extents.c revision 9eb79482a97152930b113b51dff530aba9e28c8e
1/*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 *   Copyright (c) 2005, Bull S.A.
7 *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21 */
22
23/*
24 * Extents support for EXT4
25 *
26 * TODO:
27 *   - ext4*_error() should be used in some situations
28 *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 *   - smart tree reduction
30 */
31
32#include <linux/fs.h>
33#include <linux/time.h>
34#include <linux/jbd2.h>
35#include <linux/highuid.h>
36#include <linux/pagemap.h>
37#include <linux/quotaops.h>
38#include <linux/string.h>
39#include <linux/slab.h>
40#include <asm/uaccess.h>
41#include <linux/fiemap.h>
42#include "ext4_jbd2.h"
43#include "ext4_extents.h"
44#include "xattr.h"
45
46#include <trace/events/ext4.h>
47
48/*
49 * used by extent splitting.
50 */
51#define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
52					due to ENOSPC */
53#define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
54#define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
55
56#define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
57#define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
58
59static __le32 ext4_extent_block_csum(struct inode *inode,
60				     struct ext4_extent_header *eh)
61{
62	struct ext4_inode_info *ei = EXT4_I(inode);
63	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
64	__u32 csum;
65
66	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
67			   EXT4_EXTENT_TAIL_OFFSET(eh));
68	return cpu_to_le32(csum);
69}
70
71static int ext4_extent_block_csum_verify(struct inode *inode,
72					 struct ext4_extent_header *eh)
73{
74	struct ext4_extent_tail *et;
75
76	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
77		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
78		return 1;
79
80	et = find_ext4_extent_tail(eh);
81	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
82		return 0;
83	return 1;
84}
85
86static void ext4_extent_block_csum_set(struct inode *inode,
87				       struct ext4_extent_header *eh)
88{
89	struct ext4_extent_tail *et;
90
91	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
92		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
93		return;
94
95	et = find_ext4_extent_tail(eh);
96	et->et_checksum = ext4_extent_block_csum(inode, eh);
97}
98
99static int ext4_split_extent(handle_t *handle,
100				struct inode *inode,
101				struct ext4_ext_path *path,
102				struct ext4_map_blocks *map,
103				int split_flag,
104				int flags);
105
106static int ext4_split_extent_at(handle_t *handle,
107			     struct inode *inode,
108			     struct ext4_ext_path *path,
109			     ext4_lblk_t split,
110			     int split_flag,
111			     int flags);
112
113static int ext4_find_delayed_extent(struct inode *inode,
114				    struct extent_status *newes);
115
116static int ext4_ext_truncate_extend_restart(handle_t *handle,
117					    struct inode *inode,
118					    int needed)
119{
120	int err;
121
122	if (!ext4_handle_valid(handle))
123		return 0;
124	if (handle->h_buffer_credits > needed)
125		return 0;
126	err = ext4_journal_extend(handle, needed);
127	if (err <= 0)
128		return err;
129	err = ext4_truncate_restart_trans(handle, inode, needed);
130	if (err == 0)
131		err = -EAGAIN;
132
133	return err;
134}
135
136/*
137 * could return:
138 *  - EROFS
139 *  - ENOMEM
140 */
141static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
142				struct ext4_ext_path *path)
143{
144	if (path->p_bh) {
145		/* path points to block */
146		return ext4_journal_get_write_access(handle, path->p_bh);
147	}
148	/* path points to leaf/index in inode body */
149	/* we use in-core data, no need to protect them */
150	return 0;
151}
152
153/*
154 * could return:
155 *  - EROFS
156 *  - ENOMEM
157 *  - EIO
158 */
159int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
160		     struct inode *inode, struct ext4_ext_path *path)
161{
162	int err;
163	if (path->p_bh) {
164		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
165		/* path points to block */
166		err = __ext4_handle_dirty_metadata(where, line, handle,
167						   inode, path->p_bh);
168	} else {
169		/* path points to leaf/index in inode body */
170		err = ext4_mark_inode_dirty(handle, inode);
171	}
172	return err;
173}
174
175static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
176			      struct ext4_ext_path *path,
177			      ext4_lblk_t block)
178{
179	if (path) {
180		int depth = path->p_depth;
181		struct ext4_extent *ex;
182
183		/*
184		 * Try to predict block placement assuming that we are
185		 * filling in a file which will eventually be
186		 * non-sparse --- i.e., in the case of libbfd writing
187		 * an ELF object sections out-of-order but in a way
188		 * the eventually results in a contiguous object or
189		 * executable file, or some database extending a table
190		 * space file.  However, this is actually somewhat
191		 * non-ideal if we are writing a sparse file such as
192		 * qemu or KVM writing a raw image file that is going
193		 * to stay fairly sparse, since it will end up
194		 * fragmenting the file system's free space.  Maybe we
195		 * should have some hueristics or some way to allow
196		 * userspace to pass a hint to file system,
197		 * especially if the latter case turns out to be
198		 * common.
199		 */
200		ex = path[depth].p_ext;
201		if (ex) {
202			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
203			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
204
205			if (block > ext_block)
206				return ext_pblk + (block - ext_block);
207			else
208				return ext_pblk - (ext_block - block);
209		}
210
211		/* it looks like index is empty;
212		 * try to find starting block from index itself */
213		if (path[depth].p_bh)
214			return path[depth].p_bh->b_blocknr;
215	}
216
217	/* OK. use inode's group */
218	return ext4_inode_to_goal_block(inode);
219}
220
221/*
222 * Allocation for a meta data block
223 */
224static ext4_fsblk_t
225ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
226			struct ext4_ext_path *path,
227			struct ext4_extent *ex, int *err, unsigned int flags)
228{
229	ext4_fsblk_t goal, newblock;
230
231	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
232	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
233					NULL, err);
234	return newblock;
235}
236
237static inline int ext4_ext_space_block(struct inode *inode, int check)
238{
239	int size;
240
241	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
242			/ sizeof(struct ext4_extent);
243#ifdef AGGRESSIVE_TEST
244	if (!check && size > 6)
245		size = 6;
246#endif
247	return size;
248}
249
250static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
251{
252	int size;
253
254	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
255			/ sizeof(struct ext4_extent_idx);
256#ifdef AGGRESSIVE_TEST
257	if (!check && size > 5)
258		size = 5;
259#endif
260	return size;
261}
262
263static inline int ext4_ext_space_root(struct inode *inode, int check)
264{
265	int size;
266
267	size = sizeof(EXT4_I(inode)->i_data);
268	size -= sizeof(struct ext4_extent_header);
269	size /= sizeof(struct ext4_extent);
270#ifdef AGGRESSIVE_TEST
271	if (!check && size > 3)
272		size = 3;
273#endif
274	return size;
275}
276
277static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
278{
279	int size;
280
281	size = sizeof(EXT4_I(inode)->i_data);
282	size -= sizeof(struct ext4_extent_header);
283	size /= sizeof(struct ext4_extent_idx);
284#ifdef AGGRESSIVE_TEST
285	if (!check && size > 4)
286		size = 4;
287#endif
288	return size;
289}
290
291/*
292 * Calculate the number of metadata blocks needed
293 * to allocate @blocks
294 * Worse case is one block per extent
295 */
296int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
297{
298	struct ext4_inode_info *ei = EXT4_I(inode);
299	int idxs;
300
301	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
302		/ sizeof(struct ext4_extent_idx));
303
304	/*
305	 * If the new delayed allocation block is contiguous with the
306	 * previous da block, it can share index blocks with the
307	 * previous block, so we only need to allocate a new index
308	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
309	 * an additional index block, and at ldxs**3 blocks, yet
310	 * another index blocks.
311	 */
312	if (ei->i_da_metadata_calc_len &&
313	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
314		int num = 0;
315
316		if ((ei->i_da_metadata_calc_len % idxs) == 0)
317			num++;
318		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
319			num++;
320		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
321			num++;
322			ei->i_da_metadata_calc_len = 0;
323		} else
324			ei->i_da_metadata_calc_len++;
325		ei->i_da_metadata_calc_last_lblock++;
326		return num;
327	}
328
329	/*
330	 * In the worst case we need a new set of index blocks at
331	 * every level of the inode's extent tree.
332	 */
333	ei->i_da_metadata_calc_len = 1;
334	ei->i_da_metadata_calc_last_lblock = lblock;
335	return ext_depth(inode) + 1;
336}
337
338static int
339ext4_ext_max_entries(struct inode *inode, int depth)
340{
341	int max;
342
343	if (depth == ext_depth(inode)) {
344		if (depth == 0)
345			max = ext4_ext_space_root(inode, 1);
346		else
347			max = ext4_ext_space_root_idx(inode, 1);
348	} else {
349		if (depth == 0)
350			max = ext4_ext_space_block(inode, 1);
351		else
352			max = ext4_ext_space_block_idx(inode, 1);
353	}
354
355	return max;
356}
357
358static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
359{
360	ext4_fsblk_t block = ext4_ext_pblock(ext);
361	int len = ext4_ext_get_actual_len(ext);
362	ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
363	ext4_lblk_t last = lblock + len - 1;
364
365	if (lblock > last)
366		return 0;
367	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
368}
369
370static int ext4_valid_extent_idx(struct inode *inode,
371				struct ext4_extent_idx *ext_idx)
372{
373	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
374
375	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
376}
377
378static int ext4_valid_extent_entries(struct inode *inode,
379				struct ext4_extent_header *eh,
380				int depth)
381{
382	unsigned short entries;
383	if (eh->eh_entries == 0)
384		return 1;
385
386	entries = le16_to_cpu(eh->eh_entries);
387
388	if (depth == 0) {
389		/* leaf entries */
390		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
391		struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
392		ext4_fsblk_t pblock = 0;
393		ext4_lblk_t lblock = 0;
394		ext4_lblk_t prev = 0;
395		int len = 0;
396		while (entries) {
397			if (!ext4_valid_extent(inode, ext))
398				return 0;
399
400			/* Check for overlapping extents */
401			lblock = le32_to_cpu(ext->ee_block);
402			len = ext4_ext_get_actual_len(ext);
403			if ((lblock <= prev) && prev) {
404				pblock = ext4_ext_pblock(ext);
405				es->s_last_error_block = cpu_to_le64(pblock);
406				return 0;
407			}
408			ext++;
409			entries--;
410			prev = lblock + len - 1;
411		}
412	} else {
413		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
414		while (entries) {
415			if (!ext4_valid_extent_idx(inode, ext_idx))
416				return 0;
417			ext_idx++;
418			entries--;
419		}
420	}
421	return 1;
422}
423
424static int __ext4_ext_check(const char *function, unsigned int line,
425			    struct inode *inode, struct ext4_extent_header *eh,
426			    int depth, ext4_fsblk_t pblk)
427{
428	const char *error_msg;
429	int max = 0;
430
431	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
432		error_msg = "invalid magic";
433		goto corrupted;
434	}
435	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
436		error_msg = "unexpected eh_depth";
437		goto corrupted;
438	}
439	if (unlikely(eh->eh_max == 0)) {
440		error_msg = "invalid eh_max";
441		goto corrupted;
442	}
443	max = ext4_ext_max_entries(inode, depth);
444	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
445		error_msg = "too large eh_max";
446		goto corrupted;
447	}
448	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
449		error_msg = "invalid eh_entries";
450		goto corrupted;
451	}
452	if (!ext4_valid_extent_entries(inode, eh, depth)) {
453		error_msg = "invalid extent entries";
454		goto corrupted;
455	}
456	/* Verify checksum on non-root extent tree nodes */
457	if (ext_depth(inode) != depth &&
458	    !ext4_extent_block_csum_verify(inode, eh)) {
459		error_msg = "extent tree corrupted";
460		goto corrupted;
461	}
462	return 0;
463
464corrupted:
465	ext4_error_inode(inode, function, line, 0,
466			 "pblk %llu bad header/extent: %s - magic %x, "
467			 "entries %u, max %u(%u), depth %u(%u)",
468			 (unsigned long long) pblk, error_msg,
469			 le16_to_cpu(eh->eh_magic),
470			 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
471			 max, le16_to_cpu(eh->eh_depth), depth);
472	return -EIO;
473}
474
475#define ext4_ext_check(inode, eh, depth, pblk)			\
476	__ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
477
478int ext4_ext_check_inode(struct inode *inode)
479{
480	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
481}
482
483static struct buffer_head *
484__read_extent_tree_block(const char *function, unsigned int line,
485			 struct inode *inode, ext4_fsblk_t pblk, int depth,
486			 int flags)
487{
488	struct buffer_head		*bh;
489	int				err;
490
491	bh = sb_getblk(inode->i_sb, pblk);
492	if (unlikely(!bh))
493		return ERR_PTR(-ENOMEM);
494
495	if (!bh_uptodate_or_lock(bh)) {
496		trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
497		err = bh_submit_read(bh);
498		if (err < 0)
499			goto errout;
500	}
501	if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
502		return bh;
503	err = __ext4_ext_check(function, line, inode,
504			       ext_block_hdr(bh), depth, pblk);
505	if (err)
506		goto errout;
507	set_buffer_verified(bh);
508	/*
509	 * If this is a leaf block, cache all of its entries
510	 */
511	if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
512		struct ext4_extent_header *eh = ext_block_hdr(bh);
513		struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
514		ext4_lblk_t prev = 0;
515		int i;
516
517		for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
518			unsigned int status = EXTENT_STATUS_WRITTEN;
519			ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
520			int len = ext4_ext_get_actual_len(ex);
521
522			if (prev && (prev != lblk))
523				ext4_es_cache_extent(inode, prev,
524						     lblk - prev, ~0,
525						     EXTENT_STATUS_HOLE);
526
527			if (ext4_ext_is_uninitialized(ex))
528				status = EXTENT_STATUS_UNWRITTEN;
529			ext4_es_cache_extent(inode, lblk, len,
530					     ext4_ext_pblock(ex), status);
531			prev = lblk + len;
532		}
533	}
534	return bh;
535errout:
536	put_bh(bh);
537	return ERR_PTR(err);
538
539}
540
541#define read_extent_tree_block(inode, pblk, depth, flags)		\
542	__read_extent_tree_block(__func__, __LINE__, (inode), (pblk),   \
543				 (depth), (flags))
544
545/*
546 * This function is called to cache a file's extent information in the
547 * extent status tree
548 */
549int ext4_ext_precache(struct inode *inode)
550{
551	struct ext4_inode_info *ei = EXT4_I(inode);
552	struct ext4_ext_path *path = NULL;
553	struct buffer_head *bh;
554	int i = 0, depth, ret = 0;
555
556	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
557		return 0;	/* not an extent-mapped inode */
558
559	down_read(&ei->i_data_sem);
560	depth = ext_depth(inode);
561
562	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
563		       GFP_NOFS);
564	if (path == NULL) {
565		up_read(&ei->i_data_sem);
566		return -ENOMEM;
567	}
568
569	/* Don't cache anything if there are no external extent blocks */
570	if (depth == 0)
571		goto out;
572	path[0].p_hdr = ext_inode_hdr(inode);
573	ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
574	if (ret)
575		goto out;
576	path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
577	while (i >= 0) {
578		/*
579		 * If this is a leaf block or we've reached the end of
580		 * the index block, go up
581		 */
582		if ((i == depth) ||
583		    path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
584			brelse(path[i].p_bh);
585			path[i].p_bh = NULL;
586			i--;
587			continue;
588		}
589		bh = read_extent_tree_block(inode,
590					    ext4_idx_pblock(path[i].p_idx++),
591					    depth - i - 1,
592					    EXT4_EX_FORCE_CACHE);
593		if (IS_ERR(bh)) {
594			ret = PTR_ERR(bh);
595			break;
596		}
597		i++;
598		path[i].p_bh = bh;
599		path[i].p_hdr = ext_block_hdr(bh);
600		path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
601	}
602	ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
603out:
604	up_read(&ei->i_data_sem);
605	ext4_ext_drop_refs(path);
606	kfree(path);
607	return ret;
608}
609
610#ifdef EXT_DEBUG
611static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
612{
613	int k, l = path->p_depth;
614
615	ext_debug("path:");
616	for (k = 0; k <= l; k++, path++) {
617		if (path->p_idx) {
618		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
619			    ext4_idx_pblock(path->p_idx));
620		} else if (path->p_ext) {
621			ext_debug("  %d:[%d]%d:%llu ",
622				  le32_to_cpu(path->p_ext->ee_block),
623				  ext4_ext_is_uninitialized(path->p_ext),
624				  ext4_ext_get_actual_len(path->p_ext),
625				  ext4_ext_pblock(path->p_ext));
626		} else
627			ext_debug("  []");
628	}
629	ext_debug("\n");
630}
631
632static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
633{
634	int depth = ext_depth(inode);
635	struct ext4_extent_header *eh;
636	struct ext4_extent *ex;
637	int i;
638
639	if (!path)
640		return;
641
642	eh = path[depth].p_hdr;
643	ex = EXT_FIRST_EXTENT(eh);
644
645	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
646
647	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
648		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
649			  ext4_ext_is_uninitialized(ex),
650			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
651	}
652	ext_debug("\n");
653}
654
655static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
656			ext4_fsblk_t newblock, int level)
657{
658	int depth = ext_depth(inode);
659	struct ext4_extent *ex;
660
661	if (depth != level) {
662		struct ext4_extent_idx *idx;
663		idx = path[level].p_idx;
664		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
665			ext_debug("%d: move %d:%llu in new index %llu\n", level,
666					le32_to_cpu(idx->ei_block),
667					ext4_idx_pblock(idx),
668					newblock);
669			idx++;
670		}
671
672		return;
673	}
674
675	ex = path[depth].p_ext;
676	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
677		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
678				le32_to_cpu(ex->ee_block),
679				ext4_ext_pblock(ex),
680				ext4_ext_is_uninitialized(ex),
681				ext4_ext_get_actual_len(ex),
682				newblock);
683		ex++;
684	}
685}
686
687#else
688#define ext4_ext_show_path(inode, path)
689#define ext4_ext_show_leaf(inode, path)
690#define ext4_ext_show_move(inode, path, newblock, level)
691#endif
692
693void ext4_ext_drop_refs(struct ext4_ext_path *path)
694{
695	int depth = path->p_depth;
696	int i;
697
698	for (i = 0; i <= depth; i++, path++)
699		if (path->p_bh) {
700			brelse(path->p_bh);
701			path->p_bh = NULL;
702		}
703}
704
705/*
706 * ext4_ext_binsearch_idx:
707 * binary search for the closest index of the given block
708 * the header must be checked before calling this
709 */
710static void
711ext4_ext_binsearch_idx(struct inode *inode,
712			struct ext4_ext_path *path, ext4_lblk_t block)
713{
714	struct ext4_extent_header *eh = path->p_hdr;
715	struct ext4_extent_idx *r, *l, *m;
716
717
718	ext_debug("binsearch for %u(idx):  ", block);
719
720	l = EXT_FIRST_INDEX(eh) + 1;
721	r = EXT_LAST_INDEX(eh);
722	while (l <= r) {
723		m = l + (r - l) / 2;
724		if (block < le32_to_cpu(m->ei_block))
725			r = m - 1;
726		else
727			l = m + 1;
728		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
729				m, le32_to_cpu(m->ei_block),
730				r, le32_to_cpu(r->ei_block));
731	}
732
733	path->p_idx = l - 1;
734	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
735		  ext4_idx_pblock(path->p_idx));
736
737#ifdef CHECK_BINSEARCH
738	{
739		struct ext4_extent_idx *chix, *ix;
740		int k;
741
742		chix = ix = EXT_FIRST_INDEX(eh);
743		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
744		  if (k != 0 &&
745		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
746				printk(KERN_DEBUG "k=%d, ix=0x%p, "
747				       "first=0x%p\n", k,
748				       ix, EXT_FIRST_INDEX(eh));
749				printk(KERN_DEBUG "%u <= %u\n",
750				       le32_to_cpu(ix->ei_block),
751				       le32_to_cpu(ix[-1].ei_block));
752			}
753			BUG_ON(k && le32_to_cpu(ix->ei_block)
754					   <= le32_to_cpu(ix[-1].ei_block));
755			if (block < le32_to_cpu(ix->ei_block))
756				break;
757			chix = ix;
758		}
759		BUG_ON(chix != path->p_idx);
760	}
761#endif
762
763}
764
765/*
766 * ext4_ext_binsearch:
767 * binary search for closest extent of the given block
768 * the header must be checked before calling this
769 */
770static void
771ext4_ext_binsearch(struct inode *inode,
772		struct ext4_ext_path *path, ext4_lblk_t block)
773{
774	struct ext4_extent_header *eh = path->p_hdr;
775	struct ext4_extent *r, *l, *m;
776
777	if (eh->eh_entries == 0) {
778		/*
779		 * this leaf is empty:
780		 * we get such a leaf in split/add case
781		 */
782		return;
783	}
784
785	ext_debug("binsearch for %u:  ", block);
786
787	l = EXT_FIRST_EXTENT(eh) + 1;
788	r = EXT_LAST_EXTENT(eh);
789
790	while (l <= r) {
791		m = l + (r - l) / 2;
792		if (block < le32_to_cpu(m->ee_block))
793			r = m - 1;
794		else
795			l = m + 1;
796		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
797				m, le32_to_cpu(m->ee_block),
798				r, le32_to_cpu(r->ee_block));
799	}
800
801	path->p_ext = l - 1;
802	ext_debug("  -> %d:%llu:[%d]%d ",
803			le32_to_cpu(path->p_ext->ee_block),
804			ext4_ext_pblock(path->p_ext),
805			ext4_ext_is_uninitialized(path->p_ext),
806			ext4_ext_get_actual_len(path->p_ext));
807
808#ifdef CHECK_BINSEARCH
809	{
810		struct ext4_extent *chex, *ex;
811		int k;
812
813		chex = ex = EXT_FIRST_EXTENT(eh);
814		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
815			BUG_ON(k && le32_to_cpu(ex->ee_block)
816					  <= le32_to_cpu(ex[-1].ee_block));
817			if (block < le32_to_cpu(ex->ee_block))
818				break;
819			chex = ex;
820		}
821		BUG_ON(chex != path->p_ext);
822	}
823#endif
824
825}
826
827int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
828{
829	struct ext4_extent_header *eh;
830
831	eh = ext_inode_hdr(inode);
832	eh->eh_depth = 0;
833	eh->eh_entries = 0;
834	eh->eh_magic = EXT4_EXT_MAGIC;
835	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
836	ext4_mark_inode_dirty(handle, inode);
837	return 0;
838}
839
840struct ext4_ext_path *
841ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
842		     struct ext4_ext_path *path, int flags)
843{
844	struct ext4_extent_header *eh;
845	struct buffer_head *bh;
846	short int depth, i, ppos = 0, alloc = 0;
847	int ret;
848
849	eh = ext_inode_hdr(inode);
850	depth = ext_depth(inode);
851
852	/* account possible depth increase */
853	if (!path) {
854		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
855				GFP_NOFS);
856		if (!path)
857			return ERR_PTR(-ENOMEM);
858		alloc = 1;
859	}
860	path[0].p_hdr = eh;
861	path[0].p_bh = NULL;
862
863	i = depth;
864	/* walk through the tree */
865	while (i) {
866		ext_debug("depth %d: num %d, max %d\n",
867			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
868
869		ext4_ext_binsearch_idx(inode, path + ppos, block);
870		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
871		path[ppos].p_depth = i;
872		path[ppos].p_ext = NULL;
873
874		bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
875					    flags);
876		if (IS_ERR(bh)) {
877			ret = PTR_ERR(bh);
878			goto err;
879		}
880
881		eh = ext_block_hdr(bh);
882		ppos++;
883		if (unlikely(ppos > depth)) {
884			put_bh(bh);
885			EXT4_ERROR_INODE(inode,
886					 "ppos %d > depth %d", ppos, depth);
887			ret = -EIO;
888			goto err;
889		}
890		path[ppos].p_bh = bh;
891		path[ppos].p_hdr = eh;
892	}
893
894	path[ppos].p_depth = i;
895	path[ppos].p_ext = NULL;
896	path[ppos].p_idx = NULL;
897
898	/* find extent */
899	ext4_ext_binsearch(inode, path + ppos, block);
900	/* if not an empty leaf */
901	if (path[ppos].p_ext)
902		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
903
904	ext4_ext_show_path(inode, path);
905
906	return path;
907
908err:
909	ext4_ext_drop_refs(path);
910	if (alloc)
911		kfree(path);
912	return ERR_PTR(ret);
913}
914
915/*
916 * ext4_ext_insert_index:
917 * insert new index [@logical;@ptr] into the block at @curp;
918 * check where to insert: before @curp or after @curp
919 */
920static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
921				 struct ext4_ext_path *curp,
922				 int logical, ext4_fsblk_t ptr)
923{
924	struct ext4_extent_idx *ix;
925	int len, err;
926
927	err = ext4_ext_get_access(handle, inode, curp);
928	if (err)
929		return err;
930
931	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
932		EXT4_ERROR_INODE(inode,
933				 "logical %d == ei_block %d!",
934				 logical, le32_to_cpu(curp->p_idx->ei_block));
935		return -EIO;
936	}
937
938	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
939			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
940		EXT4_ERROR_INODE(inode,
941				 "eh_entries %d >= eh_max %d!",
942				 le16_to_cpu(curp->p_hdr->eh_entries),
943				 le16_to_cpu(curp->p_hdr->eh_max));
944		return -EIO;
945	}
946
947	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
948		/* insert after */
949		ext_debug("insert new index %d after: %llu\n", logical, ptr);
950		ix = curp->p_idx + 1;
951	} else {
952		/* insert before */
953		ext_debug("insert new index %d before: %llu\n", logical, ptr);
954		ix = curp->p_idx;
955	}
956
957	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
958	BUG_ON(len < 0);
959	if (len > 0) {
960		ext_debug("insert new index %d: "
961				"move %d indices from 0x%p to 0x%p\n",
962				logical, len, ix, ix + 1);
963		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
964	}
965
966	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
967		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
968		return -EIO;
969	}
970
971	ix->ei_block = cpu_to_le32(logical);
972	ext4_idx_store_pblock(ix, ptr);
973	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
974
975	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
976		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
977		return -EIO;
978	}
979
980	err = ext4_ext_dirty(handle, inode, curp);
981	ext4_std_error(inode->i_sb, err);
982
983	return err;
984}
985
986/*
987 * ext4_ext_split:
988 * inserts new subtree into the path, using free index entry
989 * at depth @at:
990 * - allocates all needed blocks (new leaf and all intermediate index blocks)
991 * - makes decision where to split
992 * - moves remaining extents and index entries (right to the split point)
993 *   into the newly allocated blocks
994 * - initializes subtree
995 */
996static int ext4_ext_split(handle_t *handle, struct inode *inode,
997			  unsigned int flags,
998			  struct ext4_ext_path *path,
999			  struct ext4_extent *newext, int at)
1000{
1001	struct buffer_head *bh = NULL;
1002	int depth = ext_depth(inode);
1003	struct ext4_extent_header *neh;
1004	struct ext4_extent_idx *fidx;
1005	int i = at, k, m, a;
1006	ext4_fsblk_t newblock, oldblock;
1007	__le32 border;
1008	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1009	int err = 0;
1010
1011	/* make decision: where to split? */
1012	/* FIXME: now decision is simplest: at current extent */
1013
1014	/* if current leaf will be split, then we should use
1015	 * border from split point */
1016	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1017		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1018		return -EIO;
1019	}
1020	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1021		border = path[depth].p_ext[1].ee_block;
1022		ext_debug("leaf will be split."
1023				" next leaf starts at %d\n",
1024				  le32_to_cpu(border));
1025	} else {
1026		border = newext->ee_block;
1027		ext_debug("leaf will be added."
1028				" next leaf starts at %d\n",
1029				le32_to_cpu(border));
1030	}
1031
1032	/*
1033	 * If error occurs, then we break processing
1034	 * and mark filesystem read-only. index won't
1035	 * be inserted and tree will be in consistent
1036	 * state. Next mount will repair buffers too.
1037	 */
1038
1039	/*
1040	 * Get array to track all allocated blocks.
1041	 * We need this to handle errors and free blocks
1042	 * upon them.
1043	 */
1044	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1045	if (!ablocks)
1046		return -ENOMEM;
1047
1048	/* allocate all needed blocks */
1049	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1050	for (a = 0; a < depth - at; a++) {
1051		newblock = ext4_ext_new_meta_block(handle, inode, path,
1052						   newext, &err, flags);
1053		if (newblock == 0)
1054			goto cleanup;
1055		ablocks[a] = newblock;
1056	}
1057
1058	/* initialize new leaf */
1059	newblock = ablocks[--a];
1060	if (unlikely(newblock == 0)) {
1061		EXT4_ERROR_INODE(inode, "newblock == 0!");
1062		err = -EIO;
1063		goto cleanup;
1064	}
1065	bh = sb_getblk(inode->i_sb, newblock);
1066	if (unlikely(!bh)) {
1067		err = -ENOMEM;
1068		goto cleanup;
1069	}
1070	lock_buffer(bh);
1071
1072	err = ext4_journal_get_create_access(handle, bh);
1073	if (err)
1074		goto cleanup;
1075
1076	neh = ext_block_hdr(bh);
1077	neh->eh_entries = 0;
1078	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1079	neh->eh_magic = EXT4_EXT_MAGIC;
1080	neh->eh_depth = 0;
1081
1082	/* move remainder of path[depth] to the new leaf */
1083	if (unlikely(path[depth].p_hdr->eh_entries !=
1084		     path[depth].p_hdr->eh_max)) {
1085		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1086				 path[depth].p_hdr->eh_entries,
1087				 path[depth].p_hdr->eh_max);
1088		err = -EIO;
1089		goto cleanup;
1090	}
1091	/* start copy from next extent */
1092	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1093	ext4_ext_show_move(inode, path, newblock, depth);
1094	if (m) {
1095		struct ext4_extent *ex;
1096		ex = EXT_FIRST_EXTENT(neh);
1097		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1098		le16_add_cpu(&neh->eh_entries, m);
1099	}
1100
1101	ext4_extent_block_csum_set(inode, neh);
1102	set_buffer_uptodate(bh);
1103	unlock_buffer(bh);
1104
1105	err = ext4_handle_dirty_metadata(handle, inode, bh);
1106	if (err)
1107		goto cleanup;
1108	brelse(bh);
1109	bh = NULL;
1110
1111	/* correct old leaf */
1112	if (m) {
1113		err = ext4_ext_get_access(handle, inode, path + depth);
1114		if (err)
1115			goto cleanup;
1116		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1117		err = ext4_ext_dirty(handle, inode, path + depth);
1118		if (err)
1119			goto cleanup;
1120
1121	}
1122
1123	/* create intermediate indexes */
1124	k = depth - at - 1;
1125	if (unlikely(k < 0)) {
1126		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1127		err = -EIO;
1128		goto cleanup;
1129	}
1130	if (k)
1131		ext_debug("create %d intermediate indices\n", k);
1132	/* insert new index into current index block */
1133	/* current depth stored in i var */
1134	i = depth - 1;
1135	while (k--) {
1136		oldblock = newblock;
1137		newblock = ablocks[--a];
1138		bh = sb_getblk(inode->i_sb, newblock);
1139		if (unlikely(!bh)) {
1140			err = -ENOMEM;
1141			goto cleanup;
1142		}
1143		lock_buffer(bh);
1144
1145		err = ext4_journal_get_create_access(handle, bh);
1146		if (err)
1147			goto cleanup;
1148
1149		neh = ext_block_hdr(bh);
1150		neh->eh_entries = cpu_to_le16(1);
1151		neh->eh_magic = EXT4_EXT_MAGIC;
1152		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1153		neh->eh_depth = cpu_to_le16(depth - i);
1154		fidx = EXT_FIRST_INDEX(neh);
1155		fidx->ei_block = border;
1156		ext4_idx_store_pblock(fidx, oldblock);
1157
1158		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1159				i, newblock, le32_to_cpu(border), oldblock);
1160
1161		/* move remainder of path[i] to the new index block */
1162		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1163					EXT_LAST_INDEX(path[i].p_hdr))) {
1164			EXT4_ERROR_INODE(inode,
1165					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1166					 le32_to_cpu(path[i].p_ext->ee_block));
1167			err = -EIO;
1168			goto cleanup;
1169		}
1170		/* start copy indexes */
1171		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1172		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1173				EXT_MAX_INDEX(path[i].p_hdr));
1174		ext4_ext_show_move(inode, path, newblock, i);
1175		if (m) {
1176			memmove(++fidx, path[i].p_idx,
1177				sizeof(struct ext4_extent_idx) * m);
1178			le16_add_cpu(&neh->eh_entries, m);
1179		}
1180		ext4_extent_block_csum_set(inode, neh);
1181		set_buffer_uptodate(bh);
1182		unlock_buffer(bh);
1183
1184		err = ext4_handle_dirty_metadata(handle, inode, bh);
1185		if (err)
1186			goto cleanup;
1187		brelse(bh);
1188		bh = NULL;
1189
1190		/* correct old index */
1191		if (m) {
1192			err = ext4_ext_get_access(handle, inode, path + i);
1193			if (err)
1194				goto cleanup;
1195			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1196			err = ext4_ext_dirty(handle, inode, path + i);
1197			if (err)
1198				goto cleanup;
1199		}
1200
1201		i--;
1202	}
1203
1204	/* insert new index */
1205	err = ext4_ext_insert_index(handle, inode, path + at,
1206				    le32_to_cpu(border), newblock);
1207
1208cleanup:
1209	if (bh) {
1210		if (buffer_locked(bh))
1211			unlock_buffer(bh);
1212		brelse(bh);
1213	}
1214
1215	if (err) {
1216		/* free all allocated blocks in error case */
1217		for (i = 0; i < depth; i++) {
1218			if (!ablocks[i])
1219				continue;
1220			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1221					 EXT4_FREE_BLOCKS_METADATA);
1222		}
1223	}
1224	kfree(ablocks);
1225
1226	return err;
1227}
1228
1229/*
1230 * ext4_ext_grow_indepth:
1231 * implements tree growing procedure:
1232 * - allocates new block
1233 * - moves top-level data (index block or leaf) into the new block
1234 * - initializes new top-level, creating index that points to the
1235 *   just created block
1236 */
1237static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1238				 unsigned int flags,
1239				 struct ext4_extent *newext)
1240{
1241	struct ext4_extent_header *neh;
1242	struct buffer_head *bh;
1243	ext4_fsblk_t newblock;
1244	int err = 0;
1245
1246	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1247		newext, &err, flags);
1248	if (newblock == 0)
1249		return err;
1250
1251	bh = sb_getblk(inode->i_sb, newblock);
1252	if (unlikely(!bh))
1253		return -ENOMEM;
1254	lock_buffer(bh);
1255
1256	err = ext4_journal_get_create_access(handle, bh);
1257	if (err) {
1258		unlock_buffer(bh);
1259		goto out;
1260	}
1261
1262	/* move top-level index/leaf into new block */
1263	memmove(bh->b_data, EXT4_I(inode)->i_data,
1264		sizeof(EXT4_I(inode)->i_data));
1265
1266	/* set size of new block */
1267	neh = ext_block_hdr(bh);
1268	/* old root could have indexes or leaves
1269	 * so calculate e_max right way */
1270	if (ext_depth(inode))
1271		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1272	else
1273		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1274	neh->eh_magic = EXT4_EXT_MAGIC;
1275	ext4_extent_block_csum_set(inode, neh);
1276	set_buffer_uptodate(bh);
1277	unlock_buffer(bh);
1278
1279	err = ext4_handle_dirty_metadata(handle, inode, bh);
1280	if (err)
1281		goto out;
1282
1283	/* Update top-level index: num,max,pointer */
1284	neh = ext_inode_hdr(inode);
1285	neh->eh_entries = cpu_to_le16(1);
1286	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1287	if (neh->eh_depth == 0) {
1288		/* Root extent block becomes index block */
1289		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1290		EXT_FIRST_INDEX(neh)->ei_block =
1291			EXT_FIRST_EXTENT(neh)->ee_block;
1292	}
1293	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1294		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1295		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1296		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1297
1298	le16_add_cpu(&neh->eh_depth, 1);
1299	ext4_mark_inode_dirty(handle, inode);
1300out:
1301	brelse(bh);
1302
1303	return err;
1304}
1305
1306/*
1307 * ext4_ext_create_new_leaf:
1308 * finds empty index and adds new leaf.
1309 * if no free index is found, then it requests in-depth growing.
1310 */
1311static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1312				    unsigned int mb_flags,
1313				    unsigned int gb_flags,
1314				    struct ext4_ext_path *path,
1315				    struct ext4_extent *newext)
1316{
1317	struct ext4_ext_path *curp;
1318	int depth, i, err = 0;
1319
1320repeat:
1321	i = depth = ext_depth(inode);
1322
1323	/* walk up to the tree and look for free index entry */
1324	curp = path + depth;
1325	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1326		i--;
1327		curp--;
1328	}
1329
1330	/* we use already allocated block for index block,
1331	 * so subsequent data blocks should be contiguous */
1332	if (EXT_HAS_FREE_INDEX(curp)) {
1333		/* if we found index with free entry, then use that
1334		 * entry: create all needed subtree and add new leaf */
1335		err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1336		if (err)
1337			goto out;
1338
1339		/* refill path */
1340		ext4_ext_drop_refs(path);
1341		path = ext4_ext_find_extent(inode,
1342				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1343				    path, gb_flags);
1344		if (IS_ERR(path))
1345			err = PTR_ERR(path);
1346	} else {
1347		/* tree is full, time to grow in depth */
1348		err = ext4_ext_grow_indepth(handle, inode, mb_flags, newext);
1349		if (err)
1350			goto out;
1351
1352		/* refill path */
1353		ext4_ext_drop_refs(path);
1354		path = ext4_ext_find_extent(inode,
1355				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1356				    path, gb_flags);
1357		if (IS_ERR(path)) {
1358			err = PTR_ERR(path);
1359			goto out;
1360		}
1361
1362		/*
1363		 * only first (depth 0 -> 1) produces free space;
1364		 * in all other cases we have to split the grown tree
1365		 */
1366		depth = ext_depth(inode);
1367		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1368			/* now we need to split */
1369			goto repeat;
1370		}
1371	}
1372
1373out:
1374	return err;
1375}
1376
1377/*
1378 * search the closest allocated block to the left for *logical
1379 * and returns it at @logical + it's physical address at @phys
1380 * if *logical is the smallest allocated block, the function
1381 * returns 0 at @phys
1382 * return value contains 0 (success) or error code
1383 */
1384static int ext4_ext_search_left(struct inode *inode,
1385				struct ext4_ext_path *path,
1386				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1387{
1388	struct ext4_extent_idx *ix;
1389	struct ext4_extent *ex;
1390	int depth, ee_len;
1391
1392	if (unlikely(path == NULL)) {
1393		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1394		return -EIO;
1395	}
1396	depth = path->p_depth;
1397	*phys = 0;
1398
1399	if (depth == 0 && path->p_ext == NULL)
1400		return 0;
1401
1402	/* usually extent in the path covers blocks smaller
1403	 * then *logical, but it can be that extent is the
1404	 * first one in the file */
1405
1406	ex = path[depth].p_ext;
1407	ee_len = ext4_ext_get_actual_len(ex);
1408	if (*logical < le32_to_cpu(ex->ee_block)) {
1409		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1410			EXT4_ERROR_INODE(inode,
1411					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1412					 *logical, le32_to_cpu(ex->ee_block));
1413			return -EIO;
1414		}
1415		while (--depth >= 0) {
1416			ix = path[depth].p_idx;
1417			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1418				EXT4_ERROR_INODE(inode,
1419				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1420				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1421				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1422		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1423				  depth);
1424				return -EIO;
1425			}
1426		}
1427		return 0;
1428	}
1429
1430	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1431		EXT4_ERROR_INODE(inode,
1432				 "logical %d < ee_block %d + ee_len %d!",
1433				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1434		return -EIO;
1435	}
1436
1437	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1438	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1439	return 0;
1440}
1441
1442/*
1443 * search the closest allocated block to the right for *logical
1444 * and returns it at @logical + it's physical address at @phys
1445 * if *logical is the largest allocated block, the function
1446 * returns 0 at @phys
1447 * return value contains 0 (success) or error code
1448 */
1449static int ext4_ext_search_right(struct inode *inode,
1450				 struct ext4_ext_path *path,
1451				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1452				 struct ext4_extent **ret_ex)
1453{
1454	struct buffer_head *bh = NULL;
1455	struct ext4_extent_header *eh;
1456	struct ext4_extent_idx *ix;
1457	struct ext4_extent *ex;
1458	ext4_fsblk_t block;
1459	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1460	int ee_len;
1461
1462	if (unlikely(path == NULL)) {
1463		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1464		return -EIO;
1465	}
1466	depth = path->p_depth;
1467	*phys = 0;
1468
1469	if (depth == 0 && path->p_ext == NULL)
1470		return 0;
1471
1472	/* usually extent in the path covers blocks smaller
1473	 * then *logical, but it can be that extent is the
1474	 * first one in the file */
1475
1476	ex = path[depth].p_ext;
1477	ee_len = ext4_ext_get_actual_len(ex);
1478	if (*logical < le32_to_cpu(ex->ee_block)) {
1479		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1480			EXT4_ERROR_INODE(inode,
1481					 "first_extent(path[%d].p_hdr) != ex",
1482					 depth);
1483			return -EIO;
1484		}
1485		while (--depth >= 0) {
1486			ix = path[depth].p_idx;
1487			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1488				EXT4_ERROR_INODE(inode,
1489						 "ix != EXT_FIRST_INDEX *logical %d!",
1490						 *logical);
1491				return -EIO;
1492			}
1493		}
1494		goto found_extent;
1495	}
1496
1497	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1498		EXT4_ERROR_INODE(inode,
1499				 "logical %d < ee_block %d + ee_len %d!",
1500				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1501		return -EIO;
1502	}
1503
1504	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1505		/* next allocated block in this leaf */
1506		ex++;
1507		goto found_extent;
1508	}
1509
1510	/* go up and search for index to the right */
1511	while (--depth >= 0) {
1512		ix = path[depth].p_idx;
1513		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1514			goto got_index;
1515	}
1516
1517	/* we've gone up to the root and found no index to the right */
1518	return 0;
1519
1520got_index:
1521	/* we've found index to the right, let's
1522	 * follow it and find the closest allocated
1523	 * block to the right */
1524	ix++;
1525	block = ext4_idx_pblock(ix);
1526	while (++depth < path->p_depth) {
1527		/* subtract from p_depth to get proper eh_depth */
1528		bh = read_extent_tree_block(inode, block,
1529					    path->p_depth - depth, 0);
1530		if (IS_ERR(bh))
1531			return PTR_ERR(bh);
1532		eh = ext_block_hdr(bh);
1533		ix = EXT_FIRST_INDEX(eh);
1534		block = ext4_idx_pblock(ix);
1535		put_bh(bh);
1536	}
1537
1538	bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1539	if (IS_ERR(bh))
1540		return PTR_ERR(bh);
1541	eh = ext_block_hdr(bh);
1542	ex = EXT_FIRST_EXTENT(eh);
1543found_extent:
1544	*logical = le32_to_cpu(ex->ee_block);
1545	*phys = ext4_ext_pblock(ex);
1546	*ret_ex = ex;
1547	if (bh)
1548		put_bh(bh);
1549	return 0;
1550}
1551
1552/*
1553 * ext4_ext_next_allocated_block:
1554 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1555 * NOTE: it considers block number from index entry as
1556 * allocated block. Thus, index entries have to be consistent
1557 * with leaves.
1558 */
1559static ext4_lblk_t
1560ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1561{
1562	int depth;
1563
1564	BUG_ON(path == NULL);
1565	depth = path->p_depth;
1566
1567	if (depth == 0 && path->p_ext == NULL)
1568		return EXT_MAX_BLOCKS;
1569
1570	while (depth >= 0) {
1571		if (depth == path->p_depth) {
1572			/* leaf */
1573			if (path[depth].p_ext &&
1574				path[depth].p_ext !=
1575					EXT_LAST_EXTENT(path[depth].p_hdr))
1576			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1577		} else {
1578			/* index */
1579			if (path[depth].p_idx !=
1580					EXT_LAST_INDEX(path[depth].p_hdr))
1581			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1582		}
1583		depth--;
1584	}
1585
1586	return EXT_MAX_BLOCKS;
1587}
1588
1589/*
1590 * ext4_ext_next_leaf_block:
1591 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1592 */
1593static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1594{
1595	int depth;
1596
1597	BUG_ON(path == NULL);
1598	depth = path->p_depth;
1599
1600	/* zero-tree has no leaf blocks at all */
1601	if (depth == 0)
1602		return EXT_MAX_BLOCKS;
1603
1604	/* go to index block */
1605	depth--;
1606
1607	while (depth >= 0) {
1608		if (path[depth].p_idx !=
1609				EXT_LAST_INDEX(path[depth].p_hdr))
1610			return (ext4_lblk_t)
1611				le32_to_cpu(path[depth].p_idx[1].ei_block);
1612		depth--;
1613	}
1614
1615	return EXT_MAX_BLOCKS;
1616}
1617
1618/*
1619 * ext4_ext_correct_indexes:
1620 * if leaf gets modified and modified extent is first in the leaf,
1621 * then we have to correct all indexes above.
1622 * TODO: do we need to correct tree in all cases?
1623 */
1624static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1625				struct ext4_ext_path *path)
1626{
1627	struct ext4_extent_header *eh;
1628	int depth = ext_depth(inode);
1629	struct ext4_extent *ex;
1630	__le32 border;
1631	int k, err = 0;
1632
1633	eh = path[depth].p_hdr;
1634	ex = path[depth].p_ext;
1635
1636	if (unlikely(ex == NULL || eh == NULL)) {
1637		EXT4_ERROR_INODE(inode,
1638				 "ex %p == NULL or eh %p == NULL", ex, eh);
1639		return -EIO;
1640	}
1641
1642	if (depth == 0) {
1643		/* there is no tree at all */
1644		return 0;
1645	}
1646
1647	if (ex != EXT_FIRST_EXTENT(eh)) {
1648		/* we correct tree if first leaf got modified only */
1649		return 0;
1650	}
1651
1652	/*
1653	 * TODO: we need correction if border is smaller than current one
1654	 */
1655	k = depth - 1;
1656	border = path[depth].p_ext->ee_block;
1657	err = ext4_ext_get_access(handle, inode, path + k);
1658	if (err)
1659		return err;
1660	path[k].p_idx->ei_block = border;
1661	err = ext4_ext_dirty(handle, inode, path + k);
1662	if (err)
1663		return err;
1664
1665	while (k--) {
1666		/* change all left-side indexes */
1667		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1668			break;
1669		err = ext4_ext_get_access(handle, inode, path + k);
1670		if (err)
1671			break;
1672		path[k].p_idx->ei_block = border;
1673		err = ext4_ext_dirty(handle, inode, path + k);
1674		if (err)
1675			break;
1676	}
1677
1678	return err;
1679}
1680
1681int
1682ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1683				struct ext4_extent *ex2)
1684{
1685	unsigned short ext1_ee_len, ext2_ee_len;
1686
1687	/*
1688	 * Make sure that both extents are initialized. We don't merge
1689	 * uninitialized extents so that we can be sure that end_io code has
1690	 * the extent that was written properly split out and conversion to
1691	 * initialized is trivial.
1692	 */
1693	if (ext4_ext_is_uninitialized(ex1) != ext4_ext_is_uninitialized(ex2))
1694		return 0;
1695
1696	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1697	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1698
1699	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1700			le32_to_cpu(ex2->ee_block))
1701		return 0;
1702
1703	/*
1704	 * To allow future support for preallocated extents to be added
1705	 * as an RO_COMPAT feature, refuse to merge to extents if
1706	 * this can result in the top bit of ee_len being set.
1707	 */
1708	if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1709		return 0;
1710	if (ext4_ext_is_uninitialized(ex1) &&
1711	    (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
1712	     atomic_read(&EXT4_I(inode)->i_unwritten) ||
1713	     (ext1_ee_len + ext2_ee_len > EXT_UNINIT_MAX_LEN)))
1714		return 0;
1715#ifdef AGGRESSIVE_TEST
1716	if (ext1_ee_len >= 4)
1717		return 0;
1718#endif
1719
1720	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1721		return 1;
1722	return 0;
1723}
1724
1725/*
1726 * This function tries to merge the "ex" extent to the next extent in the tree.
1727 * It always tries to merge towards right. If you want to merge towards
1728 * left, pass "ex - 1" as argument instead of "ex".
1729 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1730 * 1 if they got merged.
1731 */
1732static int ext4_ext_try_to_merge_right(struct inode *inode,
1733				 struct ext4_ext_path *path,
1734				 struct ext4_extent *ex)
1735{
1736	struct ext4_extent_header *eh;
1737	unsigned int depth, len;
1738	int merge_done = 0, uninit;
1739
1740	depth = ext_depth(inode);
1741	BUG_ON(path[depth].p_hdr == NULL);
1742	eh = path[depth].p_hdr;
1743
1744	while (ex < EXT_LAST_EXTENT(eh)) {
1745		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1746			break;
1747		/* merge with next extent! */
1748		uninit = ext4_ext_is_uninitialized(ex);
1749		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1750				+ ext4_ext_get_actual_len(ex + 1));
1751		if (uninit)
1752			ext4_ext_mark_uninitialized(ex);
1753
1754		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1755			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1756				* sizeof(struct ext4_extent);
1757			memmove(ex + 1, ex + 2, len);
1758		}
1759		le16_add_cpu(&eh->eh_entries, -1);
1760		merge_done = 1;
1761		WARN_ON(eh->eh_entries == 0);
1762		if (!eh->eh_entries)
1763			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1764	}
1765
1766	return merge_done;
1767}
1768
1769/*
1770 * This function does a very simple check to see if we can collapse
1771 * an extent tree with a single extent tree leaf block into the inode.
1772 */
1773static void ext4_ext_try_to_merge_up(handle_t *handle,
1774				     struct inode *inode,
1775				     struct ext4_ext_path *path)
1776{
1777	size_t s;
1778	unsigned max_root = ext4_ext_space_root(inode, 0);
1779	ext4_fsblk_t blk;
1780
1781	if ((path[0].p_depth != 1) ||
1782	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1783	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1784		return;
1785
1786	/*
1787	 * We need to modify the block allocation bitmap and the block
1788	 * group descriptor to release the extent tree block.  If we
1789	 * can't get the journal credits, give up.
1790	 */
1791	if (ext4_journal_extend(handle, 2))
1792		return;
1793
1794	/*
1795	 * Copy the extent data up to the inode
1796	 */
1797	blk = ext4_idx_pblock(path[0].p_idx);
1798	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1799		sizeof(struct ext4_extent_idx);
1800	s += sizeof(struct ext4_extent_header);
1801
1802	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1803	path[0].p_depth = 0;
1804	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1805		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1806	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1807
1808	brelse(path[1].p_bh);
1809	ext4_free_blocks(handle, inode, NULL, blk, 1,
1810			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET |
1811			 EXT4_FREE_BLOCKS_RESERVE);
1812}
1813
1814/*
1815 * This function tries to merge the @ex extent to neighbours in the tree.
1816 * return 1 if merge left else 0.
1817 */
1818static void ext4_ext_try_to_merge(handle_t *handle,
1819				  struct inode *inode,
1820				  struct ext4_ext_path *path,
1821				  struct ext4_extent *ex) {
1822	struct ext4_extent_header *eh;
1823	unsigned int depth;
1824	int merge_done = 0;
1825
1826	depth = ext_depth(inode);
1827	BUG_ON(path[depth].p_hdr == NULL);
1828	eh = path[depth].p_hdr;
1829
1830	if (ex > EXT_FIRST_EXTENT(eh))
1831		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1832
1833	if (!merge_done)
1834		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1835
1836	ext4_ext_try_to_merge_up(handle, inode, path);
1837}
1838
1839/*
1840 * check if a portion of the "newext" extent overlaps with an
1841 * existing extent.
1842 *
1843 * If there is an overlap discovered, it updates the length of the newext
1844 * such that there will be no overlap, and then returns 1.
1845 * If there is no overlap found, it returns 0.
1846 */
1847static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1848					   struct inode *inode,
1849					   struct ext4_extent *newext,
1850					   struct ext4_ext_path *path)
1851{
1852	ext4_lblk_t b1, b2;
1853	unsigned int depth, len1;
1854	unsigned int ret = 0;
1855
1856	b1 = le32_to_cpu(newext->ee_block);
1857	len1 = ext4_ext_get_actual_len(newext);
1858	depth = ext_depth(inode);
1859	if (!path[depth].p_ext)
1860		goto out;
1861	b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1862
1863	/*
1864	 * get the next allocated block if the extent in the path
1865	 * is before the requested block(s)
1866	 */
1867	if (b2 < b1) {
1868		b2 = ext4_ext_next_allocated_block(path);
1869		if (b2 == EXT_MAX_BLOCKS)
1870			goto out;
1871		b2 = EXT4_LBLK_CMASK(sbi, b2);
1872	}
1873
1874	/* check for wrap through zero on extent logical start block*/
1875	if (b1 + len1 < b1) {
1876		len1 = EXT_MAX_BLOCKS - b1;
1877		newext->ee_len = cpu_to_le16(len1);
1878		ret = 1;
1879	}
1880
1881	/* check for overlap */
1882	if (b1 + len1 > b2) {
1883		newext->ee_len = cpu_to_le16(b2 - b1);
1884		ret = 1;
1885	}
1886out:
1887	return ret;
1888}
1889
1890/*
1891 * ext4_ext_insert_extent:
1892 * tries to merge requsted extent into the existing extent or
1893 * inserts requested extent as new one into the tree,
1894 * creating new leaf in the no-space case.
1895 */
1896int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1897				struct ext4_ext_path *path,
1898				struct ext4_extent *newext, int gb_flags)
1899{
1900	struct ext4_extent_header *eh;
1901	struct ext4_extent *ex, *fex;
1902	struct ext4_extent *nearex; /* nearest extent */
1903	struct ext4_ext_path *npath = NULL;
1904	int depth, len, err;
1905	ext4_lblk_t next;
1906	int mb_flags = 0, uninit;
1907
1908	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1909		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1910		return -EIO;
1911	}
1912	depth = ext_depth(inode);
1913	ex = path[depth].p_ext;
1914	eh = path[depth].p_hdr;
1915	if (unlikely(path[depth].p_hdr == NULL)) {
1916		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1917		return -EIO;
1918	}
1919
1920	/* try to insert block into found extent and return */
1921	if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1922
1923		/*
1924		 * Try to see whether we should rather test the extent on
1925		 * right from ex, or from the left of ex. This is because
1926		 * ext4_ext_find_extent() can return either extent on the
1927		 * left, or on the right from the searched position. This
1928		 * will make merging more effective.
1929		 */
1930		if (ex < EXT_LAST_EXTENT(eh) &&
1931		    (le32_to_cpu(ex->ee_block) +
1932		    ext4_ext_get_actual_len(ex) <
1933		    le32_to_cpu(newext->ee_block))) {
1934			ex += 1;
1935			goto prepend;
1936		} else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1937			   (le32_to_cpu(newext->ee_block) +
1938			   ext4_ext_get_actual_len(newext) <
1939			   le32_to_cpu(ex->ee_block)))
1940			ex -= 1;
1941
1942		/* Try to append newex to the ex */
1943		if (ext4_can_extents_be_merged(inode, ex, newext)) {
1944			ext_debug("append [%d]%d block to %u:[%d]%d"
1945				  "(from %llu)\n",
1946				  ext4_ext_is_uninitialized(newext),
1947				  ext4_ext_get_actual_len(newext),
1948				  le32_to_cpu(ex->ee_block),
1949				  ext4_ext_is_uninitialized(ex),
1950				  ext4_ext_get_actual_len(ex),
1951				  ext4_ext_pblock(ex));
1952			err = ext4_ext_get_access(handle, inode,
1953						  path + depth);
1954			if (err)
1955				return err;
1956			uninit = ext4_ext_is_uninitialized(ex);
1957			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1958					+ ext4_ext_get_actual_len(newext));
1959			if (uninit)
1960				ext4_ext_mark_uninitialized(ex);
1961			eh = path[depth].p_hdr;
1962			nearex = ex;
1963			goto merge;
1964		}
1965
1966prepend:
1967		/* Try to prepend newex to the ex */
1968		if (ext4_can_extents_be_merged(inode, newext, ex)) {
1969			ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
1970				  "(from %llu)\n",
1971				  le32_to_cpu(newext->ee_block),
1972				  ext4_ext_is_uninitialized(newext),
1973				  ext4_ext_get_actual_len(newext),
1974				  le32_to_cpu(ex->ee_block),
1975				  ext4_ext_is_uninitialized(ex),
1976				  ext4_ext_get_actual_len(ex),
1977				  ext4_ext_pblock(ex));
1978			err = ext4_ext_get_access(handle, inode,
1979						  path + depth);
1980			if (err)
1981				return err;
1982
1983			uninit = ext4_ext_is_uninitialized(ex);
1984			ex->ee_block = newext->ee_block;
1985			ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
1986			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1987					+ ext4_ext_get_actual_len(newext));
1988			if (uninit)
1989				ext4_ext_mark_uninitialized(ex);
1990			eh = path[depth].p_hdr;
1991			nearex = ex;
1992			goto merge;
1993		}
1994	}
1995
1996	depth = ext_depth(inode);
1997	eh = path[depth].p_hdr;
1998	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1999		goto has_space;
2000
2001	/* probably next leaf has space for us? */
2002	fex = EXT_LAST_EXTENT(eh);
2003	next = EXT_MAX_BLOCKS;
2004	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2005		next = ext4_ext_next_leaf_block(path);
2006	if (next != EXT_MAX_BLOCKS) {
2007		ext_debug("next leaf block - %u\n", next);
2008		BUG_ON(npath != NULL);
2009		npath = ext4_ext_find_extent(inode, next, NULL, 0);
2010		if (IS_ERR(npath))
2011			return PTR_ERR(npath);
2012		BUG_ON(npath->p_depth != path->p_depth);
2013		eh = npath[depth].p_hdr;
2014		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2015			ext_debug("next leaf isn't full(%d)\n",
2016				  le16_to_cpu(eh->eh_entries));
2017			path = npath;
2018			goto has_space;
2019		}
2020		ext_debug("next leaf has no free space(%d,%d)\n",
2021			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2022	}
2023
2024	/*
2025	 * There is no free space in the found leaf.
2026	 * We're gonna add a new leaf in the tree.
2027	 */
2028	if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2029		mb_flags = EXT4_MB_USE_RESERVED;
2030	err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2031				       path, newext);
2032	if (err)
2033		goto cleanup;
2034	depth = ext_depth(inode);
2035	eh = path[depth].p_hdr;
2036
2037has_space:
2038	nearex = path[depth].p_ext;
2039
2040	err = ext4_ext_get_access(handle, inode, path + depth);
2041	if (err)
2042		goto cleanup;
2043
2044	if (!nearex) {
2045		/* there is no extent in this leaf, create first one */
2046		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2047				le32_to_cpu(newext->ee_block),
2048				ext4_ext_pblock(newext),
2049				ext4_ext_is_uninitialized(newext),
2050				ext4_ext_get_actual_len(newext));
2051		nearex = EXT_FIRST_EXTENT(eh);
2052	} else {
2053		if (le32_to_cpu(newext->ee_block)
2054			   > le32_to_cpu(nearex->ee_block)) {
2055			/* Insert after */
2056			ext_debug("insert %u:%llu:[%d]%d before: "
2057					"nearest %p\n",
2058					le32_to_cpu(newext->ee_block),
2059					ext4_ext_pblock(newext),
2060					ext4_ext_is_uninitialized(newext),
2061					ext4_ext_get_actual_len(newext),
2062					nearex);
2063			nearex++;
2064		} else {
2065			/* Insert before */
2066			BUG_ON(newext->ee_block == nearex->ee_block);
2067			ext_debug("insert %u:%llu:[%d]%d after: "
2068					"nearest %p\n",
2069					le32_to_cpu(newext->ee_block),
2070					ext4_ext_pblock(newext),
2071					ext4_ext_is_uninitialized(newext),
2072					ext4_ext_get_actual_len(newext),
2073					nearex);
2074		}
2075		len = EXT_LAST_EXTENT(eh) - nearex + 1;
2076		if (len > 0) {
2077			ext_debug("insert %u:%llu:[%d]%d: "
2078					"move %d extents from 0x%p to 0x%p\n",
2079					le32_to_cpu(newext->ee_block),
2080					ext4_ext_pblock(newext),
2081					ext4_ext_is_uninitialized(newext),
2082					ext4_ext_get_actual_len(newext),
2083					len, nearex, nearex + 1);
2084			memmove(nearex + 1, nearex,
2085				len * sizeof(struct ext4_extent));
2086		}
2087	}
2088
2089	le16_add_cpu(&eh->eh_entries, 1);
2090	path[depth].p_ext = nearex;
2091	nearex->ee_block = newext->ee_block;
2092	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2093	nearex->ee_len = newext->ee_len;
2094
2095merge:
2096	/* try to merge extents */
2097	if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2098		ext4_ext_try_to_merge(handle, inode, path, nearex);
2099
2100
2101	/* time to correct all indexes above */
2102	err = ext4_ext_correct_indexes(handle, inode, path);
2103	if (err)
2104		goto cleanup;
2105
2106	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2107
2108cleanup:
2109	if (npath) {
2110		ext4_ext_drop_refs(npath);
2111		kfree(npath);
2112	}
2113	return err;
2114}
2115
2116static int ext4_fill_fiemap_extents(struct inode *inode,
2117				    ext4_lblk_t block, ext4_lblk_t num,
2118				    struct fiemap_extent_info *fieinfo)
2119{
2120	struct ext4_ext_path *path = NULL;
2121	struct ext4_extent *ex;
2122	struct extent_status es;
2123	ext4_lblk_t next, next_del, start = 0, end = 0;
2124	ext4_lblk_t last = block + num;
2125	int exists, depth = 0, err = 0;
2126	unsigned int flags = 0;
2127	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2128
2129	while (block < last && block != EXT_MAX_BLOCKS) {
2130		num = last - block;
2131		/* find extent for this block */
2132		down_read(&EXT4_I(inode)->i_data_sem);
2133
2134		if (path && ext_depth(inode) != depth) {
2135			/* depth was changed. we have to realloc path */
2136			kfree(path);
2137			path = NULL;
2138		}
2139
2140		path = ext4_ext_find_extent(inode, block, path, 0);
2141		if (IS_ERR(path)) {
2142			up_read(&EXT4_I(inode)->i_data_sem);
2143			err = PTR_ERR(path);
2144			path = NULL;
2145			break;
2146		}
2147
2148		depth = ext_depth(inode);
2149		if (unlikely(path[depth].p_hdr == NULL)) {
2150			up_read(&EXT4_I(inode)->i_data_sem);
2151			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2152			err = -EIO;
2153			break;
2154		}
2155		ex = path[depth].p_ext;
2156		next = ext4_ext_next_allocated_block(path);
2157		ext4_ext_drop_refs(path);
2158
2159		flags = 0;
2160		exists = 0;
2161		if (!ex) {
2162			/* there is no extent yet, so try to allocate
2163			 * all requested space */
2164			start = block;
2165			end = block + num;
2166		} else if (le32_to_cpu(ex->ee_block) > block) {
2167			/* need to allocate space before found extent */
2168			start = block;
2169			end = le32_to_cpu(ex->ee_block);
2170			if (block + num < end)
2171				end = block + num;
2172		} else if (block >= le32_to_cpu(ex->ee_block)
2173					+ ext4_ext_get_actual_len(ex)) {
2174			/* need to allocate space after found extent */
2175			start = block;
2176			end = block + num;
2177			if (end >= next)
2178				end = next;
2179		} else if (block >= le32_to_cpu(ex->ee_block)) {
2180			/*
2181			 * some part of requested space is covered
2182			 * by found extent
2183			 */
2184			start = block;
2185			end = le32_to_cpu(ex->ee_block)
2186				+ ext4_ext_get_actual_len(ex);
2187			if (block + num < end)
2188				end = block + num;
2189			exists = 1;
2190		} else {
2191			BUG();
2192		}
2193		BUG_ON(end <= start);
2194
2195		if (!exists) {
2196			es.es_lblk = start;
2197			es.es_len = end - start;
2198			es.es_pblk = 0;
2199		} else {
2200			es.es_lblk = le32_to_cpu(ex->ee_block);
2201			es.es_len = ext4_ext_get_actual_len(ex);
2202			es.es_pblk = ext4_ext_pblock(ex);
2203			if (ext4_ext_is_uninitialized(ex))
2204				flags |= FIEMAP_EXTENT_UNWRITTEN;
2205		}
2206
2207		/*
2208		 * Find delayed extent and update es accordingly. We call
2209		 * it even in !exists case to find out whether es is the
2210		 * last existing extent or not.
2211		 */
2212		next_del = ext4_find_delayed_extent(inode, &es);
2213		if (!exists && next_del) {
2214			exists = 1;
2215			flags |= (FIEMAP_EXTENT_DELALLOC |
2216				  FIEMAP_EXTENT_UNKNOWN);
2217		}
2218		up_read(&EXT4_I(inode)->i_data_sem);
2219
2220		if (unlikely(es.es_len == 0)) {
2221			EXT4_ERROR_INODE(inode, "es.es_len == 0");
2222			err = -EIO;
2223			break;
2224		}
2225
2226		/*
2227		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2228		 * we need to check next == EXT_MAX_BLOCKS because it is
2229		 * possible that an extent is with unwritten and delayed
2230		 * status due to when an extent is delayed allocated and
2231		 * is allocated by fallocate status tree will track both of
2232		 * them in a extent.
2233		 *
2234		 * So we could return a unwritten and delayed extent, and
2235		 * its block is equal to 'next'.
2236		 */
2237		if (next == next_del && next == EXT_MAX_BLOCKS) {
2238			flags |= FIEMAP_EXTENT_LAST;
2239			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2240				     next != EXT_MAX_BLOCKS)) {
2241				EXT4_ERROR_INODE(inode,
2242						 "next extent == %u, next "
2243						 "delalloc extent = %u",
2244						 next, next_del);
2245				err = -EIO;
2246				break;
2247			}
2248		}
2249
2250		if (exists) {
2251			err = fiemap_fill_next_extent(fieinfo,
2252				(__u64)es.es_lblk << blksize_bits,
2253				(__u64)es.es_pblk << blksize_bits,
2254				(__u64)es.es_len << blksize_bits,
2255				flags);
2256			if (err < 0)
2257				break;
2258			if (err == 1) {
2259				err = 0;
2260				break;
2261			}
2262		}
2263
2264		block = es.es_lblk + es.es_len;
2265	}
2266
2267	if (path) {
2268		ext4_ext_drop_refs(path);
2269		kfree(path);
2270	}
2271
2272	return err;
2273}
2274
2275/*
2276 * ext4_ext_put_gap_in_cache:
2277 * calculate boundaries of the gap that the requested block fits into
2278 * and cache this gap
2279 */
2280static void
2281ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2282				ext4_lblk_t block)
2283{
2284	int depth = ext_depth(inode);
2285	unsigned long len = 0;
2286	ext4_lblk_t lblock = 0;
2287	struct ext4_extent *ex;
2288
2289	ex = path[depth].p_ext;
2290	if (ex == NULL) {
2291		/*
2292		 * there is no extent yet, so gap is [0;-] and we
2293		 * don't cache it
2294		 */
2295		ext_debug("cache gap(whole file):");
2296	} else if (block < le32_to_cpu(ex->ee_block)) {
2297		lblock = block;
2298		len = le32_to_cpu(ex->ee_block) - block;
2299		ext_debug("cache gap(before): %u [%u:%u]",
2300				block,
2301				le32_to_cpu(ex->ee_block),
2302				 ext4_ext_get_actual_len(ex));
2303		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2304			ext4_es_insert_extent(inode, lblock, len, ~0,
2305					      EXTENT_STATUS_HOLE);
2306	} else if (block >= le32_to_cpu(ex->ee_block)
2307			+ ext4_ext_get_actual_len(ex)) {
2308		ext4_lblk_t next;
2309		lblock = le32_to_cpu(ex->ee_block)
2310			+ ext4_ext_get_actual_len(ex);
2311
2312		next = ext4_ext_next_allocated_block(path);
2313		ext_debug("cache gap(after): [%u:%u] %u",
2314				le32_to_cpu(ex->ee_block),
2315				ext4_ext_get_actual_len(ex),
2316				block);
2317		BUG_ON(next == lblock);
2318		len = next - lblock;
2319		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2320			ext4_es_insert_extent(inode, lblock, len, ~0,
2321					      EXTENT_STATUS_HOLE);
2322	} else {
2323		BUG();
2324	}
2325
2326	ext_debug(" -> %u:%lu\n", lblock, len);
2327}
2328
2329/*
2330 * ext4_ext_rm_idx:
2331 * removes index from the index block.
2332 */
2333static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2334			struct ext4_ext_path *path, int depth)
2335{
2336	int err;
2337	ext4_fsblk_t leaf;
2338
2339	/* free index block */
2340	depth--;
2341	path = path + depth;
2342	leaf = ext4_idx_pblock(path->p_idx);
2343	if (unlikely(path->p_hdr->eh_entries == 0)) {
2344		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2345		return -EIO;
2346	}
2347	err = ext4_ext_get_access(handle, inode, path);
2348	if (err)
2349		return err;
2350
2351	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2352		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2353		len *= sizeof(struct ext4_extent_idx);
2354		memmove(path->p_idx, path->p_idx + 1, len);
2355	}
2356
2357	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2358	err = ext4_ext_dirty(handle, inode, path);
2359	if (err)
2360		return err;
2361	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2362	trace_ext4_ext_rm_idx(inode, leaf);
2363
2364	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2365			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2366
2367	while (--depth >= 0) {
2368		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2369			break;
2370		path--;
2371		err = ext4_ext_get_access(handle, inode, path);
2372		if (err)
2373			break;
2374		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2375		err = ext4_ext_dirty(handle, inode, path);
2376		if (err)
2377			break;
2378	}
2379	return err;
2380}
2381
2382/*
2383 * ext4_ext_calc_credits_for_single_extent:
2384 * This routine returns max. credits that needed to insert an extent
2385 * to the extent tree.
2386 * When pass the actual path, the caller should calculate credits
2387 * under i_data_sem.
2388 */
2389int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2390						struct ext4_ext_path *path)
2391{
2392	if (path) {
2393		int depth = ext_depth(inode);
2394		int ret = 0;
2395
2396		/* probably there is space in leaf? */
2397		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2398				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2399
2400			/*
2401			 *  There are some space in the leaf tree, no
2402			 *  need to account for leaf block credit
2403			 *
2404			 *  bitmaps and block group descriptor blocks
2405			 *  and other metadata blocks still need to be
2406			 *  accounted.
2407			 */
2408			/* 1 bitmap, 1 block group descriptor */
2409			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2410			return ret;
2411		}
2412	}
2413
2414	return ext4_chunk_trans_blocks(inode, nrblocks);
2415}
2416
2417/*
2418 * How many index/leaf blocks need to change/allocate to add @extents extents?
2419 *
2420 * If we add a single extent, then in the worse case, each tree level
2421 * index/leaf need to be changed in case of the tree split.
2422 *
2423 * If more extents are inserted, they could cause the whole tree split more
2424 * than once, but this is really rare.
2425 */
2426int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2427{
2428	int index;
2429	int depth;
2430
2431	/* If we are converting the inline data, only one is needed here. */
2432	if (ext4_has_inline_data(inode))
2433		return 1;
2434
2435	depth = ext_depth(inode);
2436
2437	if (extents <= 1)
2438		index = depth * 2;
2439	else
2440		index = depth * 3;
2441
2442	return index;
2443}
2444
2445static inline int get_default_free_blocks_flags(struct inode *inode)
2446{
2447	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2448		return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2449	else if (ext4_should_journal_data(inode))
2450		return EXT4_FREE_BLOCKS_FORGET;
2451	return 0;
2452}
2453
2454static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2455			      struct ext4_extent *ex,
2456			      long long *partial_cluster,
2457			      ext4_lblk_t from, ext4_lblk_t to)
2458{
2459	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2460	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2461	ext4_fsblk_t pblk;
2462	int flags = get_default_free_blocks_flags(inode);
2463
2464	/*
2465	 * For bigalloc file systems, we never free a partial cluster
2466	 * at the beginning of the extent.  Instead, we make a note
2467	 * that we tried freeing the cluster, and check to see if we
2468	 * need to free it on a subsequent call to ext4_remove_blocks,
2469	 * or at the end of the ext4_truncate() operation.
2470	 */
2471	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2472
2473	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2474	/*
2475	 * If we have a partial cluster, and it's different from the
2476	 * cluster of the last block, we need to explicitly free the
2477	 * partial cluster here.
2478	 */
2479	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2480	if ((*partial_cluster > 0) &&
2481	    (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2482		ext4_free_blocks(handle, inode, NULL,
2483				 EXT4_C2B(sbi, *partial_cluster),
2484				 sbi->s_cluster_ratio, flags);
2485		*partial_cluster = 0;
2486	}
2487
2488#ifdef EXTENTS_STATS
2489	{
2490		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2491		spin_lock(&sbi->s_ext_stats_lock);
2492		sbi->s_ext_blocks += ee_len;
2493		sbi->s_ext_extents++;
2494		if (ee_len < sbi->s_ext_min)
2495			sbi->s_ext_min = ee_len;
2496		if (ee_len > sbi->s_ext_max)
2497			sbi->s_ext_max = ee_len;
2498		if (ext_depth(inode) > sbi->s_depth_max)
2499			sbi->s_depth_max = ext_depth(inode);
2500		spin_unlock(&sbi->s_ext_stats_lock);
2501	}
2502#endif
2503	if (from >= le32_to_cpu(ex->ee_block)
2504	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2505		/* tail removal */
2506		ext4_lblk_t num;
2507		unsigned int unaligned;
2508
2509		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2510		pblk = ext4_ext_pblock(ex) + ee_len - num;
2511		/*
2512		 * Usually we want to free partial cluster at the end of the
2513		 * extent, except for the situation when the cluster is still
2514		 * used by any other extent (partial_cluster is negative).
2515		 */
2516		if (*partial_cluster < 0 &&
2517		    -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1))
2518			flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2519
2520		ext_debug("free last %u blocks starting %llu partial %lld\n",
2521			  num, pblk, *partial_cluster);
2522		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2523		/*
2524		 * If the block range to be freed didn't start at the
2525		 * beginning of a cluster, and we removed the entire
2526		 * extent and the cluster is not used by any other extent,
2527		 * save the partial cluster here, since we might need to
2528		 * delete if we determine that the truncate operation has
2529		 * removed all of the blocks in the cluster.
2530		 *
2531		 * On the other hand, if we did not manage to free the whole
2532		 * extent, we have to mark the cluster as used (store negative
2533		 * cluster number in partial_cluster).
2534		 */
2535		unaligned = EXT4_PBLK_COFF(sbi, pblk);
2536		if (unaligned && (ee_len == num) &&
2537		    (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk))))
2538			*partial_cluster = EXT4_B2C(sbi, pblk);
2539		else if (unaligned)
2540			*partial_cluster = -((long long)EXT4_B2C(sbi, pblk));
2541		else if (*partial_cluster > 0)
2542			*partial_cluster = 0;
2543	} else
2544		ext4_error(sbi->s_sb, "strange request: removal(2) "
2545			   "%u-%u from %u:%u\n",
2546			   from, to, le32_to_cpu(ex->ee_block), ee_len);
2547	return 0;
2548}
2549
2550
2551/*
2552 * ext4_ext_rm_leaf() Removes the extents associated with the
2553 * blocks appearing between "start" and "end", and splits the extents
2554 * if "start" and "end" appear in the same extent
2555 *
2556 * @handle: The journal handle
2557 * @inode:  The files inode
2558 * @path:   The path to the leaf
2559 * @partial_cluster: The cluster which we'll have to free if all extents
2560 *                   has been released from it. It gets negative in case
2561 *                   that the cluster is still used.
2562 * @start:  The first block to remove
2563 * @end:   The last block to remove
2564 */
2565static int
2566ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2567		 struct ext4_ext_path *path,
2568		 long long *partial_cluster,
2569		 ext4_lblk_t start, ext4_lblk_t end)
2570{
2571	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2572	int err = 0, correct_index = 0;
2573	int depth = ext_depth(inode), credits;
2574	struct ext4_extent_header *eh;
2575	ext4_lblk_t a, b;
2576	unsigned num;
2577	ext4_lblk_t ex_ee_block;
2578	unsigned short ex_ee_len;
2579	unsigned uninitialized = 0;
2580	struct ext4_extent *ex;
2581	ext4_fsblk_t pblk;
2582
2583	/* the header must be checked already in ext4_ext_remove_space() */
2584	ext_debug("truncate since %u in leaf to %u\n", start, end);
2585	if (!path[depth].p_hdr)
2586		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2587	eh = path[depth].p_hdr;
2588	if (unlikely(path[depth].p_hdr == NULL)) {
2589		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2590		return -EIO;
2591	}
2592	/* find where to start removing */
2593	ex = path[depth].p_ext;
2594	if (!ex)
2595		ex = EXT_LAST_EXTENT(eh);
2596
2597	ex_ee_block = le32_to_cpu(ex->ee_block);
2598	ex_ee_len = ext4_ext_get_actual_len(ex);
2599
2600	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2601
2602	while (ex >= EXT_FIRST_EXTENT(eh) &&
2603			ex_ee_block + ex_ee_len > start) {
2604
2605		if (ext4_ext_is_uninitialized(ex))
2606			uninitialized = 1;
2607		else
2608			uninitialized = 0;
2609
2610		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2611			 uninitialized, ex_ee_len);
2612		path[depth].p_ext = ex;
2613
2614		a = ex_ee_block > start ? ex_ee_block : start;
2615		b = ex_ee_block+ex_ee_len - 1 < end ?
2616			ex_ee_block+ex_ee_len - 1 : end;
2617
2618		ext_debug("  border %u:%u\n", a, b);
2619
2620		/* If this extent is beyond the end of the hole, skip it */
2621		if (end < ex_ee_block) {
2622			/*
2623			 * We're going to skip this extent and move to another,
2624			 * so if this extent is not cluster aligned we have
2625			 * to mark the current cluster as used to avoid
2626			 * accidentally freeing it later on
2627			 */
2628			pblk = ext4_ext_pblock(ex);
2629			if (EXT4_PBLK_COFF(sbi, pblk))
2630				*partial_cluster =
2631					-((long long)EXT4_B2C(sbi, pblk));
2632			ex--;
2633			ex_ee_block = le32_to_cpu(ex->ee_block);
2634			ex_ee_len = ext4_ext_get_actual_len(ex);
2635			continue;
2636		} else if (b != ex_ee_block + ex_ee_len - 1) {
2637			EXT4_ERROR_INODE(inode,
2638					 "can not handle truncate %u:%u "
2639					 "on extent %u:%u",
2640					 start, end, ex_ee_block,
2641					 ex_ee_block + ex_ee_len - 1);
2642			err = -EIO;
2643			goto out;
2644		} else if (a != ex_ee_block) {
2645			/* remove tail of the extent */
2646			num = a - ex_ee_block;
2647		} else {
2648			/* remove whole extent: excellent! */
2649			num = 0;
2650		}
2651		/*
2652		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2653		 * descriptor) for each block group; assume two block
2654		 * groups plus ex_ee_len/blocks_per_block_group for
2655		 * the worst case
2656		 */
2657		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2658		if (ex == EXT_FIRST_EXTENT(eh)) {
2659			correct_index = 1;
2660			credits += (ext_depth(inode)) + 1;
2661		}
2662		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2663
2664		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2665		if (err)
2666			goto out;
2667
2668		err = ext4_ext_get_access(handle, inode, path + depth);
2669		if (err)
2670			goto out;
2671
2672		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2673					 a, b);
2674		if (err)
2675			goto out;
2676
2677		if (num == 0)
2678			/* this extent is removed; mark slot entirely unused */
2679			ext4_ext_store_pblock(ex, 0);
2680
2681		ex->ee_len = cpu_to_le16(num);
2682		/*
2683		 * Do not mark uninitialized if all the blocks in the
2684		 * extent have been removed.
2685		 */
2686		if (uninitialized && num)
2687			ext4_ext_mark_uninitialized(ex);
2688		/*
2689		 * If the extent was completely released,
2690		 * we need to remove it from the leaf
2691		 */
2692		if (num == 0) {
2693			if (end != EXT_MAX_BLOCKS - 1) {
2694				/*
2695				 * For hole punching, we need to scoot all the
2696				 * extents up when an extent is removed so that
2697				 * we dont have blank extents in the middle
2698				 */
2699				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2700					sizeof(struct ext4_extent));
2701
2702				/* Now get rid of the one at the end */
2703				memset(EXT_LAST_EXTENT(eh), 0,
2704					sizeof(struct ext4_extent));
2705			}
2706			le16_add_cpu(&eh->eh_entries, -1);
2707		} else if (*partial_cluster > 0)
2708			*partial_cluster = 0;
2709
2710		err = ext4_ext_dirty(handle, inode, path + depth);
2711		if (err)
2712			goto out;
2713
2714		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2715				ext4_ext_pblock(ex));
2716		ex--;
2717		ex_ee_block = le32_to_cpu(ex->ee_block);
2718		ex_ee_len = ext4_ext_get_actual_len(ex);
2719	}
2720
2721	if (correct_index && eh->eh_entries)
2722		err = ext4_ext_correct_indexes(handle, inode, path);
2723
2724	/*
2725	 * Free the partial cluster only if the current extent does not
2726	 * reference it. Otherwise we might free used cluster.
2727	 */
2728	if (*partial_cluster > 0 &&
2729	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2730	     *partial_cluster)) {
2731		int flags = get_default_free_blocks_flags(inode);
2732
2733		ext4_free_blocks(handle, inode, NULL,
2734				 EXT4_C2B(sbi, *partial_cluster),
2735				 sbi->s_cluster_ratio, flags);
2736		*partial_cluster = 0;
2737	}
2738
2739	/* if this leaf is free, then we should
2740	 * remove it from index block above */
2741	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2742		err = ext4_ext_rm_idx(handle, inode, path, depth);
2743
2744out:
2745	return err;
2746}
2747
2748/*
2749 * ext4_ext_more_to_rm:
2750 * returns 1 if current index has to be freed (even partial)
2751 */
2752static int
2753ext4_ext_more_to_rm(struct ext4_ext_path *path)
2754{
2755	BUG_ON(path->p_idx == NULL);
2756
2757	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2758		return 0;
2759
2760	/*
2761	 * if truncate on deeper level happened, it wasn't partial,
2762	 * so we have to consider current index for truncation
2763	 */
2764	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2765		return 0;
2766	return 1;
2767}
2768
2769int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2770			  ext4_lblk_t end)
2771{
2772	struct super_block *sb = inode->i_sb;
2773	int depth = ext_depth(inode);
2774	struct ext4_ext_path *path = NULL;
2775	long long partial_cluster = 0;
2776	handle_t *handle;
2777	int i = 0, err = 0;
2778
2779	ext_debug("truncate since %u to %u\n", start, end);
2780
2781	/* probably first extent we're gonna free will be last in block */
2782	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2783	if (IS_ERR(handle))
2784		return PTR_ERR(handle);
2785
2786again:
2787	trace_ext4_ext_remove_space(inode, start, end, depth);
2788
2789	/*
2790	 * Check if we are removing extents inside the extent tree. If that
2791	 * is the case, we are going to punch a hole inside the extent tree
2792	 * so we have to check whether we need to split the extent covering
2793	 * the last block to remove so we can easily remove the part of it
2794	 * in ext4_ext_rm_leaf().
2795	 */
2796	if (end < EXT_MAX_BLOCKS - 1) {
2797		struct ext4_extent *ex;
2798		ext4_lblk_t ee_block;
2799
2800		/* find extent for this block */
2801		path = ext4_ext_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2802		if (IS_ERR(path)) {
2803			ext4_journal_stop(handle);
2804			return PTR_ERR(path);
2805		}
2806		depth = ext_depth(inode);
2807		/* Leaf not may not exist only if inode has no blocks at all */
2808		ex = path[depth].p_ext;
2809		if (!ex) {
2810			if (depth) {
2811				EXT4_ERROR_INODE(inode,
2812						 "path[%d].p_hdr == NULL",
2813						 depth);
2814				err = -EIO;
2815			}
2816			goto out;
2817		}
2818
2819		ee_block = le32_to_cpu(ex->ee_block);
2820
2821		/*
2822		 * See if the last block is inside the extent, if so split
2823		 * the extent at 'end' block so we can easily remove the
2824		 * tail of the first part of the split extent in
2825		 * ext4_ext_rm_leaf().
2826		 */
2827		if (end >= ee_block &&
2828		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2829			int split_flag = 0;
2830
2831			if (ext4_ext_is_uninitialized(ex))
2832				split_flag = EXT4_EXT_MARK_UNINIT1 |
2833					     EXT4_EXT_MARK_UNINIT2;
2834
2835			/*
2836			 * Split the extent in two so that 'end' is the last
2837			 * block in the first new extent. Also we should not
2838			 * fail removing space due to ENOSPC so try to use
2839			 * reserved block if that happens.
2840			 */
2841			err = ext4_split_extent_at(handle, inode, path,
2842					end + 1, split_flag,
2843					EXT4_EX_NOCACHE |
2844					EXT4_GET_BLOCKS_PRE_IO |
2845					EXT4_GET_BLOCKS_METADATA_NOFAIL);
2846
2847			if (err < 0)
2848				goto out;
2849		}
2850	}
2851	/*
2852	 * We start scanning from right side, freeing all the blocks
2853	 * after i_size and walking into the tree depth-wise.
2854	 */
2855	depth = ext_depth(inode);
2856	if (path) {
2857		int k = i = depth;
2858		while (--k > 0)
2859			path[k].p_block =
2860				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2861	} else {
2862		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2863			       GFP_NOFS);
2864		if (path == NULL) {
2865			ext4_journal_stop(handle);
2866			return -ENOMEM;
2867		}
2868		path[0].p_depth = depth;
2869		path[0].p_hdr = ext_inode_hdr(inode);
2870		i = 0;
2871
2872		if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2873			err = -EIO;
2874			goto out;
2875		}
2876	}
2877	err = 0;
2878
2879	while (i >= 0 && err == 0) {
2880		if (i == depth) {
2881			/* this is leaf block */
2882			err = ext4_ext_rm_leaf(handle, inode, path,
2883					       &partial_cluster, start,
2884					       end);
2885			/* root level has p_bh == NULL, brelse() eats this */
2886			brelse(path[i].p_bh);
2887			path[i].p_bh = NULL;
2888			i--;
2889			continue;
2890		}
2891
2892		/* this is index block */
2893		if (!path[i].p_hdr) {
2894			ext_debug("initialize header\n");
2895			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2896		}
2897
2898		if (!path[i].p_idx) {
2899			/* this level hasn't been touched yet */
2900			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2901			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2902			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2903				  path[i].p_hdr,
2904				  le16_to_cpu(path[i].p_hdr->eh_entries));
2905		} else {
2906			/* we were already here, see at next index */
2907			path[i].p_idx--;
2908		}
2909
2910		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2911				i, EXT_FIRST_INDEX(path[i].p_hdr),
2912				path[i].p_idx);
2913		if (ext4_ext_more_to_rm(path + i)) {
2914			struct buffer_head *bh;
2915			/* go to the next level */
2916			ext_debug("move to level %d (block %llu)\n",
2917				  i + 1, ext4_idx_pblock(path[i].p_idx));
2918			memset(path + i + 1, 0, sizeof(*path));
2919			bh = read_extent_tree_block(inode,
2920				ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2921				EXT4_EX_NOCACHE);
2922			if (IS_ERR(bh)) {
2923				/* should we reset i_size? */
2924				err = PTR_ERR(bh);
2925				break;
2926			}
2927			/* Yield here to deal with large extent trees.
2928			 * Should be a no-op if we did IO above. */
2929			cond_resched();
2930			if (WARN_ON(i + 1 > depth)) {
2931				err = -EIO;
2932				break;
2933			}
2934			path[i + 1].p_bh = bh;
2935
2936			/* save actual number of indexes since this
2937			 * number is changed at the next iteration */
2938			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2939			i++;
2940		} else {
2941			/* we finished processing this index, go up */
2942			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2943				/* index is empty, remove it;
2944				 * handle must be already prepared by the
2945				 * truncatei_leaf() */
2946				err = ext4_ext_rm_idx(handle, inode, path, i);
2947			}
2948			/* root level has p_bh == NULL, brelse() eats this */
2949			brelse(path[i].p_bh);
2950			path[i].p_bh = NULL;
2951			i--;
2952			ext_debug("return to level %d\n", i);
2953		}
2954	}
2955
2956	trace_ext4_ext_remove_space_done(inode, start, end, depth,
2957			partial_cluster, path->p_hdr->eh_entries);
2958
2959	/* If we still have something in the partial cluster and we have removed
2960	 * even the first extent, then we should free the blocks in the partial
2961	 * cluster as well. */
2962	if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) {
2963		int flags = get_default_free_blocks_flags(inode);
2964
2965		ext4_free_blocks(handle, inode, NULL,
2966				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2967				 EXT4_SB(sb)->s_cluster_ratio, flags);
2968		partial_cluster = 0;
2969	}
2970
2971	/* TODO: flexible tree reduction should be here */
2972	if (path->p_hdr->eh_entries == 0) {
2973		/*
2974		 * truncate to zero freed all the tree,
2975		 * so we need to correct eh_depth
2976		 */
2977		err = ext4_ext_get_access(handle, inode, path);
2978		if (err == 0) {
2979			ext_inode_hdr(inode)->eh_depth = 0;
2980			ext_inode_hdr(inode)->eh_max =
2981				cpu_to_le16(ext4_ext_space_root(inode, 0));
2982			err = ext4_ext_dirty(handle, inode, path);
2983		}
2984	}
2985out:
2986	ext4_ext_drop_refs(path);
2987	kfree(path);
2988	if (err == -EAGAIN) {
2989		path = NULL;
2990		goto again;
2991	}
2992	ext4_journal_stop(handle);
2993
2994	return err;
2995}
2996
2997/*
2998 * called at mount time
2999 */
3000void ext4_ext_init(struct super_block *sb)
3001{
3002	/*
3003	 * possible initialization would be here
3004	 */
3005
3006	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
3007#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3008		printk(KERN_INFO "EXT4-fs: file extents enabled"
3009#ifdef AGGRESSIVE_TEST
3010		       ", aggressive tests"
3011#endif
3012#ifdef CHECK_BINSEARCH
3013		       ", check binsearch"
3014#endif
3015#ifdef EXTENTS_STATS
3016		       ", stats"
3017#endif
3018		       "\n");
3019#endif
3020#ifdef EXTENTS_STATS
3021		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3022		EXT4_SB(sb)->s_ext_min = 1 << 30;
3023		EXT4_SB(sb)->s_ext_max = 0;
3024#endif
3025	}
3026}
3027
3028/*
3029 * called at umount time
3030 */
3031void ext4_ext_release(struct super_block *sb)
3032{
3033	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3034		return;
3035
3036#ifdef EXTENTS_STATS
3037	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3038		struct ext4_sb_info *sbi = EXT4_SB(sb);
3039		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3040			sbi->s_ext_blocks, sbi->s_ext_extents,
3041			sbi->s_ext_blocks / sbi->s_ext_extents);
3042		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3043			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3044	}
3045#endif
3046}
3047
3048static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3049{
3050	ext4_lblk_t  ee_block;
3051	ext4_fsblk_t ee_pblock;
3052	unsigned int ee_len;
3053
3054	ee_block  = le32_to_cpu(ex->ee_block);
3055	ee_len    = ext4_ext_get_actual_len(ex);
3056	ee_pblock = ext4_ext_pblock(ex);
3057
3058	if (ee_len == 0)
3059		return 0;
3060
3061	return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3062				     EXTENT_STATUS_WRITTEN);
3063}
3064
3065/* FIXME!! we need to try to merge to left or right after zero-out  */
3066static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3067{
3068	ext4_fsblk_t ee_pblock;
3069	unsigned int ee_len;
3070	int ret;
3071
3072	ee_len    = ext4_ext_get_actual_len(ex);
3073	ee_pblock = ext4_ext_pblock(ex);
3074
3075	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
3076	if (ret > 0)
3077		ret = 0;
3078
3079	return ret;
3080}
3081
3082/*
3083 * ext4_split_extent_at() splits an extent at given block.
3084 *
3085 * @handle: the journal handle
3086 * @inode: the file inode
3087 * @path: the path to the extent
3088 * @split: the logical block where the extent is splitted.
3089 * @split_flags: indicates if the extent could be zeroout if split fails, and
3090 *		 the states(init or uninit) of new extents.
3091 * @flags: flags used to insert new extent to extent tree.
3092 *
3093 *
3094 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3095 * of which are deterimined by split_flag.
3096 *
3097 * There are two cases:
3098 *  a> the extent are splitted into two extent.
3099 *  b> split is not needed, and just mark the extent.
3100 *
3101 * return 0 on success.
3102 */
3103static int ext4_split_extent_at(handle_t *handle,
3104			     struct inode *inode,
3105			     struct ext4_ext_path *path,
3106			     ext4_lblk_t split,
3107			     int split_flag,
3108			     int flags)
3109{
3110	ext4_fsblk_t newblock;
3111	ext4_lblk_t ee_block;
3112	struct ext4_extent *ex, newex, orig_ex, zero_ex;
3113	struct ext4_extent *ex2 = NULL;
3114	unsigned int ee_len, depth;
3115	int err = 0;
3116
3117	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3118	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3119
3120	ext_debug("ext4_split_extents_at: inode %lu, logical"
3121		"block %llu\n", inode->i_ino, (unsigned long long)split);
3122
3123	ext4_ext_show_leaf(inode, path);
3124
3125	depth = ext_depth(inode);
3126	ex = path[depth].p_ext;
3127	ee_block = le32_to_cpu(ex->ee_block);
3128	ee_len = ext4_ext_get_actual_len(ex);
3129	newblock = split - ee_block + ext4_ext_pblock(ex);
3130
3131	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3132	BUG_ON(!ext4_ext_is_uninitialized(ex) &&
3133	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
3134			     EXT4_EXT_MARK_UNINIT1 |
3135			     EXT4_EXT_MARK_UNINIT2));
3136
3137	err = ext4_ext_get_access(handle, inode, path + depth);
3138	if (err)
3139		goto out;
3140
3141	if (split == ee_block) {
3142		/*
3143		 * case b: block @split is the block that the extent begins with
3144		 * then we just change the state of the extent, and splitting
3145		 * is not needed.
3146		 */
3147		if (split_flag & EXT4_EXT_MARK_UNINIT2)
3148			ext4_ext_mark_uninitialized(ex);
3149		else
3150			ext4_ext_mark_initialized(ex);
3151
3152		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3153			ext4_ext_try_to_merge(handle, inode, path, ex);
3154
3155		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3156		goto out;
3157	}
3158
3159	/* case a */
3160	memcpy(&orig_ex, ex, sizeof(orig_ex));
3161	ex->ee_len = cpu_to_le16(split - ee_block);
3162	if (split_flag & EXT4_EXT_MARK_UNINIT1)
3163		ext4_ext_mark_uninitialized(ex);
3164
3165	/*
3166	 * path may lead to new leaf, not to original leaf any more
3167	 * after ext4_ext_insert_extent() returns,
3168	 */
3169	err = ext4_ext_dirty(handle, inode, path + depth);
3170	if (err)
3171		goto fix_extent_len;
3172
3173	ex2 = &newex;
3174	ex2->ee_block = cpu_to_le32(split);
3175	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
3176	ext4_ext_store_pblock(ex2, newblock);
3177	if (split_flag & EXT4_EXT_MARK_UNINIT2)
3178		ext4_ext_mark_uninitialized(ex2);
3179
3180	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3181	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3182		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3183			if (split_flag & EXT4_EXT_DATA_VALID1) {
3184				err = ext4_ext_zeroout(inode, ex2);
3185				zero_ex.ee_block = ex2->ee_block;
3186				zero_ex.ee_len = cpu_to_le16(
3187						ext4_ext_get_actual_len(ex2));
3188				ext4_ext_store_pblock(&zero_ex,
3189						      ext4_ext_pblock(ex2));
3190			} else {
3191				err = ext4_ext_zeroout(inode, ex);
3192				zero_ex.ee_block = ex->ee_block;
3193				zero_ex.ee_len = cpu_to_le16(
3194						ext4_ext_get_actual_len(ex));
3195				ext4_ext_store_pblock(&zero_ex,
3196						      ext4_ext_pblock(ex));
3197			}
3198		} else {
3199			err = ext4_ext_zeroout(inode, &orig_ex);
3200			zero_ex.ee_block = orig_ex.ee_block;
3201			zero_ex.ee_len = cpu_to_le16(
3202						ext4_ext_get_actual_len(&orig_ex));
3203			ext4_ext_store_pblock(&zero_ex,
3204					      ext4_ext_pblock(&orig_ex));
3205		}
3206
3207		if (err)
3208			goto fix_extent_len;
3209		/* update the extent length and mark as initialized */
3210		ex->ee_len = cpu_to_le16(ee_len);
3211		ext4_ext_try_to_merge(handle, inode, path, ex);
3212		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3213		if (err)
3214			goto fix_extent_len;
3215
3216		/* update extent status tree */
3217		err = ext4_zeroout_es(inode, &zero_ex);
3218
3219		goto out;
3220	} else if (err)
3221		goto fix_extent_len;
3222
3223out:
3224	ext4_ext_show_leaf(inode, path);
3225	return err;
3226
3227fix_extent_len:
3228	ex->ee_len = orig_ex.ee_len;
3229	ext4_ext_dirty(handle, inode, path + depth);
3230	return err;
3231}
3232
3233/*
3234 * ext4_split_extents() splits an extent and mark extent which is covered
3235 * by @map as split_flags indicates
3236 *
3237 * It may result in splitting the extent into multiple extents (up to three)
3238 * There are three possibilities:
3239 *   a> There is no split required
3240 *   b> Splits in two extents: Split is happening at either end of the extent
3241 *   c> Splits in three extents: Somone is splitting in middle of the extent
3242 *
3243 */
3244static int ext4_split_extent(handle_t *handle,
3245			      struct inode *inode,
3246			      struct ext4_ext_path *path,
3247			      struct ext4_map_blocks *map,
3248			      int split_flag,
3249			      int flags)
3250{
3251	ext4_lblk_t ee_block;
3252	struct ext4_extent *ex;
3253	unsigned int ee_len, depth;
3254	int err = 0;
3255	int uninitialized;
3256	int split_flag1, flags1;
3257	int allocated = map->m_len;
3258
3259	depth = ext_depth(inode);
3260	ex = path[depth].p_ext;
3261	ee_block = le32_to_cpu(ex->ee_block);
3262	ee_len = ext4_ext_get_actual_len(ex);
3263	uninitialized = ext4_ext_is_uninitialized(ex);
3264
3265	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3266		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3267		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3268		if (uninitialized)
3269			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3270				       EXT4_EXT_MARK_UNINIT2;
3271		if (split_flag & EXT4_EXT_DATA_VALID2)
3272			split_flag1 |= EXT4_EXT_DATA_VALID1;
3273		err = ext4_split_extent_at(handle, inode, path,
3274				map->m_lblk + map->m_len, split_flag1, flags1);
3275		if (err)
3276			goto out;
3277	} else {
3278		allocated = ee_len - (map->m_lblk - ee_block);
3279	}
3280	/*
3281	 * Update path is required because previous ext4_split_extent_at() may
3282	 * result in split of original leaf or extent zeroout.
3283	 */
3284	ext4_ext_drop_refs(path);
3285	path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3286	if (IS_ERR(path))
3287		return PTR_ERR(path);
3288	depth = ext_depth(inode);
3289	ex = path[depth].p_ext;
3290	uninitialized = ext4_ext_is_uninitialized(ex);
3291	split_flag1 = 0;
3292
3293	if (map->m_lblk >= ee_block) {
3294		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3295		if (uninitialized) {
3296			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3297			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3298						     EXT4_EXT_MARK_UNINIT2);
3299		}
3300		err = ext4_split_extent_at(handle, inode, path,
3301				map->m_lblk, split_flag1, flags);
3302		if (err)
3303			goto out;
3304	}
3305
3306	ext4_ext_show_leaf(inode, path);
3307out:
3308	return err ? err : allocated;
3309}
3310
3311/*
3312 * This function is called by ext4_ext_map_blocks() if someone tries to write
3313 * to an uninitialized extent. It may result in splitting the uninitialized
3314 * extent into multiple extents (up to three - one initialized and two
3315 * uninitialized).
3316 * There are three possibilities:
3317 *   a> There is no split required: Entire extent should be initialized
3318 *   b> Splits in two extents: Write is happening at either end of the extent
3319 *   c> Splits in three extents: Somone is writing in middle of the extent
3320 *
3321 * Pre-conditions:
3322 *  - The extent pointed to by 'path' is uninitialized.
3323 *  - The extent pointed to by 'path' contains a superset
3324 *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3325 *
3326 * Post-conditions on success:
3327 *  - the returned value is the number of blocks beyond map->l_lblk
3328 *    that are allocated and initialized.
3329 *    It is guaranteed to be >= map->m_len.
3330 */
3331static int ext4_ext_convert_to_initialized(handle_t *handle,
3332					   struct inode *inode,
3333					   struct ext4_map_blocks *map,
3334					   struct ext4_ext_path *path,
3335					   int flags)
3336{
3337	struct ext4_sb_info *sbi;
3338	struct ext4_extent_header *eh;
3339	struct ext4_map_blocks split_map;
3340	struct ext4_extent zero_ex;
3341	struct ext4_extent *ex, *abut_ex;
3342	ext4_lblk_t ee_block, eof_block;
3343	unsigned int ee_len, depth, map_len = map->m_len;
3344	int allocated = 0, max_zeroout = 0;
3345	int err = 0;
3346	int split_flag = 0;
3347
3348	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3349		"block %llu, max_blocks %u\n", inode->i_ino,
3350		(unsigned long long)map->m_lblk, map_len);
3351
3352	sbi = EXT4_SB(inode->i_sb);
3353	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3354		inode->i_sb->s_blocksize_bits;
3355	if (eof_block < map->m_lblk + map_len)
3356		eof_block = map->m_lblk + map_len;
3357
3358	depth = ext_depth(inode);
3359	eh = path[depth].p_hdr;
3360	ex = path[depth].p_ext;
3361	ee_block = le32_to_cpu(ex->ee_block);
3362	ee_len = ext4_ext_get_actual_len(ex);
3363	zero_ex.ee_len = 0;
3364
3365	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3366
3367	/* Pre-conditions */
3368	BUG_ON(!ext4_ext_is_uninitialized(ex));
3369	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3370
3371	/*
3372	 * Attempt to transfer newly initialized blocks from the currently
3373	 * uninitialized extent to its neighbor. This is much cheaper
3374	 * than an insertion followed by a merge as those involve costly
3375	 * memmove() calls. Transferring to the left is the common case in
3376	 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3377	 * followed by append writes.
3378	 *
3379	 * Limitations of the current logic:
3380	 *  - L1: we do not deal with writes covering the whole extent.
3381	 *    This would require removing the extent if the transfer
3382	 *    is possible.
3383	 *  - L2: we only attempt to merge with an extent stored in the
3384	 *    same extent tree node.
3385	 */
3386	if ((map->m_lblk == ee_block) &&
3387		/* See if we can merge left */
3388		(map_len < ee_len) &&		/*L1*/
3389		(ex > EXT_FIRST_EXTENT(eh))) {	/*L2*/
3390		ext4_lblk_t prev_lblk;
3391		ext4_fsblk_t prev_pblk, ee_pblk;
3392		unsigned int prev_len;
3393
3394		abut_ex = ex - 1;
3395		prev_lblk = le32_to_cpu(abut_ex->ee_block);
3396		prev_len = ext4_ext_get_actual_len(abut_ex);
3397		prev_pblk = ext4_ext_pblock(abut_ex);
3398		ee_pblk = ext4_ext_pblock(ex);
3399
3400		/*
3401		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3402		 * upon those conditions:
3403		 * - C1: abut_ex is initialized,
3404		 * - C2: abut_ex is logically abutting ex,
3405		 * - C3: abut_ex is physically abutting ex,
3406		 * - C4: abut_ex can receive the additional blocks without
3407		 *   overflowing the (initialized) length limit.
3408		 */
3409		if ((!ext4_ext_is_uninitialized(abut_ex)) &&		/*C1*/
3410			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3411			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3412			(prev_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3413			err = ext4_ext_get_access(handle, inode, path + depth);
3414			if (err)
3415				goto out;
3416
3417			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3418				map, ex, abut_ex);
3419
3420			/* Shift the start of ex by 'map_len' blocks */
3421			ex->ee_block = cpu_to_le32(ee_block + map_len);
3422			ext4_ext_store_pblock(ex, ee_pblk + map_len);
3423			ex->ee_len = cpu_to_le16(ee_len - map_len);
3424			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3425
3426			/* Extend abut_ex by 'map_len' blocks */
3427			abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3428
3429			/* Result: number of initialized blocks past m_lblk */
3430			allocated = map_len;
3431		}
3432	} else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3433		   (map_len < ee_len) &&	/*L1*/
3434		   ex < EXT_LAST_EXTENT(eh)) {	/*L2*/
3435		/* See if we can merge right */
3436		ext4_lblk_t next_lblk;
3437		ext4_fsblk_t next_pblk, ee_pblk;
3438		unsigned int next_len;
3439
3440		abut_ex = ex + 1;
3441		next_lblk = le32_to_cpu(abut_ex->ee_block);
3442		next_len = ext4_ext_get_actual_len(abut_ex);
3443		next_pblk = ext4_ext_pblock(abut_ex);
3444		ee_pblk = ext4_ext_pblock(ex);
3445
3446		/*
3447		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3448		 * upon those conditions:
3449		 * - C1: abut_ex is initialized,
3450		 * - C2: abut_ex is logically abutting ex,
3451		 * - C3: abut_ex is physically abutting ex,
3452		 * - C4: abut_ex can receive the additional blocks without
3453		 *   overflowing the (initialized) length limit.
3454		 */
3455		if ((!ext4_ext_is_uninitialized(abut_ex)) &&		/*C1*/
3456		    ((map->m_lblk + map_len) == next_lblk) &&		/*C2*/
3457		    ((ee_pblk + ee_len) == next_pblk) &&		/*C3*/
3458		    (next_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3459			err = ext4_ext_get_access(handle, inode, path + depth);
3460			if (err)
3461				goto out;
3462
3463			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3464				map, ex, abut_ex);
3465
3466			/* Shift the start of abut_ex by 'map_len' blocks */
3467			abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3468			ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3469			ex->ee_len = cpu_to_le16(ee_len - map_len);
3470			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3471
3472			/* Extend abut_ex by 'map_len' blocks */
3473			abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3474
3475			/* Result: number of initialized blocks past m_lblk */
3476			allocated = map_len;
3477		}
3478	}
3479	if (allocated) {
3480		/* Mark the block containing both extents as dirty */
3481		ext4_ext_dirty(handle, inode, path + depth);
3482
3483		/* Update path to point to the right extent */
3484		path[depth].p_ext = abut_ex;
3485		goto out;
3486	} else
3487		allocated = ee_len - (map->m_lblk - ee_block);
3488
3489	WARN_ON(map->m_lblk < ee_block);
3490	/*
3491	 * It is safe to convert extent to initialized via explicit
3492	 * zeroout only if extent is fully inside i_size or new_size.
3493	 */
3494	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3495
3496	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3497		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3498			(inode->i_sb->s_blocksize_bits - 10);
3499
3500	/* If extent is less than s_max_zeroout_kb, zeroout directly */
3501	if (max_zeroout && (ee_len <= max_zeroout)) {
3502		err = ext4_ext_zeroout(inode, ex);
3503		if (err)
3504			goto out;
3505		zero_ex.ee_block = ex->ee_block;
3506		zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3507		ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3508
3509		err = ext4_ext_get_access(handle, inode, path + depth);
3510		if (err)
3511			goto out;
3512		ext4_ext_mark_initialized(ex);
3513		ext4_ext_try_to_merge(handle, inode, path, ex);
3514		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3515		goto out;
3516	}
3517
3518	/*
3519	 * four cases:
3520	 * 1. split the extent into three extents.
3521	 * 2. split the extent into two extents, zeroout the first half.
3522	 * 3. split the extent into two extents, zeroout the second half.
3523	 * 4. split the extent into two extents with out zeroout.
3524	 */
3525	split_map.m_lblk = map->m_lblk;
3526	split_map.m_len = map->m_len;
3527
3528	if (max_zeroout && (allocated > map->m_len)) {
3529		if (allocated <= max_zeroout) {
3530			/* case 3 */
3531			zero_ex.ee_block =
3532					 cpu_to_le32(map->m_lblk);
3533			zero_ex.ee_len = cpu_to_le16(allocated);
3534			ext4_ext_store_pblock(&zero_ex,
3535				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3536			err = ext4_ext_zeroout(inode, &zero_ex);
3537			if (err)
3538				goto out;
3539			split_map.m_lblk = map->m_lblk;
3540			split_map.m_len = allocated;
3541		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3542			/* case 2 */
3543			if (map->m_lblk != ee_block) {
3544				zero_ex.ee_block = ex->ee_block;
3545				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3546							ee_block);
3547				ext4_ext_store_pblock(&zero_ex,
3548						      ext4_ext_pblock(ex));
3549				err = ext4_ext_zeroout(inode, &zero_ex);
3550				if (err)
3551					goto out;
3552			}
3553
3554			split_map.m_lblk = ee_block;
3555			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3556			allocated = map->m_len;
3557		}
3558	}
3559
3560	allocated = ext4_split_extent(handle, inode, path,
3561				      &split_map, split_flag, flags);
3562	if (allocated < 0)
3563		err = allocated;
3564
3565out:
3566	/* If we have gotten a failure, don't zero out status tree */
3567	if (!err)
3568		err = ext4_zeroout_es(inode, &zero_ex);
3569	return err ? err : allocated;
3570}
3571
3572/*
3573 * This function is called by ext4_ext_map_blocks() from
3574 * ext4_get_blocks_dio_write() when DIO to write
3575 * to an uninitialized extent.
3576 *
3577 * Writing to an uninitialized extent may result in splitting the uninitialized
3578 * extent into multiple initialized/uninitialized extents (up to three)
3579 * There are three possibilities:
3580 *   a> There is no split required: Entire extent should be uninitialized
3581 *   b> Splits in two extents: Write is happening at either end of the extent
3582 *   c> Splits in three extents: Somone is writing in middle of the extent
3583 *
3584 * One of more index blocks maybe needed if the extent tree grow after
3585 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3586 * complete, we need to split the uninitialized extent before DIO submit
3587 * the IO. The uninitialized extent called at this time will be split
3588 * into three uninitialized extent(at most). After IO complete, the part
3589 * being filled will be convert to initialized by the end_io callback function
3590 * via ext4_convert_unwritten_extents().
3591 *
3592 * Returns the size of uninitialized extent to be written on success.
3593 */
3594static int ext4_split_unwritten_extents(handle_t *handle,
3595					struct inode *inode,
3596					struct ext4_map_blocks *map,
3597					struct ext4_ext_path *path,
3598					int flags)
3599{
3600	ext4_lblk_t eof_block;
3601	ext4_lblk_t ee_block;
3602	struct ext4_extent *ex;
3603	unsigned int ee_len;
3604	int split_flag = 0, depth;
3605
3606	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3607		"block %llu, max_blocks %u\n", inode->i_ino,
3608		(unsigned long long)map->m_lblk, map->m_len);
3609
3610	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3611		inode->i_sb->s_blocksize_bits;
3612	if (eof_block < map->m_lblk + map->m_len)
3613		eof_block = map->m_lblk + map->m_len;
3614	/*
3615	 * It is safe to convert extent to initialized via explicit
3616	 * zeroout only if extent is fully insde i_size or new_size.
3617	 */
3618	depth = ext_depth(inode);
3619	ex = path[depth].p_ext;
3620	ee_block = le32_to_cpu(ex->ee_block);
3621	ee_len = ext4_ext_get_actual_len(ex);
3622
3623	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3624	split_flag |= EXT4_EXT_MARK_UNINIT2;
3625	if (flags & EXT4_GET_BLOCKS_CONVERT)
3626		split_flag |= EXT4_EXT_DATA_VALID2;
3627	flags |= EXT4_GET_BLOCKS_PRE_IO;
3628	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3629}
3630
3631static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3632						struct inode *inode,
3633						struct ext4_map_blocks *map,
3634						struct ext4_ext_path *path)
3635{
3636	struct ext4_extent *ex;
3637	ext4_lblk_t ee_block;
3638	unsigned int ee_len;
3639	int depth;
3640	int err = 0;
3641
3642	depth = ext_depth(inode);
3643	ex = path[depth].p_ext;
3644	ee_block = le32_to_cpu(ex->ee_block);
3645	ee_len = ext4_ext_get_actual_len(ex);
3646
3647	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3648		"block %llu, max_blocks %u\n", inode->i_ino,
3649		  (unsigned long long)ee_block, ee_len);
3650
3651	/* If extent is larger than requested it is a clear sign that we still
3652	 * have some extent state machine issues left. So extent_split is still
3653	 * required.
3654	 * TODO: Once all related issues will be fixed this situation should be
3655	 * illegal.
3656	 */
3657	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3658#ifdef EXT4_DEBUG
3659		ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3660			     " len %u; IO logical block %llu, len %u\n",
3661			     inode->i_ino, (unsigned long long)ee_block, ee_len,
3662			     (unsigned long long)map->m_lblk, map->m_len);
3663#endif
3664		err = ext4_split_unwritten_extents(handle, inode, map, path,
3665						   EXT4_GET_BLOCKS_CONVERT);
3666		if (err < 0)
3667			goto out;
3668		ext4_ext_drop_refs(path);
3669		path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3670		if (IS_ERR(path)) {
3671			err = PTR_ERR(path);
3672			goto out;
3673		}
3674		depth = ext_depth(inode);
3675		ex = path[depth].p_ext;
3676	}
3677
3678	err = ext4_ext_get_access(handle, inode, path + depth);
3679	if (err)
3680		goto out;
3681	/* first mark the extent as initialized */
3682	ext4_ext_mark_initialized(ex);
3683
3684	/* note: ext4_ext_correct_indexes() isn't needed here because
3685	 * borders are not changed
3686	 */
3687	ext4_ext_try_to_merge(handle, inode, path, ex);
3688
3689	/* Mark modified extent as dirty */
3690	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3691out:
3692	ext4_ext_show_leaf(inode, path);
3693	return err;
3694}
3695
3696static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3697			sector_t block, int count)
3698{
3699	int i;
3700	for (i = 0; i < count; i++)
3701                unmap_underlying_metadata(bdev, block + i);
3702}
3703
3704/*
3705 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3706 */
3707static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3708			      ext4_lblk_t lblk,
3709			      struct ext4_ext_path *path,
3710			      unsigned int len)
3711{
3712	int i, depth;
3713	struct ext4_extent_header *eh;
3714	struct ext4_extent *last_ex;
3715
3716	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3717		return 0;
3718
3719	depth = ext_depth(inode);
3720	eh = path[depth].p_hdr;
3721
3722	/*
3723	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3724	 * do not care for this case anymore. Simply remove the flag
3725	 * if there are no extents.
3726	 */
3727	if (unlikely(!eh->eh_entries))
3728		goto out;
3729	last_ex = EXT_LAST_EXTENT(eh);
3730	/*
3731	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3732	 * last block in the last extent in the file.  We test this by
3733	 * first checking to see if the caller to
3734	 * ext4_ext_get_blocks() was interested in the last block (or
3735	 * a block beyond the last block) in the current extent.  If
3736	 * this turns out to be false, we can bail out from this
3737	 * function immediately.
3738	 */
3739	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3740	    ext4_ext_get_actual_len(last_ex))
3741		return 0;
3742	/*
3743	 * If the caller does appear to be planning to write at or
3744	 * beyond the end of the current extent, we then test to see
3745	 * if the current extent is the last extent in the file, by
3746	 * checking to make sure it was reached via the rightmost node
3747	 * at each level of the tree.
3748	 */
3749	for (i = depth-1; i >= 0; i--)
3750		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3751			return 0;
3752out:
3753	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3754	return ext4_mark_inode_dirty(handle, inode);
3755}
3756
3757/**
3758 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3759 *
3760 * Return 1 if there is a delalloc block in the range, otherwise 0.
3761 */
3762int ext4_find_delalloc_range(struct inode *inode,
3763			     ext4_lblk_t lblk_start,
3764			     ext4_lblk_t lblk_end)
3765{
3766	struct extent_status es;
3767
3768	ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3769	if (es.es_len == 0)
3770		return 0; /* there is no delay extent in this tree */
3771	else if (es.es_lblk <= lblk_start &&
3772		 lblk_start < es.es_lblk + es.es_len)
3773		return 1;
3774	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3775		return 1;
3776	else
3777		return 0;
3778}
3779
3780int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3781{
3782	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3783	ext4_lblk_t lblk_start, lblk_end;
3784	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3785	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3786
3787	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3788}
3789
3790/**
3791 * Determines how many complete clusters (out of those specified by the 'map')
3792 * are under delalloc and were reserved quota for.
3793 * This function is called when we are writing out the blocks that were
3794 * originally written with their allocation delayed, but then the space was
3795 * allocated using fallocate() before the delayed allocation could be resolved.
3796 * The cases to look for are:
3797 * ('=' indicated delayed allocated blocks
3798 *  '-' indicates non-delayed allocated blocks)
3799 * (a) partial clusters towards beginning and/or end outside of allocated range
3800 *     are not delalloc'ed.
3801 *	Ex:
3802 *	|----c---=|====c====|====c====|===-c----|
3803 *	         |++++++ allocated ++++++|
3804 *	==> 4 complete clusters in above example
3805 *
3806 * (b) partial cluster (outside of allocated range) towards either end is
3807 *     marked for delayed allocation. In this case, we will exclude that
3808 *     cluster.
3809 *	Ex:
3810 *	|----====c========|========c========|
3811 *	     |++++++ allocated ++++++|
3812 *	==> 1 complete clusters in above example
3813 *
3814 *	Ex:
3815 *	|================c================|
3816 *            |++++++ allocated ++++++|
3817 *	==> 0 complete clusters in above example
3818 *
3819 * The ext4_da_update_reserve_space will be called only if we
3820 * determine here that there were some "entire" clusters that span
3821 * this 'allocated' range.
3822 * In the non-bigalloc case, this function will just end up returning num_blks
3823 * without ever calling ext4_find_delalloc_range.
3824 */
3825static unsigned int
3826get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3827			   unsigned int num_blks)
3828{
3829	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3830	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3831	ext4_lblk_t lblk_from, lblk_to, c_offset;
3832	unsigned int allocated_clusters = 0;
3833
3834	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3835	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3836
3837	/* max possible clusters for this allocation */
3838	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3839
3840	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3841
3842	/* Check towards left side */
3843	c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3844	if (c_offset) {
3845		lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3846		lblk_to = lblk_from + c_offset - 1;
3847
3848		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3849			allocated_clusters--;
3850	}
3851
3852	/* Now check towards right. */
3853	c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3854	if (allocated_clusters && c_offset) {
3855		lblk_from = lblk_start + num_blks;
3856		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3857
3858		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3859			allocated_clusters--;
3860	}
3861
3862	return allocated_clusters;
3863}
3864
3865static int
3866ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3867			struct ext4_map_blocks *map,
3868			struct ext4_ext_path *path, int flags,
3869			unsigned int allocated, ext4_fsblk_t newblock)
3870{
3871	int ret = 0;
3872	int err = 0;
3873	ext4_io_end_t *io = ext4_inode_aio(inode);
3874
3875	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3876		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
3877		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3878		  flags, allocated);
3879	ext4_ext_show_leaf(inode, path);
3880
3881	/*
3882	 * When writing into uninitialized space, we should not fail to
3883	 * allocate metadata blocks for the new extent block if needed.
3884	 */
3885	flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
3886
3887	trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3888						    allocated, newblock);
3889
3890	/* get_block() before submit the IO, split the extent */
3891	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3892		ret = ext4_split_unwritten_extents(handle, inode, map,
3893						   path, flags);
3894		if (ret <= 0)
3895			goto out;
3896		/*
3897		 * Flag the inode(non aio case) or end_io struct (aio case)
3898		 * that this IO needs to conversion to written when IO is
3899		 * completed
3900		 */
3901		if (io)
3902			ext4_set_io_unwritten_flag(inode, io);
3903		else
3904			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3905		map->m_flags |= EXT4_MAP_UNWRITTEN;
3906		if (ext4_should_dioread_nolock(inode))
3907			map->m_flags |= EXT4_MAP_UNINIT;
3908		goto out;
3909	}
3910	/* IO end_io complete, convert the filled extent to written */
3911	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3912		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3913							path);
3914		if (ret >= 0) {
3915			ext4_update_inode_fsync_trans(handle, inode, 1);
3916			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3917						 path, map->m_len);
3918		} else
3919			err = ret;
3920		map->m_flags |= EXT4_MAP_MAPPED;
3921		map->m_pblk = newblock;
3922		if (allocated > map->m_len)
3923			allocated = map->m_len;
3924		map->m_len = allocated;
3925		goto out2;
3926	}
3927	/* buffered IO case */
3928	/*
3929	 * repeat fallocate creation request
3930	 * we already have an unwritten extent
3931	 */
3932	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
3933		map->m_flags |= EXT4_MAP_UNWRITTEN;
3934		goto map_out;
3935	}
3936
3937	/* buffered READ or buffered write_begin() lookup */
3938	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3939		/*
3940		 * We have blocks reserved already.  We
3941		 * return allocated blocks so that delalloc
3942		 * won't do block reservation for us.  But
3943		 * the buffer head will be unmapped so that
3944		 * a read from the block returns 0s.
3945		 */
3946		map->m_flags |= EXT4_MAP_UNWRITTEN;
3947		goto out1;
3948	}
3949
3950	/* buffered write, writepage time, convert*/
3951	ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags);
3952	if (ret >= 0)
3953		ext4_update_inode_fsync_trans(handle, inode, 1);
3954out:
3955	if (ret <= 0) {
3956		err = ret;
3957		goto out2;
3958	} else
3959		allocated = ret;
3960	map->m_flags |= EXT4_MAP_NEW;
3961	/*
3962	 * if we allocated more blocks than requested
3963	 * we need to make sure we unmap the extra block
3964	 * allocated. The actual needed block will get
3965	 * unmapped later when we find the buffer_head marked
3966	 * new.
3967	 */
3968	if (allocated > map->m_len) {
3969		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3970					newblock + map->m_len,
3971					allocated - map->m_len);
3972		allocated = map->m_len;
3973	}
3974	map->m_len = allocated;
3975
3976	/*
3977	 * If we have done fallocate with the offset that is already
3978	 * delayed allocated, we would have block reservation
3979	 * and quota reservation done in the delayed write path.
3980	 * But fallocate would have already updated quota and block
3981	 * count for this offset. So cancel these reservation
3982	 */
3983	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3984		unsigned int reserved_clusters;
3985		reserved_clusters = get_reserved_cluster_alloc(inode,
3986				map->m_lblk, map->m_len);
3987		if (reserved_clusters)
3988			ext4_da_update_reserve_space(inode,
3989						     reserved_clusters,
3990						     0);
3991	}
3992
3993map_out:
3994	map->m_flags |= EXT4_MAP_MAPPED;
3995	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3996		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3997					 map->m_len);
3998		if (err < 0)
3999			goto out2;
4000	}
4001out1:
4002	if (allocated > map->m_len)
4003		allocated = map->m_len;
4004	ext4_ext_show_leaf(inode, path);
4005	map->m_pblk = newblock;
4006	map->m_len = allocated;
4007out2:
4008	if (path) {
4009		ext4_ext_drop_refs(path);
4010		kfree(path);
4011	}
4012	return err ? err : allocated;
4013}
4014
4015/*
4016 * get_implied_cluster_alloc - check to see if the requested
4017 * allocation (in the map structure) overlaps with a cluster already
4018 * allocated in an extent.
4019 *	@sb	The filesystem superblock structure
4020 *	@map	The requested lblk->pblk mapping
4021 *	@ex	The extent structure which might contain an implied
4022 *			cluster allocation
4023 *
4024 * This function is called by ext4_ext_map_blocks() after we failed to
4025 * find blocks that were already in the inode's extent tree.  Hence,
4026 * we know that the beginning of the requested region cannot overlap
4027 * the extent from the inode's extent tree.  There are three cases we
4028 * want to catch.  The first is this case:
4029 *
4030 *		 |--- cluster # N--|
4031 *    |--- extent ---|	|---- requested region ---|
4032 *			|==========|
4033 *
4034 * The second case that we need to test for is this one:
4035 *
4036 *   |--------- cluster # N ----------------|
4037 *	   |--- requested region --|   |------- extent ----|
4038 *	   |=======================|
4039 *
4040 * The third case is when the requested region lies between two extents
4041 * within the same cluster:
4042 *          |------------- cluster # N-------------|
4043 * |----- ex -----|                  |---- ex_right ----|
4044 *                  |------ requested region ------|
4045 *                  |================|
4046 *
4047 * In each of the above cases, we need to set the map->m_pblk and
4048 * map->m_len so it corresponds to the return the extent labelled as
4049 * "|====|" from cluster #N, since it is already in use for data in
4050 * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
4051 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4052 * as a new "allocated" block region.  Otherwise, we will return 0 and
4053 * ext4_ext_map_blocks() will then allocate one or more new clusters
4054 * by calling ext4_mb_new_blocks().
4055 */
4056static int get_implied_cluster_alloc(struct super_block *sb,
4057				     struct ext4_map_blocks *map,
4058				     struct ext4_extent *ex,
4059				     struct ext4_ext_path *path)
4060{
4061	struct ext4_sb_info *sbi = EXT4_SB(sb);
4062	ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4063	ext4_lblk_t ex_cluster_start, ex_cluster_end;
4064	ext4_lblk_t rr_cluster_start;
4065	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4066	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4067	unsigned short ee_len = ext4_ext_get_actual_len(ex);
4068
4069	/* The extent passed in that we are trying to match */
4070	ex_cluster_start = EXT4_B2C(sbi, ee_block);
4071	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4072
4073	/* The requested region passed into ext4_map_blocks() */
4074	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4075
4076	if ((rr_cluster_start == ex_cluster_end) ||
4077	    (rr_cluster_start == ex_cluster_start)) {
4078		if (rr_cluster_start == ex_cluster_end)
4079			ee_start += ee_len - 1;
4080		map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
4081		map->m_len = min(map->m_len,
4082				 (unsigned) sbi->s_cluster_ratio - c_offset);
4083		/*
4084		 * Check for and handle this case:
4085		 *
4086		 *   |--------- cluster # N-------------|
4087		 *		       |------- extent ----|
4088		 *	   |--- requested region ---|
4089		 *	   |===========|
4090		 */
4091
4092		if (map->m_lblk < ee_block)
4093			map->m_len = min(map->m_len, ee_block - map->m_lblk);
4094
4095		/*
4096		 * Check for the case where there is already another allocated
4097		 * block to the right of 'ex' but before the end of the cluster.
4098		 *
4099		 *          |------------- cluster # N-------------|
4100		 * |----- ex -----|                  |---- ex_right ----|
4101		 *                  |------ requested region ------|
4102		 *                  |================|
4103		 */
4104		if (map->m_lblk > ee_block) {
4105			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4106			map->m_len = min(map->m_len, next - map->m_lblk);
4107		}
4108
4109		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4110		return 1;
4111	}
4112
4113	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4114	return 0;
4115}
4116
4117
4118/*
4119 * Block allocation/map/preallocation routine for extents based files
4120 *
4121 *
4122 * Need to be called with
4123 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4124 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4125 *
4126 * return > 0, number of of blocks already mapped/allocated
4127 *          if create == 0 and these are pre-allocated blocks
4128 *          	buffer head is unmapped
4129 *          otherwise blocks are mapped
4130 *
4131 * return = 0, if plain look up failed (blocks have not been allocated)
4132 *          buffer head is unmapped
4133 *
4134 * return < 0, error case.
4135 */
4136int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4137			struct ext4_map_blocks *map, int flags)
4138{
4139	struct ext4_ext_path *path = NULL;
4140	struct ext4_extent newex, *ex, *ex2;
4141	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4142	ext4_fsblk_t newblock = 0;
4143	int free_on_err = 0, err = 0, depth, ret;
4144	unsigned int allocated = 0, offset = 0;
4145	unsigned int allocated_clusters = 0;
4146	struct ext4_allocation_request ar;
4147	ext4_io_end_t *io = ext4_inode_aio(inode);
4148	ext4_lblk_t cluster_offset;
4149	int set_unwritten = 0;
4150
4151	ext_debug("blocks %u/%u requested for inode %lu\n",
4152		  map->m_lblk, map->m_len, inode->i_ino);
4153	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4154
4155	/* find extent for this block */
4156	path = ext4_ext_find_extent(inode, map->m_lblk, NULL, 0);
4157	if (IS_ERR(path)) {
4158		err = PTR_ERR(path);
4159		path = NULL;
4160		goto out2;
4161	}
4162
4163	depth = ext_depth(inode);
4164
4165	/*
4166	 * consistent leaf must not be empty;
4167	 * this situation is possible, though, _during_ tree modification;
4168	 * this is why assert can't be put in ext4_ext_find_extent()
4169	 */
4170	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4171		EXT4_ERROR_INODE(inode, "bad extent address "
4172				 "lblock: %lu, depth: %d pblock %lld",
4173				 (unsigned long) map->m_lblk, depth,
4174				 path[depth].p_block);
4175		err = -EIO;
4176		goto out2;
4177	}
4178
4179	ex = path[depth].p_ext;
4180	if (ex) {
4181		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4182		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4183		unsigned short ee_len;
4184
4185		/*
4186		 * Uninitialized extents are treated as holes, except that
4187		 * we split out initialized portions during a write.
4188		 */
4189		ee_len = ext4_ext_get_actual_len(ex);
4190
4191		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4192
4193		/* if found extent covers block, simply return it */
4194		if (in_range(map->m_lblk, ee_block, ee_len)) {
4195			newblock = map->m_lblk - ee_block + ee_start;
4196			/* number of remaining blocks in the extent */
4197			allocated = ee_len - (map->m_lblk - ee_block);
4198			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4199				  ee_block, ee_len, newblock);
4200
4201			if (!ext4_ext_is_uninitialized(ex))
4202				goto out;
4203
4204			ret = ext4_ext_handle_uninitialized_extents(
4205				handle, inode, map, path, flags,
4206				allocated, newblock);
4207			if (ret < 0)
4208				err = ret;
4209			else
4210				allocated = ret;
4211			goto out3;
4212		}
4213	}
4214
4215	if ((sbi->s_cluster_ratio > 1) &&
4216	    ext4_find_delalloc_cluster(inode, map->m_lblk))
4217		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4218
4219	/*
4220	 * requested block isn't allocated yet;
4221	 * we couldn't try to create block if create flag is zero
4222	 */
4223	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4224		/*
4225		 * put just found gap into cache to speed up
4226		 * subsequent requests
4227		 */
4228		if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4229			ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4230		goto out2;
4231	}
4232
4233	/*
4234	 * Okay, we need to do block allocation.
4235	 */
4236	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4237	newex.ee_block = cpu_to_le32(map->m_lblk);
4238	cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4239
4240	/*
4241	 * If we are doing bigalloc, check to see if the extent returned
4242	 * by ext4_ext_find_extent() implies a cluster we can use.
4243	 */
4244	if (cluster_offset && ex &&
4245	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4246		ar.len = allocated = map->m_len;
4247		newblock = map->m_pblk;
4248		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4249		goto got_allocated_blocks;
4250	}
4251
4252	/* find neighbour allocated blocks */
4253	ar.lleft = map->m_lblk;
4254	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4255	if (err)
4256		goto out2;
4257	ar.lright = map->m_lblk;
4258	ex2 = NULL;
4259	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4260	if (err)
4261		goto out2;
4262
4263	/* Check if the extent after searching to the right implies a
4264	 * cluster we can use. */
4265	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4266	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4267		ar.len = allocated = map->m_len;
4268		newblock = map->m_pblk;
4269		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4270		goto got_allocated_blocks;
4271	}
4272
4273	/*
4274	 * See if request is beyond maximum number of blocks we can have in
4275	 * a single extent. For an initialized extent this limit is
4276	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4277	 * EXT_UNINIT_MAX_LEN.
4278	 */
4279	if (map->m_len > EXT_INIT_MAX_LEN &&
4280	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4281		map->m_len = EXT_INIT_MAX_LEN;
4282	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4283		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4284		map->m_len = EXT_UNINIT_MAX_LEN;
4285
4286	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4287	newex.ee_len = cpu_to_le16(map->m_len);
4288	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4289	if (err)
4290		allocated = ext4_ext_get_actual_len(&newex);
4291	else
4292		allocated = map->m_len;
4293
4294	/* allocate new block */
4295	ar.inode = inode;
4296	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4297	ar.logical = map->m_lblk;
4298	/*
4299	 * We calculate the offset from the beginning of the cluster
4300	 * for the logical block number, since when we allocate a
4301	 * physical cluster, the physical block should start at the
4302	 * same offset from the beginning of the cluster.  This is
4303	 * needed so that future calls to get_implied_cluster_alloc()
4304	 * work correctly.
4305	 */
4306	offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4307	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4308	ar.goal -= offset;
4309	ar.logical -= offset;
4310	if (S_ISREG(inode->i_mode))
4311		ar.flags = EXT4_MB_HINT_DATA;
4312	else
4313		/* disable in-core preallocation for non-regular files */
4314		ar.flags = 0;
4315	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4316		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4317	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4318	if (!newblock)
4319		goto out2;
4320	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4321		  ar.goal, newblock, allocated);
4322	free_on_err = 1;
4323	allocated_clusters = ar.len;
4324	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4325	if (ar.len > allocated)
4326		ar.len = allocated;
4327
4328got_allocated_blocks:
4329	/* try to insert new extent into found leaf and return */
4330	ext4_ext_store_pblock(&newex, newblock + offset);
4331	newex.ee_len = cpu_to_le16(ar.len);
4332	/* Mark uninitialized */
4333	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4334		ext4_ext_mark_uninitialized(&newex);
4335		map->m_flags |= EXT4_MAP_UNWRITTEN;
4336		/*
4337		 * io_end structure was created for every IO write to an
4338		 * uninitialized extent. To avoid unnecessary conversion,
4339		 * here we flag the IO that really needs the conversion.
4340		 * For non asycn direct IO case, flag the inode state
4341		 * that we need to perform conversion when IO is done.
4342		 */
4343		if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4344			set_unwritten = 1;
4345		if (ext4_should_dioread_nolock(inode))
4346			map->m_flags |= EXT4_MAP_UNINIT;
4347	}
4348
4349	err = 0;
4350	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4351		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4352					 path, ar.len);
4353	if (!err)
4354		err = ext4_ext_insert_extent(handle, inode, path,
4355					     &newex, flags);
4356
4357	if (!err && set_unwritten) {
4358		if (io)
4359			ext4_set_io_unwritten_flag(inode, io);
4360		else
4361			ext4_set_inode_state(inode,
4362					     EXT4_STATE_DIO_UNWRITTEN);
4363	}
4364
4365	if (err && free_on_err) {
4366		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4367			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4368		/* free data blocks we just allocated */
4369		/* not a good idea to call discard here directly,
4370		 * but otherwise we'd need to call it every free() */
4371		ext4_discard_preallocations(inode);
4372		ext4_free_blocks(handle, inode, NULL, newblock,
4373				 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4374		goto out2;
4375	}
4376
4377	/* previous routine could use block we allocated */
4378	newblock = ext4_ext_pblock(&newex);
4379	allocated = ext4_ext_get_actual_len(&newex);
4380	if (allocated > map->m_len)
4381		allocated = map->m_len;
4382	map->m_flags |= EXT4_MAP_NEW;
4383
4384	/*
4385	 * Update reserved blocks/metadata blocks after successful
4386	 * block allocation which had been deferred till now.
4387	 */
4388	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4389		unsigned int reserved_clusters;
4390		/*
4391		 * Check how many clusters we had reserved this allocated range
4392		 */
4393		reserved_clusters = get_reserved_cluster_alloc(inode,
4394						map->m_lblk, allocated);
4395		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4396			if (reserved_clusters) {
4397				/*
4398				 * We have clusters reserved for this range.
4399				 * But since we are not doing actual allocation
4400				 * and are simply using blocks from previously
4401				 * allocated cluster, we should release the
4402				 * reservation and not claim quota.
4403				 */
4404				ext4_da_update_reserve_space(inode,
4405						reserved_clusters, 0);
4406			}
4407		} else {
4408			BUG_ON(allocated_clusters < reserved_clusters);
4409			if (reserved_clusters < allocated_clusters) {
4410				struct ext4_inode_info *ei = EXT4_I(inode);
4411				int reservation = allocated_clusters -
4412						  reserved_clusters;
4413				/*
4414				 * It seems we claimed few clusters outside of
4415				 * the range of this allocation. We should give
4416				 * it back to the reservation pool. This can
4417				 * happen in the following case:
4418				 *
4419				 * * Suppose s_cluster_ratio is 4 (i.e., each
4420				 *   cluster has 4 blocks. Thus, the clusters
4421				 *   are [0-3],[4-7],[8-11]...
4422				 * * First comes delayed allocation write for
4423				 *   logical blocks 10 & 11. Since there were no
4424				 *   previous delayed allocated blocks in the
4425				 *   range [8-11], we would reserve 1 cluster
4426				 *   for this write.
4427				 * * Next comes write for logical blocks 3 to 8.
4428				 *   In this case, we will reserve 2 clusters
4429				 *   (for [0-3] and [4-7]; and not for [8-11] as
4430				 *   that range has a delayed allocated blocks.
4431				 *   Thus total reserved clusters now becomes 3.
4432				 * * Now, during the delayed allocation writeout
4433				 *   time, we will first write blocks [3-8] and
4434				 *   allocate 3 clusters for writing these
4435				 *   blocks. Also, we would claim all these
4436				 *   three clusters above.
4437				 * * Now when we come here to writeout the
4438				 *   blocks [10-11], we would expect to claim
4439				 *   the reservation of 1 cluster we had made
4440				 *   (and we would claim it since there are no
4441				 *   more delayed allocated blocks in the range
4442				 *   [8-11]. But our reserved cluster count had
4443				 *   already gone to 0.
4444				 *
4445				 *   Thus, at the step 4 above when we determine
4446				 *   that there are still some unwritten delayed
4447				 *   allocated blocks outside of our current
4448				 *   block range, we should increment the
4449				 *   reserved clusters count so that when the
4450				 *   remaining blocks finally gets written, we
4451				 *   could claim them.
4452				 */
4453				dquot_reserve_block(inode,
4454						EXT4_C2B(sbi, reservation));
4455				spin_lock(&ei->i_block_reservation_lock);
4456				ei->i_reserved_data_blocks += reservation;
4457				spin_unlock(&ei->i_block_reservation_lock);
4458			}
4459			/*
4460			 * We will claim quota for all newly allocated blocks.
4461			 * We're updating the reserved space *after* the
4462			 * correction above so we do not accidentally free
4463			 * all the metadata reservation because we might
4464			 * actually need it later on.
4465			 */
4466			ext4_da_update_reserve_space(inode, allocated_clusters,
4467							1);
4468		}
4469	}
4470
4471	/*
4472	 * Cache the extent and update transaction to commit on fdatasync only
4473	 * when it is _not_ an uninitialized extent.
4474	 */
4475	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
4476		ext4_update_inode_fsync_trans(handle, inode, 1);
4477	else
4478		ext4_update_inode_fsync_trans(handle, inode, 0);
4479out:
4480	if (allocated > map->m_len)
4481		allocated = map->m_len;
4482	ext4_ext_show_leaf(inode, path);
4483	map->m_flags |= EXT4_MAP_MAPPED;
4484	map->m_pblk = newblock;
4485	map->m_len = allocated;
4486out2:
4487	if (path) {
4488		ext4_ext_drop_refs(path);
4489		kfree(path);
4490	}
4491
4492out3:
4493	trace_ext4_ext_map_blocks_exit(inode, flags, map,
4494				       err ? err : allocated);
4495	ext4_es_lru_add(inode);
4496	return err ? err : allocated;
4497}
4498
4499void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4500{
4501	struct super_block *sb = inode->i_sb;
4502	ext4_lblk_t last_block;
4503	int err = 0;
4504
4505	/*
4506	 * TODO: optimization is possible here.
4507	 * Probably we need not scan at all,
4508	 * because page truncation is enough.
4509	 */
4510
4511	/* we have to know where to truncate from in crash case */
4512	EXT4_I(inode)->i_disksize = inode->i_size;
4513	ext4_mark_inode_dirty(handle, inode);
4514
4515	last_block = (inode->i_size + sb->s_blocksize - 1)
4516			>> EXT4_BLOCK_SIZE_BITS(sb);
4517retry:
4518	err = ext4_es_remove_extent(inode, last_block,
4519				    EXT_MAX_BLOCKS - last_block);
4520	if (err == -ENOMEM) {
4521		cond_resched();
4522		congestion_wait(BLK_RW_ASYNC, HZ/50);
4523		goto retry;
4524	}
4525	if (err) {
4526		ext4_std_error(inode->i_sb, err);
4527		return;
4528	}
4529	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4530	ext4_std_error(inode->i_sb, err);
4531}
4532
4533static void ext4_falloc_update_inode(struct inode *inode,
4534				int mode, loff_t new_size, int update_ctime)
4535{
4536	struct timespec now;
4537
4538	if (update_ctime) {
4539		now = current_fs_time(inode->i_sb);
4540		if (!timespec_equal(&inode->i_ctime, &now))
4541			inode->i_ctime = now;
4542	}
4543	/*
4544	 * Update only when preallocation was requested beyond
4545	 * the file size.
4546	 */
4547	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4548		if (new_size > i_size_read(inode))
4549			i_size_write(inode, new_size);
4550		if (new_size > EXT4_I(inode)->i_disksize)
4551			ext4_update_i_disksize(inode, new_size);
4552	} else {
4553		/*
4554		 * Mark that we allocate beyond EOF so the subsequent truncate
4555		 * can proceed even if the new size is the same as i_size.
4556		 */
4557		if (new_size > i_size_read(inode))
4558			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4559	}
4560
4561}
4562
4563/*
4564 * preallocate space for a file. This implements ext4's fallocate file
4565 * operation, which gets called from sys_fallocate system call.
4566 * For block-mapped files, posix_fallocate should fall back to the method
4567 * of writing zeroes to the required new blocks (the same behavior which is
4568 * expected for file systems which do not support fallocate() system call).
4569 */
4570long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4571{
4572	struct inode *inode = file_inode(file);
4573	handle_t *handle;
4574	loff_t new_size;
4575	unsigned int max_blocks;
4576	int ret = 0;
4577	int ret2 = 0;
4578	int retries = 0;
4579	int flags;
4580	struct ext4_map_blocks map;
4581	unsigned int credits, blkbits = inode->i_blkbits;
4582
4583	/* Return error if mode is not supported */
4584	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4585		     FALLOC_FL_COLLAPSE_RANGE))
4586		return -EOPNOTSUPP;
4587
4588	if (mode & FALLOC_FL_PUNCH_HOLE)
4589		return ext4_punch_hole(inode, offset, len);
4590
4591	if (mode & FALLOC_FL_COLLAPSE_RANGE)
4592		return ext4_collapse_range(inode, offset, len);
4593
4594	ret = ext4_convert_inline_data(inode);
4595	if (ret)
4596		return ret;
4597
4598	/*
4599	 * currently supporting (pre)allocate mode for extent-based
4600	 * files _only_
4601	 */
4602	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4603		return -EOPNOTSUPP;
4604
4605	trace_ext4_fallocate_enter(inode, offset, len, mode);
4606	map.m_lblk = offset >> blkbits;
4607	/*
4608	 * We can't just convert len to max_blocks because
4609	 * If blocksize = 4096 offset = 3072 and len = 2048
4610	 */
4611	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4612		- map.m_lblk;
4613	/*
4614	 * credits to insert 1 extent into extent tree
4615	 */
4616	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4617	mutex_lock(&inode->i_mutex);
4618	ret = inode_newsize_ok(inode, (len + offset));
4619	if (ret) {
4620		mutex_unlock(&inode->i_mutex);
4621		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4622		return ret;
4623	}
4624	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4625	if (mode & FALLOC_FL_KEEP_SIZE)
4626		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4627	/*
4628	 * Don't normalize the request if it can fit in one extent so
4629	 * that it doesn't get unnecessarily split into multiple
4630	 * extents.
4631	 */
4632	if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4633		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4634
4635retry:
4636	while (ret >= 0 && ret < max_blocks) {
4637		map.m_lblk = map.m_lblk + ret;
4638		map.m_len = max_blocks = max_blocks - ret;
4639		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4640					    credits);
4641		if (IS_ERR(handle)) {
4642			ret = PTR_ERR(handle);
4643			break;
4644		}
4645		ret = ext4_map_blocks(handle, inode, &map, flags);
4646		if (ret <= 0) {
4647#ifdef EXT4FS_DEBUG
4648			ext4_warning(inode->i_sb,
4649				     "inode #%lu: block %u: len %u: "
4650				     "ext4_ext_map_blocks returned %d",
4651				     inode->i_ino, map.m_lblk,
4652				     map.m_len, ret);
4653#endif
4654			ext4_mark_inode_dirty(handle, inode);
4655			ret2 = ext4_journal_stop(handle);
4656			break;
4657		}
4658		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4659						blkbits) >> blkbits))
4660			new_size = offset + len;
4661		else
4662			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4663
4664		ext4_falloc_update_inode(inode, mode, new_size,
4665					 (map.m_flags & EXT4_MAP_NEW));
4666		ext4_mark_inode_dirty(handle, inode);
4667		if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4668			ext4_handle_sync(handle);
4669		ret2 = ext4_journal_stop(handle);
4670		if (ret2)
4671			break;
4672	}
4673	if (ret == -ENOSPC &&
4674			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4675		ret = 0;
4676		goto retry;
4677	}
4678	mutex_unlock(&inode->i_mutex);
4679	trace_ext4_fallocate_exit(inode, offset, max_blocks,
4680				ret > 0 ? ret2 : ret);
4681	return ret > 0 ? ret2 : ret;
4682}
4683
4684/*
4685 * This function convert a range of blocks to written extents
4686 * The caller of this function will pass the start offset and the size.
4687 * all unwritten extents within this range will be converted to
4688 * written extents.
4689 *
4690 * This function is called from the direct IO end io call back
4691 * function, to convert the fallocated extents after IO is completed.
4692 * Returns 0 on success.
4693 */
4694int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4695				   loff_t offset, ssize_t len)
4696{
4697	unsigned int max_blocks;
4698	int ret = 0;
4699	int ret2 = 0;
4700	struct ext4_map_blocks map;
4701	unsigned int credits, blkbits = inode->i_blkbits;
4702
4703	map.m_lblk = offset >> blkbits;
4704	/*
4705	 * We can't just convert len to max_blocks because
4706	 * If blocksize = 4096 offset = 3072 and len = 2048
4707	 */
4708	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4709		      map.m_lblk);
4710	/*
4711	 * This is somewhat ugly but the idea is clear: When transaction is
4712	 * reserved, everything goes into it. Otherwise we rather start several
4713	 * smaller transactions for conversion of each extent separately.
4714	 */
4715	if (handle) {
4716		handle = ext4_journal_start_reserved(handle,
4717						     EXT4_HT_EXT_CONVERT);
4718		if (IS_ERR(handle))
4719			return PTR_ERR(handle);
4720		credits = 0;
4721	} else {
4722		/*
4723		 * credits to insert 1 extent into extent tree
4724		 */
4725		credits = ext4_chunk_trans_blocks(inode, max_blocks);
4726	}
4727	while (ret >= 0 && ret < max_blocks) {
4728		map.m_lblk += ret;
4729		map.m_len = (max_blocks -= ret);
4730		if (credits) {
4731			handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4732						    credits);
4733			if (IS_ERR(handle)) {
4734				ret = PTR_ERR(handle);
4735				break;
4736			}
4737		}
4738		ret = ext4_map_blocks(handle, inode, &map,
4739				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4740		if (ret <= 0)
4741			ext4_warning(inode->i_sb,
4742				     "inode #%lu: block %u: len %u: "
4743				     "ext4_ext_map_blocks returned %d",
4744				     inode->i_ino, map.m_lblk,
4745				     map.m_len, ret);
4746		ext4_mark_inode_dirty(handle, inode);
4747		if (credits)
4748			ret2 = ext4_journal_stop(handle);
4749		if (ret <= 0 || ret2)
4750			break;
4751	}
4752	if (!credits)
4753		ret2 = ext4_journal_stop(handle);
4754	return ret > 0 ? ret2 : ret;
4755}
4756
4757/*
4758 * If newes is not existing extent (newes->ec_pblk equals zero) find
4759 * delayed extent at start of newes and update newes accordingly and
4760 * return start of the next delayed extent.
4761 *
4762 * If newes is existing extent (newes->ec_pblk is not equal zero)
4763 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4764 * extent found. Leave newes unmodified.
4765 */
4766static int ext4_find_delayed_extent(struct inode *inode,
4767				    struct extent_status *newes)
4768{
4769	struct extent_status es;
4770	ext4_lblk_t block, next_del;
4771
4772	if (newes->es_pblk == 0) {
4773		ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
4774				newes->es_lblk + newes->es_len - 1, &es);
4775
4776		/*
4777		 * No extent in extent-tree contains block @newes->es_pblk,
4778		 * then the block may stay in 1)a hole or 2)delayed-extent.
4779		 */
4780		if (es.es_len == 0)
4781			/* A hole found. */
4782			return 0;
4783
4784		if (es.es_lblk > newes->es_lblk) {
4785			/* A hole found. */
4786			newes->es_len = min(es.es_lblk - newes->es_lblk,
4787					    newes->es_len);
4788			return 0;
4789		}
4790
4791		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
4792	}
4793
4794	block = newes->es_lblk + newes->es_len;
4795	ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
4796	if (es.es_len == 0)
4797		next_del = EXT_MAX_BLOCKS;
4798	else
4799		next_del = es.es_lblk;
4800
4801	return next_del;
4802}
4803/* fiemap flags we can handle specified here */
4804#define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4805
4806static int ext4_xattr_fiemap(struct inode *inode,
4807				struct fiemap_extent_info *fieinfo)
4808{
4809	__u64 physical = 0;
4810	__u64 length;
4811	__u32 flags = FIEMAP_EXTENT_LAST;
4812	int blockbits = inode->i_sb->s_blocksize_bits;
4813	int error = 0;
4814
4815	/* in-inode? */
4816	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4817		struct ext4_iloc iloc;
4818		int offset;	/* offset of xattr in inode */
4819
4820		error = ext4_get_inode_loc(inode, &iloc);
4821		if (error)
4822			return error;
4823		physical = (__u64)iloc.bh->b_blocknr << blockbits;
4824		offset = EXT4_GOOD_OLD_INODE_SIZE +
4825				EXT4_I(inode)->i_extra_isize;
4826		physical += offset;
4827		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4828		flags |= FIEMAP_EXTENT_DATA_INLINE;
4829		brelse(iloc.bh);
4830	} else { /* external block */
4831		physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
4832		length = inode->i_sb->s_blocksize;
4833	}
4834
4835	if (physical)
4836		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4837						length, flags);
4838	return (error < 0 ? error : 0);
4839}
4840
4841int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4842		__u64 start, __u64 len)
4843{
4844	ext4_lblk_t start_blk;
4845	int error = 0;
4846
4847	if (ext4_has_inline_data(inode)) {
4848		int has_inline = 1;
4849
4850		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4851
4852		if (has_inline)
4853			return error;
4854	}
4855
4856	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
4857		error = ext4_ext_precache(inode);
4858		if (error)
4859			return error;
4860	}
4861
4862	/* fallback to generic here if not in extents fmt */
4863	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4864		return generic_block_fiemap(inode, fieinfo, start, len,
4865			ext4_get_block);
4866
4867	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4868		return -EBADR;
4869
4870	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4871		error = ext4_xattr_fiemap(inode, fieinfo);
4872	} else {
4873		ext4_lblk_t len_blks;
4874		__u64 last_blk;
4875
4876		start_blk = start >> inode->i_sb->s_blocksize_bits;
4877		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4878		if (last_blk >= EXT_MAX_BLOCKS)
4879			last_blk = EXT_MAX_BLOCKS-1;
4880		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4881
4882		/*
4883		 * Walk the extent tree gathering extent information
4884		 * and pushing extents back to the user.
4885		 */
4886		error = ext4_fill_fiemap_extents(inode, start_blk,
4887						 len_blks, fieinfo);
4888	}
4889	ext4_es_lru_add(inode);
4890	return error;
4891}
4892
4893/*
4894 * ext4_access_path:
4895 * Function to access the path buffer for marking it dirty.
4896 * It also checks if there are sufficient credits left in the journal handle
4897 * to update path.
4898 */
4899static int
4900ext4_access_path(handle_t *handle, struct inode *inode,
4901		struct ext4_ext_path *path)
4902{
4903	int credits, err;
4904
4905	if (!ext4_handle_valid(handle))
4906		return 0;
4907
4908	/*
4909	 * Check if need to extend journal credits
4910	 * 3 for leaf, sb, and inode plus 2 (bmap and group
4911	 * descriptor) for each block group; assume two block
4912	 * groups
4913	 */
4914	if (handle->h_buffer_credits < 7) {
4915		credits = ext4_writepage_trans_blocks(inode);
4916		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
4917		/* EAGAIN is success */
4918		if (err && err != -EAGAIN)
4919			return err;
4920	}
4921
4922	err = ext4_ext_get_access(handle, inode, path);
4923	return err;
4924}
4925
4926/*
4927 * ext4_ext_shift_path_extents:
4928 * Shift the extents of a path structure lying between path[depth].p_ext
4929 * and EXT_LAST_EXTENT(path[depth].p_hdr) downwards, by subtracting shift
4930 * from starting block for each extent.
4931 */
4932static int
4933ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
4934			    struct inode *inode, handle_t *handle,
4935			    ext4_lblk_t *start)
4936{
4937	int depth, err = 0;
4938	struct ext4_extent *ex_start, *ex_last;
4939	bool update = 0;
4940	depth = path->p_depth;
4941
4942	while (depth >= 0) {
4943		if (depth == path->p_depth) {
4944			ex_start = path[depth].p_ext;
4945			if (!ex_start)
4946				return -EIO;
4947
4948			ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
4949			if (!ex_last)
4950				return -EIO;
4951
4952			err = ext4_access_path(handle, inode, path + depth);
4953			if (err)
4954				goto out;
4955
4956			if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
4957				update = 1;
4958
4959			*start = ex_last->ee_block +
4960				ext4_ext_get_actual_len(ex_last);
4961
4962			while (ex_start <= ex_last) {
4963				ex_start->ee_block -= shift;
4964				if (ex_start >
4965					EXT_FIRST_EXTENT(path[depth].p_hdr)) {
4966					if (ext4_ext_try_to_merge_right(inode,
4967						path, ex_start - 1))
4968						ex_last--;
4969				}
4970				ex_start++;
4971			}
4972			err = ext4_ext_dirty(handle, inode, path + depth);
4973			if (err)
4974				goto out;
4975
4976			if (--depth < 0 || !update)
4977				break;
4978		}
4979
4980		/* Update index too */
4981		err = ext4_access_path(handle, inode, path + depth);
4982		if (err)
4983			goto out;
4984
4985		path[depth].p_idx->ei_block -= shift;
4986		err = ext4_ext_dirty(handle, inode, path + depth);
4987		if (err)
4988			goto out;
4989
4990		/* we are done if current index is not a starting index */
4991		if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
4992			break;
4993
4994		depth--;
4995	}
4996
4997out:
4998	return err;
4999}
5000
5001/*
5002 * ext4_ext_shift_extents:
5003 * All the extents which lies in the range from start to the last allocated
5004 * block for the file are shifted downwards by shift blocks.
5005 * On success, 0 is returned, error otherwise.
5006 */
5007static int
5008ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5009		       ext4_lblk_t start, ext4_lblk_t shift)
5010{
5011	struct ext4_ext_path *path;
5012	int ret = 0, depth;
5013	struct ext4_extent *extent;
5014	ext4_lblk_t stop_block, current_block;
5015	ext4_lblk_t ex_start, ex_end;
5016
5017	/* Let path point to the last extent */
5018	path = ext4_ext_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0);
5019	if (IS_ERR(path))
5020		return PTR_ERR(path);
5021
5022	depth = path->p_depth;
5023	extent = path[depth].p_ext;
5024	if (!extent) {
5025		ext4_ext_drop_refs(path);
5026		kfree(path);
5027		return ret;
5028	}
5029
5030	stop_block = extent->ee_block + ext4_ext_get_actual_len(extent);
5031	ext4_ext_drop_refs(path);
5032	kfree(path);
5033
5034	/* Nothing to shift, if hole is at the end of file */
5035	if (start >= stop_block)
5036		return ret;
5037
5038	/*
5039	 * Don't start shifting extents until we make sure the hole is big
5040	 * enough to accomodate the shift.
5041	 */
5042	path = ext4_ext_find_extent(inode, start - 1, NULL, 0);
5043	depth = path->p_depth;
5044	extent =  path[depth].p_ext;
5045	ex_start = extent->ee_block;
5046	ex_end = extent->ee_block + ext4_ext_get_actual_len(extent);
5047	ext4_ext_drop_refs(path);
5048	kfree(path);
5049
5050	if ((start == ex_start && shift > ex_start) ||
5051	    (shift > start - ex_end))
5052		return -EINVAL;
5053
5054	/* Its safe to start updating extents */
5055	while (start < stop_block) {
5056		path = ext4_ext_find_extent(inode, start, NULL, 0);
5057		if (IS_ERR(path))
5058			return PTR_ERR(path);
5059		depth = path->p_depth;
5060		extent = path[depth].p_ext;
5061		current_block = extent->ee_block;
5062		if (start > current_block) {
5063			/* Hole, move to the next extent */
5064			ret = mext_next_extent(inode, path, &extent);
5065			if (ret != 0) {
5066				ext4_ext_drop_refs(path);
5067				kfree(path);
5068				if (ret == 1)
5069					ret = 0;
5070				break;
5071			}
5072		}
5073		ret = ext4_ext_shift_path_extents(path, shift, inode,
5074				handle, &start);
5075		ext4_ext_drop_refs(path);
5076		kfree(path);
5077		if (ret)
5078			break;
5079	}
5080
5081	return ret;
5082}
5083
5084/*
5085 * ext4_collapse_range:
5086 * This implements the fallocate's collapse range functionality for ext4
5087 * Returns: 0 and non-zero on error.
5088 */
5089int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5090{
5091	struct super_block *sb = inode->i_sb;
5092	ext4_lblk_t punch_start, punch_stop;
5093	handle_t *handle;
5094	unsigned int credits;
5095	loff_t new_size;
5096	int ret;
5097
5098	BUG_ON(offset + len > i_size_read(inode));
5099
5100	/* Collapse range works only on fs block size aligned offsets. */
5101	if (offset & (EXT4_BLOCK_SIZE(sb) - 1) ||
5102	    len & (EXT4_BLOCK_SIZE(sb) - 1))
5103		return -EINVAL;
5104
5105	if (!S_ISREG(inode->i_mode))
5106		return -EOPNOTSUPP;
5107
5108	trace_ext4_collapse_range(inode, offset, len);
5109
5110	punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5111	punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5112
5113	/* Write out all dirty pages */
5114	ret = filemap_write_and_wait_range(inode->i_mapping, offset, -1);
5115	if (ret)
5116		return ret;
5117
5118	/* Take mutex lock */
5119	mutex_lock(&inode->i_mutex);
5120
5121	/* It's not possible punch hole on append only file */
5122	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5123		ret = -EPERM;
5124		goto out_mutex;
5125	}
5126
5127	if (IS_SWAPFILE(inode)) {
5128		ret = -ETXTBSY;
5129		goto out_mutex;
5130	}
5131
5132	/* Currently just for extent based files */
5133	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5134		ret = -EOPNOTSUPP;
5135		goto out_mutex;
5136	}
5137
5138	truncate_pagecache_range(inode, offset, -1);
5139
5140	/* Wait for existing dio to complete */
5141	ext4_inode_block_unlocked_dio(inode);
5142	inode_dio_wait(inode);
5143
5144	credits = ext4_writepage_trans_blocks(inode);
5145	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5146	if (IS_ERR(handle)) {
5147		ret = PTR_ERR(handle);
5148		goto out_dio;
5149	}
5150
5151	down_write(&EXT4_I(inode)->i_data_sem);
5152	ext4_discard_preallocations(inode);
5153
5154	ret = ext4_es_remove_extent(inode, punch_start,
5155				    EXT_MAX_BLOCKS - punch_start - 1);
5156	if (ret) {
5157		up_write(&EXT4_I(inode)->i_data_sem);
5158		goto out_stop;
5159	}
5160
5161	ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5162	if (ret) {
5163		up_write(&EXT4_I(inode)->i_data_sem);
5164		goto out_stop;
5165	}
5166
5167	ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5168				     punch_stop - punch_start);
5169	if (ret) {
5170		up_write(&EXT4_I(inode)->i_data_sem);
5171		goto out_stop;
5172	}
5173
5174	new_size = i_size_read(inode) - len;
5175	truncate_setsize(inode, new_size);
5176	EXT4_I(inode)->i_disksize = new_size;
5177
5178	ext4_discard_preallocations(inode);
5179	up_write(&EXT4_I(inode)->i_data_sem);
5180	if (IS_SYNC(inode))
5181		ext4_handle_sync(handle);
5182	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
5183	ext4_mark_inode_dirty(handle, inode);
5184
5185out_stop:
5186	ext4_journal_stop(handle);
5187out_dio:
5188	ext4_inode_resume_unlocked_dio(inode);
5189out_mutex:
5190	mutex_unlock(&inode->i_mutex);
5191	return ret;
5192}
5193