extents.c revision c6a0371cbefade85376bbc326d18451860632dce
1/*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 *   Copyright (c) 2005, Bull S.A.
7 *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21 */
22
23/*
24 * Extents support for EXT4
25 *
26 * TODO:
27 *   - ext4*_error() should be used in some situations
28 *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 *   - smart tree reduction
30 */
31
32#include <linux/module.h>
33#include <linux/fs.h>
34#include <linux/time.h>
35#include <linux/jbd2.h>
36#include <linux/highuid.h>
37#include <linux/pagemap.h>
38#include <linux/quotaops.h>
39#include <linux/string.h>
40#include <linux/slab.h>
41#include <linux/falloc.h>
42#include <asm/uaccess.h>
43#include <linux/fiemap.h>
44#include "ext4_jbd2.h"
45#include "ext4_extents.h"
46
47#include <trace/events/ext4.h>
48
49static int ext4_split_extent(handle_t *handle,
50				struct inode *inode,
51				struct ext4_ext_path *path,
52				struct ext4_map_blocks *map,
53				int split_flag,
54				int flags);
55
56static int ext4_ext_truncate_extend_restart(handle_t *handle,
57					    struct inode *inode,
58					    int needed)
59{
60	int err;
61
62	if (!ext4_handle_valid(handle))
63		return 0;
64	if (handle->h_buffer_credits > needed)
65		return 0;
66	err = ext4_journal_extend(handle, needed);
67	if (err <= 0)
68		return err;
69	err = ext4_truncate_restart_trans(handle, inode, needed);
70	if (err == 0)
71		err = -EAGAIN;
72
73	return err;
74}
75
76/*
77 * could return:
78 *  - EROFS
79 *  - ENOMEM
80 */
81static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
82				struct ext4_ext_path *path)
83{
84	if (path->p_bh) {
85		/* path points to block */
86		return ext4_journal_get_write_access(handle, path->p_bh);
87	}
88	/* path points to leaf/index in inode body */
89	/* we use in-core data, no need to protect them */
90	return 0;
91}
92
93/*
94 * could return:
95 *  - EROFS
96 *  - ENOMEM
97 *  - EIO
98 */
99static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
100				struct ext4_ext_path *path)
101{
102	int err;
103	if (path->p_bh) {
104		/* path points to block */
105		err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
106	} else {
107		/* path points to leaf/index in inode body */
108		err = ext4_mark_inode_dirty(handle, inode);
109	}
110	return err;
111}
112
113static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
114			      struct ext4_ext_path *path,
115			      ext4_lblk_t block)
116{
117	int depth;
118
119	if (path) {
120		struct ext4_extent *ex;
121		depth = path->p_depth;
122
123		/*
124		 * Try to predict block placement assuming that we are
125		 * filling in a file which will eventually be
126		 * non-sparse --- i.e., in the case of libbfd writing
127		 * an ELF object sections out-of-order but in a way
128		 * the eventually results in a contiguous object or
129		 * executable file, or some database extending a table
130		 * space file.  However, this is actually somewhat
131		 * non-ideal if we are writing a sparse file such as
132		 * qemu or KVM writing a raw image file that is going
133		 * to stay fairly sparse, since it will end up
134		 * fragmenting the file system's free space.  Maybe we
135		 * should have some hueristics or some way to allow
136		 * userspace to pass a hint to file system,
137		 * especially if the latter case turns out to be
138		 * common.
139		 */
140		ex = path[depth].p_ext;
141		if (ex) {
142			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
143			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
144
145			if (block > ext_block)
146				return ext_pblk + (block - ext_block);
147			else
148				return ext_pblk - (ext_block - block);
149		}
150
151		/* it looks like index is empty;
152		 * try to find starting block from index itself */
153		if (path[depth].p_bh)
154			return path[depth].p_bh->b_blocknr;
155	}
156
157	/* OK. use inode's group */
158	return ext4_inode_to_goal_block(inode);
159}
160
161/*
162 * Allocation for a meta data block
163 */
164static ext4_fsblk_t
165ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
166			struct ext4_ext_path *path,
167			struct ext4_extent *ex, int *err, unsigned int flags)
168{
169	ext4_fsblk_t goal, newblock;
170
171	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
172	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
173					NULL, err);
174	return newblock;
175}
176
177static inline int ext4_ext_space_block(struct inode *inode, int check)
178{
179	int size;
180
181	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
182			/ sizeof(struct ext4_extent);
183	if (!check) {
184#ifdef AGGRESSIVE_TEST
185		if (size > 6)
186			size = 6;
187#endif
188	}
189	return size;
190}
191
192static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
193{
194	int size;
195
196	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
197			/ sizeof(struct ext4_extent_idx);
198	if (!check) {
199#ifdef AGGRESSIVE_TEST
200		if (size > 5)
201			size = 5;
202#endif
203	}
204	return size;
205}
206
207static inline int ext4_ext_space_root(struct inode *inode, int check)
208{
209	int size;
210
211	size = sizeof(EXT4_I(inode)->i_data);
212	size -= sizeof(struct ext4_extent_header);
213	size /= sizeof(struct ext4_extent);
214	if (!check) {
215#ifdef AGGRESSIVE_TEST
216		if (size > 3)
217			size = 3;
218#endif
219	}
220	return size;
221}
222
223static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
224{
225	int size;
226
227	size = sizeof(EXT4_I(inode)->i_data);
228	size -= sizeof(struct ext4_extent_header);
229	size /= sizeof(struct ext4_extent_idx);
230	if (!check) {
231#ifdef AGGRESSIVE_TEST
232		if (size > 4)
233			size = 4;
234#endif
235	}
236	return size;
237}
238
239/*
240 * Calculate the number of metadata blocks needed
241 * to allocate @blocks
242 * Worse case is one block per extent
243 */
244int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
245{
246	struct ext4_inode_info *ei = EXT4_I(inode);
247	int idxs, num = 0;
248
249	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
250		/ sizeof(struct ext4_extent_idx));
251
252	/*
253	 * If the new delayed allocation block is contiguous with the
254	 * previous da block, it can share index blocks with the
255	 * previous block, so we only need to allocate a new index
256	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
257	 * an additional index block, and at ldxs**3 blocks, yet
258	 * another index blocks.
259	 */
260	if (ei->i_da_metadata_calc_len &&
261	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
262		if ((ei->i_da_metadata_calc_len % idxs) == 0)
263			num++;
264		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
265			num++;
266		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
267			num++;
268			ei->i_da_metadata_calc_len = 0;
269		} else
270			ei->i_da_metadata_calc_len++;
271		ei->i_da_metadata_calc_last_lblock++;
272		return num;
273	}
274
275	/*
276	 * In the worst case we need a new set of index blocks at
277	 * every level of the inode's extent tree.
278	 */
279	ei->i_da_metadata_calc_len = 1;
280	ei->i_da_metadata_calc_last_lblock = lblock;
281	return ext_depth(inode) + 1;
282}
283
284static int
285ext4_ext_max_entries(struct inode *inode, int depth)
286{
287	int max;
288
289	if (depth == ext_depth(inode)) {
290		if (depth == 0)
291			max = ext4_ext_space_root(inode, 1);
292		else
293			max = ext4_ext_space_root_idx(inode, 1);
294	} else {
295		if (depth == 0)
296			max = ext4_ext_space_block(inode, 1);
297		else
298			max = ext4_ext_space_block_idx(inode, 1);
299	}
300
301	return max;
302}
303
304static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
305{
306	ext4_fsblk_t block = ext4_ext_pblock(ext);
307	int len = ext4_ext_get_actual_len(ext);
308
309	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
310}
311
312static int ext4_valid_extent_idx(struct inode *inode,
313				struct ext4_extent_idx *ext_idx)
314{
315	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
316
317	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
318}
319
320static int ext4_valid_extent_entries(struct inode *inode,
321				struct ext4_extent_header *eh,
322				int depth)
323{
324	struct ext4_extent *ext;
325	struct ext4_extent_idx *ext_idx;
326	unsigned short entries;
327	if (eh->eh_entries == 0)
328		return 1;
329
330	entries = le16_to_cpu(eh->eh_entries);
331
332	if (depth == 0) {
333		/* leaf entries */
334		ext = EXT_FIRST_EXTENT(eh);
335		while (entries) {
336			if (!ext4_valid_extent(inode, ext))
337				return 0;
338			ext++;
339			entries--;
340		}
341	} else {
342		ext_idx = EXT_FIRST_INDEX(eh);
343		while (entries) {
344			if (!ext4_valid_extent_idx(inode, ext_idx))
345				return 0;
346			ext_idx++;
347			entries--;
348		}
349	}
350	return 1;
351}
352
353static int __ext4_ext_check(const char *function, unsigned int line,
354			    struct inode *inode, struct ext4_extent_header *eh,
355			    int depth)
356{
357	const char *error_msg;
358	int max = 0;
359
360	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
361		error_msg = "invalid magic";
362		goto corrupted;
363	}
364	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
365		error_msg = "unexpected eh_depth";
366		goto corrupted;
367	}
368	if (unlikely(eh->eh_max == 0)) {
369		error_msg = "invalid eh_max";
370		goto corrupted;
371	}
372	max = ext4_ext_max_entries(inode, depth);
373	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
374		error_msg = "too large eh_max";
375		goto corrupted;
376	}
377	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
378		error_msg = "invalid eh_entries";
379		goto corrupted;
380	}
381	if (!ext4_valid_extent_entries(inode, eh, depth)) {
382		error_msg = "invalid extent entries";
383		goto corrupted;
384	}
385	return 0;
386
387corrupted:
388	ext4_error_inode(inode, function, line, 0,
389			"bad header/extent: %s - magic %x, "
390			"entries %u, max %u(%u), depth %u(%u)",
391			error_msg, le16_to_cpu(eh->eh_magic),
392			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
393			max, le16_to_cpu(eh->eh_depth), depth);
394
395	return -EIO;
396}
397
398#define ext4_ext_check(inode, eh, depth)	\
399	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
400
401int ext4_ext_check_inode(struct inode *inode)
402{
403	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
404}
405
406#ifdef EXT_DEBUG
407static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
408{
409	int k, l = path->p_depth;
410
411	ext_debug("path:");
412	for (k = 0; k <= l; k++, path++) {
413		if (path->p_idx) {
414		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
415			    ext4_idx_pblock(path->p_idx));
416		} else if (path->p_ext) {
417			ext_debug("  %d:[%d]%d:%llu ",
418				  le32_to_cpu(path->p_ext->ee_block),
419				  ext4_ext_is_uninitialized(path->p_ext),
420				  ext4_ext_get_actual_len(path->p_ext),
421				  ext4_ext_pblock(path->p_ext));
422		} else
423			ext_debug("  []");
424	}
425	ext_debug("\n");
426}
427
428static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
429{
430	int depth = ext_depth(inode);
431	struct ext4_extent_header *eh;
432	struct ext4_extent *ex;
433	int i;
434
435	if (!path)
436		return;
437
438	eh = path[depth].p_hdr;
439	ex = EXT_FIRST_EXTENT(eh);
440
441	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
442
443	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
444		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
445			  ext4_ext_is_uninitialized(ex),
446			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
447	}
448	ext_debug("\n");
449}
450
451static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
452			ext4_fsblk_t newblock, int level)
453{
454	int depth = ext_depth(inode);
455	struct ext4_extent *ex;
456
457	if (depth != level) {
458		struct ext4_extent_idx *idx;
459		idx = path[level].p_idx;
460		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
461			ext_debug("%d: move %d:%llu in new index %llu\n", level,
462					le32_to_cpu(idx->ei_block),
463					ext4_idx_pblock(idx),
464					newblock);
465			idx++;
466		}
467
468		return;
469	}
470
471	ex = path[depth].p_ext;
472	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
473		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
474				le32_to_cpu(ex->ee_block),
475				ext4_ext_pblock(ex),
476				ext4_ext_is_uninitialized(ex),
477				ext4_ext_get_actual_len(ex),
478				newblock);
479		ex++;
480	}
481}
482
483#else
484#define ext4_ext_show_path(inode, path)
485#define ext4_ext_show_leaf(inode, path)
486#define ext4_ext_show_move(inode, path, newblock, level)
487#endif
488
489void ext4_ext_drop_refs(struct ext4_ext_path *path)
490{
491	int depth = path->p_depth;
492	int i;
493
494	for (i = 0; i <= depth; i++, path++)
495		if (path->p_bh) {
496			brelse(path->p_bh);
497			path->p_bh = NULL;
498		}
499}
500
501/*
502 * ext4_ext_binsearch_idx:
503 * binary search for the closest index of the given block
504 * the header must be checked before calling this
505 */
506static void
507ext4_ext_binsearch_idx(struct inode *inode,
508			struct ext4_ext_path *path, ext4_lblk_t block)
509{
510	struct ext4_extent_header *eh = path->p_hdr;
511	struct ext4_extent_idx *r, *l, *m;
512
513
514	ext_debug("binsearch for %u(idx):  ", block);
515
516	l = EXT_FIRST_INDEX(eh) + 1;
517	r = EXT_LAST_INDEX(eh);
518	while (l <= r) {
519		m = l + (r - l) / 2;
520		if (block < le32_to_cpu(m->ei_block))
521			r = m - 1;
522		else
523			l = m + 1;
524		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
525				m, le32_to_cpu(m->ei_block),
526				r, le32_to_cpu(r->ei_block));
527	}
528
529	path->p_idx = l - 1;
530	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
531		  ext4_idx_pblock(path->p_idx));
532
533#ifdef CHECK_BINSEARCH
534	{
535		struct ext4_extent_idx *chix, *ix;
536		int k;
537
538		chix = ix = EXT_FIRST_INDEX(eh);
539		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
540		  if (k != 0 &&
541		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
542				printk(KERN_DEBUG "k=%d, ix=0x%p, "
543				       "first=0x%p\n", k,
544				       ix, EXT_FIRST_INDEX(eh));
545				printk(KERN_DEBUG "%u <= %u\n",
546				       le32_to_cpu(ix->ei_block),
547				       le32_to_cpu(ix[-1].ei_block));
548			}
549			BUG_ON(k && le32_to_cpu(ix->ei_block)
550					   <= le32_to_cpu(ix[-1].ei_block));
551			if (block < le32_to_cpu(ix->ei_block))
552				break;
553			chix = ix;
554		}
555		BUG_ON(chix != path->p_idx);
556	}
557#endif
558
559}
560
561/*
562 * ext4_ext_binsearch:
563 * binary search for closest extent of the given block
564 * the header must be checked before calling this
565 */
566static void
567ext4_ext_binsearch(struct inode *inode,
568		struct ext4_ext_path *path, ext4_lblk_t block)
569{
570	struct ext4_extent_header *eh = path->p_hdr;
571	struct ext4_extent *r, *l, *m;
572
573	if (eh->eh_entries == 0) {
574		/*
575		 * this leaf is empty:
576		 * we get such a leaf in split/add case
577		 */
578		return;
579	}
580
581	ext_debug("binsearch for %u:  ", block);
582
583	l = EXT_FIRST_EXTENT(eh) + 1;
584	r = EXT_LAST_EXTENT(eh);
585
586	while (l <= r) {
587		m = l + (r - l) / 2;
588		if (block < le32_to_cpu(m->ee_block))
589			r = m - 1;
590		else
591			l = m + 1;
592		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
593				m, le32_to_cpu(m->ee_block),
594				r, le32_to_cpu(r->ee_block));
595	}
596
597	path->p_ext = l - 1;
598	ext_debug("  -> %d:%llu:[%d]%d ",
599			le32_to_cpu(path->p_ext->ee_block),
600			ext4_ext_pblock(path->p_ext),
601			ext4_ext_is_uninitialized(path->p_ext),
602			ext4_ext_get_actual_len(path->p_ext));
603
604#ifdef CHECK_BINSEARCH
605	{
606		struct ext4_extent *chex, *ex;
607		int k;
608
609		chex = ex = EXT_FIRST_EXTENT(eh);
610		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
611			BUG_ON(k && le32_to_cpu(ex->ee_block)
612					  <= le32_to_cpu(ex[-1].ee_block));
613			if (block < le32_to_cpu(ex->ee_block))
614				break;
615			chex = ex;
616		}
617		BUG_ON(chex != path->p_ext);
618	}
619#endif
620
621}
622
623int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
624{
625	struct ext4_extent_header *eh;
626
627	eh = ext_inode_hdr(inode);
628	eh->eh_depth = 0;
629	eh->eh_entries = 0;
630	eh->eh_magic = EXT4_EXT_MAGIC;
631	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
632	ext4_mark_inode_dirty(handle, inode);
633	ext4_ext_invalidate_cache(inode);
634	return 0;
635}
636
637struct ext4_ext_path *
638ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
639					struct ext4_ext_path *path)
640{
641	struct ext4_extent_header *eh;
642	struct buffer_head *bh;
643	short int depth, i, ppos = 0, alloc = 0;
644
645	eh = ext_inode_hdr(inode);
646	depth = ext_depth(inode);
647
648	/* account possible depth increase */
649	if (!path) {
650		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
651				GFP_NOFS);
652		if (!path)
653			return ERR_PTR(-ENOMEM);
654		alloc = 1;
655	}
656	path[0].p_hdr = eh;
657	path[0].p_bh = NULL;
658
659	i = depth;
660	/* walk through the tree */
661	while (i) {
662		int need_to_validate = 0;
663
664		ext_debug("depth %d: num %d, max %d\n",
665			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
666
667		ext4_ext_binsearch_idx(inode, path + ppos, block);
668		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
669		path[ppos].p_depth = i;
670		path[ppos].p_ext = NULL;
671
672		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
673		if (unlikely(!bh))
674			goto err;
675		if (!bh_uptodate_or_lock(bh)) {
676			trace_ext4_ext_load_extent(inode, block,
677						path[ppos].p_block);
678			if (bh_submit_read(bh) < 0) {
679				put_bh(bh);
680				goto err;
681			}
682			/* validate the extent entries */
683			need_to_validate = 1;
684		}
685		eh = ext_block_hdr(bh);
686		ppos++;
687		if (unlikely(ppos > depth)) {
688			put_bh(bh);
689			EXT4_ERROR_INODE(inode,
690					 "ppos %d > depth %d", ppos, depth);
691			goto err;
692		}
693		path[ppos].p_bh = bh;
694		path[ppos].p_hdr = eh;
695		i--;
696
697		if (need_to_validate && ext4_ext_check(inode, eh, i))
698			goto err;
699	}
700
701	path[ppos].p_depth = i;
702	path[ppos].p_ext = NULL;
703	path[ppos].p_idx = NULL;
704
705	/* find extent */
706	ext4_ext_binsearch(inode, path + ppos, block);
707	/* if not an empty leaf */
708	if (path[ppos].p_ext)
709		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
710
711	ext4_ext_show_path(inode, path);
712
713	return path;
714
715err:
716	ext4_ext_drop_refs(path);
717	if (alloc)
718		kfree(path);
719	return ERR_PTR(-EIO);
720}
721
722/*
723 * ext4_ext_insert_index:
724 * insert new index [@logical;@ptr] into the block at @curp;
725 * check where to insert: before @curp or after @curp
726 */
727static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
728				 struct ext4_ext_path *curp,
729				 int logical, ext4_fsblk_t ptr)
730{
731	struct ext4_extent_idx *ix;
732	int len, err;
733
734	err = ext4_ext_get_access(handle, inode, curp);
735	if (err)
736		return err;
737
738	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
739		EXT4_ERROR_INODE(inode,
740				 "logical %d == ei_block %d!",
741				 logical, le32_to_cpu(curp->p_idx->ei_block));
742		return -EIO;
743	}
744	len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
745	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
746		/* insert after */
747		if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
748			len = (len - 1) * sizeof(struct ext4_extent_idx);
749			len = len < 0 ? 0 : len;
750			ext_debug("insert new index %d after: %llu. "
751					"move %d from 0x%p to 0x%p\n",
752					logical, ptr, len,
753					(curp->p_idx + 1), (curp->p_idx + 2));
754			memmove(curp->p_idx + 2, curp->p_idx + 1, len);
755		}
756		ix = curp->p_idx + 1;
757	} else {
758		/* insert before */
759		len = len * sizeof(struct ext4_extent_idx);
760		len = len < 0 ? 0 : len;
761		ext_debug("insert new index %d before: %llu. "
762				"move %d from 0x%p to 0x%p\n",
763				logical, ptr, len,
764				curp->p_idx, (curp->p_idx + 1));
765		memmove(curp->p_idx + 1, curp->p_idx, len);
766		ix = curp->p_idx;
767	}
768
769	ix->ei_block = cpu_to_le32(logical);
770	ext4_idx_store_pblock(ix, ptr);
771	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
772
773	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
774			     > le16_to_cpu(curp->p_hdr->eh_max))) {
775		EXT4_ERROR_INODE(inode,
776				 "eh_entries %d > eh_max %d!",
777				 le16_to_cpu(curp->p_hdr->eh_entries),
778				 le16_to_cpu(curp->p_hdr->eh_max));
779		return -EIO;
780	}
781	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
782		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
783		return -EIO;
784	}
785
786	err = ext4_ext_dirty(handle, inode, curp);
787	ext4_std_error(inode->i_sb, err);
788
789	return err;
790}
791
792/*
793 * ext4_ext_split:
794 * inserts new subtree into the path, using free index entry
795 * at depth @at:
796 * - allocates all needed blocks (new leaf and all intermediate index blocks)
797 * - makes decision where to split
798 * - moves remaining extents and index entries (right to the split point)
799 *   into the newly allocated blocks
800 * - initializes subtree
801 */
802static int ext4_ext_split(handle_t *handle, struct inode *inode,
803			  unsigned int flags,
804			  struct ext4_ext_path *path,
805			  struct ext4_extent *newext, int at)
806{
807	struct buffer_head *bh = NULL;
808	int depth = ext_depth(inode);
809	struct ext4_extent_header *neh;
810	struct ext4_extent_idx *fidx;
811	int i = at, k, m, a;
812	ext4_fsblk_t newblock, oldblock;
813	__le32 border;
814	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
815	int err = 0;
816
817	/* make decision: where to split? */
818	/* FIXME: now decision is simplest: at current extent */
819
820	/* if current leaf will be split, then we should use
821	 * border from split point */
822	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
823		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
824		return -EIO;
825	}
826	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
827		border = path[depth].p_ext[1].ee_block;
828		ext_debug("leaf will be split."
829				" next leaf starts at %d\n",
830				  le32_to_cpu(border));
831	} else {
832		border = newext->ee_block;
833		ext_debug("leaf will be added."
834				" next leaf starts at %d\n",
835				le32_to_cpu(border));
836	}
837
838	/*
839	 * If error occurs, then we break processing
840	 * and mark filesystem read-only. index won't
841	 * be inserted and tree will be in consistent
842	 * state. Next mount will repair buffers too.
843	 */
844
845	/*
846	 * Get array to track all allocated blocks.
847	 * We need this to handle errors and free blocks
848	 * upon them.
849	 */
850	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
851	if (!ablocks)
852		return -ENOMEM;
853
854	/* allocate all needed blocks */
855	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
856	for (a = 0; a < depth - at; a++) {
857		newblock = ext4_ext_new_meta_block(handle, inode, path,
858						   newext, &err, flags);
859		if (newblock == 0)
860			goto cleanup;
861		ablocks[a] = newblock;
862	}
863
864	/* initialize new leaf */
865	newblock = ablocks[--a];
866	if (unlikely(newblock == 0)) {
867		EXT4_ERROR_INODE(inode, "newblock == 0!");
868		err = -EIO;
869		goto cleanup;
870	}
871	bh = sb_getblk(inode->i_sb, newblock);
872	if (!bh) {
873		err = -EIO;
874		goto cleanup;
875	}
876	lock_buffer(bh);
877
878	err = ext4_journal_get_create_access(handle, bh);
879	if (err)
880		goto cleanup;
881
882	neh = ext_block_hdr(bh);
883	neh->eh_entries = 0;
884	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
885	neh->eh_magic = EXT4_EXT_MAGIC;
886	neh->eh_depth = 0;
887
888	/* move remainder of path[depth] to the new leaf */
889	if (unlikely(path[depth].p_hdr->eh_entries !=
890		     path[depth].p_hdr->eh_max)) {
891		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
892				 path[depth].p_hdr->eh_entries,
893				 path[depth].p_hdr->eh_max);
894		err = -EIO;
895		goto cleanup;
896	}
897	/* start copy from next extent */
898	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
899	ext4_ext_show_move(inode, path, newblock, depth);
900	if (m) {
901		struct ext4_extent *ex;
902		ex = EXT_FIRST_EXTENT(neh);
903		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
904		le16_add_cpu(&neh->eh_entries, m);
905	}
906
907	set_buffer_uptodate(bh);
908	unlock_buffer(bh);
909
910	err = ext4_handle_dirty_metadata(handle, inode, bh);
911	if (err)
912		goto cleanup;
913	brelse(bh);
914	bh = NULL;
915
916	/* correct old leaf */
917	if (m) {
918		err = ext4_ext_get_access(handle, inode, path + depth);
919		if (err)
920			goto cleanup;
921		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
922		err = ext4_ext_dirty(handle, inode, path + depth);
923		if (err)
924			goto cleanup;
925
926	}
927
928	/* create intermediate indexes */
929	k = depth - at - 1;
930	if (unlikely(k < 0)) {
931		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
932		err = -EIO;
933		goto cleanup;
934	}
935	if (k)
936		ext_debug("create %d intermediate indices\n", k);
937	/* insert new index into current index block */
938	/* current depth stored in i var */
939	i = depth - 1;
940	while (k--) {
941		oldblock = newblock;
942		newblock = ablocks[--a];
943		bh = sb_getblk(inode->i_sb, newblock);
944		if (!bh) {
945			err = -EIO;
946			goto cleanup;
947		}
948		lock_buffer(bh);
949
950		err = ext4_journal_get_create_access(handle, bh);
951		if (err)
952			goto cleanup;
953
954		neh = ext_block_hdr(bh);
955		neh->eh_entries = cpu_to_le16(1);
956		neh->eh_magic = EXT4_EXT_MAGIC;
957		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
958		neh->eh_depth = cpu_to_le16(depth - i);
959		fidx = EXT_FIRST_INDEX(neh);
960		fidx->ei_block = border;
961		ext4_idx_store_pblock(fidx, oldblock);
962
963		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
964				i, newblock, le32_to_cpu(border), oldblock);
965
966		/* move remainder of path[i] to the new index block */
967		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
968					EXT_LAST_INDEX(path[i].p_hdr))) {
969			EXT4_ERROR_INODE(inode,
970					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
971					 le32_to_cpu(path[i].p_ext->ee_block));
972			err = -EIO;
973			goto cleanup;
974		}
975		/* start copy indexes */
976		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
977		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
978				EXT_MAX_INDEX(path[i].p_hdr));
979		ext4_ext_show_move(inode, path, newblock, i);
980		if (m) {
981			memmove(++fidx, path[i].p_idx,
982				sizeof(struct ext4_extent_idx) * m);
983			le16_add_cpu(&neh->eh_entries, m);
984		}
985		set_buffer_uptodate(bh);
986		unlock_buffer(bh);
987
988		err = ext4_handle_dirty_metadata(handle, inode, bh);
989		if (err)
990			goto cleanup;
991		brelse(bh);
992		bh = NULL;
993
994		/* correct old index */
995		if (m) {
996			err = ext4_ext_get_access(handle, inode, path + i);
997			if (err)
998				goto cleanup;
999			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1000			err = ext4_ext_dirty(handle, inode, path + i);
1001			if (err)
1002				goto cleanup;
1003		}
1004
1005		i--;
1006	}
1007
1008	/* insert new index */
1009	err = ext4_ext_insert_index(handle, inode, path + at,
1010				    le32_to_cpu(border), newblock);
1011
1012cleanup:
1013	if (bh) {
1014		if (buffer_locked(bh))
1015			unlock_buffer(bh);
1016		brelse(bh);
1017	}
1018
1019	if (err) {
1020		/* free all allocated blocks in error case */
1021		for (i = 0; i < depth; i++) {
1022			if (!ablocks[i])
1023				continue;
1024			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1025					 EXT4_FREE_BLOCKS_METADATA);
1026		}
1027	}
1028	kfree(ablocks);
1029
1030	return err;
1031}
1032
1033/*
1034 * ext4_ext_grow_indepth:
1035 * implements tree growing procedure:
1036 * - allocates new block
1037 * - moves top-level data (index block or leaf) into the new block
1038 * - initializes new top-level, creating index that points to the
1039 *   just created block
1040 */
1041static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1042				 unsigned int flags,
1043				 struct ext4_ext_path *path,
1044				 struct ext4_extent *newext)
1045{
1046	struct ext4_ext_path *curp = path;
1047	struct ext4_extent_header *neh;
1048	struct buffer_head *bh;
1049	ext4_fsblk_t newblock;
1050	int err = 0;
1051
1052	newblock = ext4_ext_new_meta_block(handle, inode, path,
1053		newext, &err, flags);
1054	if (newblock == 0)
1055		return err;
1056
1057	bh = sb_getblk(inode->i_sb, newblock);
1058	if (!bh) {
1059		err = -EIO;
1060		ext4_std_error(inode->i_sb, err);
1061		return err;
1062	}
1063	lock_buffer(bh);
1064
1065	err = ext4_journal_get_create_access(handle, bh);
1066	if (err) {
1067		unlock_buffer(bh);
1068		goto out;
1069	}
1070
1071	/* move top-level index/leaf into new block */
1072	memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1073
1074	/* set size of new block */
1075	neh = ext_block_hdr(bh);
1076	/* old root could have indexes or leaves
1077	 * so calculate e_max right way */
1078	if (ext_depth(inode))
1079		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1080	else
1081		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1082	neh->eh_magic = EXT4_EXT_MAGIC;
1083	set_buffer_uptodate(bh);
1084	unlock_buffer(bh);
1085
1086	err = ext4_handle_dirty_metadata(handle, inode, bh);
1087	if (err)
1088		goto out;
1089
1090	/* create index in new top-level index: num,max,pointer */
1091	err = ext4_ext_get_access(handle, inode, curp);
1092	if (err)
1093		goto out;
1094
1095	curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1096	curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1097	curp->p_hdr->eh_entries = cpu_to_le16(1);
1098	curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1099
1100	if (path[0].p_hdr->eh_depth)
1101		curp->p_idx->ei_block =
1102			EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1103	else
1104		curp->p_idx->ei_block =
1105			EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1106	ext4_idx_store_pblock(curp->p_idx, newblock);
1107
1108	neh = ext_inode_hdr(inode);
1109	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1110		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1111		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1112		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1113
1114	neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1115	err = ext4_ext_dirty(handle, inode, curp);
1116out:
1117	brelse(bh);
1118
1119	return err;
1120}
1121
1122/*
1123 * ext4_ext_create_new_leaf:
1124 * finds empty index and adds new leaf.
1125 * if no free index is found, then it requests in-depth growing.
1126 */
1127static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1128				    unsigned int flags,
1129				    struct ext4_ext_path *path,
1130				    struct ext4_extent *newext)
1131{
1132	struct ext4_ext_path *curp;
1133	int depth, i, err = 0;
1134
1135repeat:
1136	i = depth = ext_depth(inode);
1137
1138	/* walk up to the tree and look for free index entry */
1139	curp = path + depth;
1140	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1141		i--;
1142		curp--;
1143	}
1144
1145	/* we use already allocated block for index block,
1146	 * so subsequent data blocks should be contiguous */
1147	if (EXT_HAS_FREE_INDEX(curp)) {
1148		/* if we found index with free entry, then use that
1149		 * entry: create all needed subtree and add new leaf */
1150		err = ext4_ext_split(handle, inode, flags, path, newext, i);
1151		if (err)
1152			goto out;
1153
1154		/* refill path */
1155		ext4_ext_drop_refs(path);
1156		path = ext4_ext_find_extent(inode,
1157				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1158				    path);
1159		if (IS_ERR(path))
1160			err = PTR_ERR(path);
1161	} else {
1162		/* tree is full, time to grow in depth */
1163		err = ext4_ext_grow_indepth(handle, inode, flags,
1164					    path, newext);
1165		if (err)
1166			goto out;
1167
1168		/* refill path */
1169		ext4_ext_drop_refs(path);
1170		path = ext4_ext_find_extent(inode,
1171				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1172				    path);
1173		if (IS_ERR(path)) {
1174			err = PTR_ERR(path);
1175			goto out;
1176		}
1177
1178		/*
1179		 * only first (depth 0 -> 1) produces free space;
1180		 * in all other cases we have to split the grown tree
1181		 */
1182		depth = ext_depth(inode);
1183		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1184			/* now we need to split */
1185			goto repeat;
1186		}
1187	}
1188
1189out:
1190	return err;
1191}
1192
1193/*
1194 * search the closest allocated block to the left for *logical
1195 * and returns it at @logical + it's physical address at @phys
1196 * if *logical is the smallest allocated block, the function
1197 * returns 0 at @phys
1198 * return value contains 0 (success) or error code
1199 */
1200static int ext4_ext_search_left(struct inode *inode,
1201				struct ext4_ext_path *path,
1202				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1203{
1204	struct ext4_extent_idx *ix;
1205	struct ext4_extent *ex;
1206	int depth, ee_len;
1207
1208	if (unlikely(path == NULL)) {
1209		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1210		return -EIO;
1211	}
1212	depth = path->p_depth;
1213	*phys = 0;
1214
1215	if (depth == 0 && path->p_ext == NULL)
1216		return 0;
1217
1218	/* usually extent in the path covers blocks smaller
1219	 * then *logical, but it can be that extent is the
1220	 * first one in the file */
1221
1222	ex = path[depth].p_ext;
1223	ee_len = ext4_ext_get_actual_len(ex);
1224	if (*logical < le32_to_cpu(ex->ee_block)) {
1225		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1226			EXT4_ERROR_INODE(inode,
1227					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1228					 *logical, le32_to_cpu(ex->ee_block));
1229			return -EIO;
1230		}
1231		while (--depth >= 0) {
1232			ix = path[depth].p_idx;
1233			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1234				EXT4_ERROR_INODE(inode,
1235				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1236				  ix != NULL ? ix->ei_block : 0,
1237				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1238				    EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block : 0,
1239				  depth);
1240				return -EIO;
1241			}
1242		}
1243		return 0;
1244	}
1245
1246	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1247		EXT4_ERROR_INODE(inode,
1248				 "logical %d < ee_block %d + ee_len %d!",
1249				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1250		return -EIO;
1251	}
1252
1253	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1254	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1255	return 0;
1256}
1257
1258/*
1259 * search the closest allocated block to the right for *logical
1260 * and returns it at @logical + it's physical address at @phys
1261 * if *logical is the smallest allocated block, the function
1262 * returns 0 at @phys
1263 * return value contains 0 (success) or error code
1264 */
1265static int ext4_ext_search_right(struct inode *inode,
1266				 struct ext4_ext_path *path,
1267				 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1268{
1269	struct buffer_head *bh = NULL;
1270	struct ext4_extent_header *eh;
1271	struct ext4_extent_idx *ix;
1272	struct ext4_extent *ex;
1273	ext4_fsblk_t block;
1274	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1275	int ee_len;
1276
1277	if (unlikely(path == NULL)) {
1278		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1279		return -EIO;
1280	}
1281	depth = path->p_depth;
1282	*phys = 0;
1283
1284	if (depth == 0 && path->p_ext == NULL)
1285		return 0;
1286
1287	/* usually extent in the path covers blocks smaller
1288	 * then *logical, but it can be that extent is the
1289	 * first one in the file */
1290
1291	ex = path[depth].p_ext;
1292	ee_len = ext4_ext_get_actual_len(ex);
1293	if (*logical < le32_to_cpu(ex->ee_block)) {
1294		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1295			EXT4_ERROR_INODE(inode,
1296					 "first_extent(path[%d].p_hdr) != ex",
1297					 depth);
1298			return -EIO;
1299		}
1300		while (--depth >= 0) {
1301			ix = path[depth].p_idx;
1302			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1303				EXT4_ERROR_INODE(inode,
1304						 "ix != EXT_FIRST_INDEX *logical %d!",
1305						 *logical);
1306				return -EIO;
1307			}
1308		}
1309		*logical = le32_to_cpu(ex->ee_block);
1310		*phys = ext4_ext_pblock(ex);
1311		return 0;
1312	}
1313
1314	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1315		EXT4_ERROR_INODE(inode,
1316				 "logical %d < ee_block %d + ee_len %d!",
1317				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1318		return -EIO;
1319	}
1320
1321	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1322		/* next allocated block in this leaf */
1323		ex++;
1324		*logical = le32_to_cpu(ex->ee_block);
1325		*phys = ext4_ext_pblock(ex);
1326		return 0;
1327	}
1328
1329	/* go up and search for index to the right */
1330	while (--depth >= 0) {
1331		ix = path[depth].p_idx;
1332		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1333			goto got_index;
1334	}
1335
1336	/* we've gone up to the root and found no index to the right */
1337	return 0;
1338
1339got_index:
1340	/* we've found index to the right, let's
1341	 * follow it and find the closest allocated
1342	 * block to the right */
1343	ix++;
1344	block = ext4_idx_pblock(ix);
1345	while (++depth < path->p_depth) {
1346		bh = sb_bread(inode->i_sb, block);
1347		if (bh == NULL)
1348			return -EIO;
1349		eh = ext_block_hdr(bh);
1350		/* subtract from p_depth to get proper eh_depth */
1351		if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1352			put_bh(bh);
1353			return -EIO;
1354		}
1355		ix = EXT_FIRST_INDEX(eh);
1356		block = ext4_idx_pblock(ix);
1357		put_bh(bh);
1358	}
1359
1360	bh = sb_bread(inode->i_sb, block);
1361	if (bh == NULL)
1362		return -EIO;
1363	eh = ext_block_hdr(bh);
1364	if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1365		put_bh(bh);
1366		return -EIO;
1367	}
1368	ex = EXT_FIRST_EXTENT(eh);
1369	*logical = le32_to_cpu(ex->ee_block);
1370	*phys = ext4_ext_pblock(ex);
1371	put_bh(bh);
1372	return 0;
1373}
1374
1375/*
1376 * ext4_ext_next_allocated_block:
1377 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1378 * NOTE: it considers block number from index entry as
1379 * allocated block. Thus, index entries have to be consistent
1380 * with leaves.
1381 */
1382static ext4_lblk_t
1383ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1384{
1385	int depth;
1386
1387	BUG_ON(path == NULL);
1388	depth = path->p_depth;
1389
1390	if (depth == 0 && path->p_ext == NULL)
1391		return EXT_MAX_BLOCKS;
1392
1393	while (depth >= 0) {
1394		if (depth == path->p_depth) {
1395			/* leaf */
1396			if (path[depth].p_ext !=
1397					EXT_LAST_EXTENT(path[depth].p_hdr))
1398			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1399		} else {
1400			/* index */
1401			if (path[depth].p_idx !=
1402					EXT_LAST_INDEX(path[depth].p_hdr))
1403			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1404		}
1405		depth--;
1406	}
1407
1408	return EXT_MAX_BLOCKS;
1409}
1410
1411/*
1412 * ext4_ext_next_leaf_block:
1413 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1414 */
1415static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1416					struct ext4_ext_path *path)
1417{
1418	int depth;
1419
1420	BUG_ON(path == NULL);
1421	depth = path->p_depth;
1422
1423	/* zero-tree has no leaf blocks at all */
1424	if (depth == 0)
1425		return EXT_MAX_BLOCKS;
1426
1427	/* go to index block */
1428	depth--;
1429
1430	while (depth >= 0) {
1431		if (path[depth].p_idx !=
1432				EXT_LAST_INDEX(path[depth].p_hdr))
1433			return (ext4_lblk_t)
1434				le32_to_cpu(path[depth].p_idx[1].ei_block);
1435		depth--;
1436	}
1437
1438	return EXT_MAX_BLOCKS;
1439}
1440
1441/*
1442 * ext4_ext_correct_indexes:
1443 * if leaf gets modified and modified extent is first in the leaf,
1444 * then we have to correct all indexes above.
1445 * TODO: do we need to correct tree in all cases?
1446 */
1447static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1448				struct ext4_ext_path *path)
1449{
1450	struct ext4_extent_header *eh;
1451	int depth = ext_depth(inode);
1452	struct ext4_extent *ex;
1453	__le32 border;
1454	int k, err = 0;
1455
1456	eh = path[depth].p_hdr;
1457	ex = path[depth].p_ext;
1458
1459	if (unlikely(ex == NULL || eh == NULL)) {
1460		EXT4_ERROR_INODE(inode,
1461				 "ex %p == NULL or eh %p == NULL", ex, eh);
1462		return -EIO;
1463	}
1464
1465	if (depth == 0) {
1466		/* there is no tree at all */
1467		return 0;
1468	}
1469
1470	if (ex != EXT_FIRST_EXTENT(eh)) {
1471		/* we correct tree if first leaf got modified only */
1472		return 0;
1473	}
1474
1475	/*
1476	 * TODO: we need correction if border is smaller than current one
1477	 */
1478	k = depth - 1;
1479	border = path[depth].p_ext->ee_block;
1480	err = ext4_ext_get_access(handle, inode, path + k);
1481	if (err)
1482		return err;
1483	path[k].p_idx->ei_block = border;
1484	err = ext4_ext_dirty(handle, inode, path + k);
1485	if (err)
1486		return err;
1487
1488	while (k--) {
1489		/* change all left-side indexes */
1490		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1491			break;
1492		err = ext4_ext_get_access(handle, inode, path + k);
1493		if (err)
1494			break;
1495		path[k].p_idx->ei_block = border;
1496		err = ext4_ext_dirty(handle, inode, path + k);
1497		if (err)
1498			break;
1499	}
1500
1501	return err;
1502}
1503
1504int
1505ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1506				struct ext4_extent *ex2)
1507{
1508	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1509
1510	/*
1511	 * Make sure that either both extents are uninitialized, or
1512	 * both are _not_.
1513	 */
1514	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1515		return 0;
1516
1517	if (ext4_ext_is_uninitialized(ex1))
1518		max_len = EXT_UNINIT_MAX_LEN;
1519	else
1520		max_len = EXT_INIT_MAX_LEN;
1521
1522	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1523	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1524
1525	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1526			le32_to_cpu(ex2->ee_block))
1527		return 0;
1528
1529	/*
1530	 * To allow future support for preallocated extents to be added
1531	 * as an RO_COMPAT feature, refuse to merge to extents if
1532	 * this can result in the top bit of ee_len being set.
1533	 */
1534	if (ext1_ee_len + ext2_ee_len > max_len)
1535		return 0;
1536#ifdef AGGRESSIVE_TEST
1537	if (ext1_ee_len >= 4)
1538		return 0;
1539#endif
1540
1541	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1542		return 1;
1543	return 0;
1544}
1545
1546/*
1547 * This function tries to merge the "ex" extent to the next extent in the tree.
1548 * It always tries to merge towards right. If you want to merge towards
1549 * left, pass "ex - 1" as argument instead of "ex".
1550 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1551 * 1 if they got merged.
1552 */
1553static int ext4_ext_try_to_merge_right(struct inode *inode,
1554				 struct ext4_ext_path *path,
1555				 struct ext4_extent *ex)
1556{
1557	struct ext4_extent_header *eh;
1558	unsigned int depth, len;
1559	int merge_done = 0;
1560	int uninitialized = 0;
1561
1562	depth = ext_depth(inode);
1563	BUG_ON(path[depth].p_hdr == NULL);
1564	eh = path[depth].p_hdr;
1565
1566	while (ex < EXT_LAST_EXTENT(eh)) {
1567		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1568			break;
1569		/* merge with next extent! */
1570		if (ext4_ext_is_uninitialized(ex))
1571			uninitialized = 1;
1572		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1573				+ ext4_ext_get_actual_len(ex + 1));
1574		if (uninitialized)
1575			ext4_ext_mark_uninitialized(ex);
1576
1577		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1578			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1579				* sizeof(struct ext4_extent);
1580			memmove(ex + 1, ex + 2, len);
1581		}
1582		le16_add_cpu(&eh->eh_entries, -1);
1583		merge_done = 1;
1584		WARN_ON(eh->eh_entries == 0);
1585		if (!eh->eh_entries)
1586			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1587	}
1588
1589	return merge_done;
1590}
1591
1592/*
1593 * This function tries to merge the @ex extent to neighbours in the tree.
1594 * return 1 if merge left else 0.
1595 */
1596static int ext4_ext_try_to_merge(struct inode *inode,
1597				  struct ext4_ext_path *path,
1598				  struct ext4_extent *ex) {
1599	struct ext4_extent_header *eh;
1600	unsigned int depth;
1601	int merge_done = 0;
1602	int ret = 0;
1603
1604	depth = ext_depth(inode);
1605	BUG_ON(path[depth].p_hdr == NULL);
1606	eh = path[depth].p_hdr;
1607
1608	if (ex > EXT_FIRST_EXTENT(eh))
1609		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1610
1611	if (!merge_done)
1612		ret = ext4_ext_try_to_merge_right(inode, path, ex);
1613
1614	return ret;
1615}
1616
1617/*
1618 * check if a portion of the "newext" extent overlaps with an
1619 * existing extent.
1620 *
1621 * If there is an overlap discovered, it updates the length of the newext
1622 * such that there will be no overlap, and then returns 1.
1623 * If there is no overlap found, it returns 0.
1624 */
1625static unsigned int ext4_ext_check_overlap(struct inode *inode,
1626					   struct ext4_extent *newext,
1627					   struct ext4_ext_path *path)
1628{
1629	ext4_lblk_t b1, b2;
1630	unsigned int depth, len1;
1631	unsigned int ret = 0;
1632
1633	b1 = le32_to_cpu(newext->ee_block);
1634	len1 = ext4_ext_get_actual_len(newext);
1635	depth = ext_depth(inode);
1636	if (!path[depth].p_ext)
1637		goto out;
1638	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1639
1640	/*
1641	 * get the next allocated block if the extent in the path
1642	 * is before the requested block(s)
1643	 */
1644	if (b2 < b1) {
1645		b2 = ext4_ext_next_allocated_block(path);
1646		if (b2 == EXT_MAX_BLOCKS)
1647			goto out;
1648	}
1649
1650	/* check for wrap through zero on extent logical start block*/
1651	if (b1 + len1 < b1) {
1652		len1 = EXT_MAX_BLOCKS - b1;
1653		newext->ee_len = cpu_to_le16(len1);
1654		ret = 1;
1655	}
1656
1657	/* check for overlap */
1658	if (b1 + len1 > b2) {
1659		newext->ee_len = cpu_to_le16(b2 - b1);
1660		ret = 1;
1661	}
1662out:
1663	return ret;
1664}
1665
1666/*
1667 * ext4_ext_insert_extent:
1668 * tries to merge requsted extent into the existing extent or
1669 * inserts requested extent as new one into the tree,
1670 * creating new leaf in the no-space case.
1671 */
1672int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1673				struct ext4_ext_path *path,
1674				struct ext4_extent *newext, int flag)
1675{
1676	struct ext4_extent_header *eh;
1677	struct ext4_extent *ex, *fex;
1678	struct ext4_extent *nearex; /* nearest extent */
1679	struct ext4_ext_path *npath = NULL;
1680	int depth, len, err;
1681	ext4_lblk_t next;
1682	unsigned uninitialized = 0;
1683	int flags = 0;
1684
1685	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1686		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1687		return -EIO;
1688	}
1689	depth = ext_depth(inode);
1690	ex = path[depth].p_ext;
1691	if (unlikely(path[depth].p_hdr == NULL)) {
1692		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1693		return -EIO;
1694	}
1695
1696	/* try to insert block into found extent and return */
1697	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1698		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1699		ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1700			  ext4_ext_is_uninitialized(newext),
1701			  ext4_ext_get_actual_len(newext),
1702			  le32_to_cpu(ex->ee_block),
1703			  ext4_ext_is_uninitialized(ex),
1704			  ext4_ext_get_actual_len(ex),
1705			  ext4_ext_pblock(ex));
1706		err = ext4_ext_get_access(handle, inode, path + depth);
1707		if (err)
1708			return err;
1709
1710		/*
1711		 * ext4_can_extents_be_merged should have checked that either
1712		 * both extents are uninitialized, or both aren't. Thus we
1713		 * need to check only one of them here.
1714		 */
1715		if (ext4_ext_is_uninitialized(ex))
1716			uninitialized = 1;
1717		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1718					+ ext4_ext_get_actual_len(newext));
1719		if (uninitialized)
1720			ext4_ext_mark_uninitialized(ex);
1721		eh = path[depth].p_hdr;
1722		nearex = ex;
1723		goto merge;
1724	}
1725
1726	depth = ext_depth(inode);
1727	eh = path[depth].p_hdr;
1728	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1729		goto has_space;
1730
1731	/* probably next leaf has space for us? */
1732	fex = EXT_LAST_EXTENT(eh);
1733	next = EXT_MAX_BLOCKS;
1734	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1735		next = ext4_ext_next_leaf_block(inode, path);
1736	if (next != EXT_MAX_BLOCKS) {
1737		ext_debug("next leaf block - %d\n", next);
1738		BUG_ON(npath != NULL);
1739		npath = ext4_ext_find_extent(inode, next, NULL);
1740		if (IS_ERR(npath))
1741			return PTR_ERR(npath);
1742		BUG_ON(npath->p_depth != path->p_depth);
1743		eh = npath[depth].p_hdr;
1744		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1745			ext_debug("next leaf isn't full(%d)\n",
1746				  le16_to_cpu(eh->eh_entries));
1747			path = npath;
1748			goto has_space;
1749		}
1750		ext_debug("next leaf has no free space(%d,%d)\n",
1751			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1752	}
1753
1754	/*
1755	 * There is no free space in the found leaf.
1756	 * We're gonna add a new leaf in the tree.
1757	 */
1758	if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1759		flags = EXT4_MB_USE_ROOT_BLOCKS;
1760	err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1761	if (err)
1762		goto cleanup;
1763	depth = ext_depth(inode);
1764	eh = path[depth].p_hdr;
1765
1766has_space:
1767	nearex = path[depth].p_ext;
1768
1769	err = ext4_ext_get_access(handle, inode, path + depth);
1770	if (err)
1771		goto cleanup;
1772
1773	if (!nearex) {
1774		/* there is no extent in this leaf, create first one */
1775		ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1776				le32_to_cpu(newext->ee_block),
1777				ext4_ext_pblock(newext),
1778				ext4_ext_is_uninitialized(newext),
1779				ext4_ext_get_actual_len(newext));
1780		path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1781	} else if (le32_to_cpu(newext->ee_block)
1782			   > le32_to_cpu(nearex->ee_block)) {
1783/*		BUG_ON(newext->ee_block == nearex->ee_block); */
1784		if (nearex != EXT_LAST_EXTENT(eh)) {
1785			len = EXT_MAX_EXTENT(eh) - nearex;
1786			len = (len - 1) * sizeof(struct ext4_extent);
1787			len = len < 0 ? 0 : len;
1788			ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1789					"move %d from 0x%p to 0x%p\n",
1790					le32_to_cpu(newext->ee_block),
1791					ext4_ext_pblock(newext),
1792					ext4_ext_is_uninitialized(newext),
1793					ext4_ext_get_actual_len(newext),
1794					nearex, len, nearex + 1, nearex + 2);
1795			memmove(nearex + 2, nearex + 1, len);
1796		}
1797		path[depth].p_ext = nearex + 1;
1798	} else {
1799		BUG_ON(newext->ee_block == nearex->ee_block);
1800		len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1801		len = len < 0 ? 0 : len;
1802		ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1803				"move %d from 0x%p to 0x%p\n",
1804				le32_to_cpu(newext->ee_block),
1805				ext4_ext_pblock(newext),
1806				ext4_ext_is_uninitialized(newext),
1807				ext4_ext_get_actual_len(newext),
1808				nearex, len, nearex + 1, nearex + 2);
1809		memmove(nearex + 1, nearex, len);
1810		path[depth].p_ext = nearex;
1811	}
1812
1813	le16_add_cpu(&eh->eh_entries, 1);
1814	nearex = path[depth].p_ext;
1815	nearex->ee_block = newext->ee_block;
1816	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1817	nearex->ee_len = newext->ee_len;
1818
1819merge:
1820	/* try to merge extents to the right */
1821	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1822		ext4_ext_try_to_merge(inode, path, nearex);
1823
1824	/* try to merge extents to the left */
1825
1826	/* time to correct all indexes above */
1827	err = ext4_ext_correct_indexes(handle, inode, path);
1828	if (err)
1829		goto cleanup;
1830
1831	err = ext4_ext_dirty(handle, inode, path + depth);
1832
1833cleanup:
1834	if (npath) {
1835		ext4_ext_drop_refs(npath);
1836		kfree(npath);
1837	}
1838	ext4_ext_invalidate_cache(inode);
1839	return err;
1840}
1841
1842static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1843			       ext4_lblk_t num, ext_prepare_callback func,
1844			       void *cbdata)
1845{
1846	struct ext4_ext_path *path = NULL;
1847	struct ext4_ext_cache cbex;
1848	struct ext4_extent *ex;
1849	ext4_lblk_t next, start = 0, end = 0;
1850	ext4_lblk_t last = block + num;
1851	int depth, exists, err = 0;
1852
1853	BUG_ON(func == NULL);
1854	BUG_ON(inode == NULL);
1855
1856	while (block < last && block != EXT_MAX_BLOCKS) {
1857		num = last - block;
1858		/* find extent for this block */
1859		down_read(&EXT4_I(inode)->i_data_sem);
1860		path = ext4_ext_find_extent(inode, block, path);
1861		up_read(&EXT4_I(inode)->i_data_sem);
1862		if (IS_ERR(path)) {
1863			err = PTR_ERR(path);
1864			path = NULL;
1865			break;
1866		}
1867
1868		depth = ext_depth(inode);
1869		if (unlikely(path[depth].p_hdr == NULL)) {
1870			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1871			err = -EIO;
1872			break;
1873		}
1874		ex = path[depth].p_ext;
1875		next = ext4_ext_next_allocated_block(path);
1876
1877		exists = 0;
1878		if (!ex) {
1879			/* there is no extent yet, so try to allocate
1880			 * all requested space */
1881			start = block;
1882			end = block + num;
1883		} else if (le32_to_cpu(ex->ee_block) > block) {
1884			/* need to allocate space before found extent */
1885			start = block;
1886			end = le32_to_cpu(ex->ee_block);
1887			if (block + num < end)
1888				end = block + num;
1889		} else if (block >= le32_to_cpu(ex->ee_block)
1890					+ ext4_ext_get_actual_len(ex)) {
1891			/* need to allocate space after found extent */
1892			start = block;
1893			end = block + num;
1894			if (end >= next)
1895				end = next;
1896		} else if (block >= le32_to_cpu(ex->ee_block)) {
1897			/*
1898			 * some part of requested space is covered
1899			 * by found extent
1900			 */
1901			start = block;
1902			end = le32_to_cpu(ex->ee_block)
1903				+ ext4_ext_get_actual_len(ex);
1904			if (block + num < end)
1905				end = block + num;
1906			exists = 1;
1907		} else {
1908			BUG();
1909		}
1910		BUG_ON(end <= start);
1911
1912		if (!exists) {
1913			cbex.ec_block = start;
1914			cbex.ec_len = end - start;
1915			cbex.ec_start = 0;
1916		} else {
1917			cbex.ec_block = le32_to_cpu(ex->ee_block);
1918			cbex.ec_len = ext4_ext_get_actual_len(ex);
1919			cbex.ec_start = ext4_ext_pblock(ex);
1920		}
1921
1922		if (unlikely(cbex.ec_len == 0)) {
1923			EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1924			err = -EIO;
1925			break;
1926		}
1927		err = func(inode, next, &cbex, ex, cbdata);
1928		ext4_ext_drop_refs(path);
1929
1930		if (err < 0)
1931			break;
1932
1933		if (err == EXT_REPEAT)
1934			continue;
1935		else if (err == EXT_BREAK) {
1936			err = 0;
1937			break;
1938		}
1939
1940		if (ext_depth(inode) != depth) {
1941			/* depth was changed. we have to realloc path */
1942			kfree(path);
1943			path = NULL;
1944		}
1945
1946		block = cbex.ec_block + cbex.ec_len;
1947	}
1948
1949	if (path) {
1950		ext4_ext_drop_refs(path);
1951		kfree(path);
1952	}
1953
1954	return err;
1955}
1956
1957static void
1958ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1959			__u32 len, ext4_fsblk_t start)
1960{
1961	struct ext4_ext_cache *cex;
1962	BUG_ON(len == 0);
1963	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1964	cex = &EXT4_I(inode)->i_cached_extent;
1965	cex->ec_block = block;
1966	cex->ec_len = len;
1967	cex->ec_start = start;
1968	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1969}
1970
1971/*
1972 * ext4_ext_put_gap_in_cache:
1973 * calculate boundaries of the gap that the requested block fits into
1974 * and cache this gap
1975 */
1976static void
1977ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1978				ext4_lblk_t block)
1979{
1980	int depth = ext_depth(inode);
1981	unsigned long len;
1982	ext4_lblk_t lblock;
1983	struct ext4_extent *ex;
1984
1985	ex = path[depth].p_ext;
1986	if (ex == NULL) {
1987		/* there is no extent yet, so gap is [0;-] */
1988		lblock = 0;
1989		len = EXT_MAX_BLOCKS;
1990		ext_debug("cache gap(whole file):");
1991	} else if (block < le32_to_cpu(ex->ee_block)) {
1992		lblock = block;
1993		len = le32_to_cpu(ex->ee_block) - block;
1994		ext_debug("cache gap(before): %u [%u:%u]",
1995				block,
1996				le32_to_cpu(ex->ee_block),
1997				 ext4_ext_get_actual_len(ex));
1998	} else if (block >= le32_to_cpu(ex->ee_block)
1999			+ ext4_ext_get_actual_len(ex)) {
2000		ext4_lblk_t next;
2001		lblock = le32_to_cpu(ex->ee_block)
2002			+ ext4_ext_get_actual_len(ex);
2003
2004		next = ext4_ext_next_allocated_block(path);
2005		ext_debug("cache gap(after): [%u:%u] %u",
2006				le32_to_cpu(ex->ee_block),
2007				ext4_ext_get_actual_len(ex),
2008				block);
2009		BUG_ON(next == lblock);
2010		len = next - lblock;
2011	} else {
2012		lblock = len = 0;
2013		BUG();
2014	}
2015
2016	ext_debug(" -> %u:%lu\n", lblock, len);
2017	ext4_ext_put_in_cache(inode, lblock, len, 0);
2018}
2019
2020/*
2021 * ext4_ext_in_cache()
2022 * Checks to see if the given block is in the cache.
2023 * If it is, the cached extent is stored in the given
2024 * cache extent pointer.  If the cached extent is a hole,
2025 * this routine should be used instead of
2026 * ext4_ext_in_cache if the calling function needs to
2027 * know the size of the hole.
2028 *
2029 * @inode: The files inode
2030 * @block: The block to look for in the cache
2031 * @ex:    Pointer where the cached extent will be stored
2032 *         if it contains block
2033 *
2034 * Return 0 if cache is invalid; 1 if the cache is valid
2035 */
2036static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2037	struct ext4_ext_cache *ex){
2038	struct ext4_ext_cache *cex;
2039	struct ext4_sb_info *sbi;
2040	int ret = 0;
2041
2042	/*
2043	 * We borrow i_block_reservation_lock to protect i_cached_extent
2044	 */
2045	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2046	cex = &EXT4_I(inode)->i_cached_extent;
2047	sbi = EXT4_SB(inode->i_sb);
2048
2049	/* has cache valid data? */
2050	if (cex->ec_len == 0)
2051		goto errout;
2052
2053	if (in_range(block, cex->ec_block, cex->ec_len)) {
2054		memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2055		ext_debug("%u cached by %u:%u:%llu\n",
2056				block,
2057				cex->ec_block, cex->ec_len, cex->ec_start);
2058		ret = 1;
2059	}
2060errout:
2061	if (!ret)
2062		sbi->extent_cache_misses++;
2063	else
2064		sbi->extent_cache_hits++;
2065	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2066	return ret;
2067}
2068
2069/*
2070 * ext4_ext_in_cache()
2071 * Checks to see if the given block is in the cache.
2072 * If it is, the cached extent is stored in the given
2073 * extent pointer.
2074 *
2075 * @inode: The files inode
2076 * @block: The block to look for in the cache
2077 * @ex:    Pointer where the cached extent will be stored
2078 *         if it contains block
2079 *
2080 * Return 0 if cache is invalid; 1 if the cache is valid
2081 */
2082static int
2083ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2084			struct ext4_extent *ex)
2085{
2086	struct ext4_ext_cache cex;
2087	int ret = 0;
2088
2089	if (ext4_ext_check_cache(inode, block, &cex)) {
2090		ex->ee_block = cpu_to_le32(cex.ec_block);
2091		ext4_ext_store_pblock(ex, cex.ec_start);
2092		ex->ee_len = cpu_to_le16(cex.ec_len);
2093		ret = 1;
2094	}
2095
2096	return ret;
2097}
2098
2099
2100/*
2101 * ext4_ext_rm_idx:
2102 * removes index from the index block.
2103 * It's used in truncate case only, thus all requests are for
2104 * last index in the block only.
2105 */
2106static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2107			struct ext4_ext_path *path)
2108{
2109	int err;
2110	ext4_fsblk_t leaf;
2111
2112	/* free index block */
2113	path--;
2114	leaf = ext4_idx_pblock(path->p_idx);
2115	if (unlikely(path->p_hdr->eh_entries == 0)) {
2116		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2117		return -EIO;
2118	}
2119	err = ext4_ext_get_access(handle, inode, path);
2120	if (err)
2121		return err;
2122	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2123	err = ext4_ext_dirty(handle, inode, path);
2124	if (err)
2125		return err;
2126	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2127	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2128			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2129	return err;
2130}
2131
2132/*
2133 * ext4_ext_calc_credits_for_single_extent:
2134 * This routine returns max. credits that needed to insert an extent
2135 * to the extent tree.
2136 * When pass the actual path, the caller should calculate credits
2137 * under i_data_sem.
2138 */
2139int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2140						struct ext4_ext_path *path)
2141{
2142	if (path) {
2143		int depth = ext_depth(inode);
2144		int ret = 0;
2145
2146		/* probably there is space in leaf? */
2147		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2148				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2149
2150			/*
2151			 *  There are some space in the leaf tree, no
2152			 *  need to account for leaf block credit
2153			 *
2154			 *  bitmaps and block group descriptor blocks
2155			 *  and other metadat blocks still need to be
2156			 *  accounted.
2157			 */
2158			/* 1 bitmap, 1 block group descriptor */
2159			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2160			return ret;
2161		}
2162	}
2163
2164	return ext4_chunk_trans_blocks(inode, nrblocks);
2165}
2166
2167/*
2168 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2169 *
2170 * if nrblocks are fit in a single extent (chunk flag is 1), then
2171 * in the worse case, each tree level index/leaf need to be changed
2172 * if the tree split due to insert a new extent, then the old tree
2173 * index/leaf need to be updated too
2174 *
2175 * If the nrblocks are discontiguous, they could cause
2176 * the whole tree split more than once, but this is really rare.
2177 */
2178int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2179{
2180	int index;
2181	int depth = ext_depth(inode);
2182
2183	if (chunk)
2184		index = depth * 2;
2185	else
2186		index = depth * 3;
2187
2188	return index;
2189}
2190
2191static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2192				struct ext4_extent *ex,
2193				ext4_lblk_t from, ext4_lblk_t to)
2194{
2195	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2196	int flags = EXT4_FREE_BLOCKS_FORGET;
2197
2198	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2199		flags |= EXT4_FREE_BLOCKS_METADATA;
2200#ifdef EXTENTS_STATS
2201	{
2202		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2203		spin_lock(&sbi->s_ext_stats_lock);
2204		sbi->s_ext_blocks += ee_len;
2205		sbi->s_ext_extents++;
2206		if (ee_len < sbi->s_ext_min)
2207			sbi->s_ext_min = ee_len;
2208		if (ee_len > sbi->s_ext_max)
2209			sbi->s_ext_max = ee_len;
2210		if (ext_depth(inode) > sbi->s_depth_max)
2211			sbi->s_depth_max = ext_depth(inode);
2212		spin_unlock(&sbi->s_ext_stats_lock);
2213	}
2214#endif
2215	if (from >= le32_to_cpu(ex->ee_block)
2216	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2217		/* tail removal */
2218		ext4_lblk_t num;
2219		ext4_fsblk_t start;
2220
2221		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2222		start = ext4_ext_pblock(ex) + ee_len - num;
2223		ext_debug("free last %u blocks starting %llu\n", num, start);
2224		ext4_free_blocks(handle, inode, NULL, start, num, flags);
2225	} else if (from == le32_to_cpu(ex->ee_block)
2226		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2227		/* head removal */
2228		ext4_lblk_t num;
2229		ext4_fsblk_t start;
2230
2231		num = to - from;
2232		start = ext4_ext_pblock(ex);
2233
2234		ext_debug("free first %u blocks starting %llu\n", num, start);
2235		ext4_free_blocks(handle, inode, 0, start, num, flags);
2236
2237	} else {
2238		printk(KERN_INFO "strange request: removal(2) "
2239				"%u-%u from %u:%u\n",
2240				from, to, le32_to_cpu(ex->ee_block), ee_len);
2241	}
2242	return 0;
2243}
2244
2245
2246/*
2247 * ext4_ext_rm_leaf() Removes the extents associated with the
2248 * blocks appearing between "start" and "end", and splits the extents
2249 * if "start" and "end" appear in the same extent
2250 *
2251 * @handle: The journal handle
2252 * @inode:  The files inode
2253 * @path:   The path to the leaf
2254 * @start:  The first block to remove
2255 * @end:   The last block to remove
2256 */
2257static int
2258ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2259		struct ext4_ext_path *path, ext4_lblk_t start,
2260		ext4_lblk_t end)
2261{
2262	int err = 0, correct_index = 0;
2263	int depth = ext_depth(inode), credits;
2264	struct ext4_extent_header *eh;
2265	ext4_lblk_t a, b, block;
2266	unsigned num;
2267	ext4_lblk_t ex_ee_block;
2268	unsigned short ex_ee_len;
2269	unsigned uninitialized = 0;
2270	struct ext4_extent *ex;
2271	struct ext4_map_blocks map;
2272
2273	/* the header must be checked already in ext4_ext_remove_space() */
2274	ext_debug("truncate since %u in leaf\n", start);
2275	if (!path[depth].p_hdr)
2276		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2277	eh = path[depth].p_hdr;
2278	if (unlikely(path[depth].p_hdr == NULL)) {
2279		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2280		return -EIO;
2281	}
2282	/* find where to start removing */
2283	ex = EXT_LAST_EXTENT(eh);
2284
2285	ex_ee_block = le32_to_cpu(ex->ee_block);
2286	ex_ee_len = ext4_ext_get_actual_len(ex);
2287
2288	while (ex >= EXT_FIRST_EXTENT(eh) &&
2289			ex_ee_block + ex_ee_len > start) {
2290
2291		if (ext4_ext_is_uninitialized(ex))
2292			uninitialized = 1;
2293		else
2294			uninitialized = 0;
2295
2296		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2297			 uninitialized, ex_ee_len);
2298		path[depth].p_ext = ex;
2299
2300		a = ex_ee_block > start ? ex_ee_block : start;
2301		b = ex_ee_block+ex_ee_len - 1 < end ?
2302			ex_ee_block+ex_ee_len - 1 : end;
2303
2304		ext_debug("  border %u:%u\n", a, b);
2305
2306		/* If this extent is beyond the end of the hole, skip it */
2307		if (end <= ex_ee_block) {
2308			ex--;
2309			ex_ee_block = le32_to_cpu(ex->ee_block);
2310			ex_ee_len = ext4_ext_get_actual_len(ex);
2311			continue;
2312		} else if (a != ex_ee_block &&
2313			b != ex_ee_block + ex_ee_len - 1) {
2314			/*
2315			 * If this is a truncate, then this condition should
2316			 * never happen because at least one of the end points
2317			 * needs to be on the edge of the extent.
2318			 */
2319			if (end == EXT_MAX_BLOCKS - 1) {
2320				ext_debug("  bad truncate %u:%u\n",
2321						start, end);
2322				block = 0;
2323				num = 0;
2324				err = -EIO;
2325				goto out;
2326			}
2327			/*
2328			 * else this is a hole punch, so the extent needs to
2329			 * be split since neither edge of the hole is on the
2330			 * extent edge
2331			 */
2332			else{
2333				map.m_pblk = ext4_ext_pblock(ex);
2334				map.m_lblk = ex_ee_block;
2335				map.m_len = b - ex_ee_block;
2336
2337				err = ext4_split_extent(handle,
2338					inode, path, &map, 0,
2339					EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
2340					EXT4_GET_BLOCKS_PRE_IO);
2341
2342				if (err < 0)
2343					goto out;
2344
2345				ex_ee_len = ext4_ext_get_actual_len(ex);
2346
2347				b = ex_ee_block+ex_ee_len - 1 < end ?
2348					ex_ee_block+ex_ee_len - 1 : end;
2349
2350				/* Then remove tail of this extent */
2351				block = ex_ee_block;
2352				num = a - block;
2353			}
2354		} else if (a != ex_ee_block) {
2355			/* remove tail of the extent */
2356			block = ex_ee_block;
2357			num = a - block;
2358		} else if (b != ex_ee_block + ex_ee_len - 1) {
2359			/* remove head of the extent */
2360			block = b;
2361			num =  ex_ee_block + ex_ee_len - b;
2362
2363			/*
2364			 * If this is a truncate, this condition
2365			 * should never happen
2366			 */
2367			if (end == EXT_MAX_BLOCKS - 1) {
2368				ext_debug("  bad truncate %u:%u\n",
2369					start, end);
2370				err = -EIO;
2371				goto out;
2372			}
2373		} else {
2374			/* remove whole extent: excellent! */
2375			block = ex_ee_block;
2376			num = 0;
2377			if (a != ex_ee_block) {
2378				ext_debug("  bad truncate %u:%u\n",
2379					start, end);
2380				err = -EIO;
2381				goto out;
2382			}
2383
2384			if (b != ex_ee_block + ex_ee_len - 1) {
2385				ext_debug("  bad truncate %u:%u\n",
2386					start, end);
2387				err = -EIO;
2388				goto out;
2389			}
2390		}
2391
2392		/*
2393		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2394		 * descriptor) for each block group; assume two block
2395		 * groups plus ex_ee_len/blocks_per_block_group for
2396		 * the worst case
2397		 */
2398		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2399		if (ex == EXT_FIRST_EXTENT(eh)) {
2400			correct_index = 1;
2401			credits += (ext_depth(inode)) + 1;
2402		}
2403		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2404
2405		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2406		if (err)
2407			goto out;
2408
2409		err = ext4_ext_get_access(handle, inode, path + depth);
2410		if (err)
2411			goto out;
2412
2413		err = ext4_remove_blocks(handle, inode, ex, a, b);
2414		if (err)
2415			goto out;
2416
2417		if (num == 0) {
2418			/* this extent is removed; mark slot entirely unused */
2419			ext4_ext_store_pblock(ex, 0);
2420		} else if (block != ex_ee_block) {
2421			/*
2422			 * If this was a head removal, then we need to update
2423			 * the physical block since it is now at a different
2424			 * location
2425			 */
2426			ext4_ext_store_pblock(ex, ext4_ext_pblock(ex) + (b-a));
2427		}
2428
2429		ex->ee_block = cpu_to_le32(block);
2430		ex->ee_len = cpu_to_le16(num);
2431		/*
2432		 * Do not mark uninitialized if all the blocks in the
2433		 * extent have been removed.
2434		 */
2435		if (uninitialized && num)
2436			ext4_ext_mark_uninitialized(ex);
2437
2438		err = ext4_ext_dirty(handle, inode, path + depth);
2439		if (err)
2440			goto out;
2441
2442		/*
2443		 * If the extent was completely released,
2444		 * we need to remove it from the leaf
2445		 */
2446		if (num == 0) {
2447			if (end != EXT_MAX_BLOCKS - 1) {
2448				/*
2449				 * For hole punching, we need to scoot all the
2450				 * extents up when an extent is removed so that
2451				 * we dont have blank extents in the middle
2452				 */
2453				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2454					sizeof(struct ext4_extent));
2455
2456				/* Now get rid of the one at the end */
2457				memset(EXT_LAST_EXTENT(eh), 0,
2458					sizeof(struct ext4_extent));
2459			}
2460			le16_add_cpu(&eh->eh_entries, -1);
2461		}
2462
2463		ext_debug("new extent: %u:%u:%llu\n", block, num,
2464				ext4_ext_pblock(ex));
2465		ex--;
2466		ex_ee_block = le32_to_cpu(ex->ee_block);
2467		ex_ee_len = ext4_ext_get_actual_len(ex);
2468	}
2469
2470	if (correct_index && eh->eh_entries)
2471		err = ext4_ext_correct_indexes(handle, inode, path);
2472
2473	/* if this leaf is free, then we should
2474	 * remove it from index block above */
2475	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2476		err = ext4_ext_rm_idx(handle, inode, path + depth);
2477
2478out:
2479	return err;
2480}
2481
2482/*
2483 * ext4_ext_more_to_rm:
2484 * returns 1 if current index has to be freed (even partial)
2485 */
2486static int
2487ext4_ext_more_to_rm(struct ext4_ext_path *path)
2488{
2489	BUG_ON(path->p_idx == NULL);
2490
2491	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2492		return 0;
2493
2494	/*
2495	 * if truncate on deeper level happened, it wasn't partial,
2496	 * so we have to consider current index for truncation
2497	 */
2498	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2499		return 0;
2500	return 1;
2501}
2502
2503static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2504{
2505	struct super_block *sb = inode->i_sb;
2506	int depth = ext_depth(inode);
2507	struct ext4_ext_path *path;
2508	handle_t *handle;
2509	int i, err;
2510
2511	ext_debug("truncate since %u\n", start);
2512
2513	/* probably first extent we're gonna free will be last in block */
2514	handle = ext4_journal_start(inode, depth + 1);
2515	if (IS_ERR(handle))
2516		return PTR_ERR(handle);
2517
2518again:
2519	ext4_ext_invalidate_cache(inode);
2520
2521	/*
2522	 * We start scanning from right side, freeing all the blocks
2523	 * after i_size and walking into the tree depth-wise.
2524	 */
2525	depth = ext_depth(inode);
2526	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2527	if (path == NULL) {
2528		ext4_journal_stop(handle);
2529		return -ENOMEM;
2530	}
2531	path[0].p_depth = depth;
2532	path[0].p_hdr = ext_inode_hdr(inode);
2533	if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2534		err = -EIO;
2535		goto out;
2536	}
2537	i = err = 0;
2538
2539	while (i >= 0 && err == 0) {
2540		if (i == depth) {
2541			/* this is leaf block */
2542			err = ext4_ext_rm_leaf(handle, inode, path,
2543					start, EXT_MAX_BLOCKS - 1);
2544			/* root level has p_bh == NULL, brelse() eats this */
2545			brelse(path[i].p_bh);
2546			path[i].p_bh = NULL;
2547			i--;
2548			continue;
2549		}
2550
2551		/* this is index block */
2552		if (!path[i].p_hdr) {
2553			ext_debug("initialize header\n");
2554			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2555		}
2556
2557		if (!path[i].p_idx) {
2558			/* this level hasn't been touched yet */
2559			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2560			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2561			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2562				  path[i].p_hdr,
2563				  le16_to_cpu(path[i].p_hdr->eh_entries));
2564		} else {
2565			/* we were already here, see at next index */
2566			path[i].p_idx--;
2567		}
2568
2569		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2570				i, EXT_FIRST_INDEX(path[i].p_hdr),
2571				path[i].p_idx);
2572		if (ext4_ext_more_to_rm(path + i)) {
2573			struct buffer_head *bh;
2574			/* go to the next level */
2575			ext_debug("move to level %d (block %llu)\n",
2576				  i + 1, ext4_idx_pblock(path[i].p_idx));
2577			memset(path + i + 1, 0, sizeof(*path));
2578			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2579			if (!bh) {
2580				/* should we reset i_size? */
2581				err = -EIO;
2582				break;
2583			}
2584			if (WARN_ON(i + 1 > depth)) {
2585				err = -EIO;
2586				break;
2587			}
2588			if (ext4_ext_check(inode, ext_block_hdr(bh),
2589							depth - i - 1)) {
2590				err = -EIO;
2591				break;
2592			}
2593			path[i + 1].p_bh = bh;
2594
2595			/* save actual number of indexes since this
2596			 * number is changed at the next iteration */
2597			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2598			i++;
2599		} else {
2600			/* we finished processing this index, go up */
2601			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2602				/* index is empty, remove it;
2603				 * handle must be already prepared by the
2604				 * truncatei_leaf() */
2605				err = ext4_ext_rm_idx(handle, inode, path + i);
2606			}
2607			/* root level has p_bh == NULL, brelse() eats this */
2608			brelse(path[i].p_bh);
2609			path[i].p_bh = NULL;
2610			i--;
2611			ext_debug("return to level %d\n", i);
2612		}
2613	}
2614
2615	/* TODO: flexible tree reduction should be here */
2616	if (path->p_hdr->eh_entries == 0) {
2617		/*
2618		 * truncate to zero freed all the tree,
2619		 * so we need to correct eh_depth
2620		 */
2621		err = ext4_ext_get_access(handle, inode, path);
2622		if (err == 0) {
2623			ext_inode_hdr(inode)->eh_depth = 0;
2624			ext_inode_hdr(inode)->eh_max =
2625				cpu_to_le16(ext4_ext_space_root(inode, 0));
2626			err = ext4_ext_dirty(handle, inode, path);
2627		}
2628	}
2629out:
2630	ext4_ext_drop_refs(path);
2631	kfree(path);
2632	if (err == -EAGAIN)
2633		goto again;
2634	ext4_journal_stop(handle);
2635
2636	return err;
2637}
2638
2639/*
2640 * called at mount time
2641 */
2642void ext4_ext_init(struct super_block *sb)
2643{
2644	/*
2645	 * possible initialization would be here
2646	 */
2647
2648	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2649#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2650		printk(KERN_INFO "EXT4-fs: file extents enabled");
2651#ifdef AGGRESSIVE_TEST
2652		printk(", aggressive tests");
2653#endif
2654#ifdef CHECK_BINSEARCH
2655		printk(", check binsearch");
2656#endif
2657#ifdef EXTENTS_STATS
2658		printk(", stats");
2659#endif
2660		printk("\n");
2661#endif
2662#ifdef EXTENTS_STATS
2663		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2664		EXT4_SB(sb)->s_ext_min = 1 << 30;
2665		EXT4_SB(sb)->s_ext_max = 0;
2666#endif
2667	}
2668}
2669
2670/*
2671 * called at umount time
2672 */
2673void ext4_ext_release(struct super_block *sb)
2674{
2675	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2676		return;
2677
2678#ifdef EXTENTS_STATS
2679	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2680		struct ext4_sb_info *sbi = EXT4_SB(sb);
2681		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2682			sbi->s_ext_blocks, sbi->s_ext_extents,
2683			sbi->s_ext_blocks / sbi->s_ext_extents);
2684		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2685			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2686	}
2687#endif
2688}
2689
2690/* FIXME!! we need to try to merge to left or right after zero-out  */
2691static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2692{
2693	ext4_fsblk_t ee_pblock;
2694	unsigned int ee_len;
2695	int ret;
2696
2697	ee_len    = ext4_ext_get_actual_len(ex);
2698	ee_pblock = ext4_ext_pblock(ex);
2699
2700	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2701	if (ret > 0)
2702		ret = 0;
2703
2704	return ret;
2705}
2706
2707/*
2708 * used by extent splitting.
2709 */
2710#define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
2711					due to ENOSPC */
2712#define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
2713#define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
2714
2715/*
2716 * ext4_split_extent_at() splits an extent at given block.
2717 *
2718 * @handle: the journal handle
2719 * @inode: the file inode
2720 * @path: the path to the extent
2721 * @split: the logical block where the extent is splitted.
2722 * @split_flags: indicates if the extent could be zeroout if split fails, and
2723 *		 the states(init or uninit) of new extents.
2724 * @flags: flags used to insert new extent to extent tree.
2725 *
2726 *
2727 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2728 * of which are deterimined by split_flag.
2729 *
2730 * There are two cases:
2731 *  a> the extent are splitted into two extent.
2732 *  b> split is not needed, and just mark the extent.
2733 *
2734 * return 0 on success.
2735 */
2736static int ext4_split_extent_at(handle_t *handle,
2737			     struct inode *inode,
2738			     struct ext4_ext_path *path,
2739			     ext4_lblk_t split,
2740			     int split_flag,
2741			     int flags)
2742{
2743	ext4_fsblk_t newblock;
2744	ext4_lblk_t ee_block;
2745	struct ext4_extent *ex, newex, orig_ex;
2746	struct ext4_extent *ex2 = NULL;
2747	unsigned int ee_len, depth;
2748	int err = 0;
2749
2750	ext_debug("ext4_split_extents_at: inode %lu, logical"
2751		"block %llu\n", inode->i_ino, (unsigned long long)split);
2752
2753	ext4_ext_show_leaf(inode, path);
2754
2755	depth = ext_depth(inode);
2756	ex = path[depth].p_ext;
2757	ee_block = le32_to_cpu(ex->ee_block);
2758	ee_len = ext4_ext_get_actual_len(ex);
2759	newblock = split - ee_block + ext4_ext_pblock(ex);
2760
2761	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2762
2763	err = ext4_ext_get_access(handle, inode, path + depth);
2764	if (err)
2765		goto out;
2766
2767	if (split == ee_block) {
2768		/*
2769		 * case b: block @split is the block that the extent begins with
2770		 * then we just change the state of the extent, and splitting
2771		 * is not needed.
2772		 */
2773		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2774			ext4_ext_mark_uninitialized(ex);
2775		else
2776			ext4_ext_mark_initialized(ex);
2777
2778		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2779			ext4_ext_try_to_merge(inode, path, ex);
2780
2781		err = ext4_ext_dirty(handle, inode, path + depth);
2782		goto out;
2783	}
2784
2785	/* case a */
2786	memcpy(&orig_ex, ex, sizeof(orig_ex));
2787	ex->ee_len = cpu_to_le16(split - ee_block);
2788	if (split_flag & EXT4_EXT_MARK_UNINIT1)
2789		ext4_ext_mark_uninitialized(ex);
2790
2791	/*
2792	 * path may lead to new leaf, not to original leaf any more
2793	 * after ext4_ext_insert_extent() returns,
2794	 */
2795	err = ext4_ext_dirty(handle, inode, path + depth);
2796	if (err)
2797		goto fix_extent_len;
2798
2799	ex2 = &newex;
2800	ex2->ee_block = cpu_to_le32(split);
2801	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
2802	ext4_ext_store_pblock(ex2, newblock);
2803	if (split_flag & EXT4_EXT_MARK_UNINIT2)
2804		ext4_ext_mark_uninitialized(ex2);
2805
2806	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2807	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2808		err = ext4_ext_zeroout(inode, &orig_ex);
2809		if (err)
2810			goto fix_extent_len;
2811		/* update the extent length and mark as initialized */
2812		ex->ee_len = cpu_to_le32(ee_len);
2813		ext4_ext_try_to_merge(inode, path, ex);
2814		err = ext4_ext_dirty(handle, inode, path + depth);
2815		goto out;
2816	} else if (err)
2817		goto fix_extent_len;
2818
2819out:
2820	ext4_ext_show_leaf(inode, path);
2821	return err;
2822
2823fix_extent_len:
2824	ex->ee_len = orig_ex.ee_len;
2825	ext4_ext_dirty(handle, inode, path + depth);
2826	return err;
2827}
2828
2829/*
2830 * ext4_split_extents() splits an extent and mark extent which is covered
2831 * by @map as split_flags indicates
2832 *
2833 * It may result in splitting the extent into multiple extents (upto three)
2834 * There are three possibilities:
2835 *   a> There is no split required
2836 *   b> Splits in two extents: Split is happening at either end of the extent
2837 *   c> Splits in three extents: Somone is splitting in middle of the extent
2838 *
2839 */
2840static int ext4_split_extent(handle_t *handle,
2841			      struct inode *inode,
2842			      struct ext4_ext_path *path,
2843			      struct ext4_map_blocks *map,
2844			      int split_flag,
2845			      int flags)
2846{
2847	ext4_lblk_t ee_block;
2848	struct ext4_extent *ex;
2849	unsigned int ee_len, depth;
2850	int err = 0;
2851	int uninitialized;
2852	int split_flag1, flags1;
2853
2854	depth = ext_depth(inode);
2855	ex = path[depth].p_ext;
2856	ee_block = le32_to_cpu(ex->ee_block);
2857	ee_len = ext4_ext_get_actual_len(ex);
2858	uninitialized = ext4_ext_is_uninitialized(ex);
2859
2860	if (map->m_lblk + map->m_len < ee_block + ee_len) {
2861		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2862			      EXT4_EXT_MAY_ZEROOUT : 0;
2863		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2864		if (uninitialized)
2865			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2866				       EXT4_EXT_MARK_UNINIT2;
2867		err = ext4_split_extent_at(handle, inode, path,
2868				map->m_lblk + map->m_len, split_flag1, flags1);
2869		if (err)
2870			goto out;
2871	}
2872
2873	ext4_ext_drop_refs(path);
2874	path = ext4_ext_find_extent(inode, map->m_lblk, path);
2875	if (IS_ERR(path))
2876		return PTR_ERR(path);
2877
2878	if (map->m_lblk >= ee_block) {
2879		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2880			      EXT4_EXT_MAY_ZEROOUT : 0;
2881		if (uninitialized)
2882			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
2883		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2884			split_flag1 |= EXT4_EXT_MARK_UNINIT2;
2885		err = ext4_split_extent_at(handle, inode, path,
2886				map->m_lblk, split_flag1, flags);
2887		if (err)
2888			goto out;
2889	}
2890
2891	ext4_ext_show_leaf(inode, path);
2892out:
2893	return err ? err : map->m_len;
2894}
2895
2896#define EXT4_EXT_ZERO_LEN 7
2897/*
2898 * This function is called by ext4_ext_map_blocks() if someone tries to write
2899 * to an uninitialized extent. It may result in splitting the uninitialized
2900 * extent into multiple extents (up to three - one initialized and two
2901 * uninitialized).
2902 * There are three possibilities:
2903 *   a> There is no split required: Entire extent should be initialized
2904 *   b> Splits in two extents: Write is happening at either end of the extent
2905 *   c> Splits in three extents: Somone is writing in middle of the extent
2906 */
2907static int ext4_ext_convert_to_initialized(handle_t *handle,
2908					   struct inode *inode,
2909					   struct ext4_map_blocks *map,
2910					   struct ext4_ext_path *path)
2911{
2912	struct ext4_map_blocks split_map;
2913	struct ext4_extent zero_ex;
2914	struct ext4_extent *ex;
2915	ext4_lblk_t ee_block, eof_block;
2916	unsigned int allocated, ee_len, depth;
2917	int err = 0;
2918	int split_flag = 0;
2919
2920	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2921		"block %llu, max_blocks %u\n", inode->i_ino,
2922		(unsigned long long)map->m_lblk, map->m_len);
2923
2924	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2925		inode->i_sb->s_blocksize_bits;
2926	if (eof_block < map->m_lblk + map->m_len)
2927		eof_block = map->m_lblk + map->m_len;
2928
2929	depth = ext_depth(inode);
2930	ex = path[depth].p_ext;
2931	ee_block = le32_to_cpu(ex->ee_block);
2932	ee_len = ext4_ext_get_actual_len(ex);
2933	allocated = ee_len - (map->m_lblk - ee_block);
2934
2935	WARN_ON(map->m_lblk < ee_block);
2936	/*
2937	 * It is safe to convert extent to initialized via explicit
2938	 * zeroout only if extent is fully insde i_size or new_size.
2939	 */
2940	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
2941
2942	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2943	if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
2944	    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2945		err = ext4_ext_zeroout(inode, ex);
2946		if (err)
2947			goto out;
2948
2949		err = ext4_ext_get_access(handle, inode, path + depth);
2950		if (err)
2951			goto out;
2952		ext4_ext_mark_initialized(ex);
2953		ext4_ext_try_to_merge(inode, path, ex);
2954		err = ext4_ext_dirty(handle, inode, path + depth);
2955		goto out;
2956	}
2957
2958	/*
2959	 * four cases:
2960	 * 1. split the extent into three extents.
2961	 * 2. split the extent into two extents, zeroout the first half.
2962	 * 3. split the extent into two extents, zeroout the second half.
2963	 * 4. split the extent into two extents with out zeroout.
2964	 */
2965	split_map.m_lblk = map->m_lblk;
2966	split_map.m_len = map->m_len;
2967
2968	if (allocated > map->m_len) {
2969		if (allocated <= EXT4_EXT_ZERO_LEN &&
2970		    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2971			/* case 3 */
2972			zero_ex.ee_block =
2973					 cpu_to_le32(map->m_lblk);
2974			zero_ex.ee_len = cpu_to_le16(allocated);
2975			ext4_ext_store_pblock(&zero_ex,
2976				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
2977			err = ext4_ext_zeroout(inode, &zero_ex);
2978			if (err)
2979				goto out;
2980			split_map.m_lblk = map->m_lblk;
2981			split_map.m_len = allocated;
2982		} else if ((map->m_lblk - ee_block + map->m_len <
2983			   EXT4_EXT_ZERO_LEN) &&
2984			   (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2985			/* case 2 */
2986			if (map->m_lblk != ee_block) {
2987				zero_ex.ee_block = ex->ee_block;
2988				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
2989							ee_block);
2990				ext4_ext_store_pblock(&zero_ex,
2991						      ext4_ext_pblock(ex));
2992				err = ext4_ext_zeroout(inode, &zero_ex);
2993				if (err)
2994					goto out;
2995			}
2996
2997			split_map.m_lblk = ee_block;
2998			split_map.m_len = map->m_lblk - ee_block + map->m_len;
2999			allocated = map->m_len;
3000		}
3001	}
3002
3003	allocated = ext4_split_extent(handle, inode, path,
3004				       &split_map, split_flag, 0);
3005	if (allocated < 0)
3006		err = allocated;
3007
3008out:
3009	return err ? err : allocated;
3010}
3011
3012/*
3013 * This function is called by ext4_ext_map_blocks() from
3014 * ext4_get_blocks_dio_write() when DIO to write
3015 * to an uninitialized extent.
3016 *
3017 * Writing to an uninitialized extent may result in splitting the uninitialized
3018 * extent into multiple /initialized uninitialized extents (up to three)
3019 * There are three possibilities:
3020 *   a> There is no split required: Entire extent should be uninitialized
3021 *   b> Splits in two extents: Write is happening at either end of the extent
3022 *   c> Splits in three extents: Somone is writing in middle of the extent
3023 *
3024 * One of more index blocks maybe needed if the extent tree grow after
3025 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3026 * complete, we need to split the uninitialized extent before DIO submit
3027 * the IO. The uninitialized extent called at this time will be split
3028 * into three uninitialized extent(at most). After IO complete, the part
3029 * being filled will be convert to initialized by the end_io callback function
3030 * via ext4_convert_unwritten_extents().
3031 *
3032 * Returns the size of uninitialized extent to be written on success.
3033 */
3034static int ext4_split_unwritten_extents(handle_t *handle,
3035					struct inode *inode,
3036					struct ext4_map_blocks *map,
3037					struct ext4_ext_path *path,
3038					int flags)
3039{
3040	ext4_lblk_t eof_block;
3041	ext4_lblk_t ee_block;
3042	struct ext4_extent *ex;
3043	unsigned int ee_len;
3044	int split_flag = 0, depth;
3045
3046	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3047		"block %llu, max_blocks %u\n", inode->i_ino,
3048		(unsigned long long)map->m_lblk, map->m_len);
3049
3050	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3051		inode->i_sb->s_blocksize_bits;
3052	if (eof_block < map->m_lblk + map->m_len)
3053		eof_block = map->m_lblk + map->m_len;
3054	/*
3055	 * It is safe to convert extent to initialized via explicit
3056	 * zeroout only if extent is fully insde i_size or new_size.
3057	 */
3058	depth = ext_depth(inode);
3059	ex = path[depth].p_ext;
3060	ee_block = le32_to_cpu(ex->ee_block);
3061	ee_len = ext4_ext_get_actual_len(ex);
3062
3063	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3064	split_flag |= EXT4_EXT_MARK_UNINIT2;
3065
3066	flags |= EXT4_GET_BLOCKS_PRE_IO;
3067	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3068}
3069
3070static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3071					      struct inode *inode,
3072					      struct ext4_ext_path *path)
3073{
3074	struct ext4_extent *ex;
3075	int depth;
3076	int err = 0;
3077
3078	depth = ext_depth(inode);
3079	ex = path[depth].p_ext;
3080
3081	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3082		"block %llu, max_blocks %u\n", inode->i_ino,
3083		(unsigned long long)le32_to_cpu(ex->ee_block),
3084		ext4_ext_get_actual_len(ex));
3085
3086	err = ext4_ext_get_access(handle, inode, path + depth);
3087	if (err)
3088		goto out;
3089	/* first mark the extent as initialized */
3090	ext4_ext_mark_initialized(ex);
3091
3092	/* note: ext4_ext_correct_indexes() isn't needed here because
3093	 * borders are not changed
3094	 */
3095	ext4_ext_try_to_merge(inode, path, ex);
3096
3097	/* Mark modified extent as dirty */
3098	err = ext4_ext_dirty(handle, inode, path + depth);
3099out:
3100	ext4_ext_show_leaf(inode, path);
3101	return err;
3102}
3103
3104static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3105			sector_t block, int count)
3106{
3107	int i;
3108	for (i = 0; i < count; i++)
3109                unmap_underlying_metadata(bdev, block + i);
3110}
3111
3112/*
3113 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3114 */
3115static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3116			      ext4_lblk_t lblk,
3117			      struct ext4_ext_path *path,
3118			      unsigned int len)
3119{
3120	int i, depth;
3121	struct ext4_extent_header *eh;
3122	struct ext4_extent *last_ex;
3123
3124	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3125		return 0;
3126
3127	depth = ext_depth(inode);
3128	eh = path[depth].p_hdr;
3129
3130	if (unlikely(!eh->eh_entries)) {
3131		EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3132				 "EOFBLOCKS_FL set");
3133		return -EIO;
3134	}
3135	last_ex = EXT_LAST_EXTENT(eh);
3136	/*
3137	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3138	 * last block in the last extent in the file.  We test this by
3139	 * first checking to see if the caller to
3140	 * ext4_ext_get_blocks() was interested in the last block (or
3141	 * a block beyond the last block) in the current extent.  If
3142	 * this turns out to be false, we can bail out from this
3143	 * function immediately.
3144	 */
3145	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3146	    ext4_ext_get_actual_len(last_ex))
3147		return 0;
3148	/*
3149	 * If the caller does appear to be planning to write at or
3150	 * beyond the end of the current extent, we then test to see
3151	 * if the current extent is the last extent in the file, by
3152	 * checking to make sure it was reached via the rightmost node
3153	 * at each level of the tree.
3154	 */
3155	for (i = depth-1; i >= 0; i--)
3156		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3157			return 0;
3158	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3159	return ext4_mark_inode_dirty(handle, inode);
3160}
3161
3162static int
3163ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3164			struct ext4_map_blocks *map,
3165			struct ext4_ext_path *path, int flags,
3166			unsigned int allocated, ext4_fsblk_t newblock)
3167{
3168	int ret = 0;
3169	int err = 0;
3170	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3171
3172	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3173		  "block %llu, max_blocks %u, flags %d, allocated %u",
3174		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3175		  flags, allocated);
3176	ext4_ext_show_leaf(inode, path);
3177
3178	/* get_block() before submit the IO, split the extent */
3179	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3180		ret = ext4_split_unwritten_extents(handle, inode, map,
3181						   path, flags);
3182		/*
3183		 * Flag the inode(non aio case) or end_io struct (aio case)
3184		 * that this IO needs to conversion to written when IO is
3185		 * completed
3186		 */
3187		if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3188			io->flag = EXT4_IO_END_UNWRITTEN;
3189			atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3190		} else
3191			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3192		if (ext4_should_dioread_nolock(inode))
3193			map->m_flags |= EXT4_MAP_UNINIT;
3194		goto out;
3195	}
3196	/* IO end_io complete, convert the filled extent to written */
3197	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3198		ret = ext4_convert_unwritten_extents_endio(handle, inode,
3199							path);
3200		if (ret >= 0) {
3201			ext4_update_inode_fsync_trans(handle, inode, 1);
3202			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3203						 path, map->m_len);
3204		} else
3205			err = ret;
3206		goto out2;
3207	}
3208	/* buffered IO case */
3209	/*
3210	 * repeat fallocate creation request
3211	 * we already have an unwritten extent
3212	 */
3213	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3214		goto map_out;
3215
3216	/* buffered READ or buffered write_begin() lookup */
3217	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3218		/*
3219		 * We have blocks reserved already.  We
3220		 * return allocated blocks so that delalloc
3221		 * won't do block reservation for us.  But
3222		 * the buffer head will be unmapped so that
3223		 * a read from the block returns 0s.
3224		 */
3225		map->m_flags |= EXT4_MAP_UNWRITTEN;
3226		goto out1;
3227	}
3228
3229	/* buffered write, writepage time, convert*/
3230	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3231	if (ret >= 0) {
3232		ext4_update_inode_fsync_trans(handle, inode, 1);
3233		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3234					 map->m_len);
3235		if (err < 0)
3236			goto out2;
3237	}
3238
3239out:
3240	if (ret <= 0) {
3241		err = ret;
3242		goto out2;
3243	} else
3244		allocated = ret;
3245	map->m_flags |= EXT4_MAP_NEW;
3246	/*
3247	 * if we allocated more blocks than requested
3248	 * we need to make sure we unmap the extra block
3249	 * allocated. The actual needed block will get
3250	 * unmapped later when we find the buffer_head marked
3251	 * new.
3252	 */
3253	if (allocated > map->m_len) {
3254		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3255					newblock + map->m_len,
3256					allocated - map->m_len);
3257		allocated = map->m_len;
3258	}
3259
3260	/*
3261	 * If we have done fallocate with the offset that is already
3262	 * delayed allocated, we would have block reservation
3263	 * and quota reservation done in the delayed write path.
3264	 * But fallocate would have already updated quota and block
3265	 * count for this offset. So cancel these reservation
3266	 */
3267	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3268		ext4_da_update_reserve_space(inode, allocated, 0);
3269
3270map_out:
3271	map->m_flags |= EXT4_MAP_MAPPED;
3272out1:
3273	if (allocated > map->m_len)
3274		allocated = map->m_len;
3275	ext4_ext_show_leaf(inode, path);
3276	map->m_pblk = newblock;
3277	map->m_len = allocated;
3278out2:
3279	if (path) {
3280		ext4_ext_drop_refs(path);
3281		kfree(path);
3282	}
3283	return err ? err : allocated;
3284}
3285
3286/*
3287 * Block allocation/map/preallocation routine for extents based files
3288 *
3289 *
3290 * Need to be called with
3291 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3292 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3293 *
3294 * return > 0, number of of blocks already mapped/allocated
3295 *          if create == 0 and these are pre-allocated blocks
3296 *          	buffer head is unmapped
3297 *          otherwise blocks are mapped
3298 *
3299 * return = 0, if plain look up failed (blocks have not been allocated)
3300 *          buffer head is unmapped
3301 *
3302 * return < 0, error case.
3303 */
3304int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3305			struct ext4_map_blocks *map, int flags)
3306{
3307	struct ext4_ext_path *path = NULL;
3308	struct ext4_extent newex, *ex;
3309	ext4_fsblk_t newblock = 0;
3310	int err = 0, depth, ret;
3311	unsigned int allocated = 0;
3312	unsigned int punched_out = 0;
3313	unsigned int result = 0;
3314	struct ext4_allocation_request ar;
3315	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3316	struct ext4_map_blocks punch_map;
3317
3318	ext_debug("blocks %u/%u requested for inode %lu\n",
3319		  map->m_lblk, map->m_len, inode->i_ino);
3320	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3321
3322	/* check in cache */
3323	if (ext4_ext_in_cache(inode, map->m_lblk, &newex) &&
3324		((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0)) {
3325		if (!newex.ee_start_lo && !newex.ee_start_hi) {
3326			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3327				/*
3328				 * block isn't allocated yet and
3329				 * user doesn't want to allocate it
3330				 */
3331				goto out2;
3332			}
3333			/* we should allocate requested block */
3334		} else {
3335			/* block is already allocated */
3336			newblock = map->m_lblk
3337				   - le32_to_cpu(newex.ee_block)
3338				   + ext4_ext_pblock(&newex);
3339			/* number of remaining blocks in the extent */
3340			allocated = ext4_ext_get_actual_len(&newex) -
3341				(map->m_lblk - le32_to_cpu(newex.ee_block));
3342			goto out;
3343		}
3344	}
3345
3346	/* find extent for this block */
3347	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3348	if (IS_ERR(path)) {
3349		err = PTR_ERR(path);
3350		path = NULL;
3351		goto out2;
3352	}
3353
3354	depth = ext_depth(inode);
3355
3356	/*
3357	 * consistent leaf must not be empty;
3358	 * this situation is possible, though, _during_ tree modification;
3359	 * this is why assert can't be put in ext4_ext_find_extent()
3360	 */
3361	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3362		EXT4_ERROR_INODE(inode, "bad extent address "
3363				 "lblock: %lu, depth: %d pblock %lld",
3364				 (unsigned long) map->m_lblk, depth,
3365				 path[depth].p_block);
3366		err = -EIO;
3367		goto out2;
3368	}
3369
3370	ex = path[depth].p_ext;
3371	if (ex) {
3372		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3373		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3374		unsigned short ee_len;
3375
3376		/*
3377		 * Uninitialized extents are treated as holes, except that
3378		 * we split out initialized portions during a write.
3379		 */
3380		ee_len = ext4_ext_get_actual_len(ex);
3381		/* if found extent covers block, simply return it */
3382		if (in_range(map->m_lblk, ee_block, ee_len)) {
3383			newblock = map->m_lblk - ee_block + ee_start;
3384			/* number of remaining blocks in the extent */
3385			allocated = ee_len - (map->m_lblk - ee_block);
3386			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3387				  ee_block, ee_len, newblock);
3388
3389			if ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0) {
3390				/*
3391				 * Do not put uninitialized extent
3392				 * in the cache
3393				 */
3394				if (!ext4_ext_is_uninitialized(ex)) {
3395					ext4_ext_put_in_cache(inode, ee_block,
3396						ee_len, ee_start);
3397					goto out;
3398				}
3399				ret = ext4_ext_handle_uninitialized_extents(
3400					handle, inode, map, path, flags,
3401					allocated, newblock);
3402				return ret;
3403			}
3404
3405			/*
3406			 * Punch out the map length, but only to the
3407			 * end of the extent
3408			 */
3409			punched_out = allocated < map->m_len ?
3410				allocated : map->m_len;
3411
3412			/*
3413			 * Sense extents need to be converted to
3414			 * uninitialized, they must fit in an
3415			 * uninitialized extent
3416			 */
3417			if (punched_out > EXT_UNINIT_MAX_LEN)
3418				punched_out = EXT_UNINIT_MAX_LEN;
3419
3420			punch_map.m_lblk = map->m_lblk;
3421			punch_map.m_pblk = newblock;
3422			punch_map.m_len = punched_out;
3423			punch_map.m_flags = 0;
3424
3425			/* Check to see if the extent needs to be split */
3426			if (punch_map.m_len != ee_len ||
3427				punch_map.m_lblk != ee_block) {
3428
3429				ret = ext4_split_extent(handle, inode,
3430				path, &punch_map, 0,
3431				EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
3432				EXT4_GET_BLOCKS_PRE_IO);
3433
3434				if (ret < 0) {
3435					err = ret;
3436					goto out2;
3437				}
3438				/*
3439				 * find extent for the block at
3440				 * the start of the hole
3441				 */
3442				ext4_ext_drop_refs(path);
3443				kfree(path);
3444
3445				path = ext4_ext_find_extent(inode,
3446				map->m_lblk, NULL);
3447				if (IS_ERR(path)) {
3448					err = PTR_ERR(path);
3449					path = NULL;
3450					goto out2;
3451				}
3452
3453				depth = ext_depth(inode);
3454				ex = path[depth].p_ext;
3455				ee_len = ext4_ext_get_actual_len(ex);
3456				ee_block = le32_to_cpu(ex->ee_block);
3457				ee_start = ext4_ext_pblock(ex);
3458
3459			}
3460
3461			ext4_ext_mark_uninitialized(ex);
3462
3463			ext4_ext_invalidate_cache(inode);
3464
3465			err = ext4_ext_rm_leaf(handle, inode, path,
3466				map->m_lblk, map->m_lblk + punched_out);
3467
3468			if (!err && path->p_hdr->eh_entries == 0) {
3469				/*
3470				 * Punch hole freed all of this sub tree,
3471				 * so we need to correct eh_depth
3472				 */
3473				err = ext4_ext_get_access(handle, inode, path);
3474				if (err == 0) {
3475					ext_inode_hdr(inode)->eh_depth = 0;
3476					ext_inode_hdr(inode)->eh_max =
3477					cpu_to_le16(ext4_ext_space_root(
3478						inode, 0));
3479
3480					err = ext4_ext_dirty(
3481						handle, inode, path);
3482				}
3483			}
3484
3485			goto out2;
3486		}
3487	}
3488
3489	/*
3490	 * requested block isn't allocated yet;
3491	 * we couldn't try to create block if create flag is zero
3492	 */
3493	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3494		/*
3495		 * put just found gap into cache to speed up
3496		 * subsequent requests
3497		 */
3498		ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3499		goto out2;
3500	}
3501	/*
3502	 * Okay, we need to do block allocation.
3503	 */
3504
3505	/* find neighbour allocated blocks */
3506	ar.lleft = map->m_lblk;
3507	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3508	if (err)
3509		goto out2;
3510	ar.lright = map->m_lblk;
3511	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
3512	if (err)
3513		goto out2;
3514
3515	/*
3516	 * See if request is beyond maximum number of blocks we can have in
3517	 * a single extent. For an initialized extent this limit is
3518	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3519	 * EXT_UNINIT_MAX_LEN.
3520	 */
3521	if (map->m_len > EXT_INIT_MAX_LEN &&
3522	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3523		map->m_len = EXT_INIT_MAX_LEN;
3524	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3525		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3526		map->m_len = EXT_UNINIT_MAX_LEN;
3527
3528	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3529	newex.ee_block = cpu_to_le32(map->m_lblk);
3530	newex.ee_len = cpu_to_le16(map->m_len);
3531	err = ext4_ext_check_overlap(inode, &newex, path);
3532	if (err)
3533		allocated = ext4_ext_get_actual_len(&newex);
3534	else
3535		allocated = map->m_len;
3536
3537	/* allocate new block */
3538	ar.inode = inode;
3539	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3540	ar.logical = map->m_lblk;
3541	ar.len = allocated;
3542	if (S_ISREG(inode->i_mode))
3543		ar.flags = EXT4_MB_HINT_DATA;
3544	else
3545		/* disable in-core preallocation for non-regular files */
3546		ar.flags = 0;
3547	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
3548		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
3549	newblock = ext4_mb_new_blocks(handle, &ar, &err);
3550	if (!newblock)
3551		goto out2;
3552	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3553		  ar.goal, newblock, allocated);
3554
3555	/* try to insert new extent into found leaf and return */
3556	ext4_ext_store_pblock(&newex, newblock);
3557	newex.ee_len = cpu_to_le16(ar.len);
3558	/* Mark uninitialized */
3559	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3560		ext4_ext_mark_uninitialized(&newex);
3561		/*
3562		 * io_end structure was created for every IO write to an
3563		 * uninitialized extent. To avoid unnecessary conversion,
3564		 * here we flag the IO that really needs the conversion.
3565		 * For non asycn direct IO case, flag the inode state
3566		 * that we need to perform conversion when IO is done.
3567		 */
3568		if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3569			if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3570				io->flag = EXT4_IO_END_UNWRITTEN;
3571				atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3572			} else
3573				ext4_set_inode_state(inode,
3574						     EXT4_STATE_DIO_UNWRITTEN);
3575		}
3576		if (ext4_should_dioread_nolock(inode))
3577			map->m_flags |= EXT4_MAP_UNINIT;
3578	}
3579
3580	err = check_eofblocks_fl(handle, inode, map->m_lblk, path, ar.len);
3581	if (!err)
3582		err = ext4_ext_insert_extent(handle, inode, path,
3583					     &newex, flags);
3584	if (err) {
3585		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
3586			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
3587		/* free data blocks we just allocated */
3588		/* not a good idea to call discard here directly,
3589		 * but otherwise we'd need to call it every free() */
3590		ext4_discard_preallocations(inode);
3591		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
3592				 ext4_ext_get_actual_len(&newex), fb_flags);
3593		goto out2;
3594	}
3595
3596	/* previous routine could use block we allocated */
3597	newblock = ext4_ext_pblock(&newex);
3598	allocated = ext4_ext_get_actual_len(&newex);
3599	if (allocated > map->m_len)
3600		allocated = map->m_len;
3601	map->m_flags |= EXT4_MAP_NEW;
3602
3603	/*
3604	 * Update reserved blocks/metadata blocks after successful
3605	 * block allocation which had been deferred till now.
3606	 */
3607	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3608		ext4_da_update_reserve_space(inode, allocated, 1);
3609
3610	/*
3611	 * Cache the extent and update transaction to commit on fdatasync only
3612	 * when it is _not_ an uninitialized extent.
3613	 */
3614	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
3615		ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
3616		ext4_update_inode_fsync_trans(handle, inode, 1);
3617	} else
3618		ext4_update_inode_fsync_trans(handle, inode, 0);
3619out:
3620	if (allocated > map->m_len)
3621		allocated = map->m_len;
3622	ext4_ext_show_leaf(inode, path);
3623	map->m_flags |= EXT4_MAP_MAPPED;
3624	map->m_pblk = newblock;
3625	map->m_len = allocated;
3626out2:
3627	if (path) {
3628		ext4_ext_drop_refs(path);
3629		kfree(path);
3630	}
3631	trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
3632		newblock, map->m_len, err ? err : allocated);
3633
3634	result = (flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) ?
3635			punched_out : allocated;
3636
3637	return err ? err : result;
3638}
3639
3640void ext4_ext_truncate(struct inode *inode)
3641{
3642	struct address_space *mapping = inode->i_mapping;
3643	struct super_block *sb = inode->i_sb;
3644	ext4_lblk_t last_block;
3645	handle_t *handle;
3646	int err = 0;
3647
3648	/*
3649	 * finish any pending end_io work so we won't run the risk of
3650	 * converting any truncated blocks to initialized later
3651	 */
3652	ext4_flush_completed_IO(inode);
3653
3654	/*
3655	 * probably first extent we're gonna free will be last in block
3656	 */
3657	err = ext4_writepage_trans_blocks(inode);
3658	handle = ext4_journal_start(inode, err);
3659	if (IS_ERR(handle))
3660		return;
3661
3662	if (inode->i_size & (sb->s_blocksize - 1))
3663		ext4_block_truncate_page(handle, mapping, inode->i_size);
3664
3665	if (ext4_orphan_add(handle, inode))
3666		goto out_stop;
3667
3668	down_write(&EXT4_I(inode)->i_data_sem);
3669	ext4_ext_invalidate_cache(inode);
3670
3671	ext4_discard_preallocations(inode);
3672
3673	/*
3674	 * TODO: optimization is possible here.
3675	 * Probably we need not scan at all,
3676	 * because page truncation is enough.
3677	 */
3678
3679	/* we have to know where to truncate from in crash case */
3680	EXT4_I(inode)->i_disksize = inode->i_size;
3681	ext4_mark_inode_dirty(handle, inode);
3682
3683	last_block = (inode->i_size + sb->s_blocksize - 1)
3684			>> EXT4_BLOCK_SIZE_BITS(sb);
3685	err = ext4_ext_remove_space(inode, last_block);
3686
3687	/* In a multi-transaction truncate, we only make the final
3688	 * transaction synchronous.
3689	 */
3690	if (IS_SYNC(inode))
3691		ext4_handle_sync(handle);
3692
3693	up_write(&EXT4_I(inode)->i_data_sem);
3694
3695out_stop:
3696	/*
3697	 * If this was a simple ftruncate() and the file will remain alive,
3698	 * then we need to clear up the orphan record which we created above.
3699	 * However, if this was a real unlink then we were called by
3700	 * ext4_delete_inode(), and we allow that function to clean up the
3701	 * orphan info for us.
3702	 */
3703	if (inode->i_nlink)
3704		ext4_orphan_del(handle, inode);
3705
3706	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3707	ext4_mark_inode_dirty(handle, inode);
3708	ext4_journal_stop(handle);
3709}
3710
3711static void ext4_falloc_update_inode(struct inode *inode,
3712				int mode, loff_t new_size, int update_ctime)
3713{
3714	struct timespec now;
3715
3716	if (update_ctime) {
3717		now = current_fs_time(inode->i_sb);
3718		if (!timespec_equal(&inode->i_ctime, &now))
3719			inode->i_ctime = now;
3720	}
3721	/*
3722	 * Update only when preallocation was requested beyond
3723	 * the file size.
3724	 */
3725	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3726		if (new_size > i_size_read(inode))
3727			i_size_write(inode, new_size);
3728		if (new_size > EXT4_I(inode)->i_disksize)
3729			ext4_update_i_disksize(inode, new_size);
3730	} else {
3731		/*
3732		 * Mark that we allocate beyond EOF so the subsequent truncate
3733		 * can proceed even if the new size is the same as i_size.
3734		 */
3735		if (new_size > i_size_read(inode))
3736			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3737	}
3738
3739}
3740
3741/*
3742 * preallocate space for a file. This implements ext4's fallocate file
3743 * operation, which gets called from sys_fallocate system call.
3744 * For block-mapped files, posix_fallocate should fall back to the method
3745 * of writing zeroes to the required new blocks (the same behavior which is
3746 * expected for file systems which do not support fallocate() system call).
3747 */
3748long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
3749{
3750	struct inode *inode = file->f_path.dentry->d_inode;
3751	handle_t *handle;
3752	loff_t new_size;
3753	unsigned int max_blocks;
3754	int ret = 0;
3755	int ret2 = 0;
3756	int retries = 0;
3757	struct ext4_map_blocks map;
3758	unsigned int credits, blkbits = inode->i_blkbits;
3759
3760	/*
3761	 * currently supporting (pre)allocate mode for extent-based
3762	 * files _only_
3763	 */
3764	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3765		return -EOPNOTSUPP;
3766
3767	/* Return error if mode is not supported */
3768	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3769		return -EOPNOTSUPP;
3770
3771	if (mode & FALLOC_FL_PUNCH_HOLE)
3772		return ext4_punch_hole(file, offset, len);
3773
3774	trace_ext4_fallocate_enter(inode, offset, len, mode);
3775	map.m_lblk = offset >> blkbits;
3776	/*
3777	 * We can't just convert len to max_blocks because
3778	 * If blocksize = 4096 offset = 3072 and len = 2048
3779	 */
3780	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3781		- map.m_lblk;
3782	/*
3783	 * credits to insert 1 extent into extent tree
3784	 */
3785	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3786	mutex_lock(&inode->i_mutex);
3787	ret = inode_newsize_ok(inode, (len + offset));
3788	if (ret) {
3789		mutex_unlock(&inode->i_mutex);
3790		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
3791		return ret;
3792	}
3793retry:
3794	while (ret >= 0 && ret < max_blocks) {
3795		map.m_lblk = map.m_lblk + ret;
3796		map.m_len = max_blocks = max_blocks - ret;
3797		handle = ext4_journal_start(inode, credits);
3798		if (IS_ERR(handle)) {
3799			ret = PTR_ERR(handle);
3800			break;
3801		}
3802		ret = ext4_map_blocks(handle, inode, &map,
3803				      EXT4_GET_BLOCKS_CREATE_UNINIT_EXT |
3804				      EXT4_GET_BLOCKS_NO_NORMALIZE);
3805		if (ret <= 0) {
3806#ifdef EXT4FS_DEBUG
3807			WARN_ON(ret <= 0);
3808			printk(KERN_ERR "%s: ext4_ext_map_blocks "
3809				    "returned error inode#%lu, block=%u, "
3810				    "max_blocks=%u", __func__,
3811				    inode->i_ino, map.m_lblk, max_blocks);
3812#endif
3813			ext4_mark_inode_dirty(handle, inode);
3814			ret2 = ext4_journal_stop(handle);
3815			break;
3816		}
3817		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3818						blkbits) >> blkbits))
3819			new_size = offset + len;
3820		else
3821			new_size = (map.m_lblk + ret) << blkbits;
3822
3823		ext4_falloc_update_inode(inode, mode, new_size,
3824					 (map.m_flags & EXT4_MAP_NEW));
3825		ext4_mark_inode_dirty(handle, inode);
3826		ret2 = ext4_journal_stop(handle);
3827		if (ret2)
3828			break;
3829	}
3830	if (ret == -ENOSPC &&
3831			ext4_should_retry_alloc(inode->i_sb, &retries)) {
3832		ret = 0;
3833		goto retry;
3834	}
3835	mutex_unlock(&inode->i_mutex);
3836	trace_ext4_fallocate_exit(inode, offset, max_blocks,
3837				ret > 0 ? ret2 : ret);
3838	return ret > 0 ? ret2 : ret;
3839}
3840
3841/*
3842 * This function convert a range of blocks to written extents
3843 * The caller of this function will pass the start offset and the size.
3844 * all unwritten extents within this range will be converted to
3845 * written extents.
3846 *
3847 * This function is called from the direct IO end io call back
3848 * function, to convert the fallocated extents after IO is completed.
3849 * Returns 0 on success.
3850 */
3851int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
3852				    ssize_t len)
3853{
3854	handle_t *handle;
3855	unsigned int max_blocks;
3856	int ret = 0;
3857	int ret2 = 0;
3858	struct ext4_map_blocks map;
3859	unsigned int credits, blkbits = inode->i_blkbits;
3860
3861	map.m_lblk = offset >> blkbits;
3862	/*
3863	 * We can't just convert len to max_blocks because
3864	 * If blocksize = 4096 offset = 3072 and len = 2048
3865	 */
3866	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
3867		      map.m_lblk);
3868	/*
3869	 * credits to insert 1 extent into extent tree
3870	 */
3871	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3872	while (ret >= 0 && ret < max_blocks) {
3873		map.m_lblk += ret;
3874		map.m_len = (max_blocks -= ret);
3875		handle = ext4_journal_start(inode, credits);
3876		if (IS_ERR(handle)) {
3877			ret = PTR_ERR(handle);
3878			break;
3879		}
3880		ret = ext4_map_blocks(handle, inode, &map,
3881				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
3882		if (ret <= 0) {
3883			WARN_ON(ret <= 0);
3884			printk(KERN_ERR "%s: ext4_ext_map_blocks "
3885				    "returned error inode#%lu, block=%u, "
3886				    "max_blocks=%u", __func__,
3887				    inode->i_ino, map.m_lblk, map.m_len);
3888		}
3889		ext4_mark_inode_dirty(handle, inode);
3890		ret2 = ext4_journal_stop(handle);
3891		if (ret <= 0 || ret2 )
3892			break;
3893	}
3894	return ret > 0 ? ret2 : ret;
3895}
3896
3897/*
3898 * Callback function called for each extent to gather FIEMAP information.
3899 */
3900static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
3901		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
3902		       void *data)
3903{
3904	__u64	logical;
3905	__u64	physical;
3906	__u64	length;
3907	__u32	flags = 0;
3908	int		ret = 0;
3909	struct fiemap_extent_info *fieinfo = data;
3910	unsigned char blksize_bits;
3911
3912	blksize_bits = inode->i_sb->s_blocksize_bits;
3913	logical = (__u64)newex->ec_block << blksize_bits;
3914
3915	if (newex->ec_start == 0) {
3916		/*
3917		 * No extent in extent-tree contains block @newex->ec_start,
3918		 * then the block may stay in 1)a hole or 2)delayed-extent.
3919		 *
3920		 * Holes or delayed-extents are processed as follows.
3921		 * 1. lookup dirty pages with specified range in pagecache.
3922		 *    If no page is got, then there is no delayed-extent and
3923		 *    return with EXT_CONTINUE.
3924		 * 2. find the 1st mapped buffer,
3925		 * 3. check if the mapped buffer is both in the request range
3926		 *    and a delayed buffer. If not, there is no delayed-extent,
3927		 *    then return.
3928		 * 4. a delayed-extent is found, the extent will be collected.
3929		 */
3930		ext4_lblk_t	end = 0;
3931		pgoff_t		last_offset;
3932		pgoff_t		offset;
3933		pgoff_t		index;
3934		pgoff_t		start_index = 0;
3935		struct page	**pages = NULL;
3936		struct buffer_head *bh = NULL;
3937		struct buffer_head *head = NULL;
3938		unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
3939
3940		pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
3941		if (pages == NULL)
3942			return -ENOMEM;
3943
3944		offset = logical >> PAGE_SHIFT;
3945repeat:
3946		last_offset = offset;
3947		head = NULL;
3948		ret = find_get_pages_tag(inode->i_mapping, &offset,
3949					PAGECACHE_TAG_DIRTY, nr_pages, pages);
3950
3951		if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
3952			/* First time, try to find a mapped buffer. */
3953			if (ret == 0) {
3954out:
3955				for (index = 0; index < ret; index++)
3956					page_cache_release(pages[index]);
3957				/* just a hole. */
3958				kfree(pages);
3959				return EXT_CONTINUE;
3960			}
3961			index = 0;
3962
3963next_page:
3964			/* Try to find the 1st mapped buffer. */
3965			end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
3966				  blksize_bits;
3967			if (!page_has_buffers(pages[index]))
3968				goto out;
3969			head = page_buffers(pages[index]);
3970			if (!head)
3971				goto out;
3972
3973			index++;
3974			bh = head;
3975			do {
3976				if (end >= newex->ec_block +
3977					newex->ec_len)
3978					/* The buffer is out of
3979					 * the request range.
3980					 */
3981					goto out;
3982
3983				if (buffer_mapped(bh) &&
3984				    end >= newex->ec_block) {
3985					start_index = index - 1;
3986					/* get the 1st mapped buffer. */
3987					goto found_mapped_buffer;
3988				}
3989
3990				bh = bh->b_this_page;
3991				end++;
3992			} while (bh != head);
3993
3994			/* No mapped buffer in the range found in this page,
3995			 * We need to look up next page.
3996			 */
3997			if (index >= ret) {
3998				/* There is no page left, but we need to limit
3999				 * newex->ec_len.
4000				 */
4001				newex->ec_len = end - newex->ec_block;
4002				goto out;
4003			}
4004			goto next_page;
4005		} else {
4006			/*Find contiguous delayed buffers. */
4007			if (ret > 0 && pages[0]->index == last_offset)
4008				head = page_buffers(pages[0]);
4009			bh = head;
4010			index = 1;
4011			start_index = 0;
4012		}
4013
4014found_mapped_buffer:
4015		if (bh != NULL && buffer_delay(bh)) {
4016			/* 1st or contiguous delayed buffer found. */
4017			if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4018				/*
4019				 * 1st delayed buffer found, record
4020				 * the start of extent.
4021				 */
4022				flags |= FIEMAP_EXTENT_DELALLOC;
4023				newex->ec_block = end;
4024				logical = (__u64)end << blksize_bits;
4025			}
4026			/* Find contiguous delayed buffers. */
4027			do {
4028				if (!buffer_delay(bh))
4029					goto found_delayed_extent;
4030				bh = bh->b_this_page;
4031				end++;
4032			} while (bh != head);
4033
4034			for (; index < ret; index++) {
4035				if (!page_has_buffers(pages[index])) {
4036					bh = NULL;
4037					break;
4038				}
4039				head = page_buffers(pages[index]);
4040				if (!head) {
4041					bh = NULL;
4042					break;
4043				}
4044
4045				if (pages[index]->index !=
4046				    pages[start_index]->index + index
4047				    - start_index) {
4048					/* Blocks are not contiguous. */
4049					bh = NULL;
4050					break;
4051				}
4052				bh = head;
4053				do {
4054					if (!buffer_delay(bh))
4055						/* Delayed-extent ends. */
4056						goto found_delayed_extent;
4057					bh = bh->b_this_page;
4058					end++;
4059				} while (bh != head);
4060			}
4061		} else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4062			/* a hole found. */
4063			goto out;
4064
4065found_delayed_extent:
4066		newex->ec_len = min(end - newex->ec_block,
4067						(ext4_lblk_t)EXT_INIT_MAX_LEN);
4068		if (ret == nr_pages && bh != NULL &&
4069			newex->ec_len < EXT_INIT_MAX_LEN &&
4070			buffer_delay(bh)) {
4071			/* Have not collected an extent and continue. */
4072			for (index = 0; index < ret; index++)
4073				page_cache_release(pages[index]);
4074			goto repeat;
4075		}
4076
4077		for (index = 0; index < ret; index++)
4078			page_cache_release(pages[index]);
4079		kfree(pages);
4080	}
4081
4082	physical = (__u64)newex->ec_start << blksize_bits;
4083	length =   (__u64)newex->ec_len << blksize_bits;
4084
4085	if (ex && ext4_ext_is_uninitialized(ex))
4086		flags |= FIEMAP_EXTENT_UNWRITTEN;
4087
4088	if (next == EXT_MAX_BLOCKS)
4089		flags |= FIEMAP_EXTENT_LAST;
4090
4091	ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4092					length, flags);
4093	if (ret < 0)
4094		return ret;
4095	if (ret == 1)
4096		return EXT_BREAK;
4097	return EXT_CONTINUE;
4098}
4099
4100/* fiemap flags we can handle specified here */
4101#define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4102
4103static int ext4_xattr_fiemap(struct inode *inode,
4104				struct fiemap_extent_info *fieinfo)
4105{
4106	__u64 physical = 0;
4107	__u64 length;
4108	__u32 flags = FIEMAP_EXTENT_LAST;
4109	int blockbits = inode->i_sb->s_blocksize_bits;
4110	int error = 0;
4111
4112	/* in-inode? */
4113	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4114		struct ext4_iloc iloc;
4115		int offset;	/* offset of xattr in inode */
4116
4117		error = ext4_get_inode_loc(inode, &iloc);
4118		if (error)
4119			return error;
4120		physical = iloc.bh->b_blocknr << blockbits;
4121		offset = EXT4_GOOD_OLD_INODE_SIZE +
4122				EXT4_I(inode)->i_extra_isize;
4123		physical += offset;
4124		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4125		flags |= FIEMAP_EXTENT_DATA_INLINE;
4126		brelse(iloc.bh);
4127	} else { /* external block */
4128		physical = EXT4_I(inode)->i_file_acl << blockbits;
4129		length = inode->i_sb->s_blocksize;
4130	}
4131
4132	if (physical)
4133		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4134						length, flags);
4135	return (error < 0 ? error : 0);
4136}
4137
4138/*
4139 * ext4_ext_punch_hole
4140 *
4141 * Punches a hole of "length" bytes in a file starting
4142 * at byte "offset"
4143 *
4144 * @inode:  The inode of the file to punch a hole in
4145 * @offset: The starting byte offset of the hole
4146 * @length: The length of the hole
4147 *
4148 * Returns the number of blocks removed or negative on err
4149 */
4150int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4151{
4152	struct inode *inode = file->f_path.dentry->d_inode;
4153	struct super_block *sb = inode->i_sb;
4154	struct ext4_ext_cache cache_ex;
4155	ext4_lblk_t first_block, last_block, num_blocks, iblock, max_blocks;
4156	struct address_space *mapping = inode->i_mapping;
4157	struct ext4_map_blocks map;
4158	handle_t *handle;
4159	loff_t first_block_offset, last_block_offset, block_len;
4160	loff_t first_page, last_page, first_page_offset, last_page_offset;
4161	int ret, credits, blocks_released, err = 0;
4162
4163	first_block = (offset + sb->s_blocksize - 1) >>
4164		EXT4_BLOCK_SIZE_BITS(sb);
4165	last_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4166
4167	first_block_offset = first_block << EXT4_BLOCK_SIZE_BITS(sb);
4168	last_block_offset = last_block << EXT4_BLOCK_SIZE_BITS(sb);
4169
4170	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4171	last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4172
4173	first_page_offset = first_page << PAGE_CACHE_SHIFT;
4174	last_page_offset = last_page << PAGE_CACHE_SHIFT;
4175
4176	/*
4177	 * Write out all dirty pages to avoid race conditions
4178	 * Then release them.
4179	 */
4180	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4181		err = filemap_write_and_wait_range(mapping,
4182			first_page_offset == 0 ? 0 : first_page_offset-1,
4183			last_page_offset);
4184
4185			if (err)
4186				return err;
4187	}
4188
4189	/* Now release the pages */
4190	if (last_page_offset > first_page_offset) {
4191		truncate_inode_pages_range(mapping, first_page_offset,
4192					   last_page_offset-1);
4193	}
4194
4195	/* finish any pending end_io work */
4196	ext4_flush_completed_IO(inode);
4197
4198	credits = ext4_writepage_trans_blocks(inode);
4199	handle = ext4_journal_start(inode, credits);
4200	if (IS_ERR(handle))
4201		return PTR_ERR(handle);
4202
4203	err = ext4_orphan_add(handle, inode);
4204	if (err)
4205		goto out;
4206
4207	/*
4208	 * Now we need to zero out the un block aligned data.
4209	 * If the file is smaller than a block, just
4210	 * zero out the middle
4211	 */
4212	if (first_block > last_block)
4213		ext4_block_zero_page_range(handle, mapping, offset, length);
4214	else {
4215		/* zero out the head of the hole before the first block */
4216		block_len  = first_block_offset - offset;
4217		if (block_len > 0)
4218			ext4_block_zero_page_range(handle, mapping,
4219						   offset, block_len);
4220
4221		/* zero out the tail of the hole after the last block */
4222		block_len = offset + length - last_block_offset;
4223		if (block_len > 0) {
4224			ext4_block_zero_page_range(handle, mapping,
4225					last_block_offset, block_len);
4226		}
4227	}
4228
4229	/* If there are no blocks to remove, return now */
4230	if (first_block >= last_block)
4231		goto out;
4232
4233	down_write(&EXT4_I(inode)->i_data_sem);
4234	ext4_ext_invalidate_cache(inode);
4235	ext4_discard_preallocations(inode);
4236
4237	/*
4238	 * Loop over all the blocks and identify blocks
4239	 * that need to be punched out
4240	 */
4241	iblock = first_block;
4242	blocks_released = 0;
4243	while (iblock < last_block) {
4244		max_blocks = last_block - iblock;
4245		num_blocks = 1;
4246		memset(&map, 0, sizeof(map));
4247		map.m_lblk = iblock;
4248		map.m_len = max_blocks;
4249		ret = ext4_ext_map_blocks(handle, inode, &map,
4250			EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
4251
4252		if (ret > 0) {
4253			blocks_released += ret;
4254			num_blocks = ret;
4255		} else if (ret == 0) {
4256			/*
4257			 * If map blocks could not find the block,
4258			 * then it is in a hole.  If the hole was
4259			 * not already cached, then map blocks should
4260			 * put it in the cache.  So we can get the hole
4261			 * out of the cache
4262			 */
4263			memset(&cache_ex, 0, sizeof(cache_ex));
4264			if ((ext4_ext_check_cache(inode, iblock, &cache_ex)) &&
4265				!cache_ex.ec_start) {
4266
4267				/* The hole is cached */
4268				num_blocks = cache_ex.ec_block +
4269				cache_ex.ec_len - iblock;
4270
4271			} else {
4272				/* The block could not be identified */
4273				err = -EIO;
4274				break;
4275			}
4276		} else {
4277			/* Map blocks error */
4278			err = ret;
4279			break;
4280		}
4281
4282		if (num_blocks == 0) {
4283			/* This condition should never happen */
4284			ext_debug("Block lookup failed");
4285			err = -EIO;
4286			break;
4287		}
4288
4289		iblock += num_blocks;
4290	}
4291
4292	if (blocks_released > 0) {
4293		ext4_ext_invalidate_cache(inode);
4294		ext4_discard_preallocations(inode);
4295	}
4296
4297	if (IS_SYNC(inode))
4298		ext4_handle_sync(handle);
4299
4300	up_write(&EXT4_I(inode)->i_data_sem);
4301
4302out:
4303	ext4_orphan_del(handle, inode);
4304	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4305	ext4_mark_inode_dirty(handle, inode);
4306	ext4_journal_stop(handle);
4307	return err;
4308}
4309int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4310		__u64 start, __u64 len)
4311{
4312	ext4_lblk_t start_blk;
4313	int error = 0;
4314
4315	/* fallback to generic here if not in extents fmt */
4316	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4317		return generic_block_fiemap(inode, fieinfo, start, len,
4318			ext4_get_block);
4319
4320	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4321		return -EBADR;
4322
4323	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4324		error = ext4_xattr_fiemap(inode, fieinfo);
4325	} else {
4326		ext4_lblk_t len_blks;
4327		__u64 last_blk;
4328
4329		start_blk = start >> inode->i_sb->s_blocksize_bits;
4330		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4331		if (last_blk >= EXT_MAX_BLOCKS)
4332			last_blk = EXT_MAX_BLOCKS-1;
4333		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4334
4335		/*
4336		 * Walk the extent tree gathering extent information.
4337		 * ext4_ext_fiemap_cb will push extents back to user.
4338		 */
4339		error = ext4_ext_walk_space(inode, start_blk, len_blks,
4340					  ext4_ext_fiemap_cb, fieinfo);
4341	}
4342
4343	return error;
4344}
4345