);
3919
3920	/*
3921	 * consistent leaf must not be empty;
3922	 * this situation is possible, though, _during_ tree modification;
3923	 * this is why assert can't be put in ext4_ext_find_extent()
3924	 */
3925	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3926		EXT4_ERROR_INODE(inode, "bad extent address "
3927				 "lblock: %lu, depth: %d pblock %lld",
3928				 (unsigned long) map->m_lblk, depth,
3929				 path[depth].p_block);
3930		err = -EIO;
3931		goto out2;
3932	}
3933
3934	ex = path[depth].p_ext;
3935	if (ex) {
3936		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3937		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3938		unsigned short ee_len;
3939
3940		/*
3941		 * Uninitialized extents are treated as holes, except that
3942		 * we split out initialized portions during a write.
3943		 */
3944		ee_len = ext4_ext_get_actual_len(ex);
3945
3946		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3947
3948		/* if found extent covers block, simply return it */
3949		if (in_range(map->m_lblk, ee_block, ee_len)) {
3950			newblock = map->m_lblk - ee_block + ee_start;
3951			/* number of remaining blocks in the extent */
3952			allocated = ee_len - (map->m_lblk - ee_block);
3953			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3954				  ee_block, ee_len, newblock);
3955
3956			/*
3957			 * Do not put uninitialized extent
3958			 * in the cache
3959			 */
3960			if (!ext4_ext_is_uninitialized(ex)) {
3961				ext4_ext_put_in_cache(inode, ee_block,
3962					ee_len, ee_start);
3963				goto out;
3964			}
3965			allocated = ext4_ext_handle_uninitialized_extents(
3966				handle, inode, map, path, flags,
3967				allocated, newblock);
3968			goto out3;
3969		}
3970	}
3971
3972	if ((sbi->s_cluster_ratio > 1) &&
3973	    ext4_find_delalloc_cluster(inode, map->m_lblk))
3974		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3975
3976	/*
3977	 * requested block isn't allocated yet;
3978	 * we couldn't try to create block if create flag is zero
3979	 */
3980	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3981		/*
3982		 * put just found gap into cache to speed up
3983		 * subsequent requests
3984		 */
3985		ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3986		goto out2;
3987	}
3988
3989	/*
3990	 * Okay, we need to do block allocation.
3991	 */
3992	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3993	newex.ee_block = cpu_to_le32(map->m_lblk);
3994	cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3995
3996	/*
3997	 * If we are doing bigalloc, check to see if the extent returned
3998	 * by ext4_ext_find_extent() implies a cluster we can use.
3999	 */
4000	if (cluster_offset && ex &&
4001	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4002		ar.len = allocated = map->m_len;
4003		newblock = map->m_pblk;
4004		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4005		goto got_allocated_blocks;
4006	}
4007
4008	/* find neighbour allocated blocks */
4009	ar.lleft = map->m_lblk;
4010	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4011	if (err)
4012		goto out2;
4013	ar.lright = map->m_lblk;
4014	ex2 = NULL;
4015	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4016	if (err)
4017		goto out2;
4018
4019	/* Check if the extent after searching to the right implies a
4020	 * cluster we can use. */
4021	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4022	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4023		ar.len = allocated = map->m_len;
4024		newblock = map->m_pblk;
4025		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4026		goto got_allocated_blocks;
4027	}
4028
4029	/*
4030	 * See if request is beyond maximum number of blocks we can have in
4031	 * a single extent. For an initialized extent this limit is
4032	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4033	 * EXT_UNINIT_MAX_LEN.
4034	 */
4035	if (map->m_len > EXT_INIT_MAX_LEN &&
4036	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4037		map->m_len = EXT_INIT_MAX_LEN;
4038	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4039		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4040		map->m_len = EXT_UNINIT_MAX_LEN;
4041
4042	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4043	newex.ee_len = cpu_to_le16(map->m_len);
4044	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4045	if (err)
4046		allocated = ext4_ext_get_actual_len(&newex);
4047	else
4048		allocated = map->m_len;
4049
4050	/* allocate new block */
4051	ar.inode = inode;
4052	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4053	ar.logical = map->m_lblk;
4054	/*
4055	 * We calculate the offset from the beginning of the cluster
4056	 * for the logical block number, since when we allocate a
4057	 * physical cluster, the physical block should start at the
4058	 * same offset from the beginning of the cluster.  This is
4059	 * needed so that future calls to get_implied_cluster_alloc()
4060	 * work correctly.
4061	 */
4062	offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4063	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4064	ar.goal -= offset;
4065	ar.logical -= offset;
4066	if (S_ISREG(inode->i_mode))
4067		ar.flags = EXT4_MB_HINT_DATA;
4068	else
4069		/* disable in-core preallocation for non-regular files */
4070		ar.flags = 0;
4071	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4072		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4073	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4074	if (!newblock)
4075		goto out2;
4076	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4077		  ar.goal, newblock, allocated);
4078	free_on_err = 1;
4079	allocated_clusters = ar.len;
4080	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4081	if (ar.len > allocated)
4082		ar.len = allocated;
4083
4084got_allocated_blocks:
4085	/* try to insert new extent into found leaf and return */
4086	ext4_ext_store_pblock(&newex, newblock + offset);
4087	newex.ee_len = cpu_to_le16(ar.len);
4088	/* Mark uninitialized */
4089	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4090		ext4_ext_mark_uninitialized(&newex);
4091		/*
4092		 * io_end structure was created for every IO write to an
4093		 * uninitialized extent. To avoid unnecessary conversion,
4094		 * here we flag the IO that really needs the conversion.
4095		 * For non asycn direct IO case, flag the inode state
4096		 * that we need to perform conversion when IO is done.
4097		 */
4098		if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4099			set_unwritten = 1;
4100		if (ext4_should_dioread_nolock(inode))
4101			map->m_flags |= EXT4_MAP_UNINIT;
4102	}
4103
4104	err = 0;
4105	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4106		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4107					 path, ar.len);
4108	if (!err)
4109		err = ext4_ext_insert_extent(handle, inode, path,
4110					     &newex, flags);
4111
4112	if (!err && set_unwritten) {
4113		if (io)
4114			ext4_set_io_unwritten_flag(inode, io);
4115		else
4116			ext4_set_inode_state(inode,
4117					     EXT4_STATE_DIO_UNWRITTEN);
4118	}
4119
4120	if (err && free_on_err) {
4121		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4122			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4123		/* free data blocks we just allocated */
4124		/* not a good idea to call discard here directly,
4125		 * but otherwise we'd need to call it every free() */
4126		ext4_discard_preallocations(inode);
4127		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4128				 ext4_ext_get_actual_len(&newex), fb_flags);
4129		goto out2;
4130	}
4131
4132	/* previous routine could use block we allocated */
4133	newblock = ext4_ext_pblock(&newex);
4134	allocated = ext4_ext_get_actual_len(&newex);
4135	if (allocated > map->m_len)
4136		allocated = map->m_len;
4137	map->m_flags |= EXT4_MAP_NEW;
4138
4139	/*
4140	 * Update reserved blocks/metadata blocks after successful
4141	 * block allocation which had been deferred till now.
4142	 */
4143	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4144		unsigned int reserved_clusters;
4145		/*
4146		 * Check how many clusters we had reserved this allocated range
4147		 */
4148		reserved_clusters = get_reserved_cluster_alloc(inode,
4149						map->m_lblk, allocated);
4150		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4151			if (reserved_clusters) {
4152				/*
4153				 * We have clusters reserved for this range.
4154				 * But since we are not doing actual allocation
4155				 * and are simply using blocks from previously
4156				 * allocated cluster, we should release the
4157				 * reservation and not claim quota.
4158				 */
4159				ext4_da_update_reserve_space(inode,
4160						reserved_clusters, 0);
4161			}
4162		} else {
4163			BUG_ON(allocated_clusters < reserved_clusters);
4164			/* We will claim quota for all newly allocated blocks.*/
4165			ext4_da_update_reserve_space(inode, allocated_clusters,
4166							1);
4167			if (reserved_clusters < allocated_clusters) {
4168				struct ext4_inode_info *ei = EXT4_I(inode);
4169				int reservation = allocated_clusters -
4170						  reserved_clusters;
4171				/*
4172				 * It seems we claimed few clusters outside of
4173				 * the range of this allocation. We should give
4174				 * it back to the reservation pool. This can
4175				 * happen in the following case:
4176				 *
4177				 * * Suppose s_cluster_ratio is 4 (i.e., each
4178				 *   cluster has 4 blocks. Thus, the clusters
4179				 *   are [0-3],[4-7],[8-11]...
4180				 * * First comes delayed allocation write for
4181				 *   logical blocks 10 & 11. Since there were no
4182				 *   previous delayed allocated blocks in the
4183				 *   range [8-11], we would reserve 1 cluster
4184				 *   for this write.
4185				 * * Next comes write for logical blocks 3 to 8.
4186				 *   In this case, we will reserve 2 clusters
4187				 *   (for [0-3] and [4-7]; and not for [8-11] as
4188				 *   that range has a delayed allocated blocks.
4189				 *   Thus total reserved clusters now becomes 3.
4190				 * * Now, during the delayed allocation writeout
4191				 *   time, we will first write blocks [3-8] and
4192				 *   allocate 3 clusters for writing these
4193				 *   blocks. Also, we would claim all these
4194				 *   three clusters above.
4195				 * * Now when we come here to writeout the
4196				 *   blocks [10-11], we would expect to claim
4197				 *   the reservation of 1 cluster we had made
4198				 *   (and we would claim it since there are no
4199				 *   more delayed allocated blocks in the range
4200				 *   [8-11]. But our reserved cluster count had
4201				 *   already gone to 0.
4202				 *
4203				 *   Thus, at the step 4 above when we determine
4204				 *   that there are still some unwritten delayed
4205				 *   allocated blocks outside of our current
4206				 *   block range, we should increment the
4207				 *   reserved clusters count so that when the
4208				 *   remaining blocks finally gets written, we
4209				 *   could claim them.
4210				 */
4211				dquot_reserve_block(inode,
4212						EXT4_C2B(sbi, reservation));
4213				spin_lock(&ei->i_block_reservation_lock);
4214				ei->i_reserved_data_blocks += reservation;
4215				spin_unlock(&ei->i_block_reservation_lock);
4216			}
4217		}
4218	}
4219
4220	/*
4221	 * Cache the extent and update transaction to commit on fdatasync only
4222	 * when it is _not_ an uninitialized extent.
4223	 */
4224	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4225		ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4226		ext4_update_inode_fsync_trans(handle, inode, 1);
4227	} else
4228		ext4_update_inode_fsync_trans(handle, inode, 0);
4229out:
4230	if (allocated > map->m_len)
4231		allocated = map->m_len;
4232	ext4_ext_show_leaf(inode, path);
4233	map->m_flags |= EXT4_MAP_MAPPED;
4234	map->m_pblk = newblock;
4235	map->m_len = allocated;
4236out2:
4237	if (path) {
4238		ext4_ext_drop_refs(path);
4239		kfree(path);
4240	}
4241
4242out3:
4243	trace_ext4_ext_map_blocks_exit(inode, map, err ? err : allocated);
4244
4245	return err ? err : allocated;
4246}
4247
4248void ext4_ext_truncate(struct inode *inode)
4249{
4250	struct address_space *mapping = inode->i_mapping;
4251	struct super_block *sb = inode->i_sb;
4252	ext4_lblk_t last_block;
4253	handle_t *handle;
4254	loff_t page_len;
4255	int err = 0;
4256
4257	/*
4258	 * finish any pending end_io work so we won't run the risk of
4259	 * converting any truncated blocks to initialized later
4260	 */
4261	ext4_flush_unwritten_io(inode);
4262
4263	/*
4264	 * probably first extent we're gonna free will be last in block
4265	 */
4266	err = ext4_writepage_trans_blocks(inode);
4267	handle = ext4_journal_start(inode, err);
4268	if (IS_ERR(handle))
4269		return;
4270
4271	if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4272		page_len = PAGE_CACHE_SIZE -
4273			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4274
4275		err = ext4_discard_partial_page_buffers(handle,
4276			mapping, inode->i_size, page_len, 0);
4277
4278		if (err)
4279			goto out_stop;
4280	}
4281
4282	if (ext4_orphan_add(handle, inode))
4283		goto out_stop;
4284
4285	down_write(&EXT4_I(inode)->i_data_sem);
4286	ext4_ext_invalidate_cache(inode);
4287
4288	ext4_discard_preallocations(inode);
4289
4290	/*
4291	 * TODO: optimization is possible here.
4292	 * Probably we need not scan at all,
4293	 * because page truncation is enough.
4294	 */
4295
4296	/* we have to know where to truncate from in crash case */
4297	EXT4_I(inode)->i_disksize = inode->i_size;
4298	ext4_mark_inode_dirty(handle, inode);
4299
4300	last_block = (inode->i_size + sb->s_blocksize - 1)
4301			>> EXT4_BLOCK_SIZE_BITS(sb);
4302	err = ext4_es_remove_extent(inode, last_block,
4303				    EXT_MAX_BLOCKS - last_block);
4304	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4305
4306	/* In a multi-transaction truncate, we only make the final
4307	 * transaction synchronous.
4308	 */
4309	if (IS_SYNC(inode))
4310		ext4_handle_sync(handle);
4311
4312	up_write(&EXT4_I(inode)->i_data_sem);
4313
4314out_stop:
4315	/*
4316	 * If this was a simple ftruncate() and the file will remain alive,
4317	 * then we need to clear up the orphan record which we created above.
4318	 * However, if this was a real unlink then we were called by
4319	 * ext4_delete_inode(), and we allow that function to clean up the
4320	 * orphan info for us.
4321	 */
4322	if (inode->i_nlink)
4323		ext4_orphan_del(handle, inode);
4324
4325	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4326	ext4_mark_inode_dirty(handle, inode);
4327	ext4_journal_stop(handle);
4328}
4329
4330static void ext4_falloc_update_inode(struct inode *inode,
4331				int mode, loff_t new_size, int update_ctime)
4332{
4333	struct timespec now;
4334
4335	if (update_ctime) {
4336		now = current_fs_time(inode->i_sb);
4337		if (!timespec_equal(&inode->i_ctime, &now))
4338			inode->i_ctime = now;
4339	}
4340	/*
4341	 * Update only when preallocation was requested beyond
4342	 * the file size.
4343	 */
4344	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4345		if (new_size > i_size_read(inode))
4346			i_size_write(inode, new_size);
4347		if (new_size > EXT4_I(inode)->i_disksize)
4348			ext4_update_i_disksize(inode, new_size);
4349	} else {
4350		/*
4351		 * Mark that we allocate beyond EOF so the subsequent truncate
4352		 * can proceed even if the new size is the same as i_size.
4353		 */
4354		if (new_size > i_size_read(inode))
4355			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4356	}
4357
4358}
4359
4360/*
4361 * preallocate space for a file. This implements ext4's fallocate file
4362 * operation, which gets called from sys_fallocate system call.
4363 * For block-mapped files, posix_fallocate should fall back to the method
4364 * of writing zeroes to the required new blocks (the same behavior which is
4365 * expected for file systems which do not support fallocate() system call).
4366 */
4367long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4368{
4369	struct inode *inode = file->f_path.dentry->d_inode;
4370	handle_t *handle;
4371	loff_t new_size;
4372	unsigned int max_blocks;
4373	int ret = 0;
4374	int ret2 = 0;
4375	int retries = 0;
4376	int flags;
4377	struct ext4_map_blocks map;
4378	unsigned int credits, blkbits = inode->i_blkbits;
4379
4380	/*
4381	 * currently supporting (pre)allocate mode for extent-based
4382	 * files _only_
4383	 */
4384	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4385		return -EOPNOTSUPP;
4386
4387	/* Return error if mode is not supported */
4388	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4389		return -EOPNOTSUPP;
4390
4391	if (mode & FALLOC_FL_PUNCH_HOLE)
4392		return ext4_punch_hole(file, offset, len);
4393
4394	trace_ext4_fallocate_enter(inode, offset, len, mode);
4395	map.m_lblk = offset >> blkbits;
4396	/*
4397	 * We can't just convert len to max_blocks because
4398	 * If blocksize = 4096 offset = 3072 and len = 2048
4399	 */
4400	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4401		- map.m_lblk;
4402	/*
4403	 * credits to insert 1 extent into extent tree
4404	 */
4405	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4406	mutex_lock(&inode->i_mutex);
4407	ret = inode_newsize_ok(inode, (len + offset));
4408	if (ret) {
4409		mutex_unlock(&inode->i_mutex);
4410		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4411		return ret;
4412	}
4413	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4414	if (mode & FALLOC_FL_KEEP_SIZE)
4415		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4416	/*
4417	 * Don't normalize the request if it can fit in one extent so
4418	 * that it doesn't get unnecessarily split into multiple
4419	 * extents.
4420	 */
4421	if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4422		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4423
4424	/* Prevent race condition between unwritten */
4425	ext4_flush_unwritten_io(inode);
4426retry:
4427	while (ret >= 0 && ret < max_blocks) {
4428		map.m_lblk = map.m_lblk + ret;
4429		map.m_len = max_blocks = max_blocks - ret;
4430		handle = ext4_journal_start(inode, credits);
4431		if (IS_ERR(handle)) {
4432			ret = PTR_ERR(handle);
4433			break;
4434		}
4435		ret = ext4_map_blocks(handle, inode, &map, flags);
4436		if (ret <= 0) {
4437#ifdef EXT4FS_DEBUG
4438			WARN_ON(ret <= 0);
4439			printk(KERN_ERR "%s: ext4_ext_map_blocks "
4440				    "returned error inode#%lu, block=%u, "
4441				    "max_blocks=%u", __func__,
4442				    inode->i_ino, map.m_lblk, max_blocks);
4443#endif
4444			ext4_mark_inode_dirty(handle, inode);
4445			ret2 = ext4_journal_stop(handle);
4446			break;
4447		}
4448		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4449						blkbits) >> blkbits))
4450			new_size = offset + len;
4451		else
4452			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4453
4454		ext4_falloc_update_inode(inode, mode, new_size,
4455					 (map.m_flags & EXT4_MAP_NEW));
4456		ext4_mark_inode_dirty(handle, inode);
4457		if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4458			ext4_handle_sync(handle);
4459		ret2 = ext4_journal_stop(handle);
4460		if (ret2)
4461			break;
4462	}
4463	if (ret == -ENOSPC &&
4464			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4465		ret = 0;
4466		goto retry;
4467	}
4468	mutex_unlock(&inode->i_mutex);
4469	trace_ext4_fallocate_exit(inode, offset, max_blocks,
4470				ret > 0 ? ret2 : ret);
4471	return ret > 0 ? ret2 : ret;
4472}
4473
4474/*
4475 * This function convert a range of blocks to written extents
4476 * The caller of this function will pass the start offset and the size.
4477 * all unwritten extents within this range will be converted to
4478 * written extents.
4479 *
4480 * This function is called from the direct IO end io call back
4481 * function, to convert the fallocated extents after IO is completed.
4482 * Returns 0 on success.
4483 */
4484int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4485				    ssize_t len)
4486{
4487	handle_t *handle;
4488	unsigned int max_blocks;
4489	int ret = 0;
4490	int ret2 = 0;
4491	struct ext4_map_blocks map;
4492	unsigned int credits, blkbits = inode->i_blkbits;
4493
4494	map.m_lblk = offset >> blkbits;
4495	/*
4496	 * We can't just convert len to max_blocks because
4497	 * If blocksize = 4096 offset = 3072 and len = 2048
4498	 */
4499	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4500		      map.m_lblk);
4501	/*
4502	 * credits to insert 1 extent into extent tree
4503	 */
4504	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4505	while (ret >= 0 && ret < max_blocks) {
4506		map.m_lblk += ret;
4507		map.m_len = (max_blocks -= ret);
4508		handle = ext4_journal_start(inode, credits);
4509		if (IS_ERR(handle)) {
4510			ret = PTR_ERR(handle);
4511			break;
4512		}
4513		ret = ext4_map_blocks(handle, inode, &map,
4514				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4515		if (ret <= 0) {
4516			WARN_ON(ret <= 0);
4517			ext4_msg(inode->i_sb, KERN_ERR,
4518				 "%s:%d: inode #%lu: block %u: len %u: "
4519				 "ext4_ext_map_blocks returned %d",
4520				 __func__, __LINE__, inode->i_ino, map.m_lblk,
4521				 map.m_len, ret);
4522		}
4523		ext4_mark_inode_dirty(handle, inode);
4524		ret2 = ext4_journal_stop(handle);
4525		if (ret <= 0 || ret2 )
4526			break;
4527	}
4528	return ret > 0 ? ret2 : ret;
4529}
4530
4531/*
4532 * If newex is not existing extent (newex->ec_start equals zero) find
4533 * delayed extent at start of newex and update newex accordingly and
4534 * return start of the next delayed extent.
4535 *
4536 * If newex is existing extent (newex->ec_start is not equal zero)
4537 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4538 * extent found. Leave newex unmodified.
4539 */
4540static int ext4_find_delayed_extent(struct inode *inode,
4541				    struct ext4_ext_cache *newex)
4542{
4543	struct extent_status es;
4544	ext4_lblk_t next_del;
4545
4546	es.start = newex->ec_block;
4547	next_del = ext4_es_find_extent(inode, &es);
4548
4549	if (newex->ec_start == 0) {
4550		/*
4551		 * No extent in extent-tree contains block @newex->ec_start,
4552		 * then the block may stay in 1)a hole or 2)delayed-extent.
4553		 */
4554		if (es.len == 0)
4555			/* A hole found. */
4556			return 0;
4557
4558		if (es.start > newex->ec_block) {
4559			/* A hole found. */
4560			newex->ec_len = min(es.start - newex->ec_block,
4561					    newex->ec_len);
4562			return 0;
4563		}
4564
4565		newex->ec_len = es.start + es.len - newex->ec_block;
4566	}
4567
4568	return next_del;
4569}
4570/* fiemap flags we can handle specified here */
4571#define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4572
4573static int ext4_xattr_fiemap(struct inode *inode,
4574				struct fiemap_extent_info *fieinfo)
4575{
4576	__u64 physical = 0;
4577	__u64 length;
4578	__u32 flags = FIEMAP_EXTENT_LAST;
4579	int blockbits = inode->i_sb->s_blocksize_bits;
4580	int error = 0;
4581
4582	/* in-inode? */
4583	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4584		struct ext4_iloc iloc;
4585		int offset;	/* offset of xattr in inode */
4586
4587		error = ext4_get_inode_loc(inode, &iloc);
4588		if (error)
4589			return error;
4590		physical = iloc.bh->b_blocknr << blockbits;
4591		offset = EXT4_GOOD_OLD_INODE_SIZE +
4592				EXT4_I(inode)->i_extra_isize;
4593		physical += offset;
4594		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4595		flags |= FIEMAP_EXTENT_DATA_INLINE;
4596		brelse(iloc.bh);
4597	} else { /* external block */
4598		physical = EXT4_I(inode)->i_file_acl << blockbits;
4599		length = inode->i_sb->s_blocksize;
4600	}
4601
4602	if (physical)
4603		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4604						length, flags);
4605	return (error < 0 ? error : 0);
4606}
4607
4608/*
4609 * ext4_ext_punch_hole
4610 *
4611 * Punches a hole of "length" bytes in a file starting
4612 * at byte "offset"
4613 *
4614 * @inode:  The inode of the file to punch a hole in
4615 * @offset: The starting byte offset of the hole
4616 * @length: The length of the hole
4617 *
4618 * Returns the number of blocks removed or negative on err
4619 */
4620int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4621{
4622	struct inode *inode = file->f_path.dentry->d_inode;
4623	struct super_block *sb = inode->i_sb;
4624	ext4_lblk_t first_block, stop_block;
4625	struct address_space *mapping = inode->i_mapping;
4626	handle_t *handle;
4627	loff_t first_page, last_page, page_len;
4628	loff_t first_page_offset, last_page_offset;
4629	int credits, err = 0;
4630
4631	/*
4632	 * Write out all dirty pages to avoid race conditions
4633	 * Then release them.
4634	 */
4635	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4636		err = filemap_write_and_wait_range(mapping,
4637			offset, offset + length - 1);
4638
4639		if (err)
4640			return err;
4641	}
4642
4643	mutex_lock(&inode->i_mutex);
4644	/* It's not possible punch hole on append only file */
4645	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4646		err = -EPERM;
4647		goto out_mutex;
4648	}
4649	if (IS_SWAPFILE(inode)) {
4650		err = -ETXTBSY;
4651		goto out_mutex;
4652	}
4653
4654	/* No need to punch hole beyond i_size */
4655	if (offset >= inode->i_size)
4656		goto out_mutex;
4657
4658	/*
4659	 * If the hole extends beyond i_size, set the hole
4660	 * to end after the page that contains i_size
4661	 */
4662	if (offset + length > inode->i_size) {
4663		length = inode->i_size +
4664		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4665		   offset;
4666	}
4667
4668	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4669	last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4670
4671	first_page_offset = first_page << PAGE_CACHE_SHIFT;
4672	last_page_offset = last_page << PAGE_CACHE_SHIFT;
4673
4674	/* Now release the pages */
4675	if (last_page_offset > first_page_offset) {
4676		truncate_pagecache_range(inode, first_page_offset,
4677					 last_page_offset - 1);
4678	}
4679
4680	/* Wait all existing dio workers, newcomers will block on i_mutex */
4681	ext4_inode_block_unlocked_dio(inode);
4682	err = ext4_flush_unwritten_io(inode);
4683	if (err)
4684		goto out_dio;
4685	inode_dio_wait(inode);
4686
4687	credits = ext4_writepage_trans_blocks(inode);
4688	handle = ext4_journal_start(inode, credits);
4689	if (IS_ERR(handle)) {
4690		err = PTR_ERR(handle);
4691		goto out_dio;
4692	}
4693
4694
4695	/*
4696	 * Now we need to zero out the non-page-aligned data in the
4697	 * pages at the start and tail of the hole, and unmap the buffer
4698	 * heads for the block aligned regions of the page that were
4699	 * completely zeroed.
4700	 */
4701	if (first_page > last_page) {
4702		/*
4703		 * If the file space being truncated is contained within a page
4704		 * just zero out and unmap the middle of that page
4705		 */
4706		err = ext4_discard_partial_page_buffers(handle,
4707			mapping, offset, length, 0);
4708
4709		if (err)
4710			goto out;
4711	} else {
4712		/*
4713		 * zero out and unmap the partial page that contains
4714		 * the start of the hole
4715		 */
4716		page_len  = first_page_offset - offset;
4717		if (page_len > 0) {
4718			err = ext4_discard_partial_page_buffers(handle, mapping,
4719						   offset, page_len, 0);
4720			if (err)
4721				goto out;
4722		}
4723
4724		/*
4725		 * zero out and unmap the partial page that contains
4726		 * the end of the hole
4727		 */
4728		page_len = offset + length - last_page_offset;
4729		if (page_len > 0) {
4730			err = ext4_discard_partial_page_buffers(handle, mapping,
4731					last_page_offset, page_len, 0);
4732			if (err)
4733				goto out;
4734		}
4735	}
4736
4737	/*
4738	 * If i_size is contained in the last page, we need to
4739	 * unmap and zero the partial page after i_size
4740	 */
4741	if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4742	   inode->i_size % PAGE_CACHE_SIZE != 0) {
4743
4744		page_len = PAGE_CACHE_SIZE -
4745			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4746
4747		if (page_len > 0) {
4748			err = ext4_discard_partial_page_buffers(handle,
4749			  mapping, inode->i_size, page_len, 0);
4750
4751			if (err)
4752				goto out;
4753		}
4754	}
4755
4756	first_block = (offset + sb->s_blocksize - 1) >>
4757		EXT4_BLOCK_SIZE_BITS(sb);
4758	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4759
4760	/* If there are no blocks to remove, return now */
4761	if (first_block >= stop_block)
4762		goto out;
4763
4764	down_write(&EXT4_I(inode)->i_data_sem);
4765	ext4_ext_invalidate_cache(inode);
4766	ext4_discard_preallocations(inode);
4767
4768	err = ext4_es_remove_extent(inode, first_block,
4769				    stop_block - first_block);
4770	err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4771
4772	ext4_ext_invalidate_cache(inode);
4773	ext4_discard_preallocations(inode);
4774
4775	if (IS_SYNC(inode))
4776		ext4_handle_sync(handle);
4777
4778	up_write(&EXT4_I(inode)->i_data_sem);
4779
4780out:
4781	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4782	ext4_mark_inode_dirty(handle, inode);
4783	ext4_journal_stop(handle);
4784out_dio:
4785	ext4_inode_resume_unlocked_dio(inode);
4786out_mutex:
4787	mutex_unlock(&inode->i_mutex);
4788	return err;
4789}
4790
4791int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4792		__u64 start, __u64 len)
4793{
4794	ext4_lblk_t start_blk;
4795	int error = 0;
4796
4797	/* fallback to generic here if not in extents fmt */
4798	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4799		return generic_block_fiemap(inode, fieinfo, start, len,
4800			ext4_get_block);
4801
4802	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4803		return -EBADR;
4804
4805	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4806		error = ext4_xattr_fiemap(inode, fieinfo);
4807	} else {
4808		ext4_lblk_t len_blks;
4809		__u64 last_blk;
4810
4811		start_blk = start >> inode->i_sb->s_blocksize_bits;
4812		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4813		if (last_blk >= EXT_MAX_BLOCKS)
4814			last_blk = EXT_MAX_BLOCKS-1;
4815		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4816
4817		/*
4818		 * Walk the extent tree gathering extent information
4819		 * and pushing extents back to the user.
4820		 */
4821		error = ext4_fill_fiemap_extents(inode, start_blk,
4822						 len_blks, fieinfo);
4823	}
4824
4825	return error;
4826}
4827