extents.c revision d100eef2440fea13e4f09e88b1c8bcbca64beb9f
1/*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 *   Copyright (c) 2005, Bull S.A.
7 *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21 */
22
23/*
24 * Extents support for EXT4
25 *
26 * TODO:
27 *   - ext4*_error() should be used in some situations
28 *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 *   - smart tree reduction
30 */
31
32#include <linux/fs.h>
33#include <linux/time.h>
34#include <linux/jbd2.h>
35#include <linux/highuid.h>
36#include <linux/pagemap.h>
37#include <linux/quotaops.h>
38#include <linux/string.h>
39#include <linux/slab.h>
40#include <linux/falloc.h>
41#include <asm/uaccess.h>
42#include <linux/fiemap.h>
43#include "ext4_jbd2.h"
44#include "ext4_extents.h"
45#include "xattr.h"
46
47#include <trace/events/ext4.h>
48
49/*
50 * used by extent splitting.
51 */
52#define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
53					due to ENOSPC */
54#define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
55#define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
56
57#define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
58#define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
59
60static __le32 ext4_extent_block_csum(struct inode *inode,
61				     struct ext4_extent_header *eh)
62{
63	struct ext4_inode_info *ei = EXT4_I(inode);
64	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65	__u32 csum;
66
67	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68			   EXT4_EXTENT_TAIL_OFFSET(eh));
69	return cpu_to_le32(csum);
70}
71
72static int ext4_extent_block_csum_verify(struct inode *inode,
73					 struct ext4_extent_header *eh)
74{
75	struct ext4_extent_tail *et;
76
77	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
79		return 1;
80
81	et = find_ext4_extent_tail(eh);
82	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
83		return 0;
84	return 1;
85}
86
87static void ext4_extent_block_csum_set(struct inode *inode,
88				       struct ext4_extent_header *eh)
89{
90	struct ext4_extent_tail *et;
91
92	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
94		return;
95
96	et = find_ext4_extent_tail(eh);
97	et->et_checksum = ext4_extent_block_csum(inode, eh);
98}
99
100static int ext4_split_extent(handle_t *handle,
101				struct inode *inode,
102				struct ext4_ext_path *path,
103				struct ext4_map_blocks *map,
104				int split_flag,
105				int flags);
106
107static int ext4_split_extent_at(handle_t *handle,
108			     struct inode *inode,
109			     struct ext4_ext_path *path,
110			     ext4_lblk_t split,
111			     int split_flag,
112			     int flags);
113
114static int ext4_find_delayed_extent(struct inode *inode,
115				    struct ext4_ext_cache *newex);
116
117static int ext4_ext_truncate_extend_restart(handle_t *handle,
118					    struct inode *inode,
119					    int needed)
120{
121	int err;
122
123	if (!ext4_handle_valid(handle))
124		return 0;
125	if (handle->h_buffer_credits > needed)
126		return 0;
127	err = ext4_journal_extend(handle, needed);
128	if (err <= 0)
129		return err;
130	err = ext4_truncate_restart_trans(handle, inode, needed);
131	if (err == 0)
132		err = -EAGAIN;
133
134	return err;
135}
136
137/*
138 * could return:
139 *  - EROFS
140 *  - ENOMEM
141 */
142static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143				struct ext4_ext_path *path)
144{
145	if (path->p_bh) {
146		/* path points to block */
147		return ext4_journal_get_write_access(handle, path->p_bh);
148	}
149	/* path points to leaf/index in inode body */
150	/* we use in-core data, no need to protect them */
151	return 0;
152}
153
154/*
155 * could return:
156 *  - EROFS
157 *  - ENOMEM
158 *  - EIO
159 */
160#define ext4_ext_dirty(handle, inode, path) \
161		__ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
162static int __ext4_ext_dirty(const char *where, unsigned int line,
163			    handle_t *handle, struct inode *inode,
164			    struct ext4_ext_path *path)
165{
166	int err;
167	if (path->p_bh) {
168		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
169		/* path points to block */
170		err = __ext4_handle_dirty_metadata(where, line, handle,
171						   inode, path->p_bh);
172	} else {
173		/* path points to leaf/index in inode body */
174		err = ext4_mark_inode_dirty(handle, inode);
175	}
176	return err;
177}
178
179static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
180			      struct ext4_ext_path *path,
181			      ext4_lblk_t block)
182{
183	if (path) {
184		int depth = path->p_depth;
185		struct ext4_extent *ex;
186
187		/*
188		 * Try to predict block placement assuming that we are
189		 * filling in a file which will eventually be
190		 * non-sparse --- i.e., in the case of libbfd writing
191		 * an ELF object sections out-of-order but in a way
192		 * the eventually results in a contiguous object or
193		 * executable file, or some database extending a table
194		 * space file.  However, this is actually somewhat
195		 * non-ideal if we are writing a sparse file such as
196		 * qemu or KVM writing a raw image file that is going
197		 * to stay fairly sparse, since it will end up
198		 * fragmenting the file system's free space.  Maybe we
199		 * should have some hueristics or some way to allow
200		 * userspace to pass a hint to file system,
201		 * especially if the latter case turns out to be
202		 * common.
203		 */
204		ex = path[depth].p_ext;
205		if (ex) {
206			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
207			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
208
209			if (block > ext_block)
210				return ext_pblk + (block - ext_block);
211			else
212				return ext_pblk - (ext_block - block);
213		}
214
215		/* it looks like index is empty;
216		 * try to find starting block from index itself */
217		if (path[depth].p_bh)
218			return path[depth].p_bh->b_blocknr;
219	}
220
221	/* OK. use inode's group */
222	return ext4_inode_to_goal_block(inode);
223}
224
225/*
226 * Allocation for a meta data block
227 */
228static ext4_fsblk_t
229ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
230			struct ext4_ext_path *path,
231			struct ext4_extent *ex, int *err, unsigned int flags)
232{
233	ext4_fsblk_t goal, newblock;
234
235	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
236	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
237					NULL, err);
238	return newblock;
239}
240
241static inline int ext4_ext_space_block(struct inode *inode, int check)
242{
243	int size;
244
245	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
246			/ sizeof(struct ext4_extent);
247#ifdef AGGRESSIVE_TEST
248	if (!check && size > 6)
249		size = 6;
250#endif
251	return size;
252}
253
254static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
255{
256	int size;
257
258	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
259			/ sizeof(struct ext4_extent_idx);
260#ifdef AGGRESSIVE_TEST
261	if (!check && size > 5)
262		size = 5;
263#endif
264	return size;
265}
266
267static inline int ext4_ext_space_root(struct inode *inode, int check)
268{
269	int size;
270
271	size = sizeof(EXT4_I(inode)->i_data);
272	size -= sizeof(struct ext4_extent_header);
273	size /= sizeof(struct ext4_extent);
274#ifdef AGGRESSIVE_TEST
275	if (!check && size > 3)
276		size = 3;
277#endif
278	return size;
279}
280
281static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
282{
283	int size;
284
285	size = sizeof(EXT4_I(inode)->i_data);
286	size -= sizeof(struct ext4_extent_header);
287	size /= sizeof(struct ext4_extent_idx);
288#ifdef AGGRESSIVE_TEST
289	if (!check && size > 4)
290		size = 4;
291#endif
292	return size;
293}
294
295/*
296 * Calculate the number of metadata blocks needed
297 * to allocate @blocks
298 * Worse case is one block per extent
299 */
300int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
301{
302	struct ext4_inode_info *ei = EXT4_I(inode);
303	int idxs;
304
305	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
306		/ sizeof(struct ext4_extent_idx));
307
308	/*
309	 * If the new delayed allocation block is contiguous with the
310	 * previous da block, it can share index blocks with the
311	 * previous block, so we only need to allocate a new index
312	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
313	 * an additional index block, and at ldxs**3 blocks, yet
314	 * another index blocks.
315	 */
316	if (ei->i_da_metadata_calc_len &&
317	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
318		int num = 0;
319
320		if ((ei->i_da_metadata_calc_len % idxs) == 0)
321			num++;
322		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
323			num++;
324		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
325			num++;
326			ei->i_da_metadata_calc_len = 0;
327		} else
328			ei->i_da_metadata_calc_len++;
329		ei->i_da_metadata_calc_last_lblock++;
330		return num;
331	}
332
333	/*
334	 * In the worst case we need a new set of index blocks at
335	 * every level of the inode's extent tree.
336	 */
337	ei->i_da_metadata_calc_len = 1;
338	ei->i_da_metadata_calc_last_lblock = lblock;
339	return ext_depth(inode) + 1;
340}
341
342static int
343ext4_ext_max_entries(struct inode *inode, int depth)
344{
345	int max;
346
347	if (depth == ext_depth(inode)) {
348		if (depth == 0)
349			max = ext4_ext_space_root(inode, 1);
350		else
351			max = ext4_ext_space_root_idx(inode, 1);
352	} else {
353		if (depth == 0)
354			max = ext4_ext_space_block(inode, 1);
355		else
356			max = ext4_ext_space_block_idx(inode, 1);
357	}
358
359	return max;
360}
361
362static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
363{
364	ext4_fsblk_t block = ext4_ext_pblock(ext);
365	int len = ext4_ext_get_actual_len(ext);
366
367	if (len == 0)
368		return 0;
369	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
370}
371
372static int ext4_valid_extent_idx(struct inode *inode,
373				struct ext4_extent_idx *ext_idx)
374{
375	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
376
377	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
378}
379
380static int ext4_valid_extent_entries(struct inode *inode,
381				struct ext4_extent_header *eh,
382				int depth)
383{
384	unsigned short entries;
385	if (eh->eh_entries == 0)
386		return 1;
387
388	entries = le16_to_cpu(eh->eh_entries);
389
390	if (depth == 0) {
391		/* leaf entries */
392		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
393		while (entries) {
394			if (!ext4_valid_extent(inode, ext))
395				return 0;
396			ext++;
397			entries--;
398		}
399	} else {
400		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
401		while (entries) {
402			if (!ext4_valid_extent_idx(inode, ext_idx))
403				return 0;
404			ext_idx++;
405			entries--;
406		}
407	}
408	return 1;
409}
410
411static int __ext4_ext_check(const char *function, unsigned int line,
412			    struct inode *inode, struct ext4_extent_header *eh,
413			    int depth)
414{
415	const char *error_msg;
416	int max = 0;
417
418	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
419		error_msg = "invalid magic";
420		goto corrupted;
421	}
422	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
423		error_msg = "unexpected eh_depth";
424		goto corrupted;
425	}
426	if (unlikely(eh->eh_max == 0)) {
427		error_msg = "invalid eh_max";
428		goto corrupted;
429	}
430	max = ext4_ext_max_entries(inode, depth);
431	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
432		error_msg = "too large eh_max";
433		goto corrupted;
434	}
435	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
436		error_msg = "invalid eh_entries";
437		goto corrupted;
438	}
439	if (!ext4_valid_extent_entries(inode, eh, depth)) {
440		error_msg = "invalid extent entries";
441		goto corrupted;
442	}
443	/* Verify checksum on non-root extent tree nodes */
444	if (ext_depth(inode) != depth &&
445	    !ext4_extent_block_csum_verify(inode, eh)) {
446		error_msg = "extent tree corrupted";
447		goto corrupted;
448	}
449	return 0;
450
451corrupted:
452	ext4_error_inode(inode, function, line, 0,
453			"bad header/extent: %s - magic %x, "
454			"entries %u, max %u(%u), depth %u(%u)",
455			error_msg, le16_to_cpu(eh->eh_magic),
456			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
457			max, le16_to_cpu(eh->eh_depth), depth);
458
459	return -EIO;
460}
461
462#define ext4_ext_check(inode, eh, depth)	\
463	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
464
465int ext4_ext_check_inode(struct inode *inode)
466{
467	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
468}
469
470static int __ext4_ext_check_block(const char *function, unsigned int line,
471				  struct inode *inode,
472				  struct ext4_extent_header *eh,
473				  int depth,
474				  struct buffer_head *bh)
475{
476	int ret;
477
478	if (buffer_verified(bh))
479		return 0;
480	ret = ext4_ext_check(inode, eh, depth);
481	if (ret)
482		return ret;
483	set_buffer_verified(bh);
484	return ret;
485}
486
487#define ext4_ext_check_block(inode, eh, depth, bh)	\
488	__ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
489
490#ifdef EXT_DEBUG
491static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
492{
493	int k, l = path->p_depth;
494
495	ext_debug("path:");
496	for (k = 0; k <= l; k++, path++) {
497		if (path->p_idx) {
498		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
499			    ext4_idx_pblock(path->p_idx));
500		} else if (path->p_ext) {
501			ext_debug("  %d:[%d]%d:%llu ",
502				  le32_to_cpu(path->p_ext->ee_block),
503				  ext4_ext_is_uninitialized(path->p_ext),
504				  ext4_ext_get_actual_len(path->p_ext),
505				  ext4_ext_pblock(path->p_ext));
506		} else
507			ext_debug("  []");
508	}
509	ext_debug("\n");
510}
511
512static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
513{
514	int depth = ext_depth(inode);
515	struct ext4_extent_header *eh;
516	struct ext4_extent *ex;
517	int i;
518
519	if (!path)
520		return;
521
522	eh = path[depth].p_hdr;
523	ex = EXT_FIRST_EXTENT(eh);
524
525	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
526
527	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
528		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
529			  ext4_ext_is_uninitialized(ex),
530			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
531	}
532	ext_debug("\n");
533}
534
535static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
536			ext4_fsblk_t newblock, int level)
537{
538	int depth = ext_depth(inode);
539	struct ext4_extent *ex;
540
541	if (depth != level) {
542		struct ext4_extent_idx *idx;
543		idx = path[level].p_idx;
544		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
545			ext_debug("%d: move %d:%llu in new index %llu\n", level,
546					le32_to_cpu(idx->ei_block),
547					ext4_idx_pblock(idx),
548					newblock);
549			idx++;
550		}
551
552		return;
553	}
554
555	ex = path[depth].p_ext;
556	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
557		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
558				le32_to_cpu(ex->ee_block),
559				ext4_ext_pblock(ex),
560				ext4_ext_is_uninitialized(ex),
561				ext4_ext_get_actual_len(ex),
562				newblock);
563		ex++;
564	}
565}
566
567#else
568#define ext4_ext_show_path(inode, path)
569#define ext4_ext_show_leaf(inode, path)
570#define ext4_ext_show_move(inode, path, newblock, level)
571#endif
572
573void ext4_ext_drop_refs(struct ext4_ext_path *path)
574{
575	int depth = path->p_depth;
576	int i;
577
578	for (i = 0; i <= depth; i++, path++)
579		if (path->p_bh) {
580			brelse(path->p_bh);
581			path->p_bh = NULL;
582		}
583}
584
585/*
586 * ext4_ext_binsearch_idx:
587 * binary search for the closest index of the given block
588 * the header must be checked before calling this
589 */
590static void
591ext4_ext_binsearch_idx(struct inode *inode,
592			struct ext4_ext_path *path, ext4_lblk_t block)
593{
594	struct ext4_extent_header *eh = path->p_hdr;
595	struct ext4_extent_idx *r, *l, *m;
596
597
598	ext_debug("binsearch for %u(idx):  ", block);
599
600	l = EXT_FIRST_INDEX(eh) + 1;
601	r = EXT_LAST_INDEX(eh);
602	while (l <= r) {
603		m = l + (r - l) / 2;
604		if (block < le32_to_cpu(m->ei_block))
605			r = m - 1;
606		else
607			l = m + 1;
608		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
609				m, le32_to_cpu(m->ei_block),
610				r, le32_to_cpu(r->ei_block));
611	}
612
613	path->p_idx = l - 1;
614	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
615		  ext4_idx_pblock(path->p_idx));
616
617#ifdef CHECK_BINSEARCH
618	{
619		struct ext4_extent_idx *chix, *ix;
620		int k;
621
622		chix = ix = EXT_FIRST_INDEX(eh);
623		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
624		  if (k != 0 &&
625		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
626				printk(KERN_DEBUG "k=%d, ix=0x%p, "
627				       "first=0x%p\n", k,
628				       ix, EXT_FIRST_INDEX(eh));
629				printk(KERN_DEBUG "%u <= %u\n",
630				       le32_to_cpu(ix->ei_block),
631				       le32_to_cpu(ix[-1].ei_block));
632			}
633			BUG_ON(k && le32_to_cpu(ix->ei_block)
634					   <= le32_to_cpu(ix[-1].ei_block));
635			if (block < le32_to_cpu(ix->ei_block))
636				break;
637			chix = ix;
638		}
639		BUG_ON(chix != path->p_idx);
640	}
641#endif
642
643}
644
645/*
646 * ext4_ext_binsearch:
647 * binary search for closest extent of the given block
648 * the header must be checked before calling this
649 */
650static void
651ext4_ext_binsearch(struct inode *inode,
652		struct ext4_ext_path *path, ext4_lblk_t block)
653{
654	struct ext4_extent_header *eh = path->p_hdr;
655	struct ext4_extent *r, *l, *m;
656
657	if (eh->eh_entries == 0) {
658		/*
659		 * this leaf is empty:
660		 * we get such a leaf in split/add case
661		 */
662		return;
663	}
664
665	ext_debug("binsearch for %u:  ", block);
666
667	l = EXT_FIRST_EXTENT(eh) + 1;
668	r = EXT_LAST_EXTENT(eh);
669
670	while (l <= r) {
671		m = l + (r - l) / 2;
672		if (block < le32_to_cpu(m->ee_block))
673			r = m - 1;
674		else
675			l = m + 1;
676		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
677				m, le32_to_cpu(m->ee_block),
678				r, le32_to_cpu(r->ee_block));
679	}
680
681	path->p_ext = l - 1;
682	ext_debug("  -> %d:%llu:[%d]%d ",
683			le32_to_cpu(path->p_ext->ee_block),
684			ext4_ext_pblock(path->p_ext),
685			ext4_ext_is_uninitialized(path->p_ext),
686			ext4_ext_get_actual_len(path->p_ext));
687
688#ifdef CHECK_BINSEARCH
689	{
690		struct ext4_extent *chex, *ex;
691		int k;
692
693		chex = ex = EXT_FIRST_EXTENT(eh);
694		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
695			BUG_ON(k && le32_to_cpu(ex->ee_block)
696					  <= le32_to_cpu(ex[-1].ee_block));
697			if (block < le32_to_cpu(ex->ee_block))
698				break;
699			chex = ex;
700		}
701		BUG_ON(chex != path->p_ext);
702	}
703#endif
704
705}
706
707int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
708{
709	struct ext4_extent_header *eh;
710
711	eh = ext_inode_hdr(inode);
712	eh->eh_depth = 0;
713	eh->eh_entries = 0;
714	eh->eh_magic = EXT4_EXT_MAGIC;
715	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
716	ext4_mark_inode_dirty(handle, inode);
717	ext4_ext_invalidate_cache(inode);
718	return 0;
719}
720
721struct ext4_ext_path *
722ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
723					struct ext4_ext_path *path)
724{
725	struct ext4_extent_header *eh;
726	struct buffer_head *bh;
727	short int depth, i, ppos = 0, alloc = 0;
728	int ret;
729
730	eh = ext_inode_hdr(inode);
731	depth = ext_depth(inode);
732
733	/* account possible depth increase */
734	if (!path) {
735		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
736				GFP_NOFS);
737		if (!path)
738			return ERR_PTR(-ENOMEM);
739		alloc = 1;
740	}
741	path[0].p_hdr = eh;
742	path[0].p_bh = NULL;
743
744	i = depth;
745	/* walk through the tree */
746	while (i) {
747		ext_debug("depth %d: num %d, max %d\n",
748			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
749
750		ext4_ext_binsearch_idx(inode, path + ppos, block);
751		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
752		path[ppos].p_depth = i;
753		path[ppos].p_ext = NULL;
754
755		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
756		if (unlikely(!bh)) {
757			ret = -ENOMEM;
758			goto err;
759		}
760		if (!bh_uptodate_or_lock(bh)) {
761			trace_ext4_ext_load_extent(inode, block,
762						path[ppos].p_block);
763			ret = bh_submit_read(bh);
764			if (ret < 0) {
765				put_bh(bh);
766				goto err;
767			}
768		}
769		eh = ext_block_hdr(bh);
770		ppos++;
771		if (unlikely(ppos > depth)) {
772			put_bh(bh);
773			EXT4_ERROR_INODE(inode,
774					 "ppos %d > depth %d", ppos, depth);
775			ret = -EIO;
776			goto err;
777		}
778		path[ppos].p_bh = bh;
779		path[ppos].p_hdr = eh;
780		i--;
781
782		ret = ext4_ext_check_block(inode, eh, i, bh);
783		if (ret < 0)
784			goto err;
785	}
786
787	path[ppos].p_depth = i;
788	path[ppos].p_ext = NULL;
789	path[ppos].p_idx = NULL;
790
791	/* find extent */
792	ext4_ext_binsearch(inode, path + ppos, block);
793	/* if not an empty leaf */
794	if (path[ppos].p_ext)
795		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
796
797	ext4_ext_show_path(inode, path);
798
799	return path;
800
801err:
802	ext4_ext_drop_refs(path);
803	if (alloc)
804		kfree(path);
805	return ERR_PTR(ret);
806}
807
808/*
809 * ext4_ext_insert_index:
810 * insert new index [@logical;@ptr] into the block at @curp;
811 * check where to insert: before @curp or after @curp
812 */
813static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
814				 struct ext4_ext_path *curp,
815				 int logical, ext4_fsblk_t ptr)
816{
817	struct ext4_extent_idx *ix;
818	int len, err;
819
820	err = ext4_ext_get_access(handle, inode, curp);
821	if (err)
822		return err;
823
824	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
825		EXT4_ERROR_INODE(inode,
826				 "logical %d == ei_block %d!",
827				 logical, le32_to_cpu(curp->p_idx->ei_block));
828		return -EIO;
829	}
830
831	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
832			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
833		EXT4_ERROR_INODE(inode,
834				 "eh_entries %d >= eh_max %d!",
835				 le16_to_cpu(curp->p_hdr->eh_entries),
836				 le16_to_cpu(curp->p_hdr->eh_max));
837		return -EIO;
838	}
839
840	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
841		/* insert after */
842		ext_debug("insert new index %d after: %llu\n", logical, ptr);
843		ix = curp->p_idx + 1;
844	} else {
845		/* insert before */
846		ext_debug("insert new index %d before: %llu\n", logical, ptr);
847		ix = curp->p_idx;
848	}
849
850	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
851	BUG_ON(len < 0);
852	if (len > 0) {
853		ext_debug("insert new index %d: "
854				"move %d indices from 0x%p to 0x%p\n",
855				logical, len, ix, ix + 1);
856		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
857	}
858
859	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
860		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
861		return -EIO;
862	}
863
864	ix->ei_block = cpu_to_le32(logical);
865	ext4_idx_store_pblock(ix, ptr);
866	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
867
868	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
869		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
870		return -EIO;
871	}
872
873	err = ext4_ext_dirty(handle, inode, curp);
874	ext4_std_error(inode->i_sb, err);
875
876	return err;
877}
878
879/*
880 * ext4_ext_split:
881 * inserts new subtree into the path, using free index entry
882 * at depth @at:
883 * - allocates all needed blocks (new leaf and all intermediate index blocks)
884 * - makes decision where to split
885 * - moves remaining extents and index entries (right to the split point)
886 *   into the newly allocated blocks
887 * - initializes subtree
888 */
889static int ext4_ext_split(handle_t *handle, struct inode *inode,
890			  unsigned int flags,
891			  struct ext4_ext_path *path,
892			  struct ext4_extent *newext, int at)
893{
894	struct buffer_head *bh = NULL;
895	int depth = ext_depth(inode);
896	struct ext4_extent_header *neh;
897	struct ext4_extent_idx *fidx;
898	int i = at, k, m, a;
899	ext4_fsblk_t newblock, oldblock;
900	__le32 border;
901	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
902	int err = 0;
903
904	/* make decision: where to split? */
905	/* FIXME: now decision is simplest: at current extent */
906
907	/* if current leaf will be split, then we should use
908	 * border from split point */
909	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
910		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
911		return -EIO;
912	}
913	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
914		border = path[depth].p_ext[1].ee_block;
915		ext_debug("leaf will be split."
916				" next leaf starts at %d\n",
917				  le32_to_cpu(border));
918	} else {
919		border = newext->ee_block;
920		ext_debug("leaf will be added."
921				" next leaf starts at %d\n",
922				le32_to_cpu(border));
923	}
924
925	/*
926	 * If error occurs, then we break processing
927	 * and mark filesystem read-only. index won't
928	 * be inserted and tree will be in consistent
929	 * state. Next mount will repair buffers too.
930	 */
931
932	/*
933	 * Get array to track all allocated blocks.
934	 * We need this to handle errors and free blocks
935	 * upon them.
936	 */
937	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
938	if (!ablocks)
939		return -ENOMEM;
940
941	/* allocate all needed blocks */
942	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
943	for (a = 0; a < depth - at; a++) {
944		newblock = ext4_ext_new_meta_block(handle, inode, path,
945						   newext, &err, flags);
946		if (newblock == 0)
947			goto cleanup;
948		ablocks[a] = newblock;
949	}
950
951	/* initialize new leaf */
952	newblock = ablocks[--a];
953	if (unlikely(newblock == 0)) {
954		EXT4_ERROR_INODE(inode, "newblock == 0!");
955		err = -EIO;
956		goto cleanup;
957	}
958	bh = sb_getblk(inode->i_sb, newblock);
959	if (unlikely(!bh)) {
960		err = -ENOMEM;
961		goto cleanup;
962	}
963	lock_buffer(bh);
964
965	err = ext4_journal_get_create_access(handle, bh);
966	if (err)
967		goto cleanup;
968
969	neh = ext_block_hdr(bh);
970	neh->eh_entries = 0;
971	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
972	neh->eh_magic = EXT4_EXT_MAGIC;
973	neh->eh_depth = 0;
974
975	/* move remainder of path[depth] to the new leaf */
976	if (unlikely(path[depth].p_hdr->eh_entries !=
977		     path[depth].p_hdr->eh_max)) {
978		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
979				 path[depth].p_hdr->eh_entries,
980				 path[depth].p_hdr->eh_max);
981		err = -EIO;
982		goto cleanup;
983	}
984	/* start copy from next extent */
985	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
986	ext4_ext_show_move(inode, path, newblock, depth);
987	if (m) {
988		struct ext4_extent *ex;
989		ex = EXT_FIRST_EXTENT(neh);
990		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
991		le16_add_cpu(&neh->eh_entries, m);
992	}
993
994	ext4_extent_block_csum_set(inode, neh);
995	set_buffer_uptodate(bh);
996	unlock_buffer(bh);
997
998	err = ext4_handle_dirty_metadata(handle, inode, bh);
999	if (err)
1000		goto cleanup;
1001	brelse(bh);
1002	bh = NULL;
1003
1004	/* correct old leaf */
1005	if (m) {
1006		err = ext4_ext_get_access(handle, inode, path + depth);
1007		if (err)
1008			goto cleanup;
1009		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1010		err = ext4_ext_dirty(handle, inode, path + depth);
1011		if (err)
1012			goto cleanup;
1013
1014	}
1015
1016	/* create intermediate indexes */
1017	k = depth - at - 1;
1018	if (unlikely(k < 0)) {
1019		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1020		err = -EIO;
1021		goto cleanup;
1022	}
1023	if (k)
1024		ext_debug("create %d intermediate indices\n", k);
1025	/* insert new index into current index block */
1026	/* current depth stored in i var */
1027	i = depth - 1;
1028	while (k--) {
1029		oldblock = newblock;
1030		newblock = ablocks[--a];
1031		bh = sb_getblk(inode->i_sb, newblock);
1032		if (unlikely(!bh)) {
1033			err = -ENOMEM;
1034			goto cleanup;
1035		}
1036		lock_buffer(bh);
1037
1038		err = ext4_journal_get_create_access(handle, bh);
1039		if (err)
1040			goto cleanup;
1041
1042		neh = ext_block_hdr(bh);
1043		neh->eh_entries = cpu_to_le16(1);
1044		neh->eh_magic = EXT4_EXT_MAGIC;
1045		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1046		neh->eh_depth = cpu_to_le16(depth - i);
1047		fidx = EXT_FIRST_INDEX(neh);
1048		fidx->ei_block = border;
1049		ext4_idx_store_pblock(fidx, oldblock);
1050
1051		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1052				i, newblock, le32_to_cpu(border), oldblock);
1053
1054		/* move remainder of path[i] to the new index block */
1055		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1056					EXT_LAST_INDEX(path[i].p_hdr))) {
1057			EXT4_ERROR_INODE(inode,
1058					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1059					 le32_to_cpu(path[i].p_ext->ee_block));
1060			err = -EIO;
1061			goto cleanup;
1062		}
1063		/* start copy indexes */
1064		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1065		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1066				EXT_MAX_INDEX(path[i].p_hdr));
1067		ext4_ext_show_move(inode, path, newblock, i);
1068		if (m) {
1069			memmove(++fidx, path[i].p_idx,
1070				sizeof(struct ext4_extent_idx) * m);
1071			le16_add_cpu(&neh->eh_entries, m);
1072		}
1073		ext4_extent_block_csum_set(inode, neh);
1074		set_buffer_uptodate(bh);
1075		unlock_buffer(bh);
1076
1077		err = ext4_handle_dirty_metadata(handle, inode, bh);
1078		if (err)
1079			goto cleanup;
1080		brelse(bh);
1081		bh = NULL;
1082
1083		/* correct old index */
1084		if (m) {
1085			err = ext4_ext_get_access(handle, inode, path + i);
1086			if (err)
1087				goto cleanup;
1088			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1089			err = ext4_ext_dirty(handle, inode, path + i);
1090			if (err)
1091				goto cleanup;
1092		}
1093
1094		i--;
1095	}
1096
1097	/* insert new index */
1098	err = ext4_ext_insert_index(handle, inode, path + at,
1099				    le32_to_cpu(border), newblock);
1100
1101cleanup:
1102	if (bh) {
1103		if (buffer_locked(bh))
1104			unlock_buffer(bh);
1105		brelse(bh);
1106	}
1107
1108	if (err) {
1109		/* free all allocated blocks in error case */
1110		for (i = 0; i < depth; i++) {
1111			if (!ablocks[i])
1112				continue;
1113			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1114					 EXT4_FREE_BLOCKS_METADATA);
1115		}
1116	}
1117	kfree(ablocks);
1118
1119	return err;
1120}
1121
1122/*
1123 * ext4_ext_grow_indepth:
1124 * implements tree growing procedure:
1125 * - allocates new block
1126 * - moves top-level data (index block or leaf) into the new block
1127 * - initializes new top-level, creating index that points to the
1128 *   just created block
1129 */
1130static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1131				 unsigned int flags,
1132				 struct ext4_extent *newext)
1133{
1134	struct ext4_extent_header *neh;
1135	struct buffer_head *bh;
1136	ext4_fsblk_t newblock;
1137	int err = 0;
1138
1139	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1140		newext, &err, flags);
1141	if (newblock == 0)
1142		return err;
1143
1144	bh = sb_getblk(inode->i_sb, newblock);
1145	if (unlikely(!bh))
1146		return -ENOMEM;
1147	lock_buffer(bh);
1148
1149	err = ext4_journal_get_create_access(handle, bh);
1150	if (err) {
1151		unlock_buffer(bh);
1152		goto out;
1153	}
1154
1155	/* move top-level index/leaf into new block */
1156	memmove(bh->b_data, EXT4_I(inode)->i_data,
1157		sizeof(EXT4_I(inode)->i_data));
1158
1159	/* set size of new block */
1160	neh = ext_block_hdr(bh);
1161	/* old root could have indexes or leaves
1162	 * so calculate e_max right way */
1163	if (ext_depth(inode))
1164		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1165	else
1166		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1167	neh->eh_magic = EXT4_EXT_MAGIC;
1168	ext4_extent_block_csum_set(inode, neh);
1169	set_buffer_uptodate(bh);
1170	unlock_buffer(bh);
1171
1172	err = ext4_handle_dirty_metadata(handle, inode, bh);
1173	if (err)
1174		goto out;
1175
1176	/* Update top-level index: num,max,pointer */
1177	neh = ext_inode_hdr(inode);
1178	neh->eh_entries = cpu_to_le16(1);
1179	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1180	if (neh->eh_depth == 0) {
1181		/* Root extent block becomes index block */
1182		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1183		EXT_FIRST_INDEX(neh)->ei_block =
1184			EXT_FIRST_EXTENT(neh)->ee_block;
1185	}
1186	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1187		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1188		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1189		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1190
1191	le16_add_cpu(&neh->eh_depth, 1);
1192	ext4_mark_inode_dirty(handle, inode);
1193out:
1194	brelse(bh);
1195
1196	return err;
1197}
1198
1199/*
1200 * ext4_ext_create_new_leaf:
1201 * finds empty index and adds new leaf.
1202 * if no free index is found, then it requests in-depth growing.
1203 */
1204static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1205				    unsigned int flags,
1206				    struct ext4_ext_path *path,
1207				    struct ext4_extent *newext)
1208{
1209	struct ext4_ext_path *curp;
1210	int depth, i, err = 0;
1211
1212repeat:
1213	i = depth = ext_depth(inode);
1214
1215	/* walk up to the tree and look for free index entry */
1216	curp = path + depth;
1217	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1218		i--;
1219		curp--;
1220	}
1221
1222	/* we use already allocated block for index block,
1223	 * so subsequent data blocks should be contiguous */
1224	if (EXT_HAS_FREE_INDEX(curp)) {
1225		/* if we found index with free entry, then use that
1226		 * entry: create all needed subtree and add new leaf */
1227		err = ext4_ext_split(handle, inode, flags, path, newext, i);
1228		if (err)
1229			goto out;
1230
1231		/* refill path */
1232		ext4_ext_drop_refs(path);
1233		path = ext4_ext_find_extent(inode,
1234				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1235				    path);
1236		if (IS_ERR(path))
1237			err = PTR_ERR(path);
1238	} else {
1239		/* tree is full, time to grow in depth */
1240		err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1241		if (err)
1242			goto out;
1243
1244		/* refill path */
1245		ext4_ext_drop_refs(path);
1246		path = ext4_ext_find_extent(inode,
1247				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1248				    path);
1249		if (IS_ERR(path)) {
1250			err = PTR_ERR(path);
1251			goto out;
1252		}
1253
1254		/*
1255		 * only first (depth 0 -> 1) produces free space;
1256		 * in all other cases we have to split the grown tree
1257		 */
1258		depth = ext_depth(inode);
1259		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1260			/* now we need to split */
1261			goto repeat;
1262		}
1263	}
1264
1265out:
1266	return err;
1267}
1268
1269/*
1270 * search the closest allocated block to the left for *logical
1271 * and returns it at @logical + it's physical address at @phys
1272 * if *logical is the smallest allocated block, the function
1273 * returns 0 at @phys
1274 * return value contains 0 (success) or error code
1275 */
1276static int ext4_ext_search_left(struct inode *inode,
1277				struct ext4_ext_path *path,
1278				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1279{
1280	struct ext4_extent_idx *ix;
1281	struct ext4_extent *ex;
1282	int depth, ee_len;
1283
1284	if (unlikely(path == NULL)) {
1285		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1286		return -EIO;
1287	}
1288	depth = path->p_depth;
1289	*phys = 0;
1290
1291	if (depth == 0 && path->p_ext == NULL)
1292		return 0;
1293
1294	/* usually extent in the path covers blocks smaller
1295	 * then *logical, but it can be that extent is the
1296	 * first one in the file */
1297
1298	ex = path[depth].p_ext;
1299	ee_len = ext4_ext_get_actual_len(ex);
1300	if (*logical < le32_to_cpu(ex->ee_block)) {
1301		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1302			EXT4_ERROR_INODE(inode,
1303					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1304					 *logical, le32_to_cpu(ex->ee_block));
1305			return -EIO;
1306		}
1307		while (--depth >= 0) {
1308			ix = path[depth].p_idx;
1309			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1310				EXT4_ERROR_INODE(inode,
1311				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1312				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1313				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1314		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1315				  depth);
1316				return -EIO;
1317			}
1318		}
1319		return 0;
1320	}
1321
1322	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1323		EXT4_ERROR_INODE(inode,
1324				 "logical %d < ee_block %d + ee_len %d!",
1325				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1326		return -EIO;
1327	}
1328
1329	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1330	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1331	return 0;
1332}
1333
1334/*
1335 * search the closest allocated block to the right for *logical
1336 * and returns it at @logical + it's physical address at @phys
1337 * if *logical is the largest allocated block, the function
1338 * returns 0 at @phys
1339 * return value contains 0 (success) or error code
1340 */
1341static int ext4_ext_search_right(struct inode *inode,
1342				 struct ext4_ext_path *path,
1343				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1344				 struct ext4_extent **ret_ex)
1345{
1346	struct buffer_head *bh = NULL;
1347	struct ext4_extent_header *eh;
1348	struct ext4_extent_idx *ix;
1349	struct ext4_extent *ex;
1350	ext4_fsblk_t block;
1351	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1352	int ee_len;
1353
1354	if (unlikely(path == NULL)) {
1355		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1356		return -EIO;
1357	}
1358	depth = path->p_depth;
1359	*phys = 0;
1360
1361	if (depth == 0 && path->p_ext == NULL)
1362		return 0;
1363
1364	/* usually extent in the path covers blocks smaller
1365	 * then *logical, but it can be that extent is the
1366	 * first one in the file */
1367
1368	ex = path[depth].p_ext;
1369	ee_len = ext4_ext_get_actual_len(ex);
1370	if (*logical < le32_to_cpu(ex->ee_block)) {
1371		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1372			EXT4_ERROR_INODE(inode,
1373					 "first_extent(path[%d].p_hdr) != ex",
1374					 depth);
1375			return -EIO;
1376		}
1377		while (--depth >= 0) {
1378			ix = path[depth].p_idx;
1379			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1380				EXT4_ERROR_INODE(inode,
1381						 "ix != EXT_FIRST_INDEX *logical %d!",
1382						 *logical);
1383				return -EIO;
1384			}
1385		}
1386		goto found_extent;
1387	}
1388
1389	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1390		EXT4_ERROR_INODE(inode,
1391				 "logical %d < ee_block %d + ee_len %d!",
1392				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1393		return -EIO;
1394	}
1395
1396	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1397		/* next allocated block in this leaf */
1398		ex++;
1399		goto found_extent;
1400	}
1401
1402	/* go up and search for index to the right */
1403	while (--depth >= 0) {
1404		ix = path[depth].p_idx;
1405		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1406			goto got_index;
1407	}
1408
1409	/* we've gone up to the root and found no index to the right */
1410	return 0;
1411
1412got_index:
1413	/* we've found index to the right, let's
1414	 * follow it and find the closest allocated
1415	 * block to the right */
1416	ix++;
1417	block = ext4_idx_pblock(ix);
1418	while (++depth < path->p_depth) {
1419		bh = sb_bread(inode->i_sb, block);
1420		if (bh == NULL)
1421			return -EIO;
1422		eh = ext_block_hdr(bh);
1423		/* subtract from p_depth to get proper eh_depth */
1424		if (ext4_ext_check_block(inode, eh,
1425					 path->p_depth - depth, bh)) {
1426			put_bh(bh);
1427			return -EIO;
1428		}
1429		ix = EXT_FIRST_INDEX(eh);
1430		block = ext4_idx_pblock(ix);
1431		put_bh(bh);
1432	}
1433
1434	bh = sb_bread(inode->i_sb, block);
1435	if (bh == NULL)
1436		return -EIO;
1437	eh = ext_block_hdr(bh);
1438	if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1439		put_bh(bh);
1440		return -EIO;
1441	}
1442	ex = EXT_FIRST_EXTENT(eh);
1443found_extent:
1444	*logical = le32_to_cpu(ex->ee_block);
1445	*phys = ext4_ext_pblock(ex);
1446	*ret_ex = ex;
1447	if (bh)
1448		put_bh(bh);
1449	return 0;
1450}
1451
1452/*
1453 * ext4_ext_next_allocated_block:
1454 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1455 * NOTE: it considers block number from index entry as
1456 * allocated block. Thus, index entries have to be consistent
1457 * with leaves.
1458 */
1459static ext4_lblk_t
1460ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1461{
1462	int depth;
1463
1464	BUG_ON(path == NULL);
1465	depth = path->p_depth;
1466
1467	if (depth == 0 && path->p_ext == NULL)
1468		return EXT_MAX_BLOCKS;
1469
1470	while (depth >= 0) {
1471		if (depth == path->p_depth) {
1472			/* leaf */
1473			if (path[depth].p_ext &&
1474				path[depth].p_ext !=
1475					EXT_LAST_EXTENT(path[depth].p_hdr))
1476			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1477		} else {
1478			/* index */
1479			if (path[depth].p_idx !=
1480					EXT_LAST_INDEX(path[depth].p_hdr))
1481			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1482		}
1483		depth--;
1484	}
1485
1486	return EXT_MAX_BLOCKS;
1487}
1488
1489/*
1490 * ext4_ext_next_leaf_block:
1491 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1492 */
1493static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1494{
1495	int depth;
1496
1497	BUG_ON(path == NULL);
1498	depth = path->p_depth;
1499
1500	/* zero-tree has no leaf blocks at all */
1501	if (depth == 0)
1502		return EXT_MAX_BLOCKS;
1503
1504	/* go to index block */
1505	depth--;
1506
1507	while (depth >= 0) {
1508		if (path[depth].p_idx !=
1509				EXT_LAST_INDEX(path[depth].p_hdr))
1510			return (ext4_lblk_t)
1511				le32_to_cpu(path[depth].p_idx[1].ei_block);
1512		depth--;
1513	}
1514
1515	return EXT_MAX_BLOCKS;
1516}
1517
1518/*
1519 * ext4_ext_correct_indexes:
1520 * if leaf gets modified and modified extent is first in the leaf,
1521 * then we have to correct all indexes above.
1522 * TODO: do we need to correct tree in all cases?
1523 */
1524static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1525				struct ext4_ext_path *path)
1526{
1527	struct ext4_extent_header *eh;
1528	int depth = ext_depth(inode);
1529	struct ext4_extent *ex;
1530	__le32 border;
1531	int k, err = 0;
1532
1533	eh = path[depth].p_hdr;
1534	ex = path[depth].p_ext;
1535
1536	if (unlikely(ex == NULL || eh == NULL)) {
1537		EXT4_ERROR_INODE(inode,
1538				 "ex %p == NULL or eh %p == NULL", ex, eh);
1539		return -EIO;
1540	}
1541
1542	if (depth == 0) {
1543		/* there is no tree at all */
1544		return 0;
1545	}
1546
1547	if (ex != EXT_FIRST_EXTENT(eh)) {
1548		/* we correct tree if first leaf got modified only */
1549		return 0;
1550	}
1551
1552	/*
1553	 * TODO: we need correction if border is smaller than current one
1554	 */
1555	k = depth - 1;
1556	border = path[depth].p_ext->ee_block;
1557	err = ext4_ext_get_access(handle, inode, path + k);
1558	if (err)
1559		return err;
1560	path[k].p_idx->ei_block = border;
1561	err = ext4_ext_dirty(handle, inode, path + k);
1562	if (err)
1563		return err;
1564
1565	while (k--) {
1566		/* change all left-side indexes */
1567		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1568			break;
1569		err = ext4_ext_get_access(handle, inode, path + k);
1570		if (err)
1571			break;
1572		path[k].p_idx->ei_block = border;
1573		err = ext4_ext_dirty(handle, inode, path + k);
1574		if (err)
1575			break;
1576	}
1577
1578	return err;
1579}
1580
1581int
1582ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1583				struct ext4_extent *ex2)
1584{
1585	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1586
1587	/*
1588	 * Make sure that either both extents are uninitialized, or
1589	 * both are _not_.
1590	 */
1591	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1592		return 0;
1593
1594	if (ext4_ext_is_uninitialized(ex1))
1595		max_len = EXT_UNINIT_MAX_LEN;
1596	else
1597		max_len = EXT_INIT_MAX_LEN;
1598
1599	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1600	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1601
1602	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1603			le32_to_cpu(ex2->ee_block))
1604		return 0;
1605
1606	/*
1607	 * To allow future support for preallocated extents to be added
1608	 * as an RO_COMPAT feature, refuse to merge to extents if
1609	 * this can result in the top bit of ee_len being set.
1610	 */
1611	if (ext1_ee_len + ext2_ee_len > max_len)
1612		return 0;
1613#ifdef AGGRESSIVE_TEST
1614	if (ext1_ee_len >= 4)
1615		return 0;
1616#endif
1617
1618	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1619		return 1;
1620	return 0;
1621}
1622
1623/*
1624 * This function tries to merge the "ex" extent to the next extent in the tree.
1625 * It always tries to merge towards right. If you want to merge towards
1626 * left, pass "ex - 1" as argument instead of "ex".
1627 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1628 * 1 if they got merged.
1629 */
1630static int ext4_ext_try_to_merge_right(struct inode *inode,
1631				 struct ext4_ext_path *path,
1632				 struct ext4_extent *ex)
1633{
1634	struct ext4_extent_header *eh;
1635	unsigned int depth, len;
1636	int merge_done = 0;
1637	int uninitialized = 0;
1638
1639	depth = ext_depth(inode);
1640	BUG_ON(path[depth].p_hdr == NULL);
1641	eh = path[depth].p_hdr;
1642
1643	while (ex < EXT_LAST_EXTENT(eh)) {
1644		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1645			break;
1646		/* merge with next extent! */
1647		if (ext4_ext_is_uninitialized(ex))
1648			uninitialized = 1;
1649		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1650				+ ext4_ext_get_actual_len(ex + 1));
1651		if (uninitialized)
1652			ext4_ext_mark_uninitialized(ex);
1653
1654		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1655			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1656				* sizeof(struct ext4_extent);
1657			memmove(ex + 1, ex + 2, len);
1658		}
1659		le16_add_cpu(&eh->eh_entries, -1);
1660		merge_done = 1;
1661		WARN_ON(eh->eh_entries == 0);
1662		if (!eh->eh_entries)
1663			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1664	}
1665
1666	return merge_done;
1667}
1668
1669/*
1670 * This function does a very simple check to see if we can collapse
1671 * an extent tree with a single extent tree leaf block into the inode.
1672 */
1673static void ext4_ext_try_to_merge_up(handle_t *handle,
1674				     struct inode *inode,
1675				     struct ext4_ext_path *path)
1676{
1677	size_t s;
1678	unsigned max_root = ext4_ext_space_root(inode, 0);
1679	ext4_fsblk_t blk;
1680
1681	if ((path[0].p_depth != 1) ||
1682	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1683	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1684		return;
1685
1686	/*
1687	 * We need to modify the block allocation bitmap and the block
1688	 * group descriptor to release the extent tree block.  If we
1689	 * can't get the journal credits, give up.
1690	 */
1691	if (ext4_journal_extend(handle, 2))
1692		return;
1693
1694	/*
1695	 * Copy the extent data up to the inode
1696	 */
1697	blk = ext4_idx_pblock(path[0].p_idx);
1698	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1699		sizeof(struct ext4_extent_idx);
1700	s += sizeof(struct ext4_extent_header);
1701
1702	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1703	path[0].p_depth = 0;
1704	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1705		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1706	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1707
1708	brelse(path[1].p_bh);
1709	ext4_free_blocks(handle, inode, NULL, blk, 1,
1710			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1711}
1712
1713/*
1714 * This function tries to merge the @ex extent to neighbours in the tree.
1715 * return 1 if merge left else 0.
1716 */
1717static void ext4_ext_try_to_merge(handle_t *handle,
1718				  struct inode *inode,
1719				  struct ext4_ext_path *path,
1720				  struct ext4_extent *ex) {
1721	struct ext4_extent_header *eh;
1722	unsigned int depth;
1723	int merge_done = 0;
1724
1725	depth = ext_depth(inode);
1726	BUG_ON(path[depth].p_hdr == NULL);
1727	eh = path[depth].p_hdr;
1728
1729	if (ex > EXT_FIRST_EXTENT(eh))
1730		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1731
1732	if (!merge_done)
1733		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1734
1735	ext4_ext_try_to_merge_up(handle, inode, path);
1736}
1737
1738/*
1739 * check if a portion of the "newext" extent overlaps with an
1740 * existing extent.
1741 *
1742 * If there is an overlap discovered, it updates the length of the newext
1743 * such that there will be no overlap, and then returns 1.
1744 * If there is no overlap found, it returns 0.
1745 */
1746static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1747					   struct inode *inode,
1748					   struct ext4_extent *newext,
1749					   struct ext4_ext_path *path)
1750{
1751	ext4_lblk_t b1, b2;
1752	unsigned int depth, len1;
1753	unsigned int ret = 0;
1754
1755	b1 = le32_to_cpu(newext->ee_block);
1756	len1 = ext4_ext_get_actual_len(newext);
1757	depth = ext_depth(inode);
1758	if (!path[depth].p_ext)
1759		goto out;
1760	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1761	b2 &= ~(sbi->s_cluster_ratio - 1);
1762
1763	/*
1764	 * get the next allocated block if the extent in the path
1765	 * is before the requested block(s)
1766	 */
1767	if (b2 < b1) {
1768		b2 = ext4_ext_next_allocated_block(path);
1769		if (b2 == EXT_MAX_BLOCKS)
1770			goto out;
1771		b2 &= ~(sbi->s_cluster_ratio - 1);
1772	}
1773
1774	/* check for wrap through zero on extent logical start block*/
1775	if (b1 + len1 < b1) {
1776		len1 = EXT_MAX_BLOCKS - b1;
1777		newext->ee_len = cpu_to_le16(len1);
1778		ret = 1;
1779	}
1780
1781	/* check for overlap */
1782	if (b1 + len1 > b2) {
1783		newext->ee_len = cpu_to_le16(b2 - b1);
1784		ret = 1;
1785	}
1786out:
1787	return ret;
1788}
1789
1790/*
1791 * ext4_ext_insert_extent:
1792 * tries to merge requsted extent into the existing extent or
1793 * inserts requested extent as new one into the tree,
1794 * creating new leaf in the no-space case.
1795 */
1796int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1797				struct ext4_ext_path *path,
1798				struct ext4_extent *newext, int flag)
1799{
1800	struct ext4_extent_header *eh;
1801	struct ext4_extent *ex, *fex;
1802	struct ext4_extent *nearex; /* nearest extent */
1803	struct ext4_ext_path *npath = NULL;
1804	int depth, len, err;
1805	ext4_lblk_t next;
1806	unsigned uninitialized = 0;
1807	int flags = 0;
1808
1809	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1810		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1811		return -EIO;
1812	}
1813	depth = ext_depth(inode);
1814	ex = path[depth].p_ext;
1815	if (unlikely(path[depth].p_hdr == NULL)) {
1816		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1817		return -EIO;
1818	}
1819
1820	/* try to insert block into found extent and return */
1821	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1822		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1823		ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1824			  ext4_ext_is_uninitialized(newext),
1825			  ext4_ext_get_actual_len(newext),
1826			  le32_to_cpu(ex->ee_block),
1827			  ext4_ext_is_uninitialized(ex),
1828			  ext4_ext_get_actual_len(ex),
1829			  ext4_ext_pblock(ex));
1830		err = ext4_ext_get_access(handle, inode, path + depth);
1831		if (err)
1832			return err;
1833
1834		/*
1835		 * ext4_can_extents_be_merged should have checked that either
1836		 * both extents are uninitialized, or both aren't. Thus we
1837		 * need to check only one of them here.
1838		 */
1839		if (ext4_ext_is_uninitialized(ex))
1840			uninitialized = 1;
1841		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1842					+ ext4_ext_get_actual_len(newext));
1843		if (uninitialized)
1844			ext4_ext_mark_uninitialized(ex);
1845		eh = path[depth].p_hdr;
1846		nearex = ex;
1847		goto merge;
1848	}
1849
1850	depth = ext_depth(inode);
1851	eh = path[depth].p_hdr;
1852	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1853		goto has_space;
1854
1855	/* probably next leaf has space for us? */
1856	fex = EXT_LAST_EXTENT(eh);
1857	next = EXT_MAX_BLOCKS;
1858	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1859		next = ext4_ext_next_leaf_block(path);
1860	if (next != EXT_MAX_BLOCKS) {
1861		ext_debug("next leaf block - %u\n", next);
1862		BUG_ON(npath != NULL);
1863		npath = ext4_ext_find_extent(inode, next, NULL);
1864		if (IS_ERR(npath))
1865			return PTR_ERR(npath);
1866		BUG_ON(npath->p_depth != path->p_depth);
1867		eh = npath[depth].p_hdr;
1868		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1869			ext_debug("next leaf isn't full(%d)\n",
1870				  le16_to_cpu(eh->eh_entries));
1871			path = npath;
1872			goto has_space;
1873		}
1874		ext_debug("next leaf has no free space(%d,%d)\n",
1875			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1876	}
1877
1878	/*
1879	 * There is no free space in the found leaf.
1880	 * We're gonna add a new leaf in the tree.
1881	 */
1882	if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1883		flags = EXT4_MB_USE_ROOT_BLOCKS;
1884	err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1885	if (err)
1886		goto cleanup;
1887	depth = ext_depth(inode);
1888	eh = path[depth].p_hdr;
1889
1890has_space:
1891	nearex = path[depth].p_ext;
1892
1893	err = ext4_ext_get_access(handle, inode, path + depth);
1894	if (err)
1895		goto cleanup;
1896
1897	if (!nearex) {
1898		/* there is no extent in this leaf, create first one */
1899		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1900				le32_to_cpu(newext->ee_block),
1901				ext4_ext_pblock(newext),
1902				ext4_ext_is_uninitialized(newext),
1903				ext4_ext_get_actual_len(newext));
1904		nearex = EXT_FIRST_EXTENT(eh);
1905	} else {
1906		if (le32_to_cpu(newext->ee_block)
1907			   > le32_to_cpu(nearex->ee_block)) {
1908			/* Insert after */
1909			ext_debug("insert %u:%llu:[%d]%d before: "
1910					"nearest %p\n",
1911					le32_to_cpu(newext->ee_block),
1912					ext4_ext_pblock(newext),
1913					ext4_ext_is_uninitialized(newext),
1914					ext4_ext_get_actual_len(newext),
1915					nearex);
1916			nearex++;
1917		} else {
1918			/* Insert before */
1919			BUG_ON(newext->ee_block == nearex->ee_block);
1920			ext_debug("insert %u:%llu:[%d]%d after: "
1921					"nearest %p\n",
1922					le32_to_cpu(newext->ee_block),
1923					ext4_ext_pblock(newext),
1924					ext4_ext_is_uninitialized(newext),
1925					ext4_ext_get_actual_len(newext),
1926					nearex);
1927		}
1928		len = EXT_LAST_EXTENT(eh) - nearex + 1;
1929		if (len > 0) {
1930			ext_debug("insert %u:%llu:[%d]%d: "
1931					"move %d extents from 0x%p to 0x%p\n",
1932					le32_to_cpu(newext->ee_block),
1933					ext4_ext_pblock(newext),
1934					ext4_ext_is_uninitialized(newext),
1935					ext4_ext_get_actual_len(newext),
1936					len, nearex, nearex + 1);
1937			memmove(nearex + 1, nearex,
1938				len * sizeof(struct ext4_extent));
1939		}
1940	}
1941
1942	le16_add_cpu(&eh->eh_entries, 1);
1943	path[depth].p_ext = nearex;
1944	nearex->ee_block = newext->ee_block;
1945	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1946	nearex->ee_len = newext->ee_len;
1947
1948merge:
1949	/* try to merge extents */
1950	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1951		ext4_ext_try_to_merge(handle, inode, path, nearex);
1952
1953
1954	/* time to correct all indexes above */
1955	err = ext4_ext_correct_indexes(handle, inode, path);
1956	if (err)
1957		goto cleanup;
1958
1959	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
1960
1961cleanup:
1962	if (npath) {
1963		ext4_ext_drop_refs(npath);
1964		kfree(npath);
1965	}
1966	ext4_ext_invalidate_cache(inode);
1967	return err;
1968}
1969
1970static int ext4_fill_fiemap_extents(struct inode *inode,
1971				    ext4_lblk_t block, ext4_lblk_t num,
1972				    struct fiemap_extent_info *fieinfo)
1973{
1974	struct ext4_ext_path *path = NULL;
1975	struct ext4_ext_cache newex;
1976	struct ext4_extent *ex;
1977	ext4_lblk_t next, next_del, start = 0, end = 0;
1978	ext4_lblk_t last = block + num;
1979	int exists, depth = 0, err = 0;
1980	unsigned int flags = 0;
1981	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
1982
1983	while (block < last && block != EXT_MAX_BLOCKS) {
1984		num = last - block;
1985		/* find extent for this block */
1986		down_read(&EXT4_I(inode)->i_data_sem);
1987
1988		if (path && ext_depth(inode) != depth) {
1989			/* depth was changed. we have to realloc path */
1990			kfree(path);
1991			path = NULL;
1992		}
1993
1994		path = ext4_ext_find_extent(inode, block, path);
1995		if (IS_ERR(path)) {
1996			up_read(&EXT4_I(inode)->i_data_sem);
1997			err = PTR_ERR(path);
1998			path = NULL;
1999			break;
2000		}
2001
2002		depth = ext_depth(inode);
2003		if (unlikely(path[depth].p_hdr == NULL)) {
2004			up_read(&EXT4_I(inode)->i_data_sem);
2005			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2006			err = -EIO;
2007			break;
2008		}
2009		ex = path[depth].p_ext;
2010		next = ext4_ext_next_allocated_block(path);
2011		ext4_ext_drop_refs(path);
2012
2013		flags = 0;
2014		exists = 0;
2015		if (!ex) {
2016			/* there is no extent yet, so try to allocate
2017			 * all requested space */
2018			start = block;
2019			end = block + num;
2020		} else if (le32_to_cpu(ex->ee_block) > block) {
2021			/* need to allocate space before found extent */
2022			start = block;
2023			end = le32_to_cpu(ex->ee_block);
2024			if (block + num < end)
2025				end = block + num;
2026		} else if (block >= le32_to_cpu(ex->ee_block)
2027					+ ext4_ext_get_actual_len(ex)) {
2028			/* need to allocate space after found extent */
2029			start = block;
2030			end = block + num;
2031			if (end >= next)
2032				end = next;
2033		} else if (block >= le32_to_cpu(ex->ee_block)) {
2034			/*
2035			 * some part of requested space is covered
2036			 * by found extent
2037			 */
2038			start = block;
2039			end = le32_to_cpu(ex->ee_block)
2040				+ ext4_ext_get_actual_len(ex);
2041			if (block + num < end)
2042				end = block + num;
2043			exists = 1;
2044		} else {
2045			BUG();
2046		}
2047		BUG_ON(end <= start);
2048
2049		if (!exists) {
2050			newex.ec_block = start;
2051			newex.ec_len = end - start;
2052			newex.ec_start = 0;
2053		} else {
2054			newex.ec_block = le32_to_cpu(ex->ee_block);
2055			newex.ec_len = ext4_ext_get_actual_len(ex);
2056			newex.ec_start = ext4_ext_pblock(ex);
2057			if (ext4_ext_is_uninitialized(ex))
2058				flags |= FIEMAP_EXTENT_UNWRITTEN;
2059		}
2060
2061		/*
2062		 * Find delayed extent and update newex accordingly. We call
2063		 * it even in !exists case to find out whether newex is the
2064		 * last existing extent or not.
2065		 */
2066		next_del = ext4_find_delayed_extent(inode, &newex);
2067		if (!exists && next_del) {
2068			exists = 1;
2069			flags |= FIEMAP_EXTENT_DELALLOC;
2070		}
2071		up_read(&EXT4_I(inode)->i_data_sem);
2072
2073		if (unlikely(newex.ec_len == 0)) {
2074			EXT4_ERROR_INODE(inode, "newex.ec_len == 0");
2075			err = -EIO;
2076			break;
2077		}
2078
2079		/*
2080		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2081		 * we need to check next == EXT_MAX_BLOCKS because it is
2082		 * possible that an extent is with unwritten and delayed
2083		 * status due to when an extent is delayed allocated and
2084		 * is allocated by fallocate status tree will track both of
2085		 * them in a extent.
2086		 *
2087		 * So we could return a unwritten and delayed extent, and
2088		 * its block is equal to 'next'.
2089		 */
2090		if (next == next_del && next == EXT_MAX_BLOCKS) {
2091			flags |= FIEMAP_EXTENT_LAST;
2092			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2093				     next != EXT_MAX_BLOCKS)) {
2094				EXT4_ERROR_INODE(inode,
2095						 "next extent == %u, next "
2096						 "delalloc extent = %u",
2097						 next, next_del);
2098				err = -EIO;
2099				break;
2100			}
2101		}
2102
2103		if (exists) {
2104			err = fiemap_fill_next_extent(fieinfo,
2105				(__u64)newex.ec_block << blksize_bits,
2106				(__u64)newex.ec_start << blksize_bits,
2107				(__u64)newex.ec_len << blksize_bits,
2108				flags);
2109			if (err < 0)
2110				break;
2111			if (err == 1) {
2112				err = 0;
2113				break;
2114			}
2115		}
2116
2117		block = newex.ec_block + newex.ec_len;
2118	}
2119
2120	if (path) {
2121		ext4_ext_drop_refs(path);
2122		kfree(path);
2123	}
2124
2125	return err;
2126}
2127
2128static void
2129ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
2130			__u32 len, ext4_fsblk_t start)
2131{
2132	struct ext4_ext_cache *cex;
2133	BUG_ON(len == 0);
2134	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2135	trace_ext4_ext_put_in_cache(inode, block, len, start);
2136	cex = &EXT4_I(inode)->i_cached_extent;
2137	cex->ec_block = block;
2138	cex->ec_len = len;
2139	cex->ec_start = start;
2140	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2141}
2142
2143/*
2144 * ext4_ext_put_gap_in_cache:
2145 * calculate boundaries of the gap that the requested block fits into
2146 * and cache this gap
2147 */
2148static void
2149ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2150				ext4_lblk_t block)
2151{
2152	int depth = ext_depth(inode);
2153	unsigned long len;
2154	ext4_lblk_t lblock;
2155	struct ext4_extent *ex;
2156
2157	ex = path[depth].p_ext;
2158	if (ex == NULL) {
2159		/* there is no extent yet, so gap is [0;-] */
2160		lblock = 0;
2161		len = EXT_MAX_BLOCKS;
2162		ext_debug("cache gap(whole file):");
2163	} else if (block < le32_to_cpu(ex->ee_block)) {
2164		lblock = block;
2165		len = le32_to_cpu(ex->ee_block) - block;
2166		ext_debug("cache gap(before): %u [%u:%u]",
2167				block,
2168				le32_to_cpu(ex->ee_block),
2169				 ext4_ext_get_actual_len(ex));
2170		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2171			ext4_es_insert_extent(inode, lblock, len, ~0,
2172					      EXTENT_STATUS_HOLE);
2173	} else if (block >= le32_to_cpu(ex->ee_block)
2174			+ ext4_ext_get_actual_len(ex)) {
2175		ext4_lblk_t next;
2176		lblock = le32_to_cpu(ex->ee_block)
2177			+ ext4_ext_get_actual_len(ex);
2178
2179		next = ext4_ext_next_allocated_block(path);
2180		ext_debug("cache gap(after): [%u:%u] %u",
2181				le32_to_cpu(ex->ee_block),
2182				ext4_ext_get_actual_len(ex),
2183				block);
2184		BUG_ON(next == lblock);
2185		len = next - lblock;
2186		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2187			ext4_es_insert_extent(inode, lblock, len, ~0,
2188					      EXTENT_STATUS_HOLE);
2189	} else {
2190		lblock = len = 0;
2191		BUG();
2192	}
2193
2194	ext_debug(" -> %u:%lu\n", lblock, len);
2195	ext4_ext_put_in_cache(inode, lblock, len, 0);
2196}
2197
2198/*
2199 * ext4_ext_in_cache()
2200 * Checks to see if the given block is in the cache.
2201 * If it is, the cached extent is stored in the given
2202 * cache extent pointer.
2203 *
2204 * @inode: The files inode
2205 * @block: The block to look for in the cache
2206 * @ex:    Pointer where the cached extent will be stored
2207 *         if it contains block
2208 *
2209 * Return 0 if cache is invalid; 1 if the cache is valid
2210 */
2211static int
2212ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2213		  struct ext4_extent *ex)
2214{
2215	struct ext4_ext_cache *cex;
2216	int ret = 0;
2217
2218	/*
2219	 * We borrow i_block_reservation_lock to protect i_cached_extent
2220	 */
2221	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2222	cex = &EXT4_I(inode)->i_cached_extent;
2223
2224	/* has cache valid data? */
2225	if (cex->ec_len == 0)
2226		goto errout;
2227
2228	if (in_range(block, cex->ec_block, cex->ec_len)) {
2229		ex->ee_block = cpu_to_le32(cex->ec_block);
2230		ext4_ext_store_pblock(ex, cex->ec_start);
2231		ex->ee_len = cpu_to_le16(cex->ec_len);
2232		ext_debug("%u cached by %u:%u:%llu\n",
2233				block,
2234				cex->ec_block, cex->ec_len, cex->ec_start);
2235		ret = 1;
2236	}
2237errout:
2238	trace_ext4_ext_in_cache(inode, block, ret);
2239	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2240	return ret;
2241}
2242
2243/*
2244 * ext4_ext_rm_idx:
2245 * removes index from the index block.
2246 */
2247static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2248			struct ext4_ext_path *path, int depth)
2249{
2250	int err;
2251	ext4_fsblk_t leaf;
2252
2253	/* free index block */
2254	depth--;
2255	path = path + depth;
2256	leaf = ext4_idx_pblock(path->p_idx);
2257	if (unlikely(path->p_hdr->eh_entries == 0)) {
2258		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2259		return -EIO;
2260	}
2261	err = ext4_ext_get_access(handle, inode, path);
2262	if (err)
2263		return err;
2264
2265	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2266		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2267		len *= sizeof(struct ext4_extent_idx);
2268		memmove(path->p_idx, path->p_idx + 1, len);
2269	}
2270
2271	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2272	err = ext4_ext_dirty(handle, inode, path);
2273	if (err)
2274		return err;
2275	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2276	trace_ext4_ext_rm_idx(inode, leaf);
2277
2278	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2279			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2280
2281	while (--depth >= 0) {
2282		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2283			break;
2284		path--;
2285		err = ext4_ext_get_access(handle, inode, path);
2286		if (err)
2287			break;
2288		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2289		err = ext4_ext_dirty(handle, inode, path);
2290		if (err)
2291			break;
2292	}
2293	return err;
2294}
2295
2296/*
2297 * ext4_ext_calc_credits_for_single_extent:
2298 * This routine returns max. credits that needed to insert an extent
2299 * to the extent tree.
2300 * When pass the actual path, the caller should calculate credits
2301 * under i_data_sem.
2302 */
2303int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2304						struct ext4_ext_path *path)
2305{
2306	if (path) {
2307		int depth = ext_depth(inode);
2308		int ret = 0;
2309
2310		/* probably there is space in leaf? */
2311		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2312				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2313
2314			/*
2315			 *  There are some space in the leaf tree, no
2316			 *  need to account for leaf block credit
2317			 *
2318			 *  bitmaps and block group descriptor blocks
2319			 *  and other metadata blocks still need to be
2320			 *  accounted.
2321			 */
2322			/* 1 bitmap, 1 block group descriptor */
2323			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2324			return ret;
2325		}
2326	}
2327
2328	return ext4_chunk_trans_blocks(inode, nrblocks);
2329}
2330
2331/*
2332 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2333 *
2334 * if nrblocks are fit in a single extent (chunk flag is 1), then
2335 * in the worse case, each tree level index/leaf need to be changed
2336 * if the tree split due to insert a new extent, then the old tree
2337 * index/leaf need to be updated too
2338 *
2339 * If the nrblocks are discontiguous, they could cause
2340 * the whole tree split more than once, but this is really rare.
2341 */
2342int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2343{
2344	int index;
2345	int depth;
2346
2347	/* If we are converting the inline data, only one is needed here. */
2348	if (ext4_has_inline_data(inode))
2349		return 1;
2350
2351	depth = ext_depth(inode);
2352
2353	if (chunk)
2354		index = depth * 2;
2355	else
2356		index = depth * 3;
2357
2358	return index;
2359}
2360
2361static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2362			      struct ext4_extent *ex,
2363			      ext4_fsblk_t *partial_cluster,
2364			      ext4_lblk_t from, ext4_lblk_t to)
2365{
2366	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2367	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2368	ext4_fsblk_t pblk;
2369	int flags = 0;
2370
2371	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2372		flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2373	else if (ext4_should_journal_data(inode))
2374		flags |= EXT4_FREE_BLOCKS_FORGET;
2375
2376	/*
2377	 * For bigalloc file systems, we never free a partial cluster
2378	 * at the beginning of the extent.  Instead, we make a note
2379	 * that we tried freeing the cluster, and check to see if we
2380	 * need to free it on a subsequent call to ext4_remove_blocks,
2381	 * or at the end of the ext4_truncate() operation.
2382	 */
2383	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2384
2385	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2386	/*
2387	 * If we have a partial cluster, and it's different from the
2388	 * cluster of the last block, we need to explicitly free the
2389	 * partial cluster here.
2390	 */
2391	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2392	if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2393		ext4_free_blocks(handle, inode, NULL,
2394				 EXT4_C2B(sbi, *partial_cluster),
2395				 sbi->s_cluster_ratio, flags);
2396		*partial_cluster = 0;
2397	}
2398
2399#ifdef EXTENTS_STATS
2400	{
2401		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2402		spin_lock(&sbi->s_ext_stats_lock);
2403		sbi->s_ext_blocks += ee_len;
2404		sbi->s_ext_extents++;
2405		if (ee_len < sbi->s_ext_min)
2406			sbi->s_ext_min = ee_len;
2407		if (ee_len > sbi->s_ext_max)
2408			sbi->s_ext_max = ee_len;
2409		if (ext_depth(inode) > sbi->s_depth_max)
2410			sbi->s_depth_max = ext_depth(inode);
2411		spin_unlock(&sbi->s_ext_stats_lock);
2412	}
2413#endif
2414	if (from >= le32_to_cpu(ex->ee_block)
2415	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2416		/* tail removal */
2417		ext4_lblk_t num;
2418
2419		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2420		pblk = ext4_ext_pblock(ex) + ee_len - num;
2421		ext_debug("free last %u blocks starting %llu\n", num, pblk);
2422		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2423		/*
2424		 * If the block range to be freed didn't start at the
2425		 * beginning of a cluster, and we removed the entire
2426		 * extent, save the partial cluster here, since we
2427		 * might need to delete if we determine that the
2428		 * truncate operation has removed all of the blocks in
2429		 * the cluster.
2430		 */
2431		if (pblk & (sbi->s_cluster_ratio - 1) &&
2432		    (ee_len == num))
2433			*partial_cluster = EXT4_B2C(sbi, pblk);
2434		else
2435			*partial_cluster = 0;
2436	} else if (from == le32_to_cpu(ex->ee_block)
2437		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2438		/* head removal */
2439		ext4_lblk_t num;
2440		ext4_fsblk_t start;
2441
2442		num = to - from;
2443		start = ext4_ext_pblock(ex);
2444
2445		ext_debug("free first %u blocks starting %llu\n", num, start);
2446		ext4_free_blocks(handle, inode, NULL, start, num, flags);
2447
2448	} else {
2449		printk(KERN_INFO "strange request: removal(2) "
2450				"%u-%u from %u:%u\n",
2451				from, to, le32_to_cpu(ex->ee_block), ee_len);
2452	}
2453	return 0;
2454}
2455
2456
2457/*
2458 * ext4_ext_rm_leaf() Removes the extents associated with the
2459 * blocks appearing between "start" and "end", and splits the extents
2460 * if "start" and "end" appear in the same extent
2461 *
2462 * @handle: The journal handle
2463 * @inode:  The files inode
2464 * @path:   The path to the leaf
2465 * @start:  The first block to remove
2466 * @end:   The last block to remove
2467 */
2468static int
2469ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2470		 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2471		 ext4_lblk_t start, ext4_lblk_t end)
2472{
2473	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2474	int err = 0, correct_index = 0;
2475	int depth = ext_depth(inode), credits;
2476	struct ext4_extent_header *eh;
2477	ext4_lblk_t a, b;
2478	unsigned num;
2479	ext4_lblk_t ex_ee_block;
2480	unsigned short ex_ee_len;
2481	unsigned uninitialized = 0;
2482	struct ext4_extent *ex;
2483
2484	/* the header must be checked already in ext4_ext_remove_space() */
2485	ext_debug("truncate since %u in leaf to %u\n", start, end);
2486	if (!path[depth].p_hdr)
2487		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2488	eh = path[depth].p_hdr;
2489	if (unlikely(path[depth].p_hdr == NULL)) {
2490		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2491		return -EIO;
2492	}
2493	/* find where to start removing */
2494	ex = EXT_LAST_EXTENT(eh);
2495
2496	ex_ee_block = le32_to_cpu(ex->ee_block);
2497	ex_ee_len = ext4_ext_get_actual_len(ex);
2498
2499	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2500
2501	while (ex >= EXT_FIRST_EXTENT(eh) &&
2502			ex_ee_block + ex_ee_len > start) {
2503
2504		if (ext4_ext_is_uninitialized(ex))
2505			uninitialized = 1;
2506		else
2507			uninitialized = 0;
2508
2509		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2510			 uninitialized, ex_ee_len);
2511		path[depth].p_ext = ex;
2512
2513		a = ex_ee_block > start ? ex_ee_block : start;
2514		b = ex_ee_block+ex_ee_len - 1 < end ?
2515			ex_ee_block+ex_ee_len - 1 : end;
2516
2517		ext_debug("  border %u:%u\n", a, b);
2518
2519		/* If this extent is beyond the end of the hole, skip it */
2520		if (end < ex_ee_block) {
2521			ex--;
2522			ex_ee_block = le32_to_cpu(ex->ee_block);
2523			ex_ee_len = ext4_ext_get_actual_len(ex);
2524			continue;
2525		} else if (b != ex_ee_block + ex_ee_len - 1) {
2526			EXT4_ERROR_INODE(inode,
2527					 "can not handle truncate %u:%u "
2528					 "on extent %u:%u",
2529					 start, end, ex_ee_block,
2530					 ex_ee_block + ex_ee_len - 1);
2531			err = -EIO;
2532			goto out;
2533		} else if (a != ex_ee_block) {
2534			/* remove tail of the extent */
2535			num = a - ex_ee_block;
2536		} else {
2537			/* remove whole extent: excellent! */
2538			num = 0;
2539		}
2540		/*
2541		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2542		 * descriptor) for each block group; assume two block
2543		 * groups plus ex_ee_len/blocks_per_block_group for
2544		 * the worst case
2545		 */
2546		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2547		if (ex == EXT_FIRST_EXTENT(eh)) {
2548			correct_index = 1;
2549			credits += (ext_depth(inode)) + 1;
2550		}
2551		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2552
2553		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2554		if (err)
2555			goto out;
2556
2557		err = ext4_ext_get_access(handle, inode, path + depth);
2558		if (err)
2559			goto out;
2560
2561		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2562					 a, b);
2563		if (err)
2564			goto out;
2565
2566		if (num == 0)
2567			/* this extent is removed; mark slot entirely unused */
2568			ext4_ext_store_pblock(ex, 0);
2569
2570		ex->ee_len = cpu_to_le16(num);
2571		/*
2572		 * Do not mark uninitialized if all the blocks in the
2573		 * extent have been removed.
2574		 */
2575		if (uninitialized && num)
2576			ext4_ext_mark_uninitialized(ex);
2577		/*
2578		 * If the extent was completely released,
2579		 * we need to remove it from the leaf
2580		 */
2581		if (num == 0) {
2582			if (end != EXT_MAX_BLOCKS - 1) {
2583				/*
2584				 * For hole punching, we need to scoot all the
2585				 * extents up when an extent is removed so that
2586				 * we dont have blank extents in the middle
2587				 */
2588				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2589					sizeof(struct ext4_extent));
2590
2591				/* Now get rid of the one at the end */
2592				memset(EXT_LAST_EXTENT(eh), 0,
2593					sizeof(struct ext4_extent));
2594			}
2595			le16_add_cpu(&eh->eh_entries, -1);
2596		} else
2597			*partial_cluster = 0;
2598
2599		err = ext4_ext_dirty(handle, inode, path + depth);
2600		if (err)
2601			goto out;
2602
2603		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2604				ext4_ext_pblock(ex));
2605		ex--;
2606		ex_ee_block = le32_to_cpu(ex->ee_block);
2607		ex_ee_len = ext4_ext_get_actual_len(ex);
2608	}
2609
2610	if (correct_index && eh->eh_entries)
2611		err = ext4_ext_correct_indexes(handle, inode, path);
2612
2613	/*
2614	 * If there is still a entry in the leaf node, check to see if
2615	 * it references the partial cluster.  This is the only place
2616	 * where it could; if it doesn't, we can free the cluster.
2617	 */
2618	if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2619	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2620	     *partial_cluster)) {
2621		int flags = EXT4_FREE_BLOCKS_FORGET;
2622
2623		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2624			flags |= EXT4_FREE_BLOCKS_METADATA;
2625
2626		ext4_free_blocks(handle, inode, NULL,
2627				 EXT4_C2B(sbi, *partial_cluster),
2628				 sbi->s_cluster_ratio, flags);
2629		*partial_cluster = 0;
2630	}
2631
2632	/* if this leaf is free, then we should
2633	 * remove it from index block above */
2634	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2635		err = ext4_ext_rm_idx(handle, inode, path, depth);
2636
2637out:
2638	return err;
2639}
2640
2641/*
2642 * ext4_ext_more_to_rm:
2643 * returns 1 if current index has to be freed (even partial)
2644 */
2645static int
2646ext4_ext_more_to_rm(struct ext4_ext_path *path)
2647{
2648	BUG_ON(path->p_idx == NULL);
2649
2650	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2651		return 0;
2652
2653	/*
2654	 * if truncate on deeper level happened, it wasn't partial,
2655	 * so we have to consider current index for truncation
2656	 */
2657	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2658		return 0;
2659	return 1;
2660}
2661
2662static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2663				 ext4_lblk_t end)
2664{
2665	struct super_block *sb = inode->i_sb;
2666	int depth = ext_depth(inode);
2667	struct ext4_ext_path *path = NULL;
2668	ext4_fsblk_t partial_cluster = 0;
2669	handle_t *handle;
2670	int i = 0, err = 0;
2671
2672	ext_debug("truncate since %u to %u\n", start, end);
2673
2674	/* probably first extent we're gonna free will be last in block */
2675	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2676	if (IS_ERR(handle))
2677		return PTR_ERR(handle);
2678
2679again:
2680	ext4_ext_invalidate_cache(inode);
2681
2682	trace_ext4_ext_remove_space(inode, start, depth);
2683
2684	/*
2685	 * Check if we are removing extents inside the extent tree. If that
2686	 * is the case, we are going to punch a hole inside the extent tree
2687	 * so we have to check whether we need to split the extent covering
2688	 * the last block to remove so we can easily remove the part of it
2689	 * in ext4_ext_rm_leaf().
2690	 */
2691	if (end < EXT_MAX_BLOCKS - 1) {
2692		struct ext4_extent *ex;
2693		ext4_lblk_t ee_block;
2694
2695		/* find extent for this block */
2696		path = ext4_ext_find_extent(inode, end, NULL);
2697		if (IS_ERR(path)) {
2698			ext4_journal_stop(handle);
2699			return PTR_ERR(path);
2700		}
2701		depth = ext_depth(inode);
2702		/* Leaf not may not exist only if inode has no blocks at all */
2703		ex = path[depth].p_ext;
2704		if (!ex) {
2705			if (depth) {
2706				EXT4_ERROR_INODE(inode,
2707						 "path[%d].p_hdr == NULL",
2708						 depth);
2709				err = -EIO;
2710			}
2711			goto out;
2712		}
2713
2714		ee_block = le32_to_cpu(ex->ee_block);
2715
2716		/*
2717		 * See if the last block is inside the extent, if so split
2718		 * the extent at 'end' block so we can easily remove the
2719		 * tail of the first part of the split extent in
2720		 * ext4_ext_rm_leaf().
2721		 */
2722		if (end >= ee_block &&
2723		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2724			int split_flag = 0;
2725
2726			if (ext4_ext_is_uninitialized(ex))
2727				split_flag = EXT4_EXT_MARK_UNINIT1 |
2728					     EXT4_EXT_MARK_UNINIT2;
2729
2730			/*
2731			 * Split the extent in two so that 'end' is the last
2732			 * block in the first new extent
2733			 */
2734			err = ext4_split_extent_at(handle, inode, path,
2735						end + 1, split_flag,
2736						EXT4_GET_BLOCKS_PRE_IO |
2737						EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2738
2739			if (err < 0)
2740				goto out;
2741		}
2742	}
2743	/*
2744	 * We start scanning from right side, freeing all the blocks
2745	 * after i_size and walking into the tree depth-wise.
2746	 */
2747	depth = ext_depth(inode);
2748	if (path) {
2749		int k = i = depth;
2750		while (--k > 0)
2751			path[k].p_block =
2752				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2753	} else {
2754		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2755			       GFP_NOFS);
2756		if (path == NULL) {
2757			ext4_journal_stop(handle);
2758			return -ENOMEM;
2759		}
2760		path[0].p_depth = depth;
2761		path[0].p_hdr = ext_inode_hdr(inode);
2762		i = 0;
2763
2764		if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2765			err = -EIO;
2766			goto out;
2767		}
2768	}
2769	err = 0;
2770
2771	while (i >= 0 && err == 0) {
2772		if (i == depth) {
2773			/* this is leaf block */
2774			err = ext4_ext_rm_leaf(handle, inode, path,
2775					       &partial_cluster, start,
2776					       end);
2777			/* root level has p_bh == NULL, brelse() eats this */
2778			brelse(path[i].p_bh);
2779			path[i].p_bh = NULL;
2780			i--;
2781			continue;
2782		}
2783
2784		/* this is index block */
2785		if (!path[i].p_hdr) {
2786			ext_debug("initialize header\n");
2787			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2788		}
2789
2790		if (!path[i].p_idx) {
2791			/* this level hasn't been touched yet */
2792			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2793			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2794			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2795				  path[i].p_hdr,
2796				  le16_to_cpu(path[i].p_hdr->eh_entries));
2797		} else {
2798			/* we were already here, see at next index */
2799			path[i].p_idx--;
2800		}
2801
2802		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2803				i, EXT_FIRST_INDEX(path[i].p_hdr),
2804				path[i].p_idx);
2805		if (ext4_ext_more_to_rm(path + i)) {
2806			struct buffer_head *bh;
2807			/* go to the next level */
2808			ext_debug("move to level %d (block %llu)\n",
2809				  i + 1, ext4_idx_pblock(path[i].p_idx));
2810			memset(path + i + 1, 0, sizeof(*path));
2811			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2812			if (!bh) {
2813				/* should we reset i_size? */
2814				err = -EIO;
2815				break;
2816			}
2817			if (WARN_ON(i + 1 > depth)) {
2818				err = -EIO;
2819				break;
2820			}
2821			if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2822							depth - i - 1, bh)) {
2823				err = -EIO;
2824				break;
2825			}
2826			path[i + 1].p_bh = bh;
2827
2828			/* save actual number of indexes since this
2829			 * number is changed at the next iteration */
2830			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2831			i++;
2832		} else {
2833			/* we finished processing this index, go up */
2834			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2835				/* index is empty, remove it;
2836				 * handle must be already prepared by the
2837				 * truncatei_leaf() */
2838				err = ext4_ext_rm_idx(handle, inode, path, i);
2839			}
2840			/* root level has p_bh == NULL, brelse() eats this */
2841			brelse(path[i].p_bh);
2842			path[i].p_bh = NULL;
2843			i--;
2844			ext_debug("return to level %d\n", i);
2845		}
2846	}
2847
2848	trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2849			path->p_hdr->eh_entries);
2850
2851	/* If we still have something in the partial cluster and we have removed
2852	 * even the first extent, then we should free the blocks in the partial
2853	 * cluster as well. */
2854	if (partial_cluster && path->p_hdr->eh_entries == 0) {
2855		int flags = EXT4_FREE_BLOCKS_FORGET;
2856
2857		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2858			flags |= EXT4_FREE_BLOCKS_METADATA;
2859
2860		ext4_free_blocks(handle, inode, NULL,
2861				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2862				 EXT4_SB(sb)->s_cluster_ratio, flags);
2863		partial_cluster = 0;
2864	}
2865
2866	/* TODO: flexible tree reduction should be here */
2867	if (path->p_hdr->eh_entries == 0) {
2868		/*
2869		 * truncate to zero freed all the tree,
2870		 * so we need to correct eh_depth
2871		 */
2872		err = ext4_ext_get_access(handle, inode, path);
2873		if (err == 0) {
2874			ext_inode_hdr(inode)->eh_depth = 0;
2875			ext_inode_hdr(inode)->eh_max =
2876				cpu_to_le16(ext4_ext_space_root(inode, 0));
2877			err = ext4_ext_dirty(handle, inode, path);
2878		}
2879	}
2880out:
2881	ext4_ext_drop_refs(path);
2882	kfree(path);
2883	if (err == -EAGAIN) {
2884		path = NULL;
2885		goto again;
2886	}
2887	ext4_journal_stop(handle);
2888
2889	return err;
2890}
2891
2892/*
2893 * called at mount time
2894 */
2895void ext4_ext_init(struct super_block *sb)
2896{
2897	/*
2898	 * possible initialization would be here
2899	 */
2900
2901	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2902#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2903		printk(KERN_INFO "EXT4-fs: file extents enabled"
2904#ifdef AGGRESSIVE_TEST
2905		       ", aggressive tests"
2906#endif
2907#ifdef CHECK_BINSEARCH
2908		       ", check binsearch"
2909#endif
2910#ifdef EXTENTS_STATS
2911		       ", stats"
2912#endif
2913		       "\n");
2914#endif
2915#ifdef EXTENTS_STATS
2916		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2917		EXT4_SB(sb)->s_ext_min = 1 << 30;
2918		EXT4_SB(sb)->s_ext_max = 0;
2919#endif
2920	}
2921}
2922
2923/*
2924 * called at umount time
2925 */
2926void ext4_ext_release(struct super_block *sb)
2927{
2928	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2929		return;
2930
2931#ifdef EXTENTS_STATS
2932	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2933		struct ext4_sb_info *sbi = EXT4_SB(sb);
2934		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2935			sbi->s_ext_blocks, sbi->s_ext_extents,
2936			sbi->s_ext_blocks / sbi->s_ext_extents);
2937		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2938			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2939	}
2940#endif
2941}
2942
2943/* FIXME!! we need to try to merge to left or right after zero-out  */
2944static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2945{
2946	ext4_fsblk_t ee_pblock;
2947	unsigned int ee_len;
2948	int ret;
2949
2950	ee_len    = ext4_ext_get_actual_len(ex);
2951	ee_pblock = ext4_ext_pblock(ex);
2952
2953	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2954	if (ret > 0)
2955		ret = 0;
2956
2957	return ret;
2958}
2959
2960/*
2961 * ext4_split_extent_at() splits an extent at given block.
2962 *
2963 * @handle: the journal handle
2964 * @inode: the file inode
2965 * @path: the path to the extent
2966 * @split: the logical block where the extent is splitted.
2967 * @split_flags: indicates if the extent could be zeroout if split fails, and
2968 *		 the states(init or uninit) of new extents.
2969 * @flags: flags used to insert new extent to extent tree.
2970 *
2971 *
2972 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2973 * of which are deterimined by split_flag.
2974 *
2975 * There are two cases:
2976 *  a> the extent are splitted into two extent.
2977 *  b> split is not needed, and just mark the extent.
2978 *
2979 * return 0 on success.
2980 */
2981static int ext4_split_extent_at(handle_t *handle,
2982			     struct inode *inode,
2983			     struct ext4_ext_path *path,
2984			     ext4_lblk_t split,
2985			     int split_flag,
2986			     int flags)
2987{
2988	ext4_fsblk_t newblock;
2989	ext4_lblk_t ee_block;
2990	struct ext4_extent *ex, newex, orig_ex;
2991	struct ext4_extent *ex2 = NULL;
2992	unsigned int ee_len, depth;
2993	int err = 0;
2994
2995	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
2996	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
2997
2998	ext_debug("ext4_split_extents_at: inode %lu, logical"
2999		"block %llu\n", inode->i_ino, (unsigned long long)split);
3000
3001	ext4_ext_show_leaf(inode, path);
3002
3003	depth = ext_depth(inode);
3004	ex = path[depth].p_ext;
3005	ee_block = le32_to_cpu(ex->ee_block);
3006	ee_len = ext4_ext_get_actual_len(ex);
3007	newblock = split - ee_block + ext4_ext_pblock(ex);
3008
3009	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3010
3011	err = ext4_ext_get_access(handle, inode, path + depth);
3012	if (err)
3013		goto out;
3014
3015	if (split == ee_block) {
3016		/*
3017		 * case b: block @split is the block that the extent begins with
3018		 * then we just change the state of the extent, and splitting
3019		 * is not needed.
3020		 */
3021		if (split_flag & EXT4_EXT_MARK_UNINIT2)
3022			ext4_ext_mark_uninitialized(ex);
3023		else
3024			ext4_ext_mark_initialized(ex);
3025
3026		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3027			ext4_ext_try_to_merge(handle, inode, path, ex);
3028
3029		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3030		goto out;
3031	}
3032
3033	/* case a */
3034	memcpy(&orig_ex, ex, sizeof(orig_ex));
3035	ex->ee_len = cpu_to_le16(split - ee_block);
3036	if (split_flag & EXT4_EXT_MARK_UNINIT1)
3037		ext4_ext_mark_uninitialized(ex);
3038
3039	/*
3040	 * path may lead to new leaf, not to original leaf any more
3041	 * after ext4_ext_insert_extent() returns,
3042	 */
3043	err = ext4_ext_dirty(handle, inode, path + depth);
3044	if (err)
3045		goto fix_extent_len;
3046
3047	ex2 = &newex;
3048	ex2->ee_block = cpu_to_le32(split);
3049	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
3050	ext4_ext_store_pblock(ex2, newblock);
3051	if (split_flag & EXT4_EXT_MARK_UNINIT2)
3052		ext4_ext_mark_uninitialized(ex2);
3053
3054	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3055	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3056		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3057			if (split_flag & EXT4_EXT_DATA_VALID1)
3058				err = ext4_ext_zeroout(inode, ex2);
3059			else
3060				err = ext4_ext_zeroout(inode, ex);
3061		} else
3062			err = ext4_ext_zeroout(inode, &orig_ex);
3063
3064		if (err)
3065			goto fix_extent_len;
3066		/* update the extent length and mark as initialized */
3067		ex->ee_len = cpu_to_le16(ee_len);
3068		ext4_ext_try_to_merge(handle, inode, path, ex);
3069		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3070		goto out;
3071	} else if (err)
3072		goto fix_extent_len;
3073
3074out:
3075	ext4_ext_show_leaf(inode, path);
3076	return err;
3077
3078fix_extent_len:
3079	ex->ee_len = orig_ex.ee_len;
3080	ext4_ext_dirty(handle, inode, path + depth);
3081	return err;
3082}
3083
3084/*
3085 * ext4_split_extents() splits an extent and mark extent which is covered
3086 * by @map as split_flags indicates
3087 *
3088 * It may result in splitting the extent into multiple extents (upto three)
3089 * There are three possibilities:
3090 *   a> There is no split required
3091 *   b> Splits in two extents: Split is happening at either end of the extent
3092 *   c> Splits in three extents: Somone is splitting in middle of the extent
3093 *
3094 */
3095static int ext4_split_extent(handle_t *handle,
3096			      struct inode *inode,
3097			      struct ext4_ext_path *path,
3098			      struct ext4_map_blocks *map,
3099			      int split_flag,
3100			      int flags)
3101{
3102	ext4_lblk_t ee_block;
3103	struct ext4_extent *ex;
3104	unsigned int ee_len, depth;
3105	int err = 0;
3106	int uninitialized;
3107	int split_flag1, flags1;
3108
3109	depth = ext_depth(inode);
3110	ex = path[depth].p_ext;
3111	ee_block = le32_to_cpu(ex->ee_block);
3112	ee_len = ext4_ext_get_actual_len(ex);
3113	uninitialized = ext4_ext_is_uninitialized(ex);
3114
3115	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3116		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3117		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3118		if (uninitialized)
3119			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3120				       EXT4_EXT_MARK_UNINIT2;
3121		if (split_flag & EXT4_EXT_DATA_VALID2)
3122			split_flag1 |= EXT4_EXT_DATA_VALID1;
3123		err = ext4_split_extent_at(handle, inode, path,
3124				map->m_lblk + map->m_len, split_flag1, flags1);
3125		if (err)
3126			goto out;
3127	}
3128
3129	ext4_ext_drop_refs(path);
3130	path = ext4_ext_find_extent(inode, map->m_lblk, path);
3131	if (IS_ERR(path))
3132		return PTR_ERR(path);
3133
3134	if (map->m_lblk >= ee_block) {
3135		split_flag1 = split_flag & (EXT4_EXT_MAY_ZEROOUT |
3136					    EXT4_EXT_DATA_VALID2);
3137		if (uninitialized)
3138			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3139		if (split_flag & EXT4_EXT_MARK_UNINIT2)
3140			split_flag1 |= EXT4_EXT_MARK_UNINIT2;
3141		err = ext4_split_extent_at(handle, inode, path,
3142				map->m_lblk, split_flag1, flags);
3143		if (err)
3144			goto out;
3145	}
3146
3147	ext4_ext_show_leaf(inode, path);
3148out:
3149	return err ? err : map->m_len;
3150}
3151
3152/*
3153 * This function is called by ext4_ext_map_blocks() if someone tries to write
3154 * to an uninitialized extent. It may result in splitting the uninitialized
3155 * extent into multiple extents (up to three - one initialized and two
3156 * uninitialized).
3157 * There are three possibilities:
3158 *   a> There is no split required: Entire extent should be initialized
3159 *   b> Splits in two extents: Write is happening at either end of the extent
3160 *   c> Splits in three extents: Somone is writing in middle of the extent
3161 *
3162 * Pre-conditions:
3163 *  - The extent pointed to by 'path' is uninitialized.
3164 *  - The extent pointed to by 'path' contains a superset
3165 *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3166 *
3167 * Post-conditions on success:
3168 *  - the returned value is the number of blocks beyond map->l_lblk
3169 *    that are allocated and initialized.
3170 *    It is guaranteed to be >= map->m_len.
3171 */
3172static int ext4_ext_convert_to_initialized(handle_t *handle,
3173					   struct inode *inode,
3174					   struct ext4_map_blocks *map,
3175					   struct ext4_ext_path *path)
3176{
3177	struct ext4_sb_info *sbi;
3178	struct ext4_extent_header *eh;
3179	struct ext4_map_blocks split_map;
3180	struct ext4_extent zero_ex;
3181	struct ext4_extent *ex;
3182	ext4_lblk_t ee_block, eof_block;
3183	unsigned int ee_len, depth;
3184	int allocated, max_zeroout = 0;
3185	int err = 0;
3186	int split_flag = 0;
3187
3188	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3189		"block %llu, max_blocks %u\n", inode->i_ino,
3190		(unsigned long long)map->m_lblk, map->m_len);
3191
3192	sbi = EXT4_SB(inode->i_sb);
3193	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3194		inode->i_sb->s_blocksize_bits;
3195	if (eof_block < map->m_lblk + map->m_len)
3196		eof_block = map->m_lblk + map->m_len;
3197
3198	depth = ext_depth(inode);
3199	eh = path[depth].p_hdr;
3200	ex = path[depth].p_ext;
3201	ee_block = le32_to_cpu(ex->ee_block);
3202	ee_len = ext4_ext_get_actual_len(ex);
3203	allocated = ee_len - (map->m_lblk - ee_block);
3204
3205	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3206
3207	/* Pre-conditions */
3208	BUG_ON(!ext4_ext_is_uninitialized(ex));
3209	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3210
3211	/*
3212	 * Attempt to transfer newly initialized blocks from the currently
3213	 * uninitialized extent to its left neighbor. This is much cheaper
3214	 * than an insertion followed by a merge as those involve costly
3215	 * memmove() calls. This is the common case in steady state for
3216	 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3217	 * writes.
3218	 *
3219	 * Limitations of the current logic:
3220	 *  - L1: we only deal with writes at the start of the extent.
3221	 *    The approach could be extended to writes at the end
3222	 *    of the extent but this scenario was deemed less common.
3223	 *  - L2: we do not deal with writes covering the whole extent.
3224	 *    This would require removing the extent if the transfer
3225	 *    is possible.
3226	 *  - L3: we only attempt to merge with an extent stored in the
3227	 *    same extent tree node.
3228	 */
3229	if ((map->m_lblk == ee_block) &&	/*L1*/
3230		(map->m_len < ee_len) &&	/*L2*/
3231		(ex > EXT_FIRST_EXTENT(eh))) {	/*L3*/
3232		struct ext4_extent *prev_ex;
3233		ext4_lblk_t prev_lblk;
3234		ext4_fsblk_t prev_pblk, ee_pblk;
3235		unsigned int prev_len, write_len;
3236
3237		prev_ex = ex - 1;
3238		prev_lblk = le32_to_cpu(prev_ex->ee_block);
3239		prev_len = ext4_ext_get_actual_len(prev_ex);
3240		prev_pblk = ext4_ext_pblock(prev_ex);
3241		ee_pblk = ext4_ext_pblock(ex);
3242		write_len = map->m_len;
3243
3244		/*
3245		 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3246		 * upon those conditions:
3247		 * - C1: prev_ex is initialized,
3248		 * - C2: prev_ex is logically abutting ex,
3249		 * - C3: prev_ex is physically abutting ex,
3250		 * - C4: prev_ex can receive the additional blocks without
3251		 *   overflowing the (initialized) length limit.
3252		 */
3253		if ((!ext4_ext_is_uninitialized(prev_ex)) &&		/*C1*/
3254			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3255			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3256			(prev_len < (EXT_INIT_MAX_LEN - write_len))) {	/*C4*/
3257			err = ext4_ext_get_access(handle, inode, path + depth);
3258			if (err)
3259				goto out;
3260
3261			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3262				map, ex, prev_ex);
3263
3264			/* Shift the start of ex by 'write_len' blocks */
3265			ex->ee_block = cpu_to_le32(ee_block + write_len);
3266			ext4_ext_store_pblock(ex, ee_pblk + write_len);
3267			ex->ee_len = cpu_to_le16(ee_len - write_len);
3268			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3269
3270			/* Extend prev_ex by 'write_len' blocks */
3271			prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3272
3273			/* Mark the block containing both extents as dirty */
3274			ext4_ext_dirty(handle, inode, path + depth);
3275
3276			/* Update path to point to the right extent */
3277			path[depth].p_ext = prev_ex;
3278
3279			/* Result: number of initialized blocks past m_lblk */
3280			allocated = write_len;
3281			goto out;
3282		}
3283	}
3284
3285	WARN_ON(map->m_lblk < ee_block);
3286	/*
3287	 * It is safe to convert extent to initialized via explicit
3288	 * zeroout only if extent is fully insde i_size or new_size.
3289	 */
3290	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3291
3292	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3293		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3294			inode->i_sb->s_blocksize_bits;
3295
3296	/* If extent is less than s_max_zeroout_kb, zeroout directly */
3297	if (max_zeroout && (ee_len <= max_zeroout)) {
3298		err = ext4_ext_zeroout(inode, ex);
3299		if (err)
3300			goto out;
3301
3302		err = ext4_ext_get_access(handle, inode, path + depth);
3303		if (err)
3304			goto out;
3305		ext4_ext_mark_initialized(ex);
3306		ext4_ext_try_to_merge(handle, inode, path, ex);
3307		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3308		goto out;
3309	}
3310
3311	/*
3312	 * four cases:
3313	 * 1. split the extent into three extents.
3314	 * 2. split the extent into two extents, zeroout the first half.
3315	 * 3. split the extent into two extents, zeroout the second half.
3316	 * 4. split the extent into two extents with out zeroout.
3317	 */
3318	split_map.m_lblk = map->m_lblk;
3319	split_map.m_len = map->m_len;
3320
3321	if (max_zeroout && (allocated > map->m_len)) {
3322		if (allocated <= max_zeroout) {
3323			/* case 3 */
3324			zero_ex.ee_block =
3325					 cpu_to_le32(map->m_lblk);
3326			zero_ex.ee_len = cpu_to_le16(allocated);
3327			ext4_ext_store_pblock(&zero_ex,
3328				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3329			err = ext4_ext_zeroout(inode, &zero_ex);
3330			if (err)
3331				goto out;
3332			split_map.m_lblk = map->m_lblk;
3333			split_map.m_len = allocated;
3334		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3335			/* case 2 */
3336			if (map->m_lblk != ee_block) {
3337				zero_ex.ee_block = ex->ee_block;
3338				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3339							ee_block);
3340				ext4_ext_store_pblock(&zero_ex,
3341						      ext4_ext_pblock(ex));
3342				err = ext4_ext_zeroout(inode, &zero_ex);
3343				if (err)
3344					goto out;
3345			}
3346
3347			split_map.m_lblk = ee_block;
3348			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3349			allocated = map->m_len;
3350		}
3351	}
3352
3353	allocated = ext4_split_extent(handle, inode, path,
3354				      &split_map, split_flag, 0);
3355	if (allocated < 0)
3356		err = allocated;
3357
3358out:
3359	return err ? err : allocated;
3360}
3361
3362/*
3363 * This function is called by ext4_ext_map_blocks() from
3364 * ext4_get_blocks_dio_write() when DIO to write
3365 * to an uninitialized extent.
3366 *
3367 * Writing to an uninitialized extent may result in splitting the uninitialized
3368 * extent into multiple initialized/uninitialized extents (up to three)
3369 * There are three possibilities:
3370 *   a> There is no split required: Entire extent should be uninitialized
3371 *   b> Splits in two extents: Write is happening at either end of the extent
3372 *   c> Splits in three extents: Somone is writing in middle of the extent
3373 *
3374 * One of more index blocks maybe needed if the extent tree grow after
3375 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3376 * complete, we need to split the uninitialized extent before DIO submit
3377 * the IO. The uninitialized extent called at this time will be split
3378 * into three uninitialized extent(at most). After IO complete, the part
3379 * being filled will be convert to initialized by the end_io callback function
3380 * via ext4_convert_unwritten_extents().
3381 *
3382 * Returns the size of uninitialized extent to be written on success.
3383 */
3384static int ext4_split_unwritten_extents(handle_t *handle,
3385					struct inode *inode,
3386					struct ext4_map_blocks *map,
3387					struct ext4_ext_path *path,
3388					int flags)
3389{
3390	ext4_lblk_t eof_block;
3391	ext4_lblk_t ee_block;
3392	struct ext4_extent *ex;
3393	unsigned int ee_len;
3394	int split_flag = 0, depth;
3395
3396	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3397		"block %llu, max_blocks %u\n", inode->i_ino,
3398		(unsigned long long)map->m_lblk, map->m_len);
3399
3400	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3401		inode->i_sb->s_blocksize_bits;
3402	if (eof_block < map->m_lblk + map->m_len)
3403		eof_block = map->m_lblk + map->m_len;
3404	/*
3405	 * It is safe to convert extent to initialized via explicit
3406	 * zeroout only if extent is fully insde i_size or new_size.
3407	 */
3408	depth = ext_depth(inode);
3409	ex = path[depth].p_ext;
3410	ee_block = le32_to_cpu(ex->ee_block);
3411	ee_len = ext4_ext_get_actual_len(ex);
3412
3413	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3414	split_flag |= EXT4_EXT_MARK_UNINIT2;
3415	if (flags & EXT4_GET_BLOCKS_CONVERT)
3416		split_flag |= EXT4_EXT_DATA_VALID2;
3417	flags |= EXT4_GET_BLOCKS_PRE_IO;
3418	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3419}
3420
3421static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3422						struct inode *inode,
3423						struct ext4_map_blocks *map,
3424						struct ext4_ext_path *path)
3425{
3426	struct ext4_extent *ex;
3427	ext4_lblk_t ee_block;
3428	unsigned int ee_len;
3429	int depth;
3430	int err = 0;
3431
3432	depth = ext_depth(inode);
3433	ex = path[depth].p_ext;
3434	ee_block = le32_to_cpu(ex->ee_block);
3435	ee_len = ext4_ext_get_actual_len(ex);
3436
3437	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3438		"block %llu, max_blocks %u\n", inode->i_ino,
3439		  (unsigned long long)ee_block, ee_len);
3440
3441	/* If extent is larger than requested then split is required */
3442	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3443		err = ext4_split_unwritten_extents(handle, inode, map, path,
3444						   EXT4_GET_BLOCKS_CONVERT);
3445		if (err < 0)
3446			goto out;
3447		ext4_ext_drop_refs(path);
3448		path = ext4_ext_find_extent(inode, map->m_lblk, path);
3449		if (IS_ERR(path)) {
3450			err = PTR_ERR(path);
3451			goto out;
3452		}
3453		depth = ext_depth(inode);
3454		ex = path[depth].p_ext;
3455	}
3456
3457	err = ext4_ext_get_access(handle, inode, path + depth);
3458	if (err)
3459		goto out;
3460	/* first mark the extent as initialized */
3461	ext4_ext_mark_initialized(ex);
3462
3463	/* note: ext4_ext_correct_indexes() isn't needed here because
3464	 * borders are not changed
3465	 */
3466	ext4_ext_try_to_merge(handle, inode, path, ex);
3467
3468	/* Mark modified extent as dirty */
3469	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3470out:
3471	ext4_ext_show_leaf(inode, path);
3472	return err;
3473}
3474
3475static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3476			sector_t block, int count)
3477{
3478	int i;
3479	for (i = 0; i < count; i++)
3480                unmap_underlying_metadata(bdev, block + i);
3481}
3482
3483/*
3484 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3485 */
3486static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3487			      ext4_lblk_t lblk,
3488			      struct ext4_ext_path *path,
3489			      unsigned int len)
3490{
3491	int i, depth;
3492	struct ext4_extent_header *eh;
3493	struct ext4_extent *last_ex;
3494
3495	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3496		return 0;
3497
3498	depth = ext_depth(inode);
3499	eh = path[depth].p_hdr;
3500
3501	/*
3502	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3503	 * do not care for this case anymore. Simply remove the flag
3504	 * if there are no extents.
3505	 */
3506	if (unlikely(!eh->eh_entries))
3507		goto out;
3508	last_ex = EXT_LAST_EXTENT(eh);
3509	/*
3510	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3511	 * last block in the last extent in the file.  We test this by
3512	 * first checking to see if the caller to
3513	 * ext4_ext_get_blocks() was interested in the last block (or
3514	 * a block beyond the last block) in the current extent.  If
3515	 * this turns out to be false, we can bail out from this
3516	 * function immediately.
3517	 */
3518	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3519	    ext4_ext_get_actual_len(last_ex))
3520		return 0;
3521	/*
3522	 * If the caller does appear to be planning to write at or
3523	 * beyond the end of the current extent, we then test to see
3524	 * if the current extent is the last extent in the file, by
3525	 * checking to make sure it was reached via the rightmost node
3526	 * at each level of the tree.
3527	 */
3528	for (i = depth-1; i >= 0; i--)
3529		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3530			return 0;
3531out:
3532	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3533	return ext4_mark_inode_dirty(handle, inode);
3534}
3535
3536/**
3537 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3538 *
3539 * Return 1 if there is a delalloc block in the range, otherwise 0.
3540 */
3541int ext4_find_delalloc_range(struct inode *inode,
3542			     ext4_lblk_t lblk_start,
3543			     ext4_lblk_t lblk_end)
3544{
3545	struct extent_status es;
3546
3547	ext4_es_find_delayed_extent(inode, lblk_start, &es);
3548	if (es.es_len == 0)
3549		return 0; /* there is no delay extent in this tree */
3550	else if (es.es_lblk <= lblk_start &&
3551		 lblk_start < es.es_lblk + es.es_len)
3552		return 1;
3553	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3554		return 1;
3555	else
3556		return 0;
3557}
3558
3559int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3560{
3561	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3562	ext4_lblk_t lblk_start, lblk_end;
3563	lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3564	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3565
3566	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3567}
3568
3569/**
3570 * Determines how many complete clusters (out of those specified by the 'map')
3571 * are under delalloc and were reserved quota for.
3572 * This function is called when we are writing out the blocks that were
3573 * originally written with their allocation delayed, but then the space was
3574 * allocated using fallocate() before the delayed allocation could be resolved.
3575 * The cases to look for are:
3576 * ('=' indicated delayed allocated blocks
3577 *  '-' indicates non-delayed allocated blocks)
3578 * (a) partial clusters towards beginning and/or end outside of allocated range
3579 *     are not delalloc'ed.
3580 *	Ex:
3581 *	|----c---=|====c====|====c====|===-c----|
3582 *	         |++++++ allocated ++++++|
3583 *	==> 4 complete clusters in above example
3584 *
3585 * (b) partial cluster (outside of allocated range) towards either end is
3586 *     marked for delayed allocation. In this case, we will exclude that
3587 *     cluster.
3588 *	Ex:
3589 *	|----====c========|========c========|
3590 *	     |++++++ allocated ++++++|
3591 *	==> 1 complete clusters in above example
3592 *
3593 *	Ex:
3594 *	|================c================|
3595 *            |++++++ allocated ++++++|
3596 *	==> 0 complete clusters in above example
3597 *
3598 * The ext4_da_update_reserve_space will be called only if we
3599 * determine here that there were some "entire" clusters that span
3600 * this 'allocated' range.
3601 * In the non-bigalloc case, this function will just end up returning num_blks
3602 * without ever calling ext4_find_delalloc_range.
3603 */
3604static unsigned int
3605get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3606			   unsigned int num_blks)
3607{
3608	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3609	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3610	ext4_lblk_t lblk_from, lblk_to, c_offset;
3611	unsigned int allocated_clusters = 0;
3612
3613	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3614	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3615
3616	/* max possible clusters for this allocation */
3617	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3618
3619	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3620
3621	/* Check towards left side */
3622	c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3623	if (c_offset) {
3624		lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3625		lblk_to = lblk_from + c_offset - 1;
3626
3627		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3628			allocated_clusters--;
3629	}
3630
3631	/* Now check towards right. */
3632	c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3633	if (allocated_clusters && c_offset) {
3634		lblk_from = lblk_start + num_blks;
3635		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3636
3637		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3638			allocated_clusters--;
3639	}
3640
3641	return allocated_clusters;
3642}
3643
3644static int
3645ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3646			struct ext4_map_blocks *map,
3647			struct ext4_ext_path *path, int flags,
3648			unsigned int allocated, ext4_fsblk_t newblock)
3649{
3650	int ret = 0;
3651	int err = 0;
3652	ext4_io_end_t *io = ext4_inode_aio(inode);
3653
3654	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3655		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
3656		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3657		  flags, allocated);
3658	ext4_ext_show_leaf(inode, path);
3659
3660	trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3661						    allocated, newblock);
3662
3663	/* get_block() before submit the IO, split the extent */
3664	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3665		ret = ext4_split_unwritten_extents(handle, inode, map,
3666						   path, flags);
3667		if (ret <= 0)
3668			goto out;
3669		/*
3670		 * Flag the inode(non aio case) or end_io struct (aio case)
3671		 * that this IO needs to conversion to written when IO is
3672		 * completed
3673		 */
3674		if (io)
3675			ext4_set_io_unwritten_flag(inode, io);
3676		else
3677			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3678		map->m_flags |= EXT4_MAP_UNWRITTEN;
3679		if (ext4_should_dioread_nolock(inode))
3680			map->m_flags |= EXT4_MAP_UNINIT;
3681		goto out;
3682	}
3683	/* IO end_io complete, convert the filled extent to written */
3684	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3685		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3686							path);
3687		if (ret >= 0) {
3688			ext4_update_inode_fsync_trans(handle, inode, 1);
3689			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3690						 path, map->m_len);
3691		} else
3692			err = ret;
3693		goto out2;
3694	}
3695	/* buffered IO case */
3696	/*
3697	 * repeat fallocate creation request
3698	 * we already have an unwritten extent
3699	 */
3700	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
3701		map->m_flags |= EXT4_MAP_UNWRITTEN;
3702		goto map_out;
3703	}
3704
3705	/* buffered READ or buffered write_begin() lookup */
3706	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3707		/*
3708		 * We have blocks reserved already.  We
3709		 * return allocated blocks so that delalloc
3710		 * won't do block reservation for us.  But
3711		 * the buffer head will be unmapped so that
3712		 * a read from the block returns 0s.
3713		 */
3714		map->m_flags |= EXT4_MAP_UNWRITTEN;
3715		goto out1;
3716	}
3717
3718	/* buffered write, writepage time, convert*/
3719	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3720	if (ret >= 0)
3721		ext4_update_inode_fsync_trans(handle, inode, 1);
3722out:
3723	if (ret <= 0) {
3724		err = ret;
3725		goto out2;
3726	} else
3727		allocated = ret;
3728	map->m_flags |= EXT4_MAP_NEW;
3729	/*
3730	 * if we allocated more blocks than requested
3731	 * we need to make sure we unmap the extra block
3732	 * allocated. The actual needed block will get
3733	 * unmapped later when we find the buffer_head marked
3734	 * new.
3735	 */
3736	if (allocated > map->m_len) {
3737		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3738					newblock + map->m_len,
3739					allocated - map->m_len);
3740		allocated = map->m_len;
3741	}
3742
3743	/*
3744	 * If we have done fallocate with the offset that is already
3745	 * delayed allocated, we would have block reservation
3746	 * and quota reservation done in the delayed write path.
3747	 * But fallocate would have already updated quota and block
3748	 * count for this offset. So cancel these reservation
3749	 */
3750	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3751		unsigned int reserved_clusters;
3752		reserved_clusters = get_reserved_cluster_alloc(inode,
3753				map->m_lblk, map->m_len);
3754		if (reserved_clusters)
3755			ext4_da_update_reserve_space(inode,
3756						     reserved_clusters,
3757						     0);
3758	}
3759
3760map_out:
3761	map->m_flags |= EXT4_MAP_MAPPED;
3762	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3763		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3764					 map->m_len);
3765		if (err < 0)
3766			goto out2;
3767	}
3768out1:
3769	if (allocated > map->m_len)
3770		allocated = map->m_len;
3771	ext4_ext_show_leaf(inode, path);
3772	map->m_pblk = newblock;
3773	map->m_len = allocated;
3774out2:
3775	if (path) {
3776		ext4_ext_drop_refs(path);
3777		kfree(path);
3778	}
3779	return err ? err : allocated;
3780}
3781
3782/*
3783 * get_implied_cluster_alloc - check to see if the requested
3784 * allocation (in the map structure) overlaps with a cluster already
3785 * allocated in an extent.
3786 *	@sb	The filesystem superblock structure
3787 *	@map	The requested lblk->pblk mapping
3788 *	@ex	The extent structure which might contain an implied
3789 *			cluster allocation
3790 *
3791 * This function is called by ext4_ext_map_blocks() after we failed to
3792 * find blocks that were already in the inode's extent tree.  Hence,
3793 * we know that the beginning of the requested region cannot overlap
3794 * the extent from the inode's extent tree.  There are three cases we
3795 * want to catch.  The first is this case:
3796 *
3797 *		 |--- cluster # N--|
3798 *    |--- extent ---|	|---- requested region ---|
3799 *			|==========|
3800 *
3801 * The second case that we need to test for is this one:
3802 *
3803 *   |--------- cluster # N ----------------|
3804 *	   |--- requested region --|   |------- extent ----|
3805 *	   |=======================|
3806 *
3807 * The third case is when the requested region lies between two extents
3808 * within the same cluster:
3809 *          |------------- cluster # N-------------|
3810 * |----- ex -----|                  |---- ex_right ----|
3811 *                  |------ requested region ------|
3812 *                  |================|
3813 *
3814 * In each of the above cases, we need to set the map->m_pblk and
3815 * map->m_len so it corresponds to the return the extent labelled as
3816 * "|====|" from cluster #N, since it is already in use for data in
3817 * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
3818 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3819 * as a new "allocated" block region.  Otherwise, we will return 0 and
3820 * ext4_ext_map_blocks() will then allocate one or more new clusters
3821 * by calling ext4_mb_new_blocks().
3822 */
3823static int get_implied_cluster_alloc(struct super_block *sb,
3824				     struct ext4_map_blocks *map,
3825				     struct ext4_extent *ex,
3826				     struct ext4_ext_path *path)
3827{
3828	struct ext4_sb_info *sbi = EXT4_SB(sb);
3829	ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3830	ext4_lblk_t ex_cluster_start, ex_cluster_end;
3831	ext4_lblk_t rr_cluster_start;
3832	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3833	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3834	unsigned short ee_len = ext4_ext_get_actual_len(ex);
3835
3836	/* The extent passed in that we are trying to match */
3837	ex_cluster_start = EXT4_B2C(sbi, ee_block);
3838	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3839
3840	/* The requested region passed into ext4_map_blocks() */
3841	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3842
3843	if ((rr_cluster_start == ex_cluster_end) ||
3844	    (rr_cluster_start == ex_cluster_start)) {
3845		if (rr_cluster_start == ex_cluster_end)
3846			ee_start += ee_len - 1;
3847		map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3848			c_offset;
3849		map->m_len = min(map->m_len,
3850				 (unsigned) sbi->s_cluster_ratio - c_offset);
3851		/*
3852		 * Check for and handle this case:
3853		 *
3854		 *   |--------- cluster # N-------------|
3855		 *		       |------- extent ----|
3856		 *	   |--- requested region ---|
3857		 *	   |===========|
3858		 */
3859
3860		if (map->m_lblk < ee_block)
3861			map->m_len = min(map->m_len, ee_block - map->m_lblk);
3862
3863		/*
3864		 * Check for the case where there is already another allocated
3865		 * block to the right of 'ex' but before the end of the cluster.
3866		 *
3867		 *          |------------- cluster # N-------------|
3868		 * |----- ex -----|                  |---- ex_right ----|
3869		 *                  |------ requested region ------|
3870		 *                  |================|
3871		 */
3872		if (map->m_lblk > ee_block) {
3873			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3874			map->m_len = min(map->m_len, next - map->m_lblk);
3875		}
3876
3877		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3878		return 1;
3879	}
3880
3881	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3882	return 0;
3883}
3884
3885
3886/*
3887 * Block allocation/map/preallocation routine for extents based files
3888 *
3889 *
3890 * Need to be called with
3891 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3892 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3893 *
3894 * return > 0, number of of blocks already mapped/allocated
3895 *          if create == 0 and these are pre-allocated blocks
3896 *          	buffer head is unmapped
3897 *          otherwise blocks are mapped
3898 *
3899 * return = 0, if plain look up failed (blocks have not been allocated)
3900 *          buffer head is unmapped
3901 *
3902 * return < 0, error case.
3903 */
3904int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3905			struct ext4_map_blocks *map, int flags)
3906{
3907	struct ext4_ext_path *path = NULL;
3908	struct ext4_extent newex, *ex, *ex2;
3909	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3910	ext4_fsblk_t newblock = 0;
3911	int free_on_err = 0, err = 0, depth;
3912	unsigned int allocated = 0, offset = 0;
3913	unsigned int allocated_clusters = 0;
3914	struct ext4_allocation_request ar;
3915	ext4_io_end_t *io = ext4_inode_aio(inode);
3916	ext4_lblk_t cluster_offset;
3917	int set_unwritten = 0;
3918
3919	ext_debug("blocks %u/%u requested for inode %lu\n",
3920		  map->m_lblk, map->m_len, inode->i_ino);
3921	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3922
3923	/* check in cache */
3924	if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3925		if (!newex.ee_start_lo && !newex.ee_start_hi) {
3926			if ((sbi->s_cluster_ratio > 1) &&
3927			    ext4_find_delalloc_cluster(inode, map->m_lblk))
3928				map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3929
3930			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3931				/*
3932				 * block isn't allocated yet and
3933				 * user doesn't want to allocate it
3934				 */
3935				goto out2;
3936			}
3937			/* we should allocate requested block */
3938		} else {
3939			/* block is already allocated */
3940			if (sbi->s_cluster_ratio > 1)
3941				map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3942			newblock = map->m_lblk
3943				   - le32_to_cpu(newex.ee_block)
3944				   + ext4_ext_pblock(&newex);
3945			/* number of remaining blocks in the extent */
3946			allocated = ext4_ext_get_actual_len(&newex) -
3947				(map->m_lblk - le32_to_cpu(newex.ee_block));
3948			goto out;
3949		}
3950	}
3951
3952	/* find extent for this block */
3953	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3954	if (IS_ERR(path)) {
3955		err = PTR_ERR(path);
3956		path = NULL;
3957		goto out2;
3958	}
3959
3960	depth = ext_depth(inode);
3961
3962	/*
3963	 * consistent leaf must not be empty;
3964	 * this situation is possible, though, _during_ tree modification;
3965	 * this is why assert can't be put in ext4_ext_find_extent()
3966	 */
3967	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3968		EXT4_ERROR_INODE(inode, "bad extent address "
3969				 "lblock: %lu, depth: %d pblock %lld",
3970				 (unsigned long) map->m_lblk, depth,
3971				 path[depth].p_block);
3972		err = -EIO;
3973		goto out2;
3974	}
3975
3976	ex = path[depth].p_ext;
3977	if (ex) {
3978		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3979		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3980		unsigned short ee_len;
3981
3982		/*
3983		 * Uninitialized extents are treated as holes, except that
3984		 * we split out initialized portions during a write.
3985		 */
3986		ee_len = ext4_ext_get_actual_len(ex);
3987
3988		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3989
3990		/* if found extent covers block, simply return it */
3991		if (in_range(map->m_lblk, ee_block, ee_len)) {
3992			newblock = map->m_lblk - ee_block + ee_start;
3993			/* number of remaining blocks in the extent */
3994			allocated = ee_len - (map->m_lblk - ee_block);
3995			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3996				  ee_block, ee_len, newblock);
3997
3998			/*
3999			 * Do not put uninitialized extent
4000			 * in the cache
4001			 */
4002			if (!ext4_ext_is_uninitialized(ex)) {
4003				ext4_ext_put_in_cache(inode, ee_block,
4004					ee_len, ee_start);
4005				goto out;
4006			}
4007			allocated = ext4_ext_handle_uninitialized_extents(
4008				handle, inode, map, path, flags,
4009				allocated, newblock);
4010			goto out3;
4011		}
4012	}
4013
4014	if ((sbi->s_cluster_ratio > 1) &&
4015	    ext4_find_delalloc_cluster(inode, map->m_lblk))
4016		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4017
4018	/*
4019	 * requested block isn't allocated yet;
4020	 * we couldn't try to create block if create flag is zero
4021	 */
4022	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4023		/*
4024		 * put just found gap into cache to speed up
4025		 * subsequent requests
4026		 */
4027		if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4028			ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4029		goto out2;
4030	}
4031
4032	/*
4033	 * Okay, we need to do block allocation.
4034	 */
4035	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4036	newex.ee_block = cpu_to_le32(map->m_lblk);
4037	cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4038
4039	/*
4040	 * If we are doing bigalloc, check to see if the extent returned
4041	 * by ext4_ext_find_extent() implies a cluster we can use.
4042	 */
4043	if (cluster_offset && ex &&
4044	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4045		ar.len = allocated = map->m_len;
4046		newblock = map->m_pblk;
4047		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4048		goto got_allocated_blocks;
4049	}
4050
4051	/* find neighbour allocated blocks */
4052	ar.lleft = map->m_lblk;
4053	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4054	if (err)
4055		goto out2;
4056	ar.lright = map->m_lblk;
4057	ex2 = NULL;
4058	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4059	if (err)
4060		goto out2;
4061
4062	/* Check if the extent after searching to the right implies a
4063	 * cluster we can use. */
4064	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4065	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4066		ar.len = allocated = map->m_len;
4067		newblock = map->m_pblk;
4068		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4069		goto got_allocated_blocks;
4070	}
4071
4072	/*
4073	 * See if request is beyond maximum number of blocks we can have in
4074	 * a single extent. For an initialized extent this limit is
4075	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4076	 * EXT_UNINIT_MAX_LEN.
4077	 */
4078	if (map->m_len > EXT_INIT_MAX_LEN &&
4079	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4080		map->m_len = EXT_INIT_MAX_LEN;
4081	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4082		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4083		map->m_len = EXT_UNINIT_MAX_LEN;
4084
4085	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4086	newex.ee_len = cpu_to_le16(map->m_len);
4087	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4088	if (err)
4089		allocated = ext4_ext_get_actual_len(&newex);
4090	else
4091		allocated = map->m_len;
4092
4093	/* allocate new block */
4094	ar.inode = inode;
4095	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4096	ar.logical = map->m_lblk;
4097	/*
4098	 * We calculate the offset from the beginning of the cluster
4099	 * for the logical block number, since when we allocate a
4100	 * physical cluster, the physical block should start at the
4101	 * same offset from the beginning of the cluster.  This is
4102	 * needed so that future calls to get_implied_cluster_alloc()
4103	 * work correctly.
4104	 */
4105	offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4106	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4107	ar.goal -= offset;
4108	ar.logical -= offset;
4109	if (S_ISREG(inode->i_mode))
4110		ar.flags = EXT4_MB_HINT_DATA;
4111	else
4112		/* disable in-core preallocation for non-regular files */
4113		ar.flags = 0;
4114	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4115		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4116	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4117	if (!newblock)
4118		goto out2;
4119	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4120		  ar.goal, newblock, allocated);
4121	free_on_err = 1;
4122	allocated_clusters = ar.len;
4123	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4124	if (ar.len > allocated)
4125		ar.len = allocated;
4126
4127got_allocated_blocks:
4128	/* try to insert new extent into found leaf and return */
4129	ext4_ext_store_pblock(&newex, newblock + offset);
4130	newex.ee_len = cpu_to_le16(ar.len);
4131	/* Mark uninitialized */
4132	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4133		ext4_ext_mark_uninitialized(&newex);
4134		map->m_flags |= EXT4_MAP_UNWRITTEN;
4135		/*
4136		 * io_end structure was created for every IO write to an
4137		 * uninitialized extent. To avoid unnecessary conversion,
4138		 * here we flag the IO that really needs the conversion.
4139		 * For non asycn direct IO case, flag the inode state
4140		 * that we need to perform conversion when IO is done.
4141		 */
4142		if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4143			set_unwritten = 1;
4144		if (ext4_should_dioread_nolock(inode))
4145			map->m_flags |= EXT4_MAP_UNINIT;
4146	}
4147
4148	err = 0;
4149	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4150		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4151					 path, ar.len);
4152	if (!err)
4153		err = ext4_ext_insert_extent(handle, inode, path,
4154					     &newex, flags);
4155
4156	if (!err && set_unwritten) {
4157		if (io)
4158			ext4_set_io_unwritten_flag(inode, io);
4159		else
4160			ext4_set_inode_state(inode,
4161					     EXT4_STATE_DIO_UNWRITTEN);
4162	}
4163
4164	if (err && free_on_err) {
4165		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4166			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4167		/* free data blocks we just allocated */
4168		/* not a good idea to call discard here directly,
4169		 * but otherwise we'd need to call it every free() */
4170		ext4_discard_preallocations(inode);
4171		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4172				 ext4_ext_get_actual_len(&newex), fb_flags);
4173		goto out2;
4174	}
4175
4176	/* previous routine could use block we allocated */
4177	newblock = ext4_ext_pblock(&newex);
4178	allocated = ext4_ext_get_actual_len(&newex);
4179	if (allocated > map->m_len)
4180		allocated = map->m_len;
4181	map->m_flags |= EXT4_MAP_NEW;
4182
4183	/*
4184	 * Update reserved blocks/metadata blocks after successful
4185	 * block allocation which had been deferred till now.
4186	 */
4187	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4188		unsigned int reserved_clusters;
4189		/*
4190		 * Check how many clusters we had reserved this allocated range
4191		 */
4192		reserved_clusters = get_reserved_cluster_alloc(inode,
4193						map->m_lblk, allocated);
4194		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4195			if (reserved_clusters) {
4196				/*
4197				 * We have clusters reserved for this range.
4198				 * But since we are not doing actual allocation
4199				 * and are simply using blocks from previously
4200				 * allocated cluster, we should release the
4201				 * reservation and not claim quota.
4202				 */
4203				ext4_da_update_reserve_space(inode,
4204						reserved_clusters, 0);
4205			}
4206		} else {
4207			BUG_ON(allocated_clusters < reserved_clusters);
4208			/* We will claim quota for all newly allocated blocks.*/
4209			ext4_da_update_reserve_space(inode, allocated_clusters,
4210							1);
4211			if (reserved_clusters < allocated_clusters) {
4212				struct ext4_inode_info *ei = EXT4_I(inode);
4213				int reservation = allocated_clusters -
4214						  reserved_clusters;
4215				/*
4216				 * It seems we claimed few clusters outside of
4217				 * the range of this allocation. We should give
4218				 * it back to the reservation pool. This can
4219				 * happen in the following case:
4220				 *
4221				 * * Suppose s_cluster_ratio is 4 (i.e., each
4222				 *   cluster has 4 blocks. Thus, the clusters
4223				 *   are [0-3],[4-7],[8-11]...
4224				 * * First comes delayed allocation write for
4225				 *   logical blocks 10 & 11. Since there were no
4226				 *   previous delayed allocated blocks in the
4227				 *   range [8-11], we would reserve 1 cluster
4228				 *   for this write.
4229				 * * Next comes write for logical blocks 3 to 8.
4230				 *   In this case, we will reserve 2 clusters
4231				 *   (for [0-3] and [4-7]; and not for [8-11] as
4232				 *   that range has a delayed allocated blocks.
4233				 *   Thus total reserved clusters now becomes 3.
4234				 * * Now, during the delayed allocation writeout
4235				 *   time, we will first write blocks [3-8] and
4236				 *   allocate 3 clusters for writing these
4237				 *   blocks. Also, we would claim all these
4238				 *   three clusters above.
4239				 * * Now when we come here to writeout the
4240				 *   blocks [10-11], we would expect to claim
4241				 *   the reservation of 1 cluster we had made
4242				 *   (and we would claim it since there are no
4243				 *   more delayed allocated blocks in the range
4244				 *   [8-11]. But our reserved cluster count had
4245				 *   already gone to 0.
4246				 *
4247				 *   Thus, at the step 4 above when we determine
4248				 *   that there are still some unwritten delayed
4249				 *   allocated blocks outside of our current
4250				 *   block range, we should increment the
4251				 *   reserved clusters count so that when the
4252				 *   remaining blocks finally gets written, we
4253				 *   could claim them.
4254				 */
4255				dquot_reserve_block(inode,
4256						EXT4_C2B(sbi, reservation));
4257				spin_lock(&ei->i_block_reservation_lock);
4258				ei->i_reserved_data_blocks += reservation;
4259				spin_unlock(&ei->i_block_reservation_lock);
4260			}
4261		}
4262	}
4263
4264	/*
4265	 * Cache the extent and update transaction to commit on fdatasync only
4266	 * when it is _not_ an uninitialized extent.
4267	 */
4268	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4269		ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4270		ext4_update_inode_fsync_trans(handle, inode, 1);
4271	} else
4272		ext4_update_inode_fsync_trans(handle, inode, 0);
4273out:
4274	if (allocated > map->m_len)
4275		allocated = map->m_len;
4276	ext4_ext_show_leaf(inode, path);
4277	map->m_flags |= EXT4_MAP_MAPPED;
4278	map->m_pblk = newblock;
4279	map->m_len = allocated;
4280out2:
4281	if (path) {
4282		ext4_ext_drop_refs(path);
4283		kfree(path);
4284	}
4285
4286out3:
4287	trace_ext4_ext_map_blocks_exit(inode, map, err ? err : allocated);
4288
4289	return err ? err : allocated;
4290}
4291
4292void ext4_ext_truncate(struct inode *inode)
4293{
4294	struct address_space *mapping = inode->i_mapping;
4295	struct super_block *sb = inode->i_sb;
4296	ext4_lblk_t last_block;
4297	handle_t *handle;
4298	loff_t page_len;
4299	int err = 0;
4300
4301	/*
4302	 * finish any pending end_io work so we won't run the risk of
4303	 * converting any truncated blocks to initialized later
4304	 */
4305	ext4_flush_unwritten_io(inode);
4306
4307	/*
4308	 * probably first extent we're gonna free will be last in block
4309	 */
4310	err = ext4_writepage_trans_blocks(inode);
4311	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, err);
4312	if (IS_ERR(handle))
4313		return;
4314
4315	if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4316		page_len = PAGE_CACHE_SIZE -
4317			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4318
4319		err = ext4_discard_partial_page_buffers(handle,
4320			mapping, inode->i_size, page_len, 0);
4321
4322		if (err)
4323			goto out_stop;
4324	}
4325
4326	if (ext4_orphan_add(handle, inode))
4327		goto out_stop;
4328
4329	down_write(&EXT4_I(inode)->i_data_sem);
4330	ext4_ext_invalidate_cache(inode);
4331
4332	ext4_discard_preallocations(inode);
4333
4334	/*
4335	 * TODO: optimization is possible here.
4336	 * Probably we need not scan at all,
4337	 * because page truncation is enough.
4338	 */
4339
4340	/* we have to know where to truncate from in crash case */
4341	EXT4_I(inode)->i_disksize = inode->i_size;
4342	ext4_mark_inode_dirty(handle, inode);
4343
4344	last_block = (inode->i_size + sb->s_blocksize - 1)
4345			>> EXT4_BLOCK_SIZE_BITS(sb);
4346	err = ext4_es_remove_extent(inode, last_block,
4347				    EXT_MAX_BLOCKS - last_block);
4348	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4349
4350	/* In a multi-transaction truncate, we only make the final
4351	 * transaction synchronous.
4352	 */
4353	if (IS_SYNC(inode))
4354		ext4_handle_sync(handle);
4355
4356	up_write(&EXT4_I(inode)->i_data_sem);
4357
4358out_stop:
4359	/*
4360	 * If this was a simple ftruncate() and the file will remain alive,
4361	 * then we need to clear up the orphan record which we created above.
4362	 * However, if this was a real unlink then we were called by
4363	 * ext4_delete_inode(), and we allow that function to clean up the
4364	 * orphan info for us.
4365	 */
4366	if (inode->i_nlink)
4367		ext4_orphan_del(handle, inode);
4368
4369	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4370	ext4_mark_inode_dirty(handle, inode);
4371	ext4_journal_stop(handle);
4372}
4373
4374static void ext4_falloc_update_inode(struct inode *inode,
4375				int mode, loff_t new_size, int update_ctime)
4376{
4377	struct timespec now;
4378
4379	if (update_ctime) {
4380		now = current_fs_time(inode->i_sb);
4381		if (!timespec_equal(&inode->i_ctime, &now))
4382			inode->i_ctime = now;
4383	}
4384	/*
4385	 * Update only when preallocation was requested beyond
4386	 * the file size.
4387	 */
4388	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4389		if (new_size > i_size_read(inode))
4390			i_size_write(inode, new_size);
4391		if (new_size > EXT4_I(inode)->i_disksize)
4392			ext4_update_i_disksize(inode, new_size);
4393	} else {
4394		/*
4395		 * Mark that we allocate beyond EOF so the subsequent truncate
4396		 * can proceed even if the new size is the same as i_size.
4397		 */
4398		if (new_size > i_size_read(inode))
4399			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4400	}
4401
4402}
4403
4404/*
4405 * preallocate space for a file. This implements ext4's fallocate file
4406 * operation, which gets called from sys_fallocate system call.
4407 * For block-mapped files, posix_fallocate should fall back to the method
4408 * of writing zeroes to the required new blocks (the same behavior which is
4409 * expected for file systems which do not support fallocate() system call).
4410 */
4411long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4412{
4413	struct inode *inode = file->f_path.dentry->d_inode;
4414	handle_t *handle;
4415	loff_t new_size;
4416	unsigned int max_blocks;
4417	int ret = 0;
4418	int ret2 = 0;
4419	int retries = 0;
4420	int flags;
4421	struct ext4_map_blocks map;
4422	unsigned int credits, blkbits = inode->i_blkbits;
4423
4424	/* Return error if mode is not supported */
4425	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4426		return -EOPNOTSUPP;
4427
4428	if (mode & FALLOC_FL_PUNCH_HOLE)
4429		return ext4_punch_hole(file, offset, len);
4430
4431	ret = ext4_convert_inline_data(inode);
4432	if (ret)
4433		return ret;
4434
4435	/*
4436	 * currently supporting (pre)allocate mode for extent-based
4437	 * files _only_
4438	 */
4439	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4440		return -EOPNOTSUPP;
4441
4442	trace_ext4_fallocate_enter(inode, offset, len, mode);
4443	map.m_lblk = offset >> blkbits;
4444	/*
4445	 * We can't just convert len to max_blocks because
4446	 * If blocksize = 4096 offset = 3072 and len = 2048
4447	 */
4448	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4449		- map.m_lblk;
4450	/*
4451	 * credits to insert 1 extent into extent tree
4452	 */
4453	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4454	mutex_lock(&inode->i_mutex);
4455	ret = inode_newsize_ok(inode, (len + offset));
4456	if (ret) {
4457		mutex_unlock(&inode->i_mutex);
4458		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4459		return ret;
4460	}
4461	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4462	if (mode & FALLOC_FL_KEEP_SIZE)
4463		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4464	/*
4465	 * Don't normalize the request if it can fit in one extent so
4466	 * that it doesn't get unnecessarily split into multiple
4467	 * extents.
4468	 */
4469	if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4470		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4471
4472	/* Prevent race condition between unwritten */
4473	ext4_flush_unwritten_io(inode);
4474retry:
4475	while (ret >= 0 && ret < max_blocks) {
4476		map.m_lblk = map.m_lblk + ret;
4477		map.m_len = max_blocks = max_blocks - ret;
4478		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4479					    credits);
4480		if (IS_ERR(handle)) {
4481			ret = PTR_ERR(handle);
4482			break;
4483		}
4484		ret = ext4_map_blocks(handle, inode, &map, flags);
4485		if (ret <= 0) {
4486#ifdef EXT4FS_DEBUG
4487			ext4_warning(inode->i_sb,
4488				     "inode #%lu: block %u: len %u: "
4489				     "ext4_ext_map_blocks returned %d",
4490				     inode->i_ino, map.m_lblk,
4491				     map.m_len, ret);
4492#endif
4493			ext4_mark_inode_dirty(handle, inode);
4494			ret2 = ext4_journal_stop(handle);
4495			break;
4496		}
4497		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4498						blkbits) >> blkbits))
4499			new_size = offset + len;
4500		else
4501			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4502
4503		ext4_falloc_update_inode(inode, mode, new_size,
4504					 (map.m_flags & EXT4_MAP_NEW));
4505		ext4_mark_inode_dirty(handle, inode);
4506		if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4507			ext4_handle_sync(handle);
4508		ret2 = ext4_journal_stop(handle);
4509		if (ret2)
4510			break;
4511	}
4512	if (ret == -ENOSPC &&
4513			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4514		ret = 0;
4515		goto retry;
4516	}
4517	mutex_unlock(&inode->i_mutex);
4518	trace_ext4_fallocate_exit(inode, offset, max_blocks,
4519				ret > 0 ? ret2 : ret);
4520	return ret > 0 ? ret2 : ret;
4521}
4522
4523/*
4524 * This function convert a range of blocks to written extents
4525 * The caller of this function will pass the start offset and the size.
4526 * all unwritten extents within this range will be converted to
4527 * written extents.
4528 *
4529 * This function is called from the direct IO end io call back
4530 * function, to convert the fallocated extents after IO is completed.
4531 * Returns 0 on success.
4532 */
4533int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4534				    ssize_t len)
4535{
4536	handle_t *handle;
4537	unsigned int max_blocks;
4538	int ret = 0;
4539	int ret2 = 0;
4540	struct ext4_map_blocks map;
4541	unsigned int credits, blkbits = inode->i_blkbits;
4542
4543	map.m_lblk = offset >> blkbits;
4544	/*
4545	 * We can't just convert len to max_blocks because
4546	 * If blocksize = 4096 offset = 3072 and len = 2048
4547	 */
4548	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4549		      map.m_lblk);
4550	/*
4551	 * credits to insert 1 extent into extent tree
4552	 */
4553	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4554	while (ret >= 0 && ret < max_blocks) {
4555		map.m_lblk += ret;
4556		map.m_len = (max_blocks -= ret);
4557		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
4558		if (IS_ERR(handle)) {
4559			ret = PTR_ERR(handle);
4560			break;
4561		}
4562		ret = ext4_map_blocks(handle, inode, &map,
4563				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4564		if (ret <= 0)
4565			ext4_warning(inode->i_sb,
4566				     "inode #%lu: block %u: len %u: "
4567				     "ext4_ext_map_blocks returned %d",
4568				     inode->i_ino, map.m_lblk,
4569				     map.m_len, ret);
4570		ext4_mark_inode_dirty(handle, inode);
4571		ret2 = ext4_journal_stop(handle);
4572		if (ret <= 0 || ret2 )
4573			break;
4574	}
4575	return ret > 0 ? ret2 : ret;
4576}
4577
4578/*
4579 * If newex is not existing extent (newex->ec_start equals zero) find
4580 * delayed extent at start of newex and update newex accordingly and
4581 * return start of the next delayed extent.
4582 *
4583 * If newex is existing extent (newex->ec_start is not equal zero)
4584 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4585 * extent found. Leave newex unmodified.
4586 */
4587static int ext4_find_delayed_extent(struct inode *inode,
4588				    struct ext4_ext_cache *newex)
4589{
4590	struct extent_status es;
4591	ext4_lblk_t block, next_del;
4592
4593	ext4_es_find_delayed_extent(inode, newex->ec_block, &es);
4594
4595	if (newex->ec_start == 0) {
4596		/*
4597		 * No extent in extent-tree contains block @newex->ec_start,
4598		 * then the block may stay in 1)a hole or 2)delayed-extent.
4599		 */
4600		if (es.es_len == 0)
4601			/* A hole found. */
4602			return 0;
4603
4604		if (es.es_lblk > newex->ec_block) {
4605			/* A hole found. */
4606			newex->ec_len = min(es.es_lblk - newex->ec_block,
4607					    newex->ec_len);
4608			return 0;
4609		}
4610
4611		newex->ec_len = es.es_lblk + es.es_len - newex->ec_block;
4612	}
4613
4614	block = newex->ec_block + newex->ec_len;
4615	ext4_es_find_delayed_extent(inode, block, &es);
4616	if (es.es_len == 0)
4617		next_del = EXT_MAX_BLOCKS;
4618	else
4619		next_del = es.es_lblk;
4620
4621	return next_del;
4622}
4623/* fiemap flags we can handle specified here */
4624#define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4625
4626static int ext4_xattr_fiemap(struct inode *inode,
4627				struct fiemap_extent_info *fieinfo)
4628{
4629	__u64 physical = 0;
4630	__u64 length;
4631	__u32 flags = FIEMAP_EXTENT_LAST;
4632	int blockbits = inode->i_sb->s_blocksize_bits;
4633	int error = 0;
4634
4635	/* in-inode? */
4636	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4637		struct ext4_iloc iloc;
4638		int offset;	/* offset of xattr in inode */
4639
4640		error = ext4_get_inode_loc(inode, &iloc);
4641		if (error)
4642			return error;
4643		physical = iloc.bh->b_blocknr << blockbits;
4644		offset = EXT4_GOOD_OLD_INODE_SIZE +
4645				EXT4_I(inode)->i_extra_isize;
4646		physical += offset;
4647		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4648		flags |= FIEMAP_EXTENT_DATA_INLINE;
4649		brelse(iloc.bh);
4650	} else { /* external block */
4651		physical = EXT4_I(inode)->i_file_acl << blockbits;
4652		length = inode->i_sb->s_blocksize;
4653	}
4654
4655	if (physical)
4656		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4657						length, flags);
4658	return (error < 0 ? error : 0);
4659}
4660
4661/*
4662 * ext4_ext_punch_hole
4663 *
4664 * Punches a hole of "length" bytes in a file starting
4665 * at byte "offset"
4666 *
4667 * @inode:  The inode of the file to punch a hole in
4668 * @offset: The starting byte offset of the hole
4669 * @length: The length of the hole
4670 *
4671 * Returns the number of blocks removed or negative on err
4672 */
4673int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4674{
4675	struct inode *inode = file->f_path.dentry->d_inode;
4676	struct super_block *sb = inode->i_sb;
4677	ext4_lblk_t first_block, stop_block;
4678	struct address_space *mapping = inode->i_mapping;
4679	handle_t *handle;
4680	loff_t first_page, last_page, page_len;
4681	loff_t first_page_offset, last_page_offset;
4682	int credits, err = 0;
4683
4684	/*
4685	 * Write out all dirty pages to avoid race conditions
4686	 * Then release them.
4687	 */
4688	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4689		err = filemap_write_and_wait_range(mapping,
4690			offset, offset + length - 1);
4691
4692		if (err)
4693			return err;
4694	}
4695
4696	mutex_lock(&inode->i_mutex);
4697	/* It's not possible punch hole on append only file */
4698	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4699		err = -EPERM;
4700		goto out_mutex;
4701	}
4702	if (IS_SWAPFILE(inode)) {
4703		err = -ETXTBSY;
4704		goto out_mutex;
4705	}
4706
4707	/* No need to punch hole beyond i_size */
4708	if (offset >= inode->i_size)
4709		goto out_mutex;
4710
4711	/*
4712	 * If the hole extends beyond i_size, set the hole
4713	 * to end after the page that contains i_size
4714	 */
4715	if (offset + length > inode->i_size) {
4716		length = inode->i_size +
4717		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4718		   offset;
4719	}
4720
4721	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4722	last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4723
4724	first_page_offset = first_page << PAGE_CACHE_SHIFT;
4725	last_page_offset = last_page << PAGE_CACHE_SHIFT;
4726
4727	/* Now release the pages */
4728	if (last_page_offset > first_page_offset) {
4729		truncate_pagecache_range(inode, first_page_offset,
4730					 last_page_offset - 1);
4731	}
4732
4733	/* Wait all existing dio workers, newcomers will block on i_mutex */
4734	ext4_inode_block_unlocked_dio(inode);
4735	err = ext4_flush_unwritten_io(inode);
4736	if (err)
4737		goto out_dio;
4738	inode_dio_wait(inode);
4739
4740	credits = ext4_writepage_trans_blocks(inode);
4741	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4742	if (IS_ERR(handle)) {
4743		err = PTR_ERR(handle);
4744		goto out_dio;
4745	}
4746
4747
4748	/*
4749	 * Now we need to zero out the non-page-aligned data in the
4750	 * pages at the start and tail of the hole, and unmap the buffer
4751	 * heads for the block aligned regions of the page that were
4752	 * completely zeroed.
4753	 */
4754	if (first_page > last_page) {
4755		/*
4756		 * If the file space being truncated is contained within a page
4757		 * just zero out and unmap the middle of that page
4758		 */
4759		err = ext4_discard_partial_page_buffers(handle,
4760			mapping, offset, length, 0);
4761
4762		if (err)
4763			goto out;
4764	} else {
4765		/*
4766		 * zero out and unmap the partial page that contains
4767		 * the start of the hole
4768		 */
4769		page_len  = first_page_offset - offset;
4770		if (page_len > 0) {
4771			err = ext4_discard_partial_page_buffers(handle, mapping,
4772						   offset, page_len, 0);
4773			if (err)
4774				goto out;
4775		}
4776
4777		/*
4778		 * zero out and unmap the partial page that contains
4779		 * the end of the hole
4780		 */
4781		page_len = offset + length - last_page_offset;
4782		if (page_len > 0) {
4783			err = ext4_discard_partial_page_buffers(handle, mapping,
4784					last_page_offset, page_len, 0);
4785			if (err)
4786				goto out;
4787		}
4788	}
4789
4790	/*
4791	 * If i_size is contained in the last page, we need to
4792	 * unmap and zero the partial page after i_size
4793	 */
4794	if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4795	   inode->i_size % PAGE_CACHE_SIZE != 0) {
4796
4797		page_len = PAGE_CACHE_SIZE -
4798			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4799
4800		if (page_len > 0) {
4801			err = ext4_discard_partial_page_buffers(handle,
4802			  mapping, inode->i_size, page_len, 0);
4803
4804			if (err)
4805				goto out;
4806		}
4807	}
4808
4809	first_block = (offset + sb->s_blocksize - 1) >>
4810		EXT4_BLOCK_SIZE_BITS(sb);
4811	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4812
4813	/* If there are no blocks to remove, return now */
4814	if (first_block >= stop_block)
4815		goto out;
4816
4817	down_write(&EXT4_I(inode)->i_data_sem);
4818	ext4_ext_invalidate_cache(inode);
4819	ext4_discard_preallocations(inode);
4820
4821	err = ext4_es_remove_extent(inode, first_block,
4822				    stop_block - first_block);
4823	err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4824
4825	ext4_ext_invalidate_cache(inode);
4826	ext4_discard_preallocations(inode);
4827
4828	if (IS_SYNC(inode))
4829		ext4_handle_sync(handle);
4830
4831	up_write(&EXT4_I(inode)->i_data_sem);
4832
4833out:
4834	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4835	ext4_mark_inode_dirty(handle, inode);
4836	ext4_journal_stop(handle);
4837out_dio:
4838	ext4_inode_resume_unlocked_dio(inode);
4839out_mutex:
4840	mutex_unlock(&inode->i_mutex);
4841	return err;
4842}
4843
4844int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4845		__u64 start, __u64 len)
4846{
4847	ext4_lblk_t start_blk;
4848	int error = 0;
4849
4850	if (ext4_has_inline_data(inode)) {
4851		int has_inline = 1;
4852
4853		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4854
4855		if (has_inline)
4856			return error;
4857	}
4858
4859	/* fallback to generic here if not in extents fmt */
4860	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4861		return generic_block_fiemap(inode, fieinfo, start, len,
4862			ext4_get_block);
4863
4864	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4865		return -EBADR;
4866
4867	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4868		error = ext4_xattr_fiemap(inode, fieinfo);
4869	} else {
4870		ext4_lblk_t len_blks;
4871		__u64 last_blk;
4872
4873		start_blk = start >> inode->i_sb->s_blocksize_bits;
4874		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4875		if (last_blk >= EXT_MAX_BLOCKS)
4876			last_blk = EXT_MAX_BLOCKS-1;
4877		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4878
4879		/*
4880		 * Walk the extent tree gathering extent information
4881		 * and pushing extents back to the user.
4882		 */
4883		error = ext4_fill_fiemap_extents(inode, start_blk,
4884						 len_blks, fieinfo);
4885	}
4886
4887	return error;
4888}
4889