extents.c revision 9fd9784c91db79e953ea3fe3741f885bdc390a72
1/*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 *   Copyright (c) 2005, Bull S.A.
7 *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21 */
22
23/*
24 * Extents support for EXT4
25 *
26 * TODO:
27 *   - ext4*_error() should be used in some situations
28 *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 *   - smart tree reduction
30 */
31
32#include <linux/module.h>
33#include <linux/fs.h>
34#include <linux/time.h>
35#include <linux/jbd2.h>
36#include <linux/highuid.h>
37#include <linux/pagemap.h>
38#include <linux/quotaops.h>
39#include <linux/string.h>
40#include <linux/slab.h>
41#include <linux/falloc.h>
42#include <asm/uaccess.h>
43#include <linux/fiemap.h>
44#include "ext4_jbd2.h"
45#include "ext4_extents.h"
46
47
48/*
49 * ext_pblock:
50 * combine low and high parts of physical block number into ext4_fsblk_t
51 */
52static ext4_fsblk_t ext_pblock(struct ext4_extent *ex)
53{
54	ext4_fsblk_t block;
55
56	block = le32_to_cpu(ex->ee_start_lo);
57	block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
58	return block;
59}
60
61/*
62 * idx_pblock:
63 * combine low and high parts of a leaf physical block number into ext4_fsblk_t
64 */
65ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix)
66{
67	ext4_fsblk_t block;
68
69	block = le32_to_cpu(ix->ei_leaf_lo);
70	block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
71	return block;
72}
73
74/*
75 * ext4_ext_store_pblock:
76 * stores a large physical block number into an extent struct,
77 * breaking it into parts
78 */
79void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb)
80{
81	ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
82	ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
83}
84
85/*
86 * ext4_idx_store_pblock:
87 * stores a large physical block number into an index struct,
88 * breaking it into parts
89 */
90static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb)
91{
92	ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
93	ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
94}
95
96static int ext4_ext_journal_restart(handle_t *handle, int needed)
97{
98	int err;
99
100	if (!ext4_handle_valid(handle))
101		return 0;
102	if (handle->h_buffer_credits > needed)
103		return 0;
104	err = ext4_journal_extend(handle, needed);
105	if (err <= 0)
106		return err;
107	return ext4_journal_restart(handle, needed);
108}
109
110/*
111 * could return:
112 *  - EROFS
113 *  - ENOMEM
114 */
115static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
116				struct ext4_ext_path *path)
117{
118	if (path->p_bh) {
119		/* path points to block */
120		return ext4_journal_get_write_access(handle, path->p_bh);
121	}
122	/* path points to leaf/index in inode body */
123	/* we use in-core data, no need to protect them */
124	return 0;
125}
126
127/*
128 * could return:
129 *  - EROFS
130 *  - ENOMEM
131 *  - EIO
132 */
133static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
134				struct ext4_ext_path *path)
135{
136	int err;
137	if (path->p_bh) {
138		/* path points to block */
139		err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
140	} else {
141		/* path points to leaf/index in inode body */
142		err = ext4_mark_inode_dirty(handle, inode);
143	}
144	return err;
145}
146
147static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
148			      struct ext4_ext_path *path,
149			      ext4_lblk_t block)
150{
151	struct ext4_inode_info *ei = EXT4_I(inode);
152	ext4_fsblk_t bg_start;
153	ext4_fsblk_t last_block;
154	ext4_grpblk_t colour;
155	int depth;
156
157	if (path) {
158		struct ext4_extent *ex;
159		depth = path->p_depth;
160
161		/* try to predict block placement */
162		ex = path[depth].p_ext;
163		if (ex)
164			return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block));
165
166		/* it looks like index is empty;
167		 * try to find starting block from index itself */
168		if (path[depth].p_bh)
169			return path[depth].p_bh->b_blocknr;
170	}
171
172	/* OK. use inode's group */
173	bg_start = (ei->i_block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) +
174		le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block);
175	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
176
177	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
178		colour = (current->pid % 16) *
179			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
180	else
181		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
182	return bg_start + colour + block;
183}
184
185/*
186 * Allocation for a meta data block
187 */
188static ext4_fsblk_t
189ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
190			struct ext4_ext_path *path,
191			struct ext4_extent *ex, int *err)
192{
193	ext4_fsblk_t goal, newblock;
194
195	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
196	newblock = ext4_new_meta_blocks(handle, inode, goal, NULL, err);
197	return newblock;
198}
199
200static int ext4_ext_space_block(struct inode *inode)
201{
202	int size;
203
204	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
205			/ sizeof(struct ext4_extent);
206#ifdef AGGRESSIVE_TEST
207	if (size > 6)
208		size = 6;
209#endif
210	return size;
211}
212
213static int ext4_ext_space_block_idx(struct inode *inode)
214{
215	int size;
216
217	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
218			/ sizeof(struct ext4_extent_idx);
219#ifdef AGGRESSIVE_TEST
220	if (size > 5)
221		size = 5;
222#endif
223	return size;
224}
225
226static int ext4_ext_space_root(struct inode *inode)
227{
228	int size;
229
230	size = sizeof(EXT4_I(inode)->i_data);
231	size -= sizeof(struct ext4_extent_header);
232	size /= sizeof(struct ext4_extent);
233#ifdef AGGRESSIVE_TEST
234	if (size > 3)
235		size = 3;
236#endif
237	return size;
238}
239
240static int ext4_ext_space_root_idx(struct inode *inode)
241{
242	int size;
243
244	size = sizeof(EXT4_I(inode)->i_data);
245	size -= sizeof(struct ext4_extent_header);
246	size /= sizeof(struct ext4_extent_idx);
247#ifdef AGGRESSIVE_TEST
248	if (size > 4)
249		size = 4;
250#endif
251	return size;
252}
253
254/*
255 * Calculate the number of metadata blocks needed
256 * to allocate @blocks
257 * Worse case is one block per extent
258 */
259int ext4_ext_calc_metadata_amount(struct inode *inode, int blocks)
260{
261	int lcap, icap, rcap, leafs, idxs, num;
262	int newextents = blocks;
263
264	rcap = ext4_ext_space_root_idx(inode);
265	lcap = ext4_ext_space_block(inode);
266	icap = ext4_ext_space_block_idx(inode);
267
268	/* number of new leaf blocks needed */
269	num = leafs = (newextents + lcap - 1) / lcap;
270
271	/*
272	 * Worse case, we need separate index block(s)
273	 * to link all new leaf blocks
274	 */
275	idxs = (leafs + icap - 1) / icap;
276	do {
277		num += idxs;
278		idxs = (idxs + icap - 1) / icap;
279	} while (idxs > rcap);
280
281	return num;
282}
283
284static int
285ext4_ext_max_entries(struct inode *inode, int depth)
286{
287	int max;
288
289	if (depth == ext_depth(inode)) {
290		if (depth == 0)
291			max = ext4_ext_space_root(inode);
292		else
293			max = ext4_ext_space_root_idx(inode);
294	} else {
295		if (depth == 0)
296			max = ext4_ext_space_block(inode);
297		else
298			max = ext4_ext_space_block_idx(inode);
299	}
300
301	return max;
302}
303
304static int __ext4_ext_check_header(const char *function, struct inode *inode,
305					struct ext4_extent_header *eh,
306					int depth)
307{
308	const char *error_msg;
309	int max = 0;
310
311	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
312		error_msg = "invalid magic";
313		goto corrupted;
314	}
315	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
316		error_msg = "unexpected eh_depth";
317		goto corrupted;
318	}
319	if (unlikely(eh->eh_max == 0)) {
320		error_msg = "invalid eh_max";
321		goto corrupted;
322	}
323	max = ext4_ext_max_entries(inode, depth);
324	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
325		error_msg = "too large eh_max";
326		goto corrupted;
327	}
328	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
329		error_msg = "invalid eh_entries";
330		goto corrupted;
331	}
332	return 0;
333
334corrupted:
335	ext4_error(inode->i_sb, function,
336			"bad header in inode #%lu: %s - magic %x, "
337			"entries %u, max %u(%u), depth %u(%u)",
338			inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic),
339			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
340			max, le16_to_cpu(eh->eh_depth), depth);
341
342	return -EIO;
343}
344
345#define ext4_ext_check_header(inode, eh, depth)	\
346	__ext4_ext_check_header(__func__, inode, eh, depth)
347
348#ifdef EXT_DEBUG
349static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
350{
351	int k, l = path->p_depth;
352
353	ext_debug("path:");
354	for (k = 0; k <= l; k++, path++) {
355		if (path->p_idx) {
356		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
357			    idx_pblock(path->p_idx));
358		} else if (path->p_ext) {
359			ext_debug("  %d:%d:%llu ",
360				  le32_to_cpu(path->p_ext->ee_block),
361				  ext4_ext_get_actual_len(path->p_ext),
362				  ext_pblock(path->p_ext));
363		} else
364			ext_debug("  []");
365	}
366	ext_debug("\n");
367}
368
369static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
370{
371	int depth = ext_depth(inode);
372	struct ext4_extent_header *eh;
373	struct ext4_extent *ex;
374	int i;
375
376	if (!path)
377		return;
378
379	eh = path[depth].p_hdr;
380	ex = EXT_FIRST_EXTENT(eh);
381
382	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
383		ext_debug("%d:%d:%llu ", le32_to_cpu(ex->ee_block),
384			  ext4_ext_get_actual_len(ex), ext_pblock(ex));
385	}
386	ext_debug("\n");
387}
388#else
389#define ext4_ext_show_path(inode, path)
390#define ext4_ext_show_leaf(inode, path)
391#endif
392
393void ext4_ext_drop_refs(struct ext4_ext_path *path)
394{
395	int depth = path->p_depth;
396	int i;
397
398	for (i = 0; i <= depth; i++, path++)
399		if (path->p_bh) {
400			brelse(path->p_bh);
401			path->p_bh = NULL;
402		}
403}
404
405/*
406 * ext4_ext_binsearch_idx:
407 * binary search for the closest index of the given block
408 * the header must be checked before calling this
409 */
410static void
411ext4_ext_binsearch_idx(struct inode *inode,
412			struct ext4_ext_path *path, ext4_lblk_t block)
413{
414	struct ext4_extent_header *eh = path->p_hdr;
415	struct ext4_extent_idx *r, *l, *m;
416
417
418	ext_debug("binsearch for %u(idx):  ", block);
419
420	l = EXT_FIRST_INDEX(eh) + 1;
421	r = EXT_LAST_INDEX(eh);
422	while (l <= r) {
423		m = l + (r - l) / 2;
424		if (block < le32_to_cpu(m->ei_block))
425			r = m - 1;
426		else
427			l = m + 1;
428		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
429				m, le32_to_cpu(m->ei_block),
430				r, le32_to_cpu(r->ei_block));
431	}
432
433	path->p_idx = l - 1;
434	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
435		  idx_pblock(path->p_idx));
436
437#ifdef CHECK_BINSEARCH
438	{
439		struct ext4_extent_idx *chix, *ix;
440		int k;
441
442		chix = ix = EXT_FIRST_INDEX(eh);
443		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
444		  if (k != 0 &&
445		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
446				printk(KERN_DEBUG "k=%d, ix=0x%p, "
447				       "first=0x%p\n", k,
448				       ix, EXT_FIRST_INDEX(eh));
449				printk(KERN_DEBUG "%u <= %u\n",
450				       le32_to_cpu(ix->ei_block),
451				       le32_to_cpu(ix[-1].ei_block));
452			}
453			BUG_ON(k && le32_to_cpu(ix->ei_block)
454					   <= le32_to_cpu(ix[-1].ei_block));
455			if (block < le32_to_cpu(ix->ei_block))
456				break;
457			chix = ix;
458		}
459		BUG_ON(chix != path->p_idx);
460	}
461#endif
462
463}
464
465/*
466 * ext4_ext_binsearch:
467 * binary search for closest extent of the given block
468 * the header must be checked before calling this
469 */
470static void
471ext4_ext_binsearch(struct inode *inode,
472		struct ext4_ext_path *path, ext4_lblk_t block)
473{
474	struct ext4_extent_header *eh = path->p_hdr;
475	struct ext4_extent *r, *l, *m;
476
477	if (eh->eh_entries == 0) {
478		/*
479		 * this leaf is empty:
480		 * we get such a leaf in split/add case
481		 */
482		return;
483	}
484
485	ext_debug("binsearch for %u:  ", block);
486
487	l = EXT_FIRST_EXTENT(eh) + 1;
488	r = EXT_LAST_EXTENT(eh);
489
490	while (l <= r) {
491		m = l + (r - l) / 2;
492		if (block < le32_to_cpu(m->ee_block))
493			r = m - 1;
494		else
495			l = m + 1;
496		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
497				m, le32_to_cpu(m->ee_block),
498				r, le32_to_cpu(r->ee_block));
499	}
500
501	path->p_ext = l - 1;
502	ext_debug("  -> %d:%llu:%d ",
503			le32_to_cpu(path->p_ext->ee_block),
504			ext_pblock(path->p_ext),
505			ext4_ext_get_actual_len(path->p_ext));
506
507#ifdef CHECK_BINSEARCH
508	{
509		struct ext4_extent *chex, *ex;
510		int k;
511
512		chex = ex = EXT_FIRST_EXTENT(eh);
513		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
514			BUG_ON(k && le32_to_cpu(ex->ee_block)
515					  <= le32_to_cpu(ex[-1].ee_block));
516			if (block < le32_to_cpu(ex->ee_block))
517				break;
518			chex = ex;
519		}
520		BUG_ON(chex != path->p_ext);
521	}
522#endif
523
524}
525
526int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
527{
528	struct ext4_extent_header *eh;
529
530	eh = ext_inode_hdr(inode);
531	eh->eh_depth = 0;
532	eh->eh_entries = 0;
533	eh->eh_magic = EXT4_EXT_MAGIC;
534	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode));
535	ext4_mark_inode_dirty(handle, inode);
536	ext4_ext_invalidate_cache(inode);
537	return 0;
538}
539
540struct ext4_ext_path *
541ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
542					struct ext4_ext_path *path)
543{
544	struct ext4_extent_header *eh;
545	struct buffer_head *bh;
546	short int depth, i, ppos = 0, alloc = 0;
547
548	eh = ext_inode_hdr(inode);
549	depth = ext_depth(inode);
550	if (ext4_ext_check_header(inode, eh, depth))
551		return ERR_PTR(-EIO);
552
553
554	/* account possible depth increase */
555	if (!path) {
556		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
557				GFP_NOFS);
558		if (!path)
559			return ERR_PTR(-ENOMEM);
560		alloc = 1;
561	}
562	path[0].p_hdr = eh;
563	path[0].p_bh = NULL;
564
565	i = depth;
566	/* walk through the tree */
567	while (i) {
568		ext_debug("depth %d: num %d, max %d\n",
569			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
570
571		ext4_ext_binsearch_idx(inode, path + ppos, block);
572		path[ppos].p_block = idx_pblock(path[ppos].p_idx);
573		path[ppos].p_depth = i;
574		path[ppos].p_ext = NULL;
575
576		bh = sb_bread(inode->i_sb, path[ppos].p_block);
577		if (!bh)
578			goto err;
579
580		eh = ext_block_hdr(bh);
581		ppos++;
582		BUG_ON(ppos > depth);
583		path[ppos].p_bh = bh;
584		path[ppos].p_hdr = eh;
585		i--;
586
587		if (ext4_ext_check_header(inode, eh, i))
588			goto err;
589	}
590
591	path[ppos].p_depth = i;
592	path[ppos].p_ext = NULL;
593	path[ppos].p_idx = NULL;
594
595	/* find extent */
596	ext4_ext_binsearch(inode, path + ppos, block);
597	/* if not an empty leaf */
598	if (path[ppos].p_ext)
599		path[ppos].p_block = ext_pblock(path[ppos].p_ext);
600
601	ext4_ext_show_path(inode, path);
602
603	return path;
604
605err:
606	ext4_ext_drop_refs(path);
607	if (alloc)
608		kfree(path);
609	return ERR_PTR(-EIO);
610}
611
612/*
613 * ext4_ext_insert_index:
614 * insert new index [@logical;@ptr] into the block at @curp;
615 * check where to insert: before @curp or after @curp
616 */
617static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
618				struct ext4_ext_path *curp,
619				int logical, ext4_fsblk_t ptr)
620{
621	struct ext4_extent_idx *ix;
622	int len, err;
623
624	err = ext4_ext_get_access(handle, inode, curp);
625	if (err)
626		return err;
627
628	BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block));
629	len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
630	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
631		/* insert after */
632		if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
633			len = (len - 1) * sizeof(struct ext4_extent_idx);
634			len = len < 0 ? 0 : len;
635			ext_debug("insert new index %d after: %llu. "
636					"move %d from 0x%p to 0x%p\n",
637					logical, ptr, len,
638					(curp->p_idx + 1), (curp->p_idx + 2));
639			memmove(curp->p_idx + 2, curp->p_idx + 1, len);
640		}
641		ix = curp->p_idx + 1;
642	} else {
643		/* insert before */
644		len = len * sizeof(struct ext4_extent_idx);
645		len = len < 0 ? 0 : len;
646		ext_debug("insert new index %d before: %llu. "
647				"move %d from 0x%p to 0x%p\n",
648				logical, ptr, len,
649				curp->p_idx, (curp->p_idx + 1));
650		memmove(curp->p_idx + 1, curp->p_idx, len);
651		ix = curp->p_idx;
652	}
653
654	ix->ei_block = cpu_to_le32(logical);
655	ext4_idx_store_pblock(ix, ptr);
656	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
657
658	BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries)
659			     > le16_to_cpu(curp->p_hdr->eh_max));
660	BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr));
661
662	err = ext4_ext_dirty(handle, inode, curp);
663	ext4_std_error(inode->i_sb, err);
664
665	return err;
666}
667
668/*
669 * ext4_ext_split:
670 * inserts new subtree into the path, using free index entry
671 * at depth @at:
672 * - allocates all needed blocks (new leaf and all intermediate index blocks)
673 * - makes decision where to split
674 * - moves remaining extents and index entries (right to the split point)
675 *   into the newly allocated blocks
676 * - initializes subtree
677 */
678static int ext4_ext_split(handle_t *handle, struct inode *inode,
679				struct ext4_ext_path *path,
680				struct ext4_extent *newext, int at)
681{
682	struct buffer_head *bh = NULL;
683	int depth = ext_depth(inode);
684	struct ext4_extent_header *neh;
685	struct ext4_extent_idx *fidx;
686	struct ext4_extent *ex;
687	int i = at, k, m, a;
688	ext4_fsblk_t newblock, oldblock;
689	__le32 border;
690	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
691	int err = 0;
692
693	/* make decision: where to split? */
694	/* FIXME: now decision is simplest: at current extent */
695
696	/* if current leaf will be split, then we should use
697	 * border from split point */
698	BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr));
699	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
700		border = path[depth].p_ext[1].ee_block;
701		ext_debug("leaf will be split."
702				" next leaf starts at %d\n",
703				  le32_to_cpu(border));
704	} else {
705		border = newext->ee_block;
706		ext_debug("leaf will be added."
707				" next leaf starts at %d\n",
708				le32_to_cpu(border));
709	}
710
711	/*
712	 * If error occurs, then we break processing
713	 * and mark filesystem read-only. index won't
714	 * be inserted and tree will be in consistent
715	 * state. Next mount will repair buffers too.
716	 */
717
718	/*
719	 * Get array to track all allocated blocks.
720	 * We need this to handle errors and free blocks
721	 * upon them.
722	 */
723	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
724	if (!ablocks)
725		return -ENOMEM;
726
727	/* allocate all needed blocks */
728	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
729	for (a = 0; a < depth - at; a++) {
730		newblock = ext4_ext_new_meta_block(handle, inode, path,
731						   newext, &err);
732		if (newblock == 0)
733			goto cleanup;
734		ablocks[a] = newblock;
735	}
736
737	/* initialize new leaf */
738	newblock = ablocks[--a];
739	BUG_ON(newblock == 0);
740	bh = sb_getblk(inode->i_sb, newblock);
741	if (!bh) {
742		err = -EIO;
743		goto cleanup;
744	}
745	lock_buffer(bh);
746
747	err = ext4_journal_get_create_access(handle, bh);
748	if (err)
749		goto cleanup;
750
751	neh = ext_block_hdr(bh);
752	neh->eh_entries = 0;
753	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
754	neh->eh_magic = EXT4_EXT_MAGIC;
755	neh->eh_depth = 0;
756	ex = EXT_FIRST_EXTENT(neh);
757
758	/* move remainder of path[depth] to the new leaf */
759	BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max);
760	/* start copy from next extent */
761	/* TODO: we could do it by single memmove */
762	m = 0;
763	path[depth].p_ext++;
764	while (path[depth].p_ext <=
765			EXT_MAX_EXTENT(path[depth].p_hdr)) {
766		ext_debug("move %d:%llu:%d in new leaf %llu\n",
767				le32_to_cpu(path[depth].p_ext->ee_block),
768				ext_pblock(path[depth].p_ext),
769				ext4_ext_get_actual_len(path[depth].p_ext),
770				newblock);
771		/*memmove(ex++, path[depth].p_ext++,
772				sizeof(struct ext4_extent));
773		neh->eh_entries++;*/
774		path[depth].p_ext++;
775		m++;
776	}
777	if (m) {
778		memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
779		le16_add_cpu(&neh->eh_entries, m);
780	}
781
782	set_buffer_uptodate(bh);
783	unlock_buffer(bh);
784
785	err = ext4_handle_dirty_metadata(handle, inode, bh);
786	if (err)
787		goto cleanup;
788	brelse(bh);
789	bh = NULL;
790
791	/* correct old leaf */
792	if (m) {
793		err = ext4_ext_get_access(handle, inode, path + depth);
794		if (err)
795			goto cleanup;
796		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
797		err = ext4_ext_dirty(handle, inode, path + depth);
798		if (err)
799			goto cleanup;
800
801	}
802
803	/* create intermediate indexes */
804	k = depth - at - 1;
805	BUG_ON(k < 0);
806	if (k)
807		ext_debug("create %d intermediate indices\n", k);
808	/* insert new index into current index block */
809	/* current depth stored in i var */
810	i = depth - 1;
811	while (k--) {
812		oldblock = newblock;
813		newblock = ablocks[--a];
814		bh = sb_getblk(inode->i_sb, newblock);
815		if (!bh) {
816			err = -EIO;
817			goto cleanup;
818		}
819		lock_buffer(bh);
820
821		err = ext4_journal_get_create_access(handle, bh);
822		if (err)
823			goto cleanup;
824
825		neh = ext_block_hdr(bh);
826		neh->eh_entries = cpu_to_le16(1);
827		neh->eh_magic = EXT4_EXT_MAGIC;
828		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
829		neh->eh_depth = cpu_to_le16(depth - i);
830		fidx = EXT_FIRST_INDEX(neh);
831		fidx->ei_block = border;
832		ext4_idx_store_pblock(fidx, oldblock);
833
834		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
835				i, newblock, le32_to_cpu(border), oldblock);
836		/* copy indexes */
837		m = 0;
838		path[i].p_idx++;
839
840		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
841				EXT_MAX_INDEX(path[i].p_hdr));
842		BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) !=
843				EXT_LAST_INDEX(path[i].p_hdr));
844		while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
845			ext_debug("%d: move %d:%llu in new index %llu\n", i,
846					le32_to_cpu(path[i].p_idx->ei_block),
847					idx_pblock(path[i].p_idx),
848					newblock);
849			/*memmove(++fidx, path[i].p_idx++,
850					sizeof(struct ext4_extent_idx));
851			neh->eh_entries++;
852			BUG_ON(neh->eh_entries > neh->eh_max);*/
853			path[i].p_idx++;
854			m++;
855		}
856		if (m) {
857			memmove(++fidx, path[i].p_idx - m,
858				sizeof(struct ext4_extent_idx) * m);
859			le16_add_cpu(&neh->eh_entries, m);
860		}
861		set_buffer_uptodate(bh);
862		unlock_buffer(bh);
863
864		err = ext4_handle_dirty_metadata(handle, inode, bh);
865		if (err)
866			goto cleanup;
867		brelse(bh);
868		bh = NULL;
869
870		/* correct old index */
871		if (m) {
872			err = ext4_ext_get_access(handle, inode, path + i);
873			if (err)
874				goto cleanup;
875			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
876			err = ext4_ext_dirty(handle, inode, path + i);
877			if (err)
878				goto cleanup;
879		}
880
881		i--;
882	}
883
884	/* insert new index */
885	err = ext4_ext_insert_index(handle, inode, path + at,
886				    le32_to_cpu(border), newblock);
887
888cleanup:
889	if (bh) {
890		if (buffer_locked(bh))
891			unlock_buffer(bh);
892		brelse(bh);
893	}
894
895	if (err) {
896		/* free all allocated blocks in error case */
897		for (i = 0; i < depth; i++) {
898			if (!ablocks[i])
899				continue;
900			ext4_free_blocks(handle, inode, ablocks[i], 1, 1);
901		}
902	}
903	kfree(ablocks);
904
905	return err;
906}
907
908/*
909 * ext4_ext_grow_indepth:
910 * implements tree growing procedure:
911 * - allocates new block
912 * - moves top-level data (index block or leaf) into the new block
913 * - initializes new top-level, creating index that points to the
914 *   just created block
915 */
916static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
917					struct ext4_ext_path *path,
918					struct ext4_extent *newext)
919{
920	struct ext4_ext_path *curp = path;
921	struct ext4_extent_header *neh;
922	struct ext4_extent_idx *fidx;
923	struct buffer_head *bh;
924	ext4_fsblk_t newblock;
925	int err = 0;
926
927	newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err);
928	if (newblock == 0)
929		return err;
930
931	bh = sb_getblk(inode->i_sb, newblock);
932	if (!bh) {
933		err = -EIO;
934		ext4_std_error(inode->i_sb, err);
935		return err;
936	}
937	lock_buffer(bh);
938
939	err = ext4_journal_get_create_access(handle, bh);
940	if (err) {
941		unlock_buffer(bh);
942		goto out;
943	}
944
945	/* move top-level index/leaf into new block */
946	memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
947
948	/* set size of new block */
949	neh = ext_block_hdr(bh);
950	/* old root could have indexes or leaves
951	 * so calculate e_max right way */
952	if (ext_depth(inode))
953	  neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
954	else
955	  neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
956	neh->eh_magic = EXT4_EXT_MAGIC;
957	set_buffer_uptodate(bh);
958	unlock_buffer(bh);
959
960	err = ext4_handle_dirty_metadata(handle, inode, bh);
961	if (err)
962		goto out;
963
964	/* create index in new top-level index: num,max,pointer */
965	err = ext4_ext_get_access(handle, inode, curp);
966	if (err)
967		goto out;
968
969	curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
970	curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode));
971	curp->p_hdr->eh_entries = cpu_to_le16(1);
972	curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
973
974	if (path[0].p_hdr->eh_depth)
975		curp->p_idx->ei_block =
976			EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
977	else
978		curp->p_idx->ei_block =
979			EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
980	ext4_idx_store_pblock(curp->p_idx, newblock);
981
982	neh = ext_inode_hdr(inode);
983	fidx = EXT_FIRST_INDEX(neh);
984	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
985		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
986		  le32_to_cpu(fidx->ei_block), idx_pblock(fidx));
987
988	neh->eh_depth = cpu_to_le16(path->p_depth + 1);
989	err = ext4_ext_dirty(handle, inode, curp);
990out:
991	brelse(bh);
992
993	return err;
994}
995
996/*
997 * ext4_ext_create_new_leaf:
998 * finds empty index and adds new leaf.
999 * if no free index is found, then it requests in-depth growing.
1000 */
1001static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1002					struct ext4_ext_path *path,
1003					struct ext4_extent *newext)
1004{
1005	struct ext4_ext_path *curp;
1006	int depth, i, err = 0;
1007
1008repeat:
1009	i = depth = ext_depth(inode);
1010
1011	/* walk up to the tree and look for free index entry */
1012	curp = path + depth;
1013	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1014		i--;
1015		curp--;
1016	}
1017
1018	/* we use already allocated block for index block,
1019	 * so subsequent data blocks should be contiguous */
1020	if (EXT_HAS_FREE_INDEX(curp)) {
1021		/* if we found index with free entry, then use that
1022		 * entry: create all needed subtree and add new leaf */
1023		err = ext4_ext_split(handle, inode, path, newext, i);
1024		if (err)
1025			goto out;
1026
1027		/* refill path */
1028		ext4_ext_drop_refs(path);
1029		path = ext4_ext_find_extent(inode,
1030				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1031				    path);
1032		if (IS_ERR(path))
1033			err = PTR_ERR(path);
1034	} else {
1035		/* tree is full, time to grow in depth */
1036		err = ext4_ext_grow_indepth(handle, inode, path, newext);
1037		if (err)
1038			goto out;
1039
1040		/* refill path */
1041		ext4_ext_drop_refs(path);
1042		path = ext4_ext_find_extent(inode,
1043				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1044				    path);
1045		if (IS_ERR(path)) {
1046			err = PTR_ERR(path);
1047			goto out;
1048		}
1049
1050		/*
1051		 * only first (depth 0 -> 1) produces free space;
1052		 * in all other cases we have to split the grown tree
1053		 */
1054		depth = ext_depth(inode);
1055		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1056			/* now we need to split */
1057			goto repeat;
1058		}
1059	}
1060
1061out:
1062	return err;
1063}
1064
1065/*
1066 * search the closest allocated block to the left for *logical
1067 * and returns it at @logical + it's physical address at @phys
1068 * if *logical is the smallest allocated block, the function
1069 * returns 0 at @phys
1070 * return value contains 0 (success) or error code
1071 */
1072int
1073ext4_ext_search_left(struct inode *inode, struct ext4_ext_path *path,
1074			ext4_lblk_t *logical, ext4_fsblk_t *phys)
1075{
1076	struct ext4_extent_idx *ix;
1077	struct ext4_extent *ex;
1078	int depth, ee_len;
1079
1080	BUG_ON(path == NULL);
1081	depth = path->p_depth;
1082	*phys = 0;
1083
1084	if (depth == 0 && path->p_ext == NULL)
1085		return 0;
1086
1087	/* usually extent in the path covers blocks smaller
1088	 * then *logical, but it can be that extent is the
1089	 * first one in the file */
1090
1091	ex = path[depth].p_ext;
1092	ee_len = ext4_ext_get_actual_len(ex);
1093	if (*logical < le32_to_cpu(ex->ee_block)) {
1094		BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1095		while (--depth >= 0) {
1096			ix = path[depth].p_idx;
1097			BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1098		}
1099		return 0;
1100	}
1101
1102	BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1103
1104	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1105	*phys = ext_pblock(ex) + ee_len - 1;
1106	return 0;
1107}
1108
1109/*
1110 * search the closest allocated block to the right for *logical
1111 * and returns it at @logical + it's physical address at @phys
1112 * if *logical is the smallest allocated block, the function
1113 * returns 0 at @phys
1114 * return value contains 0 (success) or error code
1115 */
1116int
1117ext4_ext_search_right(struct inode *inode, struct ext4_ext_path *path,
1118			ext4_lblk_t *logical, ext4_fsblk_t *phys)
1119{
1120	struct buffer_head *bh = NULL;
1121	struct ext4_extent_header *eh;
1122	struct ext4_extent_idx *ix;
1123	struct ext4_extent *ex;
1124	ext4_fsblk_t block;
1125	int depth, ee_len;
1126
1127	BUG_ON(path == NULL);
1128	depth = path->p_depth;
1129	*phys = 0;
1130
1131	if (depth == 0 && path->p_ext == NULL)
1132		return 0;
1133
1134	/* usually extent in the path covers blocks smaller
1135	 * then *logical, but it can be that extent is the
1136	 * first one in the file */
1137
1138	ex = path[depth].p_ext;
1139	ee_len = ext4_ext_get_actual_len(ex);
1140	if (*logical < le32_to_cpu(ex->ee_block)) {
1141		BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1142		while (--depth >= 0) {
1143			ix = path[depth].p_idx;
1144			BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1145		}
1146		*logical = le32_to_cpu(ex->ee_block);
1147		*phys = ext_pblock(ex);
1148		return 0;
1149	}
1150
1151	BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1152
1153	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1154		/* next allocated block in this leaf */
1155		ex++;
1156		*logical = le32_to_cpu(ex->ee_block);
1157		*phys = ext_pblock(ex);
1158		return 0;
1159	}
1160
1161	/* go up and search for index to the right */
1162	while (--depth >= 0) {
1163		ix = path[depth].p_idx;
1164		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1165			goto got_index;
1166	}
1167
1168	/* we've gone up to the root and found no index to the right */
1169	return 0;
1170
1171got_index:
1172	/* we've found index to the right, let's
1173	 * follow it and find the closest allocated
1174	 * block to the right */
1175	ix++;
1176	block = idx_pblock(ix);
1177	while (++depth < path->p_depth) {
1178		bh = sb_bread(inode->i_sb, block);
1179		if (bh == NULL)
1180			return -EIO;
1181		eh = ext_block_hdr(bh);
1182		if (ext4_ext_check_header(inode, eh, depth)) {
1183			put_bh(bh);
1184			return -EIO;
1185		}
1186		ix = EXT_FIRST_INDEX(eh);
1187		block = idx_pblock(ix);
1188		put_bh(bh);
1189	}
1190
1191	bh = sb_bread(inode->i_sb, block);
1192	if (bh == NULL)
1193		return -EIO;
1194	eh = ext_block_hdr(bh);
1195	if (ext4_ext_check_header(inode, eh, path->p_depth - depth)) {
1196		put_bh(bh);
1197		return -EIO;
1198	}
1199	ex = EXT_FIRST_EXTENT(eh);
1200	*logical = le32_to_cpu(ex->ee_block);
1201	*phys = ext_pblock(ex);
1202	put_bh(bh);
1203	return 0;
1204}
1205
1206/*
1207 * ext4_ext_next_allocated_block:
1208 * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1209 * NOTE: it considers block number from index entry as
1210 * allocated block. Thus, index entries have to be consistent
1211 * with leaves.
1212 */
1213static ext4_lblk_t
1214ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1215{
1216	int depth;
1217
1218	BUG_ON(path == NULL);
1219	depth = path->p_depth;
1220
1221	if (depth == 0 && path->p_ext == NULL)
1222		return EXT_MAX_BLOCK;
1223
1224	while (depth >= 0) {
1225		if (depth == path->p_depth) {
1226			/* leaf */
1227			if (path[depth].p_ext !=
1228					EXT_LAST_EXTENT(path[depth].p_hdr))
1229			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1230		} else {
1231			/* index */
1232			if (path[depth].p_idx !=
1233					EXT_LAST_INDEX(path[depth].p_hdr))
1234			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1235		}
1236		depth--;
1237	}
1238
1239	return EXT_MAX_BLOCK;
1240}
1241
1242/*
1243 * ext4_ext_next_leaf_block:
1244 * returns first allocated block from next leaf or EXT_MAX_BLOCK
1245 */
1246static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1247					struct ext4_ext_path *path)
1248{
1249	int depth;
1250
1251	BUG_ON(path == NULL);
1252	depth = path->p_depth;
1253
1254	/* zero-tree has no leaf blocks at all */
1255	if (depth == 0)
1256		return EXT_MAX_BLOCK;
1257
1258	/* go to index block */
1259	depth--;
1260
1261	while (depth >= 0) {
1262		if (path[depth].p_idx !=
1263				EXT_LAST_INDEX(path[depth].p_hdr))
1264			return (ext4_lblk_t)
1265				le32_to_cpu(path[depth].p_idx[1].ei_block);
1266		depth--;
1267	}
1268
1269	return EXT_MAX_BLOCK;
1270}
1271
1272/*
1273 * ext4_ext_correct_indexes:
1274 * if leaf gets modified and modified extent is first in the leaf,
1275 * then we have to correct all indexes above.
1276 * TODO: do we need to correct tree in all cases?
1277 */
1278static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1279				struct ext4_ext_path *path)
1280{
1281	struct ext4_extent_header *eh;
1282	int depth = ext_depth(inode);
1283	struct ext4_extent *ex;
1284	__le32 border;
1285	int k, err = 0;
1286
1287	eh = path[depth].p_hdr;
1288	ex = path[depth].p_ext;
1289	BUG_ON(ex == NULL);
1290	BUG_ON(eh == NULL);
1291
1292	if (depth == 0) {
1293		/* there is no tree at all */
1294		return 0;
1295	}
1296
1297	if (ex != EXT_FIRST_EXTENT(eh)) {
1298		/* we correct tree if first leaf got modified only */
1299		return 0;
1300	}
1301
1302	/*
1303	 * TODO: we need correction if border is smaller than current one
1304	 */
1305	k = depth - 1;
1306	border = path[depth].p_ext->ee_block;
1307	err = ext4_ext_get_access(handle, inode, path + k);
1308	if (err)
1309		return err;
1310	path[k].p_idx->ei_block = border;
1311	err = ext4_ext_dirty(handle, inode, path + k);
1312	if (err)
1313		return err;
1314
1315	while (k--) {
1316		/* change all left-side indexes */
1317		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1318			break;
1319		err = ext4_ext_get_access(handle, inode, path + k);
1320		if (err)
1321			break;
1322		path[k].p_idx->ei_block = border;
1323		err = ext4_ext_dirty(handle, inode, path + k);
1324		if (err)
1325			break;
1326	}
1327
1328	return err;
1329}
1330
1331static int
1332ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1333				struct ext4_extent *ex2)
1334{
1335	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1336
1337	/*
1338	 * Make sure that either both extents are uninitialized, or
1339	 * both are _not_.
1340	 */
1341	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1342		return 0;
1343
1344	if (ext4_ext_is_uninitialized(ex1))
1345		max_len = EXT_UNINIT_MAX_LEN;
1346	else
1347		max_len = EXT_INIT_MAX_LEN;
1348
1349	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1350	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1351
1352	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1353			le32_to_cpu(ex2->ee_block))
1354		return 0;
1355
1356	/*
1357	 * To allow future support for preallocated extents to be added
1358	 * as an RO_COMPAT feature, refuse to merge to extents if
1359	 * this can result in the top bit of ee_len being set.
1360	 */
1361	if (ext1_ee_len + ext2_ee_len > max_len)
1362		return 0;
1363#ifdef AGGRESSIVE_TEST
1364	if (ext1_ee_len >= 4)
1365		return 0;
1366#endif
1367
1368	if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2))
1369		return 1;
1370	return 0;
1371}
1372
1373/*
1374 * This function tries to merge the "ex" extent to the next extent in the tree.
1375 * It always tries to merge towards right. If you want to merge towards
1376 * left, pass "ex - 1" as argument instead of "ex".
1377 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1378 * 1 if they got merged.
1379 */
1380int ext4_ext_try_to_merge(struct inode *inode,
1381			  struct ext4_ext_path *path,
1382			  struct ext4_extent *ex)
1383{
1384	struct ext4_extent_header *eh;
1385	unsigned int depth, len;
1386	int merge_done = 0;
1387	int uninitialized = 0;
1388
1389	depth = ext_depth(inode);
1390	BUG_ON(path[depth].p_hdr == NULL);
1391	eh = path[depth].p_hdr;
1392
1393	while (ex < EXT_LAST_EXTENT(eh)) {
1394		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1395			break;
1396		/* merge with next extent! */
1397		if (ext4_ext_is_uninitialized(ex))
1398			uninitialized = 1;
1399		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1400				+ ext4_ext_get_actual_len(ex + 1));
1401		if (uninitialized)
1402			ext4_ext_mark_uninitialized(ex);
1403
1404		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1405			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1406				* sizeof(struct ext4_extent);
1407			memmove(ex + 1, ex + 2, len);
1408		}
1409		le16_add_cpu(&eh->eh_entries, -1);
1410		merge_done = 1;
1411		WARN_ON(eh->eh_entries == 0);
1412		if (!eh->eh_entries)
1413			ext4_error(inode->i_sb, "ext4_ext_try_to_merge",
1414			   "inode#%lu, eh->eh_entries = 0!", inode->i_ino);
1415	}
1416
1417	return merge_done;
1418}
1419
1420/*
1421 * check if a portion of the "newext" extent overlaps with an
1422 * existing extent.
1423 *
1424 * If there is an overlap discovered, it updates the length of the newext
1425 * such that there will be no overlap, and then returns 1.
1426 * If there is no overlap found, it returns 0.
1427 */
1428unsigned int ext4_ext_check_overlap(struct inode *inode,
1429				    struct ext4_extent *newext,
1430				    struct ext4_ext_path *path)
1431{
1432	ext4_lblk_t b1, b2;
1433	unsigned int depth, len1;
1434	unsigned int ret = 0;
1435
1436	b1 = le32_to_cpu(newext->ee_block);
1437	len1 = ext4_ext_get_actual_len(newext);
1438	depth = ext_depth(inode);
1439	if (!path[depth].p_ext)
1440		goto out;
1441	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1442
1443	/*
1444	 * get the next allocated block if the extent in the path
1445	 * is before the requested block(s)
1446	 */
1447	if (b2 < b1) {
1448		b2 = ext4_ext_next_allocated_block(path);
1449		if (b2 == EXT_MAX_BLOCK)
1450			goto out;
1451	}
1452
1453	/* check for wrap through zero on extent logical start block*/
1454	if (b1 + len1 < b1) {
1455		len1 = EXT_MAX_BLOCK - b1;
1456		newext->ee_len = cpu_to_le16(len1);
1457		ret = 1;
1458	}
1459
1460	/* check for overlap */
1461	if (b1 + len1 > b2) {
1462		newext->ee_len = cpu_to_le16(b2 - b1);
1463		ret = 1;
1464	}
1465out:
1466	return ret;
1467}
1468
1469/*
1470 * ext4_ext_insert_extent:
1471 * tries to merge requsted extent into the existing extent or
1472 * inserts requested extent as new one into the tree,
1473 * creating new leaf in the no-space case.
1474 */
1475int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1476				struct ext4_ext_path *path,
1477				struct ext4_extent *newext)
1478{
1479	struct ext4_extent_header *eh;
1480	struct ext4_extent *ex, *fex;
1481	struct ext4_extent *nearex; /* nearest extent */
1482	struct ext4_ext_path *npath = NULL;
1483	int depth, len, err;
1484	ext4_lblk_t next;
1485	unsigned uninitialized = 0;
1486
1487	BUG_ON(ext4_ext_get_actual_len(newext) == 0);
1488	depth = ext_depth(inode);
1489	ex = path[depth].p_ext;
1490	BUG_ON(path[depth].p_hdr == NULL);
1491
1492	/* try to insert block into found extent and return */
1493	if (ex && ext4_can_extents_be_merged(inode, ex, newext)) {
1494		ext_debug("append %d block to %d:%d (from %llu)\n",
1495				ext4_ext_get_actual_len(newext),
1496				le32_to_cpu(ex->ee_block),
1497				ext4_ext_get_actual_len(ex), ext_pblock(ex));
1498		err = ext4_ext_get_access(handle, inode, path + depth);
1499		if (err)
1500			return err;
1501
1502		/*
1503		 * ext4_can_extents_be_merged should have checked that either
1504		 * both extents are uninitialized, or both aren't. Thus we
1505		 * need to check only one of them here.
1506		 */
1507		if (ext4_ext_is_uninitialized(ex))
1508			uninitialized = 1;
1509		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1510					+ ext4_ext_get_actual_len(newext));
1511		if (uninitialized)
1512			ext4_ext_mark_uninitialized(ex);
1513		eh = path[depth].p_hdr;
1514		nearex = ex;
1515		goto merge;
1516	}
1517
1518repeat:
1519	depth = ext_depth(inode);
1520	eh = path[depth].p_hdr;
1521	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1522		goto has_space;
1523
1524	/* probably next leaf has space for us? */
1525	fex = EXT_LAST_EXTENT(eh);
1526	next = ext4_ext_next_leaf_block(inode, path);
1527	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1528	    && next != EXT_MAX_BLOCK) {
1529		ext_debug("next leaf block - %d\n", next);
1530		BUG_ON(npath != NULL);
1531		npath = ext4_ext_find_extent(inode, next, NULL);
1532		if (IS_ERR(npath))
1533			return PTR_ERR(npath);
1534		BUG_ON(npath->p_depth != path->p_depth);
1535		eh = npath[depth].p_hdr;
1536		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1537			ext_debug("next leaf isnt full(%d)\n",
1538				  le16_to_cpu(eh->eh_entries));
1539			path = npath;
1540			goto repeat;
1541		}
1542		ext_debug("next leaf has no free space(%d,%d)\n",
1543			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1544	}
1545
1546	/*
1547	 * There is no free space in the found leaf.
1548	 * We're gonna add a new leaf in the tree.
1549	 */
1550	err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1551	if (err)
1552		goto cleanup;
1553	depth = ext_depth(inode);
1554	eh = path[depth].p_hdr;
1555
1556has_space:
1557	nearex = path[depth].p_ext;
1558
1559	err = ext4_ext_get_access(handle, inode, path + depth);
1560	if (err)
1561		goto cleanup;
1562
1563	if (!nearex) {
1564		/* there is no extent in this leaf, create first one */
1565		ext_debug("first extent in the leaf: %d:%llu:%d\n",
1566				le32_to_cpu(newext->ee_block),
1567				ext_pblock(newext),
1568				ext4_ext_get_actual_len(newext));
1569		path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1570	} else if (le32_to_cpu(newext->ee_block)
1571			   > le32_to_cpu(nearex->ee_block)) {
1572/*		BUG_ON(newext->ee_block == nearex->ee_block); */
1573		if (nearex != EXT_LAST_EXTENT(eh)) {
1574			len = EXT_MAX_EXTENT(eh) - nearex;
1575			len = (len - 1) * sizeof(struct ext4_extent);
1576			len = len < 0 ? 0 : len;
1577			ext_debug("insert %d:%llu:%d after: nearest 0x%p, "
1578					"move %d from 0x%p to 0x%p\n",
1579					le32_to_cpu(newext->ee_block),
1580					ext_pblock(newext),
1581					ext4_ext_get_actual_len(newext),
1582					nearex, len, nearex + 1, nearex + 2);
1583			memmove(nearex + 2, nearex + 1, len);
1584		}
1585		path[depth].p_ext = nearex + 1;
1586	} else {
1587		BUG_ON(newext->ee_block == nearex->ee_block);
1588		len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1589		len = len < 0 ? 0 : len;
1590		ext_debug("insert %d:%llu:%d before: nearest 0x%p, "
1591				"move %d from 0x%p to 0x%p\n",
1592				le32_to_cpu(newext->ee_block),
1593				ext_pblock(newext),
1594				ext4_ext_get_actual_len(newext),
1595				nearex, len, nearex + 1, nearex + 2);
1596		memmove(nearex + 1, nearex, len);
1597		path[depth].p_ext = nearex;
1598	}
1599
1600	le16_add_cpu(&eh->eh_entries, 1);
1601	nearex = path[depth].p_ext;
1602	nearex->ee_block = newext->ee_block;
1603	ext4_ext_store_pblock(nearex, ext_pblock(newext));
1604	nearex->ee_len = newext->ee_len;
1605
1606merge:
1607	/* try to merge extents to the right */
1608	ext4_ext_try_to_merge(inode, path, nearex);
1609
1610	/* try to merge extents to the left */
1611
1612	/* time to correct all indexes above */
1613	err = ext4_ext_correct_indexes(handle, inode, path);
1614	if (err)
1615		goto cleanup;
1616
1617	err = ext4_ext_dirty(handle, inode, path + depth);
1618
1619cleanup:
1620	if (npath) {
1621		ext4_ext_drop_refs(npath);
1622		kfree(npath);
1623	}
1624	ext4_ext_invalidate_cache(inode);
1625	return err;
1626}
1627
1628int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1629			ext4_lblk_t num, ext_prepare_callback func,
1630			void *cbdata)
1631{
1632	struct ext4_ext_path *path = NULL;
1633	struct ext4_ext_cache cbex;
1634	struct ext4_extent *ex;
1635	ext4_lblk_t next, start = 0, end = 0;
1636	ext4_lblk_t last = block + num;
1637	int depth, exists, err = 0;
1638
1639	BUG_ON(func == NULL);
1640	BUG_ON(inode == NULL);
1641
1642	while (block < last && block != EXT_MAX_BLOCK) {
1643		num = last - block;
1644		/* find extent for this block */
1645		path = ext4_ext_find_extent(inode, block, path);
1646		if (IS_ERR(path)) {
1647			err = PTR_ERR(path);
1648			path = NULL;
1649			break;
1650		}
1651
1652		depth = ext_depth(inode);
1653		BUG_ON(path[depth].p_hdr == NULL);
1654		ex = path[depth].p_ext;
1655		next = ext4_ext_next_allocated_block(path);
1656
1657		exists = 0;
1658		if (!ex) {
1659			/* there is no extent yet, so try to allocate
1660			 * all requested space */
1661			start = block;
1662			end = block + num;
1663		} else if (le32_to_cpu(ex->ee_block) > block) {
1664			/* need to allocate space before found extent */
1665			start = block;
1666			end = le32_to_cpu(ex->ee_block);
1667			if (block + num < end)
1668				end = block + num;
1669		} else if (block >= le32_to_cpu(ex->ee_block)
1670					+ ext4_ext_get_actual_len(ex)) {
1671			/* need to allocate space after found extent */
1672			start = block;
1673			end = block + num;
1674			if (end >= next)
1675				end = next;
1676		} else if (block >= le32_to_cpu(ex->ee_block)) {
1677			/*
1678			 * some part of requested space is covered
1679			 * by found extent
1680			 */
1681			start = block;
1682			end = le32_to_cpu(ex->ee_block)
1683				+ ext4_ext_get_actual_len(ex);
1684			if (block + num < end)
1685				end = block + num;
1686			exists = 1;
1687		} else {
1688			BUG();
1689		}
1690		BUG_ON(end <= start);
1691
1692		if (!exists) {
1693			cbex.ec_block = start;
1694			cbex.ec_len = end - start;
1695			cbex.ec_start = 0;
1696			cbex.ec_type = EXT4_EXT_CACHE_GAP;
1697		} else {
1698			cbex.ec_block = le32_to_cpu(ex->ee_block);
1699			cbex.ec_len = ext4_ext_get_actual_len(ex);
1700			cbex.ec_start = ext_pblock(ex);
1701			cbex.ec_type = EXT4_EXT_CACHE_EXTENT;
1702		}
1703
1704		BUG_ON(cbex.ec_len == 0);
1705		err = func(inode, path, &cbex, ex, cbdata);
1706		ext4_ext_drop_refs(path);
1707
1708		if (err < 0)
1709			break;
1710
1711		if (err == EXT_REPEAT)
1712			continue;
1713		else if (err == EXT_BREAK) {
1714			err = 0;
1715			break;
1716		}
1717
1718		if (ext_depth(inode) != depth) {
1719			/* depth was changed. we have to realloc path */
1720			kfree(path);
1721			path = NULL;
1722		}
1723
1724		block = cbex.ec_block + cbex.ec_len;
1725	}
1726
1727	if (path) {
1728		ext4_ext_drop_refs(path);
1729		kfree(path);
1730	}
1731
1732	return err;
1733}
1734
1735static void
1736ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1737			__u32 len, ext4_fsblk_t start, int type)
1738{
1739	struct ext4_ext_cache *cex;
1740	BUG_ON(len == 0);
1741	cex = &EXT4_I(inode)->i_cached_extent;
1742	cex->ec_type = type;
1743	cex->ec_block = block;
1744	cex->ec_len = len;
1745	cex->ec_start = start;
1746}
1747
1748/*
1749 * ext4_ext_put_gap_in_cache:
1750 * calculate boundaries of the gap that the requested block fits into
1751 * and cache this gap
1752 */
1753static void
1754ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1755				ext4_lblk_t block)
1756{
1757	int depth = ext_depth(inode);
1758	unsigned long len;
1759	ext4_lblk_t lblock;
1760	struct ext4_extent *ex;
1761
1762	ex = path[depth].p_ext;
1763	if (ex == NULL) {
1764		/* there is no extent yet, so gap is [0;-] */
1765		lblock = 0;
1766		len = EXT_MAX_BLOCK;
1767		ext_debug("cache gap(whole file):");
1768	} else if (block < le32_to_cpu(ex->ee_block)) {
1769		lblock = block;
1770		len = le32_to_cpu(ex->ee_block) - block;
1771		ext_debug("cache gap(before): %u [%u:%u]",
1772				block,
1773				le32_to_cpu(ex->ee_block),
1774				 ext4_ext_get_actual_len(ex));
1775	} else if (block >= le32_to_cpu(ex->ee_block)
1776			+ ext4_ext_get_actual_len(ex)) {
1777		ext4_lblk_t next;
1778		lblock = le32_to_cpu(ex->ee_block)
1779			+ ext4_ext_get_actual_len(ex);
1780
1781		next = ext4_ext_next_allocated_block(path);
1782		ext_debug("cache gap(after): [%u:%u] %u",
1783				le32_to_cpu(ex->ee_block),
1784				ext4_ext_get_actual_len(ex),
1785				block);
1786		BUG_ON(next == lblock);
1787		len = next - lblock;
1788	} else {
1789		lblock = len = 0;
1790		BUG();
1791	}
1792
1793	ext_debug(" -> %u:%lu\n", lblock, len);
1794	ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP);
1795}
1796
1797static int
1798ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
1799			struct ext4_extent *ex)
1800{
1801	struct ext4_ext_cache *cex;
1802
1803	cex = &EXT4_I(inode)->i_cached_extent;
1804
1805	/* has cache valid data? */
1806	if (cex->ec_type == EXT4_EXT_CACHE_NO)
1807		return EXT4_EXT_CACHE_NO;
1808
1809	BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP &&
1810			cex->ec_type != EXT4_EXT_CACHE_EXTENT);
1811	if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) {
1812		ex->ee_block = cpu_to_le32(cex->ec_block);
1813		ext4_ext_store_pblock(ex, cex->ec_start);
1814		ex->ee_len = cpu_to_le16(cex->ec_len);
1815		ext_debug("%u cached by %u:%u:%llu\n",
1816				block,
1817				cex->ec_block, cex->ec_len, cex->ec_start);
1818		return cex->ec_type;
1819	}
1820
1821	/* not in cache */
1822	return EXT4_EXT_CACHE_NO;
1823}
1824
1825/*
1826 * ext4_ext_rm_idx:
1827 * removes index from the index block.
1828 * It's used in truncate case only, thus all requests are for
1829 * last index in the block only.
1830 */
1831static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
1832			struct ext4_ext_path *path)
1833{
1834	struct buffer_head *bh;
1835	int err;
1836	ext4_fsblk_t leaf;
1837
1838	/* free index block */
1839	path--;
1840	leaf = idx_pblock(path->p_idx);
1841	BUG_ON(path->p_hdr->eh_entries == 0);
1842	err = ext4_ext_get_access(handle, inode, path);
1843	if (err)
1844		return err;
1845	le16_add_cpu(&path->p_hdr->eh_entries, -1);
1846	err = ext4_ext_dirty(handle, inode, path);
1847	if (err)
1848		return err;
1849	ext_debug("index is empty, remove it, free block %llu\n", leaf);
1850	bh = sb_find_get_block(inode->i_sb, leaf);
1851	ext4_forget(handle, 1, inode, bh, leaf);
1852	ext4_free_blocks(handle, inode, leaf, 1, 1);
1853	return err;
1854}
1855
1856/*
1857 * ext4_ext_calc_credits_for_single_extent:
1858 * This routine returns max. credits that needed to insert an extent
1859 * to the extent tree.
1860 * When pass the actual path, the caller should calculate credits
1861 * under i_data_sem.
1862 */
1863int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
1864						struct ext4_ext_path *path)
1865{
1866	if (path) {
1867		int depth = ext_depth(inode);
1868		int ret = 0;
1869
1870		/* probably there is space in leaf? */
1871		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
1872				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
1873
1874			/*
1875			 *  There are some space in the leaf tree, no
1876			 *  need to account for leaf block credit
1877			 *
1878			 *  bitmaps and block group descriptor blocks
1879			 *  and other metadat blocks still need to be
1880			 *  accounted.
1881			 */
1882			/* 1 bitmap, 1 block group descriptor */
1883			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
1884		}
1885	}
1886
1887	return ext4_chunk_trans_blocks(inode, nrblocks);
1888}
1889
1890/*
1891 * How many index/leaf blocks need to change/allocate to modify nrblocks?
1892 *
1893 * if nrblocks are fit in a single extent (chunk flag is 1), then
1894 * in the worse case, each tree level index/leaf need to be changed
1895 * if the tree split due to insert a new extent, then the old tree
1896 * index/leaf need to be updated too
1897 *
1898 * If the nrblocks are discontiguous, they could cause
1899 * the whole tree split more than once, but this is really rare.
1900 */
1901int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
1902{
1903	int index;
1904	int depth = ext_depth(inode);
1905
1906	if (chunk)
1907		index = depth * 2;
1908	else
1909		index = depth * 3;
1910
1911	return index;
1912}
1913
1914static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
1915				struct ext4_extent *ex,
1916				ext4_lblk_t from, ext4_lblk_t to)
1917{
1918	struct buffer_head *bh;
1919	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
1920	int i, metadata = 0;
1921
1922	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1923		metadata = 1;
1924#ifdef EXTENTS_STATS
1925	{
1926		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1927		spin_lock(&sbi->s_ext_stats_lock);
1928		sbi->s_ext_blocks += ee_len;
1929		sbi->s_ext_extents++;
1930		if (ee_len < sbi->s_ext_min)
1931			sbi->s_ext_min = ee_len;
1932		if (ee_len > sbi->s_ext_max)
1933			sbi->s_ext_max = ee_len;
1934		if (ext_depth(inode) > sbi->s_depth_max)
1935			sbi->s_depth_max = ext_depth(inode);
1936		spin_unlock(&sbi->s_ext_stats_lock);
1937	}
1938#endif
1939	if (from >= le32_to_cpu(ex->ee_block)
1940	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
1941		/* tail removal */
1942		ext4_lblk_t num;
1943		ext4_fsblk_t start;
1944
1945		num = le32_to_cpu(ex->ee_block) + ee_len - from;
1946		start = ext_pblock(ex) + ee_len - num;
1947		ext_debug("free last %u blocks starting %llu\n", num, start);
1948		for (i = 0; i < num; i++) {
1949			bh = sb_find_get_block(inode->i_sb, start + i);
1950			ext4_forget(handle, 0, inode, bh, start + i);
1951		}
1952		ext4_free_blocks(handle, inode, start, num, metadata);
1953	} else if (from == le32_to_cpu(ex->ee_block)
1954		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
1955		printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
1956			from, to, le32_to_cpu(ex->ee_block), ee_len);
1957	} else {
1958		printk(KERN_INFO "strange request: removal(2) "
1959				"%u-%u from %u:%u\n",
1960				from, to, le32_to_cpu(ex->ee_block), ee_len);
1961	}
1962	return 0;
1963}
1964
1965static int
1966ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
1967		struct ext4_ext_path *path, ext4_lblk_t start)
1968{
1969	int err = 0, correct_index = 0;
1970	int depth = ext_depth(inode), credits;
1971	struct ext4_extent_header *eh;
1972	ext4_lblk_t a, b, block;
1973	unsigned num;
1974	ext4_lblk_t ex_ee_block;
1975	unsigned short ex_ee_len;
1976	unsigned uninitialized = 0;
1977	struct ext4_extent *ex;
1978
1979	/* the header must be checked already in ext4_ext_remove_space() */
1980	ext_debug("truncate since %u in leaf\n", start);
1981	if (!path[depth].p_hdr)
1982		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
1983	eh = path[depth].p_hdr;
1984	BUG_ON(eh == NULL);
1985
1986	/* find where to start removing */
1987	ex = EXT_LAST_EXTENT(eh);
1988
1989	ex_ee_block = le32_to_cpu(ex->ee_block);
1990	if (ext4_ext_is_uninitialized(ex))
1991		uninitialized = 1;
1992	ex_ee_len = ext4_ext_get_actual_len(ex);
1993
1994	while (ex >= EXT_FIRST_EXTENT(eh) &&
1995			ex_ee_block + ex_ee_len > start) {
1996		ext_debug("remove ext %lu:%u\n", ex_ee_block, ex_ee_len);
1997		path[depth].p_ext = ex;
1998
1999		a = ex_ee_block > start ? ex_ee_block : start;
2000		b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
2001			ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
2002
2003		ext_debug("  border %u:%u\n", a, b);
2004
2005		if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
2006			block = 0;
2007			num = 0;
2008			BUG();
2009		} else if (a != ex_ee_block) {
2010			/* remove tail of the extent */
2011			block = ex_ee_block;
2012			num = a - block;
2013		} else if (b != ex_ee_block + ex_ee_len - 1) {
2014			/* remove head of the extent */
2015			block = a;
2016			num = b - a;
2017			/* there is no "make a hole" API yet */
2018			BUG();
2019		} else {
2020			/* remove whole extent: excellent! */
2021			block = ex_ee_block;
2022			num = 0;
2023			BUG_ON(a != ex_ee_block);
2024			BUG_ON(b != ex_ee_block + ex_ee_len - 1);
2025		}
2026
2027		/*
2028		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2029		 * descriptor) for each block group; assume two block
2030		 * groups plus ex_ee_len/blocks_per_block_group for
2031		 * the worst case
2032		 */
2033		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2034		if (ex == EXT_FIRST_EXTENT(eh)) {
2035			correct_index = 1;
2036			credits += (ext_depth(inode)) + 1;
2037		}
2038		credits += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
2039
2040		err = ext4_ext_journal_restart(handle, credits);
2041		if (err)
2042			goto out;
2043
2044		err = ext4_ext_get_access(handle, inode, path + depth);
2045		if (err)
2046			goto out;
2047
2048		err = ext4_remove_blocks(handle, inode, ex, a, b);
2049		if (err)
2050			goto out;
2051
2052		if (num == 0) {
2053			/* this extent is removed; mark slot entirely unused */
2054			ext4_ext_store_pblock(ex, 0);
2055			le16_add_cpu(&eh->eh_entries, -1);
2056		}
2057
2058		ex->ee_block = cpu_to_le32(block);
2059		ex->ee_len = cpu_to_le16(num);
2060		/*
2061		 * Do not mark uninitialized if all the blocks in the
2062		 * extent have been removed.
2063		 */
2064		if (uninitialized && num)
2065			ext4_ext_mark_uninitialized(ex);
2066
2067		err = ext4_ext_dirty(handle, inode, path + depth);
2068		if (err)
2069			goto out;
2070
2071		ext_debug("new extent: %u:%u:%llu\n", block, num,
2072				ext_pblock(ex));
2073		ex--;
2074		ex_ee_block = le32_to_cpu(ex->ee_block);
2075		ex_ee_len = ext4_ext_get_actual_len(ex);
2076	}
2077
2078	if (correct_index && eh->eh_entries)
2079		err = ext4_ext_correct_indexes(handle, inode, path);
2080
2081	/* if this leaf is free, then we should
2082	 * remove it from index block above */
2083	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2084		err = ext4_ext_rm_idx(handle, inode, path + depth);
2085
2086out:
2087	return err;
2088}
2089
2090/*
2091 * ext4_ext_more_to_rm:
2092 * returns 1 if current index has to be freed (even partial)
2093 */
2094static int
2095ext4_ext_more_to_rm(struct ext4_ext_path *path)
2096{
2097	BUG_ON(path->p_idx == NULL);
2098
2099	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2100		return 0;
2101
2102	/*
2103	 * if truncate on deeper level happened, it wasn't partial,
2104	 * so we have to consider current index for truncation
2105	 */
2106	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2107		return 0;
2108	return 1;
2109}
2110
2111static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2112{
2113	struct super_block *sb = inode->i_sb;
2114	int depth = ext_depth(inode);
2115	struct ext4_ext_path *path;
2116	handle_t *handle;
2117	int i = 0, err = 0;
2118
2119	ext_debug("truncate since %u\n", start);
2120
2121	/* probably first extent we're gonna free will be last in block */
2122	handle = ext4_journal_start(inode, depth + 1);
2123	if (IS_ERR(handle))
2124		return PTR_ERR(handle);
2125
2126	ext4_ext_invalidate_cache(inode);
2127
2128	/*
2129	 * We start scanning from right side, freeing all the blocks
2130	 * after i_size and walking into the tree depth-wise.
2131	 */
2132	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2133	if (path == NULL) {
2134		ext4_journal_stop(handle);
2135		return -ENOMEM;
2136	}
2137	path[0].p_hdr = ext_inode_hdr(inode);
2138	if (ext4_ext_check_header(inode, path[0].p_hdr, depth)) {
2139		err = -EIO;
2140		goto out;
2141	}
2142	path[0].p_depth = depth;
2143
2144	while (i >= 0 && err == 0) {
2145		if (i == depth) {
2146			/* this is leaf block */
2147			err = ext4_ext_rm_leaf(handle, inode, path, start);
2148			/* root level has p_bh == NULL, brelse() eats this */
2149			brelse(path[i].p_bh);
2150			path[i].p_bh = NULL;
2151			i--;
2152			continue;
2153		}
2154
2155		/* this is index block */
2156		if (!path[i].p_hdr) {
2157			ext_debug("initialize header\n");
2158			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2159		}
2160
2161		if (!path[i].p_idx) {
2162			/* this level hasn't been touched yet */
2163			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2164			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2165			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2166				  path[i].p_hdr,
2167				  le16_to_cpu(path[i].p_hdr->eh_entries));
2168		} else {
2169			/* we were already here, see at next index */
2170			path[i].p_idx--;
2171		}
2172
2173		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2174				i, EXT_FIRST_INDEX(path[i].p_hdr),
2175				path[i].p_idx);
2176		if (ext4_ext_more_to_rm(path + i)) {
2177			struct buffer_head *bh;
2178			/* go to the next level */
2179			ext_debug("move to level %d (block %llu)\n",
2180				  i + 1, idx_pblock(path[i].p_idx));
2181			memset(path + i + 1, 0, sizeof(*path));
2182			bh = sb_bread(sb, idx_pblock(path[i].p_idx));
2183			if (!bh) {
2184				/* should we reset i_size? */
2185				err = -EIO;
2186				break;
2187			}
2188			if (WARN_ON(i + 1 > depth)) {
2189				err = -EIO;
2190				break;
2191			}
2192			if (ext4_ext_check_header(inode, ext_block_hdr(bh),
2193							depth - i - 1)) {
2194				err = -EIO;
2195				break;
2196			}
2197			path[i + 1].p_bh = bh;
2198
2199			/* save actual number of indexes since this
2200			 * number is changed at the next iteration */
2201			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2202			i++;
2203		} else {
2204			/* we finished processing this index, go up */
2205			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2206				/* index is empty, remove it;
2207				 * handle must be already prepared by the
2208				 * truncatei_leaf() */
2209				err = ext4_ext_rm_idx(handle, inode, path + i);
2210			}
2211			/* root level has p_bh == NULL, brelse() eats this */
2212			brelse(path[i].p_bh);
2213			path[i].p_bh = NULL;
2214			i--;
2215			ext_debug("return to level %d\n", i);
2216		}
2217	}
2218
2219	/* TODO: flexible tree reduction should be here */
2220	if (path->p_hdr->eh_entries == 0) {
2221		/*
2222		 * truncate to zero freed all the tree,
2223		 * so we need to correct eh_depth
2224		 */
2225		err = ext4_ext_get_access(handle, inode, path);
2226		if (err == 0) {
2227			ext_inode_hdr(inode)->eh_depth = 0;
2228			ext_inode_hdr(inode)->eh_max =
2229				cpu_to_le16(ext4_ext_space_root(inode));
2230			err = ext4_ext_dirty(handle, inode, path);
2231		}
2232	}
2233out:
2234	ext4_ext_drop_refs(path);
2235	kfree(path);
2236	ext4_journal_stop(handle);
2237
2238	return err;
2239}
2240
2241/*
2242 * called at mount time
2243 */
2244void ext4_ext_init(struct super_block *sb)
2245{
2246	/*
2247	 * possible initialization would be here
2248	 */
2249
2250	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2251		printk(KERN_INFO "EXT4-fs: file extents enabled");
2252#ifdef AGGRESSIVE_TEST
2253		printk(", aggressive tests");
2254#endif
2255#ifdef CHECK_BINSEARCH
2256		printk(", check binsearch");
2257#endif
2258#ifdef EXTENTS_STATS
2259		printk(", stats");
2260#endif
2261		printk("\n");
2262#ifdef EXTENTS_STATS
2263		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2264		EXT4_SB(sb)->s_ext_min = 1 << 30;
2265		EXT4_SB(sb)->s_ext_max = 0;
2266#endif
2267	}
2268}
2269
2270/*
2271 * called at umount time
2272 */
2273void ext4_ext_release(struct super_block *sb)
2274{
2275	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2276		return;
2277
2278#ifdef EXTENTS_STATS
2279	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2280		struct ext4_sb_info *sbi = EXT4_SB(sb);
2281		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2282			sbi->s_ext_blocks, sbi->s_ext_extents,
2283			sbi->s_ext_blocks / sbi->s_ext_extents);
2284		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2285			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2286	}
2287#endif
2288}
2289
2290static void bi_complete(struct bio *bio, int error)
2291{
2292	complete((struct completion *)bio->bi_private);
2293}
2294
2295/* FIXME!! we need to try to merge to left or right after zero-out  */
2296static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2297{
2298	int ret = -EIO;
2299	struct bio *bio;
2300	int blkbits, blocksize;
2301	sector_t ee_pblock;
2302	struct completion event;
2303	unsigned int ee_len, len, done, offset;
2304
2305
2306	blkbits   = inode->i_blkbits;
2307	blocksize = inode->i_sb->s_blocksize;
2308	ee_len    = ext4_ext_get_actual_len(ex);
2309	ee_pblock = ext_pblock(ex);
2310
2311	/* convert ee_pblock to 512 byte sectors */
2312	ee_pblock = ee_pblock << (blkbits - 9);
2313
2314	while (ee_len > 0) {
2315
2316		if (ee_len > BIO_MAX_PAGES)
2317			len = BIO_MAX_PAGES;
2318		else
2319			len = ee_len;
2320
2321		bio = bio_alloc(GFP_NOIO, len);
2322		if (!bio)
2323			return -ENOMEM;
2324		bio->bi_sector = ee_pblock;
2325		bio->bi_bdev   = inode->i_sb->s_bdev;
2326
2327		done = 0;
2328		offset = 0;
2329		while (done < len) {
2330			ret = bio_add_page(bio, ZERO_PAGE(0),
2331							blocksize, offset);
2332			if (ret != blocksize) {
2333				/*
2334				 * We can't add any more pages because of
2335				 * hardware limitations.  Start a new bio.
2336				 */
2337				break;
2338			}
2339			done++;
2340			offset += blocksize;
2341			if (offset >= PAGE_CACHE_SIZE)
2342				offset = 0;
2343		}
2344
2345		init_completion(&event);
2346		bio->bi_private = &event;
2347		bio->bi_end_io = bi_complete;
2348		submit_bio(WRITE, bio);
2349		wait_for_completion(&event);
2350
2351		if (test_bit(BIO_UPTODATE, &bio->bi_flags))
2352			ret = 0;
2353		else {
2354			ret = -EIO;
2355			break;
2356		}
2357		bio_put(bio);
2358		ee_len    -= done;
2359		ee_pblock += done  << (blkbits - 9);
2360	}
2361	return ret;
2362}
2363
2364#define EXT4_EXT_ZERO_LEN 7
2365
2366/*
2367 * This function is called by ext4_ext_get_blocks() if someone tries to write
2368 * to an uninitialized extent. It may result in splitting the uninitialized
2369 * extent into multiple extents (upto three - one initialized and two
2370 * uninitialized).
2371 * There are three possibilities:
2372 *   a> There is no split required: Entire extent should be initialized
2373 *   b> Splits in two extents: Write is happening at either end of the extent
2374 *   c> Splits in three extents: Somone is writing in middle of the extent
2375 */
2376static int ext4_ext_convert_to_initialized(handle_t *handle,
2377						struct inode *inode,
2378						struct ext4_ext_path *path,
2379						ext4_lblk_t iblock,
2380						unsigned int max_blocks)
2381{
2382	struct ext4_extent *ex, newex, orig_ex;
2383	struct ext4_extent *ex1 = NULL;
2384	struct ext4_extent *ex2 = NULL;
2385	struct ext4_extent *ex3 = NULL;
2386	struct ext4_extent_header *eh;
2387	ext4_lblk_t ee_block;
2388	unsigned int allocated, ee_len, depth;
2389	ext4_fsblk_t newblock;
2390	int err = 0;
2391	int ret = 0;
2392
2393	depth = ext_depth(inode);
2394	eh = path[depth].p_hdr;
2395	ex = path[depth].p_ext;
2396	ee_block = le32_to_cpu(ex->ee_block);
2397	ee_len = ext4_ext_get_actual_len(ex);
2398	allocated = ee_len - (iblock - ee_block);
2399	newblock = iblock - ee_block + ext_pblock(ex);
2400	ex2 = ex;
2401	orig_ex.ee_block = ex->ee_block;
2402	orig_ex.ee_len   = cpu_to_le16(ee_len);
2403	ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
2404
2405	err = ext4_ext_get_access(handle, inode, path + depth);
2406	if (err)
2407		goto out;
2408	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2409	if (ee_len <= 2*EXT4_EXT_ZERO_LEN) {
2410		err =  ext4_ext_zeroout(inode, &orig_ex);
2411		if (err)
2412			goto fix_extent_len;
2413		/* update the extent length and mark as initialized */
2414		ex->ee_block = orig_ex.ee_block;
2415		ex->ee_len   = orig_ex.ee_len;
2416		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2417		ext4_ext_dirty(handle, inode, path + depth);
2418		/* zeroed the full extent */
2419		return allocated;
2420	}
2421
2422	/* ex1: ee_block to iblock - 1 : uninitialized */
2423	if (iblock > ee_block) {
2424		ex1 = ex;
2425		ex1->ee_len = cpu_to_le16(iblock - ee_block);
2426		ext4_ext_mark_uninitialized(ex1);
2427		ex2 = &newex;
2428	}
2429	/*
2430	 * for sanity, update the length of the ex2 extent before
2431	 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2432	 * overlap of blocks.
2433	 */
2434	if (!ex1 && allocated > max_blocks)
2435		ex2->ee_len = cpu_to_le16(max_blocks);
2436	/* ex3: to ee_block + ee_len : uninitialised */
2437	if (allocated > max_blocks) {
2438		unsigned int newdepth;
2439		/* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */
2440		if (allocated <= EXT4_EXT_ZERO_LEN) {
2441			/*
2442			 * iblock == ee_block is handled by the zerouout
2443			 * at the beginning.
2444			 * Mark first half uninitialized.
2445			 * Mark second half initialized and zero out the
2446			 * initialized extent
2447			 */
2448			ex->ee_block = orig_ex.ee_block;
2449			ex->ee_len   = cpu_to_le16(ee_len - allocated);
2450			ext4_ext_mark_uninitialized(ex);
2451			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2452			ext4_ext_dirty(handle, inode, path + depth);
2453
2454			ex3 = &newex;
2455			ex3->ee_block = cpu_to_le32(iblock);
2456			ext4_ext_store_pblock(ex3, newblock);
2457			ex3->ee_len = cpu_to_le16(allocated);
2458			err = ext4_ext_insert_extent(handle, inode, path, ex3);
2459			if (err == -ENOSPC) {
2460				err =  ext4_ext_zeroout(inode, &orig_ex);
2461				if (err)
2462					goto fix_extent_len;
2463				ex->ee_block = orig_ex.ee_block;
2464				ex->ee_len   = orig_ex.ee_len;
2465				ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2466				ext4_ext_dirty(handle, inode, path + depth);
2467				/* blocks available from iblock */
2468				return allocated;
2469
2470			} else if (err)
2471				goto fix_extent_len;
2472
2473			/*
2474			 * We need to zero out the second half because
2475			 * an fallocate request can update file size and
2476			 * converting the second half to initialized extent
2477			 * implies that we can leak some junk data to user
2478			 * space.
2479			 */
2480			err =  ext4_ext_zeroout(inode, ex3);
2481			if (err) {
2482				/*
2483				 * We should actually mark the
2484				 * second half as uninit and return error
2485				 * Insert would have changed the extent
2486				 */
2487				depth = ext_depth(inode);
2488				ext4_ext_drop_refs(path);
2489				path = ext4_ext_find_extent(inode,
2490								iblock, path);
2491				if (IS_ERR(path)) {
2492					err = PTR_ERR(path);
2493					return err;
2494				}
2495				/* get the second half extent details */
2496				ex = path[depth].p_ext;
2497				err = ext4_ext_get_access(handle, inode,
2498								path + depth);
2499				if (err)
2500					return err;
2501				ext4_ext_mark_uninitialized(ex);
2502				ext4_ext_dirty(handle, inode, path + depth);
2503				return err;
2504			}
2505
2506			/* zeroed the second half */
2507			return allocated;
2508		}
2509		ex3 = &newex;
2510		ex3->ee_block = cpu_to_le32(iblock + max_blocks);
2511		ext4_ext_store_pblock(ex3, newblock + max_blocks);
2512		ex3->ee_len = cpu_to_le16(allocated - max_blocks);
2513		ext4_ext_mark_uninitialized(ex3);
2514		err = ext4_ext_insert_extent(handle, inode, path, ex3);
2515		if (err == -ENOSPC) {
2516			err =  ext4_ext_zeroout(inode, &orig_ex);
2517			if (err)
2518				goto fix_extent_len;
2519			/* update the extent length and mark as initialized */
2520			ex->ee_block = orig_ex.ee_block;
2521			ex->ee_len   = orig_ex.ee_len;
2522			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2523			ext4_ext_dirty(handle, inode, path + depth);
2524			/* zeroed the full extent */
2525			/* blocks available from iblock */
2526			return allocated;
2527
2528		} else if (err)
2529			goto fix_extent_len;
2530		/*
2531		 * The depth, and hence eh & ex might change
2532		 * as part of the insert above.
2533		 */
2534		newdepth = ext_depth(inode);
2535		/*
2536		 * update the extent length after successful insert of the
2537		 * split extent
2538		 */
2539		orig_ex.ee_len = cpu_to_le16(ee_len -
2540						ext4_ext_get_actual_len(ex3));
2541		depth = newdepth;
2542		ext4_ext_drop_refs(path);
2543		path = ext4_ext_find_extent(inode, iblock, path);
2544		if (IS_ERR(path)) {
2545			err = PTR_ERR(path);
2546			goto out;
2547		}
2548		eh = path[depth].p_hdr;
2549		ex = path[depth].p_ext;
2550		if (ex2 != &newex)
2551			ex2 = ex;
2552
2553		err = ext4_ext_get_access(handle, inode, path + depth);
2554		if (err)
2555			goto out;
2556
2557		allocated = max_blocks;
2558
2559		/* If extent has less than EXT4_EXT_ZERO_LEN and we are trying
2560		 * to insert a extent in the middle zerout directly
2561		 * otherwise give the extent a chance to merge to left
2562		 */
2563		if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN &&
2564							iblock != ee_block) {
2565			err =  ext4_ext_zeroout(inode, &orig_ex);
2566			if (err)
2567				goto fix_extent_len;
2568			/* update the extent length and mark as initialized */
2569			ex->ee_block = orig_ex.ee_block;
2570			ex->ee_len   = orig_ex.ee_len;
2571			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2572			ext4_ext_dirty(handle, inode, path + depth);
2573			/* zero out the first half */
2574			/* blocks available from iblock */
2575			return allocated;
2576		}
2577	}
2578	/*
2579	 * If there was a change of depth as part of the
2580	 * insertion of ex3 above, we need to update the length
2581	 * of the ex1 extent again here
2582	 */
2583	if (ex1 && ex1 != ex) {
2584		ex1 = ex;
2585		ex1->ee_len = cpu_to_le16(iblock - ee_block);
2586		ext4_ext_mark_uninitialized(ex1);
2587		ex2 = &newex;
2588	}
2589	/* ex2: iblock to iblock + maxblocks-1 : initialised */
2590	ex2->ee_block = cpu_to_le32(iblock);
2591	ext4_ext_store_pblock(ex2, newblock);
2592	ex2->ee_len = cpu_to_le16(allocated);
2593	if (ex2 != ex)
2594		goto insert;
2595	/*
2596	 * New (initialized) extent starts from the first block
2597	 * in the current extent. i.e., ex2 == ex
2598	 * We have to see if it can be merged with the extent
2599	 * on the left.
2600	 */
2601	if (ex2 > EXT_FIRST_EXTENT(eh)) {
2602		/*
2603		 * To merge left, pass "ex2 - 1" to try_to_merge(),
2604		 * since it merges towards right _only_.
2605		 */
2606		ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2607		if (ret) {
2608			err = ext4_ext_correct_indexes(handle, inode, path);
2609			if (err)
2610				goto out;
2611			depth = ext_depth(inode);
2612			ex2--;
2613		}
2614	}
2615	/*
2616	 * Try to Merge towards right. This might be required
2617	 * only when the whole extent is being written to.
2618	 * i.e. ex2 == ex and ex3 == NULL.
2619	 */
2620	if (!ex3) {
2621		ret = ext4_ext_try_to_merge(inode, path, ex2);
2622		if (ret) {
2623			err = ext4_ext_correct_indexes(handle, inode, path);
2624			if (err)
2625				goto out;
2626		}
2627	}
2628	/* Mark modified extent as dirty */
2629	err = ext4_ext_dirty(handle, inode, path + depth);
2630	goto out;
2631insert:
2632	err = ext4_ext_insert_extent(handle, inode, path, &newex);
2633	if (err == -ENOSPC) {
2634		err =  ext4_ext_zeroout(inode, &orig_ex);
2635		if (err)
2636			goto fix_extent_len;
2637		/* update the extent length and mark as initialized */
2638		ex->ee_block = orig_ex.ee_block;
2639		ex->ee_len   = orig_ex.ee_len;
2640		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2641		ext4_ext_dirty(handle, inode, path + depth);
2642		/* zero out the first half */
2643		return allocated;
2644	} else if (err)
2645		goto fix_extent_len;
2646out:
2647	return err ? err : allocated;
2648
2649fix_extent_len:
2650	ex->ee_block = orig_ex.ee_block;
2651	ex->ee_len   = orig_ex.ee_len;
2652	ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2653	ext4_ext_mark_uninitialized(ex);
2654	ext4_ext_dirty(handle, inode, path + depth);
2655	return err;
2656}
2657
2658/*
2659 * Block allocation/map/preallocation routine for extents based files
2660 *
2661 *
2662 * Need to be called with
2663 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
2664 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
2665 *
2666 * return > 0, number of of blocks already mapped/allocated
2667 *          if create == 0 and these are pre-allocated blocks
2668 *          	buffer head is unmapped
2669 *          otherwise blocks are mapped
2670 *
2671 * return = 0, if plain look up failed (blocks have not been allocated)
2672 *          buffer head is unmapped
2673 *
2674 * return < 0, error case.
2675 */
2676int ext4_ext_get_blocks(handle_t *handle, struct inode *inode,
2677			ext4_lblk_t iblock,
2678			unsigned int max_blocks, struct buffer_head *bh_result,
2679			int create, int extend_disksize)
2680{
2681	struct ext4_ext_path *path = NULL;
2682	struct ext4_extent_header *eh;
2683	struct ext4_extent newex, *ex;
2684	ext4_fsblk_t newblock;
2685	int err = 0, depth, ret, cache_type;
2686	unsigned int allocated = 0;
2687	struct ext4_allocation_request ar;
2688	loff_t disksize;
2689
2690	__clear_bit(BH_New, &bh_result->b_state);
2691	ext_debug("blocks %u/%u requested for inode %u\n",
2692			iblock, max_blocks, inode->i_ino);
2693
2694	/* check in cache */
2695	cache_type = ext4_ext_in_cache(inode, iblock, &newex);
2696	if (cache_type) {
2697		if (cache_type == EXT4_EXT_CACHE_GAP) {
2698			if (!create) {
2699				/*
2700				 * block isn't allocated yet and
2701				 * user doesn't want to allocate it
2702				 */
2703				goto out2;
2704			}
2705			/* we should allocate requested block */
2706		} else if (cache_type == EXT4_EXT_CACHE_EXTENT) {
2707			/* block is already allocated */
2708			newblock = iblock
2709				   - le32_to_cpu(newex.ee_block)
2710				   + ext_pblock(&newex);
2711			/* number of remaining blocks in the extent */
2712			allocated = ext4_ext_get_actual_len(&newex) -
2713					(iblock - le32_to_cpu(newex.ee_block));
2714			goto out;
2715		} else {
2716			BUG();
2717		}
2718	}
2719
2720	/* find extent for this block */
2721	path = ext4_ext_find_extent(inode, iblock, NULL);
2722	if (IS_ERR(path)) {
2723		err = PTR_ERR(path);
2724		path = NULL;
2725		goto out2;
2726	}
2727
2728	depth = ext_depth(inode);
2729
2730	/*
2731	 * consistent leaf must not be empty;
2732	 * this situation is possible, though, _during_ tree modification;
2733	 * this is why assert can't be put in ext4_ext_find_extent()
2734	 */
2735	BUG_ON(path[depth].p_ext == NULL && depth != 0);
2736	eh = path[depth].p_hdr;
2737
2738	ex = path[depth].p_ext;
2739	if (ex) {
2740		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
2741		ext4_fsblk_t ee_start = ext_pblock(ex);
2742		unsigned short ee_len;
2743
2744		/*
2745		 * Uninitialized extents are treated as holes, except that
2746		 * we split out initialized portions during a write.
2747		 */
2748		ee_len = ext4_ext_get_actual_len(ex);
2749		/* if found extent covers block, simply return it */
2750		if (iblock >= ee_block && iblock < ee_block + ee_len) {
2751			newblock = iblock - ee_block + ee_start;
2752			/* number of remaining blocks in the extent */
2753			allocated = ee_len - (iblock - ee_block);
2754			ext_debug("%u fit into %lu:%d -> %llu\n", iblock,
2755					ee_block, ee_len, newblock);
2756
2757			/* Do not put uninitialized extent in the cache */
2758			if (!ext4_ext_is_uninitialized(ex)) {
2759				ext4_ext_put_in_cache(inode, ee_block,
2760							ee_len, ee_start,
2761							EXT4_EXT_CACHE_EXTENT);
2762				goto out;
2763			}
2764			if (create == EXT4_CREATE_UNINITIALIZED_EXT)
2765				goto out;
2766			if (!create) {
2767				/*
2768				 * We have blocks reserved already.  We
2769				 * return allocated blocks so that delalloc
2770				 * won't do block reservation for us.  But
2771				 * the buffer head will be unmapped so that
2772				 * a read from the block returns 0s.
2773				 */
2774				if (allocated > max_blocks)
2775					allocated = max_blocks;
2776				set_buffer_unwritten(bh_result);
2777				goto out2;
2778			}
2779
2780			ret = ext4_ext_convert_to_initialized(handle, inode,
2781								path, iblock,
2782								max_blocks);
2783			if (ret <= 0) {
2784				err = ret;
2785				goto out2;
2786			} else
2787				allocated = ret;
2788			goto outnew;
2789		}
2790	}
2791
2792	/*
2793	 * requested block isn't allocated yet;
2794	 * we couldn't try to create block if create flag is zero
2795	 */
2796	if (!create) {
2797		/*
2798		 * put just found gap into cache to speed up
2799		 * subsequent requests
2800		 */
2801		ext4_ext_put_gap_in_cache(inode, path, iblock);
2802		goto out2;
2803	}
2804	/*
2805	 * Okay, we need to do block allocation.
2806	 */
2807
2808	/* find neighbour allocated blocks */
2809	ar.lleft = iblock;
2810	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
2811	if (err)
2812		goto out2;
2813	ar.lright = iblock;
2814	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
2815	if (err)
2816		goto out2;
2817
2818	/*
2819	 * See if request is beyond maximum number of blocks we can have in
2820	 * a single extent. For an initialized extent this limit is
2821	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
2822	 * EXT_UNINIT_MAX_LEN.
2823	 */
2824	if (max_blocks > EXT_INIT_MAX_LEN &&
2825	    create != EXT4_CREATE_UNINITIALIZED_EXT)
2826		max_blocks = EXT_INIT_MAX_LEN;
2827	else if (max_blocks > EXT_UNINIT_MAX_LEN &&
2828		 create == EXT4_CREATE_UNINITIALIZED_EXT)
2829		max_blocks = EXT_UNINIT_MAX_LEN;
2830
2831	/* Check if we can really insert (iblock)::(iblock+max_blocks) extent */
2832	newex.ee_block = cpu_to_le32(iblock);
2833	newex.ee_len = cpu_to_le16(max_blocks);
2834	err = ext4_ext_check_overlap(inode, &newex, path);
2835	if (err)
2836		allocated = ext4_ext_get_actual_len(&newex);
2837	else
2838		allocated = max_blocks;
2839
2840	/* allocate new block */
2841	ar.inode = inode;
2842	ar.goal = ext4_ext_find_goal(inode, path, iblock);
2843	ar.logical = iblock;
2844	ar.len = allocated;
2845	if (S_ISREG(inode->i_mode))
2846		ar.flags = EXT4_MB_HINT_DATA;
2847	else
2848		/* disable in-core preallocation for non-regular files */
2849		ar.flags = 0;
2850	newblock = ext4_mb_new_blocks(handle, &ar, &err);
2851	if (!newblock)
2852		goto out2;
2853	ext_debug("allocate new block: goal %llu, found %llu/%lu\n",
2854		  ar.goal, newblock, allocated);
2855
2856	/* try to insert new extent into found leaf and return */
2857	ext4_ext_store_pblock(&newex, newblock);
2858	newex.ee_len = cpu_to_le16(ar.len);
2859	if (create == EXT4_CREATE_UNINITIALIZED_EXT)  /* Mark uninitialized */
2860		ext4_ext_mark_uninitialized(&newex);
2861	err = ext4_ext_insert_extent(handle, inode, path, &newex);
2862	if (err) {
2863		/* free data blocks we just allocated */
2864		/* not a good idea to call discard here directly,
2865		 * but otherwise we'd need to call it every free() */
2866		ext4_discard_preallocations(inode);
2867		ext4_free_blocks(handle, inode, ext_pblock(&newex),
2868					ext4_ext_get_actual_len(&newex), 0);
2869		goto out2;
2870	}
2871
2872	/* previous routine could use block we allocated */
2873	newblock = ext_pblock(&newex);
2874	allocated = ext4_ext_get_actual_len(&newex);
2875outnew:
2876	if (extend_disksize) {
2877		disksize = ((loff_t) iblock + ar.len) << inode->i_blkbits;
2878		if (disksize > i_size_read(inode))
2879			disksize = i_size_read(inode);
2880		if (disksize > EXT4_I(inode)->i_disksize)
2881			EXT4_I(inode)->i_disksize = disksize;
2882	}
2883
2884	set_buffer_new(bh_result);
2885
2886	/* Cache only when it is _not_ an uninitialized extent */
2887	if (create != EXT4_CREATE_UNINITIALIZED_EXT)
2888		ext4_ext_put_in_cache(inode, iblock, allocated, newblock,
2889						EXT4_EXT_CACHE_EXTENT);
2890out:
2891	if (allocated > max_blocks)
2892		allocated = max_blocks;
2893	ext4_ext_show_leaf(inode, path);
2894	set_buffer_mapped(bh_result);
2895	bh_result->b_bdev = inode->i_sb->s_bdev;
2896	bh_result->b_blocknr = newblock;
2897out2:
2898	if (path) {
2899		ext4_ext_drop_refs(path);
2900		kfree(path);
2901	}
2902	return err ? err : allocated;
2903}
2904
2905void ext4_ext_truncate(struct inode *inode)
2906{
2907	struct address_space *mapping = inode->i_mapping;
2908	struct super_block *sb = inode->i_sb;
2909	ext4_lblk_t last_block;
2910	handle_t *handle;
2911	int err = 0;
2912
2913	/*
2914	 * probably first extent we're gonna free will be last in block
2915	 */
2916	err = ext4_writepage_trans_blocks(inode);
2917	handle = ext4_journal_start(inode, err);
2918	if (IS_ERR(handle))
2919		return;
2920
2921	if (inode->i_size & (sb->s_blocksize - 1))
2922		ext4_block_truncate_page(handle, mapping, inode->i_size);
2923
2924	if (ext4_orphan_add(handle, inode))
2925		goto out_stop;
2926
2927	down_write(&EXT4_I(inode)->i_data_sem);
2928	ext4_ext_invalidate_cache(inode);
2929
2930	ext4_discard_preallocations(inode);
2931
2932	/*
2933	 * TODO: optimization is possible here.
2934	 * Probably we need not scan at all,
2935	 * because page truncation is enough.
2936	 */
2937
2938	/* we have to know where to truncate from in crash case */
2939	EXT4_I(inode)->i_disksize = inode->i_size;
2940	ext4_mark_inode_dirty(handle, inode);
2941
2942	last_block = (inode->i_size + sb->s_blocksize - 1)
2943			>> EXT4_BLOCK_SIZE_BITS(sb);
2944	err = ext4_ext_remove_space(inode, last_block);
2945
2946	/* In a multi-transaction truncate, we only make the final
2947	 * transaction synchronous.
2948	 */
2949	if (IS_SYNC(inode))
2950		ext4_handle_sync(handle);
2951
2952out_stop:
2953	up_write(&EXT4_I(inode)->i_data_sem);
2954	/*
2955	 * If this was a simple ftruncate() and the file will remain alive,
2956	 * then we need to clear up the orphan record which we created above.
2957	 * However, if this was a real unlink then we were called by
2958	 * ext4_delete_inode(), and we allow that function to clean up the
2959	 * orphan info for us.
2960	 */
2961	if (inode->i_nlink)
2962		ext4_orphan_del(handle, inode);
2963
2964	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2965	ext4_mark_inode_dirty(handle, inode);
2966	ext4_journal_stop(handle);
2967}
2968
2969static void ext4_falloc_update_inode(struct inode *inode,
2970				int mode, loff_t new_size, int update_ctime)
2971{
2972	struct timespec now;
2973
2974	if (update_ctime) {
2975		now = current_fs_time(inode->i_sb);
2976		if (!timespec_equal(&inode->i_ctime, &now))
2977			inode->i_ctime = now;
2978	}
2979	/*
2980	 * Update only when preallocation was requested beyond
2981	 * the file size.
2982	 */
2983	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
2984		if (new_size > i_size_read(inode))
2985			i_size_write(inode, new_size);
2986		if (new_size > EXT4_I(inode)->i_disksize)
2987			ext4_update_i_disksize(inode, new_size);
2988	}
2989
2990}
2991
2992/*
2993 * preallocate space for a file. This implements ext4's fallocate inode
2994 * operation, which gets called from sys_fallocate system call.
2995 * For block-mapped files, posix_fallocate should fall back to the method
2996 * of writing zeroes to the required new blocks (the same behavior which is
2997 * expected for file systems which do not support fallocate() system call).
2998 */
2999long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len)
3000{
3001	handle_t *handle;
3002	ext4_lblk_t block;
3003	loff_t new_size;
3004	unsigned int max_blocks;
3005	int ret = 0;
3006	int ret2 = 0;
3007	int retries = 0;
3008	struct buffer_head map_bh;
3009	unsigned int credits, blkbits = inode->i_blkbits;
3010
3011	/*
3012	 * currently supporting (pre)allocate mode for extent-based
3013	 * files _only_
3014	 */
3015	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3016		return -EOPNOTSUPP;
3017
3018	/* preallocation to directories is currently not supported */
3019	if (S_ISDIR(inode->i_mode))
3020		return -ENODEV;
3021
3022	block = offset >> blkbits;
3023	/*
3024	 * We can't just convert len to max_blocks because
3025	 * If blocksize = 4096 offset = 3072 and len = 2048
3026	 */
3027	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3028							- block;
3029	/*
3030	 * credits to insert 1 extent into extent tree
3031	 */
3032	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3033	mutex_lock(&inode->i_mutex);
3034retry:
3035	while (ret >= 0 && ret < max_blocks) {
3036		block = block + ret;
3037		max_blocks = max_blocks - ret;
3038		handle = ext4_journal_start(inode, credits);
3039		if (IS_ERR(handle)) {
3040			ret = PTR_ERR(handle);
3041			break;
3042		}
3043		ret = ext4_get_blocks_wrap(handle, inode, block,
3044					  max_blocks, &map_bh,
3045					  EXT4_CREATE_UNINITIALIZED_EXT, 0, 0);
3046		if (ret <= 0) {
3047#ifdef EXT4FS_DEBUG
3048			WARN_ON(ret <= 0);
3049			printk(KERN_ERR "%s: ext4_ext_get_blocks "
3050				    "returned error inode#%lu, block=%u, "
3051				    "max_blocks=%u", __func__,
3052				    inode->i_ino, block, max_blocks);
3053#endif
3054			ext4_mark_inode_dirty(handle, inode);
3055			ret2 = ext4_journal_stop(handle);
3056			break;
3057		}
3058		if ((block + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3059						blkbits) >> blkbits))
3060			new_size = offset + len;
3061		else
3062			new_size = (block + ret) << blkbits;
3063
3064		ext4_falloc_update_inode(inode, mode, new_size,
3065						buffer_new(&map_bh));
3066		ext4_mark_inode_dirty(handle, inode);
3067		ret2 = ext4_journal_stop(handle);
3068		if (ret2)
3069			break;
3070	}
3071	if (ret == -ENOSPC &&
3072			ext4_should_retry_alloc(inode->i_sb, &retries)) {
3073		ret = 0;
3074		goto retry;
3075	}
3076	mutex_unlock(&inode->i_mutex);
3077	return ret > 0 ? ret2 : ret;
3078}
3079
3080/*
3081 * Callback function called for each extent to gather FIEMAP information.
3082 */
3083static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path,
3084		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
3085		       void *data)
3086{
3087	struct fiemap_extent_info *fieinfo = data;
3088	unsigned long blksize_bits = inode->i_sb->s_blocksize_bits;
3089	__u64	logical;
3090	__u64	physical;
3091	__u64	length;
3092	__u32	flags = 0;
3093	int	error;
3094
3095	logical =  (__u64)newex->ec_block << blksize_bits;
3096
3097	if (newex->ec_type == EXT4_EXT_CACHE_GAP) {
3098		pgoff_t offset;
3099		struct page *page;
3100		struct buffer_head *bh = NULL;
3101
3102		offset = logical >> PAGE_SHIFT;
3103		page = find_get_page(inode->i_mapping, offset);
3104		if (!page || !page_has_buffers(page))
3105			return EXT_CONTINUE;
3106
3107		bh = page_buffers(page);
3108
3109		if (!bh)
3110			return EXT_CONTINUE;
3111
3112		if (buffer_delay(bh)) {
3113			flags |= FIEMAP_EXTENT_DELALLOC;
3114			page_cache_release(page);
3115		} else {
3116			page_cache_release(page);
3117			return EXT_CONTINUE;
3118		}
3119	}
3120
3121	physical = (__u64)newex->ec_start << blksize_bits;
3122	length =   (__u64)newex->ec_len << blksize_bits;
3123
3124	if (ex && ext4_ext_is_uninitialized(ex))
3125		flags |= FIEMAP_EXTENT_UNWRITTEN;
3126
3127	/*
3128	 * If this extent reaches EXT_MAX_BLOCK, it must be last.
3129	 *
3130	 * Or if ext4_ext_next_allocated_block is EXT_MAX_BLOCK,
3131	 * this also indicates no more allocated blocks.
3132	 *
3133	 * XXX this might miss a single-block extent at EXT_MAX_BLOCK
3134	 */
3135	if (logical + length - 1 == EXT_MAX_BLOCK ||
3136	    ext4_ext_next_allocated_block(path) == EXT_MAX_BLOCK)
3137		flags |= FIEMAP_EXTENT_LAST;
3138
3139	error = fiemap_fill_next_extent(fieinfo, logical, physical,
3140					length, flags);
3141	if (error < 0)
3142		return error;
3143	if (error == 1)
3144		return EXT_BREAK;
3145
3146	return EXT_CONTINUE;
3147}
3148
3149/* fiemap flags we can handle specified here */
3150#define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
3151
3152static int ext4_xattr_fiemap(struct inode *inode,
3153				struct fiemap_extent_info *fieinfo)
3154{
3155	__u64 physical = 0;
3156	__u64 length;
3157	__u32 flags = FIEMAP_EXTENT_LAST;
3158	int blockbits = inode->i_sb->s_blocksize_bits;
3159	int error = 0;
3160
3161	/* in-inode? */
3162	if (EXT4_I(inode)->i_state & EXT4_STATE_XATTR) {
3163		struct ext4_iloc iloc;
3164		int offset;	/* offset of xattr in inode */
3165
3166		error = ext4_get_inode_loc(inode, &iloc);
3167		if (error)
3168			return error;
3169		physical = iloc.bh->b_blocknr << blockbits;
3170		offset = EXT4_GOOD_OLD_INODE_SIZE +
3171				EXT4_I(inode)->i_extra_isize;
3172		physical += offset;
3173		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
3174		flags |= FIEMAP_EXTENT_DATA_INLINE;
3175	} else { /* external block */
3176		physical = EXT4_I(inode)->i_file_acl << blockbits;
3177		length = inode->i_sb->s_blocksize;
3178	}
3179
3180	if (physical)
3181		error = fiemap_fill_next_extent(fieinfo, 0, physical,
3182						length, flags);
3183	return (error < 0 ? error : 0);
3184}
3185
3186int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3187		__u64 start, __u64 len)
3188{
3189	ext4_lblk_t start_blk;
3190	ext4_lblk_t len_blks;
3191	int error = 0;
3192
3193	/* fallback to generic here if not in extents fmt */
3194	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3195		return generic_block_fiemap(inode, fieinfo, start, len,
3196			ext4_get_block);
3197
3198	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
3199		return -EBADR;
3200
3201	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
3202		error = ext4_xattr_fiemap(inode, fieinfo);
3203	} else {
3204		start_blk = start >> inode->i_sb->s_blocksize_bits;
3205		len_blks = len >> inode->i_sb->s_blocksize_bits;
3206
3207		/*
3208		 * Walk the extent tree gathering extent information.
3209		 * ext4_ext_fiemap_cb will push extents back to user.
3210		 */
3211		down_write(&EXT4_I(inode)->i_data_sem);
3212		error = ext4_ext_walk_space(inode, start_blk, len_blks,
3213					  ext4_ext_fiemap_cb, fieinfo);
3214		up_write(&EXT4_I(inode)->i_data_sem);
3215	}
3216
3217	return error;
3218}
3219
3220