extents.c revision d583fb87a3ff0ca50befd2f73f7a67fade1c8c56
1/*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 *   Copyright (c) 2005, Bull S.A.
7 *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21 */
22
23/*
24 * Extents support for EXT4
25 *
26 * TODO:
27 *   - ext4*_error() should be used in some situations
28 *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 *   - smart tree reduction
30 */
31
32#include <linux/module.h>
33#include <linux/fs.h>
34#include <linux/time.h>
35#include <linux/jbd2.h>
36#include <linux/highuid.h>
37#include <linux/pagemap.h>
38#include <linux/quotaops.h>
39#include <linux/string.h>
40#include <linux/slab.h>
41#include <linux/falloc.h>
42#include <asm/uaccess.h>
43#include <linux/fiemap.h>
44#include "ext4_jbd2.h"
45#include "ext4_extents.h"
46
47#include <trace/events/ext4.h>
48
49static int ext4_split_extent(handle_t *handle,
50				struct inode *inode,
51				struct ext4_ext_path *path,
52				struct ext4_map_blocks *map,
53				int split_flag,
54				int flags);
55
56static int ext4_ext_truncate_extend_restart(handle_t *handle,
57					    struct inode *inode,
58					    int needed)
59{
60	int err;
61
62	if (!ext4_handle_valid(handle))
63		return 0;
64	if (handle->h_buffer_credits > needed)
65		return 0;
66	err = ext4_journal_extend(handle, needed);
67	if (err <= 0)
68		return err;
69	err = ext4_truncate_restart_trans(handle, inode, needed);
70	if (err == 0)
71		err = -EAGAIN;
72
73	return err;
74}
75
76/*
77 * could return:
78 *  - EROFS
79 *  - ENOMEM
80 */
81static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
82				struct ext4_ext_path *path)
83{
84	if (path->p_bh) {
85		/* path points to block */
86		return ext4_journal_get_write_access(handle, path->p_bh);
87	}
88	/* path points to leaf/index in inode body */
89	/* we use in-core data, no need to protect them */
90	return 0;
91}
92
93/*
94 * could return:
95 *  - EROFS
96 *  - ENOMEM
97 *  - EIO
98 */
99static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
100				struct ext4_ext_path *path)
101{
102	int err;
103	if (path->p_bh) {
104		/* path points to block */
105		err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
106	} else {
107		/* path points to leaf/index in inode body */
108		err = ext4_mark_inode_dirty(handle, inode);
109	}
110	return err;
111}
112
113static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
114			      struct ext4_ext_path *path,
115			      ext4_lblk_t block)
116{
117	struct ext4_inode_info *ei = EXT4_I(inode);
118	ext4_fsblk_t bg_start;
119	ext4_fsblk_t last_block;
120	ext4_grpblk_t colour;
121	ext4_group_t block_group;
122	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
123	int depth;
124
125	if (path) {
126		struct ext4_extent *ex;
127		depth = path->p_depth;
128
129		/*
130		 * Try to predict block placement assuming that we are
131		 * filling in a file which will eventually be
132		 * non-sparse --- i.e., in the case of libbfd writing
133		 * an ELF object sections out-of-order but in a way
134		 * the eventually results in a contiguous object or
135		 * executable file, or some database extending a table
136		 * space file.  However, this is actually somewhat
137		 * non-ideal if we are writing a sparse file such as
138		 * qemu or KVM writing a raw image file that is going
139		 * to stay fairly sparse, since it will end up
140		 * fragmenting the file system's free space.  Maybe we
141		 * should have some hueristics or some way to allow
142		 * userspace to pass a hint to file system,
143		 * especially if the latter case turns out to be
144		 * common.
145		 */
146		ex = path[depth].p_ext;
147		if (ex) {
148			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
149			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
150
151			if (block > ext_block)
152				return ext_pblk + (block - ext_block);
153			else
154				return ext_pblk - (ext_block - block);
155		}
156
157		/* it looks like index is empty;
158		 * try to find starting block from index itself */
159		if (path[depth].p_bh)
160			return path[depth].p_bh->b_blocknr;
161	}
162
163	/* OK. use inode's group */
164	block_group = ei->i_block_group;
165	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
166		/*
167		 * If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
168		 * block groups per flexgroup, reserve the first block
169		 * group for directories and special files.  Regular
170		 * files will start at the second block group.  This
171		 * tends to speed up directory access and improves
172		 * fsck times.
173		 */
174		block_group &= ~(flex_size-1);
175		if (S_ISREG(inode->i_mode))
176			block_group++;
177	}
178	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
179	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
180
181	/*
182	 * If we are doing delayed allocation, we don't need take
183	 * colour into account.
184	 */
185	if (test_opt(inode->i_sb, DELALLOC))
186		return bg_start;
187
188	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
189		colour = (current->pid % 16) *
190			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
191	else
192		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
193	return bg_start + colour + block;
194}
195
196/*
197 * Allocation for a meta data block
198 */
199static ext4_fsblk_t
200ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
201			struct ext4_ext_path *path,
202			struct ext4_extent *ex, int *err, unsigned int flags)
203{
204	ext4_fsblk_t goal, newblock;
205
206	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
207	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
208					NULL, err);
209	return newblock;
210}
211
212static inline int ext4_ext_space_block(struct inode *inode, int check)
213{
214	int size;
215
216	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
217			/ sizeof(struct ext4_extent);
218	if (!check) {
219#ifdef AGGRESSIVE_TEST
220		if (size > 6)
221			size = 6;
222#endif
223	}
224	return size;
225}
226
227static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
228{
229	int size;
230
231	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
232			/ sizeof(struct ext4_extent_idx);
233	if (!check) {
234#ifdef AGGRESSIVE_TEST
235		if (size > 5)
236			size = 5;
237#endif
238	}
239	return size;
240}
241
242static inline int ext4_ext_space_root(struct inode *inode, int check)
243{
244	int size;
245
246	size = sizeof(EXT4_I(inode)->i_data);
247	size -= sizeof(struct ext4_extent_header);
248	size /= sizeof(struct ext4_extent);
249	if (!check) {
250#ifdef AGGRESSIVE_TEST
251		if (size > 3)
252			size = 3;
253#endif
254	}
255	return size;
256}
257
258static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
259{
260	int size;
261
262	size = sizeof(EXT4_I(inode)->i_data);
263	size -= sizeof(struct ext4_extent_header);
264	size /= sizeof(struct ext4_extent_idx);
265	if (!check) {
266#ifdef AGGRESSIVE_TEST
267		if (size > 4)
268			size = 4;
269#endif
270	}
271	return size;
272}
273
274/*
275 * Calculate the number of metadata blocks needed
276 * to allocate @blocks
277 * Worse case is one block per extent
278 */
279int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
280{
281	struct ext4_inode_info *ei = EXT4_I(inode);
282	int idxs, num = 0;
283
284	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
285		/ sizeof(struct ext4_extent_idx));
286
287	/*
288	 * If the new delayed allocation block is contiguous with the
289	 * previous da block, it can share index blocks with the
290	 * previous block, so we only need to allocate a new index
291	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
292	 * an additional index block, and at ldxs**3 blocks, yet
293	 * another index blocks.
294	 */
295	if (ei->i_da_metadata_calc_len &&
296	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
297		if ((ei->i_da_metadata_calc_len % idxs) == 0)
298			num++;
299		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
300			num++;
301		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
302			num++;
303			ei->i_da_metadata_calc_len = 0;
304		} else
305			ei->i_da_metadata_calc_len++;
306		ei->i_da_metadata_calc_last_lblock++;
307		return num;
308	}
309
310	/*
311	 * In the worst case we need a new set of index blocks at
312	 * every level of the inode's extent tree.
313	 */
314	ei->i_da_metadata_calc_len = 1;
315	ei->i_da_metadata_calc_last_lblock = lblock;
316	return ext_depth(inode) + 1;
317}
318
319static int
320ext4_ext_max_entries(struct inode *inode, int depth)
321{
322	int max;
323
324	if (depth == ext_depth(inode)) {
325		if (depth == 0)
326			max = ext4_ext_space_root(inode, 1);
327		else
328			max = ext4_ext_space_root_idx(inode, 1);
329	} else {
330		if (depth == 0)
331			max = ext4_ext_space_block(inode, 1);
332		else
333			max = ext4_ext_space_block_idx(inode, 1);
334	}
335
336	return max;
337}
338
339static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
340{
341	ext4_fsblk_t block = ext4_ext_pblock(ext);
342	int len = ext4_ext_get_actual_len(ext);
343
344	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
345}
346
347static int ext4_valid_extent_idx(struct inode *inode,
348				struct ext4_extent_idx *ext_idx)
349{
350	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
351
352	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
353}
354
355static int ext4_valid_extent_entries(struct inode *inode,
356				struct ext4_extent_header *eh,
357				int depth)
358{
359	struct ext4_extent *ext;
360	struct ext4_extent_idx *ext_idx;
361	unsigned short entries;
362	if (eh->eh_entries == 0)
363		return 1;
364
365	entries = le16_to_cpu(eh->eh_entries);
366
367	if (depth == 0) {
368		/* leaf entries */
369		ext = EXT_FIRST_EXTENT(eh);
370		while (entries) {
371			if (!ext4_valid_extent(inode, ext))
372				return 0;
373			ext++;
374			entries--;
375		}
376	} else {
377		ext_idx = EXT_FIRST_INDEX(eh);
378		while (entries) {
379			if (!ext4_valid_extent_idx(inode, ext_idx))
380				return 0;
381			ext_idx++;
382			entries--;
383		}
384	}
385	return 1;
386}
387
388static int __ext4_ext_check(const char *function, unsigned int line,
389			    struct inode *inode, struct ext4_extent_header *eh,
390			    int depth)
391{
392	const char *error_msg;
393	int max = 0;
394
395	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
396		error_msg = "invalid magic";
397		goto corrupted;
398	}
399	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
400		error_msg = "unexpected eh_depth";
401		goto corrupted;
402	}
403	if (unlikely(eh->eh_max == 0)) {
404		error_msg = "invalid eh_max";
405		goto corrupted;
406	}
407	max = ext4_ext_max_entries(inode, depth);
408	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
409		error_msg = "too large eh_max";
410		goto corrupted;
411	}
412	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
413		error_msg = "invalid eh_entries";
414		goto corrupted;
415	}
416	if (!ext4_valid_extent_entries(inode, eh, depth)) {
417		error_msg = "invalid extent entries";
418		goto corrupted;
419	}
420	return 0;
421
422corrupted:
423	ext4_error_inode(inode, function, line, 0,
424			"bad header/extent: %s - magic %x, "
425			"entries %u, max %u(%u), depth %u(%u)",
426			error_msg, le16_to_cpu(eh->eh_magic),
427			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
428			max, le16_to_cpu(eh->eh_depth), depth);
429
430	return -EIO;
431}
432
433#define ext4_ext_check(inode, eh, depth)	\
434	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
435
436int ext4_ext_check_inode(struct inode *inode)
437{
438	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
439}
440
441#ifdef EXT_DEBUG
442static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
443{
444	int k, l = path->p_depth;
445
446	ext_debug("path:");
447	for (k = 0; k <= l; k++, path++) {
448		if (path->p_idx) {
449		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
450			    ext4_idx_pblock(path->p_idx));
451		} else if (path->p_ext) {
452			ext_debug("  %d:[%d]%d:%llu ",
453				  le32_to_cpu(path->p_ext->ee_block),
454				  ext4_ext_is_uninitialized(path->p_ext),
455				  ext4_ext_get_actual_len(path->p_ext),
456				  ext4_ext_pblock(path->p_ext));
457		} else
458			ext_debug("  []");
459	}
460	ext_debug("\n");
461}
462
463static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
464{
465	int depth = ext_depth(inode);
466	struct ext4_extent_header *eh;
467	struct ext4_extent *ex;
468	int i;
469
470	if (!path)
471		return;
472
473	eh = path[depth].p_hdr;
474	ex = EXT_FIRST_EXTENT(eh);
475
476	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
477
478	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
479		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
480			  ext4_ext_is_uninitialized(ex),
481			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
482	}
483	ext_debug("\n");
484}
485#else
486#define ext4_ext_show_path(inode, path)
487#define ext4_ext_show_leaf(inode, path)
488#endif
489
490void ext4_ext_drop_refs(struct ext4_ext_path *path)
491{
492	int depth = path->p_depth;
493	int i;
494
495	for (i = 0; i <= depth; i++, path++)
496		if (path->p_bh) {
497			brelse(path->p_bh);
498			path->p_bh = NULL;
499		}
500}
501
502/*
503 * ext4_ext_binsearch_idx:
504 * binary search for the closest index of the given block
505 * the header must be checked before calling this
506 */
507static void
508ext4_ext_binsearch_idx(struct inode *inode,
509			struct ext4_ext_path *path, ext4_lblk_t block)
510{
511	struct ext4_extent_header *eh = path->p_hdr;
512	struct ext4_extent_idx *r, *l, *m;
513
514
515	ext_debug("binsearch for %u(idx):  ", block);
516
517	l = EXT_FIRST_INDEX(eh) + 1;
518	r = EXT_LAST_INDEX(eh);
519	while (l <= r) {
520		m = l + (r - l) / 2;
521		if (block < le32_to_cpu(m->ei_block))
522			r = m - 1;
523		else
524			l = m + 1;
525		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
526				m, le32_to_cpu(m->ei_block),
527				r, le32_to_cpu(r->ei_block));
528	}
529
530	path->p_idx = l - 1;
531	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
532		  ext4_idx_pblock(path->p_idx));
533
534#ifdef CHECK_BINSEARCH
535	{
536		struct ext4_extent_idx *chix, *ix;
537		int k;
538
539		chix = ix = EXT_FIRST_INDEX(eh);
540		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
541		  if (k != 0 &&
542		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
543				printk(KERN_DEBUG "k=%d, ix=0x%p, "
544				       "first=0x%p\n", k,
545				       ix, EXT_FIRST_INDEX(eh));
546				printk(KERN_DEBUG "%u <= %u\n",
547				       le32_to_cpu(ix->ei_block),
548				       le32_to_cpu(ix[-1].ei_block));
549			}
550			BUG_ON(k && le32_to_cpu(ix->ei_block)
551					   <= le32_to_cpu(ix[-1].ei_block));
552			if (block < le32_to_cpu(ix->ei_block))
553				break;
554			chix = ix;
555		}
556		BUG_ON(chix != path->p_idx);
557	}
558#endif
559
560}
561
562/*
563 * ext4_ext_binsearch:
564 * binary search for closest extent of the given block
565 * the header must be checked before calling this
566 */
567static void
568ext4_ext_binsearch(struct inode *inode,
569		struct ext4_ext_path *path, ext4_lblk_t block)
570{
571	struct ext4_extent_header *eh = path->p_hdr;
572	struct ext4_extent *r, *l, *m;
573
574	if (eh->eh_entries == 0) {
575		/*
576		 * this leaf is empty:
577		 * we get such a leaf in split/add case
578		 */
579		return;
580	}
581
582	ext_debug("binsearch for %u:  ", block);
583
584	l = EXT_FIRST_EXTENT(eh) + 1;
585	r = EXT_LAST_EXTENT(eh);
586
587	while (l <= r) {
588		m = l + (r - l) / 2;
589		if (block < le32_to_cpu(m->ee_block))
590			r = m - 1;
591		else
592			l = m + 1;
593		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
594				m, le32_to_cpu(m->ee_block),
595				r, le32_to_cpu(r->ee_block));
596	}
597
598	path->p_ext = l - 1;
599	ext_debug("  -> %d:%llu:[%d]%d ",
600			le32_to_cpu(path->p_ext->ee_block),
601			ext4_ext_pblock(path->p_ext),
602			ext4_ext_is_uninitialized(path->p_ext),
603			ext4_ext_get_actual_len(path->p_ext));
604
605#ifdef CHECK_BINSEARCH
606	{
607		struct ext4_extent *chex, *ex;
608		int k;
609
610		chex = ex = EXT_FIRST_EXTENT(eh);
611		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
612			BUG_ON(k && le32_to_cpu(ex->ee_block)
613					  <= le32_to_cpu(ex[-1].ee_block));
614			if (block < le32_to_cpu(ex->ee_block))
615				break;
616			chex = ex;
617		}
618		BUG_ON(chex != path->p_ext);
619	}
620#endif
621
622}
623
624int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
625{
626	struct ext4_extent_header *eh;
627
628	eh = ext_inode_hdr(inode);
629	eh->eh_depth = 0;
630	eh->eh_entries = 0;
631	eh->eh_magic = EXT4_EXT_MAGIC;
632	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
633	ext4_mark_inode_dirty(handle, inode);
634	ext4_ext_invalidate_cache(inode);
635	return 0;
636}
637
638struct ext4_ext_path *
639ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
640					struct ext4_ext_path *path)
641{
642	struct ext4_extent_header *eh;
643	struct buffer_head *bh;
644	short int depth, i, ppos = 0, alloc = 0;
645
646	eh = ext_inode_hdr(inode);
647	depth = ext_depth(inode);
648
649	/* account possible depth increase */
650	if (!path) {
651		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
652				GFP_NOFS);
653		if (!path)
654			return ERR_PTR(-ENOMEM);
655		alloc = 1;
656	}
657	path[0].p_hdr = eh;
658	path[0].p_bh = NULL;
659
660	i = depth;
661	/* walk through the tree */
662	while (i) {
663		int need_to_validate = 0;
664
665		ext_debug("depth %d: num %d, max %d\n",
666			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
667
668		ext4_ext_binsearch_idx(inode, path + ppos, block);
669		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
670		path[ppos].p_depth = i;
671		path[ppos].p_ext = NULL;
672
673		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
674		if (unlikely(!bh))
675			goto err;
676		if (!bh_uptodate_or_lock(bh)) {
677			trace_ext4_ext_load_extent(inode, block,
678						path[ppos].p_block);
679			if (bh_submit_read(bh) < 0) {
680				put_bh(bh);
681				goto err;
682			}
683			/* validate the extent entries */
684			need_to_validate = 1;
685		}
686		eh = ext_block_hdr(bh);
687		ppos++;
688		if (unlikely(ppos > depth)) {
689			put_bh(bh);
690			EXT4_ERROR_INODE(inode,
691					 "ppos %d > depth %d", ppos, depth);
692			goto err;
693		}
694		path[ppos].p_bh = bh;
695		path[ppos].p_hdr = eh;
696		i--;
697
698		if (need_to_validate && ext4_ext_check(inode, eh, i))
699			goto err;
700	}
701
702	path[ppos].p_depth = i;
703	path[ppos].p_ext = NULL;
704	path[ppos].p_idx = NULL;
705
706	/* find extent */
707	ext4_ext_binsearch(inode, path + ppos, block);
708	/* if not an empty leaf */
709	if (path[ppos].p_ext)
710		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
711
712	ext4_ext_show_path(inode, path);
713
714	return path;
715
716err:
717	ext4_ext_drop_refs(path);
718	if (alloc)
719		kfree(path);
720	return ERR_PTR(-EIO);
721}
722
723/*
724 * ext4_ext_insert_index:
725 * insert new index [@logical;@ptr] into the block at @curp;
726 * check where to insert: before @curp or after @curp
727 */
728static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
729				 struct ext4_ext_path *curp,
730				 int logical, ext4_fsblk_t ptr)
731{
732	struct ext4_extent_idx *ix;
733	int len, err;
734
735	err = ext4_ext_get_access(handle, inode, curp);
736	if (err)
737		return err;
738
739	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
740		EXT4_ERROR_INODE(inode,
741				 "logical %d == ei_block %d!",
742				 logical, le32_to_cpu(curp->p_idx->ei_block));
743		return -EIO;
744	}
745	len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
746	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
747		/* insert after */
748		if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
749			len = (len - 1) * sizeof(struct ext4_extent_idx);
750			len = len < 0 ? 0 : len;
751			ext_debug("insert new index %d after: %llu. "
752					"move %d from 0x%p to 0x%p\n",
753					logical, ptr, len,
754					(curp->p_idx + 1), (curp->p_idx + 2));
755			memmove(curp->p_idx + 2, curp->p_idx + 1, len);
756		}
757		ix = curp->p_idx + 1;
758	} else {
759		/* insert before */
760		len = len * sizeof(struct ext4_extent_idx);
761		len = len < 0 ? 0 : len;
762		ext_debug("insert new index %d before: %llu. "
763				"move %d from 0x%p to 0x%p\n",
764				logical, ptr, len,
765				curp->p_idx, (curp->p_idx + 1));
766		memmove(curp->p_idx + 1, curp->p_idx, len);
767		ix = curp->p_idx;
768	}
769
770	ix->ei_block = cpu_to_le32(logical);
771	ext4_idx_store_pblock(ix, ptr);
772	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
773
774	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
775			     > le16_to_cpu(curp->p_hdr->eh_max))) {
776		EXT4_ERROR_INODE(inode,
777				 "logical %d == ei_block %d!",
778				 logical, le32_to_cpu(curp->p_idx->ei_block));
779		return -EIO;
780	}
781	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
782		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
783		return -EIO;
784	}
785
786	err = ext4_ext_dirty(handle, inode, curp);
787	ext4_std_error(inode->i_sb, err);
788
789	return err;
790}
791
792/*
793 * ext4_ext_split:
794 * inserts new subtree into the path, using free index entry
795 * at depth @at:
796 * - allocates all needed blocks (new leaf and all intermediate index blocks)
797 * - makes decision where to split
798 * - moves remaining extents and index entries (right to the split point)
799 *   into the newly allocated blocks
800 * - initializes subtree
801 */
802static int ext4_ext_split(handle_t *handle, struct inode *inode,
803			  unsigned int flags,
804			  struct ext4_ext_path *path,
805			  struct ext4_extent *newext, int at)
806{
807	struct buffer_head *bh = NULL;
808	int depth = ext_depth(inode);
809	struct ext4_extent_header *neh;
810	struct ext4_extent_idx *fidx;
811	struct ext4_extent *ex;
812	int i = at, k, m, a;
813	ext4_fsblk_t newblock, oldblock;
814	__le32 border;
815	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
816	int err = 0;
817
818	/* make decision: where to split? */
819	/* FIXME: now decision is simplest: at current extent */
820
821	/* if current leaf will be split, then we should use
822	 * border from split point */
823	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
824		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
825		return -EIO;
826	}
827	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
828		border = path[depth].p_ext[1].ee_block;
829		ext_debug("leaf will be split."
830				" next leaf starts at %d\n",
831				  le32_to_cpu(border));
832	} else {
833		border = newext->ee_block;
834		ext_debug("leaf will be added."
835				" next leaf starts at %d\n",
836				le32_to_cpu(border));
837	}
838
839	/*
840	 * If error occurs, then we break processing
841	 * and mark filesystem read-only. index won't
842	 * be inserted and tree will be in consistent
843	 * state. Next mount will repair buffers too.
844	 */
845
846	/*
847	 * Get array to track all allocated blocks.
848	 * We need this to handle errors and free blocks
849	 * upon them.
850	 */
851	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
852	if (!ablocks)
853		return -ENOMEM;
854
855	/* allocate all needed blocks */
856	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
857	for (a = 0; a < depth - at; a++) {
858		newblock = ext4_ext_new_meta_block(handle, inode, path,
859						   newext, &err, flags);
860		if (newblock == 0)
861			goto cleanup;
862		ablocks[a] = newblock;
863	}
864
865	/* initialize new leaf */
866	newblock = ablocks[--a];
867	if (unlikely(newblock == 0)) {
868		EXT4_ERROR_INODE(inode, "newblock == 0!");
869		err = -EIO;
870		goto cleanup;
871	}
872	bh = sb_getblk(inode->i_sb, newblock);
873	if (!bh) {
874		err = -EIO;
875		goto cleanup;
876	}
877	lock_buffer(bh);
878
879	err = ext4_journal_get_create_access(handle, bh);
880	if (err)
881		goto cleanup;
882
883	neh = ext_block_hdr(bh);
884	neh->eh_entries = 0;
885	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
886	neh->eh_magic = EXT4_EXT_MAGIC;
887	neh->eh_depth = 0;
888	ex = EXT_FIRST_EXTENT(neh);
889
890	/* move remainder of path[depth] to the new leaf */
891	if (unlikely(path[depth].p_hdr->eh_entries !=
892		     path[depth].p_hdr->eh_max)) {
893		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
894				 path[depth].p_hdr->eh_entries,
895				 path[depth].p_hdr->eh_max);
896		err = -EIO;
897		goto cleanup;
898	}
899	/* start copy from next extent */
900	/* TODO: we could do it by single memmove */
901	m = 0;
902	path[depth].p_ext++;
903	while (path[depth].p_ext <=
904			EXT_MAX_EXTENT(path[depth].p_hdr)) {
905		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
906				le32_to_cpu(path[depth].p_ext->ee_block),
907				ext4_ext_pblock(path[depth].p_ext),
908				ext4_ext_is_uninitialized(path[depth].p_ext),
909				ext4_ext_get_actual_len(path[depth].p_ext),
910				newblock);
911		/*memmove(ex++, path[depth].p_ext++,
912				sizeof(struct ext4_extent));
913		neh->eh_entries++;*/
914		path[depth].p_ext++;
915		m++;
916	}
917	if (m) {
918		memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
919		le16_add_cpu(&neh->eh_entries, m);
920	}
921
922	set_buffer_uptodate(bh);
923	unlock_buffer(bh);
924
925	err = ext4_handle_dirty_metadata(handle, inode, bh);
926	if (err)
927		goto cleanup;
928	brelse(bh);
929	bh = NULL;
930
931	/* correct old leaf */
932	if (m) {
933		err = ext4_ext_get_access(handle, inode, path + depth);
934		if (err)
935			goto cleanup;
936		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
937		err = ext4_ext_dirty(handle, inode, path + depth);
938		if (err)
939			goto cleanup;
940
941	}
942
943	/* create intermediate indexes */
944	k = depth - at - 1;
945	if (unlikely(k < 0)) {
946		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
947		err = -EIO;
948		goto cleanup;
949	}
950	if (k)
951		ext_debug("create %d intermediate indices\n", k);
952	/* insert new index into current index block */
953	/* current depth stored in i var */
954	i = depth - 1;
955	while (k--) {
956		oldblock = newblock;
957		newblock = ablocks[--a];
958		bh = sb_getblk(inode->i_sb, newblock);
959		if (!bh) {
960			err = -EIO;
961			goto cleanup;
962		}
963		lock_buffer(bh);
964
965		err = ext4_journal_get_create_access(handle, bh);
966		if (err)
967			goto cleanup;
968
969		neh = ext_block_hdr(bh);
970		neh->eh_entries = cpu_to_le16(1);
971		neh->eh_magic = EXT4_EXT_MAGIC;
972		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
973		neh->eh_depth = cpu_to_le16(depth - i);
974		fidx = EXT_FIRST_INDEX(neh);
975		fidx->ei_block = border;
976		ext4_idx_store_pblock(fidx, oldblock);
977
978		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
979				i, newblock, le32_to_cpu(border), oldblock);
980		/* copy indexes */
981		m = 0;
982		path[i].p_idx++;
983
984		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
985				EXT_MAX_INDEX(path[i].p_hdr));
986		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
987					EXT_LAST_INDEX(path[i].p_hdr))) {
988			EXT4_ERROR_INODE(inode,
989					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
990					 le32_to_cpu(path[i].p_ext->ee_block));
991			err = -EIO;
992			goto cleanup;
993		}
994		while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
995			ext_debug("%d: move %d:%llu in new index %llu\n", i,
996					le32_to_cpu(path[i].p_idx->ei_block),
997					ext4_idx_pblock(path[i].p_idx),
998					newblock);
999			/*memmove(++fidx, path[i].p_idx++,
1000					sizeof(struct ext4_extent_idx));
1001			neh->eh_entries++;
1002			BUG_ON(neh->eh_entries > neh->eh_max);*/
1003			path[i].p_idx++;
1004			m++;
1005		}
1006		if (m) {
1007			memmove(++fidx, path[i].p_idx - m,
1008				sizeof(struct ext4_extent_idx) * m);
1009			le16_add_cpu(&neh->eh_entries, m);
1010		}
1011		set_buffer_uptodate(bh);
1012		unlock_buffer(bh);
1013
1014		err = ext4_handle_dirty_metadata(handle, inode, bh);
1015		if (err)
1016			goto cleanup;
1017		brelse(bh);
1018		bh = NULL;
1019
1020		/* correct old index */
1021		if (m) {
1022			err = ext4_ext_get_access(handle, inode, path + i);
1023			if (err)
1024				goto cleanup;
1025			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1026			err = ext4_ext_dirty(handle, inode, path + i);
1027			if (err)
1028				goto cleanup;
1029		}
1030
1031		i--;
1032	}
1033
1034	/* insert new index */
1035	err = ext4_ext_insert_index(handle, inode, path + at,
1036				    le32_to_cpu(border), newblock);
1037
1038cleanup:
1039	if (bh) {
1040		if (buffer_locked(bh))
1041			unlock_buffer(bh);
1042		brelse(bh);
1043	}
1044
1045	if (err) {
1046		/* free all allocated blocks in error case */
1047		for (i = 0; i < depth; i++) {
1048			if (!ablocks[i])
1049				continue;
1050			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1051					 EXT4_FREE_BLOCKS_METADATA);
1052		}
1053	}
1054	kfree(ablocks);
1055
1056	return err;
1057}
1058
1059/*
1060 * ext4_ext_grow_indepth:
1061 * implements tree growing procedure:
1062 * - allocates new block
1063 * - moves top-level data (index block or leaf) into the new block
1064 * - initializes new top-level, creating index that points to the
1065 *   just created block
1066 */
1067static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1068				 unsigned int flags,
1069				 struct ext4_ext_path *path,
1070				 struct ext4_extent *newext)
1071{
1072	struct ext4_ext_path *curp = path;
1073	struct ext4_extent_header *neh;
1074	struct buffer_head *bh;
1075	ext4_fsblk_t newblock;
1076	int err = 0;
1077
1078	newblock = ext4_ext_new_meta_block(handle, inode, path,
1079		newext, &err, flags);
1080	if (newblock == 0)
1081		return err;
1082
1083	bh = sb_getblk(inode->i_sb, newblock);
1084	if (!bh) {
1085		err = -EIO;
1086		ext4_std_error(inode->i_sb, err);
1087		return err;
1088	}
1089	lock_buffer(bh);
1090
1091	err = ext4_journal_get_create_access(handle, bh);
1092	if (err) {
1093		unlock_buffer(bh);
1094		goto out;
1095	}
1096
1097	/* move top-level index/leaf into new block */
1098	memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1099
1100	/* set size of new block */
1101	neh = ext_block_hdr(bh);
1102	/* old root could have indexes or leaves
1103	 * so calculate e_max right way */
1104	if (ext_depth(inode))
1105		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1106	else
1107		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1108	neh->eh_magic = EXT4_EXT_MAGIC;
1109	set_buffer_uptodate(bh);
1110	unlock_buffer(bh);
1111
1112	err = ext4_handle_dirty_metadata(handle, inode, bh);
1113	if (err)
1114		goto out;
1115
1116	/* create index in new top-level index: num,max,pointer */
1117	err = ext4_ext_get_access(handle, inode, curp);
1118	if (err)
1119		goto out;
1120
1121	curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1122	curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1123	curp->p_hdr->eh_entries = cpu_to_le16(1);
1124	curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1125
1126	if (path[0].p_hdr->eh_depth)
1127		curp->p_idx->ei_block =
1128			EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1129	else
1130		curp->p_idx->ei_block =
1131			EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1132	ext4_idx_store_pblock(curp->p_idx, newblock);
1133
1134	neh = ext_inode_hdr(inode);
1135	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1136		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1137		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1138		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1139
1140	neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1141	err = ext4_ext_dirty(handle, inode, curp);
1142out:
1143	brelse(bh);
1144
1145	return err;
1146}
1147
1148/*
1149 * ext4_ext_create_new_leaf:
1150 * finds empty index and adds new leaf.
1151 * if no free index is found, then it requests in-depth growing.
1152 */
1153static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1154				    unsigned int flags,
1155				    struct ext4_ext_path *path,
1156				    struct ext4_extent *newext)
1157{
1158	struct ext4_ext_path *curp;
1159	int depth, i, err = 0;
1160
1161repeat:
1162	i = depth = ext_depth(inode);
1163
1164	/* walk up to the tree and look for free index entry */
1165	curp = path + depth;
1166	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1167		i--;
1168		curp--;
1169	}
1170
1171	/* we use already allocated block for index block,
1172	 * so subsequent data blocks should be contiguous */
1173	if (EXT_HAS_FREE_INDEX(curp)) {
1174		/* if we found index with free entry, then use that
1175		 * entry: create all needed subtree and add new leaf */
1176		err = ext4_ext_split(handle, inode, flags, path, newext, i);
1177		if (err)
1178			goto out;
1179
1180		/* refill path */
1181		ext4_ext_drop_refs(path);
1182		path = ext4_ext_find_extent(inode,
1183				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1184				    path);
1185		if (IS_ERR(path))
1186			err = PTR_ERR(path);
1187	} else {
1188		/* tree is full, time to grow in depth */
1189		err = ext4_ext_grow_indepth(handle, inode, flags,
1190					    path, newext);
1191		if (err)
1192			goto out;
1193
1194		/* refill path */
1195		ext4_ext_drop_refs(path);
1196		path = ext4_ext_find_extent(inode,
1197				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1198				    path);
1199		if (IS_ERR(path)) {
1200			err = PTR_ERR(path);
1201			goto out;
1202		}
1203
1204		/*
1205		 * only first (depth 0 -> 1) produces free space;
1206		 * in all other cases we have to split the grown tree
1207		 */
1208		depth = ext_depth(inode);
1209		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1210			/* now we need to split */
1211			goto repeat;
1212		}
1213	}
1214
1215out:
1216	return err;
1217}
1218
1219/*
1220 * search the closest allocated block to the left for *logical
1221 * and returns it at @logical + it's physical address at @phys
1222 * if *logical is the smallest allocated block, the function
1223 * returns 0 at @phys
1224 * return value contains 0 (success) or error code
1225 */
1226static int ext4_ext_search_left(struct inode *inode,
1227				struct ext4_ext_path *path,
1228				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1229{
1230	struct ext4_extent_idx *ix;
1231	struct ext4_extent *ex;
1232	int depth, ee_len;
1233
1234	if (unlikely(path == NULL)) {
1235		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1236		return -EIO;
1237	}
1238	depth = path->p_depth;
1239	*phys = 0;
1240
1241	if (depth == 0 && path->p_ext == NULL)
1242		return 0;
1243
1244	/* usually extent in the path covers blocks smaller
1245	 * then *logical, but it can be that extent is the
1246	 * first one in the file */
1247
1248	ex = path[depth].p_ext;
1249	ee_len = ext4_ext_get_actual_len(ex);
1250	if (*logical < le32_to_cpu(ex->ee_block)) {
1251		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1252			EXT4_ERROR_INODE(inode,
1253					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1254					 *logical, le32_to_cpu(ex->ee_block));
1255			return -EIO;
1256		}
1257		while (--depth >= 0) {
1258			ix = path[depth].p_idx;
1259			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1260				EXT4_ERROR_INODE(inode,
1261				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1262				  ix != NULL ? ix->ei_block : 0,
1263				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1264				    EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block : 0,
1265				  depth);
1266				return -EIO;
1267			}
1268		}
1269		return 0;
1270	}
1271
1272	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1273		EXT4_ERROR_INODE(inode,
1274				 "logical %d < ee_block %d + ee_len %d!",
1275				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1276		return -EIO;
1277	}
1278
1279	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1280	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1281	return 0;
1282}
1283
1284/*
1285 * search the closest allocated block to the right for *logical
1286 * and returns it at @logical + it's physical address at @phys
1287 * if *logical is the smallest allocated block, the function
1288 * returns 0 at @phys
1289 * return value contains 0 (success) or error code
1290 */
1291static int ext4_ext_search_right(struct inode *inode,
1292				 struct ext4_ext_path *path,
1293				 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1294{
1295	struct buffer_head *bh = NULL;
1296	struct ext4_extent_header *eh;
1297	struct ext4_extent_idx *ix;
1298	struct ext4_extent *ex;
1299	ext4_fsblk_t block;
1300	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1301	int ee_len;
1302
1303	if (unlikely(path == NULL)) {
1304		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1305		return -EIO;
1306	}
1307	depth = path->p_depth;
1308	*phys = 0;
1309
1310	if (depth == 0 && path->p_ext == NULL)
1311		return 0;
1312
1313	/* usually extent in the path covers blocks smaller
1314	 * then *logical, but it can be that extent is the
1315	 * first one in the file */
1316
1317	ex = path[depth].p_ext;
1318	ee_len = ext4_ext_get_actual_len(ex);
1319	if (*logical < le32_to_cpu(ex->ee_block)) {
1320		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1321			EXT4_ERROR_INODE(inode,
1322					 "first_extent(path[%d].p_hdr) != ex",
1323					 depth);
1324			return -EIO;
1325		}
1326		while (--depth >= 0) {
1327			ix = path[depth].p_idx;
1328			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1329				EXT4_ERROR_INODE(inode,
1330						 "ix != EXT_FIRST_INDEX *logical %d!",
1331						 *logical);
1332				return -EIO;
1333			}
1334		}
1335		*logical = le32_to_cpu(ex->ee_block);
1336		*phys = ext4_ext_pblock(ex);
1337		return 0;
1338	}
1339
1340	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1341		EXT4_ERROR_INODE(inode,
1342				 "logical %d < ee_block %d + ee_len %d!",
1343				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1344		return -EIO;
1345	}
1346
1347	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1348		/* next allocated block in this leaf */
1349		ex++;
1350		*logical = le32_to_cpu(ex->ee_block);
1351		*phys = ext4_ext_pblock(ex);
1352		return 0;
1353	}
1354
1355	/* go up and search for index to the right */
1356	while (--depth >= 0) {
1357		ix = path[depth].p_idx;
1358		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1359			goto got_index;
1360	}
1361
1362	/* we've gone up to the root and found no index to the right */
1363	return 0;
1364
1365got_index:
1366	/* we've found index to the right, let's
1367	 * follow it and find the closest allocated
1368	 * block to the right */
1369	ix++;
1370	block = ext4_idx_pblock(ix);
1371	while (++depth < path->p_depth) {
1372		bh = sb_bread(inode->i_sb, block);
1373		if (bh == NULL)
1374			return -EIO;
1375		eh = ext_block_hdr(bh);
1376		/* subtract from p_depth to get proper eh_depth */
1377		if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1378			put_bh(bh);
1379			return -EIO;
1380		}
1381		ix = EXT_FIRST_INDEX(eh);
1382		block = ext4_idx_pblock(ix);
1383		put_bh(bh);
1384	}
1385
1386	bh = sb_bread(inode->i_sb, block);
1387	if (bh == NULL)
1388		return -EIO;
1389	eh = ext_block_hdr(bh);
1390	if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1391		put_bh(bh);
1392		return -EIO;
1393	}
1394	ex = EXT_FIRST_EXTENT(eh);
1395	*logical = le32_to_cpu(ex->ee_block);
1396	*phys = ext4_ext_pblock(ex);
1397	put_bh(bh);
1398	return 0;
1399}
1400
1401/*
1402 * ext4_ext_next_allocated_block:
1403 * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1404 * NOTE: it considers block number from index entry as
1405 * allocated block. Thus, index entries have to be consistent
1406 * with leaves.
1407 */
1408static ext4_lblk_t
1409ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1410{
1411	int depth;
1412
1413	BUG_ON(path == NULL);
1414	depth = path->p_depth;
1415
1416	if (depth == 0 && path->p_ext == NULL)
1417		return EXT_MAX_BLOCK;
1418
1419	while (depth >= 0) {
1420		if (depth == path->p_depth) {
1421			/* leaf */
1422			if (path[depth].p_ext !=
1423					EXT_LAST_EXTENT(path[depth].p_hdr))
1424			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1425		} else {
1426			/* index */
1427			if (path[depth].p_idx !=
1428					EXT_LAST_INDEX(path[depth].p_hdr))
1429			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1430		}
1431		depth--;
1432	}
1433
1434	return EXT_MAX_BLOCK;
1435}
1436
1437/*
1438 * ext4_ext_next_leaf_block:
1439 * returns first allocated block from next leaf or EXT_MAX_BLOCK
1440 */
1441static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1442					struct ext4_ext_path *path)
1443{
1444	int depth;
1445
1446	BUG_ON(path == NULL);
1447	depth = path->p_depth;
1448
1449	/* zero-tree has no leaf blocks at all */
1450	if (depth == 0)
1451		return EXT_MAX_BLOCK;
1452
1453	/* go to index block */
1454	depth--;
1455
1456	while (depth >= 0) {
1457		if (path[depth].p_idx !=
1458				EXT_LAST_INDEX(path[depth].p_hdr))
1459			return (ext4_lblk_t)
1460				le32_to_cpu(path[depth].p_idx[1].ei_block);
1461		depth--;
1462	}
1463
1464	return EXT_MAX_BLOCK;
1465}
1466
1467/*
1468 * ext4_ext_correct_indexes:
1469 * if leaf gets modified and modified extent is first in the leaf,
1470 * then we have to correct all indexes above.
1471 * TODO: do we need to correct tree in all cases?
1472 */
1473static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1474				struct ext4_ext_path *path)
1475{
1476	struct ext4_extent_header *eh;
1477	int depth = ext_depth(inode);
1478	struct ext4_extent *ex;
1479	__le32 border;
1480	int k, err = 0;
1481
1482	eh = path[depth].p_hdr;
1483	ex = path[depth].p_ext;
1484
1485	if (unlikely(ex == NULL || eh == NULL)) {
1486		EXT4_ERROR_INODE(inode,
1487				 "ex %p == NULL or eh %p == NULL", ex, eh);
1488		return -EIO;
1489	}
1490
1491	if (depth == 0) {
1492		/* there is no tree at all */
1493		return 0;
1494	}
1495
1496	if (ex != EXT_FIRST_EXTENT(eh)) {
1497		/* we correct tree if first leaf got modified only */
1498		return 0;
1499	}
1500
1501	/*
1502	 * TODO: we need correction if border is smaller than current one
1503	 */
1504	k = depth - 1;
1505	border = path[depth].p_ext->ee_block;
1506	err = ext4_ext_get_access(handle, inode, path + k);
1507	if (err)
1508		return err;
1509	path[k].p_idx->ei_block = border;
1510	err = ext4_ext_dirty(handle, inode, path + k);
1511	if (err)
1512		return err;
1513
1514	while (k--) {
1515		/* change all left-side indexes */
1516		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1517			break;
1518		err = ext4_ext_get_access(handle, inode, path + k);
1519		if (err)
1520			break;
1521		path[k].p_idx->ei_block = border;
1522		err = ext4_ext_dirty(handle, inode, path + k);
1523		if (err)
1524			break;
1525	}
1526
1527	return err;
1528}
1529
1530int
1531ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1532				struct ext4_extent *ex2)
1533{
1534	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1535
1536	/*
1537	 * Make sure that either both extents are uninitialized, or
1538	 * both are _not_.
1539	 */
1540	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1541		return 0;
1542
1543	if (ext4_ext_is_uninitialized(ex1))
1544		max_len = EXT_UNINIT_MAX_LEN;
1545	else
1546		max_len = EXT_INIT_MAX_LEN;
1547
1548	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1549	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1550
1551	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1552			le32_to_cpu(ex2->ee_block))
1553		return 0;
1554
1555	/*
1556	 * To allow future support for preallocated extents to be added
1557	 * as an RO_COMPAT feature, refuse to merge to extents if
1558	 * this can result in the top bit of ee_len being set.
1559	 */
1560	if (ext1_ee_len + ext2_ee_len > max_len)
1561		return 0;
1562#ifdef AGGRESSIVE_TEST
1563	if (ext1_ee_len >= 4)
1564		return 0;
1565#endif
1566
1567	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1568		return 1;
1569	return 0;
1570}
1571
1572/*
1573 * This function tries to merge the "ex" extent to the next extent in the tree.
1574 * It always tries to merge towards right. If you want to merge towards
1575 * left, pass "ex - 1" as argument instead of "ex".
1576 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1577 * 1 if they got merged.
1578 */
1579static int ext4_ext_try_to_merge_right(struct inode *inode,
1580				 struct ext4_ext_path *path,
1581				 struct ext4_extent *ex)
1582{
1583	struct ext4_extent_header *eh;
1584	unsigned int depth, len;
1585	int merge_done = 0;
1586	int uninitialized = 0;
1587
1588	depth = ext_depth(inode);
1589	BUG_ON(path[depth].p_hdr == NULL);
1590	eh = path[depth].p_hdr;
1591
1592	while (ex < EXT_LAST_EXTENT(eh)) {
1593		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1594			break;
1595		/* merge with next extent! */
1596		if (ext4_ext_is_uninitialized(ex))
1597			uninitialized = 1;
1598		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1599				+ ext4_ext_get_actual_len(ex + 1));
1600		if (uninitialized)
1601			ext4_ext_mark_uninitialized(ex);
1602
1603		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1604			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1605				* sizeof(struct ext4_extent);
1606			memmove(ex + 1, ex + 2, len);
1607		}
1608		le16_add_cpu(&eh->eh_entries, -1);
1609		merge_done = 1;
1610		WARN_ON(eh->eh_entries == 0);
1611		if (!eh->eh_entries)
1612			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1613	}
1614
1615	return merge_done;
1616}
1617
1618/*
1619 * This function tries to merge the @ex extent to neighbours in the tree.
1620 * return 1 if merge left else 0.
1621 */
1622static int ext4_ext_try_to_merge(struct inode *inode,
1623				  struct ext4_ext_path *path,
1624				  struct ext4_extent *ex) {
1625	struct ext4_extent_header *eh;
1626	unsigned int depth;
1627	int merge_done = 0;
1628	int ret = 0;
1629
1630	depth = ext_depth(inode);
1631	BUG_ON(path[depth].p_hdr == NULL);
1632	eh = path[depth].p_hdr;
1633
1634	if (ex > EXT_FIRST_EXTENT(eh))
1635		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1636
1637	if (!merge_done)
1638		ret = ext4_ext_try_to_merge_right(inode, path, ex);
1639
1640	return ret;
1641}
1642
1643/*
1644 * check if a portion of the "newext" extent overlaps with an
1645 * existing extent.
1646 *
1647 * If there is an overlap discovered, it updates the length of the newext
1648 * such that there will be no overlap, and then returns 1.
1649 * If there is no overlap found, it returns 0.
1650 */
1651static unsigned int ext4_ext_check_overlap(struct inode *inode,
1652					   struct ext4_extent *newext,
1653					   struct ext4_ext_path *path)
1654{
1655	ext4_lblk_t b1, b2;
1656	unsigned int depth, len1;
1657	unsigned int ret = 0;
1658
1659	b1 = le32_to_cpu(newext->ee_block);
1660	len1 = ext4_ext_get_actual_len(newext);
1661	depth = ext_depth(inode);
1662	if (!path[depth].p_ext)
1663		goto out;
1664	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1665
1666	/*
1667	 * get the next allocated block if the extent in the path
1668	 * is before the requested block(s)
1669	 */
1670	if (b2 < b1) {
1671		b2 = ext4_ext_next_allocated_block(path);
1672		if (b2 == EXT_MAX_BLOCK)
1673			goto out;
1674	}
1675
1676	/* check for wrap through zero on extent logical start block*/
1677	if (b1 + len1 < b1) {
1678		len1 = EXT_MAX_BLOCK - b1;
1679		newext->ee_len = cpu_to_le16(len1);
1680		ret = 1;
1681	}
1682
1683	/* check for overlap */
1684	if (b1 + len1 > b2) {
1685		newext->ee_len = cpu_to_le16(b2 - b1);
1686		ret = 1;
1687	}
1688out:
1689	return ret;
1690}
1691
1692/*
1693 * ext4_ext_insert_extent:
1694 * tries to merge requsted extent into the existing extent or
1695 * inserts requested extent as new one into the tree,
1696 * creating new leaf in the no-space case.
1697 */
1698int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1699				struct ext4_ext_path *path,
1700				struct ext4_extent *newext, int flag)
1701{
1702	struct ext4_extent_header *eh;
1703	struct ext4_extent *ex, *fex;
1704	struct ext4_extent *nearex; /* nearest extent */
1705	struct ext4_ext_path *npath = NULL;
1706	int depth, len, err;
1707	ext4_lblk_t next;
1708	unsigned uninitialized = 0;
1709	int flags = 0;
1710
1711	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1712		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1713		return -EIO;
1714	}
1715	depth = ext_depth(inode);
1716	ex = path[depth].p_ext;
1717	if (unlikely(path[depth].p_hdr == NULL)) {
1718		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1719		return -EIO;
1720	}
1721
1722	/* try to insert block into found extent and return */
1723	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1724		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1725		ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1726			  ext4_ext_is_uninitialized(newext),
1727			  ext4_ext_get_actual_len(newext),
1728			  le32_to_cpu(ex->ee_block),
1729			  ext4_ext_is_uninitialized(ex),
1730			  ext4_ext_get_actual_len(ex),
1731			  ext4_ext_pblock(ex));
1732		err = ext4_ext_get_access(handle, inode, path + depth);
1733		if (err)
1734			return err;
1735
1736		/*
1737		 * ext4_can_extents_be_merged should have checked that either
1738		 * both extents are uninitialized, or both aren't. Thus we
1739		 * need to check only one of them here.
1740		 */
1741		if (ext4_ext_is_uninitialized(ex))
1742			uninitialized = 1;
1743		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1744					+ ext4_ext_get_actual_len(newext));
1745		if (uninitialized)
1746			ext4_ext_mark_uninitialized(ex);
1747		eh = path[depth].p_hdr;
1748		nearex = ex;
1749		goto merge;
1750	}
1751
1752repeat:
1753	depth = ext_depth(inode);
1754	eh = path[depth].p_hdr;
1755	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1756		goto has_space;
1757
1758	/* probably next leaf has space for us? */
1759	fex = EXT_LAST_EXTENT(eh);
1760	next = ext4_ext_next_leaf_block(inode, path);
1761	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1762	    && next != EXT_MAX_BLOCK) {
1763		ext_debug("next leaf block - %d\n", next);
1764		BUG_ON(npath != NULL);
1765		npath = ext4_ext_find_extent(inode, next, NULL);
1766		if (IS_ERR(npath))
1767			return PTR_ERR(npath);
1768		BUG_ON(npath->p_depth != path->p_depth);
1769		eh = npath[depth].p_hdr;
1770		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1771			ext_debug("next leaf isn't full(%d)\n",
1772				  le16_to_cpu(eh->eh_entries));
1773			path = npath;
1774			goto repeat;
1775		}
1776		ext_debug("next leaf has no free space(%d,%d)\n",
1777			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1778	}
1779
1780	/*
1781	 * There is no free space in the found leaf.
1782	 * We're gonna add a new leaf in the tree.
1783	 */
1784	if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1785		flags = EXT4_MB_USE_ROOT_BLOCKS;
1786	err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1787	if (err)
1788		goto cleanup;
1789	depth = ext_depth(inode);
1790	eh = path[depth].p_hdr;
1791
1792has_space:
1793	nearex = path[depth].p_ext;
1794
1795	err = ext4_ext_get_access(handle, inode, path + depth);
1796	if (err)
1797		goto cleanup;
1798
1799	if (!nearex) {
1800		/* there is no extent in this leaf, create first one */
1801		ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1802				le32_to_cpu(newext->ee_block),
1803				ext4_ext_pblock(newext),
1804				ext4_ext_is_uninitialized(newext),
1805				ext4_ext_get_actual_len(newext));
1806		path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1807	} else if (le32_to_cpu(newext->ee_block)
1808			   > le32_to_cpu(nearex->ee_block)) {
1809/*		BUG_ON(newext->ee_block == nearex->ee_block); */
1810		if (nearex != EXT_LAST_EXTENT(eh)) {
1811			len = EXT_MAX_EXTENT(eh) - nearex;
1812			len = (len - 1) * sizeof(struct ext4_extent);
1813			len = len < 0 ? 0 : len;
1814			ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1815					"move %d from 0x%p to 0x%p\n",
1816					le32_to_cpu(newext->ee_block),
1817					ext4_ext_pblock(newext),
1818					ext4_ext_is_uninitialized(newext),
1819					ext4_ext_get_actual_len(newext),
1820					nearex, len, nearex + 1, nearex + 2);
1821			memmove(nearex + 2, nearex + 1, len);
1822		}
1823		path[depth].p_ext = nearex + 1;
1824	} else {
1825		BUG_ON(newext->ee_block == nearex->ee_block);
1826		len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1827		len = len < 0 ? 0 : len;
1828		ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1829				"move %d from 0x%p to 0x%p\n",
1830				le32_to_cpu(newext->ee_block),
1831				ext4_ext_pblock(newext),
1832				ext4_ext_is_uninitialized(newext),
1833				ext4_ext_get_actual_len(newext),
1834				nearex, len, nearex + 1, nearex + 2);
1835		memmove(nearex + 1, nearex, len);
1836		path[depth].p_ext = nearex;
1837	}
1838
1839	le16_add_cpu(&eh->eh_entries, 1);
1840	nearex = path[depth].p_ext;
1841	nearex->ee_block = newext->ee_block;
1842	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1843	nearex->ee_len = newext->ee_len;
1844
1845merge:
1846	/* try to merge extents to the right */
1847	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1848		ext4_ext_try_to_merge(inode, path, nearex);
1849
1850	/* try to merge extents to the left */
1851
1852	/* time to correct all indexes above */
1853	err = ext4_ext_correct_indexes(handle, inode, path);
1854	if (err)
1855		goto cleanup;
1856
1857	err = ext4_ext_dirty(handle, inode, path + depth);
1858
1859cleanup:
1860	if (npath) {
1861		ext4_ext_drop_refs(npath);
1862		kfree(npath);
1863	}
1864	ext4_ext_invalidate_cache(inode);
1865	return err;
1866}
1867
1868static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1869			       ext4_lblk_t num, ext_prepare_callback func,
1870			       void *cbdata)
1871{
1872	struct ext4_ext_path *path = NULL;
1873	struct ext4_ext_cache cbex;
1874	struct ext4_extent *ex;
1875	ext4_lblk_t next, start = 0, end = 0;
1876	ext4_lblk_t last = block + num;
1877	int depth, exists, err = 0;
1878
1879	BUG_ON(func == NULL);
1880	BUG_ON(inode == NULL);
1881
1882	while (block < last && block != EXT_MAX_BLOCK) {
1883		num = last - block;
1884		/* find extent for this block */
1885		down_read(&EXT4_I(inode)->i_data_sem);
1886		path = ext4_ext_find_extent(inode, block, path);
1887		up_read(&EXT4_I(inode)->i_data_sem);
1888		if (IS_ERR(path)) {
1889			err = PTR_ERR(path);
1890			path = NULL;
1891			break;
1892		}
1893
1894		depth = ext_depth(inode);
1895		if (unlikely(path[depth].p_hdr == NULL)) {
1896			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1897			err = -EIO;
1898			break;
1899		}
1900		ex = path[depth].p_ext;
1901		next = ext4_ext_next_allocated_block(path);
1902
1903		exists = 0;
1904		if (!ex) {
1905			/* there is no extent yet, so try to allocate
1906			 * all requested space */
1907			start = block;
1908			end = block + num;
1909		} else if (le32_to_cpu(ex->ee_block) > block) {
1910			/* need to allocate space before found extent */
1911			start = block;
1912			end = le32_to_cpu(ex->ee_block);
1913			if (block + num < end)
1914				end = block + num;
1915		} else if (block >= le32_to_cpu(ex->ee_block)
1916					+ ext4_ext_get_actual_len(ex)) {
1917			/* need to allocate space after found extent */
1918			start = block;
1919			end = block + num;
1920			if (end >= next)
1921				end = next;
1922		} else if (block >= le32_to_cpu(ex->ee_block)) {
1923			/*
1924			 * some part of requested space is covered
1925			 * by found extent
1926			 */
1927			start = block;
1928			end = le32_to_cpu(ex->ee_block)
1929				+ ext4_ext_get_actual_len(ex);
1930			if (block + num < end)
1931				end = block + num;
1932			exists = 1;
1933		} else {
1934			BUG();
1935		}
1936		BUG_ON(end <= start);
1937
1938		if (!exists) {
1939			cbex.ec_block = start;
1940			cbex.ec_len = end - start;
1941			cbex.ec_start = 0;
1942		} else {
1943			cbex.ec_block = le32_to_cpu(ex->ee_block);
1944			cbex.ec_len = ext4_ext_get_actual_len(ex);
1945			cbex.ec_start = ext4_ext_pblock(ex);
1946		}
1947
1948		if (unlikely(cbex.ec_len == 0)) {
1949			EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1950			err = -EIO;
1951			break;
1952		}
1953		err = func(inode, path, &cbex, ex, cbdata);
1954		ext4_ext_drop_refs(path);
1955
1956		if (err < 0)
1957			break;
1958
1959		if (err == EXT_REPEAT)
1960			continue;
1961		else if (err == EXT_BREAK) {
1962			err = 0;
1963			break;
1964		}
1965
1966		if (ext_depth(inode) != depth) {
1967			/* depth was changed. we have to realloc path */
1968			kfree(path);
1969			path = NULL;
1970		}
1971
1972		block = cbex.ec_block + cbex.ec_len;
1973	}
1974
1975	if (path) {
1976		ext4_ext_drop_refs(path);
1977		kfree(path);
1978	}
1979
1980	return err;
1981}
1982
1983static void
1984ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1985			__u32 len, ext4_fsblk_t start)
1986{
1987	struct ext4_ext_cache *cex;
1988	BUG_ON(len == 0);
1989	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1990	cex = &EXT4_I(inode)->i_cached_extent;
1991	cex->ec_block = block;
1992	cex->ec_len = len;
1993	cex->ec_start = start;
1994	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1995}
1996
1997/*
1998 * ext4_ext_put_gap_in_cache:
1999 * calculate boundaries of the gap that the requested block fits into
2000 * and cache this gap
2001 */
2002static void
2003ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2004				ext4_lblk_t block)
2005{
2006	int depth = ext_depth(inode);
2007	unsigned long len;
2008	ext4_lblk_t lblock;
2009	struct ext4_extent *ex;
2010
2011	ex = path[depth].p_ext;
2012	if (ex == NULL) {
2013		/* there is no extent yet, so gap is [0;-] */
2014		lblock = 0;
2015		len = EXT_MAX_BLOCK;
2016		ext_debug("cache gap(whole file):");
2017	} else if (block < le32_to_cpu(ex->ee_block)) {
2018		lblock = block;
2019		len = le32_to_cpu(ex->ee_block) - block;
2020		ext_debug("cache gap(before): %u [%u:%u]",
2021				block,
2022				le32_to_cpu(ex->ee_block),
2023				 ext4_ext_get_actual_len(ex));
2024	} else if (block >= le32_to_cpu(ex->ee_block)
2025			+ ext4_ext_get_actual_len(ex)) {
2026		ext4_lblk_t next;
2027		lblock = le32_to_cpu(ex->ee_block)
2028			+ ext4_ext_get_actual_len(ex);
2029
2030		next = ext4_ext_next_allocated_block(path);
2031		ext_debug("cache gap(after): [%u:%u] %u",
2032				le32_to_cpu(ex->ee_block),
2033				ext4_ext_get_actual_len(ex),
2034				block);
2035		BUG_ON(next == lblock);
2036		len = next - lblock;
2037	} else {
2038		lblock = len = 0;
2039		BUG();
2040	}
2041
2042	ext_debug(" -> %u:%lu\n", lblock, len);
2043	ext4_ext_put_in_cache(inode, lblock, len, 0);
2044}
2045
2046/*
2047 * Return 0 if cache is invalid; 1 if the cache is valid
2048 */
2049static int
2050ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2051			struct ext4_extent *ex)
2052{
2053	struct ext4_ext_cache *cex;
2054	struct ext4_sb_info *sbi;
2055	int ret = 0;
2056
2057	/*
2058	 * We borrow i_block_reservation_lock to protect i_cached_extent
2059	 */
2060	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2061	cex = &EXT4_I(inode)->i_cached_extent;
2062	sbi = EXT4_SB(inode->i_sb);
2063
2064	/* has cache valid data? */
2065	if (cex->ec_len == 0)
2066		goto errout;
2067
2068	if (in_range(block, cex->ec_block, cex->ec_len)) {
2069		ex->ee_block = cpu_to_le32(cex->ec_block);
2070		ext4_ext_store_pblock(ex, cex->ec_start);
2071		ex->ee_len = cpu_to_le16(cex->ec_len);
2072		ext_debug("%u cached by %u:%u:%llu\n",
2073				block,
2074				cex->ec_block, cex->ec_len, cex->ec_start);
2075		ret = 1;
2076	}
2077errout:
2078	if (!ret)
2079		sbi->extent_cache_misses++;
2080	else
2081		sbi->extent_cache_hits++;
2082	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2083	return ret;
2084}
2085
2086/*
2087 * ext4_ext_rm_idx:
2088 * removes index from the index block.
2089 * It's used in truncate case only, thus all requests are for
2090 * last index in the block only.
2091 */
2092static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2093			struct ext4_ext_path *path)
2094{
2095	int err;
2096	ext4_fsblk_t leaf;
2097
2098	/* free index block */
2099	path--;
2100	leaf = ext4_idx_pblock(path->p_idx);
2101	if (unlikely(path->p_hdr->eh_entries == 0)) {
2102		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2103		return -EIO;
2104	}
2105	err = ext4_ext_get_access(handle, inode, path);
2106	if (err)
2107		return err;
2108	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2109	err = ext4_ext_dirty(handle, inode, path);
2110	if (err)
2111		return err;
2112	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2113	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2114			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2115	return err;
2116}
2117
2118/*
2119 * ext4_ext_calc_credits_for_single_extent:
2120 * This routine returns max. credits that needed to insert an extent
2121 * to the extent tree.
2122 * When pass the actual path, the caller should calculate credits
2123 * under i_data_sem.
2124 */
2125int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2126						struct ext4_ext_path *path)
2127{
2128	if (path) {
2129		int depth = ext_depth(inode);
2130		int ret = 0;
2131
2132		/* probably there is space in leaf? */
2133		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2134				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2135
2136			/*
2137			 *  There are some space in the leaf tree, no
2138			 *  need to account for leaf block credit
2139			 *
2140			 *  bitmaps and block group descriptor blocks
2141			 *  and other metadat blocks still need to be
2142			 *  accounted.
2143			 */
2144			/* 1 bitmap, 1 block group descriptor */
2145			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2146			return ret;
2147		}
2148	}
2149
2150	return ext4_chunk_trans_blocks(inode, nrblocks);
2151}
2152
2153/*
2154 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2155 *
2156 * if nrblocks are fit in a single extent (chunk flag is 1), then
2157 * in the worse case, each tree level index/leaf need to be changed
2158 * if the tree split due to insert a new extent, then the old tree
2159 * index/leaf need to be updated too
2160 *
2161 * If the nrblocks are discontiguous, they could cause
2162 * the whole tree split more than once, but this is really rare.
2163 */
2164int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2165{
2166	int index;
2167	int depth = ext_depth(inode);
2168
2169	if (chunk)
2170		index = depth * 2;
2171	else
2172		index = depth * 3;
2173
2174	return index;
2175}
2176
2177static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2178				struct ext4_extent *ex,
2179				ext4_lblk_t from, ext4_lblk_t to)
2180{
2181	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2182	int flags = EXT4_FREE_BLOCKS_FORGET;
2183
2184	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2185		flags |= EXT4_FREE_BLOCKS_METADATA;
2186#ifdef EXTENTS_STATS
2187	{
2188		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2189		spin_lock(&sbi->s_ext_stats_lock);
2190		sbi->s_ext_blocks += ee_len;
2191		sbi->s_ext_extents++;
2192		if (ee_len < sbi->s_ext_min)
2193			sbi->s_ext_min = ee_len;
2194		if (ee_len > sbi->s_ext_max)
2195			sbi->s_ext_max = ee_len;
2196		if (ext_depth(inode) > sbi->s_depth_max)
2197			sbi->s_depth_max = ext_depth(inode);
2198		spin_unlock(&sbi->s_ext_stats_lock);
2199	}
2200#endif
2201	if (from >= le32_to_cpu(ex->ee_block)
2202	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2203		/* tail removal */
2204		ext4_lblk_t num;
2205		ext4_fsblk_t start;
2206
2207		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2208		start = ext4_ext_pblock(ex) + ee_len - num;
2209		ext_debug("free last %u blocks starting %llu\n", num, start);
2210		ext4_free_blocks(handle, inode, NULL, start, num, flags);
2211	} else if (from == le32_to_cpu(ex->ee_block)
2212		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2213		/* head removal */
2214		ext4_lblk_t num;
2215		ext4_fsblk_t start;
2216
2217		num = to - from;
2218		start = ext4_ext_pblock(ex);
2219
2220		ext_debug("free first %u blocks starting %llu\n", num, start);
2221		ext4_free_blocks(handle, inode, 0, start, num, flags);
2222
2223	} else {
2224		printk(KERN_INFO "strange request: removal(2) "
2225				"%u-%u from %u:%u\n",
2226				from, to, le32_to_cpu(ex->ee_block), ee_len);
2227	}
2228	return 0;
2229}
2230
2231
2232/*
2233 * ext4_ext_rm_leaf() Removes the extents associated with the
2234 * blocks appearing between "start" and "end", and splits the extents
2235 * if "start" and "end" appear in the same extent
2236 *
2237 * @handle: The journal handle
2238 * @inode:  The files inode
2239 * @path:   The path to the leaf
2240 * @start:  The first block to remove
2241 * @end:   The last block to remove
2242 */
2243static int
2244ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2245		struct ext4_ext_path *path, ext4_lblk_t start,
2246		ext4_lblk_t end)
2247{
2248	int err = 0, correct_index = 0;
2249	int depth = ext_depth(inode), credits;
2250	struct ext4_extent_header *eh;
2251	ext4_lblk_t a, b, block;
2252	unsigned num;
2253	ext4_lblk_t ex_ee_block;
2254	unsigned short ex_ee_len;
2255	unsigned uninitialized = 0;
2256	struct ext4_extent *ex;
2257	struct ext4_map_blocks map;
2258
2259	/* the header must be checked already in ext4_ext_remove_space() */
2260	ext_debug("truncate since %u in leaf\n", start);
2261	if (!path[depth].p_hdr)
2262		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2263	eh = path[depth].p_hdr;
2264	if (unlikely(path[depth].p_hdr == NULL)) {
2265		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2266		return -EIO;
2267	}
2268	/* find where to start removing */
2269	ex = EXT_LAST_EXTENT(eh);
2270
2271	ex_ee_block = le32_to_cpu(ex->ee_block);
2272	ex_ee_len = ext4_ext_get_actual_len(ex);
2273
2274	while (ex >= EXT_FIRST_EXTENT(eh) &&
2275			ex_ee_block + ex_ee_len > start) {
2276
2277		if (ext4_ext_is_uninitialized(ex))
2278			uninitialized = 1;
2279		else
2280			uninitialized = 0;
2281
2282		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2283			 uninitialized, ex_ee_len);
2284		path[depth].p_ext = ex;
2285
2286		a = ex_ee_block > start ? ex_ee_block : start;
2287		b = ex_ee_block+ex_ee_len - 1 < end ?
2288			ex_ee_block+ex_ee_len - 1 : end;
2289
2290		ext_debug("  border %u:%u\n", a, b);
2291
2292		/* If this extent is beyond the end of the hole, skip it */
2293		if (end <= ex_ee_block) {
2294			ex--;
2295			ex_ee_block = le32_to_cpu(ex->ee_block);
2296			ex_ee_len = ext4_ext_get_actual_len(ex);
2297			continue;
2298		} else if (a != ex_ee_block &&
2299			b != ex_ee_block + ex_ee_len - 1) {
2300			/*
2301			 * If this is a truncate, then this condition should
2302			 * never happen because at least one of the end points
2303			 * needs to be on the edge of the extent.
2304			 */
2305			if (end == EXT_MAX_BLOCK) {
2306				ext_debug("  bad truncate %u:%u\n",
2307						start, end);
2308				block = 0;
2309				num = 0;
2310				err = -EIO;
2311				goto out;
2312			}
2313			/*
2314			 * else this is a hole punch, so the extent needs to
2315			 * be split since neither edge of the hole is on the
2316			 * extent edge
2317			 */
2318			else{
2319				map.m_pblk = ext4_ext_pblock(ex);
2320				map.m_lblk = ex_ee_block;
2321				map.m_len = b - ex_ee_block;
2322
2323				err = ext4_split_extent(handle,
2324					inode, path, &map, 0,
2325					EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
2326					EXT4_GET_BLOCKS_PRE_IO);
2327
2328				if (err < 0)
2329					goto out;
2330
2331				ex_ee_len = ext4_ext_get_actual_len(ex);
2332
2333				b = ex_ee_block+ex_ee_len - 1 < end ?
2334					ex_ee_block+ex_ee_len - 1 : end;
2335
2336				/* Then remove tail of this extent */
2337				block = ex_ee_block;
2338				num = a - block;
2339			}
2340		} else if (a != ex_ee_block) {
2341			/* remove tail of the extent */
2342			block = ex_ee_block;
2343			num = a - block;
2344		} else if (b != ex_ee_block + ex_ee_len - 1) {
2345			/* remove head of the extent */
2346			block = b;
2347			num =  ex_ee_block + ex_ee_len - b;
2348
2349			/*
2350			 * If this is a truncate, this condition
2351			 * should never happen
2352			 */
2353			if (end == EXT_MAX_BLOCK) {
2354				ext_debug("  bad truncate %u:%u\n",
2355					start, end);
2356				err = -EIO;
2357				goto out;
2358			}
2359		} else {
2360			/* remove whole extent: excellent! */
2361			block = ex_ee_block;
2362			num = 0;
2363			if (a != ex_ee_block) {
2364				ext_debug("  bad truncate %u:%u\n",
2365					start, end);
2366				err = -EIO;
2367				goto out;
2368			}
2369
2370			if (b != ex_ee_block + ex_ee_len - 1) {
2371				ext_debug("  bad truncate %u:%u\n",
2372					start, end);
2373				err = -EIO;
2374				goto out;
2375			}
2376		}
2377
2378		/*
2379		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2380		 * descriptor) for each block group; assume two block
2381		 * groups plus ex_ee_len/blocks_per_block_group for
2382		 * the worst case
2383		 */
2384		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2385		if (ex == EXT_FIRST_EXTENT(eh)) {
2386			correct_index = 1;
2387			credits += (ext_depth(inode)) + 1;
2388		}
2389		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2390
2391		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2392		if (err)
2393			goto out;
2394
2395		err = ext4_ext_get_access(handle, inode, path + depth);
2396		if (err)
2397			goto out;
2398
2399		err = ext4_remove_blocks(handle, inode, ex, a, b);
2400		if (err)
2401			goto out;
2402
2403		if (num == 0) {
2404			/* this extent is removed; mark slot entirely unused */
2405			ext4_ext_store_pblock(ex, 0);
2406		} else if (block != ex_ee_block) {
2407			/*
2408			 * If this was a head removal, then we need to update
2409			 * the physical block since it is now at a different
2410			 * location
2411			 */
2412			ext4_ext_store_pblock(ex, ext4_ext_pblock(ex) + (b-a));
2413		}
2414
2415		ex->ee_block = cpu_to_le32(block);
2416		ex->ee_len = cpu_to_le16(num);
2417		/*
2418		 * Do not mark uninitialized if all the blocks in the
2419		 * extent have been removed.
2420		 */
2421		if (uninitialized && num)
2422			ext4_ext_mark_uninitialized(ex);
2423
2424		err = ext4_ext_dirty(handle, inode, path + depth);
2425		if (err)
2426			goto out;
2427
2428		/*
2429		 * If the extent was completely released,
2430		 * we need to remove it from the leaf
2431		 */
2432		if (num == 0) {
2433			if (end != EXT_MAX_BLOCK) {
2434				/*
2435				 * For hole punching, we need to scoot all the
2436				 * extents up when an extent is removed so that
2437				 * we dont have blank extents in the middle
2438				 */
2439				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2440					sizeof(struct ext4_extent));
2441
2442				/* Now get rid of the one at the end */
2443				memset(EXT_LAST_EXTENT(eh), 0,
2444					sizeof(struct ext4_extent));
2445			}
2446			le16_add_cpu(&eh->eh_entries, -1);
2447		}
2448
2449		ext_debug("new extent: %u:%u:%llu\n", block, num,
2450				ext4_ext_pblock(ex));
2451		ex--;
2452		ex_ee_block = le32_to_cpu(ex->ee_block);
2453		ex_ee_len = ext4_ext_get_actual_len(ex);
2454	}
2455
2456	if (correct_index && eh->eh_entries)
2457		err = ext4_ext_correct_indexes(handle, inode, path);
2458
2459	/* if this leaf is free, then we should
2460	 * remove it from index block above */
2461	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2462		err = ext4_ext_rm_idx(handle, inode, path + depth);
2463
2464out:
2465	return err;
2466}
2467
2468/*
2469 * ext4_ext_more_to_rm:
2470 * returns 1 if current index has to be freed (even partial)
2471 */
2472static int
2473ext4_ext_more_to_rm(struct ext4_ext_path *path)
2474{
2475	BUG_ON(path->p_idx == NULL);
2476
2477	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2478		return 0;
2479
2480	/*
2481	 * if truncate on deeper level happened, it wasn't partial,
2482	 * so we have to consider current index for truncation
2483	 */
2484	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2485		return 0;
2486	return 1;
2487}
2488
2489static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2490				ext4_lblk_t end)
2491{
2492	struct super_block *sb = inode->i_sb;
2493	int depth = ext_depth(inode);
2494	struct ext4_ext_path *path;
2495	handle_t *handle;
2496	int i, err;
2497
2498	ext_debug("truncate since %u\n", start);
2499
2500	/* probably first extent we're gonna free will be last in block */
2501	handle = ext4_journal_start(inode, depth + 1);
2502	if (IS_ERR(handle))
2503		return PTR_ERR(handle);
2504
2505again:
2506	ext4_ext_invalidate_cache(inode);
2507
2508	/*
2509	 * We start scanning from right side, freeing all the blocks
2510	 * after i_size and walking into the tree depth-wise.
2511	 */
2512	depth = ext_depth(inode);
2513	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2514	if (path == NULL) {
2515		ext4_journal_stop(handle);
2516		return -ENOMEM;
2517	}
2518	path[0].p_depth = depth;
2519	path[0].p_hdr = ext_inode_hdr(inode);
2520	if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2521		err = -EIO;
2522		goto out;
2523	}
2524	i = err = 0;
2525
2526	while (i >= 0 && err == 0) {
2527		if (i == depth) {
2528			/* this is leaf block */
2529			err = ext4_ext_rm_leaf(handle, inode, path,
2530					start, end);
2531			/* root level has p_bh == NULL, brelse() eats this */
2532			brelse(path[i].p_bh);
2533			path[i].p_bh = NULL;
2534			i--;
2535			continue;
2536		}
2537
2538		/* this is index block */
2539		if (!path[i].p_hdr) {
2540			ext_debug("initialize header\n");
2541			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2542		}
2543
2544		if (!path[i].p_idx) {
2545			/* this level hasn't been touched yet */
2546			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2547			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2548			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2549				  path[i].p_hdr,
2550				  le16_to_cpu(path[i].p_hdr->eh_entries));
2551		} else {
2552			/* we were already here, see at next index */
2553			path[i].p_idx--;
2554		}
2555
2556		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2557				i, EXT_FIRST_INDEX(path[i].p_hdr),
2558				path[i].p_idx);
2559		if (ext4_ext_more_to_rm(path + i)) {
2560			struct buffer_head *bh;
2561			/* go to the next level */
2562			ext_debug("move to level %d (block %llu)\n",
2563				  i + 1, ext4_idx_pblock(path[i].p_idx));
2564			memset(path + i + 1, 0, sizeof(*path));
2565			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2566			if (!bh) {
2567				/* should we reset i_size? */
2568				err = -EIO;
2569				break;
2570			}
2571			if (WARN_ON(i + 1 > depth)) {
2572				err = -EIO;
2573				break;
2574			}
2575			if (ext4_ext_check(inode, ext_block_hdr(bh),
2576							depth - i - 1)) {
2577				err = -EIO;
2578				break;
2579			}
2580			path[i + 1].p_bh = bh;
2581
2582			/* save actual number of indexes since this
2583			 * number is changed at the next iteration */
2584			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2585			i++;
2586		} else {
2587			/* we finished processing this index, go up */
2588			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2589				/* index is empty, remove it;
2590				 * handle must be already prepared by the
2591				 * truncatei_leaf() */
2592				err = ext4_ext_rm_idx(handle, inode, path + i);
2593			}
2594			/* root level has p_bh == NULL, brelse() eats this */
2595			brelse(path[i].p_bh);
2596			path[i].p_bh = NULL;
2597			i--;
2598			ext_debug("return to level %d\n", i);
2599		}
2600	}
2601
2602	/* TODO: flexible tree reduction should be here */
2603	if (path->p_hdr->eh_entries == 0) {
2604		/*
2605		 * truncate to zero freed all the tree,
2606		 * so we need to correct eh_depth
2607		 */
2608		err = ext4_ext_get_access(handle, inode, path);
2609		if (err == 0) {
2610			ext_inode_hdr(inode)->eh_depth = 0;
2611			ext_inode_hdr(inode)->eh_max =
2612				cpu_to_le16(ext4_ext_space_root(inode, 0));
2613			err = ext4_ext_dirty(handle, inode, path);
2614		}
2615	}
2616out:
2617	ext4_ext_drop_refs(path);
2618	kfree(path);
2619	if (err == -EAGAIN)
2620		goto again;
2621	ext4_journal_stop(handle);
2622
2623	return err;
2624}
2625
2626/*
2627 * called at mount time
2628 */
2629void ext4_ext_init(struct super_block *sb)
2630{
2631	/*
2632	 * possible initialization would be here
2633	 */
2634
2635	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2636#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2637		printk(KERN_INFO "EXT4-fs: file extents enabled");
2638#ifdef AGGRESSIVE_TEST
2639		printk(", aggressive tests");
2640#endif
2641#ifdef CHECK_BINSEARCH
2642		printk(", check binsearch");
2643#endif
2644#ifdef EXTENTS_STATS
2645		printk(", stats");
2646#endif
2647		printk("\n");
2648#endif
2649#ifdef EXTENTS_STATS
2650		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2651		EXT4_SB(sb)->s_ext_min = 1 << 30;
2652		EXT4_SB(sb)->s_ext_max = 0;
2653#endif
2654	}
2655}
2656
2657/*
2658 * called at umount time
2659 */
2660void ext4_ext_release(struct super_block *sb)
2661{
2662	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2663		return;
2664
2665#ifdef EXTENTS_STATS
2666	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2667		struct ext4_sb_info *sbi = EXT4_SB(sb);
2668		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2669			sbi->s_ext_blocks, sbi->s_ext_extents,
2670			sbi->s_ext_blocks / sbi->s_ext_extents);
2671		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2672			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2673	}
2674#endif
2675}
2676
2677/* FIXME!! we need to try to merge to left or right after zero-out  */
2678static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2679{
2680	ext4_fsblk_t ee_pblock;
2681	unsigned int ee_len;
2682	int ret;
2683
2684	ee_len    = ext4_ext_get_actual_len(ex);
2685	ee_pblock = ext4_ext_pblock(ex);
2686
2687	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2688	if (ret > 0)
2689		ret = 0;
2690
2691	return ret;
2692}
2693
2694/*
2695 * used by extent splitting.
2696 */
2697#define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
2698					due to ENOSPC */
2699#define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
2700#define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
2701
2702/*
2703 * ext4_split_extent_at() splits an extent at given block.
2704 *
2705 * @handle: the journal handle
2706 * @inode: the file inode
2707 * @path: the path to the extent
2708 * @split: the logical block where the extent is splitted.
2709 * @split_flags: indicates if the extent could be zeroout if split fails, and
2710 *		 the states(init or uninit) of new extents.
2711 * @flags: flags used to insert new extent to extent tree.
2712 *
2713 *
2714 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2715 * of which are deterimined by split_flag.
2716 *
2717 * There are two cases:
2718 *  a> the extent are splitted into two extent.
2719 *  b> split is not needed, and just mark the extent.
2720 *
2721 * return 0 on success.
2722 */
2723static int ext4_split_extent_at(handle_t *handle,
2724			     struct inode *inode,
2725			     struct ext4_ext_path *path,
2726			     ext4_lblk_t split,
2727			     int split_flag,
2728			     int flags)
2729{
2730	ext4_fsblk_t newblock;
2731	ext4_lblk_t ee_block;
2732	struct ext4_extent *ex, newex, orig_ex;
2733	struct ext4_extent *ex2 = NULL;
2734	unsigned int ee_len, depth;
2735	int err = 0;
2736
2737	ext_debug("ext4_split_extents_at: inode %lu, logical"
2738		"block %llu\n", inode->i_ino, (unsigned long long)split);
2739
2740	ext4_ext_show_leaf(inode, path);
2741
2742	depth = ext_depth(inode);
2743	ex = path[depth].p_ext;
2744	ee_block = le32_to_cpu(ex->ee_block);
2745	ee_len = ext4_ext_get_actual_len(ex);
2746	newblock = split - ee_block + ext4_ext_pblock(ex);
2747
2748	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2749
2750	err = ext4_ext_get_access(handle, inode, path + depth);
2751	if (err)
2752		goto out;
2753
2754	if (split == ee_block) {
2755		/*
2756		 * case b: block @split is the block that the extent begins with
2757		 * then we just change the state of the extent, and splitting
2758		 * is not needed.
2759		 */
2760		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2761			ext4_ext_mark_uninitialized(ex);
2762		else
2763			ext4_ext_mark_initialized(ex);
2764
2765		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2766			ext4_ext_try_to_merge(inode, path, ex);
2767
2768		err = ext4_ext_dirty(handle, inode, path + depth);
2769		goto out;
2770	}
2771
2772	/* case a */
2773	memcpy(&orig_ex, ex, sizeof(orig_ex));
2774	ex->ee_len = cpu_to_le16(split - ee_block);
2775	if (split_flag & EXT4_EXT_MARK_UNINIT1)
2776		ext4_ext_mark_uninitialized(ex);
2777
2778	/*
2779	 * path may lead to new leaf, not to original leaf any more
2780	 * after ext4_ext_insert_extent() returns,
2781	 */
2782	err = ext4_ext_dirty(handle, inode, path + depth);
2783	if (err)
2784		goto fix_extent_len;
2785
2786	ex2 = &newex;
2787	ex2->ee_block = cpu_to_le32(split);
2788	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
2789	ext4_ext_store_pblock(ex2, newblock);
2790	if (split_flag & EXT4_EXT_MARK_UNINIT2)
2791		ext4_ext_mark_uninitialized(ex2);
2792
2793	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2794	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2795		err = ext4_ext_zeroout(inode, &orig_ex);
2796		if (err)
2797			goto fix_extent_len;
2798		/* update the extent length and mark as initialized */
2799		ex->ee_len = cpu_to_le32(ee_len);
2800		ext4_ext_try_to_merge(inode, path, ex);
2801		err = ext4_ext_dirty(handle, inode, path + depth);
2802		goto out;
2803	} else if (err)
2804		goto fix_extent_len;
2805
2806out:
2807	ext4_ext_show_leaf(inode, path);
2808	return err;
2809
2810fix_extent_len:
2811	ex->ee_len = orig_ex.ee_len;
2812	ext4_ext_dirty(handle, inode, path + depth);
2813	return err;
2814}
2815
2816/*
2817 * ext4_split_extents() splits an extent and mark extent which is covered
2818 * by @map as split_flags indicates
2819 *
2820 * It may result in splitting the extent into multiple extents (upto three)
2821 * There are three possibilities:
2822 *   a> There is no split required
2823 *   b> Splits in two extents: Split is happening at either end of the extent
2824 *   c> Splits in three extents: Somone is splitting in middle of the extent
2825 *
2826 */
2827static int ext4_split_extent(handle_t *handle,
2828			      struct inode *inode,
2829			      struct ext4_ext_path *path,
2830			      struct ext4_map_blocks *map,
2831			      int split_flag,
2832			      int flags)
2833{
2834	ext4_lblk_t ee_block;
2835	struct ext4_extent *ex;
2836	unsigned int ee_len, depth;
2837	int err = 0;
2838	int uninitialized;
2839	int split_flag1, flags1;
2840
2841	depth = ext_depth(inode);
2842	ex = path[depth].p_ext;
2843	ee_block = le32_to_cpu(ex->ee_block);
2844	ee_len = ext4_ext_get_actual_len(ex);
2845	uninitialized = ext4_ext_is_uninitialized(ex);
2846
2847	if (map->m_lblk + map->m_len < ee_block + ee_len) {
2848		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2849			      EXT4_EXT_MAY_ZEROOUT : 0;
2850		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2851		if (uninitialized)
2852			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2853				       EXT4_EXT_MARK_UNINIT2;
2854		err = ext4_split_extent_at(handle, inode, path,
2855				map->m_lblk + map->m_len, split_flag1, flags1);
2856		if (err)
2857			goto out;
2858	}
2859
2860	ext4_ext_drop_refs(path);
2861	path = ext4_ext_find_extent(inode, map->m_lblk, path);
2862	if (IS_ERR(path))
2863		return PTR_ERR(path);
2864
2865	if (map->m_lblk >= ee_block) {
2866		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2867			      EXT4_EXT_MAY_ZEROOUT : 0;
2868		if (uninitialized)
2869			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
2870		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2871			split_flag1 |= EXT4_EXT_MARK_UNINIT2;
2872		err = ext4_split_extent_at(handle, inode, path,
2873				map->m_lblk, split_flag1, flags);
2874		if (err)
2875			goto out;
2876	}
2877
2878	ext4_ext_show_leaf(inode, path);
2879out:
2880	return err ? err : map->m_len;
2881}
2882
2883#define EXT4_EXT_ZERO_LEN 7
2884/*
2885 * This function is called by ext4_ext_map_blocks() if someone tries to write
2886 * to an uninitialized extent. It may result in splitting the uninitialized
2887 * extent into multiple extents (up to three - one initialized and two
2888 * uninitialized).
2889 * There are three possibilities:
2890 *   a> There is no split required: Entire extent should be initialized
2891 *   b> Splits in two extents: Write is happening at either end of the extent
2892 *   c> Splits in three extents: Somone is writing in middle of the extent
2893 */
2894static int ext4_ext_convert_to_initialized(handle_t *handle,
2895					   struct inode *inode,
2896					   struct ext4_map_blocks *map,
2897					   struct ext4_ext_path *path)
2898{
2899	struct ext4_map_blocks split_map;
2900	struct ext4_extent zero_ex;
2901	struct ext4_extent *ex;
2902	ext4_lblk_t ee_block, eof_block;
2903	unsigned int allocated, ee_len, depth;
2904	int err = 0;
2905	int split_flag = 0;
2906
2907	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2908		"block %llu, max_blocks %u\n", inode->i_ino,
2909		(unsigned long long)map->m_lblk, map->m_len);
2910
2911	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2912		inode->i_sb->s_blocksize_bits;
2913	if (eof_block < map->m_lblk + map->m_len)
2914		eof_block = map->m_lblk + map->m_len;
2915
2916	depth = ext_depth(inode);
2917	ex = path[depth].p_ext;
2918	ee_block = le32_to_cpu(ex->ee_block);
2919	ee_len = ext4_ext_get_actual_len(ex);
2920	allocated = ee_len - (map->m_lblk - ee_block);
2921
2922	WARN_ON(map->m_lblk < ee_block);
2923	/*
2924	 * It is safe to convert extent to initialized via explicit
2925	 * zeroout only if extent is fully insde i_size or new_size.
2926	 */
2927	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
2928
2929	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2930	if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
2931	    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2932		err = ext4_ext_zeroout(inode, ex);
2933		if (err)
2934			goto out;
2935
2936		err = ext4_ext_get_access(handle, inode, path + depth);
2937		if (err)
2938			goto out;
2939		ext4_ext_mark_initialized(ex);
2940		ext4_ext_try_to_merge(inode, path, ex);
2941		err = ext4_ext_dirty(handle, inode, path + depth);
2942		goto out;
2943	}
2944
2945	/*
2946	 * four cases:
2947	 * 1. split the extent into three extents.
2948	 * 2. split the extent into two extents, zeroout the first half.
2949	 * 3. split the extent into two extents, zeroout the second half.
2950	 * 4. split the extent into two extents with out zeroout.
2951	 */
2952	split_map.m_lblk = map->m_lblk;
2953	split_map.m_len = map->m_len;
2954
2955	if (allocated > map->m_len) {
2956		if (allocated <= EXT4_EXT_ZERO_LEN &&
2957		    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2958			/* case 3 */
2959			zero_ex.ee_block =
2960					 cpu_to_le32(map->m_lblk);
2961			zero_ex.ee_len = cpu_to_le16(allocated);
2962			ext4_ext_store_pblock(&zero_ex,
2963				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
2964			err = ext4_ext_zeroout(inode, &zero_ex);
2965			if (err)
2966				goto out;
2967			split_map.m_lblk = map->m_lblk;
2968			split_map.m_len = allocated;
2969		} else if ((map->m_lblk - ee_block + map->m_len <
2970			   EXT4_EXT_ZERO_LEN) &&
2971			   (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2972			/* case 2 */
2973			if (map->m_lblk != ee_block) {
2974				zero_ex.ee_block = ex->ee_block;
2975				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
2976							ee_block);
2977				ext4_ext_store_pblock(&zero_ex,
2978						      ext4_ext_pblock(ex));
2979				err = ext4_ext_zeroout(inode, &zero_ex);
2980				if (err)
2981					goto out;
2982			}
2983
2984			split_map.m_lblk = ee_block;
2985			split_map.m_len = map->m_lblk - ee_block + map->m_len;
2986			allocated = map->m_len;
2987		}
2988	}
2989
2990	allocated = ext4_split_extent(handle, inode, path,
2991				       &split_map, split_flag, 0);
2992	if (allocated < 0)
2993		err = allocated;
2994
2995out:
2996	return err ? err : allocated;
2997}
2998
2999/*
3000 * This function is called by ext4_ext_map_blocks() from
3001 * ext4_get_blocks_dio_write() when DIO to write
3002 * to an uninitialized extent.
3003 *
3004 * Writing to an uninitialized extent may result in splitting the uninitialized
3005 * extent into multiple /initialized uninitialized extents (up to three)
3006 * There are three possibilities:
3007 *   a> There is no split required: Entire extent should be uninitialized
3008 *   b> Splits in two extents: Write is happening at either end of the extent
3009 *   c> Splits in three extents: Somone is writing in middle of the extent
3010 *
3011 * One of more index blocks maybe needed if the extent tree grow after
3012 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3013 * complete, we need to split the uninitialized extent before DIO submit
3014 * the IO. The uninitialized extent called at this time will be split
3015 * into three uninitialized extent(at most). After IO complete, the part
3016 * being filled will be convert to initialized by the end_io callback function
3017 * via ext4_convert_unwritten_extents().
3018 *
3019 * Returns the size of uninitialized extent to be written on success.
3020 */
3021static int ext4_split_unwritten_extents(handle_t *handle,
3022					struct inode *inode,
3023					struct ext4_map_blocks *map,
3024					struct ext4_ext_path *path,
3025					int flags)
3026{
3027	ext4_lblk_t eof_block;
3028	ext4_lblk_t ee_block;
3029	struct ext4_extent *ex;
3030	unsigned int ee_len;
3031	int split_flag = 0, depth;
3032
3033	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3034		"block %llu, max_blocks %u\n", inode->i_ino,
3035		(unsigned long long)map->m_lblk, map->m_len);
3036
3037	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3038		inode->i_sb->s_blocksize_bits;
3039	if (eof_block < map->m_lblk + map->m_len)
3040		eof_block = map->m_lblk + map->m_len;
3041	/*
3042	 * It is safe to convert extent to initialized via explicit
3043	 * zeroout only if extent is fully insde i_size or new_size.
3044	 */
3045	depth = ext_depth(inode);
3046	ex = path[depth].p_ext;
3047	ee_block = le32_to_cpu(ex->ee_block);
3048	ee_len = ext4_ext_get_actual_len(ex);
3049
3050	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3051	split_flag |= EXT4_EXT_MARK_UNINIT2;
3052
3053	flags |= EXT4_GET_BLOCKS_PRE_IO;
3054	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3055}
3056
3057static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3058					      struct inode *inode,
3059					      struct ext4_ext_path *path)
3060{
3061	struct ext4_extent *ex;
3062	struct ext4_extent_header *eh;
3063	int depth;
3064	int err = 0;
3065
3066	depth = ext_depth(inode);
3067	eh = path[depth].p_hdr;
3068	ex = path[depth].p_ext;
3069
3070	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3071		"block %llu, max_blocks %u\n", inode->i_ino,
3072		(unsigned long long)le32_to_cpu(ex->ee_block),
3073		ext4_ext_get_actual_len(ex));
3074
3075	err = ext4_ext_get_access(handle, inode, path + depth);
3076	if (err)
3077		goto out;
3078	/* first mark the extent as initialized */
3079	ext4_ext_mark_initialized(ex);
3080
3081	/* note: ext4_ext_correct_indexes() isn't needed here because
3082	 * borders are not changed
3083	 */
3084	ext4_ext_try_to_merge(inode, path, ex);
3085
3086	/* Mark modified extent as dirty */
3087	err = ext4_ext_dirty(handle, inode, path + depth);
3088out:
3089	ext4_ext_show_leaf(inode, path);
3090	return err;
3091}
3092
3093static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3094			sector_t block, int count)
3095{
3096	int i;
3097	for (i = 0; i < count; i++)
3098                unmap_underlying_metadata(bdev, block + i);
3099}
3100
3101/*
3102 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3103 */
3104static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3105			      ext4_lblk_t lblk,
3106			      struct ext4_ext_path *path,
3107			      unsigned int len)
3108{
3109	int i, depth;
3110	struct ext4_extent_header *eh;
3111	struct ext4_extent *last_ex;
3112
3113	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3114		return 0;
3115
3116	depth = ext_depth(inode);
3117	eh = path[depth].p_hdr;
3118
3119	if (unlikely(!eh->eh_entries)) {
3120		EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3121				 "EOFBLOCKS_FL set");
3122		return -EIO;
3123	}
3124	last_ex = EXT_LAST_EXTENT(eh);
3125	/*
3126	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3127	 * last block in the last extent in the file.  We test this by
3128	 * first checking to see if the caller to
3129	 * ext4_ext_get_blocks() was interested in the last block (or
3130	 * a block beyond the last block) in the current extent.  If
3131	 * this turns out to be false, we can bail out from this
3132	 * function immediately.
3133	 */
3134	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3135	    ext4_ext_get_actual_len(last_ex))
3136		return 0;
3137	/*
3138	 * If the caller does appear to be planning to write at or
3139	 * beyond the end of the current extent, we then test to see
3140	 * if the current extent is the last extent in the file, by
3141	 * checking to make sure it was reached via the rightmost node
3142	 * at each level of the tree.
3143	 */
3144	for (i = depth-1; i >= 0; i--)
3145		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3146			return 0;
3147	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3148	return ext4_mark_inode_dirty(handle, inode);
3149}
3150
3151static int
3152ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3153			struct ext4_map_blocks *map,
3154			struct ext4_ext_path *path, int flags,
3155			unsigned int allocated, ext4_fsblk_t newblock)
3156{
3157	int ret = 0;
3158	int err = 0;
3159	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3160
3161	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3162		  "block %llu, max_blocks %u, flags %d, allocated %u",
3163		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3164		  flags, allocated);
3165	ext4_ext_show_leaf(inode, path);
3166
3167	/* get_block() before submit the IO, split the extent */
3168	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3169		ret = ext4_split_unwritten_extents(handle, inode, map,
3170						   path, flags);
3171		/*
3172		 * Flag the inode(non aio case) or end_io struct (aio case)
3173		 * that this IO needs to conversion to written when IO is
3174		 * completed
3175		 */
3176		if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3177			io->flag = EXT4_IO_END_UNWRITTEN;
3178			atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3179		} else
3180			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3181		if (ext4_should_dioread_nolock(inode))
3182			map->m_flags |= EXT4_MAP_UNINIT;
3183		goto out;
3184	}
3185	/* IO end_io complete, convert the filled extent to written */
3186	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3187		ret = ext4_convert_unwritten_extents_endio(handle, inode,
3188							path);
3189		if (ret >= 0) {
3190			ext4_update_inode_fsync_trans(handle, inode, 1);
3191			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3192						 path, map->m_len);
3193		} else
3194			err = ret;
3195		goto out2;
3196	}
3197	/* buffered IO case */
3198	/*
3199	 * repeat fallocate creation request
3200	 * we already have an unwritten extent
3201	 */
3202	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3203		goto map_out;
3204
3205	/* buffered READ or buffered write_begin() lookup */
3206	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3207		/*
3208		 * We have blocks reserved already.  We
3209		 * return allocated blocks so that delalloc
3210		 * won't do block reservation for us.  But
3211		 * the buffer head will be unmapped so that
3212		 * a read from the block returns 0s.
3213		 */
3214		map->m_flags |= EXT4_MAP_UNWRITTEN;
3215		goto out1;
3216	}
3217
3218	/* buffered write, writepage time, convert*/
3219	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3220	if (ret >= 0) {
3221		ext4_update_inode_fsync_trans(handle, inode, 1);
3222		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3223					 map->m_len);
3224		if (err < 0)
3225			goto out2;
3226	}
3227
3228out:
3229	if (ret <= 0) {
3230		err = ret;
3231		goto out2;
3232	} else
3233		allocated = ret;
3234	map->m_flags |= EXT4_MAP_NEW;
3235	/*
3236	 * if we allocated more blocks than requested
3237	 * we need to make sure we unmap the extra block
3238	 * allocated. The actual needed block will get
3239	 * unmapped later when we find the buffer_head marked
3240	 * new.
3241	 */
3242	if (allocated > map->m_len) {
3243		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3244					newblock + map->m_len,
3245					allocated - map->m_len);
3246		allocated = map->m_len;
3247	}
3248
3249	/*
3250	 * If we have done fallocate with the offset that is already
3251	 * delayed allocated, we would have block reservation
3252	 * and quota reservation done in the delayed write path.
3253	 * But fallocate would have already updated quota and block
3254	 * count for this offset. So cancel these reservation
3255	 */
3256	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3257		ext4_da_update_reserve_space(inode, allocated, 0);
3258
3259map_out:
3260	map->m_flags |= EXT4_MAP_MAPPED;
3261out1:
3262	if (allocated > map->m_len)
3263		allocated = map->m_len;
3264	ext4_ext_show_leaf(inode, path);
3265	map->m_pblk = newblock;
3266	map->m_len = allocated;
3267out2:
3268	if (path) {
3269		ext4_ext_drop_refs(path);
3270		kfree(path);
3271	}
3272	return err ? err : allocated;
3273}
3274
3275/*
3276 * Block allocation/map/preallocation routine for extents based files
3277 *
3278 *
3279 * Need to be called with
3280 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3281 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3282 *
3283 * return > 0, number of of blocks already mapped/allocated
3284 *          if create == 0 and these are pre-allocated blocks
3285 *          	buffer head is unmapped
3286 *          otherwise blocks are mapped
3287 *
3288 * return = 0, if plain look up failed (blocks have not been allocated)
3289 *          buffer head is unmapped
3290 *
3291 * return < 0, error case.
3292 */
3293int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3294			struct ext4_map_blocks *map, int flags)
3295{
3296	struct ext4_ext_path *path = NULL;
3297	struct ext4_extent newex, *ex;
3298	ext4_fsblk_t newblock = 0;
3299	int err = 0, depth, ret;
3300	unsigned int allocated = 0;
3301	struct ext4_allocation_request ar;
3302	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3303
3304	ext_debug("blocks %u/%u requested for inode %lu\n",
3305		  map->m_lblk, map->m_len, inode->i_ino);
3306	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3307
3308	/* check in cache */
3309	if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3310		if (!newex.ee_start_lo && !newex.ee_start_hi) {
3311			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3312				/*
3313				 * block isn't allocated yet and
3314				 * user doesn't want to allocate it
3315				 */
3316				goto out2;
3317			}
3318			/* we should allocate requested block */
3319		} else {
3320			/* block is already allocated */
3321			newblock = map->m_lblk
3322				   - le32_to_cpu(newex.ee_block)
3323				   + ext4_ext_pblock(&newex);
3324			/* number of remaining blocks in the extent */
3325			allocated = ext4_ext_get_actual_len(&newex) -
3326				(map->m_lblk - le32_to_cpu(newex.ee_block));
3327			goto out;
3328		}
3329	}
3330
3331	/* find extent for this block */
3332	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3333	if (IS_ERR(path)) {
3334		err = PTR_ERR(path);
3335		path = NULL;
3336		goto out2;
3337	}
3338
3339	depth = ext_depth(inode);
3340
3341	/*
3342	 * consistent leaf must not be empty;
3343	 * this situation is possible, though, _during_ tree modification;
3344	 * this is why assert can't be put in ext4_ext_find_extent()
3345	 */
3346	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3347		EXT4_ERROR_INODE(inode, "bad extent address "
3348				 "lblock: %lu, depth: %d pblock %lld",
3349				 (unsigned long) map->m_lblk, depth,
3350				 path[depth].p_block);
3351		err = -EIO;
3352		goto out2;
3353	}
3354
3355	ex = path[depth].p_ext;
3356	if (ex) {
3357		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3358		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3359		unsigned short ee_len;
3360
3361		/*
3362		 * Uninitialized extents are treated as holes, except that
3363		 * we split out initialized portions during a write.
3364		 */
3365		ee_len = ext4_ext_get_actual_len(ex);
3366		/* if found extent covers block, simply return it */
3367		if (in_range(map->m_lblk, ee_block, ee_len)) {
3368			newblock = map->m_lblk - ee_block + ee_start;
3369			/* number of remaining blocks in the extent */
3370			allocated = ee_len - (map->m_lblk - ee_block);
3371			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3372				  ee_block, ee_len, newblock);
3373
3374			/* Do not put uninitialized extent in the cache */
3375			if (!ext4_ext_is_uninitialized(ex)) {
3376				ext4_ext_put_in_cache(inode, ee_block,
3377							ee_len, ee_start);
3378				goto out;
3379			}
3380			ret = ext4_ext_handle_uninitialized_extents(handle,
3381					inode, map, path, flags, allocated,
3382					newblock);
3383			return ret;
3384		}
3385	}
3386
3387	/*
3388	 * requested block isn't allocated yet;
3389	 * we couldn't try to create block if create flag is zero
3390	 */
3391	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3392		/*
3393		 * put just found gap into cache to speed up
3394		 * subsequent requests
3395		 */
3396		ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3397		goto out2;
3398	}
3399	/*
3400	 * Okay, we need to do block allocation.
3401	 */
3402
3403	/* find neighbour allocated blocks */
3404	ar.lleft = map->m_lblk;
3405	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3406	if (err)
3407		goto out2;
3408	ar.lright = map->m_lblk;
3409	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
3410	if (err)
3411		goto out2;
3412
3413	/*
3414	 * See if request is beyond maximum number of blocks we can have in
3415	 * a single extent. For an initialized extent this limit is
3416	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3417	 * EXT_UNINIT_MAX_LEN.
3418	 */
3419	if (map->m_len > EXT_INIT_MAX_LEN &&
3420	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3421		map->m_len = EXT_INIT_MAX_LEN;
3422	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3423		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3424		map->m_len = EXT_UNINIT_MAX_LEN;
3425
3426	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3427	newex.ee_block = cpu_to_le32(map->m_lblk);
3428	newex.ee_len = cpu_to_le16(map->m_len);
3429	err = ext4_ext_check_overlap(inode, &newex, path);
3430	if (err)
3431		allocated = ext4_ext_get_actual_len(&newex);
3432	else
3433		allocated = map->m_len;
3434
3435	/* allocate new block */
3436	ar.inode = inode;
3437	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3438	ar.logical = map->m_lblk;
3439	ar.len = allocated;
3440	if (S_ISREG(inode->i_mode))
3441		ar.flags = EXT4_MB_HINT_DATA;
3442	else
3443		/* disable in-core preallocation for non-regular files */
3444		ar.flags = 0;
3445	newblock = ext4_mb_new_blocks(handle, &ar, &err);
3446	if (!newblock)
3447		goto out2;
3448	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3449		  ar.goal, newblock, allocated);
3450
3451	/* try to insert new extent into found leaf and return */
3452	ext4_ext_store_pblock(&newex, newblock);
3453	newex.ee_len = cpu_to_le16(ar.len);
3454	/* Mark uninitialized */
3455	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3456		ext4_ext_mark_uninitialized(&newex);
3457		/*
3458		 * io_end structure was created for every IO write to an
3459		 * uninitialized extent. To avoid unnecessary conversion,
3460		 * here we flag the IO that really needs the conversion.
3461		 * For non asycn direct IO case, flag the inode state
3462		 * that we need to perform conversion when IO is done.
3463		 */
3464		if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3465			if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3466				io->flag = EXT4_IO_END_UNWRITTEN;
3467				atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3468			} else
3469				ext4_set_inode_state(inode,
3470						     EXT4_STATE_DIO_UNWRITTEN);
3471		}
3472		if (ext4_should_dioread_nolock(inode))
3473			map->m_flags |= EXT4_MAP_UNINIT;
3474	}
3475
3476	err = check_eofblocks_fl(handle, inode, map->m_lblk, path, ar.len);
3477	if (err)
3478		goto out2;
3479
3480	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3481	if (err) {
3482		/* free data blocks we just allocated */
3483		/* not a good idea to call discard here directly,
3484		 * but otherwise we'd need to call it every free() */
3485		ext4_discard_preallocations(inode);
3486		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
3487				 ext4_ext_get_actual_len(&newex), 0);
3488		goto out2;
3489	}
3490
3491	/* previous routine could use block we allocated */
3492	newblock = ext4_ext_pblock(&newex);
3493	allocated = ext4_ext_get_actual_len(&newex);
3494	if (allocated > map->m_len)
3495		allocated = map->m_len;
3496	map->m_flags |= EXT4_MAP_NEW;
3497
3498	/*
3499	 * Update reserved blocks/metadata blocks after successful
3500	 * block allocation which had been deferred till now.
3501	 */
3502	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3503		ext4_da_update_reserve_space(inode, allocated, 1);
3504
3505	/*
3506	 * Cache the extent and update transaction to commit on fdatasync only
3507	 * when it is _not_ an uninitialized extent.
3508	 */
3509	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
3510		ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
3511		ext4_update_inode_fsync_trans(handle, inode, 1);
3512	} else
3513		ext4_update_inode_fsync_trans(handle, inode, 0);
3514out:
3515	if (allocated > map->m_len)
3516		allocated = map->m_len;
3517	ext4_ext_show_leaf(inode, path);
3518	map->m_flags |= EXT4_MAP_MAPPED;
3519	map->m_pblk = newblock;
3520	map->m_len = allocated;
3521out2:
3522	if (path) {
3523		ext4_ext_drop_refs(path);
3524		kfree(path);
3525	}
3526	trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
3527		newblock, map->m_len, err ? err : allocated);
3528	return err ? err : allocated;
3529}
3530
3531void ext4_ext_truncate(struct inode *inode)
3532{
3533	struct address_space *mapping = inode->i_mapping;
3534	struct super_block *sb = inode->i_sb;
3535	ext4_lblk_t last_block;
3536	handle_t *handle;
3537	int err = 0;
3538
3539	/*
3540	 * finish any pending end_io work so we won't run the risk of
3541	 * converting any truncated blocks to initialized later
3542	 */
3543	ext4_flush_completed_IO(inode);
3544
3545	/*
3546	 * probably first extent we're gonna free will be last in block
3547	 */
3548	err = ext4_writepage_trans_blocks(inode);
3549	handle = ext4_journal_start(inode, err);
3550	if (IS_ERR(handle))
3551		return;
3552
3553	if (inode->i_size & (sb->s_blocksize - 1))
3554		ext4_block_truncate_page(handle, mapping, inode->i_size);
3555
3556	if (ext4_orphan_add(handle, inode))
3557		goto out_stop;
3558
3559	down_write(&EXT4_I(inode)->i_data_sem);
3560	ext4_ext_invalidate_cache(inode);
3561
3562	ext4_discard_preallocations(inode);
3563
3564	/*
3565	 * TODO: optimization is possible here.
3566	 * Probably we need not scan at all,
3567	 * because page truncation is enough.
3568	 */
3569
3570	/* we have to know where to truncate from in crash case */
3571	EXT4_I(inode)->i_disksize = inode->i_size;
3572	ext4_mark_inode_dirty(handle, inode);
3573
3574	last_block = (inode->i_size + sb->s_blocksize - 1)
3575			>> EXT4_BLOCK_SIZE_BITS(sb);
3576	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCK);
3577
3578	/* In a multi-transaction truncate, we only make the final
3579	 * transaction synchronous.
3580	 */
3581	if (IS_SYNC(inode))
3582		ext4_handle_sync(handle);
3583
3584	up_write(&EXT4_I(inode)->i_data_sem);
3585
3586out_stop:
3587	/*
3588	 * If this was a simple ftruncate() and the file will remain alive,
3589	 * then we need to clear up the orphan record which we created above.
3590	 * However, if this was a real unlink then we were called by
3591	 * ext4_delete_inode(), and we allow that function to clean up the
3592	 * orphan info for us.
3593	 */
3594	if (inode->i_nlink)
3595		ext4_orphan_del(handle, inode);
3596
3597	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3598	ext4_mark_inode_dirty(handle, inode);
3599	ext4_journal_stop(handle);
3600}
3601
3602static void ext4_falloc_update_inode(struct inode *inode,
3603				int mode, loff_t new_size, int update_ctime)
3604{
3605	struct timespec now;
3606
3607	if (update_ctime) {
3608		now = current_fs_time(inode->i_sb);
3609		if (!timespec_equal(&inode->i_ctime, &now))
3610			inode->i_ctime = now;
3611	}
3612	/*
3613	 * Update only when preallocation was requested beyond
3614	 * the file size.
3615	 */
3616	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3617		if (new_size > i_size_read(inode))
3618			i_size_write(inode, new_size);
3619		if (new_size > EXT4_I(inode)->i_disksize)
3620			ext4_update_i_disksize(inode, new_size);
3621	} else {
3622		/*
3623		 * Mark that we allocate beyond EOF so the subsequent truncate
3624		 * can proceed even if the new size is the same as i_size.
3625		 */
3626		if (new_size > i_size_read(inode))
3627			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3628	}
3629
3630}
3631
3632/*
3633 * preallocate space for a file. This implements ext4's fallocate file
3634 * operation, which gets called from sys_fallocate system call.
3635 * For block-mapped files, posix_fallocate should fall back to the method
3636 * of writing zeroes to the required new blocks (the same behavior which is
3637 * expected for file systems which do not support fallocate() system call).
3638 */
3639long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
3640{
3641	struct inode *inode = file->f_path.dentry->d_inode;
3642	handle_t *handle;
3643	loff_t new_size;
3644	unsigned int max_blocks;
3645	int ret = 0;
3646	int ret2 = 0;
3647	int retries = 0;
3648	struct ext4_map_blocks map;
3649	unsigned int credits, blkbits = inode->i_blkbits;
3650
3651	/* We only support the FALLOC_FL_KEEP_SIZE mode */
3652	if (mode & ~FALLOC_FL_KEEP_SIZE)
3653		return -EOPNOTSUPP;
3654
3655	/*
3656	 * currently supporting (pre)allocate mode for extent-based
3657	 * files _only_
3658	 */
3659	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3660		return -EOPNOTSUPP;
3661
3662	trace_ext4_fallocate_enter(inode, offset, len, mode);
3663	map.m_lblk = offset >> blkbits;
3664	/*
3665	 * We can't just convert len to max_blocks because
3666	 * If blocksize = 4096 offset = 3072 and len = 2048
3667	 */
3668	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3669		- map.m_lblk;
3670	/*
3671	 * credits to insert 1 extent into extent tree
3672	 */
3673	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3674	mutex_lock(&inode->i_mutex);
3675	ret = inode_newsize_ok(inode, (len + offset));
3676	if (ret) {
3677		mutex_unlock(&inode->i_mutex);
3678		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
3679		return ret;
3680	}
3681retry:
3682	while (ret >= 0 && ret < max_blocks) {
3683		map.m_lblk = map.m_lblk + ret;
3684		map.m_len = max_blocks = max_blocks - ret;
3685		handle = ext4_journal_start(inode, credits);
3686		if (IS_ERR(handle)) {
3687			ret = PTR_ERR(handle);
3688			break;
3689		}
3690		ret = ext4_map_blocks(handle, inode, &map,
3691				      EXT4_GET_BLOCKS_CREATE_UNINIT_EXT);
3692		if (ret <= 0) {
3693#ifdef EXT4FS_DEBUG
3694			WARN_ON(ret <= 0);
3695			printk(KERN_ERR "%s: ext4_ext_map_blocks "
3696				    "returned error inode#%lu, block=%u, "
3697				    "max_blocks=%u", __func__,
3698				    inode->i_ino, map.m_lblk, max_blocks);
3699#endif
3700			ext4_mark_inode_dirty(handle, inode);
3701			ret2 = ext4_journal_stop(handle);
3702			break;
3703		}
3704		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3705						blkbits) >> blkbits))
3706			new_size = offset + len;
3707		else
3708			new_size = (map.m_lblk + ret) << blkbits;
3709
3710		ext4_falloc_update_inode(inode, mode, new_size,
3711					 (map.m_flags & EXT4_MAP_NEW));
3712		ext4_mark_inode_dirty(handle, inode);
3713		ret2 = ext4_journal_stop(handle);
3714		if (ret2)
3715			break;
3716	}
3717	if (ret == -ENOSPC &&
3718			ext4_should_retry_alloc(inode->i_sb, &retries)) {
3719		ret = 0;
3720		goto retry;
3721	}
3722	mutex_unlock(&inode->i_mutex);
3723	trace_ext4_fallocate_exit(inode, offset, max_blocks,
3724				ret > 0 ? ret2 : ret);
3725	return ret > 0 ? ret2 : ret;
3726}
3727
3728/*
3729 * This function convert a range of blocks to written extents
3730 * The caller of this function will pass the start offset and the size.
3731 * all unwritten extents within this range will be converted to
3732 * written extents.
3733 *
3734 * This function is called from the direct IO end io call back
3735 * function, to convert the fallocated extents after IO is completed.
3736 * Returns 0 on success.
3737 */
3738int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
3739				    ssize_t len)
3740{
3741	handle_t *handle;
3742	unsigned int max_blocks;
3743	int ret = 0;
3744	int ret2 = 0;
3745	struct ext4_map_blocks map;
3746	unsigned int credits, blkbits = inode->i_blkbits;
3747
3748	map.m_lblk = offset >> blkbits;
3749	/*
3750	 * We can't just convert len to max_blocks because
3751	 * If blocksize = 4096 offset = 3072 and len = 2048
3752	 */
3753	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
3754		      map.m_lblk);
3755	/*
3756	 * credits to insert 1 extent into extent tree
3757	 */
3758	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3759	while (ret >= 0 && ret < max_blocks) {
3760		map.m_lblk += ret;
3761		map.m_len = (max_blocks -= ret);
3762		handle = ext4_journal_start(inode, credits);
3763		if (IS_ERR(handle)) {
3764			ret = PTR_ERR(handle);
3765			break;
3766		}
3767		ret = ext4_map_blocks(handle, inode, &map,
3768				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
3769		if (ret <= 0) {
3770			WARN_ON(ret <= 0);
3771			printk(KERN_ERR "%s: ext4_ext_map_blocks "
3772				    "returned error inode#%lu, block=%u, "
3773				    "max_blocks=%u", __func__,
3774				    inode->i_ino, map.m_lblk, map.m_len);
3775		}
3776		ext4_mark_inode_dirty(handle, inode);
3777		ret2 = ext4_journal_stop(handle);
3778		if (ret <= 0 || ret2 )
3779			break;
3780	}
3781	return ret > 0 ? ret2 : ret;
3782}
3783
3784/*
3785 * Callback function called for each extent to gather FIEMAP information.
3786 */
3787static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path,
3788		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
3789		       void *data)
3790{
3791	__u64	logical;
3792	__u64	physical;
3793	__u64	length;
3794	loff_t	size;
3795	__u32	flags = 0;
3796	int		ret = 0;
3797	struct fiemap_extent_info *fieinfo = data;
3798	unsigned char blksize_bits;
3799
3800	blksize_bits = inode->i_sb->s_blocksize_bits;
3801	logical = (__u64)newex->ec_block << blksize_bits;
3802
3803	if (newex->ec_start == 0) {
3804		/*
3805		 * No extent in extent-tree contains block @newex->ec_start,
3806		 * then the block may stay in 1)a hole or 2)delayed-extent.
3807		 *
3808		 * Holes or delayed-extents are processed as follows.
3809		 * 1. lookup dirty pages with specified range in pagecache.
3810		 *    If no page is got, then there is no delayed-extent and
3811		 *    return with EXT_CONTINUE.
3812		 * 2. find the 1st mapped buffer,
3813		 * 3. check if the mapped buffer is both in the request range
3814		 *    and a delayed buffer. If not, there is no delayed-extent,
3815		 *    then return.
3816		 * 4. a delayed-extent is found, the extent will be collected.
3817		 */
3818		ext4_lblk_t	end = 0;
3819		pgoff_t		last_offset;
3820		pgoff_t		offset;
3821		pgoff_t		index;
3822		pgoff_t		start_index = 0;
3823		struct page	**pages = NULL;
3824		struct buffer_head *bh = NULL;
3825		struct buffer_head *head = NULL;
3826		unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
3827
3828		pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
3829		if (pages == NULL)
3830			return -ENOMEM;
3831
3832		offset = logical >> PAGE_SHIFT;
3833repeat:
3834		last_offset = offset;
3835		head = NULL;
3836		ret = find_get_pages_tag(inode->i_mapping, &offset,
3837					PAGECACHE_TAG_DIRTY, nr_pages, pages);
3838
3839		if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
3840			/* First time, try to find a mapped buffer. */
3841			if (ret == 0) {
3842out:
3843				for (index = 0; index < ret; index++)
3844					page_cache_release(pages[index]);
3845				/* just a hole. */
3846				kfree(pages);
3847				return EXT_CONTINUE;
3848			}
3849			index = 0;
3850
3851next_page:
3852			/* Try to find the 1st mapped buffer. */
3853			end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
3854				  blksize_bits;
3855			if (!page_has_buffers(pages[index]))
3856				goto out;
3857			head = page_buffers(pages[index]);
3858			if (!head)
3859				goto out;
3860
3861			index++;
3862			bh = head;
3863			do {
3864				if (end >= newex->ec_block +
3865					newex->ec_len)
3866					/* The buffer is out of
3867					 * the request range.
3868					 */
3869					goto out;
3870
3871				if (buffer_mapped(bh) &&
3872				    end >= newex->ec_block) {
3873					start_index = index - 1;
3874					/* get the 1st mapped buffer. */
3875					goto found_mapped_buffer;
3876				}
3877
3878				bh = bh->b_this_page;
3879				end++;
3880			} while (bh != head);
3881
3882			/* No mapped buffer in the range found in this page,
3883			 * We need to look up next page.
3884			 */
3885			if (index >= ret) {
3886				/* There is no page left, but we need to limit
3887				 * newex->ec_len.
3888				 */
3889				newex->ec_len = end - newex->ec_block;
3890				goto out;
3891			}
3892			goto next_page;
3893		} else {
3894			/*Find contiguous delayed buffers. */
3895			if (ret > 0 && pages[0]->index == last_offset)
3896				head = page_buffers(pages[0]);
3897			bh = head;
3898			index = 1;
3899			start_index = 0;
3900		}
3901
3902found_mapped_buffer:
3903		if (bh != NULL && buffer_delay(bh)) {
3904			/* 1st or contiguous delayed buffer found. */
3905			if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
3906				/*
3907				 * 1st delayed buffer found, record
3908				 * the start of extent.
3909				 */
3910				flags |= FIEMAP_EXTENT_DELALLOC;
3911				newex->ec_block = end;
3912				logical = (__u64)end << blksize_bits;
3913			}
3914			/* Find contiguous delayed buffers. */
3915			do {
3916				if (!buffer_delay(bh))
3917					goto found_delayed_extent;
3918				bh = bh->b_this_page;
3919				end++;
3920			} while (bh != head);
3921
3922			for (; index < ret; index++) {
3923				if (!page_has_buffers(pages[index])) {
3924					bh = NULL;
3925					break;
3926				}
3927				head = page_buffers(pages[index]);
3928				if (!head) {
3929					bh = NULL;
3930					break;
3931				}
3932
3933				if (pages[index]->index !=
3934				    pages[start_index]->index + index
3935				    - start_index) {
3936					/* Blocks are not contiguous. */
3937					bh = NULL;
3938					break;
3939				}
3940				bh = head;
3941				do {
3942					if (!buffer_delay(bh))
3943						/* Delayed-extent ends. */
3944						goto found_delayed_extent;
3945					bh = bh->b_this_page;
3946					end++;
3947				} while (bh != head);
3948			}
3949		} else if (!(flags & FIEMAP_EXTENT_DELALLOC))
3950			/* a hole found. */
3951			goto out;
3952
3953found_delayed_extent:
3954		newex->ec_len = min(end - newex->ec_block,
3955						(ext4_lblk_t)EXT_INIT_MAX_LEN);
3956		if (ret == nr_pages && bh != NULL &&
3957			newex->ec_len < EXT_INIT_MAX_LEN &&
3958			buffer_delay(bh)) {
3959			/* Have not collected an extent and continue. */
3960			for (index = 0; index < ret; index++)
3961				page_cache_release(pages[index]);
3962			goto repeat;
3963		}
3964
3965		for (index = 0; index < ret; index++)
3966			page_cache_release(pages[index]);
3967		kfree(pages);
3968	}
3969
3970	physical = (__u64)newex->ec_start << blksize_bits;
3971	length =   (__u64)newex->ec_len << blksize_bits;
3972
3973	if (ex && ext4_ext_is_uninitialized(ex))
3974		flags |= FIEMAP_EXTENT_UNWRITTEN;
3975
3976	size = i_size_read(inode);
3977	if (logical + length >= size)
3978		flags |= FIEMAP_EXTENT_LAST;
3979
3980	ret = fiemap_fill_next_extent(fieinfo, logical, physical,
3981					length, flags);
3982	if (ret < 0)
3983		return ret;
3984	if (ret == 1)
3985		return EXT_BREAK;
3986	return EXT_CONTINUE;
3987}
3988
3989/* fiemap flags we can handle specified here */
3990#define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
3991
3992static int ext4_xattr_fiemap(struct inode *inode,
3993				struct fiemap_extent_info *fieinfo)
3994{
3995	__u64 physical = 0;
3996	__u64 length;
3997	__u32 flags = FIEMAP_EXTENT_LAST;
3998	int blockbits = inode->i_sb->s_blocksize_bits;
3999	int error = 0;
4000
4001	/* in-inode? */
4002	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4003		struct ext4_iloc iloc;
4004		int offset;	/* offset of xattr in inode */
4005
4006		error = ext4_get_inode_loc(inode, &iloc);
4007		if (error)
4008			return error;
4009		physical = iloc.bh->b_blocknr << blockbits;
4010		offset = EXT4_GOOD_OLD_INODE_SIZE +
4011				EXT4_I(inode)->i_extra_isize;
4012		physical += offset;
4013		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4014		flags |= FIEMAP_EXTENT_DATA_INLINE;
4015		brelse(iloc.bh);
4016	} else { /* external block */
4017		physical = EXT4_I(inode)->i_file_acl << blockbits;
4018		length = inode->i_sb->s_blocksize;
4019	}
4020
4021	if (physical)
4022		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4023						length, flags);
4024	return (error < 0 ? error : 0);
4025}
4026
4027int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4028		__u64 start, __u64 len)
4029{
4030	ext4_lblk_t start_blk;
4031	int error = 0;
4032
4033	/* fallback to generic here if not in extents fmt */
4034	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4035		return generic_block_fiemap(inode, fieinfo, start, len,
4036			ext4_get_block);
4037
4038	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4039		return -EBADR;
4040
4041	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4042		error = ext4_xattr_fiemap(inode, fieinfo);
4043	} else {
4044		ext4_lblk_t len_blks;
4045		__u64 last_blk;
4046
4047		start_blk = start >> inode->i_sb->s_blocksize_bits;
4048		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4049		if (last_blk >= EXT_MAX_BLOCK)
4050			last_blk = EXT_MAX_BLOCK-1;
4051		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4052
4053		/*
4054		 * Walk the extent tree gathering extent information.
4055		 * ext4_ext_fiemap_cb will push extents back to user.
4056		 */
4057		error = ext4_ext_walk_space(inode, start_blk, len_blks,
4058					  ext4_ext_fiemap_cb, fieinfo);
4059	}
4060
4061	return error;
4062}
4063