extents.c revision b06acd38a44127b382fa53e49878f7a2b70af6f2
1/*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 *   Copyright (c) 2005, Bull S.A.
7 *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21 */
22
23/*
24 * Extents support for EXT4
25 *
26 * TODO:
27 *   - ext4*_error() should be used in some situations
28 *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 *   - smart tree reduction
30 */
31
32#include <linux/fs.h>
33#include <linux/time.h>
34#include <linux/jbd2.h>
35#include <linux/highuid.h>
36#include <linux/pagemap.h>
37#include <linux/quotaops.h>
38#include <linux/string.h>
39#include <linux/slab.h>
40#include <linux/falloc.h>
41#include <asm/uaccess.h>
42#include <linux/fiemap.h>
43#include "ext4_jbd2.h"
44#include "ext4_extents.h"
45#include "xattr.h"
46
47#include <trace/events/ext4.h>
48
49/*
50 * used by extent splitting.
51 */
52#define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
53					due to ENOSPC */
54#define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
55#define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
56
57#define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
58#define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
59
60static __le32 ext4_extent_block_csum(struct inode *inode,
61				     struct ext4_extent_header *eh)
62{
63	struct ext4_inode_info *ei = EXT4_I(inode);
64	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65	__u32 csum;
66
67	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68			   EXT4_EXTENT_TAIL_OFFSET(eh));
69	return cpu_to_le32(csum);
70}
71
72static int ext4_extent_block_csum_verify(struct inode *inode,
73					 struct ext4_extent_header *eh)
74{
75	struct ext4_extent_tail *et;
76
77	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
79		return 1;
80
81	et = find_ext4_extent_tail(eh);
82	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
83		return 0;
84	return 1;
85}
86
87static void ext4_extent_block_csum_set(struct inode *inode,
88				       struct ext4_extent_header *eh)
89{
90	struct ext4_extent_tail *et;
91
92	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
94		return;
95
96	et = find_ext4_extent_tail(eh);
97	et->et_checksum = ext4_extent_block_csum(inode, eh);
98}
99
100static int ext4_split_extent(handle_t *handle,
101				struct inode *inode,
102				struct ext4_ext_path *path,
103				struct ext4_map_blocks *map,
104				int split_flag,
105				int flags);
106
107static int ext4_split_extent_at(handle_t *handle,
108			     struct inode *inode,
109			     struct ext4_ext_path *path,
110			     ext4_lblk_t split,
111			     int split_flag,
112			     int flags);
113
114static int ext4_find_delayed_extent(struct inode *inode,
115				    struct ext4_ext_cache *newex);
116
117static int ext4_ext_truncate_extend_restart(handle_t *handle,
118					    struct inode *inode,
119					    int needed)
120{
121	int err;
122
123	if (!ext4_handle_valid(handle))
124		return 0;
125	if (handle->h_buffer_credits > needed)
126		return 0;
127	err = ext4_journal_extend(handle, needed);
128	if (err <= 0)
129		return err;
130	err = ext4_truncate_restart_trans(handle, inode, needed);
131	if (err == 0)
132		err = -EAGAIN;
133
134	return err;
135}
136
137/*
138 * could return:
139 *  - EROFS
140 *  - ENOMEM
141 */
142static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143				struct ext4_ext_path *path)
144{
145	if (path->p_bh) {
146		/* path points to block */
147		return ext4_journal_get_write_access(handle, path->p_bh);
148	}
149	/* path points to leaf/index in inode body */
150	/* we use in-core data, no need to protect them */
151	return 0;
152}
153
154/*
155 * could return:
156 *  - EROFS
157 *  - ENOMEM
158 *  - EIO
159 */
160#define ext4_ext_dirty(handle, inode, path) \
161		__ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
162static int __ext4_ext_dirty(const char *where, unsigned int line,
163			    handle_t *handle, struct inode *inode,
164			    struct ext4_ext_path *path)
165{
166	int err;
167	if (path->p_bh) {
168		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
169		/* path points to block */
170		err = __ext4_handle_dirty_metadata(where, line, handle,
171						   inode, path->p_bh);
172	} else {
173		/* path points to leaf/index in inode body */
174		err = ext4_mark_inode_dirty(handle, inode);
175	}
176	return err;
177}
178
179static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
180			      struct ext4_ext_path *path,
181			      ext4_lblk_t block)
182{
183	if (path) {
184		int depth = path->p_depth;
185		struct ext4_extent *ex;
186
187		/*
188		 * Try to predict block placement assuming that we are
189		 * filling in a file which will eventually be
190		 * non-sparse --- i.e., in the case of libbfd writing
191		 * an ELF object sections out-of-order but in a way
192		 * the eventually results in a contiguous object or
193		 * executable file, or some database extending a table
194		 * space file.  However, this is actually somewhat
195		 * non-ideal if we are writing a sparse file such as
196		 * qemu or KVM writing a raw image file that is going
197		 * to stay fairly sparse, since it will end up
198		 * fragmenting the file system's free space.  Maybe we
199		 * should have some hueristics or some way to allow
200		 * userspace to pass a hint to file system,
201		 * especially if the latter case turns out to be
202		 * common.
203		 */
204		ex = path[depth].p_ext;
205		if (ex) {
206			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
207			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
208
209			if (block > ext_block)
210				return ext_pblk + (block - ext_block);
211			else
212				return ext_pblk - (ext_block - block);
213		}
214
215		/* it looks like index is empty;
216		 * try to find starting block from index itself */
217		if (path[depth].p_bh)
218			return path[depth].p_bh->b_blocknr;
219	}
220
221	/* OK. use inode's group */
222	return ext4_inode_to_goal_block(inode);
223}
224
225/*
226 * Allocation for a meta data block
227 */
228static ext4_fsblk_t
229ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
230			struct ext4_ext_path *path,
231			struct ext4_extent *ex, int *err, unsigned int flags)
232{
233	ext4_fsblk_t goal, newblock;
234
235	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
236	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
237					NULL, err);
238	return newblock;
239}
240
241static inline int ext4_ext_space_block(struct inode *inode, int check)
242{
243	int size;
244
245	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
246			/ sizeof(struct ext4_extent);
247#ifdef AGGRESSIVE_TEST
248	if (!check && size > 6)
249		size = 6;
250#endif
251	return size;
252}
253
254static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
255{
256	int size;
257
258	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
259			/ sizeof(struct ext4_extent_idx);
260#ifdef AGGRESSIVE_TEST
261	if (!check && size > 5)
262		size = 5;
263#endif
264	return size;
265}
266
267static inline int ext4_ext_space_root(struct inode *inode, int check)
268{
269	int size;
270
271	size = sizeof(EXT4_I(inode)->i_data);
272	size -= sizeof(struct ext4_extent_header);
273	size /= sizeof(struct ext4_extent);
274#ifdef AGGRESSIVE_TEST
275	if (!check && size > 3)
276		size = 3;
277#endif
278	return size;
279}
280
281static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
282{
283	int size;
284
285	size = sizeof(EXT4_I(inode)->i_data);
286	size -= sizeof(struct ext4_extent_header);
287	size /= sizeof(struct ext4_extent_idx);
288#ifdef AGGRESSIVE_TEST
289	if (!check && size > 4)
290		size = 4;
291#endif
292	return size;
293}
294
295/*
296 * Calculate the number of metadata blocks needed
297 * to allocate @blocks
298 * Worse case is one block per extent
299 */
300int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
301{
302	struct ext4_inode_info *ei = EXT4_I(inode);
303	int idxs;
304
305	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
306		/ sizeof(struct ext4_extent_idx));
307
308	/*
309	 * If the new delayed allocation block is contiguous with the
310	 * previous da block, it can share index blocks with the
311	 * previous block, so we only need to allocate a new index
312	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
313	 * an additional index block, and at ldxs**3 blocks, yet
314	 * another index blocks.
315	 */
316	if (ei->i_da_metadata_calc_len &&
317	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
318		int num = 0;
319
320		if ((ei->i_da_metadata_calc_len % idxs) == 0)
321			num++;
322		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
323			num++;
324		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
325			num++;
326			ei->i_da_metadata_calc_len = 0;
327		} else
328			ei->i_da_metadata_calc_len++;
329		ei->i_da_metadata_calc_last_lblock++;
330		return num;
331	}
332
333	/*
334	 * In the worst case we need a new set of index blocks at
335	 * every level of the inode's extent tree.
336	 */
337	ei->i_da_metadata_calc_len = 1;
338	ei->i_da_metadata_calc_last_lblock = lblock;
339	return ext_depth(inode) + 1;
340}
341
342static int
343ext4_ext_max_entries(struct inode *inode, int depth)
344{
345	int max;
346
347	if (depth == ext_depth(inode)) {
348		if (depth == 0)
349			max = ext4_ext_space_root(inode, 1);
350		else
351			max = ext4_ext_space_root_idx(inode, 1);
352	} else {
353		if (depth == 0)
354			max = ext4_ext_space_block(inode, 1);
355		else
356			max = ext4_ext_space_block_idx(inode, 1);
357	}
358
359	return max;
360}
361
362static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
363{
364	ext4_fsblk_t block = ext4_ext_pblock(ext);
365	int len = ext4_ext_get_actual_len(ext);
366
367	if (len == 0)
368		return 0;
369	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
370}
371
372static int ext4_valid_extent_idx(struct inode *inode,
373				struct ext4_extent_idx *ext_idx)
374{
375	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
376
377	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
378}
379
380static int ext4_valid_extent_entries(struct inode *inode,
381				struct ext4_extent_header *eh,
382				int depth)
383{
384	unsigned short entries;
385	if (eh->eh_entries == 0)
386		return 1;
387
388	entries = le16_to_cpu(eh->eh_entries);
389
390	if (depth == 0) {
391		/* leaf entries */
392		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
393		while (entries) {
394			if (!ext4_valid_extent(inode, ext))
395				return 0;
396			ext++;
397			entries--;
398		}
399	} else {
400		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
401		while (entries) {
402			if (!ext4_valid_extent_idx(inode, ext_idx))
403				return 0;
404			ext_idx++;
405			entries--;
406		}
407	}
408	return 1;
409}
410
411static int __ext4_ext_check(const char *function, unsigned int line,
412			    struct inode *inode, struct ext4_extent_header *eh,
413			    int depth)
414{
415	const char *error_msg;
416	int max = 0;
417
418	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
419		error_msg = "invalid magic";
420		goto corrupted;
421	}
422	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
423		error_msg = "unexpected eh_depth";
424		goto corrupted;
425	}
426	if (unlikely(eh->eh_max == 0)) {
427		error_msg = "invalid eh_max";
428		goto corrupted;
429	}
430	max = ext4_ext_max_entries(inode, depth);
431	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
432		error_msg = "too large eh_max";
433		goto corrupted;
434	}
435	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
436		error_msg = "invalid eh_entries";
437		goto corrupted;
438	}
439	if (!ext4_valid_extent_entries(inode, eh, depth)) {
440		error_msg = "invalid extent entries";
441		goto corrupted;
442	}
443	/* Verify checksum on non-root extent tree nodes */
444	if (ext_depth(inode) != depth &&
445	    !ext4_extent_block_csum_verify(inode, eh)) {
446		error_msg = "extent tree corrupted";
447		goto corrupted;
448	}
449	return 0;
450
451corrupted:
452	ext4_error_inode(inode, function, line, 0,
453			"bad header/extent: %s - magic %x, "
454			"entries %u, max %u(%u), depth %u(%u)",
455			error_msg, le16_to_cpu(eh->eh_magic),
456			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
457			max, le16_to_cpu(eh->eh_depth), depth);
458
459	return -EIO;
460}
461
462#define ext4_ext_check(inode, eh, depth)	\
463	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
464
465int ext4_ext_check_inode(struct inode *inode)
466{
467	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
468}
469
470static int __ext4_ext_check_block(const char *function, unsigned int line,
471				  struct inode *inode,
472				  struct ext4_extent_header *eh,
473				  int depth,
474				  struct buffer_head *bh)
475{
476	int ret;
477
478	if (buffer_verified(bh))
479		return 0;
480	ret = ext4_ext_check(inode, eh, depth);
481	if (ret)
482		return ret;
483	set_buffer_verified(bh);
484	return ret;
485}
486
487#define ext4_ext_check_block(inode, eh, depth, bh)	\
488	__ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
489
490#ifdef EXT_DEBUG
491static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
492{
493	int k, l = path->p_depth;
494
495	ext_debug("path:");
496	for (k = 0; k <= l; k++, path++) {
497		if (path->p_idx) {
498		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
499			    ext4_idx_pblock(path->p_idx));
500		} else if (path->p_ext) {
501			ext_debug("  %d:[%d]%d:%llu ",
502				  le32_to_cpu(path->p_ext->ee_block),
503				  ext4_ext_is_uninitialized(path->p_ext),
504				  ext4_ext_get_actual_len(path->p_ext),
505				  ext4_ext_pblock(path->p_ext));
506		} else
507			ext_debug("  []");
508	}
509	ext_debug("\n");
510}
511
512static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
513{
514	int depth = ext_depth(inode);
515	struct ext4_extent_header *eh;
516	struct ext4_extent *ex;
517	int i;
518
519	if (!path)
520		return;
521
522	eh = path[depth].p_hdr;
523	ex = EXT_FIRST_EXTENT(eh);
524
525	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
526
527	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
528		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
529			  ext4_ext_is_uninitialized(ex),
530			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
531	}
532	ext_debug("\n");
533}
534
535static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
536			ext4_fsblk_t newblock, int level)
537{
538	int depth = ext_depth(inode);
539	struct ext4_extent *ex;
540
541	if (depth != level) {
542		struct ext4_extent_idx *idx;
543		idx = path[level].p_idx;
544		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
545			ext_debug("%d: move %d:%llu in new index %llu\n", level,
546					le32_to_cpu(idx->ei_block),
547					ext4_idx_pblock(idx),
548					newblock);
549			idx++;
550		}
551
552		return;
553	}
554
555	ex = path[depth].p_ext;
556	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
557		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
558				le32_to_cpu(ex->ee_block),
559				ext4_ext_pblock(ex),
560				ext4_ext_is_uninitialized(ex),
561				ext4_ext_get_actual_len(ex),
562				newblock);
563		ex++;
564	}
565}
566
567#else
568#define ext4_ext_show_path(inode, path)
569#define ext4_ext_show_leaf(inode, path)
570#define ext4_ext_show_move(inode, path, newblock, level)
571#endif
572
573void ext4_ext_drop_refs(struct ext4_ext_path *path)
574{
575	int depth = path->p_depth;
576	int i;
577
578	for (i = 0; i <= depth; i++, path++)
579		if (path->p_bh) {
580			brelse(path->p_bh);
581			path->p_bh = NULL;
582		}
583}
584
585/*
586 * ext4_ext_binsearch_idx:
587 * binary search for the closest index of the given block
588 * the header must be checked before calling this
589 */
590static void
591ext4_ext_binsearch_idx(struct inode *inode,
592			struct ext4_ext_path *path, ext4_lblk_t block)
593{
594	struct ext4_extent_header *eh = path->p_hdr;
595	struct ext4_extent_idx *r, *l, *m;
596
597
598	ext_debug("binsearch for %u(idx):  ", block);
599
600	l = EXT_FIRST_INDEX(eh) + 1;
601	r = EXT_LAST_INDEX(eh);
602	while (l <= r) {
603		m = l + (r - l) / 2;
604		if (block < le32_to_cpu(m->ei_block))
605			r = m - 1;
606		else
607			l = m + 1;
608		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
609				m, le32_to_cpu(m->ei_block),
610				r, le32_to_cpu(r->ei_block));
611	}
612
613	path->p_idx = l - 1;
614	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
615		  ext4_idx_pblock(path->p_idx));
616
617#ifdef CHECK_BINSEARCH
618	{
619		struct ext4_extent_idx *chix, *ix;
620		int k;
621
622		chix = ix = EXT_FIRST_INDEX(eh);
623		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
624		  if (k != 0 &&
625		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
626				printk(KERN_DEBUG "k=%d, ix=0x%p, "
627				       "first=0x%p\n", k,
628				       ix, EXT_FIRST_INDEX(eh));
629				printk(KERN_DEBUG "%u <= %u\n",
630				       le32_to_cpu(ix->ei_block),
631				       le32_to_cpu(ix[-1].ei_block));
632			}
633			BUG_ON(k && le32_to_cpu(ix->ei_block)
634					   <= le32_to_cpu(ix[-1].ei_block));
635			if (block < le32_to_cpu(ix->ei_block))
636				break;
637			chix = ix;
638		}
639		BUG_ON(chix != path->p_idx);
640	}
641#endif
642
643}
644
645/*
646 * ext4_ext_binsearch:
647 * binary search for closest extent of the given block
648 * the header must be checked before calling this
649 */
650static void
651ext4_ext_binsearch(struct inode *inode,
652		struct ext4_ext_path *path, ext4_lblk_t block)
653{
654	struct ext4_extent_header *eh = path->p_hdr;
655	struct ext4_extent *r, *l, *m;
656
657	if (eh->eh_entries == 0) {
658		/*
659		 * this leaf is empty:
660		 * we get such a leaf in split/add case
661		 */
662		return;
663	}
664
665	ext_debug("binsearch for %u:  ", block);
666
667	l = EXT_FIRST_EXTENT(eh) + 1;
668	r = EXT_LAST_EXTENT(eh);
669
670	while (l <= r) {
671		m = l + (r - l) / 2;
672		if (block < le32_to_cpu(m->ee_block))
673			r = m - 1;
674		else
675			l = m + 1;
676		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
677				m, le32_to_cpu(m->ee_block),
678				r, le32_to_cpu(r->ee_block));
679	}
680
681	path->p_ext = l - 1;
682	ext_debug("  -> %d:%llu:[%d]%d ",
683			le32_to_cpu(path->p_ext->ee_block),
684			ext4_ext_pblock(path->p_ext),
685			ext4_ext_is_uninitialized(path->p_ext),
686			ext4_ext_get_actual_len(path->p_ext));
687
688#ifdef CHECK_BINSEARCH
689	{
690		struct ext4_extent *chex, *ex;
691		int k;
692
693		chex = ex = EXT_FIRST_EXTENT(eh);
694		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
695			BUG_ON(k && le32_to_cpu(ex->ee_block)
696					  <= le32_to_cpu(ex[-1].ee_block));
697			if (block < le32_to_cpu(ex->ee_block))
698				break;
699			chex = ex;
700		}
701		BUG_ON(chex != path->p_ext);
702	}
703#endif
704
705}
706
707int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
708{
709	struct ext4_extent_header *eh;
710
711	eh = ext_inode_hdr(inode);
712	eh->eh_depth = 0;
713	eh->eh_entries = 0;
714	eh->eh_magic = EXT4_EXT_MAGIC;
715	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
716	ext4_mark_inode_dirty(handle, inode);
717	ext4_ext_invalidate_cache(inode);
718	return 0;
719}
720
721struct ext4_ext_path *
722ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
723					struct ext4_ext_path *path)
724{
725	struct ext4_extent_header *eh;
726	struct buffer_head *bh;
727	short int depth, i, ppos = 0, alloc = 0;
728	int ret;
729
730	eh = ext_inode_hdr(inode);
731	depth = ext_depth(inode);
732
733	/* account possible depth increase */
734	if (!path) {
735		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
736				GFP_NOFS);
737		if (!path)
738			return ERR_PTR(-ENOMEM);
739		alloc = 1;
740	}
741	path[0].p_hdr = eh;
742	path[0].p_bh = NULL;
743
744	i = depth;
745	/* walk through the tree */
746	while (i) {
747		ext_debug("depth %d: num %d, max %d\n",
748			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
749
750		ext4_ext_binsearch_idx(inode, path + ppos, block);
751		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
752		path[ppos].p_depth = i;
753		path[ppos].p_ext = NULL;
754
755		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
756		if (unlikely(!bh)) {
757			ret = -ENOMEM;
758			goto err;
759		}
760		if (!bh_uptodate_or_lock(bh)) {
761			trace_ext4_ext_load_extent(inode, block,
762						path[ppos].p_block);
763			ret = bh_submit_read(bh);
764			if (ret < 0) {
765				put_bh(bh);
766				goto err;
767			}
768		}
769		eh = ext_block_hdr(bh);
770		ppos++;
771		if (unlikely(ppos > depth)) {
772			put_bh(bh);
773			EXT4_ERROR_INODE(inode,
774					 "ppos %d > depth %d", ppos, depth);
775			ret = -EIO;
776			goto err;
777		}
778		path[ppos].p_bh = bh;
779		path[ppos].p_hdr = eh;
780		i--;
781
782		ret = ext4_ext_check_block(inode, eh, i, bh);
783		if (ret < 0)
784			goto err;
785	}
786
787	path[ppos].p_depth = i;
788	path[ppos].p_ext = NULL;
789	path[ppos].p_idx = NULL;
790
791	/* find extent */
792	ext4_ext_binsearch(inode, path + ppos, block);
793	/* if not an empty leaf */
794	if (path[ppos].p_ext)
795		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
796
797	ext4_ext_show_path(inode, path);
798
799	return path;
800
801err:
802	ext4_ext_drop_refs(path);
803	if (alloc)
804		kfree(path);
805	return ERR_PTR(ret);
806}
807
808/*
809 * ext4_ext_insert_index:
810 * insert new index [@logical;@ptr] into the block at @curp;
811 * check where to insert: before @curp or after @curp
812 */
813static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
814				 struct ext4_ext_path *curp,
815				 int logical, ext4_fsblk_t ptr)
816{
817	struct ext4_extent_idx *ix;
818	int len, err;
819
820	err = ext4_ext_get_access(handle, inode, curp);
821	if (err)
822		return err;
823
824	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
825		EXT4_ERROR_INODE(inode,
826				 "logical %d == ei_block %d!",
827				 logical, le32_to_cpu(curp->p_idx->ei_block));
828		return -EIO;
829	}
830
831	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
832			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
833		EXT4_ERROR_INODE(inode,
834				 "eh_entries %d >= eh_max %d!",
835				 le16_to_cpu(curp->p_hdr->eh_entries),
836				 le16_to_cpu(curp->p_hdr->eh_max));
837		return -EIO;
838	}
839
840	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
841		/* insert after */
842		ext_debug("insert new index %d after: %llu\n", logical, ptr);
843		ix = curp->p_idx + 1;
844	} else {
845		/* insert before */
846		ext_debug("insert new index %d before: %llu\n", logical, ptr);
847		ix = curp->p_idx;
848	}
849
850	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
851	BUG_ON(len < 0);
852	if (len > 0) {
853		ext_debug("insert new index %d: "
854				"move %d indices from 0x%p to 0x%p\n",
855				logical, len, ix, ix + 1);
856		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
857	}
858
859	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
860		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
861		return -EIO;
862	}
863
864	ix->ei_block = cpu_to_le32(logical);
865	ext4_idx_store_pblock(ix, ptr);
866	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
867
868	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
869		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
870		return -EIO;
871	}
872
873	err = ext4_ext_dirty(handle, inode, curp);
874	ext4_std_error(inode->i_sb, err);
875
876	return err;
877}
878
879/*
880 * ext4_ext_split:
881 * inserts new subtree into the path, using free index entry
882 * at depth @at:
883 * - allocates all needed blocks (new leaf and all intermediate index blocks)
884 * - makes decision where to split
885 * - moves remaining extents and index entries (right to the split point)
886 *   into the newly allocated blocks
887 * - initializes subtree
888 */
889static int ext4_ext_split(handle_t *handle, struct inode *inode,
890			  unsigned int flags,
891			  struct ext4_ext_path *path,
892			  struct ext4_extent *newext, int at)
893{
894	struct buffer_head *bh = NULL;
895	int depth = ext_depth(inode);
896	struct ext4_extent_header *neh;
897	struct ext4_extent_idx *fidx;
898	int i = at, k, m, a;
899	ext4_fsblk_t newblock, oldblock;
900	__le32 border;
901	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
902	int err = 0;
903
904	/* make decision: where to split? */
905	/* FIXME: now decision is simplest: at current extent */
906
907	/* if current leaf will be split, then we should use
908	 * border from split point */
909	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
910		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
911		return -EIO;
912	}
913	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
914		border = path[depth].p_ext[1].ee_block;
915		ext_debug("leaf will be split."
916				" next leaf starts at %d\n",
917				  le32_to_cpu(border));
918	} else {
919		border = newext->ee_block;
920		ext_debug("leaf will be added."
921				" next leaf starts at %d\n",
922				le32_to_cpu(border));
923	}
924
925	/*
926	 * If error occurs, then we break processing
927	 * and mark filesystem read-only. index won't
928	 * be inserted and tree will be in consistent
929	 * state. Next mount will repair buffers too.
930	 */
931
932	/*
933	 * Get array to track all allocated blocks.
934	 * We need this to handle errors and free blocks
935	 * upon them.
936	 */
937	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
938	if (!ablocks)
939		return -ENOMEM;
940
941	/* allocate all needed blocks */
942	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
943	for (a = 0; a < depth - at; a++) {
944		newblock = ext4_ext_new_meta_block(handle, inode, path,
945						   newext, &err, flags);
946		if (newblock == 0)
947			goto cleanup;
948		ablocks[a] = newblock;
949	}
950
951	/* initialize new leaf */
952	newblock = ablocks[--a];
953	if (unlikely(newblock == 0)) {
954		EXT4_ERROR_INODE(inode, "newblock == 0!");
955		err = -EIO;
956		goto cleanup;
957	}
958	bh = sb_getblk(inode->i_sb, newblock);
959	if (unlikely(!bh)) {
960		err = -ENOMEM;
961		goto cleanup;
962	}
963	lock_buffer(bh);
964
965	err = ext4_journal_get_create_access(handle, bh);
966	if (err)
967		goto cleanup;
968
969	neh = ext_block_hdr(bh);
970	neh->eh_entries = 0;
971	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
972	neh->eh_magic = EXT4_EXT_MAGIC;
973	neh->eh_depth = 0;
974
975	/* move remainder of path[depth] to the new leaf */
976	if (unlikely(path[depth].p_hdr->eh_entries !=
977		     path[depth].p_hdr->eh_max)) {
978		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
979				 path[depth].p_hdr->eh_entries,
980				 path[depth].p_hdr->eh_max);
981		err = -EIO;
982		goto cleanup;
983	}
984	/* start copy from next extent */
985	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
986	ext4_ext_show_move(inode, path, newblock, depth);
987	if (m) {
988		struct ext4_extent *ex;
989		ex = EXT_FIRST_EXTENT(neh);
990		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
991		le16_add_cpu(&neh->eh_entries, m);
992	}
993
994	ext4_extent_block_csum_set(inode, neh);
995	set_buffer_uptodate(bh);
996	unlock_buffer(bh);
997
998	err = ext4_handle_dirty_metadata(handle, inode, bh);
999	if (err)
1000		goto cleanup;
1001	brelse(bh);
1002	bh = NULL;
1003
1004	/* correct old leaf */
1005	if (m) {
1006		err = ext4_ext_get_access(handle, inode, path + depth);
1007		if (err)
1008			goto cleanup;
1009		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1010		err = ext4_ext_dirty(handle, inode, path + depth);
1011		if (err)
1012			goto cleanup;
1013
1014	}
1015
1016	/* create intermediate indexes */
1017	k = depth - at - 1;
1018	if (unlikely(k < 0)) {
1019		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1020		err = -EIO;
1021		goto cleanup;
1022	}
1023	if (k)
1024		ext_debug("create %d intermediate indices\n", k);
1025	/* insert new index into current index block */
1026	/* current depth stored in i var */
1027	i = depth - 1;
1028	while (k--) {
1029		oldblock = newblock;
1030		newblock = ablocks[--a];
1031		bh = sb_getblk(inode->i_sb, newblock);
1032		if (unlikely(!bh)) {
1033			err = -ENOMEM;
1034			goto cleanup;
1035		}
1036		lock_buffer(bh);
1037
1038		err = ext4_journal_get_create_access(handle, bh);
1039		if (err)
1040			goto cleanup;
1041
1042		neh = ext_block_hdr(bh);
1043		neh->eh_entries = cpu_to_le16(1);
1044		neh->eh_magic = EXT4_EXT_MAGIC;
1045		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1046		neh->eh_depth = cpu_to_le16(depth - i);
1047		fidx = EXT_FIRST_INDEX(neh);
1048		fidx->ei_block = border;
1049		ext4_idx_store_pblock(fidx, oldblock);
1050
1051		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1052				i, newblock, le32_to_cpu(border), oldblock);
1053
1054		/* move remainder of path[i] to the new index block */
1055		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1056					EXT_LAST_INDEX(path[i].p_hdr))) {
1057			EXT4_ERROR_INODE(inode,
1058					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1059					 le32_to_cpu(path[i].p_ext->ee_block));
1060			err = -EIO;
1061			goto cleanup;
1062		}
1063		/* start copy indexes */
1064		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1065		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1066				EXT_MAX_INDEX(path[i].p_hdr));
1067		ext4_ext_show_move(inode, path, newblock, i);
1068		if (m) {
1069			memmove(++fidx, path[i].p_idx,
1070				sizeof(struct ext4_extent_idx) * m);
1071			le16_add_cpu(&neh->eh_entries, m);
1072		}
1073		ext4_extent_block_csum_set(inode, neh);
1074		set_buffer_uptodate(bh);
1075		unlock_buffer(bh);
1076
1077		err = ext4_handle_dirty_metadata(handle, inode, bh);
1078		if (err)
1079			goto cleanup;
1080		brelse(bh);
1081		bh = NULL;
1082
1083		/* correct old index */
1084		if (m) {
1085			err = ext4_ext_get_access(handle, inode, path + i);
1086			if (err)
1087				goto cleanup;
1088			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1089			err = ext4_ext_dirty(handle, inode, path + i);
1090			if (err)
1091				goto cleanup;
1092		}
1093
1094		i--;
1095	}
1096
1097	/* insert new index */
1098	err = ext4_ext_insert_index(handle, inode, path + at,
1099				    le32_to_cpu(border), newblock);
1100
1101cleanup:
1102	if (bh) {
1103		if (buffer_locked(bh))
1104			unlock_buffer(bh);
1105		brelse(bh);
1106	}
1107
1108	if (err) {
1109		/* free all allocated blocks in error case */
1110		for (i = 0; i < depth; i++) {
1111			if (!ablocks[i])
1112				continue;
1113			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1114					 EXT4_FREE_BLOCKS_METADATA);
1115		}
1116	}
1117	kfree(ablocks);
1118
1119	return err;
1120}
1121
1122/*
1123 * ext4_ext_grow_indepth:
1124 * implements tree growing procedure:
1125 * - allocates new block
1126 * - moves top-level data (index block or leaf) into the new block
1127 * - initializes new top-level, creating index that points to the
1128 *   just created block
1129 */
1130static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1131				 unsigned int flags,
1132				 struct ext4_extent *newext)
1133{
1134	struct ext4_extent_header *neh;
1135	struct buffer_head *bh;
1136	ext4_fsblk_t newblock;
1137	int err = 0;
1138
1139	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1140		newext, &err, flags);
1141	if (newblock == 0)
1142		return err;
1143
1144	bh = sb_getblk(inode->i_sb, newblock);
1145	if (unlikely(!bh))
1146		return -ENOMEM;
1147	lock_buffer(bh);
1148
1149	err = ext4_journal_get_create_access(handle, bh);
1150	if (err) {
1151		unlock_buffer(bh);
1152		goto out;
1153	}
1154
1155	/* move top-level index/leaf into new block */
1156	memmove(bh->b_data, EXT4_I(inode)->i_data,
1157		sizeof(EXT4_I(inode)->i_data));
1158
1159	/* set size of new block */
1160	neh = ext_block_hdr(bh);
1161	/* old root could have indexes or leaves
1162	 * so calculate e_max right way */
1163	if (ext_depth(inode))
1164		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1165	else
1166		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1167	neh->eh_magic = EXT4_EXT_MAGIC;
1168	ext4_extent_block_csum_set(inode, neh);
1169	set_buffer_uptodate(bh);
1170	unlock_buffer(bh);
1171
1172	err = ext4_handle_dirty_metadata(handle, inode, bh);
1173	if (err)
1174		goto out;
1175
1176	/* Update top-level index: num,max,pointer */
1177	neh = ext_inode_hdr(inode);
1178	neh->eh_entries = cpu_to_le16(1);
1179	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1180	if (neh->eh_depth == 0) {
1181		/* Root extent block becomes index block */
1182		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1183		EXT_FIRST_INDEX(neh)->ei_block =
1184			EXT_FIRST_EXTENT(neh)->ee_block;
1185	}
1186	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1187		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1188		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1189		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1190
1191	le16_add_cpu(&neh->eh_depth, 1);
1192	ext4_mark_inode_dirty(handle, inode);
1193out:
1194	brelse(bh);
1195
1196	return err;
1197}
1198
1199/*
1200 * ext4_ext_create_new_leaf:
1201 * finds empty index and adds new leaf.
1202 * if no free index is found, then it requests in-depth growing.
1203 */
1204static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1205				    unsigned int flags,
1206				    struct ext4_ext_path *path,
1207				    struct ext4_extent *newext)
1208{
1209	struct ext4_ext_path *curp;
1210	int depth, i, err = 0;
1211
1212repeat:
1213	i = depth = ext_depth(inode);
1214
1215	/* walk up to the tree and look for free index entry */
1216	curp = path + depth;
1217	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1218		i--;
1219		curp--;
1220	}
1221
1222	/* we use already allocated block for index block,
1223	 * so subsequent data blocks should be contiguous */
1224	if (EXT_HAS_FREE_INDEX(curp)) {
1225		/* if we found index with free entry, then use that
1226		 * entry: create all needed subtree and add new leaf */
1227		err = ext4_ext_split(handle, inode, flags, path, newext, i);
1228		if (err)
1229			goto out;
1230
1231		/* refill path */
1232		ext4_ext_drop_refs(path);
1233		path = ext4_ext_find_extent(inode,
1234				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1235				    path);
1236		if (IS_ERR(path))
1237			err = PTR_ERR(path);
1238	} else {
1239		/* tree is full, time to grow in depth */
1240		err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1241		if (err)
1242			goto out;
1243
1244		/* refill path */
1245		ext4_ext_drop_refs(path);
1246		path = ext4_ext_find_extent(inode,
1247				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1248				    path);
1249		if (IS_ERR(path)) {
1250			err = PTR_ERR(path);
1251			goto out;
1252		}
1253
1254		/*
1255		 * only first (depth 0 -> 1) produces free space;
1256		 * in all other cases we have to split the grown tree
1257		 */
1258		depth = ext_depth(inode);
1259		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1260			/* now we need to split */
1261			goto repeat;
1262		}
1263	}
1264
1265out:
1266	return err;
1267}
1268
1269/*
1270 * search the closest allocated block to the left for *logical
1271 * and returns it at @logical + it's physical address at @phys
1272 * if *logical is the smallest allocated block, the function
1273 * returns 0 at @phys
1274 * return value contains 0 (success) or error code
1275 */
1276static int ext4_ext_search_left(struct inode *inode,
1277				struct ext4_ext_path *path,
1278				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1279{
1280	struct ext4_extent_idx *ix;
1281	struct ext4_extent *ex;
1282	int depth, ee_len;
1283
1284	if (unlikely(path == NULL)) {
1285		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1286		return -EIO;
1287	}
1288	depth = path->p_depth;
1289	*phys = 0;
1290
1291	if (depth == 0 && path->p_ext == NULL)
1292		return 0;
1293
1294	/* usually extent in the path covers blocks smaller
1295	 * then *logical, but it can be that extent is the
1296	 * first one in the file */
1297
1298	ex = path[depth].p_ext;
1299	ee_len = ext4_ext_get_actual_len(ex);
1300	if (*logical < le32_to_cpu(ex->ee_block)) {
1301		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1302			EXT4_ERROR_INODE(inode,
1303					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1304					 *logical, le32_to_cpu(ex->ee_block));
1305			return -EIO;
1306		}
1307		while (--depth >= 0) {
1308			ix = path[depth].p_idx;
1309			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1310				EXT4_ERROR_INODE(inode,
1311				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1312				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1313				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1314		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1315				  depth);
1316				return -EIO;
1317			}
1318		}
1319		return 0;
1320	}
1321
1322	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1323		EXT4_ERROR_INODE(inode,
1324				 "logical %d < ee_block %d + ee_len %d!",
1325				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1326		return -EIO;
1327	}
1328
1329	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1330	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1331	return 0;
1332}
1333
1334/*
1335 * search the closest allocated block to the right for *logical
1336 * and returns it at @logical + it's physical address at @phys
1337 * if *logical is the largest allocated block, the function
1338 * returns 0 at @phys
1339 * return value contains 0 (success) or error code
1340 */
1341static int ext4_ext_search_right(struct inode *inode,
1342				 struct ext4_ext_path *path,
1343				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1344				 struct ext4_extent **ret_ex)
1345{
1346	struct buffer_head *bh = NULL;
1347	struct ext4_extent_header *eh;
1348	struct ext4_extent_idx *ix;
1349	struct ext4_extent *ex;
1350	ext4_fsblk_t block;
1351	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1352	int ee_len;
1353
1354	if (unlikely(path == NULL)) {
1355		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1356		return -EIO;
1357	}
1358	depth = path->p_depth;
1359	*phys = 0;
1360
1361	if (depth == 0 && path->p_ext == NULL)
1362		return 0;
1363
1364	/* usually extent in the path covers blocks smaller
1365	 * then *logical, but it can be that extent is the
1366	 * first one in the file */
1367
1368	ex = path[depth].p_ext;
1369	ee_len = ext4_ext_get_actual_len(ex);
1370	if (*logical < le32_to_cpu(ex->ee_block)) {
1371		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1372			EXT4_ERROR_INODE(inode,
1373					 "first_extent(path[%d].p_hdr) != ex",
1374					 depth);
1375			return -EIO;
1376		}
1377		while (--depth >= 0) {
1378			ix = path[depth].p_idx;
1379			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1380				EXT4_ERROR_INODE(inode,
1381						 "ix != EXT_FIRST_INDEX *logical %d!",
1382						 *logical);
1383				return -EIO;
1384			}
1385		}
1386		goto found_extent;
1387	}
1388
1389	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1390		EXT4_ERROR_INODE(inode,
1391				 "logical %d < ee_block %d + ee_len %d!",
1392				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1393		return -EIO;
1394	}
1395
1396	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1397		/* next allocated block in this leaf */
1398		ex++;
1399		goto found_extent;
1400	}
1401
1402	/* go up and search for index to the right */
1403	while (--depth >= 0) {
1404		ix = path[depth].p_idx;
1405		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1406			goto got_index;
1407	}
1408
1409	/* we've gone up to the root and found no index to the right */
1410	return 0;
1411
1412got_index:
1413	/* we've found index to the right, let's
1414	 * follow it and find the closest allocated
1415	 * block to the right */
1416	ix++;
1417	block = ext4_idx_pblock(ix);
1418	while (++depth < path->p_depth) {
1419		bh = sb_bread(inode->i_sb, block);
1420		if (bh == NULL)
1421			return -EIO;
1422		eh = ext_block_hdr(bh);
1423		/* subtract from p_depth to get proper eh_depth */
1424		if (ext4_ext_check_block(inode, eh,
1425					 path->p_depth - depth, bh)) {
1426			put_bh(bh);
1427			return -EIO;
1428		}
1429		ix = EXT_FIRST_INDEX(eh);
1430		block = ext4_idx_pblock(ix);
1431		put_bh(bh);
1432	}
1433
1434	bh = sb_bread(inode->i_sb, block);
1435	if (bh == NULL)
1436		return -EIO;
1437	eh = ext_block_hdr(bh);
1438	if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1439		put_bh(bh);
1440		return -EIO;
1441	}
1442	ex = EXT_FIRST_EXTENT(eh);
1443found_extent:
1444	*logical = le32_to_cpu(ex->ee_block);
1445	*phys = ext4_ext_pblock(ex);
1446	*ret_ex = ex;
1447	if (bh)
1448		put_bh(bh);
1449	return 0;
1450}
1451
1452/*
1453 * ext4_ext_next_allocated_block:
1454 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1455 * NOTE: it considers block number from index entry as
1456 * allocated block. Thus, index entries have to be consistent
1457 * with leaves.
1458 */
1459static ext4_lblk_t
1460ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1461{
1462	int depth;
1463
1464	BUG_ON(path == NULL);
1465	depth = path->p_depth;
1466
1467	if (depth == 0 && path->p_ext == NULL)
1468		return EXT_MAX_BLOCKS;
1469
1470	while (depth >= 0) {
1471		if (depth == path->p_depth) {
1472			/* leaf */
1473			if (path[depth].p_ext &&
1474				path[depth].p_ext !=
1475					EXT_LAST_EXTENT(path[depth].p_hdr))
1476			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1477		} else {
1478			/* index */
1479			if (path[depth].p_idx !=
1480					EXT_LAST_INDEX(path[depth].p_hdr))
1481			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1482		}
1483		depth--;
1484	}
1485
1486	return EXT_MAX_BLOCKS;
1487}
1488
1489/*
1490 * ext4_ext_next_leaf_block:
1491 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1492 */
1493static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1494{
1495	int depth;
1496
1497	BUG_ON(path == NULL);
1498	depth = path->p_depth;
1499
1500	/* zero-tree has no leaf blocks at all */
1501	if (depth == 0)
1502		return EXT_MAX_BLOCKS;
1503
1504	/* go to index block */
1505	depth--;
1506
1507	while (depth >= 0) {
1508		if (path[depth].p_idx !=
1509				EXT_LAST_INDEX(path[depth].p_hdr))
1510			return (ext4_lblk_t)
1511				le32_to_cpu(path[depth].p_idx[1].ei_block);
1512		depth--;
1513	}
1514
1515	return EXT_MAX_BLOCKS;
1516}
1517
1518/*
1519 * ext4_ext_correct_indexes:
1520 * if leaf gets modified and modified extent is first in the leaf,
1521 * then we have to correct all indexes above.
1522 * TODO: do we need to correct tree in all cases?
1523 */
1524static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1525				struct ext4_ext_path *path)
1526{
1527	struct ext4_extent_header *eh;
1528	int depth = ext_depth(inode);
1529	struct ext4_extent *ex;
1530	__le32 border;
1531	int k, err = 0;
1532
1533	eh = path[depth].p_hdr;
1534	ex = path[depth].p_ext;
1535
1536	if (unlikely(ex == NULL || eh == NULL)) {
1537		EXT4_ERROR_INODE(inode,
1538				 "ex %p == NULL or eh %p == NULL", ex, eh);
1539		return -EIO;
1540	}
1541
1542	if (depth == 0) {
1543		/* there is no tree at all */
1544		return 0;
1545	}
1546
1547	if (ex != EXT_FIRST_EXTENT(eh)) {
1548		/* we correct tree if first leaf got modified only */
1549		return 0;
1550	}
1551
1552	/*
1553	 * TODO: we need correction if border is smaller than current one
1554	 */
1555	k = depth - 1;
1556	border = path[depth].p_ext->ee_block;
1557	err = ext4_ext_get_access(handle, inode, path + k);
1558	if (err)
1559		return err;
1560	path[k].p_idx->ei_block = border;
1561	err = ext4_ext_dirty(handle, inode, path + k);
1562	if (err)
1563		return err;
1564
1565	while (k--) {
1566		/* change all left-side indexes */
1567		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1568			break;
1569		err = ext4_ext_get_access(handle, inode, path + k);
1570		if (err)
1571			break;
1572		path[k].p_idx->ei_block = border;
1573		err = ext4_ext_dirty(handle, inode, path + k);
1574		if (err)
1575			break;
1576	}
1577
1578	return err;
1579}
1580
1581int
1582ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1583				struct ext4_extent *ex2)
1584{
1585	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1586
1587	/*
1588	 * Make sure that either both extents are uninitialized, or
1589	 * both are _not_.
1590	 */
1591	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1592		return 0;
1593
1594	if (ext4_ext_is_uninitialized(ex1))
1595		max_len = EXT_UNINIT_MAX_LEN;
1596	else
1597		max_len = EXT_INIT_MAX_LEN;
1598
1599	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1600	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1601
1602	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1603			le32_to_cpu(ex2->ee_block))
1604		return 0;
1605
1606	/*
1607	 * To allow future support for preallocated extents to be added
1608	 * as an RO_COMPAT feature, refuse to merge to extents if
1609	 * this can result in the top bit of ee_len being set.
1610	 */
1611	if (ext1_ee_len + ext2_ee_len > max_len)
1612		return 0;
1613#ifdef AGGRESSIVE_TEST
1614	if (ext1_ee_len >= 4)
1615		return 0;
1616#endif
1617
1618	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1619		return 1;
1620	return 0;
1621}
1622
1623/*
1624 * This function tries to merge the "ex" extent to the next extent in the tree.
1625 * It always tries to merge towards right. If you want to merge towards
1626 * left, pass "ex - 1" as argument instead of "ex".
1627 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1628 * 1 if they got merged.
1629 */
1630static int ext4_ext_try_to_merge_right(struct inode *inode,
1631				 struct ext4_ext_path *path,
1632				 struct ext4_extent *ex)
1633{
1634	struct ext4_extent_header *eh;
1635	unsigned int depth, len;
1636	int merge_done = 0;
1637	int uninitialized = 0;
1638
1639	depth = ext_depth(inode);
1640	BUG_ON(path[depth].p_hdr == NULL);
1641	eh = path[depth].p_hdr;
1642
1643	while (ex < EXT_LAST_EXTENT(eh)) {
1644		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1645			break;
1646		/* merge with next extent! */
1647		if (ext4_ext_is_uninitialized(ex))
1648			uninitialized = 1;
1649		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1650				+ ext4_ext_get_actual_len(ex + 1));
1651		if (uninitialized)
1652			ext4_ext_mark_uninitialized(ex);
1653
1654		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1655			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1656				* sizeof(struct ext4_extent);
1657			memmove(ex + 1, ex + 2, len);
1658		}
1659		le16_add_cpu(&eh->eh_entries, -1);
1660		merge_done = 1;
1661		WARN_ON(eh->eh_entries == 0);
1662		if (!eh->eh_entries)
1663			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1664	}
1665
1666	return merge_done;
1667}
1668
1669/*
1670 * This function does a very simple check to see if we can collapse
1671 * an extent tree with a single extent tree leaf block into the inode.
1672 */
1673static void ext4_ext_try_to_merge_up(handle_t *handle,
1674				     struct inode *inode,
1675				     struct ext4_ext_path *path)
1676{
1677	size_t s;
1678	unsigned max_root = ext4_ext_space_root(inode, 0);
1679	ext4_fsblk_t blk;
1680
1681	if ((path[0].p_depth != 1) ||
1682	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1683	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1684		return;
1685
1686	/*
1687	 * We need to modify the block allocation bitmap and the block
1688	 * group descriptor to release the extent tree block.  If we
1689	 * can't get the journal credits, give up.
1690	 */
1691	if (ext4_journal_extend(handle, 2))
1692		return;
1693
1694	/*
1695	 * Copy the extent data up to the inode
1696	 */
1697	blk = ext4_idx_pblock(path[0].p_idx);
1698	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1699		sizeof(struct ext4_extent_idx);
1700	s += sizeof(struct ext4_extent_header);
1701
1702	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1703	path[0].p_depth = 0;
1704	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1705		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1706	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1707
1708	brelse(path[1].p_bh);
1709	ext4_free_blocks(handle, inode, NULL, blk, 1,
1710			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1711}
1712
1713/*
1714 * This function tries to merge the @ex extent to neighbours in the tree.
1715 * return 1 if merge left else 0.
1716 */
1717static void ext4_ext_try_to_merge(handle_t *handle,
1718				  struct inode *inode,
1719				  struct ext4_ext_path *path,
1720				  struct ext4_extent *ex) {
1721	struct ext4_extent_header *eh;
1722	unsigned int depth;
1723	int merge_done = 0;
1724
1725	depth = ext_depth(inode);
1726	BUG_ON(path[depth].p_hdr == NULL);
1727	eh = path[depth].p_hdr;
1728
1729	if (ex > EXT_FIRST_EXTENT(eh))
1730		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1731
1732	if (!merge_done)
1733		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1734
1735	ext4_ext_try_to_merge_up(handle, inode, path);
1736}
1737
1738/*
1739 * check if a portion of the "newext" extent overlaps with an
1740 * existing extent.
1741 *
1742 * If there is an overlap discovered, it updates the length of the newext
1743 * such that there will be no overlap, and then returns 1.
1744 * If there is no overlap found, it returns 0.
1745 */
1746static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1747					   struct inode *inode,
1748					   struct ext4_extent *newext,
1749					   struct ext4_ext_path *path)
1750{
1751	ext4_lblk_t b1, b2;
1752	unsigned int depth, len1;
1753	unsigned int ret = 0;
1754
1755	b1 = le32_to_cpu(newext->ee_block);
1756	len1 = ext4_ext_get_actual_len(newext);
1757	depth = ext_depth(inode);
1758	if (!path[depth].p_ext)
1759		goto out;
1760	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1761	b2 &= ~(sbi->s_cluster_ratio - 1);
1762
1763	/*
1764	 * get the next allocated block if the extent in the path
1765	 * is before the requested block(s)
1766	 */
1767	if (b2 < b1) {
1768		b2 = ext4_ext_next_allocated_block(path);
1769		if (b2 == EXT_MAX_BLOCKS)
1770			goto out;
1771		b2 &= ~(sbi->s_cluster_ratio - 1);
1772	}
1773
1774	/* check for wrap through zero on extent logical start block*/
1775	if (b1 + len1 < b1) {
1776		len1 = EXT_MAX_BLOCKS - b1;
1777		newext->ee_len = cpu_to_le16(len1);
1778		ret = 1;
1779	}
1780
1781	/* check for overlap */
1782	if (b1 + len1 > b2) {
1783		newext->ee_len = cpu_to_le16(b2 - b1);
1784		ret = 1;
1785	}
1786out:
1787	return ret;
1788}
1789
1790/*
1791 * ext4_ext_insert_extent:
1792 * tries to merge requsted extent into the existing extent or
1793 * inserts requested extent as new one into the tree,
1794 * creating new leaf in the no-space case.
1795 */
1796int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1797				struct ext4_ext_path *path,
1798				struct ext4_extent *newext, int flag)
1799{
1800	struct ext4_extent_header *eh;
1801	struct ext4_extent *ex, *fex;
1802	struct ext4_extent *nearex; /* nearest extent */
1803	struct ext4_ext_path *npath = NULL;
1804	int depth, len, err;
1805	ext4_lblk_t next;
1806	unsigned uninitialized = 0;
1807	int flags = 0;
1808
1809	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1810		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1811		return -EIO;
1812	}
1813	depth = ext_depth(inode);
1814	ex = path[depth].p_ext;
1815	if (unlikely(path[depth].p_hdr == NULL)) {
1816		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1817		return -EIO;
1818	}
1819
1820	/* try to insert block into found extent and return */
1821	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1822		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1823		ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1824			  ext4_ext_is_uninitialized(newext),
1825			  ext4_ext_get_actual_len(newext),
1826			  le32_to_cpu(ex->ee_block),
1827			  ext4_ext_is_uninitialized(ex),
1828			  ext4_ext_get_actual_len(ex),
1829			  ext4_ext_pblock(ex));
1830		err = ext4_ext_get_access(handle, inode, path + depth);
1831		if (err)
1832			return err;
1833
1834		/*
1835		 * ext4_can_extents_be_merged should have checked that either
1836		 * both extents are uninitialized, or both aren't. Thus we
1837		 * need to check only one of them here.
1838		 */
1839		if (ext4_ext_is_uninitialized(ex))
1840			uninitialized = 1;
1841		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1842					+ ext4_ext_get_actual_len(newext));
1843		if (uninitialized)
1844			ext4_ext_mark_uninitialized(ex);
1845		eh = path[depth].p_hdr;
1846		nearex = ex;
1847		goto merge;
1848	}
1849
1850	depth = ext_depth(inode);
1851	eh = path[depth].p_hdr;
1852	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1853		goto has_space;
1854
1855	/* probably next leaf has space for us? */
1856	fex = EXT_LAST_EXTENT(eh);
1857	next = EXT_MAX_BLOCKS;
1858	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1859		next = ext4_ext_next_leaf_block(path);
1860	if (next != EXT_MAX_BLOCKS) {
1861		ext_debug("next leaf block - %u\n", next);
1862		BUG_ON(npath != NULL);
1863		npath = ext4_ext_find_extent(inode, next, NULL);
1864		if (IS_ERR(npath))
1865			return PTR_ERR(npath);
1866		BUG_ON(npath->p_depth != path->p_depth);
1867		eh = npath[depth].p_hdr;
1868		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1869			ext_debug("next leaf isn't full(%d)\n",
1870				  le16_to_cpu(eh->eh_entries));
1871			path = npath;
1872			goto has_space;
1873		}
1874		ext_debug("next leaf has no free space(%d,%d)\n",
1875			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1876	}
1877
1878	/*
1879	 * There is no free space in the found leaf.
1880	 * We're gonna add a new leaf in the tree.
1881	 */
1882	if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1883		flags = EXT4_MB_USE_ROOT_BLOCKS;
1884	err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1885	if (err)
1886		goto cleanup;
1887	depth = ext_depth(inode);
1888	eh = path[depth].p_hdr;
1889
1890has_space:
1891	nearex = path[depth].p_ext;
1892
1893	err = ext4_ext_get_access(handle, inode, path + depth);
1894	if (err)
1895		goto cleanup;
1896
1897	if (!nearex) {
1898		/* there is no extent in this leaf, create first one */
1899		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1900				le32_to_cpu(newext->ee_block),
1901				ext4_ext_pblock(newext),
1902				ext4_ext_is_uninitialized(newext),
1903				ext4_ext_get_actual_len(newext));
1904		nearex = EXT_FIRST_EXTENT(eh);
1905	} else {
1906		if (le32_to_cpu(newext->ee_block)
1907			   > le32_to_cpu(nearex->ee_block)) {
1908			/* Insert after */
1909			ext_debug("insert %u:%llu:[%d]%d before: "
1910					"nearest %p\n",
1911					le32_to_cpu(newext->ee_block),
1912					ext4_ext_pblock(newext),
1913					ext4_ext_is_uninitialized(newext),
1914					ext4_ext_get_actual_len(newext),
1915					nearex);
1916			nearex++;
1917		} else {
1918			/* Insert before */
1919			BUG_ON(newext->ee_block == nearex->ee_block);
1920			ext_debug("insert %u:%llu:[%d]%d after: "
1921					"nearest %p\n",
1922					le32_to_cpu(newext->ee_block),
1923					ext4_ext_pblock(newext),
1924					ext4_ext_is_uninitialized(newext),
1925					ext4_ext_get_actual_len(newext),
1926					nearex);
1927		}
1928		len = EXT_LAST_EXTENT(eh) - nearex + 1;
1929		if (len > 0) {
1930			ext_debug("insert %u:%llu:[%d]%d: "
1931					"move %d extents from 0x%p to 0x%p\n",
1932					le32_to_cpu(newext->ee_block),
1933					ext4_ext_pblock(newext),
1934					ext4_ext_is_uninitialized(newext),
1935					ext4_ext_get_actual_len(newext),
1936					len, nearex, nearex + 1);
1937			memmove(nearex + 1, nearex,
1938				len * sizeof(struct ext4_extent));
1939		}
1940	}
1941
1942	le16_add_cpu(&eh->eh_entries, 1);
1943	path[depth].p_ext = nearex;
1944	nearex->ee_block = newext->ee_block;
1945	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1946	nearex->ee_len = newext->ee_len;
1947
1948merge:
1949	/* try to merge extents */
1950	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1951		ext4_ext_try_to_merge(handle, inode, path, nearex);
1952
1953
1954	/* time to correct all indexes above */
1955	err = ext4_ext_correct_indexes(handle, inode, path);
1956	if (err)
1957		goto cleanup;
1958
1959	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
1960
1961cleanup:
1962	if (npath) {
1963		ext4_ext_drop_refs(npath);
1964		kfree(npath);
1965	}
1966	ext4_ext_invalidate_cache(inode);
1967	return err;
1968}
1969
1970static int ext4_fill_fiemap_extents(struct inode *inode,
1971				    ext4_lblk_t block, ext4_lblk_t num,
1972				    struct fiemap_extent_info *fieinfo)
1973{
1974	struct ext4_ext_path *path = NULL;
1975	struct ext4_ext_cache newex;
1976	struct ext4_extent *ex;
1977	ext4_lblk_t next, next_del, start = 0, end = 0;
1978	ext4_lblk_t last = block + num;
1979	int exists, depth = 0, err = 0;
1980	unsigned int flags = 0;
1981	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
1982
1983	while (block < last && block != EXT_MAX_BLOCKS) {
1984		num = last - block;
1985		/* find extent for this block */
1986		down_read(&EXT4_I(inode)->i_data_sem);
1987
1988		if (path && ext_depth(inode) != depth) {
1989			/* depth was changed. we have to realloc path */
1990			kfree(path);
1991			path = NULL;
1992		}
1993
1994		path = ext4_ext_find_extent(inode, block, path);
1995		if (IS_ERR(path)) {
1996			up_read(&EXT4_I(inode)->i_data_sem);
1997			err = PTR_ERR(path);
1998			path = NULL;
1999			break;
2000		}
2001
2002		depth = ext_depth(inode);
2003		if (unlikely(path[depth].p_hdr == NULL)) {
2004			up_read(&EXT4_I(inode)->i_data_sem);
2005			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2006			err = -EIO;
2007			break;
2008		}
2009		ex = path[depth].p_ext;
2010		next = ext4_ext_next_allocated_block(path);
2011		ext4_ext_drop_refs(path);
2012
2013		flags = 0;
2014		exists = 0;
2015		if (!ex) {
2016			/* there is no extent yet, so try to allocate
2017			 * all requested space */
2018			start = block;
2019			end = block + num;
2020		} else if (le32_to_cpu(ex->ee_block) > block) {
2021			/* need to allocate space before found extent */
2022			start = block;
2023			end = le32_to_cpu(ex->ee_block);
2024			if (block + num < end)
2025				end = block + num;
2026		} else if (block >= le32_to_cpu(ex->ee_block)
2027					+ ext4_ext_get_actual_len(ex)) {
2028			/* need to allocate space after found extent */
2029			start = block;
2030			end = block + num;
2031			if (end >= next)
2032				end = next;
2033		} else if (block >= le32_to_cpu(ex->ee_block)) {
2034			/*
2035			 * some part of requested space is covered
2036			 * by found extent
2037			 */
2038			start = block;
2039			end = le32_to_cpu(ex->ee_block)
2040				+ ext4_ext_get_actual_len(ex);
2041			if (block + num < end)
2042				end = block + num;
2043			exists = 1;
2044		} else {
2045			BUG();
2046		}
2047		BUG_ON(end <= start);
2048
2049		if (!exists) {
2050			newex.ec_block = start;
2051			newex.ec_len = end - start;
2052			newex.ec_start = 0;
2053		} else {
2054			newex.ec_block = le32_to_cpu(ex->ee_block);
2055			newex.ec_len = ext4_ext_get_actual_len(ex);
2056			newex.ec_start = ext4_ext_pblock(ex);
2057			if (ext4_ext_is_uninitialized(ex))
2058				flags |= FIEMAP_EXTENT_UNWRITTEN;
2059		}
2060
2061		/*
2062		 * Find delayed extent and update newex accordingly. We call
2063		 * it even in !exists case to find out whether newex is the
2064		 * last existing extent or not.
2065		 */
2066		next_del = ext4_find_delayed_extent(inode, &newex);
2067		if (!exists && next_del) {
2068			exists = 1;
2069			flags |= FIEMAP_EXTENT_DELALLOC;
2070		}
2071		up_read(&EXT4_I(inode)->i_data_sem);
2072
2073		if (unlikely(newex.ec_len == 0)) {
2074			EXT4_ERROR_INODE(inode, "newex.ec_len == 0");
2075			err = -EIO;
2076			break;
2077		}
2078
2079		/* This is possible iff next == next_del == EXT_MAX_BLOCKS */
2080		if (next == next_del) {
2081			flags |= FIEMAP_EXTENT_LAST;
2082			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2083				     next != EXT_MAX_BLOCKS)) {
2084				EXT4_ERROR_INODE(inode,
2085						 "next extent == %u, next "
2086						 "delalloc extent = %u",
2087						 next, next_del);
2088				err = -EIO;
2089				break;
2090			}
2091		}
2092
2093		if (exists) {
2094			err = fiemap_fill_next_extent(fieinfo,
2095				(__u64)newex.ec_block << blksize_bits,
2096				(__u64)newex.ec_start << blksize_bits,
2097				(__u64)newex.ec_len << blksize_bits,
2098				flags);
2099			if (err < 0)
2100				break;
2101			if (err == 1) {
2102				err = 0;
2103				break;
2104			}
2105		}
2106
2107		block = newex.ec_block + newex.ec_len;
2108	}
2109
2110	if (path) {
2111		ext4_ext_drop_refs(path);
2112		kfree(path);
2113	}
2114
2115	return err;
2116}
2117
2118static void
2119ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
2120			__u32 len, ext4_fsblk_t start)
2121{
2122	struct ext4_ext_cache *cex;
2123	BUG_ON(len == 0);
2124	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2125	trace_ext4_ext_put_in_cache(inode, block, len, start);
2126	cex = &EXT4_I(inode)->i_cached_extent;
2127	cex->ec_block = block;
2128	cex->ec_len = len;
2129	cex->ec_start = start;
2130	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2131}
2132
2133/*
2134 * ext4_ext_put_gap_in_cache:
2135 * calculate boundaries of the gap that the requested block fits into
2136 * and cache this gap
2137 */
2138static void
2139ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2140				ext4_lblk_t block)
2141{
2142	int depth = ext_depth(inode);
2143	unsigned long len;
2144	ext4_lblk_t lblock;
2145	struct ext4_extent *ex;
2146
2147	ex = path[depth].p_ext;
2148	if (ex == NULL) {
2149		/* there is no extent yet, so gap is [0;-] */
2150		lblock = 0;
2151		len = EXT_MAX_BLOCKS;
2152		ext_debug("cache gap(whole file):");
2153	} else if (block < le32_to_cpu(ex->ee_block)) {
2154		lblock = block;
2155		len = le32_to_cpu(ex->ee_block) - block;
2156		ext_debug("cache gap(before): %u [%u:%u]",
2157				block,
2158				le32_to_cpu(ex->ee_block),
2159				 ext4_ext_get_actual_len(ex));
2160	} else if (block >= le32_to_cpu(ex->ee_block)
2161			+ ext4_ext_get_actual_len(ex)) {
2162		ext4_lblk_t next;
2163		lblock = le32_to_cpu(ex->ee_block)
2164			+ ext4_ext_get_actual_len(ex);
2165
2166		next = ext4_ext_next_allocated_block(path);
2167		ext_debug("cache gap(after): [%u:%u] %u",
2168				le32_to_cpu(ex->ee_block),
2169				ext4_ext_get_actual_len(ex),
2170				block);
2171		BUG_ON(next == lblock);
2172		len = next - lblock;
2173	} else {
2174		lblock = len = 0;
2175		BUG();
2176	}
2177
2178	ext_debug(" -> %u:%lu\n", lblock, len);
2179	ext4_ext_put_in_cache(inode, lblock, len, 0);
2180}
2181
2182/*
2183 * ext4_ext_in_cache()
2184 * Checks to see if the given block is in the cache.
2185 * If it is, the cached extent is stored in the given
2186 * cache extent pointer.
2187 *
2188 * @inode: The files inode
2189 * @block: The block to look for in the cache
2190 * @ex:    Pointer where the cached extent will be stored
2191 *         if it contains block
2192 *
2193 * Return 0 if cache is invalid; 1 if the cache is valid
2194 */
2195static int
2196ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2197		  struct ext4_extent *ex)
2198{
2199	struct ext4_ext_cache *cex;
2200	int ret = 0;
2201
2202	/*
2203	 * We borrow i_block_reservation_lock to protect i_cached_extent
2204	 */
2205	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2206	cex = &EXT4_I(inode)->i_cached_extent;
2207
2208	/* has cache valid data? */
2209	if (cex->ec_len == 0)
2210		goto errout;
2211
2212	if (in_range(block, cex->ec_block, cex->ec_len)) {
2213		ex->ee_block = cpu_to_le32(cex->ec_block);
2214		ext4_ext_store_pblock(ex, cex->ec_start);
2215		ex->ee_len = cpu_to_le16(cex->ec_len);
2216		ext_debug("%u cached by %u:%u:%llu\n",
2217				block,
2218				cex->ec_block, cex->ec_len, cex->ec_start);
2219		ret = 1;
2220	}
2221errout:
2222	trace_ext4_ext_in_cache(inode, block, ret);
2223	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2224	return ret;
2225}
2226
2227/*
2228 * ext4_ext_rm_idx:
2229 * removes index from the index block.
2230 */
2231static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2232			struct ext4_ext_path *path, int depth)
2233{
2234	int err;
2235	ext4_fsblk_t leaf;
2236
2237	/* free index block */
2238	depth--;
2239	path = path + depth;
2240	leaf = ext4_idx_pblock(path->p_idx);
2241	if (unlikely(path->p_hdr->eh_entries == 0)) {
2242		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2243		return -EIO;
2244	}
2245	err = ext4_ext_get_access(handle, inode, path);
2246	if (err)
2247		return err;
2248
2249	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2250		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2251		len *= sizeof(struct ext4_extent_idx);
2252		memmove(path->p_idx, path->p_idx + 1, len);
2253	}
2254
2255	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2256	err = ext4_ext_dirty(handle, inode, path);
2257	if (err)
2258		return err;
2259	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2260	trace_ext4_ext_rm_idx(inode, leaf);
2261
2262	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2263			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2264
2265	while (--depth >= 0) {
2266		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2267			break;
2268		path--;
2269		err = ext4_ext_get_access(handle, inode, path);
2270		if (err)
2271			break;
2272		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2273		err = ext4_ext_dirty(handle, inode, path);
2274		if (err)
2275			break;
2276	}
2277	return err;
2278}
2279
2280/*
2281 * ext4_ext_calc_credits_for_single_extent:
2282 * This routine returns max. credits that needed to insert an extent
2283 * to the extent tree.
2284 * When pass the actual path, the caller should calculate credits
2285 * under i_data_sem.
2286 */
2287int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2288						struct ext4_ext_path *path)
2289{
2290	if (path) {
2291		int depth = ext_depth(inode);
2292		int ret = 0;
2293
2294		/* probably there is space in leaf? */
2295		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2296				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2297
2298			/*
2299			 *  There are some space in the leaf tree, no
2300			 *  need to account for leaf block credit
2301			 *
2302			 *  bitmaps and block group descriptor blocks
2303			 *  and other metadata blocks still need to be
2304			 *  accounted.
2305			 */
2306			/* 1 bitmap, 1 block group descriptor */
2307			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2308			return ret;
2309		}
2310	}
2311
2312	return ext4_chunk_trans_blocks(inode, nrblocks);
2313}
2314
2315/*
2316 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2317 *
2318 * if nrblocks are fit in a single extent (chunk flag is 1), then
2319 * in the worse case, each tree level index/leaf need to be changed
2320 * if the tree split due to insert a new extent, then the old tree
2321 * index/leaf need to be updated too
2322 *
2323 * If the nrblocks are discontiguous, they could cause
2324 * the whole tree split more than once, but this is really rare.
2325 */
2326int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2327{
2328	int index;
2329	int depth;
2330
2331	/* If we are converting the inline data, only one is needed here. */
2332	if (ext4_has_inline_data(inode))
2333		return 1;
2334
2335	depth = ext_depth(inode);
2336
2337	if (chunk)
2338		index = depth * 2;
2339	else
2340		index = depth * 3;
2341
2342	return index;
2343}
2344
2345static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2346			      struct ext4_extent *ex,
2347			      ext4_fsblk_t *partial_cluster,
2348			      ext4_lblk_t from, ext4_lblk_t to)
2349{
2350	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2351	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2352	ext4_fsblk_t pblk;
2353	int flags = 0;
2354
2355	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2356		flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2357	else if (ext4_should_journal_data(inode))
2358		flags |= EXT4_FREE_BLOCKS_FORGET;
2359
2360	/*
2361	 * For bigalloc file systems, we never free a partial cluster
2362	 * at the beginning of the extent.  Instead, we make a note
2363	 * that we tried freeing the cluster, and check to see if we
2364	 * need to free it on a subsequent call to ext4_remove_blocks,
2365	 * or at the end of the ext4_truncate() operation.
2366	 */
2367	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2368
2369	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2370	/*
2371	 * If we have a partial cluster, and it's different from the
2372	 * cluster of the last block, we need to explicitly free the
2373	 * partial cluster here.
2374	 */
2375	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2376	if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2377		ext4_free_blocks(handle, inode, NULL,
2378				 EXT4_C2B(sbi, *partial_cluster),
2379				 sbi->s_cluster_ratio, flags);
2380		*partial_cluster = 0;
2381	}
2382
2383#ifdef EXTENTS_STATS
2384	{
2385		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2386		spin_lock(&sbi->s_ext_stats_lock);
2387		sbi->s_ext_blocks += ee_len;
2388		sbi->s_ext_extents++;
2389		if (ee_len < sbi->s_ext_min)
2390			sbi->s_ext_min = ee_len;
2391		if (ee_len > sbi->s_ext_max)
2392			sbi->s_ext_max = ee_len;
2393		if (ext_depth(inode) > sbi->s_depth_max)
2394			sbi->s_depth_max = ext_depth(inode);
2395		spin_unlock(&sbi->s_ext_stats_lock);
2396	}
2397#endif
2398	if (from >= le32_to_cpu(ex->ee_block)
2399	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2400		/* tail removal */
2401		ext4_lblk_t num;
2402
2403		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2404		pblk = ext4_ext_pblock(ex) + ee_len - num;
2405		ext_debug("free last %u blocks starting %llu\n", num, pblk);
2406		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2407		/*
2408		 * If the block range to be freed didn't start at the
2409		 * beginning of a cluster, and we removed the entire
2410		 * extent, save the partial cluster here, since we
2411		 * might need to delete if we determine that the
2412		 * truncate operation has removed all of the blocks in
2413		 * the cluster.
2414		 */
2415		if (pblk & (sbi->s_cluster_ratio - 1) &&
2416		    (ee_len == num))
2417			*partial_cluster = EXT4_B2C(sbi, pblk);
2418		else
2419			*partial_cluster = 0;
2420	} else if (from == le32_to_cpu(ex->ee_block)
2421		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2422		/* head removal */
2423		ext4_lblk_t num;
2424		ext4_fsblk_t start;
2425
2426		num = to - from;
2427		start = ext4_ext_pblock(ex);
2428
2429		ext_debug("free first %u blocks starting %llu\n", num, start);
2430		ext4_free_blocks(handle, inode, NULL, start, num, flags);
2431
2432	} else {
2433		printk(KERN_INFO "strange request: removal(2) "
2434				"%u-%u from %u:%u\n",
2435				from, to, le32_to_cpu(ex->ee_block), ee_len);
2436	}
2437	return 0;
2438}
2439
2440
2441/*
2442 * ext4_ext_rm_leaf() Removes the extents associated with the
2443 * blocks appearing between "start" and "end", and splits the extents
2444 * if "start" and "end" appear in the same extent
2445 *
2446 * @handle: The journal handle
2447 * @inode:  The files inode
2448 * @path:   The path to the leaf
2449 * @start:  The first block to remove
2450 * @end:   The last block to remove
2451 */
2452static int
2453ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2454		 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2455		 ext4_lblk_t start, ext4_lblk_t end)
2456{
2457	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2458	int err = 0, correct_index = 0;
2459	int depth = ext_depth(inode), credits;
2460	struct ext4_extent_header *eh;
2461	ext4_lblk_t a, b;
2462	unsigned num;
2463	ext4_lblk_t ex_ee_block;
2464	unsigned short ex_ee_len;
2465	unsigned uninitialized = 0;
2466	struct ext4_extent *ex;
2467
2468	/* the header must be checked already in ext4_ext_remove_space() */
2469	ext_debug("truncate since %u in leaf to %u\n", start, end);
2470	if (!path[depth].p_hdr)
2471		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2472	eh = path[depth].p_hdr;
2473	if (unlikely(path[depth].p_hdr == NULL)) {
2474		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2475		return -EIO;
2476	}
2477	/* find where to start removing */
2478	ex = EXT_LAST_EXTENT(eh);
2479
2480	ex_ee_block = le32_to_cpu(ex->ee_block);
2481	ex_ee_len = ext4_ext_get_actual_len(ex);
2482
2483	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2484
2485	while (ex >= EXT_FIRST_EXTENT(eh) &&
2486			ex_ee_block + ex_ee_len > start) {
2487
2488		if (ext4_ext_is_uninitialized(ex))
2489			uninitialized = 1;
2490		else
2491			uninitialized = 0;
2492
2493		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2494			 uninitialized, ex_ee_len);
2495		path[depth].p_ext = ex;
2496
2497		a = ex_ee_block > start ? ex_ee_block : start;
2498		b = ex_ee_block+ex_ee_len - 1 < end ?
2499			ex_ee_block+ex_ee_len - 1 : end;
2500
2501		ext_debug("  border %u:%u\n", a, b);
2502
2503		/* If this extent is beyond the end of the hole, skip it */
2504		if (end < ex_ee_block) {
2505			ex--;
2506			ex_ee_block = le32_to_cpu(ex->ee_block);
2507			ex_ee_len = ext4_ext_get_actual_len(ex);
2508			continue;
2509		} else if (b != ex_ee_block + ex_ee_len - 1) {
2510			EXT4_ERROR_INODE(inode,
2511					 "can not handle truncate %u:%u "
2512					 "on extent %u:%u",
2513					 start, end, ex_ee_block,
2514					 ex_ee_block + ex_ee_len - 1);
2515			err = -EIO;
2516			goto out;
2517		} else if (a != ex_ee_block) {
2518			/* remove tail of the extent */
2519			num = a - ex_ee_block;
2520		} else {
2521			/* remove whole extent: excellent! */
2522			num = 0;
2523		}
2524		/*
2525		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2526		 * descriptor) for each block group; assume two block
2527		 * groups plus ex_ee_len/blocks_per_block_group for
2528		 * the worst case
2529		 */
2530		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2531		if (ex == EXT_FIRST_EXTENT(eh)) {
2532			correct_index = 1;
2533			credits += (ext_depth(inode)) + 1;
2534		}
2535		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2536
2537		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2538		if (err)
2539			goto out;
2540
2541		err = ext4_ext_get_access(handle, inode, path + depth);
2542		if (err)
2543			goto out;
2544
2545		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2546					 a, b);
2547		if (err)
2548			goto out;
2549
2550		if (num == 0)
2551			/* this extent is removed; mark slot entirely unused */
2552			ext4_ext_store_pblock(ex, 0);
2553
2554		ex->ee_len = cpu_to_le16(num);
2555		/*
2556		 * Do not mark uninitialized if all the blocks in the
2557		 * extent have been removed.
2558		 */
2559		if (uninitialized && num)
2560			ext4_ext_mark_uninitialized(ex);
2561		/*
2562		 * If the extent was completely released,
2563		 * we need to remove it from the leaf
2564		 */
2565		if (num == 0) {
2566			if (end != EXT_MAX_BLOCKS - 1) {
2567				/*
2568				 * For hole punching, we need to scoot all the
2569				 * extents up when an extent is removed so that
2570				 * we dont have blank extents in the middle
2571				 */
2572				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2573					sizeof(struct ext4_extent));
2574
2575				/* Now get rid of the one at the end */
2576				memset(EXT_LAST_EXTENT(eh), 0,
2577					sizeof(struct ext4_extent));
2578			}
2579			le16_add_cpu(&eh->eh_entries, -1);
2580		} else
2581			*partial_cluster = 0;
2582
2583		err = ext4_ext_dirty(handle, inode, path + depth);
2584		if (err)
2585			goto out;
2586
2587		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2588				ext4_ext_pblock(ex));
2589		ex--;
2590		ex_ee_block = le32_to_cpu(ex->ee_block);
2591		ex_ee_len = ext4_ext_get_actual_len(ex);
2592	}
2593
2594	if (correct_index && eh->eh_entries)
2595		err = ext4_ext_correct_indexes(handle, inode, path);
2596
2597	/*
2598	 * If there is still a entry in the leaf node, check to see if
2599	 * it references the partial cluster.  This is the only place
2600	 * where it could; if it doesn't, we can free the cluster.
2601	 */
2602	if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2603	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2604	     *partial_cluster)) {
2605		int flags = EXT4_FREE_BLOCKS_FORGET;
2606
2607		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2608			flags |= EXT4_FREE_BLOCKS_METADATA;
2609
2610		ext4_free_blocks(handle, inode, NULL,
2611				 EXT4_C2B(sbi, *partial_cluster),
2612				 sbi->s_cluster_ratio, flags);
2613		*partial_cluster = 0;
2614	}
2615
2616	/* if this leaf is free, then we should
2617	 * remove it from index block above */
2618	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2619		err = ext4_ext_rm_idx(handle, inode, path, depth);
2620
2621out:
2622	return err;
2623}
2624
2625/*
2626 * ext4_ext_more_to_rm:
2627 * returns 1 if current index has to be freed (even partial)
2628 */
2629static int
2630ext4_ext_more_to_rm(struct ext4_ext_path *path)
2631{
2632	BUG_ON(path->p_idx == NULL);
2633
2634	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2635		return 0;
2636
2637	/*
2638	 * if truncate on deeper level happened, it wasn't partial,
2639	 * so we have to consider current index for truncation
2640	 */
2641	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2642		return 0;
2643	return 1;
2644}
2645
2646static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2647				 ext4_lblk_t end)
2648{
2649	struct super_block *sb = inode->i_sb;
2650	int depth = ext_depth(inode);
2651	struct ext4_ext_path *path = NULL;
2652	ext4_fsblk_t partial_cluster = 0;
2653	handle_t *handle;
2654	int i = 0, err = 0;
2655
2656	ext_debug("truncate since %u to %u\n", start, end);
2657
2658	/* probably first extent we're gonna free will be last in block */
2659	handle = ext4_journal_start(inode, depth + 1);
2660	if (IS_ERR(handle))
2661		return PTR_ERR(handle);
2662
2663again:
2664	ext4_ext_invalidate_cache(inode);
2665
2666	trace_ext4_ext_remove_space(inode, start, depth);
2667
2668	/*
2669	 * Check if we are removing extents inside the extent tree. If that
2670	 * is the case, we are going to punch a hole inside the extent tree
2671	 * so we have to check whether we need to split the extent covering
2672	 * the last block to remove so we can easily remove the part of it
2673	 * in ext4_ext_rm_leaf().
2674	 */
2675	if (end < EXT_MAX_BLOCKS - 1) {
2676		struct ext4_extent *ex;
2677		ext4_lblk_t ee_block;
2678
2679		/* find extent for this block */
2680		path = ext4_ext_find_extent(inode, end, NULL);
2681		if (IS_ERR(path)) {
2682			ext4_journal_stop(handle);
2683			return PTR_ERR(path);
2684		}
2685		depth = ext_depth(inode);
2686		/* Leaf not may not exist only if inode has no blocks at all */
2687		ex = path[depth].p_ext;
2688		if (!ex) {
2689			if (depth) {
2690				EXT4_ERROR_INODE(inode,
2691						 "path[%d].p_hdr == NULL",
2692						 depth);
2693				err = -EIO;
2694			}
2695			goto out;
2696		}
2697
2698		ee_block = le32_to_cpu(ex->ee_block);
2699
2700		/*
2701		 * See if the last block is inside the extent, if so split
2702		 * the extent at 'end' block so we can easily remove the
2703		 * tail of the first part of the split extent in
2704		 * ext4_ext_rm_leaf().
2705		 */
2706		if (end >= ee_block &&
2707		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2708			int split_flag = 0;
2709
2710			if (ext4_ext_is_uninitialized(ex))
2711				split_flag = EXT4_EXT_MARK_UNINIT1 |
2712					     EXT4_EXT_MARK_UNINIT2;
2713
2714			/*
2715			 * Split the extent in two so that 'end' is the last
2716			 * block in the first new extent
2717			 */
2718			err = ext4_split_extent_at(handle, inode, path,
2719						end + 1, split_flag,
2720						EXT4_GET_BLOCKS_PRE_IO |
2721						EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2722
2723			if (err < 0)
2724				goto out;
2725		}
2726	}
2727	/*
2728	 * We start scanning from right side, freeing all the blocks
2729	 * after i_size and walking into the tree depth-wise.
2730	 */
2731	depth = ext_depth(inode);
2732	if (path) {
2733		int k = i = depth;
2734		while (--k > 0)
2735			path[k].p_block =
2736				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2737	} else {
2738		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2739			       GFP_NOFS);
2740		if (path == NULL) {
2741			ext4_journal_stop(handle);
2742			return -ENOMEM;
2743		}
2744		path[0].p_depth = depth;
2745		path[0].p_hdr = ext_inode_hdr(inode);
2746		i = 0;
2747
2748		if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2749			err = -EIO;
2750			goto out;
2751		}
2752	}
2753	err = 0;
2754
2755	while (i >= 0 && err == 0) {
2756		if (i == depth) {
2757			/* this is leaf block */
2758			err = ext4_ext_rm_leaf(handle, inode, path,
2759					       &partial_cluster, start,
2760					       end);
2761			/* root level has p_bh == NULL, brelse() eats this */
2762			brelse(path[i].p_bh);
2763			path[i].p_bh = NULL;
2764			i--;
2765			continue;
2766		}
2767
2768		/* this is index block */
2769		if (!path[i].p_hdr) {
2770			ext_debug("initialize header\n");
2771			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2772		}
2773
2774		if (!path[i].p_idx) {
2775			/* this level hasn't been touched yet */
2776			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2777			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2778			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2779				  path[i].p_hdr,
2780				  le16_to_cpu(path[i].p_hdr->eh_entries));
2781		} else {
2782			/* we were already here, see at next index */
2783			path[i].p_idx--;
2784		}
2785
2786		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2787				i, EXT_FIRST_INDEX(path[i].p_hdr),
2788				path[i].p_idx);
2789		if (ext4_ext_more_to_rm(path + i)) {
2790			struct buffer_head *bh;
2791			/* go to the next level */
2792			ext_debug("move to level %d (block %llu)\n",
2793				  i + 1, ext4_idx_pblock(path[i].p_idx));
2794			memset(path + i + 1, 0, sizeof(*path));
2795			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2796			if (!bh) {
2797				/* should we reset i_size? */
2798				err = -EIO;
2799				break;
2800			}
2801			if (WARN_ON(i + 1 > depth)) {
2802				err = -EIO;
2803				break;
2804			}
2805			if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2806							depth - i - 1, bh)) {
2807				err = -EIO;
2808				break;
2809			}
2810			path[i + 1].p_bh = bh;
2811
2812			/* save actual number of indexes since this
2813			 * number is changed at the next iteration */
2814			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2815			i++;
2816		} else {
2817			/* we finished processing this index, go up */
2818			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2819				/* index is empty, remove it;
2820				 * handle must be already prepared by the
2821				 * truncatei_leaf() */
2822				err = ext4_ext_rm_idx(handle, inode, path, i);
2823			}
2824			/* root level has p_bh == NULL, brelse() eats this */
2825			brelse(path[i].p_bh);
2826			path[i].p_bh = NULL;
2827			i--;
2828			ext_debug("return to level %d\n", i);
2829		}
2830	}
2831
2832	trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2833			path->p_hdr->eh_entries);
2834
2835	/* If we still have something in the partial cluster and we have removed
2836	 * even the first extent, then we should free the blocks in the partial
2837	 * cluster as well. */
2838	if (partial_cluster && path->p_hdr->eh_entries == 0) {
2839		int flags = EXT4_FREE_BLOCKS_FORGET;
2840
2841		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2842			flags |= EXT4_FREE_BLOCKS_METADATA;
2843
2844		ext4_free_blocks(handle, inode, NULL,
2845				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2846				 EXT4_SB(sb)->s_cluster_ratio, flags);
2847		partial_cluster = 0;
2848	}
2849
2850	/* TODO: flexible tree reduction should be here */
2851	if (path->p_hdr->eh_entries == 0) {
2852		/*
2853		 * truncate to zero freed all the tree,
2854		 * so we need to correct eh_depth
2855		 */
2856		err = ext4_ext_get_access(handle, inode, path);
2857		if (err == 0) {
2858			ext_inode_hdr(inode)->eh_depth = 0;
2859			ext_inode_hdr(inode)->eh_max =
2860				cpu_to_le16(ext4_ext_space_root(inode, 0));
2861			err = ext4_ext_dirty(handle, inode, path);
2862		}
2863	}
2864out:
2865	ext4_ext_drop_refs(path);
2866	kfree(path);
2867	if (err == -EAGAIN) {
2868		path = NULL;
2869		goto again;
2870	}
2871	ext4_journal_stop(handle);
2872
2873	return err;
2874}
2875
2876/*
2877 * called at mount time
2878 */
2879void ext4_ext_init(struct super_block *sb)
2880{
2881	/*
2882	 * possible initialization would be here
2883	 */
2884
2885	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2886#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2887		printk(KERN_INFO "EXT4-fs: file extents enabled"
2888#ifdef AGGRESSIVE_TEST
2889		       ", aggressive tests"
2890#endif
2891#ifdef CHECK_BINSEARCH
2892		       ", check binsearch"
2893#endif
2894#ifdef EXTENTS_STATS
2895		       ", stats"
2896#endif
2897		       "\n");
2898#endif
2899#ifdef EXTENTS_STATS
2900		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2901		EXT4_SB(sb)->s_ext_min = 1 << 30;
2902		EXT4_SB(sb)->s_ext_max = 0;
2903#endif
2904	}
2905}
2906
2907/*
2908 * called at umount time
2909 */
2910void ext4_ext_release(struct super_block *sb)
2911{
2912	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2913		return;
2914
2915#ifdef EXTENTS_STATS
2916	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2917		struct ext4_sb_info *sbi = EXT4_SB(sb);
2918		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2919			sbi->s_ext_blocks, sbi->s_ext_extents,
2920			sbi->s_ext_blocks / sbi->s_ext_extents);
2921		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2922			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2923	}
2924#endif
2925}
2926
2927/* FIXME!! we need to try to merge to left or right after zero-out  */
2928static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2929{
2930	ext4_fsblk_t ee_pblock;
2931	unsigned int ee_len;
2932	int ret;
2933
2934	ee_len    = ext4_ext_get_actual_len(ex);
2935	ee_pblock = ext4_ext_pblock(ex);
2936
2937	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2938	if (ret > 0)
2939		ret = 0;
2940
2941	return ret;
2942}
2943
2944/*
2945 * ext4_split_extent_at() splits an extent at given block.
2946 *
2947 * @handle: the journal handle
2948 * @inode: the file inode
2949 * @path: the path to the extent
2950 * @split: the logical block where the extent is splitted.
2951 * @split_flags: indicates if the extent could be zeroout if split fails, and
2952 *		 the states(init or uninit) of new extents.
2953 * @flags: flags used to insert new extent to extent tree.
2954 *
2955 *
2956 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2957 * of which are deterimined by split_flag.
2958 *
2959 * There are two cases:
2960 *  a> the extent are splitted into two extent.
2961 *  b> split is not needed, and just mark the extent.
2962 *
2963 * return 0 on success.
2964 */
2965static int ext4_split_extent_at(handle_t *handle,
2966			     struct inode *inode,
2967			     struct ext4_ext_path *path,
2968			     ext4_lblk_t split,
2969			     int split_flag,
2970			     int flags)
2971{
2972	ext4_fsblk_t newblock;
2973	ext4_lblk_t ee_block;
2974	struct ext4_extent *ex, newex, orig_ex;
2975	struct ext4_extent *ex2 = NULL;
2976	unsigned int ee_len, depth;
2977	int err = 0;
2978
2979	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
2980	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
2981
2982	ext_debug("ext4_split_extents_at: inode %lu, logical"
2983		"block %llu\n", inode->i_ino, (unsigned long long)split);
2984
2985	ext4_ext_show_leaf(inode, path);
2986
2987	depth = ext_depth(inode);
2988	ex = path[depth].p_ext;
2989	ee_block = le32_to_cpu(ex->ee_block);
2990	ee_len = ext4_ext_get_actual_len(ex);
2991	newblock = split - ee_block + ext4_ext_pblock(ex);
2992
2993	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2994
2995	err = ext4_ext_get_access(handle, inode, path + depth);
2996	if (err)
2997		goto out;
2998
2999	if (split == ee_block) {
3000		/*
3001		 * case b: block @split is the block that the extent begins with
3002		 * then we just change the state of the extent, and splitting
3003		 * is not needed.
3004		 */
3005		if (split_flag & EXT4_EXT_MARK_UNINIT2)
3006			ext4_ext_mark_uninitialized(ex);
3007		else
3008			ext4_ext_mark_initialized(ex);
3009
3010		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3011			ext4_ext_try_to_merge(handle, inode, path, ex);
3012
3013		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3014		goto out;
3015	}
3016
3017	/* case a */
3018	memcpy(&orig_ex, ex, sizeof(orig_ex));
3019	ex->ee_len = cpu_to_le16(split - ee_block);
3020	if (split_flag & EXT4_EXT_MARK_UNINIT1)
3021		ext4_ext_mark_uninitialized(ex);
3022
3023	/*
3024	 * path may lead to new leaf, not to original leaf any more
3025	 * after ext4_ext_insert_extent() returns,
3026	 */
3027	err = ext4_ext_dirty(handle, inode, path + depth);
3028	if (err)
3029		goto fix_extent_len;
3030
3031	ex2 = &newex;
3032	ex2->ee_block = cpu_to_le32(split);
3033	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
3034	ext4_ext_store_pblock(ex2, newblock);
3035	if (split_flag & EXT4_EXT_MARK_UNINIT2)
3036		ext4_ext_mark_uninitialized(ex2);
3037
3038	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3039	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3040		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3041			if (split_flag & EXT4_EXT_DATA_VALID1)
3042				err = ext4_ext_zeroout(inode, ex2);
3043			else
3044				err = ext4_ext_zeroout(inode, ex);
3045		} else
3046			err = ext4_ext_zeroout(inode, &orig_ex);
3047
3048		if (err)
3049			goto fix_extent_len;
3050		/* update the extent length and mark as initialized */
3051		ex->ee_len = cpu_to_le16(ee_len);
3052		ext4_ext_try_to_merge(handle, inode, path, ex);
3053		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3054		goto out;
3055	} else if (err)
3056		goto fix_extent_len;
3057
3058out:
3059	ext4_ext_show_leaf(inode, path);
3060	return err;
3061
3062fix_extent_len:
3063	ex->ee_len = orig_ex.ee_len;
3064	ext4_ext_dirty(handle, inode, path + depth);
3065	return err;
3066}
3067
3068/*
3069 * ext4_split_extents() splits an extent and mark extent which is covered
3070 * by @map as split_flags indicates
3071 *
3072 * It may result in splitting the extent into multiple extents (upto three)
3073 * There are three possibilities:
3074 *   a> There is no split required
3075 *   b> Splits in two extents: Split is happening at either end of the extent
3076 *   c> Splits in three extents: Somone is splitting in middle of the extent
3077 *
3078 */
3079static int ext4_split_extent(handle_t *handle,
3080			      struct inode *inode,
3081			      struct ext4_ext_path *path,
3082			      struct ext4_map_blocks *map,
3083			      int split_flag,
3084			      int flags)
3085{
3086	ext4_lblk_t ee_block;
3087	struct ext4_extent *ex;
3088	unsigned int ee_len, depth;
3089	int err = 0;
3090	int uninitialized;
3091	int split_flag1, flags1;
3092
3093	depth = ext_depth(inode);
3094	ex = path[depth].p_ext;
3095	ee_block = le32_to_cpu(ex->ee_block);
3096	ee_len = ext4_ext_get_actual_len(ex);
3097	uninitialized = ext4_ext_is_uninitialized(ex);
3098
3099	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3100		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3101		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3102		if (uninitialized)
3103			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3104				       EXT4_EXT_MARK_UNINIT2;
3105		if (split_flag & EXT4_EXT_DATA_VALID2)
3106			split_flag1 |= EXT4_EXT_DATA_VALID1;
3107		err = ext4_split_extent_at(handle, inode, path,
3108				map->m_lblk + map->m_len, split_flag1, flags1);
3109		if (err)
3110			goto out;
3111	}
3112
3113	ext4_ext_drop_refs(path);
3114	path = ext4_ext_find_extent(inode, map->m_lblk, path);
3115	if (IS_ERR(path))
3116		return PTR_ERR(path);
3117
3118	if (map->m_lblk >= ee_block) {
3119		split_flag1 = split_flag & (EXT4_EXT_MAY_ZEROOUT |
3120					    EXT4_EXT_DATA_VALID2);
3121		if (uninitialized)
3122			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3123		if (split_flag & EXT4_EXT_MARK_UNINIT2)
3124			split_flag1 |= EXT4_EXT_MARK_UNINIT2;
3125		err = ext4_split_extent_at(handle, inode, path,
3126				map->m_lblk, split_flag1, flags);
3127		if (err)
3128			goto out;
3129	}
3130
3131	ext4_ext_show_leaf(inode, path);
3132out:
3133	return err ? err : map->m_len;
3134}
3135
3136/*
3137 * This function is called by ext4_ext_map_blocks() if someone tries to write
3138 * to an uninitialized extent. It may result in splitting the uninitialized
3139 * extent into multiple extents (up to three - one initialized and two
3140 * uninitialized).
3141 * There are three possibilities:
3142 *   a> There is no split required: Entire extent should be initialized
3143 *   b> Splits in two extents: Write is happening at either end of the extent
3144 *   c> Splits in three extents: Somone is writing in middle of the extent
3145 *
3146 * Pre-conditions:
3147 *  - The extent pointed to by 'path' is uninitialized.
3148 *  - The extent pointed to by 'path' contains a superset
3149 *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3150 *
3151 * Post-conditions on success:
3152 *  - the returned value is the number of blocks beyond map->l_lblk
3153 *    that are allocated and initialized.
3154 *    It is guaranteed to be >= map->m_len.
3155 */
3156static int ext4_ext_convert_to_initialized(handle_t *handle,
3157					   struct inode *inode,
3158					   struct ext4_map_blocks *map,
3159					   struct ext4_ext_path *path)
3160{
3161	struct ext4_sb_info *sbi;
3162	struct ext4_extent_header *eh;
3163	struct ext4_map_blocks split_map;
3164	struct ext4_extent zero_ex;
3165	struct ext4_extent *ex;
3166	ext4_lblk_t ee_block, eof_block;
3167	unsigned int ee_len, depth;
3168	int allocated, max_zeroout = 0;
3169	int err = 0;
3170	int split_flag = 0;
3171
3172	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3173		"block %llu, max_blocks %u\n", inode->i_ino,
3174		(unsigned long long)map->m_lblk, map->m_len);
3175
3176	sbi = EXT4_SB(inode->i_sb);
3177	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3178		inode->i_sb->s_blocksize_bits;
3179	if (eof_block < map->m_lblk + map->m_len)
3180		eof_block = map->m_lblk + map->m_len;
3181
3182	depth = ext_depth(inode);
3183	eh = path[depth].p_hdr;
3184	ex = path[depth].p_ext;
3185	ee_block = le32_to_cpu(ex->ee_block);
3186	ee_len = ext4_ext_get_actual_len(ex);
3187	allocated = ee_len - (map->m_lblk - ee_block);
3188
3189	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3190
3191	/* Pre-conditions */
3192	BUG_ON(!ext4_ext_is_uninitialized(ex));
3193	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3194
3195	/*
3196	 * Attempt to transfer newly initialized blocks from the currently
3197	 * uninitialized extent to its left neighbor. This is much cheaper
3198	 * than an insertion followed by a merge as those involve costly
3199	 * memmove() calls. This is the common case in steady state for
3200	 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3201	 * writes.
3202	 *
3203	 * Limitations of the current logic:
3204	 *  - L1: we only deal with writes at the start of the extent.
3205	 *    The approach could be extended to writes at the end
3206	 *    of the extent but this scenario was deemed less common.
3207	 *  - L2: we do not deal with writes covering the whole extent.
3208	 *    This would require removing the extent if the transfer
3209	 *    is possible.
3210	 *  - L3: we only attempt to merge with an extent stored in the
3211	 *    same extent tree node.
3212	 */
3213	if ((map->m_lblk == ee_block) &&	/*L1*/
3214		(map->m_len < ee_len) &&	/*L2*/
3215		(ex > EXT_FIRST_EXTENT(eh))) {	/*L3*/
3216		struct ext4_extent *prev_ex;
3217		ext4_lblk_t prev_lblk;
3218		ext4_fsblk_t prev_pblk, ee_pblk;
3219		unsigned int prev_len, write_len;
3220
3221		prev_ex = ex - 1;
3222		prev_lblk = le32_to_cpu(prev_ex->ee_block);
3223		prev_len = ext4_ext_get_actual_len(prev_ex);
3224		prev_pblk = ext4_ext_pblock(prev_ex);
3225		ee_pblk = ext4_ext_pblock(ex);
3226		write_len = map->m_len;
3227
3228		/*
3229		 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3230		 * upon those conditions:
3231		 * - C1: prev_ex is initialized,
3232		 * - C2: prev_ex is logically abutting ex,
3233		 * - C3: prev_ex is physically abutting ex,
3234		 * - C4: prev_ex can receive the additional blocks without
3235		 *   overflowing the (initialized) length limit.
3236		 */
3237		if ((!ext4_ext_is_uninitialized(prev_ex)) &&		/*C1*/
3238			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3239			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3240			(prev_len < (EXT_INIT_MAX_LEN - write_len))) {	/*C4*/
3241			err = ext4_ext_get_access(handle, inode, path + depth);
3242			if (err)
3243				goto out;
3244
3245			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3246				map, ex, prev_ex);
3247
3248			/* Shift the start of ex by 'write_len' blocks */
3249			ex->ee_block = cpu_to_le32(ee_block + write_len);
3250			ext4_ext_store_pblock(ex, ee_pblk + write_len);
3251			ex->ee_len = cpu_to_le16(ee_len - write_len);
3252			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3253
3254			/* Extend prev_ex by 'write_len' blocks */
3255			prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3256
3257			/* Mark the block containing both extents as dirty */
3258			ext4_ext_dirty(handle, inode, path + depth);
3259
3260			/* Update path to point to the right extent */
3261			path[depth].p_ext = prev_ex;
3262
3263			/* Result: number of initialized blocks past m_lblk */
3264			allocated = write_len;
3265			goto out;
3266		}
3267	}
3268
3269	WARN_ON(map->m_lblk < ee_block);
3270	/*
3271	 * It is safe to convert extent to initialized via explicit
3272	 * zeroout only if extent is fully insde i_size or new_size.
3273	 */
3274	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3275
3276	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3277		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3278			inode->i_sb->s_blocksize_bits;
3279
3280	/* If extent is less than s_max_zeroout_kb, zeroout directly */
3281	if (max_zeroout && (ee_len <= max_zeroout)) {
3282		err = ext4_ext_zeroout(inode, ex);
3283		if (err)
3284			goto out;
3285
3286		err = ext4_ext_get_access(handle, inode, path + depth);
3287		if (err)
3288			goto out;
3289		ext4_ext_mark_initialized(ex);
3290		ext4_ext_try_to_merge(handle, inode, path, ex);
3291		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3292		goto out;
3293	}
3294
3295	/*
3296	 * four cases:
3297	 * 1. split the extent into three extents.
3298	 * 2. split the extent into two extents, zeroout the first half.
3299	 * 3. split the extent into two extents, zeroout the second half.
3300	 * 4. split the extent into two extents with out zeroout.
3301	 */
3302	split_map.m_lblk = map->m_lblk;
3303	split_map.m_len = map->m_len;
3304
3305	if (max_zeroout && (allocated > map->m_len)) {
3306		if (allocated <= max_zeroout) {
3307			/* case 3 */
3308			zero_ex.ee_block =
3309					 cpu_to_le32(map->m_lblk);
3310			zero_ex.ee_len = cpu_to_le16(allocated);
3311			ext4_ext_store_pblock(&zero_ex,
3312				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3313			err = ext4_ext_zeroout(inode, &zero_ex);
3314			if (err)
3315				goto out;
3316			split_map.m_lblk = map->m_lblk;
3317			split_map.m_len = allocated;
3318		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3319			/* case 2 */
3320			if (map->m_lblk != ee_block) {
3321				zero_ex.ee_block = ex->ee_block;
3322				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3323							ee_block);
3324				ext4_ext_store_pblock(&zero_ex,
3325						      ext4_ext_pblock(ex));
3326				err = ext4_ext_zeroout(inode, &zero_ex);
3327				if (err)
3328					goto out;
3329			}
3330
3331			split_map.m_lblk = ee_block;
3332			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3333			allocated = map->m_len;
3334		}
3335	}
3336
3337	allocated = ext4_split_extent(handle, inode, path,
3338				      &split_map, split_flag, 0);
3339	if (allocated < 0)
3340		err = allocated;
3341
3342out:
3343	return err ? err : allocated;
3344}
3345
3346/*
3347 * This function is called by ext4_ext_map_blocks() from
3348 * ext4_get_blocks_dio_write() when DIO to write
3349 * to an uninitialized extent.
3350 *
3351 * Writing to an uninitialized extent may result in splitting the uninitialized
3352 * extent into multiple initialized/uninitialized extents (up to three)
3353 * There are three possibilities:
3354 *   a> There is no split required: Entire extent should be uninitialized
3355 *   b> Splits in two extents: Write is happening at either end of the extent
3356 *   c> Splits in three extents: Somone is writing in middle of the extent
3357 *
3358 * One of more index blocks maybe needed if the extent tree grow after
3359 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3360 * complete, we need to split the uninitialized extent before DIO submit
3361 * the IO. The uninitialized extent called at this time will be split
3362 * into three uninitialized extent(at most). After IO complete, the part
3363 * being filled will be convert to initialized by the end_io callback function
3364 * via ext4_convert_unwritten_extents().
3365 *
3366 * Returns the size of uninitialized extent to be written on success.
3367 */
3368static int ext4_split_unwritten_extents(handle_t *handle,
3369					struct inode *inode,
3370					struct ext4_map_blocks *map,
3371					struct ext4_ext_path *path,
3372					int flags)
3373{
3374	ext4_lblk_t eof_block;
3375	ext4_lblk_t ee_block;
3376	struct ext4_extent *ex;
3377	unsigned int ee_len;
3378	int split_flag = 0, depth;
3379
3380	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3381		"block %llu, max_blocks %u\n", inode->i_ino,
3382		(unsigned long long)map->m_lblk, map->m_len);
3383
3384	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3385		inode->i_sb->s_blocksize_bits;
3386	if (eof_block < map->m_lblk + map->m_len)
3387		eof_block = map->m_lblk + map->m_len;
3388	/*
3389	 * It is safe to convert extent to initialized via explicit
3390	 * zeroout only if extent is fully insde i_size or new_size.
3391	 */
3392	depth = ext_depth(inode);
3393	ex = path[depth].p_ext;
3394	ee_block = le32_to_cpu(ex->ee_block);
3395	ee_len = ext4_ext_get_actual_len(ex);
3396
3397	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3398	split_flag |= EXT4_EXT_MARK_UNINIT2;
3399	if (flags & EXT4_GET_BLOCKS_CONVERT)
3400		split_flag |= EXT4_EXT_DATA_VALID2;
3401	flags |= EXT4_GET_BLOCKS_PRE_IO;
3402	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3403}
3404
3405static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3406						struct inode *inode,
3407						struct ext4_map_blocks *map,
3408						struct ext4_ext_path *path)
3409{
3410	struct ext4_extent *ex;
3411	ext4_lblk_t ee_block;
3412	unsigned int ee_len;
3413	int depth;
3414	int err = 0;
3415
3416	depth = ext_depth(inode);
3417	ex = path[depth].p_ext;
3418	ee_block = le32_to_cpu(ex->ee_block);
3419	ee_len = ext4_ext_get_actual_len(ex);
3420
3421	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3422		"block %llu, max_blocks %u\n", inode->i_ino,
3423		  (unsigned long long)ee_block, ee_len);
3424
3425	/* If extent is larger than requested then split is required */
3426	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3427		err = ext4_split_unwritten_extents(handle, inode, map, path,
3428						   EXT4_GET_BLOCKS_CONVERT);
3429		if (err < 0)
3430			goto out;
3431		ext4_ext_drop_refs(path);
3432		path = ext4_ext_find_extent(inode, map->m_lblk, path);
3433		if (IS_ERR(path)) {
3434			err = PTR_ERR(path);
3435			goto out;
3436		}
3437		depth = ext_depth(inode);
3438		ex = path[depth].p_ext;
3439	}
3440
3441	err = ext4_ext_get_access(handle, inode, path + depth);
3442	if (err)
3443		goto out;
3444	/* first mark the extent as initialized */
3445	ext4_ext_mark_initialized(ex);
3446
3447	/* note: ext4_ext_correct_indexes() isn't needed here because
3448	 * borders are not changed
3449	 */
3450	ext4_ext_try_to_merge(handle, inode, path, ex);
3451
3452	/* Mark modified extent as dirty */
3453	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3454out:
3455	ext4_ext_show_leaf(inode, path);
3456	return err;
3457}
3458
3459static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3460			sector_t block, int count)
3461{
3462	int i;
3463	for (i = 0; i < count; i++)
3464                unmap_underlying_metadata(bdev, block + i);
3465}
3466
3467/*
3468 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3469 */
3470static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3471			      ext4_lblk_t lblk,
3472			      struct ext4_ext_path *path,
3473			      unsigned int len)
3474{
3475	int i, depth;
3476	struct ext4_extent_header *eh;
3477	struct ext4_extent *last_ex;
3478
3479	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3480		return 0;
3481
3482	depth = ext_depth(inode);
3483	eh = path[depth].p_hdr;
3484
3485	/*
3486	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3487	 * do not care for this case anymore. Simply remove the flag
3488	 * if there are no extents.
3489	 */
3490	if (unlikely(!eh->eh_entries))
3491		goto out;
3492	last_ex = EXT_LAST_EXTENT(eh);
3493	/*
3494	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3495	 * last block in the last extent in the file.  We test this by
3496	 * first checking to see if the caller to
3497	 * ext4_ext_get_blocks() was interested in the last block (or
3498	 * a block beyond the last block) in the current extent.  If
3499	 * this turns out to be false, we can bail out from this
3500	 * function immediately.
3501	 */
3502	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3503	    ext4_ext_get_actual_len(last_ex))
3504		return 0;
3505	/*
3506	 * If the caller does appear to be planning to write at or
3507	 * beyond the end of the current extent, we then test to see
3508	 * if the current extent is the last extent in the file, by
3509	 * checking to make sure it was reached via the rightmost node
3510	 * at each level of the tree.
3511	 */
3512	for (i = depth-1; i >= 0; i--)
3513		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3514			return 0;
3515out:
3516	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3517	return ext4_mark_inode_dirty(handle, inode);
3518}
3519
3520/**
3521 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3522 *
3523 * Return 1 if there is a delalloc block in the range, otherwise 0.
3524 */
3525static int ext4_find_delalloc_range(struct inode *inode,
3526				    ext4_lblk_t lblk_start,
3527				    ext4_lblk_t lblk_end)
3528{
3529	struct extent_status es;
3530
3531	es.start = lblk_start;
3532	ext4_es_find_extent(inode, &es);
3533	if (es.len == 0)
3534		return 0; /* there is no delay extent in this tree */
3535	else if (es.start <= lblk_start && lblk_start < es.start + es.len)
3536		return 1;
3537	else if (lblk_start <= es.start && es.start <= lblk_end)
3538		return 1;
3539	else
3540		return 0;
3541}
3542
3543int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3544{
3545	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3546	ext4_lblk_t lblk_start, lblk_end;
3547	lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3548	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3549
3550	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3551}
3552
3553/**
3554 * Determines how many complete clusters (out of those specified by the 'map')
3555 * are under delalloc and were reserved quota for.
3556 * This function is called when we are writing out the blocks that were
3557 * originally written with their allocation delayed, but then the space was
3558 * allocated using fallocate() before the delayed allocation could be resolved.
3559 * The cases to look for are:
3560 * ('=' indicated delayed allocated blocks
3561 *  '-' indicates non-delayed allocated blocks)
3562 * (a) partial clusters towards beginning and/or end outside of allocated range
3563 *     are not delalloc'ed.
3564 *	Ex:
3565 *	|----c---=|====c====|====c====|===-c----|
3566 *	         |++++++ allocated ++++++|
3567 *	==> 4 complete clusters in above example
3568 *
3569 * (b) partial cluster (outside of allocated range) towards either end is
3570 *     marked for delayed allocation. In this case, we will exclude that
3571 *     cluster.
3572 *	Ex:
3573 *	|----====c========|========c========|
3574 *	     |++++++ allocated ++++++|
3575 *	==> 1 complete clusters in above example
3576 *
3577 *	Ex:
3578 *	|================c================|
3579 *            |++++++ allocated ++++++|
3580 *	==> 0 complete clusters in above example
3581 *
3582 * The ext4_da_update_reserve_space will be called only if we
3583 * determine here that there were some "entire" clusters that span
3584 * this 'allocated' range.
3585 * In the non-bigalloc case, this function will just end up returning num_blks
3586 * without ever calling ext4_find_delalloc_range.
3587 */
3588static unsigned int
3589get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3590			   unsigned int num_blks)
3591{
3592	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3593	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3594	ext4_lblk_t lblk_from, lblk_to, c_offset;
3595	unsigned int allocated_clusters = 0;
3596
3597	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3598	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3599
3600	/* max possible clusters for this allocation */
3601	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3602
3603	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3604
3605	/* Check towards left side */
3606	c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3607	if (c_offset) {
3608		lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3609		lblk_to = lblk_from + c_offset - 1;
3610
3611		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3612			allocated_clusters--;
3613	}
3614
3615	/* Now check towards right. */
3616	c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3617	if (allocated_clusters && c_offset) {
3618		lblk_from = lblk_start + num_blks;
3619		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3620
3621		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3622			allocated_clusters--;
3623	}
3624
3625	return allocated_clusters;
3626}
3627
3628static int
3629ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3630			struct ext4_map_blocks *map,
3631			struct ext4_ext_path *path, int flags,
3632			unsigned int allocated, ext4_fsblk_t newblock)
3633{
3634	int ret = 0;
3635	int err = 0;
3636	ext4_io_end_t *io = ext4_inode_aio(inode);
3637
3638	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3639		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
3640		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3641		  flags, allocated);
3642	ext4_ext_show_leaf(inode, path);
3643
3644	trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3645						    allocated, newblock);
3646
3647	/* get_block() before submit the IO, split the extent */
3648	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3649		ret = ext4_split_unwritten_extents(handle, inode, map,
3650						   path, flags);
3651		if (ret <= 0)
3652			goto out;
3653		/*
3654		 * Flag the inode(non aio case) or end_io struct (aio case)
3655		 * that this IO needs to conversion to written when IO is
3656		 * completed
3657		 */
3658		if (io)
3659			ext4_set_io_unwritten_flag(inode, io);
3660		else
3661			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3662		if (ext4_should_dioread_nolock(inode))
3663			map->m_flags |= EXT4_MAP_UNINIT;
3664		goto out;
3665	}
3666	/* IO end_io complete, convert the filled extent to written */
3667	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3668		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3669							path);
3670		if (ret >= 0) {
3671			ext4_update_inode_fsync_trans(handle, inode, 1);
3672			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3673						 path, map->m_len);
3674		} else
3675			err = ret;
3676		goto out2;
3677	}
3678	/* buffered IO case */
3679	/*
3680	 * repeat fallocate creation request
3681	 * we already have an unwritten extent
3682	 */
3683	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3684		goto map_out;
3685
3686	/* buffered READ or buffered write_begin() lookup */
3687	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3688		/*
3689		 * We have blocks reserved already.  We
3690		 * return allocated blocks so that delalloc
3691		 * won't do block reservation for us.  But
3692		 * the buffer head will be unmapped so that
3693		 * a read from the block returns 0s.
3694		 */
3695		map->m_flags |= EXT4_MAP_UNWRITTEN;
3696		goto out1;
3697	}
3698
3699	/* buffered write, writepage time, convert*/
3700	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3701	if (ret >= 0)
3702		ext4_update_inode_fsync_trans(handle, inode, 1);
3703out:
3704	if (ret <= 0) {
3705		err = ret;
3706		goto out2;
3707	} else
3708		allocated = ret;
3709	map->m_flags |= EXT4_MAP_NEW;
3710	/*
3711	 * if we allocated more blocks than requested
3712	 * we need to make sure we unmap the extra block
3713	 * allocated. The actual needed block will get
3714	 * unmapped later when we find the buffer_head marked
3715	 * new.
3716	 */
3717	if (allocated > map->m_len) {
3718		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3719					newblock + map->m_len,
3720					allocated - map->m_len);
3721		allocated = map->m_len;
3722	}
3723
3724	/*
3725	 * If we have done fallocate with the offset that is already
3726	 * delayed allocated, we would have block reservation
3727	 * and quota reservation done in the delayed write path.
3728	 * But fallocate would have already updated quota and block
3729	 * count for this offset. So cancel these reservation
3730	 */
3731	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3732		unsigned int reserved_clusters;
3733		reserved_clusters = get_reserved_cluster_alloc(inode,
3734				map->m_lblk, map->m_len);
3735		if (reserved_clusters)
3736			ext4_da_update_reserve_space(inode,
3737						     reserved_clusters,
3738						     0);
3739	}
3740
3741map_out:
3742	map->m_flags |= EXT4_MAP_MAPPED;
3743	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3744		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3745					 map->m_len);
3746		if (err < 0)
3747			goto out2;
3748	}
3749out1:
3750	if (allocated > map->m_len)
3751		allocated = map->m_len;
3752	ext4_ext_show_leaf(inode, path);
3753	map->m_pblk = newblock;
3754	map->m_len = allocated;
3755out2:
3756	if (path) {
3757		ext4_ext_drop_refs(path);
3758		kfree(path);
3759	}
3760	return err ? err : allocated;
3761}
3762
3763/*
3764 * get_implied_cluster_alloc - check to see if the requested
3765 * allocation (in the map structure) overlaps with a cluster already
3766 * allocated in an extent.
3767 *	@sb	The filesystem superblock structure
3768 *	@map	The requested lblk->pblk mapping
3769 *	@ex	The extent structure which might contain an implied
3770 *			cluster allocation
3771 *
3772 * This function is called by ext4_ext_map_blocks() after we failed to
3773 * find blocks that were already in the inode's extent tree.  Hence,
3774 * we know that the beginning of the requested region cannot overlap
3775 * the extent from the inode's extent tree.  There are three cases we
3776 * want to catch.  The first is this case:
3777 *
3778 *		 |--- cluster # N--|
3779 *    |--- extent ---|	|---- requested region ---|
3780 *			|==========|
3781 *
3782 * The second case that we need to test for is this one:
3783 *
3784 *   |--------- cluster # N ----------------|
3785 *	   |--- requested region --|   |------- extent ----|
3786 *	   |=======================|
3787 *
3788 * The third case is when the requested region lies between two extents
3789 * within the same cluster:
3790 *          |------------- cluster # N-------------|
3791 * |----- ex -----|                  |---- ex_right ----|
3792 *                  |------ requested region ------|
3793 *                  |================|
3794 *
3795 * In each of the above cases, we need to set the map->m_pblk and
3796 * map->m_len so it corresponds to the return the extent labelled as
3797 * "|====|" from cluster #N, since it is already in use for data in
3798 * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
3799 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3800 * as a new "allocated" block region.  Otherwise, we will return 0 and
3801 * ext4_ext_map_blocks() will then allocate one or more new clusters
3802 * by calling ext4_mb_new_blocks().
3803 */
3804static int get_implied_cluster_alloc(struct super_block *sb,
3805				     struct ext4_map_blocks *map,
3806				     struct ext4_extent *ex,
3807				     struct ext4_ext_path *path)
3808{
3809	struct ext4_sb_info *sbi = EXT4_SB(sb);
3810	ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3811	ext4_lblk_t ex_cluster_start, ex_cluster_end;
3812	ext4_lblk_t rr_cluster_start;
3813	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3814	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3815	unsigned short ee_len = ext4_ext_get_actual_len(ex);
3816
3817	/* The extent passed in that we are trying to match */
3818	ex_cluster_start = EXT4_B2C(sbi, ee_block);
3819	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3820
3821	/* The requested region passed into ext4_map_blocks() */
3822	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3823
3824	if ((rr_cluster_start == ex_cluster_end) ||
3825	    (rr_cluster_start == ex_cluster_start)) {
3826		if (rr_cluster_start == ex_cluster_end)
3827			ee_start += ee_len - 1;
3828		map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3829			c_offset;
3830		map->m_len = min(map->m_len,
3831				 (unsigned) sbi->s_cluster_ratio - c_offset);
3832		/*
3833		 * Check for and handle this case:
3834		 *
3835		 *   |--------- cluster # N-------------|
3836		 *		       |------- extent ----|
3837		 *	   |--- requested region ---|
3838		 *	   |===========|
3839		 */
3840
3841		if (map->m_lblk < ee_block)
3842			map->m_len = min(map->m_len, ee_block - map->m_lblk);
3843
3844		/*
3845		 * Check for the case where there is already another allocated
3846		 * block to the right of 'ex' but before the end of the cluster.
3847		 *
3848		 *          |------------- cluster # N-------------|
3849		 * |----- ex -----|                  |---- ex_right ----|
3850		 *                  |------ requested region ------|
3851		 *                  |================|
3852		 */
3853		if (map->m_lblk > ee_block) {
3854			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3855			map->m_len = min(map->m_len, next - map->m_lblk);
3856		}
3857
3858		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3859		return 1;
3860	}
3861
3862	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3863	return 0;
3864}
3865
3866
3867/*
3868 * Block allocation/map/preallocation routine for extents based files
3869 *
3870 *
3871 * Need to be called with
3872 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3873 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3874 *
3875 * return > 0, number of of blocks already mapped/allocated
3876 *          if create == 0 and these are pre-allocated blocks
3877 *          	buffer head is unmapped
3878 *          otherwise blocks are mapped
3879 *
3880 * return = 0, if plain look up failed (blocks have not been allocated)
3881 *          buffer head is unmapped
3882 *
3883 * return < 0, error case.
3884 */
3885int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3886			struct ext4_map_blocks *map, int flags)
3887{
3888	struct ext4_ext_path *path = NULL;
3889	struct ext4_extent newex, *ex, *ex2;
3890	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3891	ext4_fsblk_t newblock = 0;
3892	int free_on_err = 0, err = 0, depth;
3893	unsigned int allocated = 0, offset = 0;
3894	unsigned int allocated_clusters = 0;
3895	struct ext4_allocation_request ar;
3896	ext4_io_end_t *io = ext4_inode_aio(inode);
3897	ext4_lblk_t cluster_offset;
3898	int set_unwritten = 0;
3899
3900	ext_debug("blocks %u/%u requested for inode %lu\n",
3901		  map->m_lblk, map->m_len, inode->i_ino);
3902	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3903
3904	/* check in cache */
3905	if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3906		if (!newex.ee_start_lo && !newex.ee_start_hi) {
3907			if ((sbi->s_cluster_ratio > 1) &&
3908			    ext4_find_delalloc_cluster(inode, map->m_lblk))
3909				map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3910
3911			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3912				/*
3913				 * block isn't allocated yet and
3914				 * user doesn't want to allocate it
3915				 */
3916				goto out2;
3917			}
3918			/* we should allocate requested block */
3919		} else {
3920			/* block is already allocated */
3921			if (sbi->s_cluster_ratio > 1)
3922				map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3923			newblock = map->m_lblk
3924				   - le32_to_cpu(newex.ee_block)
3925				   + ext4_ext_pblock(&newex);
3926			/* number of remaining blocks in the extent */
3927			allocated = ext4_ext_get_actual_len(&newex) -
3928				(map->m_lblk - le32_to_cpu(newex.ee_block));
3929			goto out;
3930		}
3931	}
3932
3933	/* find extent for this block */
3934	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3935	if (IS_ERR(path)) {
3936		err = PTR_ERR(path);
3937		path = NULL;
3938		goto out2;
3939	}
3940
3941	depth = ext_depth(inode);
3942
3943	/*
3944	 * consistent leaf must not be empty;
3945	 * this situation is possible, though, _during_ tree modification;
3946	 * this is why assert can't be put in ext4_ext_find_extent()
3947	 */
3948	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3949		EXT4_ERROR_INODE(inode, "bad extent address "
3950				 "lblock: %lu, depth: %d pblock %lld",
3951				 (unsigned long) map->m_lblk, depth,
3952				 path[depth].p_block);
3953		err = -EIO;
3954		goto out2;
3955	}
3956
3957	ex = path[depth].p_ext;
3958	if (ex) {
3959		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3960		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3961		unsigned short ee_len;
3962
3963		/*
3964		 * Uninitialized extents are treated as holes, except that
3965		 * we split out initialized portions during a write.
3966		 */
3967		ee_len = ext4_ext_get_actual_len(ex);
3968
3969		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3970
3971		/* if found extent covers block, simply return it */
3972		if (in_range(map->m_lblk, ee_block, ee_len)) {
3973			newblock = map->m_lblk - ee_block + ee_start;
3974			/* number of remaining blocks in the extent */
3975			allocated = ee_len - (map->m_lblk - ee_block);
3976			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3977				  ee_block, ee_len, newblock);
3978
3979			/*
3980			 * Do not put uninitialized extent
3981			 * in the cache
3982			 */
3983			if (!ext4_ext_is_uninitialized(ex)) {
3984				ext4_ext_put_in_cache(inode, ee_block,
3985					ee_len, ee_start);
3986				goto out;
3987			}
3988			allocated = ext4_ext_handle_uninitialized_extents(
3989				handle, inode, map, path, flags,
3990				allocated, newblock);
3991			goto out3;
3992		}
3993	}
3994
3995	if ((sbi->s_cluster_ratio > 1) &&
3996	    ext4_find_delalloc_cluster(inode, map->m_lblk))
3997		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3998
3999	/*
4000	 * requested block isn't allocated yet;
4001	 * we couldn't try to create block if create flag is zero
4002	 */
4003	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4004		/*
4005		 * put just found gap into cache to speed up
4006		 * subsequent requests
4007		 */
4008		ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4009		goto out2;
4010	}
4011
4012	/*
4013	 * Okay, we need to do block allocation.
4014	 */
4015	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4016	newex.ee_block = cpu_to_le32(map->m_lblk);
4017	cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4018
4019	/*
4020	 * If we are doing bigalloc, check to see if the extent returned
4021	 * by ext4_ext_find_extent() implies a cluster we can use.
4022	 */
4023	if (cluster_offset && ex &&
4024	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4025		ar.len = allocated = map->m_len;
4026		newblock = map->m_pblk;
4027		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4028		goto got_allocated_blocks;
4029	}
4030
4031	/* find neighbour allocated blocks */
4032	ar.lleft = map->m_lblk;
4033	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4034	if (err)
4035		goto out2;
4036	ar.lright = map->m_lblk;
4037	ex2 = NULL;
4038	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4039	if (err)
4040		goto out2;
4041
4042	/* Check if the extent after searching to the right implies a
4043	 * cluster we can use. */
4044	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4045	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4046		ar.len = allocated = map->m_len;
4047		newblock = map->m_pblk;
4048		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4049		goto got_allocated_blocks;
4050	}
4051
4052	/*
4053	 * See if request is beyond maximum number of blocks we can have in
4054	 * a single extent. For an initialized extent this limit is
4055	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4056	 * EXT_UNINIT_MAX_LEN.
4057	 */
4058	if (map->m_len > EXT_INIT_MAX_LEN &&
4059	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4060		map->m_len = EXT_INIT_MAX_LEN;
4061	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4062		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4063		map->m_len = EXT_UNINIT_MAX_LEN;
4064
4065	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4066	newex.ee_len = cpu_to_le16(map->m_len);
4067	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4068	if (err)
4069		allocated = ext4_ext_get_actual_len(&newex);
4070	else
4071		allocated = map->m_len;
4072
4073	/* allocate new block */
4074	ar.inode = inode;
4075	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4076	ar.logical = map->m_lblk;
4077	/*
4078	 * We calculate the offset from the beginning of the cluster
4079	 * for the logical block number, since when we allocate a
4080	 * physical cluster, the physical block should start at the
4081	 * same offset from the beginning of the cluster.  This is
4082	 * needed so that future calls to get_implied_cluster_alloc()
4083	 * work correctly.
4084	 */
4085	offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4086	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4087	ar.goal -= offset;
4088	ar.logical -= offset;
4089	if (S_ISREG(inode->i_mode))
4090		ar.flags = EXT4_MB_HINT_DATA;
4091	else
4092		/* disable in-core preallocation for non-regular files */
4093		ar.flags = 0;
4094	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4095		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4096	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4097	if (!newblock)
4098		goto out2;
4099	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4100		  ar.goal, newblock, allocated);
4101	free_on_err = 1;
4102	allocated_clusters = ar.len;
4103	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4104	if (ar.len > allocated)
4105		ar.len = allocated;
4106
4107got_allocated_blocks:
4108	/* try to insert new extent into found leaf and return */
4109	ext4_ext_store_pblock(&newex, newblock + offset);
4110	newex.ee_len = cpu_to_le16(ar.len);
4111	/* Mark uninitialized */
4112	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4113		ext4_ext_mark_uninitialized(&newex);
4114		/*
4115		 * io_end structure was created for every IO write to an
4116		 * uninitialized extent. To avoid unnecessary conversion,
4117		 * here we flag the IO that really needs the conversion.
4118		 * For non asycn direct IO case, flag the inode state
4119		 * that we need to perform conversion when IO is done.
4120		 */
4121		if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4122			set_unwritten = 1;
4123		if (ext4_should_dioread_nolock(inode))
4124			map->m_flags |= EXT4_MAP_UNINIT;
4125	}
4126
4127	err = 0;
4128	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4129		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4130					 path, ar.len);
4131	if (!err)
4132		err = ext4_ext_insert_extent(handle, inode, path,
4133					     &newex, flags);
4134
4135	if (!err && set_unwritten) {
4136		if (io)
4137			ext4_set_io_unwritten_flag(inode, io);
4138		else
4139			ext4_set_inode_state(inode,
4140					     EXT4_STATE_DIO_UNWRITTEN);
4141	}
4142
4143	if (err && free_on_err) {
4144		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4145			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4146		/* free data blocks we just allocated */
4147		/* not a good idea to call discard here directly,
4148		 * but otherwise we'd need to call it every free() */
4149		ext4_discard_preallocations(inode);
4150		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4151				 ext4_ext_get_actual_len(&newex), fb_flags);
4152		goto out2;
4153	}
4154
4155	/* previous routine could use block we allocated */
4156	newblock = ext4_ext_pblock(&newex);
4157	allocated = ext4_ext_get_actual_len(&newex);
4158	if (allocated > map->m_len)
4159		allocated = map->m_len;
4160	map->m_flags |= EXT4_MAP_NEW;
4161
4162	/*
4163	 * Update reserved blocks/metadata blocks after successful
4164	 * block allocation which had been deferred till now.
4165	 */
4166	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4167		unsigned int reserved_clusters;
4168		/*
4169		 * Check how many clusters we had reserved this allocated range
4170		 */
4171		reserved_clusters = get_reserved_cluster_alloc(inode,
4172						map->m_lblk, allocated);
4173		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4174			if (reserved_clusters) {
4175				/*
4176				 * We have clusters reserved for this range.
4177				 * But since we are not doing actual allocation
4178				 * and are simply using blocks from previously
4179				 * allocated cluster, we should release the
4180				 * reservation and not claim quota.
4181				 */
4182				ext4_da_update_reserve_space(inode,
4183						reserved_clusters, 0);
4184			}
4185		} else {
4186			BUG_ON(allocated_clusters < reserved_clusters);
4187			/* We will claim quota for all newly allocated blocks.*/
4188			ext4_da_update_reserve_space(inode, allocated_clusters,
4189							1);
4190			if (reserved_clusters < allocated_clusters) {
4191				struct ext4_inode_info *ei = EXT4_I(inode);
4192				int reservation = allocated_clusters -
4193						  reserved_clusters;
4194				/*
4195				 * It seems we claimed few clusters outside of
4196				 * the range of this allocation. We should give
4197				 * it back to the reservation pool. This can
4198				 * happen in the following case:
4199				 *
4200				 * * Suppose s_cluster_ratio is 4 (i.e., each
4201				 *   cluster has 4 blocks. Thus, the clusters
4202				 *   are [0-3],[4-7],[8-11]...
4203				 * * First comes delayed allocation write for
4204				 *   logical blocks 10 & 11. Since there were no
4205				 *   previous delayed allocated blocks in the
4206				 *   range [8-11], we would reserve 1 cluster
4207				 *   for this write.
4208				 * * Next comes write for logical blocks 3 to 8.
4209				 *   In this case, we will reserve 2 clusters
4210				 *   (for [0-3] and [4-7]; and not for [8-11] as
4211				 *   that range has a delayed allocated blocks.
4212				 *   Thus total reserved clusters now becomes 3.
4213				 * * Now, during the delayed allocation writeout
4214				 *   time, we will first write blocks [3-8] and
4215				 *   allocate 3 clusters for writing these
4216				 *   blocks. Also, we would claim all these
4217				 *   three clusters above.
4218				 * * Now when we come here to writeout the
4219				 *   blocks [10-11], we would expect to claim
4220				 *   the reservation of 1 cluster we had made
4221				 *   (and we would claim it since there are no
4222				 *   more delayed allocated blocks in the range
4223				 *   [8-11]. But our reserved cluster count had
4224				 *   already gone to 0.
4225				 *
4226				 *   Thus, at the step 4 above when we determine
4227				 *   that there are still some unwritten delayed
4228				 *   allocated blocks outside of our current
4229				 *   block range, we should increment the
4230				 *   reserved clusters count so that when the
4231				 *   remaining blocks finally gets written, we
4232				 *   could claim them.
4233				 */
4234				dquot_reserve_block(inode,
4235						EXT4_C2B(sbi, reservation));
4236				spin_lock(&ei->i_block_reservation_lock);
4237				ei->i_reserved_data_blocks += reservation;
4238				spin_unlock(&ei->i_block_reservation_lock);
4239			}
4240		}
4241	}
4242
4243	/*
4244	 * Cache the extent and update transaction to commit on fdatasync only
4245	 * when it is _not_ an uninitialized extent.
4246	 */
4247	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4248		ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4249		ext4_update_inode_fsync_trans(handle, inode, 1);
4250	} else
4251		ext4_update_inode_fsync_trans(handle, inode, 0);
4252out:
4253	if (allocated > map->m_len)
4254		allocated = map->m_len;
4255	ext4_ext_show_leaf(inode, path);
4256	map->m_flags |= EXT4_MAP_MAPPED;
4257	map->m_pblk = newblock;
4258	map->m_len = allocated;
4259out2:
4260	if (path) {
4261		ext4_ext_drop_refs(path);
4262		kfree(path);
4263	}
4264
4265out3:
4266	trace_ext4_ext_map_blocks_exit(inode, map, err ? err : allocated);
4267
4268	return err ? err : allocated;
4269}
4270
4271void ext4_ext_truncate(struct inode *inode)
4272{
4273	struct address_space *mapping = inode->i_mapping;
4274	struct super_block *sb = inode->i_sb;
4275	ext4_lblk_t last_block;
4276	handle_t *handle;
4277	loff_t page_len;
4278	int err = 0;
4279
4280	/*
4281	 * finish any pending end_io work so we won't run the risk of
4282	 * converting any truncated blocks to initialized later
4283	 */
4284	ext4_flush_unwritten_io(inode);
4285
4286	/*
4287	 * probably first extent we're gonna free will be last in block
4288	 */
4289	err = ext4_writepage_trans_blocks(inode);
4290	handle = ext4_journal_start(inode, err);
4291	if (IS_ERR(handle))
4292		return;
4293
4294	if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4295		page_len = PAGE_CACHE_SIZE -
4296			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4297
4298		err = ext4_discard_partial_page_buffers(handle,
4299			mapping, inode->i_size, page_len, 0);
4300
4301		if (err)
4302			goto out_stop;
4303	}
4304
4305	if (ext4_orphan_add(handle, inode))
4306		goto out_stop;
4307
4308	down_write(&EXT4_I(inode)->i_data_sem);
4309	ext4_ext_invalidate_cache(inode);
4310
4311	ext4_discard_preallocations(inode);
4312
4313	/*
4314	 * TODO: optimization is possible here.
4315	 * Probably we need not scan at all,
4316	 * because page truncation is enough.
4317	 */
4318
4319	/* we have to know where to truncate from in crash case */
4320	EXT4_I(inode)->i_disksize = inode->i_size;
4321	ext4_mark_inode_dirty(handle, inode);
4322
4323	last_block = (inode->i_size + sb->s_blocksize - 1)
4324			>> EXT4_BLOCK_SIZE_BITS(sb);
4325	err = ext4_es_remove_extent(inode, last_block,
4326				    EXT_MAX_BLOCKS - last_block);
4327	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4328
4329	/* In a multi-transaction truncate, we only make the final
4330	 * transaction synchronous.
4331	 */
4332	if (IS_SYNC(inode))
4333		ext4_handle_sync(handle);
4334
4335	up_write(&EXT4_I(inode)->i_data_sem);
4336
4337out_stop:
4338	/*
4339	 * If this was a simple ftruncate() and the file will remain alive,
4340	 * then we need to clear up the orphan record which we created above.
4341	 * However, if this was a real unlink then we were called by
4342	 * ext4_delete_inode(), and we allow that function to clean up the
4343	 * orphan info for us.
4344	 */
4345	if (inode->i_nlink)
4346		ext4_orphan_del(handle, inode);
4347
4348	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4349	ext4_mark_inode_dirty(handle, inode);
4350	ext4_journal_stop(handle);
4351}
4352
4353static void ext4_falloc_update_inode(struct inode *inode,
4354				int mode, loff_t new_size, int update_ctime)
4355{
4356	struct timespec now;
4357
4358	if (update_ctime) {
4359		now = current_fs_time(inode->i_sb);
4360		if (!timespec_equal(&inode->i_ctime, &now))
4361			inode->i_ctime = now;
4362	}
4363	/*
4364	 * Update only when preallocation was requested beyond
4365	 * the file size.
4366	 */
4367	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4368		if (new_size > i_size_read(inode))
4369			i_size_write(inode, new_size);
4370		if (new_size > EXT4_I(inode)->i_disksize)
4371			ext4_update_i_disksize(inode, new_size);
4372	} else {
4373		/*
4374		 * Mark that we allocate beyond EOF so the subsequent truncate
4375		 * can proceed even if the new size is the same as i_size.
4376		 */
4377		if (new_size > i_size_read(inode))
4378			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4379	}
4380
4381}
4382
4383/*
4384 * preallocate space for a file. This implements ext4's fallocate file
4385 * operation, which gets called from sys_fallocate system call.
4386 * For block-mapped files, posix_fallocate should fall back to the method
4387 * of writing zeroes to the required new blocks (the same behavior which is
4388 * expected for file systems which do not support fallocate() system call).
4389 */
4390long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4391{
4392	struct inode *inode = file->f_path.dentry->d_inode;
4393	handle_t *handle;
4394	loff_t new_size;
4395	unsigned int max_blocks;
4396	int ret = 0;
4397	int ret2 = 0;
4398	int retries = 0;
4399	int flags;
4400	struct ext4_map_blocks map;
4401	unsigned int credits, blkbits = inode->i_blkbits;
4402
4403	/* Return error if mode is not supported */
4404	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4405		return -EOPNOTSUPP;
4406
4407	if (mode & FALLOC_FL_PUNCH_HOLE)
4408		return ext4_punch_hole(file, offset, len);
4409
4410	ret = ext4_convert_inline_data(inode);
4411	if (ret)
4412		return ret;
4413
4414	/*
4415	 * currently supporting (pre)allocate mode for extent-based
4416	 * files _only_
4417	 */
4418	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4419		return -EOPNOTSUPP;
4420
4421	trace_ext4_fallocate_enter(inode, offset, len, mode);
4422	map.m_lblk = offset >> blkbits;
4423	/*
4424	 * We can't just convert len to max_blocks because
4425	 * If blocksize = 4096 offset = 3072 and len = 2048
4426	 */
4427	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4428		- map.m_lblk;
4429	/*
4430	 * credits to insert 1 extent into extent tree
4431	 */
4432	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4433	mutex_lock(&inode->i_mutex);
4434	ret = inode_newsize_ok(inode, (len + offset));
4435	if (ret) {
4436		mutex_unlock(&inode->i_mutex);
4437		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4438		return ret;
4439	}
4440	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4441	if (mode & FALLOC_FL_KEEP_SIZE)
4442		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4443	/*
4444	 * Don't normalize the request if it can fit in one extent so
4445	 * that it doesn't get unnecessarily split into multiple
4446	 * extents.
4447	 */
4448	if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4449		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4450
4451	/* Prevent race condition between unwritten */
4452	ext4_flush_unwritten_io(inode);
4453retry:
4454	while (ret >= 0 && ret < max_blocks) {
4455		map.m_lblk = map.m_lblk + ret;
4456		map.m_len = max_blocks = max_blocks - ret;
4457		handle = ext4_journal_start(inode, credits);
4458		if (IS_ERR(handle)) {
4459			ret = PTR_ERR(handle);
4460			break;
4461		}
4462		ret = ext4_map_blocks(handle, inode, &map, flags);
4463		if (ret <= 0) {
4464#ifdef EXT4FS_DEBUG
4465			ext4_warning(inode->i_sb,
4466				     "inode #%lu: block %u: len %u: "
4467				     "ext4_ext_map_blocks returned %d",
4468				     inode->i_ino, map.m_lblk,
4469				     map.m_len, ret);
4470#endif
4471			ext4_mark_inode_dirty(handle, inode);
4472			ret2 = ext4_journal_stop(handle);
4473			break;
4474		}
4475		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4476						blkbits) >> blkbits))
4477			new_size = offset + len;
4478		else
4479			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4480
4481		ext4_falloc_update_inode(inode, mode, new_size,
4482					 (map.m_flags & EXT4_MAP_NEW));
4483		ext4_mark_inode_dirty(handle, inode);
4484		if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4485			ext4_handle_sync(handle);
4486		ret2 = ext4_journal_stop(handle);
4487		if (ret2)
4488			break;
4489	}
4490	if (ret == -ENOSPC &&
4491			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4492		ret = 0;
4493		goto retry;
4494	}
4495	mutex_unlock(&inode->i_mutex);
4496	trace_ext4_fallocate_exit(inode, offset, max_blocks,
4497				ret > 0 ? ret2 : ret);
4498	return ret > 0 ? ret2 : ret;
4499}
4500
4501/*
4502 * This function convert a range of blocks to written extents
4503 * The caller of this function will pass the start offset and the size.
4504 * all unwritten extents within this range will be converted to
4505 * written extents.
4506 *
4507 * This function is called from the direct IO end io call back
4508 * function, to convert the fallocated extents after IO is completed.
4509 * Returns 0 on success.
4510 */
4511int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4512				    ssize_t len)
4513{
4514	handle_t *handle;
4515	unsigned int max_blocks;
4516	int ret = 0;
4517	int ret2 = 0;
4518	struct ext4_map_blocks map;
4519	unsigned int credits, blkbits = inode->i_blkbits;
4520
4521	map.m_lblk = offset >> blkbits;
4522	/*
4523	 * We can't just convert len to max_blocks because
4524	 * If blocksize = 4096 offset = 3072 and len = 2048
4525	 */
4526	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4527		      map.m_lblk);
4528	/*
4529	 * credits to insert 1 extent into extent tree
4530	 */
4531	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4532	while (ret >= 0 && ret < max_blocks) {
4533		map.m_lblk += ret;
4534		map.m_len = (max_blocks -= ret);
4535		handle = ext4_journal_start(inode, credits);
4536		if (IS_ERR(handle)) {
4537			ret = PTR_ERR(handle);
4538			break;
4539		}
4540		ret = ext4_map_blocks(handle, inode, &map,
4541				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4542		if (ret <= 0)
4543			ext4_warning(inode->i_sb,
4544				     "inode #%lu: block %u: len %u: "
4545				     "ext4_ext_map_blocks returned %d",
4546				     inode->i_ino, map.m_lblk,
4547				     map.m_len, ret);
4548		ext4_mark_inode_dirty(handle, inode);
4549		ret2 = ext4_journal_stop(handle);
4550		if (ret <= 0 || ret2 )
4551			break;
4552	}
4553	return ret > 0 ? ret2 : ret;
4554}
4555
4556/*
4557 * If newex is not existing extent (newex->ec_start equals zero) find
4558 * delayed extent at start of newex and update newex accordingly and
4559 * return start of the next delayed extent.
4560 *
4561 * If newex is existing extent (newex->ec_start is not equal zero)
4562 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4563 * extent found. Leave newex unmodified.
4564 */
4565static int ext4_find_delayed_extent(struct inode *inode,
4566				    struct ext4_ext_cache *newex)
4567{
4568	struct extent_status es;
4569	ext4_lblk_t next_del;
4570
4571	es.start = newex->ec_block;
4572	next_del = ext4_es_find_extent(inode, &es);
4573
4574	if (newex->ec_start == 0) {
4575		/*
4576		 * No extent in extent-tree contains block @newex->ec_start,
4577		 * then the block may stay in 1)a hole or 2)delayed-extent.
4578		 */
4579		if (es.len == 0)
4580			/* A hole found. */
4581			return 0;
4582
4583		if (es.start > newex->ec_block) {
4584			/* A hole found. */
4585			newex->ec_len = min(es.start - newex->ec_block,
4586					    newex->ec_len);
4587			return 0;
4588		}
4589
4590		newex->ec_len = es.start + es.len - newex->ec_block;
4591	}
4592
4593	return next_del;
4594}
4595/* fiemap flags we can handle specified here */
4596#define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4597
4598static int ext4_xattr_fiemap(struct inode *inode,
4599				struct fiemap_extent_info *fieinfo)
4600{
4601	__u64 physical = 0;
4602	__u64 length;
4603	__u32 flags = FIEMAP_EXTENT_LAST;
4604	int blockbits = inode->i_sb->s_blocksize_bits;
4605	int error = 0;
4606
4607	/* in-inode? */
4608	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4609		struct ext4_iloc iloc;
4610		int offset;	/* offset of xattr in inode */
4611
4612		error = ext4_get_inode_loc(inode, &iloc);
4613		if (error)
4614			return error;
4615		physical = iloc.bh->b_blocknr << blockbits;
4616		offset = EXT4_GOOD_OLD_INODE_SIZE +
4617				EXT4_I(inode)->i_extra_isize;
4618		physical += offset;
4619		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4620		flags |= FIEMAP_EXTENT_DATA_INLINE;
4621		brelse(iloc.bh);
4622	} else { /* external block */
4623		physical = EXT4_I(inode)->i_file_acl << blockbits;
4624		length = inode->i_sb->s_blocksize;
4625	}
4626
4627	if (physical)
4628		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4629						length, flags);
4630	return (error < 0 ? error : 0);
4631}
4632
4633/*
4634 * ext4_ext_punch_hole
4635 *
4636 * Punches a hole of "length" bytes in a file starting
4637 * at byte "offset"
4638 *
4639 * @inode:  The inode of the file to punch a hole in
4640 * @offset: The starting byte offset of the hole
4641 * @length: The length of the hole
4642 *
4643 * Returns the number of blocks removed or negative on err
4644 */
4645int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4646{
4647	struct inode *inode = file->f_path.dentry->d_inode;
4648	struct super_block *sb = inode->i_sb;
4649	ext4_lblk_t first_block, stop_block;
4650	struct address_space *mapping = inode->i_mapping;
4651	handle_t *handle;
4652	loff_t first_page, last_page, page_len;
4653	loff_t first_page_offset, last_page_offset;
4654	int credits, err = 0;
4655
4656	/*
4657	 * Write out all dirty pages to avoid race conditions
4658	 * Then release them.
4659	 */
4660	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4661		err = filemap_write_and_wait_range(mapping,
4662			offset, offset + length - 1);
4663
4664		if (err)
4665			return err;
4666	}
4667
4668	mutex_lock(&inode->i_mutex);
4669	/* It's not possible punch hole on append only file */
4670	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4671		err = -EPERM;
4672		goto out_mutex;
4673	}
4674	if (IS_SWAPFILE(inode)) {
4675		err = -ETXTBSY;
4676		goto out_mutex;
4677	}
4678
4679	/* No need to punch hole beyond i_size */
4680	if (offset >= inode->i_size)
4681		goto out_mutex;
4682
4683	/*
4684	 * If the hole extends beyond i_size, set the hole
4685	 * to end after the page that contains i_size
4686	 */
4687	if (offset + length > inode->i_size) {
4688		length = inode->i_size +
4689		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4690		   offset;
4691	}
4692
4693	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4694	last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4695
4696	first_page_offset = first_page << PAGE_CACHE_SHIFT;
4697	last_page_offset = last_page << PAGE_CACHE_SHIFT;
4698
4699	/* Now release the pages */
4700	if (last_page_offset > first_page_offset) {
4701		truncate_pagecache_range(inode, first_page_offset,
4702					 last_page_offset - 1);
4703	}
4704
4705	/* Wait all existing dio workers, newcomers will block on i_mutex */
4706	ext4_inode_block_unlocked_dio(inode);
4707	err = ext4_flush_unwritten_io(inode);
4708	if (err)
4709		goto out_dio;
4710	inode_dio_wait(inode);
4711
4712	credits = ext4_writepage_trans_blocks(inode);
4713	handle = ext4_journal_start(inode, credits);
4714	if (IS_ERR(handle)) {
4715		err = PTR_ERR(handle);
4716		goto out_dio;
4717	}
4718
4719
4720	/*
4721	 * Now we need to zero out the non-page-aligned data in the
4722	 * pages at the start and tail of the hole, and unmap the buffer
4723	 * heads for the block aligned regions of the page that were
4724	 * completely zeroed.
4725	 */
4726	if (first_page > last_page) {
4727		/*
4728		 * If the file space being truncated is contained within a page
4729		 * just zero out and unmap the middle of that page
4730		 */
4731		err = ext4_discard_partial_page_buffers(handle,
4732			mapping, offset, length, 0);
4733
4734		if (err)
4735			goto out;
4736	} else {
4737		/*
4738		 * zero out and unmap the partial page that contains
4739		 * the start of the hole
4740		 */
4741		page_len  = first_page_offset - offset;
4742		if (page_len > 0) {
4743			err = ext4_discard_partial_page_buffers(handle, mapping,
4744						   offset, page_len, 0);
4745			if (err)
4746				goto out;
4747		}
4748
4749		/*
4750		 * zero out and unmap the partial page that contains
4751		 * the end of the hole
4752		 */
4753		page_len = offset + length - last_page_offset;
4754		if (page_len > 0) {
4755			err = ext4_discard_partial_page_buffers(handle, mapping,
4756					last_page_offset, page_len, 0);
4757			if (err)
4758				goto out;
4759		}
4760	}
4761
4762	/*
4763	 * If i_size is contained in the last page, we need to
4764	 * unmap and zero the partial page after i_size
4765	 */
4766	if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4767	   inode->i_size % PAGE_CACHE_SIZE != 0) {
4768
4769		page_len = PAGE_CACHE_SIZE -
4770			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4771
4772		if (page_len > 0) {
4773			err = ext4_discard_partial_page_buffers(handle,
4774			  mapping, inode->i_size, page_len, 0);
4775
4776			if (err)
4777				goto out;
4778		}
4779	}
4780
4781	first_block = (offset + sb->s_blocksize - 1) >>
4782		EXT4_BLOCK_SIZE_BITS(sb);
4783	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4784
4785	/* If there are no blocks to remove, return now */
4786	if (first_block >= stop_block)
4787		goto out;
4788
4789	down_write(&EXT4_I(inode)->i_data_sem);
4790	ext4_ext_invalidate_cache(inode);
4791	ext4_discard_preallocations(inode);
4792
4793	err = ext4_es_remove_extent(inode, first_block,
4794				    stop_block - first_block);
4795	err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4796
4797	ext4_ext_invalidate_cache(inode);
4798	ext4_discard_preallocations(inode);
4799
4800	if (IS_SYNC(inode))
4801		ext4_handle_sync(handle);
4802
4803	up_write(&EXT4_I(inode)->i_data_sem);
4804
4805out:
4806	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4807	ext4_mark_inode_dirty(handle, inode);
4808	ext4_journal_stop(handle);
4809out_dio:
4810	ext4_inode_resume_unlocked_dio(inode);
4811out_mutex:
4812	mutex_unlock(&inode->i_mutex);
4813	return err;
4814}
4815
4816int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4817		__u64 start, __u64 len)
4818{
4819	ext4_lblk_t start_blk;
4820	int error = 0;
4821
4822	if (ext4_has_inline_data(inode)) {
4823		int has_inline = 1;
4824
4825		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4826
4827		if (has_inline)
4828			return error;
4829	}
4830
4831	/* fallback to generic here if not in extents fmt */
4832	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4833		return generic_block_fiemap(inode, fieinfo, start, len,
4834			ext4_get_block);
4835
4836	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4837		return -EBADR;
4838
4839	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4840		error = ext4_xattr_fiemap(inode, fieinfo);
4841	} else {
4842		ext4_lblk_t len_blks;
4843		__u64 last_blk;
4844
4845		start_blk = start >> inode->i_sb->s_blocksize_bits;
4846		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4847		if (last_blk >= EXT_MAX_BLOCKS)
4848			last_blk = EXT_MAX_BLOCKS-1;
4849		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4850
4851		/*
4852		 * Walk the extent tree gathering extent information
4853		 * and pushing extents back to the user.
4854		 */
4855		error = ext4_fill_fiemap_extents(inode, start_blk,
4856						 len_blks, fieinfo);
4857	}
4858
4859	return error;
4860}
4861