extents.c revision d7b2a00c2e2eedf460ce2a15237f28de40412d86
1/*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 *   Copyright (c) 2005, Bull S.A.
7 *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21 */
22
23/*
24 * Extents support for EXT4
25 *
26 * TODO:
27 *   - ext4*_error() should be used in some situations
28 *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 *   - smart tree reduction
30 */
31
32#include <linux/fs.h>
33#include <linux/time.h>
34#include <linux/jbd2.h>
35#include <linux/highuid.h>
36#include <linux/pagemap.h>
37#include <linux/quotaops.h>
38#include <linux/string.h>
39#include <linux/slab.h>
40#include <linux/falloc.h>
41#include <asm/uaccess.h>
42#include <linux/fiemap.h>
43#include "ext4_jbd2.h"
44#include "ext4_extents.h"
45#include "xattr.h"
46
47#include <trace/events/ext4.h>
48
49/*
50 * used by extent splitting.
51 */
52#define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
53					due to ENOSPC */
54#define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
55#define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
56
57#define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
58#define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
59
60static __le32 ext4_extent_block_csum(struct inode *inode,
61				     struct ext4_extent_header *eh)
62{
63	struct ext4_inode_info *ei = EXT4_I(inode);
64	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65	__u32 csum;
66
67	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68			   EXT4_EXTENT_TAIL_OFFSET(eh));
69	return cpu_to_le32(csum);
70}
71
72static int ext4_extent_block_csum_verify(struct inode *inode,
73					 struct ext4_extent_header *eh)
74{
75	struct ext4_extent_tail *et;
76
77	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
79		return 1;
80
81	et = find_ext4_extent_tail(eh);
82	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
83		return 0;
84	return 1;
85}
86
87static void ext4_extent_block_csum_set(struct inode *inode,
88				       struct ext4_extent_header *eh)
89{
90	struct ext4_extent_tail *et;
91
92	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
94		return;
95
96	et = find_ext4_extent_tail(eh);
97	et->et_checksum = ext4_extent_block_csum(inode, eh);
98}
99
100static int ext4_split_extent(handle_t *handle,
101				struct inode *inode,
102				struct ext4_ext_path *path,
103				struct ext4_map_blocks *map,
104				int split_flag,
105				int flags);
106
107static int ext4_split_extent_at(handle_t *handle,
108			     struct inode *inode,
109			     struct ext4_ext_path *path,
110			     ext4_lblk_t split,
111			     int split_flag,
112			     int flags);
113
114static int ext4_find_delayed_extent(struct inode *inode,
115				    struct extent_status *newes);
116
117static int ext4_ext_truncate_extend_restart(handle_t *handle,
118					    struct inode *inode,
119					    int needed)
120{
121	int err;
122
123	if (!ext4_handle_valid(handle))
124		return 0;
125	if (handle->h_buffer_credits > needed)
126		return 0;
127	err = ext4_journal_extend(handle, needed);
128	if (err <= 0)
129		return err;
130	err = ext4_truncate_restart_trans(handle, inode, needed);
131	if (err == 0)
132		err = -EAGAIN;
133
134	return err;
135}
136
137/*
138 * could return:
139 *  - EROFS
140 *  - ENOMEM
141 */
142static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143				struct ext4_ext_path *path)
144{
145	if (path->p_bh) {
146		/* path points to block */
147		return ext4_journal_get_write_access(handle, path->p_bh);
148	}
149	/* path points to leaf/index in inode body */
150	/* we use in-core data, no need to protect them */
151	return 0;
152}
153
154/*
155 * could return:
156 *  - EROFS
157 *  - ENOMEM
158 *  - EIO
159 */
160int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
161		     struct inode *inode, struct ext4_ext_path *path)
162{
163	int err;
164	if (path->p_bh) {
165		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
166		/* path points to block */
167		err = __ext4_handle_dirty_metadata(where, line, handle,
168						   inode, path->p_bh);
169	} else {
170		/* path points to leaf/index in inode body */
171		err = ext4_mark_inode_dirty(handle, inode);
172	}
173	return err;
174}
175
176static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
177			      struct ext4_ext_path *path,
178			      ext4_lblk_t block)
179{
180	if (path) {
181		int depth = path->p_depth;
182		struct ext4_extent *ex;
183
184		/*
185		 * Try to predict block placement assuming that we are
186		 * filling in a file which will eventually be
187		 * non-sparse --- i.e., in the case of libbfd writing
188		 * an ELF object sections out-of-order but in a way
189		 * the eventually results in a contiguous object or
190		 * executable file, or some database extending a table
191		 * space file.  However, this is actually somewhat
192		 * non-ideal if we are writing a sparse file such as
193		 * qemu or KVM writing a raw image file that is going
194		 * to stay fairly sparse, since it will end up
195		 * fragmenting the file system's free space.  Maybe we
196		 * should have some hueristics or some way to allow
197		 * userspace to pass a hint to file system,
198		 * especially if the latter case turns out to be
199		 * common.
200		 */
201		ex = path[depth].p_ext;
202		if (ex) {
203			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
204			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
205
206			if (block > ext_block)
207				return ext_pblk + (block - ext_block);
208			else
209				return ext_pblk - (ext_block - block);
210		}
211
212		/* it looks like index is empty;
213		 * try to find starting block from index itself */
214		if (path[depth].p_bh)
215			return path[depth].p_bh->b_blocknr;
216	}
217
218	/* OK. use inode's group */
219	return ext4_inode_to_goal_block(inode);
220}
221
222/*
223 * Allocation for a meta data block
224 */
225static ext4_fsblk_t
226ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
227			struct ext4_ext_path *path,
228			struct ext4_extent *ex, int *err, unsigned int flags)
229{
230	ext4_fsblk_t goal, newblock;
231
232	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
233	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
234					NULL, err);
235	return newblock;
236}
237
238static inline int ext4_ext_space_block(struct inode *inode, int check)
239{
240	int size;
241
242	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
243			/ sizeof(struct ext4_extent);
244#ifdef AGGRESSIVE_TEST
245	if (!check && size > 6)
246		size = 6;
247#endif
248	return size;
249}
250
251static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
252{
253	int size;
254
255	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
256			/ sizeof(struct ext4_extent_idx);
257#ifdef AGGRESSIVE_TEST
258	if (!check && size > 5)
259		size = 5;
260#endif
261	return size;
262}
263
264static inline int ext4_ext_space_root(struct inode *inode, int check)
265{
266	int size;
267
268	size = sizeof(EXT4_I(inode)->i_data);
269	size -= sizeof(struct ext4_extent_header);
270	size /= sizeof(struct ext4_extent);
271#ifdef AGGRESSIVE_TEST
272	if (!check && size > 3)
273		size = 3;
274#endif
275	return size;
276}
277
278static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
279{
280	int size;
281
282	size = sizeof(EXT4_I(inode)->i_data);
283	size -= sizeof(struct ext4_extent_header);
284	size /= sizeof(struct ext4_extent_idx);
285#ifdef AGGRESSIVE_TEST
286	if (!check && size > 4)
287		size = 4;
288#endif
289	return size;
290}
291
292/*
293 * Calculate the number of metadata blocks needed
294 * to allocate @blocks
295 * Worse case is one block per extent
296 */
297int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
298{
299	struct ext4_inode_info *ei = EXT4_I(inode);
300	int idxs;
301
302	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
303		/ sizeof(struct ext4_extent_idx));
304
305	/*
306	 * If the new delayed allocation block is contiguous with the
307	 * previous da block, it can share index blocks with the
308	 * previous block, so we only need to allocate a new index
309	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
310	 * an additional index block, and at ldxs**3 blocks, yet
311	 * another index blocks.
312	 */
313	if (ei->i_da_metadata_calc_len &&
314	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
315		int num = 0;
316
317		if ((ei->i_da_metadata_calc_len % idxs) == 0)
318			num++;
319		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
320			num++;
321		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
322			num++;
323			ei->i_da_metadata_calc_len = 0;
324		} else
325			ei->i_da_metadata_calc_len++;
326		ei->i_da_metadata_calc_last_lblock++;
327		return num;
328	}
329
330	/*
331	 * In the worst case we need a new set of index blocks at
332	 * every level of the inode's extent tree.
333	 */
334	ei->i_da_metadata_calc_len = 1;
335	ei->i_da_metadata_calc_last_lblock = lblock;
336	return ext_depth(inode) + 1;
337}
338
339static int
340ext4_ext_max_entries(struct inode *inode, int depth)
341{
342	int max;
343
344	if (depth == ext_depth(inode)) {
345		if (depth == 0)
346			max = ext4_ext_space_root(inode, 1);
347		else
348			max = ext4_ext_space_root_idx(inode, 1);
349	} else {
350		if (depth == 0)
351			max = ext4_ext_space_block(inode, 1);
352		else
353			max = ext4_ext_space_block_idx(inode, 1);
354	}
355
356	return max;
357}
358
359static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
360{
361	ext4_fsblk_t block = ext4_ext_pblock(ext);
362	int len = ext4_ext_get_actual_len(ext);
363
364	if (len == 0)
365		return 0;
366	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
367}
368
369static int ext4_valid_extent_idx(struct inode *inode,
370				struct ext4_extent_idx *ext_idx)
371{
372	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
373
374	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
375}
376
377static int ext4_valid_extent_entries(struct inode *inode,
378				struct ext4_extent_header *eh,
379				int depth)
380{
381	unsigned short entries;
382	if (eh->eh_entries == 0)
383		return 1;
384
385	entries = le16_to_cpu(eh->eh_entries);
386
387	if (depth == 0) {
388		/* leaf entries */
389		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
390		while (entries) {
391			if (!ext4_valid_extent(inode, ext))
392				return 0;
393			ext++;
394			entries--;
395		}
396	} else {
397		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
398		while (entries) {
399			if (!ext4_valid_extent_idx(inode, ext_idx))
400				return 0;
401			ext_idx++;
402			entries--;
403		}
404	}
405	return 1;
406}
407
408static int __ext4_ext_check(const char *function, unsigned int line,
409			    struct inode *inode, struct ext4_extent_header *eh,
410			    int depth, ext4_fsblk_t pblk)
411{
412	const char *error_msg;
413	int max = 0;
414
415	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
416		error_msg = "invalid magic";
417		goto corrupted;
418	}
419	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
420		error_msg = "unexpected eh_depth";
421		goto corrupted;
422	}
423	if (unlikely(eh->eh_max == 0)) {
424		error_msg = "invalid eh_max";
425		goto corrupted;
426	}
427	max = ext4_ext_max_entries(inode, depth);
428	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
429		error_msg = "too large eh_max";
430		goto corrupted;
431	}
432	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
433		error_msg = "invalid eh_entries";
434		goto corrupted;
435	}
436	if (!ext4_valid_extent_entries(inode, eh, depth)) {
437		error_msg = "invalid extent entries";
438		goto corrupted;
439	}
440	/* Verify checksum on non-root extent tree nodes */
441	if (ext_depth(inode) != depth &&
442	    !ext4_extent_block_csum_verify(inode, eh)) {
443		error_msg = "extent tree corrupted";
444		goto corrupted;
445	}
446	return 0;
447
448corrupted:
449	ext4_error_inode(inode, function, line, 0,
450			 "pblk %llu bad header/extent: %s - magic %x, "
451			 "entries %u, max %u(%u), depth %u(%u)",
452			 (unsigned long long) pblk, error_msg,
453			 le16_to_cpu(eh->eh_magic),
454			 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
455			 max, le16_to_cpu(eh->eh_depth), depth);
456	return -EIO;
457}
458
459#define ext4_ext_check(inode, eh, depth, pblk)			\
460	__ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
461
462int ext4_ext_check_inode(struct inode *inode)
463{
464	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
465}
466
467static struct buffer_head *
468__read_extent_tree_block(const char *function, unsigned int line,
469			 struct inode *inode, ext4_fsblk_t pblk, int depth,
470			 int flags)
471{
472	struct buffer_head		*bh;
473	int				err;
474
475	bh = sb_getblk(inode->i_sb, pblk);
476	if (unlikely(!bh))
477		return ERR_PTR(-ENOMEM);
478
479	if (!bh_uptodate_or_lock(bh)) {
480		trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
481		err = bh_submit_read(bh);
482		if (err < 0)
483			goto errout;
484	}
485	if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
486		return bh;
487	err = __ext4_ext_check(function, line, inode,
488			       ext_block_hdr(bh), depth, pblk);
489	if (err)
490		goto errout;
491	set_buffer_verified(bh);
492	/*
493	 * If this is a leaf block, cache all of its entries
494	 */
495	if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
496		struct ext4_extent_header *eh = ext_block_hdr(bh);
497		struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
498		ext4_lblk_t prev = 0;
499		int i;
500
501		for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
502			unsigned int status = EXTENT_STATUS_WRITTEN;
503			ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
504			int len = ext4_ext_get_actual_len(ex);
505
506			if (prev && (prev != lblk))
507				ext4_es_cache_extent(inode, prev,
508						     lblk - prev, ~0,
509						     EXTENT_STATUS_HOLE);
510
511			if (ext4_ext_is_uninitialized(ex))
512				status = EXTENT_STATUS_UNWRITTEN;
513			ext4_es_cache_extent(inode, lblk, len,
514					     ext4_ext_pblock(ex), status);
515			prev = lblk + len;
516		}
517	}
518	return bh;
519errout:
520	put_bh(bh);
521	return ERR_PTR(err);
522
523}
524
525#define read_extent_tree_block(inode, pblk, depth, flags)		\
526	__read_extent_tree_block(__func__, __LINE__, (inode), (pblk),   \
527				 (depth), (flags))
528
529/*
530 * This function is called to cache a file's extent information in the
531 * extent status tree
532 */
533int ext4_ext_precache(struct inode *inode)
534{
535	struct ext4_inode_info *ei = EXT4_I(inode);
536	struct ext4_ext_path *path = NULL;
537	struct buffer_head *bh;
538	int i = 0, depth, ret = 0;
539
540	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
541		return 0;	/* not an extent-mapped inode */
542
543	down_read(&ei->i_data_sem);
544	depth = ext_depth(inode);
545
546	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
547		       GFP_NOFS);
548	if (path == NULL) {
549		up_read(&ei->i_data_sem);
550		return -ENOMEM;
551	}
552
553	/* Don't cache anything if there are no external extent blocks */
554	if (depth == 0)
555		goto out;
556	path[0].p_hdr = ext_inode_hdr(inode);
557	ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
558	if (ret)
559		goto out;
560	path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
561	while (i >= 0) {
562		/*
563		 * If this is a leaf block or we've reached the end of
564		 * the index block, go up
565		 */
566		if ((i == depth) ||
567		    path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
568			brelse(path[i].p_bh);
569			path[i].p_bh = NULL;
570			i--;
571			continue;
572		}
573		bh = read_extent_tree_block(inode,
574					    ext4_idx_pblock(path[i].p_idx++),
575					    depth - i - 1,
576					    EXT4_EX_FORCE_CACHE);
577		if (IS_ERR(bh)) {
578			ret = PTR_ERR(bh);
579			break;
580		}
581		i++;
582		path[i].p_bh = bh;
583		path[i].p_hdr = ext_block_hdr(bh);
584		path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
585	}
586	ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
587out:
588	up_read(&ei->i_data_sem);
589	ext4_ext_drop_refs(path);
590	kfree(path);
591	return ret;
592}
593
594#ifdef EXT_DEBUG
595static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
596{
597	int k, l = path->p_depth;
598
599	ext_debug("path:");
600	for (k = 0; k <= l; k++, path++) {
601		if (path->p_idx) {
602		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
603			    ext4_idx_pblock(path->p_idx));
604		} else if (path->p_ext) {
605			ext_debug("  %d:[%d]%d:%llu ",
606				  le32_to_cpu(path->p_ext->ee_block),
607				  ext4_ext_is_uninitialized(path->p_ext),
608				  ext4_ext_get_actual_len(path->p_ext),
609				  ext4_ext_pblock(path->p_ext));
610		} else
611			ext_debug("  []");
612	}
613	ext_debug("\n");
614}
615
616static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
617{
618	int depth = ext_depth(inode);
619	struct ext4_extent_header *eh;
620	struct ext4_extent *ex;
621	int i;
622
623	if (!path)
624		return;
625
626	eh = path[depth].p_hdr;
627	ex = EXT_FIRST_EXTENT(eh);
628
629	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
630
631	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
632		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
633			  ext4_ext_is_uninitialized(ex),
634			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
635	}
636	ext_debug("\n");
637}
638
639static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
640			ext4_fsblk_t newblock, int level)
641{
642	int depth = ext_depth(inode);
643	struct ext4_extent *ex;
644
645	if (depth != level) {
646		struct ext4_extent_idx *idx;
647		idx = path[level].p_idx;
648		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
649			ext_debug("%d: move %d:%llu in new index %llu\n", level,
650					le32_to_cpu(idx->ei_block),
651					ext4_idx_pblock(idx),
652					newblock);
653			idx++;
654		}
655
656		return;
657	}
658
659	ex = path[depth].p_ext;
660	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
661		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
662				le32_to_cpu(ex->ee_block),
663				ext4_ext_pblock(ex),
664				ext4_ext_is_uninitialized(ex),
665				ext4_ext_get_actual_len(ex),
666				newblock);
667		ex++;
668	}
669}
670
671#else
672#define ext4_ext_show_path(inode, path)
673#define ext4_ext_show_leaf(inode, path)
674#define ext4_ext_show_move(inode, path, newblock, level)
675#endif
676
677void ext4_ext_drop_refs(struct ext4_ext_path *path)
678{
679	int depth = path->p_depth;
680	int i;
681
682	for (i = 0; i <= depth; i++, path++)
683		if (path->p_bh) {
684			brelse(path->p_bh);
685			path->p_bh = NULL;
686		}
687}
688
689/*
690 * ext4_ext_binsearch_idx:
691 * binary search for the closest index of the given block
692 * the header must be checked before calling this
693 */
694static void
695ext4_ext_binsearch_idx(struct inode *inode,
696			struct ext4_ext_path *path, ext4_lblk_t block)
697{
698	struct ext4_extent_header *eh = path->p_hdr;
699	struct ext4_extent_idx *r, *l, *m;
700
701
702	ext_debug("binsearch for %u(idx):  ", block);
703
704	l = EXT_FIRST_INDEX(eh) + 1;
705	r = EXT_LAST_INDEX(eh);
706	while (l <= r) {
707		m = l + (r - l) / 2;
708		if (block < le32_to_cpu(m->ei_block))
709			r = m - 1;
710		else
711			l = m + 1;
712		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
713				m, le32_to_cpu(m->ei_block),
714				r, le32_to_cpu(r->ei_block));
715	}
716
717	path->p_idx = l - 1;
718	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
719		  ext4_idx_pblock(path->p_idx));
720
721#ifdef CHECK_BINSEARCH
722	{
723		struct ext4_extent_idx *chix, *ix;
724		int k;
725
726		chix = ix = EXT_FIRST_INDEX(eh);
727		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
728		  if (k != 0 &&
729		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
730				printk(KERN_DEBUG "k=%d, ix=0x%p, "
731				       "first=0x%p\n", k,
732				       ix, EXT_FIRST_INDEX(eh));
733				printk(KERN_DEBUG "%u <= %u\n",
734				       le32_to_cpu(ix->ei_block),
735				       le32_to_cpu(ix[-1].ei_block));
736			}
737			BUG_ON(k && le32_to_cpu(ix->ei_block)
738					   <= le32_to_cpu(ix[-1].ei_block));
739			if (block < le32_to_cpu(ix->ei_block))
740				break;
741			chix = ix;
742		}
743		BUG_ON(chix != path->p_idx);
744	}
745#endif
746
747}
748
749/*
750 * ext4_ext_binsearch:
751 * binary search for closest extent of the given block
752 * the header must be checked before calling this
753 */
754static void
755ext4_ext_binsearch(struct inode *inode,
756		struct ext4_ext_path *path, ext4_lblk_t block)
757{
758	struct ext4_extent_header *eh = path->p_hdr;
759	struct ext4_extent *r, *l, *m;
760
761	if (eh->eh_entries == 0) {
762		/*
763		 * this leaf is empty:
764		 * we get such a leaf in split/add case
765		 */
766		return;
767	}
768
769	ext_debug("binsearch for %u:  ", block);
770
771	l = EXT_FIRST_EXTENT(eh) + 1;
772	r = EXT_LAST_EXTENT(eh);
773
774	while (l <= r) {
775		m = l + (r - l) / 2;
776		if (block < le32_to_cpu(m->ee_block))
777			r = m - 1;
778		else
779			l = m + 1;
780		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
781				m, le32_to_cpu(m->ee_block),
782				r, le32_to_cpu(r->ee_block));
783	}
784
785	path->p_ext = l - 1;
786	ext_debug("  -> %d:%llu:[%d]%d ",
787			le32_to_cpu(path->p_ext->ee_block),
788			ext4_ext_pblock(path->p_ext),
789			ext4_ext_is_uninitialized(path->p_ext),
790			ext4_ext_get_actual_len(path->p_ext));
791
792#ifdef CHECK_BINSEARCH
793	{
794		struct ext4_extent *chex, *ex;
795		int k;
796
797		chex = ex = EXT_FIRST_EXTENT(eh);
798		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
799			BUG_ON(k && le32_to_cpu(ex->ee_block)
800					  <= le32_to_cpu(ex[-1].ee_block));
801			if (block < le32_to_cpu(ex->ee_block))
802				break;
803			chex = ex;
804		}
805		BUG_ON(chex != path->p_ext);
806	}
807#endif
808
809}
810
811int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
812{
813	struct ext4_extent_header *eh;
814
815	eh = ext_inode_hdr(inode);
816	eh->eh_depth = 0;
817	eh->eh_entries = 0;
818	eh->eh_magic = EXT4_EXT_MAGIC;
819	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
820	ext4_mark_inode_dirty(handle, inode);
821	return 0;
822}
823
824struct ext4_ext_path *
825ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
826		     struct ext4_ext_path *path, int flags)
827{
828	struct ext4_extent_header *eh;
829	struct buffer_head *bh;
830	short int depth, i, ppos = 0, alloc = 0;
831	int ret;
832
833	eh = ext_inode_hdr(inode);
834	depth = ext_depth(inode);
835
836	/* account possible depth increase */
837	if (!path) {
838		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
839				GFP_NOFS);
840		if (!path)
841			return ERR_PTR(-ENOMEM);
842		alloc = 1;
843	}
844	path[0].p_hdr = eh;
845	path[0].p_bh = NULL;
846
847	i = depth;
848	/* walk through the tree */
849	while (i) {
850		ext_debug("depth %d: num %d, max %d\n",
851			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
852
853		ext4_ext_binsearch_idx(inode, path + ppos, block);
854		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
855		path[ppos].p_depth = i;
856		path[ppos].p_ext = NULL;
857
858		bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
859					    flags);
860		if (IS_ERR(bh)) {
861			ret = PTR_ERR(bh);
862			goto err;
863		}
864
865		eh = ext_block_hdr(bh);
866		ppos++;
867		if (unlikely(ppos > depth)) {
868			put_bh(bh);
869			EXT4_ERROR_INODE(inode,
870					 "ppos %d > depth %d", ppos, depth);
871			ret = -EIO;
872			goto err;
873		}
874		path[ppos].p_bh = bh;
875		path[ppos].p_hdr = eh;
876	}
877
878	path[ppos].p_depth = i;
879	path[ppos].p_ext = NULL;
880	path[ppos].p_idx = NULL;
881
882	/* find extent */
883	ext4_ext_binsearch(inode, path + ppos, block);
884	/* if not an empty leaf */
885	if (path[ppos].p_ext)
886		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
887
888	ext4_ext_show_path(inode, path);
889
890	return path;
891
892err:
893	ext4_ext_drop_refs(path);
894	if (alloc)
895		kfree(path);
896	return ERR_PTR(ret);
897}
898
899/*
900 * ext4_ext_insert_index:
901 * insert new index [@logical;@ptr] into the block at @curp;
902 * check where to insert: before @curp or after @curp
903 */
904static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
905				 struct ext4_ext_path *curp,
906				 int logical, ext4_fsblk_t ptr)
907{
908	struct ext4_extent_idx *ix;
909	int len, err;
910
911	err = ext4_ext_get_access(handle, inode, curp);
912	if (err)
913		return err;
914
915	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
916		EXT4_ERROR_INODE(inode,
917				 "logical %d == ei_block %d!",
918				 logical, le32_to_cpu(curp->p_idx->ei_block));
919		return -EIO;
920	}
921
922	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
923			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
924		EXT4_ERROR_INODE(inode,
925				 "eh_entries %d >= eh_max %d!",
926				 le16_to_cpu(curp->p_hdr->eh_entries),
927				 le16_to_cpu(curp->p_hdr->eh_max));
928		return -EIO;
929	}
930
931	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
932		/* insert after */
933		ext_debug("insert new index %d after: %llu\n", logical, ptr);
934		ix = curp->p_idx + 1;
935	} else {
936		/* insert before */
937		ext_debug("insert new index %d before: %llu\n", logical, ptr);
938		ix = curp->p_idx;
939	}
940
941	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
942	BUG_ON(len < 0);
943	if (len > 0) {
944		ext_debug("insert new index %d: "
945				"move %d indices from 0x%p to 0x%p\n",
946				logical, len, ix, ix + 1);
947		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
948	}
949
950	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
951		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
952		return -EIO;
953	}
954
955	ix->ei_block = cpu_to_le32(logical);
956	ext4_idx_store_pblock(ix, ptr);
957	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
958
959	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
960		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
961		return -EIO;
962	}
963
964	err = ext4_ext_dirty(handle, inode, curp);
965	ext4_std_error(inode->i_sb, err);
966
967	return err;
968}
969
970/*
971 * ext4_ext_split:
972 * inserts new subtree into the path, using free index entry
973 * at depth @at:
974 * - allocates all needed blocks (new leaf and all intermediate index blocks)
975 * - makes decision where to split
976 * - moves remaining extents and index entries (right to the split point)
977 *   into the newly allocated blocks
978 * - initializes subtree
979 */
980static int ext4_ext_split(handle_t *handle, struct inode *inode,
981			  unsigned int flags,
982			  struct ext4_ext_path *path,
983			  struct ext4_extent *newext, int at)
984{
985	struct buffer_head *bh = NULL;
986	int depth = ext_depth(inode);
987	struct ext4_extent_header *neh;
988	struct ext4_extent_idx *fidx;
989	int i = at, k, m, a;
990	ext4_fsblk_t newblock, oldblock;
991	__le32 border;
992	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
993	int err = 0;
994
995	/* make decision: where to split? */
996	/* FIXME: now decision is simplest: at current extent */
997
998	/* if current leaf will be split, then we should use
999	 * border from split point */
1000	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1001		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1002		return -EIO;
1003	}
1004	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1005		border = path[depth].p_ext[1].ee_block;
1006		ext_debug("leaf will be split."
1007				" next leaf starts at %d\n",
1008				  le32_to_cpu(border));
1009	} else {
1010		border = newext->ee_block;
1011		ext_debug("leaf will be added."
1012				" next leaf starts at %d\n",
1013				le32_to_cpu(border));
1014	}
1015
1016	/*
1017	 * If error occurs, then we break processing
1018	 * and mark filesystem read-only. index won't
1019	 * be inserted and tree will be in consistent
1020	 * state. Next mount will repair buffers too.
1021	 */
1022
1023	/*
1024	 * Get array to track all allocated blocks.
1025	 * We need this to handle errors and free blocks
1026	 * upon them.
1027	 */
1028	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1029	if (!ablocks)
1030		return -ENOMEM;
1031
1032	/* allocate all needed blocks */
1033	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1034	for (a = 0; a < depth - at; a++) {
1035		newblock = ext4_ext_new_meta_block(handle, inode, path,
1036						   newext, &err, flags);
1037		if (newblock == 0)
1038			goto cleanup;
1039		ablocks[a] = newblock;
1040	}
1041
1042	/* initialize new leaf */
1043	newblock = ablocks[--a];
1044	if (unlikely(newblock == 0)) {
1045		EXT4_ERROR_INODE(inode, "newblock == 0!");
1046		err = -EIO;
1047		goto cleanup;
1048	}
1049	bh = sb_getblk(inode->i_sb, newblock);
1050	if (unlikely(!bh)) {
1051		err = -ENOMEM;
1052		goto cleanup;
1053	}
1054	lock_buffer(bh);
1055
1056	err = ext4_journal_get_create_access(handle, bh);
1057	if (err)
1058		goto cleanup;
1059
1060	neh = ext_block_hdr(bh);
1061	neh->eh_entries = 0;
1062	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1063	neh->eh_magic = EXT4_EXT_MAGIC;
1064	neh->eh_depth = 0;
1065
1066	/* move remainder of path[depth] to the new leaf */
1067	if (unlikely(path[depth].p_hdr->eh_entries !=
1068		     path[depth].p_hdr->eh_max)) {
1069		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1070				 path[depth].p_hdr->eh_entries,
1071				 path[depth].p_hdr->eh_max);
1072		err = -EIO;
1073		goto cleanup;
1074	}
1075	/* start copy from next extent */
1076	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1077	ext4_ext_show_move(inode, path, newblock, depth);
1078	if (m) {
1079		struct ext4_extent *ex;
1080		ex = EXT_FIRST_EXTENT(neh);
1081		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1082		le16_add_cpu(&neh->eh_entries, m);
1083	}
1084
1085	ext4_extent_block_csum_set(inode, neh);
1086	set_buffer_uptodate(bh);
1087	unlock_buffer(bh);
1088
1089	err = ext4_handle_dirty_metadata(handle, inode, bh);
1090	if (err)
1091		goto cleanup;
1092	brelse(bh);
1093	bh = NULL;
1094
1095	/* correct old leaf */
1096	if (m) {
1097		err = ext4_ext_get_access(handle, inode, path + depth);
1098		if (err)
1099			goto cleanup;
1100		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1101		err = ext4_ext_dirty(handle, inode, path + depth);
1102		if (err)
1103			goto cleanup;
1104
1105	}
1106
1107	/* create intermediate indexes */
1108	k = depth - at - 1;
1109	if (unlikely(k < 0)) {
1110		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1111		err = -EIO;
1112		goto cleanup;
1113	}
1114	if (k)
1115		ext_debug("create %d intermediate indices\n", k);
1116	/* insert new index into current index block */
1117	/* current depth stored in i var */
1118	i = depth - 1;
1119	while (k--) {
1120		oldblock = newblock;
1121		newblock = ablocks[--a];
1122		bh = sb_getblk(inode->i_sb, newblock);
1123		if (unlikely(!bh)) {
1124			err = -ENOMEM;
1125			goto cleanup;
1126		}
1127		lock_buffer(bh);
1128
1129		err = ext4_journal_get_create_access(handle, bh);
1130		if (err)
1131			goto cleanup;
1132
1133		neh = ext_block_hdr(bh);
1134		neh->eh_entries = cpu_to_le16(1);
1135		neh->eh_magic = EXT4_EXT_MAGIC;
1136		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1137		neh->eh_depth = cpu_to_le16(depth - i);
1138		fidx = EXT_FIRST_INDEX(neh);
1139		fidx->ei_block = border;
1140		ext4_idx_store_pblock(fidx, oldblock);
1141
1142		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1143				i, newblock, le32_to_cpu(border), oldblock);
1144
1145		/* move remainder of path[i] to the new index block */
1146		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1147					EXT_LAST_INDEX(path[i].p_hdr))) {
1148			EXT4_ERROR_INODE(inode,
1149					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1150					 le32_to_cpu(path[i].p_ext->ee_block));
1151			err = -EIO;
1152			goto cleanup;
1153		}
1154		/* start copy indexes */
1155		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1156		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1157				EXT_MAX_INDEX(path[i].p_hdr));
1158		ext4_ext_show_move(inode, path, newblock, i);
1159		if (m) {
1160			memmove(++fidx, path[i].p_idx,
1161				sizeof(struct ext4_extent_idx) * m);
1162			le16_add_cpu(&neh->eh_entries, m);
1163		}
1164		ext4_extent_block_csum_set(inode, neh);
1165		set_buffer_uptodate(bh);
1166		unlock_buffer(bh);
1167
1168		err = ext4_handle_dirty_metadata(handle, inode, bh);
1169		if (err)
1170			goto cleanup;
1171		brelse(bh);
1172		bh = NULL;
1173
1174		/* correct old index */
1175		if (m) {
1176			err = ext4_ext_get_access(handle, inode, path + i);
1177			if (err)
1178				goto cleanup;
1179			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1180			err = ext4_ext_dirty(handle, inode, path + i);
1181			if (err)
1182				goto cleanup;
1183		}
1184
1185		i--;
1186	}
1187
1188	/* insert new index */
1189	err = ext4_ext_insert_index(handle, inode, path + at,
1190				    le32_to_cpu(border), newblock);
1191
1192cleanup:
1193	if (bh) {
1194		if (buffer_locked(bh))
1195			unlock_buffer(bh);
1196		brelse(bh);
1197	}
1198
1199	if (err) {
1200		/* free all allocated blocks in error case */
1201		for (i = 0; i < depth; i++) {
1202			if (!ablocks[i])
1203				continue;
1204			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1205					 EXT4_FREE_BLOCKS_METADATA);
1206		}
1207	}
1208	kfree(ablocks);
1209
1210	return err;
1211}
1212
1213/*
1214 * ext4_ext_grow_indepth:
1215 * implements tree growing procedure:
1216 * - allocates new block
1217 * - moves top-level data (index block or leaf) into the new block
1218 * - initializes new top-level, creating index that points to the
1219 *   just created block
1220 */
1221static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1222				 unsigned int flags,
1223				 struct ext4_extent *newext)
1224{
1225	struct ext4_extent_header *neh;
1226	struct buffer_head *bh;
1227	ext4_fsblk_t newblock;
1228	int err = 0;
1229
1230	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1231		newext, &err, flags);
1232	if (newblock == 0)
1233		return err;
1234
1235	bh = sb_getblk(inode->i_sb, newblock);
1236	if (unlikely(!bh))
1237		return -ENOMEM;
1238	lock_buffer(bh);
1239
1240	err = ext4_journal_get_create_access(handle, bh);
1241	if (err) {
1242		unlock_buffer(bh);
1243		goto out;
1244	}
1245
1246	/* move top-level index/leaf into new block */
1247	memmove(bh->b_data, EXT4_I(inode)->i_data,
1248		sizeof(EXT4_I(inode)->i_data));
1249
1250	/* set size of new block */
1251	neh = ext_block_hdr(bh);
1252	/* old root could have indexes or leaves
1253	 * so calculate e_max right way */
1254	if (ext_depth(inode))
1255		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1256	else
1257		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1258	neh->eh_magic = EXT4_EXT_MAGIC;
1259	ext4_extent_block_csum_set(inode, neh);
1260	set_buffer_uptodate(bh);
1261	unlock_buffer(bh);
1262
1263	err = ext4_handle_dirty_metadata(handle, inode, bh);
1264	if (err)
1265		goto out;
1266
1267	/* Update top-level index: num,max,pointer */
1268	neh = ext_inode_hdr(inode);
1269	neh->eh_entries = cpu_to_le16(1);
1270	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1271	if (neh->eh_depth == 0) {
1272		/* Root extent block becomes index block */
1273		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1274		EXT_FIRST_INDEX(neh)->ei_block =
1275			EXT_FIRST_EXTENT(neh)->ee_block;
1276	}
1277	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1278		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1279		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1280		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1281
1282	le16_add_cpu(&neh->eh_depth, 1);
1283	ext4_mark_inode_dirty(handle, inode);
1284out:
1285	brelse(bh);
1286
1287	return err;
1288}
1289
1290/*
1291 * ext4_ext_create_new_leaf:
1292 * finds empty index and adds new leaf.
1293 * if no free index is found, then it requests in-depth growing.
1294 */
1295static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1296				    unsigned int mb_flags,
1297				    unsigned int gb_flags,
1298				    struct ext4_ext_path *path,
1299				    struct ext4_extent *newext)
1300{
1301	struct ext4_ext_path *curp;
1302	int depth, i, err = 0;
1303
1304repeat:
1305	i = depth = ext_depth(inode);
1306
1307	/* walk up to the tree and look for free index entry */
1308	curp = path + depth;
1309	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1310		i--;
1311		curp--;
1312	}
1313
1314	/* we use already allocated block for index block,
1315	 * so subsequent data blocks should be contiguous */
1316	if (EXT_HAS_FREE_INDEX(curp)) {
1317		/* if we found index with free entry, then use that
1318		 * entry: create all needed subtree and add new leaf */
1319		err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1320		if (err)
1321			goto out;
1322
1323		/* refill path */
1324		ext4_ext_drop_refs(path);
1325		path = ext4_ext_find_extent(inode,
1326				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1327				    path, gb_flags);
1328		if (IS_ERR(path))
1329			err = PTR_ERR(path);
1330	} else {
1331		/* tree is full, time to grow in depth */
1332		err = ext4_ext_grow_indepth(handle, inode, mb_flags, newext);
1333		if (err)
1334			goto out;
1335
1336		/* refill path */
1337		ext4_ext_drop_refs(path);
1338		path = ext4_ext_find_extent(inode,
1339				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1340				    path, gb_flags);
1341		if (IS_ERR(path)) {
1342			err = PTR_ERR(path);
1343			goto out;
1344		}
1345
1346		/*
1347		 * only first (depth 0 -> 1) produces free space;
1348		 * in all other cases we have to split the grown tree
1349		 */
1350		depth = ext_depth(inode);
1351		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1352			/* now we need to split */
1353			goto repeat;
1354		}
1355	}
1356
1357out:
1358	return err;
1359}
1360
1361/*
1362 * search the closest allocated block to the left for *logical
1363 * and returns it at @logical + it's physical address at @phys
1364 * if *logical is the smallest allocated block, the function
1365 * returns 0 at @phys
1366 * return value contains 0 (success) or error code
1367 */
1368static int ext4_ext_search_left(struct inode *inode,
1369				struct ext4_ext_path *path,
1370				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1371{
1372	struct ext4_extent_idx *ix;
1373	struct ext4_extent *ex;
1374	int depth, ee_len;
1375
1376	if (unlikely(path == NULL)) {
1377		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1378		return -EIO;
1379	}
1380	depth = path->p_depth;
1381	*phys = 0;
1382
1383	if (depth == 0 && path->p_ext == NULL)
1384		return 0;
1385
1386	/* usually extent in the path covers blocks smaller
1387	 * then *logical, but it can be that extent is the
1388	 * first one in the file */
1389
1390	ex = path[depth].p_ext;
1391	ee_len = ext4_ext_get_actual_len(ex);
1392	if (*logical < le32_to_cpu(ex->ee_block)) {
1393		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1394			EXT4_ERROR_INODE(inode,
1395					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1396					 *logical, le32_to_cpu(ex->ee_block));
1397			return -EIO;
1398		}
1399		while (--depth >= 0) {
1400			ix = path[depth].p_idx;
1401			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1402				EXT4_ERROR_INODE(inode,
1403				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1404				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1405				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1406		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1407				  depth);
1408				return -EIO;
1409			}
1410		}
1411		return 0;
1412	}
1413
1414	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1415		EXT4_ERROR_INODE(inode,
1416				 "logical %d < ee_block %d + ee_len %d!",
1417				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1418		return -EIO;
1419	}
1420
1421	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1422	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1423	return 0;
1424}
1425
1426/*
1427 * search the closest allocated block to the right for *logical
1428 * and returns it at @logical + it's physical address at @phys
1429 * if *logical is the largest allocated block, the function
1430 * returns 0 at @phys
1431 * return value contains 0 (success) or error code
1432 */
1433static int ext4_ext_search_right(struct inode *inode,
1434				 struct ext4_ext_path *path,
1435				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1436				 struct ext4_extent **ret_ex)
1437{
1438	struct buffer_head *bh = NULL;
1439	struct ext4_extent_header *eh;
1440	struct ext4_extent_idx *ix;
1441	struct ext4_extent *ex;
1442	ext4_fsblk_t block;
1443	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1444	int ee_len;
1445
1446	if (unlikely(path == NULL)) {
1447		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1448		return -EIO;
1449	}
1450	depth = path->p_depth;
1451	*phys = 0;
1452
1453	if (depth == 0 && path->p_ext == NULL)
1454		return 0;
1455
1456	/* usually extent in the path covers blocks smaller
1457	 * then *logical, but it can be that extent is the
1458	 * first one in the file */
1459
1460	ex = path[depth].p_ext;
1461	ee_len = ext4_ext_get_actual_len(ex);
1462	if (*logical < le32_to_cpu(ex->ee_block)) {
1463		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1464			EXT4_ERROR_INODE(inode,
1465					 "first_extent(path[%d].p_hdr) != ex",
1466					 depth);
1467			return -EIO;
1468		}
1469		while (--depth >= 0) {
1470			ix = path[depth].p_idx;
1471			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1472				EXT4_ERROR_INODE(inode,
1473						 "ix != EXT_FIRST_INDEX *logical %d!",
1474						 *logical);
1475				return -EIO;
1476			}
1477		}
1478		goto found_extent;
1479	}
1480
1481	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1482		EXT4_ERROR_INODE(inode,
1483				 "logical %d < ee_block %d + ee_len %d!",
1484				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1485		return -EIO;
1486	}
1487
1488	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1489		/* next allocated block in this leaf */
1490		ex++;
1491		goto found_extent;
1492	}
1493
1494	/* go up and search for index to the right */
1495	while (--depth >= 0) {
1496		ix = path[depth].p_idx;
1497		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1498			goto got_index;
1499	}
1500
1501	/* we've gone up to the root and found no index to the right */
1502	return 0;
1503
1504got_index:
1505	/* we've found index to the right, let's
1506	 * follow it and find the closest allocated
1507	 * block to the right */
1508	ix++;
1509	block = ext4_idx_pblock(ix);
1510	while (++depth < path->p_depth) {
1511		/* subtract from p_depth to get proper eh_depth */
1512		bh = read_extent_tree_block(inode, block,
1513					    path->p_depth - depth, 0);
1514		if (IS_ERR(bh))
1515			return PTR_ERR(bh);
1516		eh = ext_block_hdr(bh);
1517		ix = EXT_FIRST_INDEX(eh);
1518		block = ext4_idx_pblock(ix);
1519		put_bh(bh);
1520	}
1521
1522	bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1523	if (IS_ERR(bh))
1524		return PTR_ERR(bh);
1525	eh = ext_block_hdr(bh);
1526	ex = EXT_FIRST_EXTENT(eh);
1527found_extent:
1528	*logical = le32_to_cpu(ex->ee_block);
1529	*phys = ext4_ext_pblock(ex);
1530	*ret_ex = ex;
1531	if (bh)
1532		put_bh(bh);
1533	return 0;
1534}
1535
1536/*
1537 * ext4_ext_next_allocated_block:
1538 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1539 * NOTE: it considers block number from index entry as
1540 * allocated block. Thus, index entries have to be consistent
1541 * with leaves.
1542 */
1543static ext4_lblk_t
1544ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1545{
1546	int depth;
1547
1548	BUG_ON(path == NULL);
1549	depth = path->p_depth;
1550
1551	if (depth == 0 && path->p_ext == NULL)
1552		return EXT_MAX_BLOCKS;
1553
1554	while (depth >= 0) {
1555		if (depth == path->p_depth) {
1556			/* leaf */
1557			if (path[depth].p_ext &&
1558				path[depth].p_ext !=
1559					EXT_LAST_EXTENT(path[depth].p_hdr))
1560			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1561		} else {
1562			/* index */
1563			if (path[depth].p_idx !=
1564					EXT_LAST_INDEX(path[depth].p_hdr))
1565			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1566		}
1567		depth--;
1568	}
1569
1570	return EXT_MAX_BLOCKS;
1571}
1572
1573/*
1574 * ext4_ext_next_leaf_block:
1575 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1576 */
1577static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1578{
1579	int depth;
1580
1581	BUG_ON(path == NULL);
1582	depth = path->p_depth;
1583
1584	/* zero-tree has no leaf blocks at all */
1585	if (depth == 0)
1586		return EXT_MAX_BLOCKS;
1587
1588	/* go to index block */
1589	depth--;
1590
1591	while (depth >= 0) {
1592		if (path[depth].p_idx !=
1593				EXT_LAST_INDEX(path[depth].p_hdr))
1594			return (ext4_lblk_t)
1595				le32_to_cpu(path[depth].p_idx[1].ei_block);
1596		depth--;
1597	}
1598
1599	return EXT_MAX_BLOCKS;
1600}
1601
1602/*
1603 * ext4_ext_correct_indexes:
1604 * if leaf gets modified and modified extent is first in the leaf,
1605 * then we have to correct all indexes above.
1606 * TODO: do we need to correct tree in all cases?
1607 */
1608static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1609				struct ext4_ext_path *path)
1610{
1611	struct ext4_extent_header *eh;
1612	int depth = ext_depth(inode);
1613	struct ext4_extent *ex;
1614	__le32 border;
1615	int k, err = 0;
1616
1617	eh = path[depth].p_hdr;
1618	ex = path[depth].p_ext;
1619
1620	if (unlikely(ex == NULL || eh == NULL)) {
1621		EXT4_ERROR_INODE(inode,
1622				 "ex %p == NULL or eh %p == NULL", ex, eh);
1623		return -EIO;
1624	}
1625
1626	if (depth == 0) {
1627		/* there is no tree at all */
1628		return 0;
1629	}
1630
1631	if (ex != EXT_FIRST_EXTENT(eh)) {
1632		/* we correct tree if first leaf got modified only */
1633		return 0;
1634	}
1635
1636	/*
1637	 * TODO: we need correction if border is smaller than current one
1638	 */
1639	k = depth - 1;
1640	border = path[depth].p_ext->ee_block;
1641	err = ext4_ext_get_access(handle, inode, path + k);
1642	if (err)
1643		return err;
1644	path[k].p_idx->ei_block = border;
1645	err = ext4_ext_dirty(handle, inode, path + k);
1646	if (err)
1647		return err;
1648
1649	while (k--) {
1650		/* change all left-side indexes */
1651		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1652			break;
1653		err = ext4_ext_get_access(handle, inode, path + k);
1654		if (err)
1655			break;
1656		path[k].p_idx->ei_block = border;
1657		err = ext4_ext_dirty(handle, inode, path + k);
1658		if (err)
1659			break;
1660	}
1661
1662	return err;
1663}
1664
1665int
1666ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1667				struct ext4_extent *ex2)
1668{
1669	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1670
1671	/*
1672	 * Make sure that both extents are initialized. We don't merge
1673	 * uninitialized extents so that we can be sure that end_io code has
1674	 * the extent that was written properly split out and conversion to
1675	 * initialized is trivial.
1676	 */
1677	if (ext4_ext_is_uninitialized(ex1) || ext4_ext_is_uninitialized(ex2))
1678		return 0;
1679
1680	if (ext4_ext_is_uninitialized(ex1))
1681		max_len = EXT_UNINIT_MAX_LEN;
1682	else
1683		max_len = EXT_INIT_MAX_LEN;
1684
1685	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1686	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1687
1688	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1689			le32_to_cpu(ex2->ee_block))
1690		return 0;
1691
1692	/*
1693	 * To allow future support for preallocated extents to be added
1694	 * as an RO_COMPAT feature, refuse to merge to extents if
1695	 * this can result in the top bit of ee_len being set.
1696	 */
1697	if (ext1_ee_len + ext2_ee_len > max_len)
1698		return 0;
1699#ifdef AGGRESSIVE_TEST
1700	if (ext1_ee_len >= 4)
1701		return 0;
1702#endif
1703
1704	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1705		return 1;
1706	return 0;
1707}
1708
1709/*
1710 * This function tries to merge the "ex" extent to the next extent in the tree.
1711 * It always tries to merge towards right. If you want to merge towards
1712 * left, pass "ex - 1" as argument instead of "ex".
1713 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1714 * 1 if they got merged.
1715 */
1716static int ext4_ext_try_to_merge_right(struct inode *inode,
1717				 struct ext4_ext_path *path,
1718				 struct ext4_extent *ex)
1719{
1720	struct ext4_extent_header *eh;
1721	unsigned int depth, len;
1722	int merge_done = 0;
1723	int uninitialized = 0;
1724
1725	depth = ext_depth(inode);
1726	BUG_ON(path[depth].p_hdr == NULL);
1727	eh = path[depth].p_hdr;
1728
1729	while (ex < EXT_LAST_EXTENT(eh)) {
1730		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1731			break;
1732		/* merge with next extent! */
1733		if (ext4_ext_is_uninitialized(ex))
1734			uninitialized = 1;
1735		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1736				+ ext4_ext_get_actual_len(ex + 1));
1737		if (uninitialized)
1738			ext4_ext_mark_uninitialized(ex);
1739
1740		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1741			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1742				* sizeof(struct ext4_extent);
1743			memmove(ex + 1, ex + 2, len);
1744		}
1745		le16_add_cpu(&eh->eh_entries, -1);
1746		merge_done = 1;
1747		WARN_ON(eh->eh_entries == 0);
1748		if (!eh->eh_entries)
1749			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1750	}
1751
1752	return merge_done;
1753}
1754
1755/*
1756 * This function does a very simple check to see if we can collapse
1757 * an extent tree with a single extent tree leaf block into the inode.
1758 */
1759static void ext4_ext_try_to_merge_up(handle_t *handle,
1760				     struct inode *inode,
1761				     struct ext4_ext_path *path)
1762{
1763	size_t s;
1764	unsigned max_root = ext4_ext_space_root(inode, 0);
1765	ext4_fsblk_t blk;
1766
1767	if ((path[0].p_depth != 1) ||
1768	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1769	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1770		return;
1771
1772	/*
1773	 * We need to modify the block allocation bitmap and the block
1774	 * group descriptor to release the extent tree block.  If we
1775	 * can't get the journal credits, give up.
1776	 */
1777	if (ext4_journal_extend(handle, 2))
1778		return;
1779
1780	/*
1781	 * Copy the extent data up to the inode
1782	 */
1783	blk = ext4_idx_pblock(path[0].p_idx);
1784	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1785		sizeof(struct ext4_extent_idx);
1786	s += sizeof(struct ext4_extent_header);
1787
1788	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1789	path[0].p_depth = 0;
1790	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1791		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1792	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1793
1794	brelse(path[1].p_bh);
1795	ext4_free_blocks(handle, inode, NULL, blk, 1,
1796			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET |
1797			 EXT4_FREE_BLOCKS_RESERVE);
1798}
1799
1800/*
1801 * This function tries to merge the @ex extent to neighbours in the tree.
1802 * return 1 if merge left else 0.
1803 */
1804static void ext4_ext_try_to_merge(handle_t *handle,
1805				  struct inode *inode,
1806				  struct ext4_ext_path *path,
1807				  struct ext4_extent *ex) {
1808	struct ext4_extent_header *eh;
1809	unsigned int depth;
1810	int merge_done = 0;
1811
1812	depth = ext_depth(inode);
1813	BUG_ON(path[depth].p_hdr == NULL);
1814	eh = path[depth].p_hdr;
1815
1816	if (ex > EXT_FIRST_EXTENT(eh))
1817		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1818
1819	if (!merge_done)
1820		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1821
1822	ext4_ext_try_to_merge_up(handle, inode, path);
1823}
1824
1825/*
1826 * check if a portion of the "newext" extent overlaps with an
1827 * existing extent.
1828 *
1829 * If there is an overlap discovered, it updates the length of the newext
1830 * such that there will be no overlap, and then returns 1.
1831 * If there is no overlap found, it returns 0.
1832 */
1833static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1834					   struct inode *inode,
1835					   struct ext4_extent *newext,
1836					   struct ext4_ext_path *path)
1837{
1838	ext4_lblk_t b1, b2;
1839	unsigned int depth, len1;
1840	unsigned int ret = 0;
1841
1842	b1 = le32_to_cpu(newext->ee_block);
1843	len1 = ext4_ext_get_actual_len(newext);
1844	depth = ext_depth(inode);
1845	if (!path[depth].p_ext)
1846		goto out;
1847	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1848	b2 &= ~(sbi->s_cluster_ratio - 1);
1849
1850	/*
1851	 * get the next allocated block if the extent in the path
1852	 * is before the requested block(s)
1853	 */
1854	if (b2 < b1) {
1855		b2 = ext4_ext_next_allocated_block(path);
1856		if (b2 == EXT_MAX_BLOCKS)
1857			goto out;
1858		b2 &= ~(sbi->s_cluster_ratio - 1);
1859	}
1860
1861	/* check for wrap through zero on extent logical start block*/
1862	if (b1 + len1 < b1) {
1863		len1 = EXT_MAX_BLOCKS - b1;
1864		newext->ee_len = cpu_to_le16(len1);
1865		ret = 1;
1866	}
1867
1868	/* check for overlap */
1869	if (b1 + len1 > b2) {
1870		newext->ee_len = cpu_to_le16(b2 - b1);
1871		ret = 1;
1872	}
1873out:
1874	return ret;
1875}
1876
1877/*
1878 * ext4_ext_insert_extent:
1879 * tries to merge requsted extent into the existing extent or
1880 * inserts requested extent as new one into the tree,
1881 * creating new leaf in the no-space case.
1882 */
1883int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1884				struct ext4_ext_path *path,
1885				struct ext4_extent *newext, int gb_flags)
1886{
1887	struct ext4_extent_header *eh;
1888	struct ext4_extent *ex, *fex;
1889	struct ext4_extent *nearex; /* nearest extent */
1890	struct ext4_ext_path *npath = NULL;
1891	int depth, len, err;
1892	ext4_lblk_t next;
1893	unsigned uninitialized = 0;
1894	int mb_flags = 0;
1895
1896	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1897		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1898		return -EIO;
1899	}
1900	depth = ext_depth(inode);
1901	ex = path[depth].p_ext;
1902	eh = path[depth].p_hdr;
1903	if (unlikely(path[depth].p_hdr == NULL)) {
1904		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1905		return -EIO;
1906	}
1907
1908	/* try to insert block into found extent and return */
1909	if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1910
1911		/*
1912		 * Try to see whether we should rather test the extent on
1913		 * right from ex, or from the left of ex. This is because
1914		 * ext4_ext_find_extent() can return either extent on the
1915		 * left, or on the right from the searched position. This
1916		 * will make merging more effective.
1917		 */
1918		if (ex < EXT_LAST_EXTENT(eh) &&
1919		    (le32_to_cpu(ex->ee_block) +
1920		    ext4_ext_get_actual_len(ex) <
1921		    le32_to_cpu(newext->ee_block))) {
1922			ex += 1;
1923			goto prepend;
1924		} else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1925			   (le32_to_cpu(newext->ee_block) +
1926			   ext4_ext_get_actual_len(newext) <
1927			   le32_to_cpu(ex->ee_block)))
1928			ex -= 1;
1929
1930		/* Try to append newex to the ex */
1931		if (ext4_can_extents_be_merged(inode, ex, newext)) {
1932			ext_debug("append [%d]%d block to %u:[%d]%d"
1933				  "(from %llu)\n",
1934				  ext4_ext_is_uninitialized(newext),
1935				  ext4_ext_get_actual_len(newext),
1936				  le32_to_cpu(ex->ee_block),
1937				  ext4_ext_is_uninitialized(ex),
1938				  ext4_ext_get_actual_len(ex),
1939				  ext4_ext_pblock(ex));
1940			err = ext4_ext_get_access(handle, inode,
1941						  path + depth);
1942			if (err)
1943				return err;
1944
1945			/*
1946			 * ext4_can_extents_be_merged should have checked
1947			 * that either both extents are uninitialized, or
1948			 * both aren't. Thus we need to check only one of
1949			 * them here.
1950			 */
1951			if (ext4_ext_is_uninitialized(ex))
1952				uninitialized = 1;
1953			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1954					+ ext4_ext_get_actual_len(newext));
1955			if (uninitialized)
1956				ext4_ext_mark_uninitialized(ex);
1957			eh = path[depth].p_hdr;
1958			nearex = ex;
1959			goto merge;
1960		}
1961
1962prepend:
1963		/* Try to prepend newex to the ex */
1964		if (ext4_can_extents_be_merged(inode, newext, ex)) {
1965			ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
1966				  "(from %llu)\n",
1967				  le32_to_cpu(newext->ee_block),
1968				  ext4_ext_is_uninitialized(newext),
1969				  ext4_ext_get_actual_len(newext),
1970				  le32_to_cpu(ex->ee_block),
1971				  ext4_ext_is_uninitialized(ex),
1972				  ext4_ext_get_actual_len(ex),
1973				  ext4_ext_pblock(ex));
1974			err = ext4_ext_get_access(handle, inode,
1975						  path + depth);
1976			if (err)
1977				return err;
1978
1979			/*
1980			 * ext4_can_extents_be_merged should have checked
1981			 * that either both extents are uninitialized, or
1982			 * both aren't. Thus we need to check only one of
1983			 * them here.
1984			 */
1985			if (ext4_ext_is_uninitialized(ex))
1986				uninitialized = 1;
1987			ex->ee_block = newext->ee_block;
1988			ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
1989			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1990					+ ext4_ext_get_actual_len(newext));
1991			if (uninitialized)
1992				ext4_ext_mark_uninitialized(ex);
1993			eh = path[depth].p_hdr;
1994			nearex = ex;
1995			goto merge;
1996		}
1997	}
1998
1999	depth = ext_depth(inode);
2000	eh = path[depth].p_hdr;
2001	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
2002		goto has_space;
2003
2004	/* probably next leaf has space for us? */
2005	fex = EXT_LAST_EXTENT(eh);
2006	next = EXT_MAX_BLOCKS;
2007	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2008		next = ext4_ext_next_leaf_block(path);
2009	if (next != EXT_MAX_BLOCKS) {
2010		ext_debug("next leaf block - %u\n", next);
2011		BUG_ON(npath != NULL);
2012		npath = ext4_ext_find_extent(inode, next, NULL, 0);
2013		if (IS_ERR(npath))
2014			return PTR_ERR(npath);
2015		BUG_ON(npath->p_depth != path->p_depth);
2016		eh = npath[depth].p_hdr;
2017		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2018			ext_debug("next leaf isn't full(%d)\n",
2019				  le16_to_cpu(eh->eh_entries));
2020			path = npath;
2021			goto has_space;
2022		}
2023		ext_debug("next leaf has no free space(%d,%d)\n",
2024			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2025	}
2026
2027	/*
2028	 * There is no free space in the found leaf.
2029	 * We're gonna add a new leaf in the tree.
2030	 */
2031	if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2032		mb_flags = EXT4_MB_USE_RESERVED;
2033	err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2034				       path, newext);
2035	if (err)
2036		goto cleanup;
2037	depth = ext_depth(inode);
2038	eh = path[depth].p_hdr;
2039
2040has_space:
2041	nearex = path[depth].p_ext;
2042
2043	err = ext4_ext_get_access(handle, inode, path + depth);
2044	if (err)
2045		goto cleanup;
2046
2047	if (!nearex) {
2048		/* there is no extent in this leaf, create first one */
2049		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2050				le32_to_cpu(newext->ee_block),
2051				ext4_ext_pblock(newext),
2052				ext4_ext_is_uninitialized(newext),
2053				ext4_ext_get_actual_len(newext));
2054		nearex = EXT_FIRST_EXTENT(eh);
2055	} else {
2056		if (le32_to_cpu(newext->ee_block)
2057			   > le32_to_cpu(nearex->ee_block)) {
2058			/* Insert after */
2059			ext_debug("insert %u:%llu:[%d]%d before: "
2060					"nearest %p\n",
2061					le32_to_cpu(newext->ee_block),
2062					ext4_ext_pblock(newext),
2063					ext4_ext_is_uninitialized(newext),
2064					ext4_ext_get_actual_len(newext),
2065					nearex);
2066			nearex++;
2067		} else {
2068			/* Insert before */
2069			BUG_ON(newext->ee_block == nearex->ee_block);
2070			ext_debug("insert %u:%llu:[%d]%d after: "
2071					"nearest %p\n",
2072					le32_to_cpu(newext->ee_block),
2073					ext4_ext_pblock(newext),
2074					ext4_ext_is_uninitialized(newext),
2075					ext4_ext_get_actual_len(newext),
2076					nearex);
2077		}
2078		len = EXT_LAST_EXTENT(eh) - nearex + 1;
2079		if (len > 0) {
2080			ext_debug("insert %u:%llu:[%d]%d: "
2081					"move %d extents from 0x%p to 0x%p\n",
2082					le32_to_cpu(newext->ee_block),
2083					ext4_ext_pblock(newext),
2084					ext4_ext_is_uninitialized(newext),
2085					ext4_ext_get_actual_len(newext),
2086					len, nearex, nearex + 1);
2087			memmove(nearex + 1, nearex,
2088				len * sizeof(struct ext4_extent));
2089		}
2090	}
2091
2092	le16_add_cpu(&eh->eh_entries, 1);
2093	path[depth].p_ext = nearex;
2094	nearex->ee_block = newext->ee_block;
2095	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2096	nearex->ee_len = newext->ee_len;
2097
2098merge:
2099	/* try to merge extents */
2100	if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2101		ext4_ext_try_to_merge(handle, inode, path, nearex);
2102
2103
2104	/* time to correct all indexes above */
2105	err = ext4_ext_correct_indexes(handle, inode, path);
2106	if (err)
2107		goto cleanup;
2108
2109	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2110
2111cleanup:
2112	if (npath) {
2113		ext4_ext_drop_refs(npath);
2114		kfree(npath);
2115	}
2116	return err;
2117}
2118
2119static int ext4_fill_fiemap_extents(struct inode *inode,
2120				    ext4_lblk_t block, ext4_lblk_t num,
2121				    struct fiemap_extent_info *fieinfo)
2122{
2123	struct ext4_ext_path *path = NULL;
2124	struct ext4_extent *ex;
2125	struct extent_status es;
2126	ext4_lblk_t next, next_del, start = 0, end = 0;
2127	ext4_lblk_t last = block + num;
2128	int exists, depth = 0, err = 0;
2129	unsigned int flags = 0;
2130	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2131
2132	while (block < last && block != EXT_MAX_BLOCKS) {
2133		num = last - block;
2134		/* find extent for this block */
2135		down_read(&EXT4_I(inode)->i_data_sem);
2136
2137		if (path && ext_depth(inode) != depth) {
2138			/* depth was changed. we have to realloc path */
2139			kfree(path);
2140			path = NULL;
2141		}
2142
2143		path = ext4_ext_find_extent(inode, block, path, 0);
2144		if (IS_ERR(path)) {
2145			up_read(&EXT4_I(inode)->i_data_sem);
2146			err = PTR_ERR(path);
2147			path = NULL;
2148			break;
2149		}
2150
2151		depth = ext_depth(inode);
2152		if (unlikely(path[depth].p_hdr == NULL)) {
2153			up_read(&EXT4_I(inode)->i_data_sem);
2154			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2155			err = -EIO;
2156			break;
2157		}
2158		ex = path[depth].p_ext;
2159		next = ext4_ext_next_allocated_block(path);
2160		ext4_ext_drop_refs(path);
2161
2162		flags = 0;
2163		exists = 0;
2164		if (!ex) {
2165			/* there is no extent yet, so try to allocate
2166			 * all requested space */
2167			start = block;
2168			end = block + num;
2169		} else if (le32_to_cpu(ex->ee_block) > block) {
2170			/* need to allocate space before found extent */
2171			start = block;
2172			end = le32_to_cpu(ex->ee_block);
2173			if (block + num < end)
2174				end = block + num;
2175		} else if (block >= le32_to_cpu(ex->ee_block)
2176					+ ext4_ext_get_actual_len(ex)) {
2177			/* need to allocate space after found extent */
2178			start = block;
2179			end = block + num;
2180			if (end >= next)
2181				end = next;
2182		} else if (block >= le32_to_cpu(ex->ee_block)) {
2183			/*
2184			 * some part of requested space is covered
2185			 * by found extent
2186			 */
2187			start = block;
2188			end = le32_to_cpu(ex->ee_block)
2189				+ ext4_ext_get_actual_len(ex);
2190			if (block + num < end)
2191				end = block + num;
2192			exists = 1;
2193		} else {
2194			BUG();
2195		}
2196		BUG_ON(end <= start);
2197
2198		if (!exists) {
2199			es.es_lblk = start;
2200			es.es_len = end - start;
2201			es.es_pblk = 0;
2202		} else {
2203			es.es_lblk = le32_to_cpu(ex->ee_block);
2204			es.es_len = ext4_ext_get_actual_len(ex);
2205			es.es_pblk = ext4_ext_pblock(ex);
2206			if (ext4_ext_is_uninitialized(ex))
2207				flags |= FIEMAP_EXTENT_UNWRITTEN;
2208		}
2209
2210		/*
2211		 * Find delayed extent and update es accordingly. We call
2212		 * it even in !exists case to find out whether es is the
2213		 * last existing extent or not.
2214		 */
2215		next_del = ext4_find_delayed_extent(inode, &es);
2216		if (!exists && next_del) {
2217			exists = 1;
2218			flags |= (FIEMAP_EXTENT_DELALLOC |
2219				  FIEMAP_EXTENT_UNKNOWN);
2220		}
2221		up_read(&EXT4_I(inode)->i_data_sem);
2222
2223		if (unlikely(es.es_len == 0)) {
2224			EXT4_ERROR_INODE(inode, "es.es_len == 0");
2225			err = -EIO;
2226			break;
2227		}
2228
2229		/*
2230		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2231		 * we need to check next == EXT_MAX_BLOCKS because it is
2232		 * possible that an extent is with unwritten and delayed
2233		 * status due to when an extent is delayed allocated and
2234		 * is allocated by fallocate status tree will track both of
2235		 * them in a extent.
2236		 *
2237		 * So we could return a unwritten and delayed extent, and
2238		 * its block is equal to 'next'.
2239		 */
2240		if (next == next_del && next == EXT_MAX_BLOCKS) {
2241			flags |= FIEMAP_EXTENT_LAST;
2242			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2243				     next != EXT_MAX_BLOCKS)) {
2244				EXT4_ERROR_INODE(inode,
2245						 "next extent == %u, next "
2246						 "delalloc extent = %u",
2247						 next, next_del);
2248				err = -EIO;
2249				break;
2250			}
2251		}
2252
2253		if (exists) {
2254			err = fiemap_fill_next_extent(fieinfo,
2255				(__u64)es.es_lblk << blksize_bits,
2256				(__u64)es.es_pblk << blksize_bits,
2257				(__u64)es.es_len << blksize_bits,
2258				flags);
2259			if (err < 0)
2260				break;
2261			if (err == 1) {
2262				err = 0;
2263				break;
2264			}
2265		}
2266
2267		block = es.es_lblk + es.es_len;
2268	}
2269
2270	if (path) {
2271		ext4_ext_drop_refs(path);
2272		kfree(path);
2273	}
2274
2275	return err;
2276}
2277
2278/*
2279 * ext4_ext_put_gap_in_cache:
2280 * calculate boundaries of the gap that the requested block fits into
2281 * and cache this gap
2282 */
2283static void
2284ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2285				ext4_lblk_t block)
2286{
2287	int depth = ext_depth(inode);
2288	unsigned long len = 0;
2289	ext4_lblk_t lblock = 0;
2290	struct ext4_extent *ex;
2291
2292	ex = path[depth].p_ext;
2293	if (ex == NULL) {
2294		/*
2295		 * there is no extent yet, so gap is [0;-] and we
2296		 * don't cache it
2297		 */
2298		ext_debug("cache gap(whole file):");
2299	} else if (block < le32_to_cpu(ex->ee_block)) {
2300		lblock = block;
2301		len = le32_to_cpu(ex->ee_block) - block;
2302		ext_debug("cache gap(before): %u [%u:%u]",
2303				block,
2304				le32_to_cpu(ex->ee_block),
2305				 ext4_ext_get_actual_len(ex));
2306		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2307			ext4_es_insert_extent(inode, lblock, len, ~0,
2308					      EXTENT_STATUS_HOLE);
2309	} else if (block >= le32_to_cpu(ex->ee_block)
2310			+ ext4_ext_get_actual_len(ex)) {
2311		ext4_lblk_t next;
2312		lblock = le32_to_cpu(ex->ee_block)
2313			+ ext4_ext_get_actual_len(ex);
2314
2315		next = ext4_ext_next_allocated_block(path);
2316		ext_debug("cache gap(after): [%u:%u] %u",
2317				le32_to_cpu(ex->ee_block),
2318				ext4_ext_get_actual_len(ex),
2319				block);
2320		BUG_ON(next == lblock);
2321		len = next - lblock;
2322		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2323			ext4_es_insert_extent(inode, lblock, len, ~0,
2324					      EXTENT_STATUS_HOLE);
2325	} else {
2326		BUG();
2327	}
2328
2329	ext_debug(" -> %u:%lu\n", lblock, len);
2330}
2331
2332/*
2333 * ext4_ext_rm_idx:
2334 * removes index from the index block.
2335 */
2336static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2337			struct ext4_ext_path *path, int depth)
2338{
2339	int err;
2340	ext4_fsblk_t leaf;
2341
2342	/* free index block */
2343	depth--;
2344	path = path + depth;
2345	leaf = ext4_idx_pblock(path->p_idx);
2346	if (unlikely(path->p_hdr->eh_entries == 0)) {
2347		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2348		return -EIO;
2349	}
2350	err = ext4_ext_get_access(handle, inode, path);
2351	if (err)
2352		return err;
2353
2354	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2355		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2356		len *= sizeof(struct ext4_extent_idx);
2357		memmove(path->p_idx, path->p_idx + 1, len);
2358	}
2359
2360	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2361	err = ext4_ext_dirty(handle, inode, path);
2362	if (err)
2363		return err;
2364	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2365	trace_ext4_ext_rm_idx(inode, leaf);
2366
2367	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2368			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2369
2370	while (--depth >= 0) {
2371		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2372			break;
2373		path--;
2374		err = ext4_ext_get_access(handle, inode, path);
2375		if (err)
2376			break;
2377		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2378		err = ext4_ext_dirty(handle, inode, path);
2379		if (err)
2380			break;
2381	}
2382	return err;
2383}
2384
2385/*
2386 * ext4_ext_calc_credits_for_single_extent:
2387 * This routine returns max. credits that needed to insert an extent
2388 * to the extent tree.
2389 * When pass the actual path, the caller should calculate credits
2390 * under i_data_sem.
2391 */
2392int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2393						struct ext4_ext_path *path)
2394{
2395	if (path) {
2396		int depth = ext_depth(inode);
2397		int ret = 0;
2398
2399		/* probably there is space in leaf? */
2400		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2401				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2402
2403			/*
2404			 *  There are some space in the leaf tree, no
2405			 *  need to account for leaf block credit
2406			 *
2407			 *  bitmaps and block group descriptor blocks
2408			 *  and other metadata blocks still need to be
2409			 *  accounted.
2410			 */
2411			/* 1 bitmap, 1 block group descriptor */
2412			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2413			return ret;
2414		}
2415	}
2416
2417	return ext4_chunk_trans_blocks(inode, nrblocks);
2418}
2419
2420/*
2421 * How many index/leaf blocks need to change/allocate to add @extents extents?
2422 *
2423 * If we add a single extent, then in the worse case, each tree level
2424 * index/leaf need to be changed in case of the tree split.
2425 *
2426 * If more extents are inserted, they could cause the whole tree split more
2427 * than once, but this is really rare.
2428 */
2429int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2430{
2431	int index;
2432	int depth;
2433
2434	/* If we are converting the inline data, only one is needed here. */
2435	if (ext4_has_inline_data(inode))
2436		return 1;
2437
2438	depth = ext_depth(inode);
2439
2440	if (extents <= 1)
2441		index = depth * 2;
2442	else
2443		index = depth * 3;
2444
2445	return index;
2446}
2447
2448static inline int get_default_free_blocks_flags(struct inode *inode)
2449{
2450	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2451		return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2452	else if (ext4_should_journal_data(inode))
2453		return EXT4_FREE_BLOCKS_FORGET;
2454	return 0;
2455}
2456
2457static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2458			      struct ext4_extent *ex,
2459			      long long *partial_cluster,
2460			      ext4_lblk_t from, ext4_lblk_t to)
2461{
2462	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2463	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2464	ext4_fsblk_t pblk;
2465	int flags = get_default_free_blocks_flags(inode);
2466
2467	/*
2468	 * For bigalloc file systems, we never free a partial cluster
2469	 * at the beginning of the extent.  Instead, we make a note
2470	 * that we tried freeing the cluster, and check to see if we
2471	 * need to free it on a subsequent call to ext4_remove_blocks,
2472	 * or at the end of the ext4_truncate() operation.
2473	 */
2474	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2475
2476	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2477	/*
2478	 * If we have a partial cluster, and it's different from the
2479	 * cluster of the last block, we need to explicitly free the
2480	 * partial cluster here.
2481	 */
2482	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2483	if ((*partial_cluster > 0) &&
2484	    (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2485		ext4_free_blocks(handle, inode, NULL,
2486				 EXT4_C2B(sbi, *partial_cluster),
2487				 sbi->s_cluster_ratio, flags);
2488		*partial_cluster = 0;
2489	}
2490
2491#ifdef EXTENTS_STATS
2492	{
2493		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2494		spin_lock(&sbi->s_ext_stats_lock);
2495		sbi->s_ext_blocks += ee_len;
2496		sbi->s_ext_extents++;
2497		if (ee_len < sbi->s_ext_min)
2498			sbi->s_ext_min = ee_len;
2499		if (ee_len > sbi->s_ext_max)
2500			sbi->s_ext_max = ee_len;
2501		if (ext_depth(inode) > sbi->s_depth_max)
2502			sbi->s_depth_max = ext_depth(inode);
2503		spin_unlock(&sbi->s_ext_stats_lock);
2504	}
2505#endif
2506	if (from >= le32_to_cpu(ex->ee_block)
2507	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2508		/* tail removal */
2509		ext4_lblk_t num;
2510		unsigned int unaligned;
2511
2512		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2513		pblk = ext4_ext_pblock(ex) + ee_len - num;
2514		/*
2515		 * Usually we want to free partial cluster at the end of the
2516		 * extent, except for the situation when the cluster is still
2517		 * used by any other extent (partial_cluster is negative).
2518		 */
2519		if (*partial_cluster < 0 &&
2520		    -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1))
2521			flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2522
2523		ext_debug("free last %u blocks starting %llu partial %lld\n",
2524			  num, pblk, *partial_cluster);
2525		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2526		/*
2527		 * If the block range to be freed didn't start at the
2528		 * beginning of a cluster, and we removed the entire
2529		 * extent and the cluster is not used by any other extent,
2530		 * save the partial cluster here, since we might need to
2531		 * delete if we determine that the truncate operation has
2532		 * removed all of the blocks in the cluster.
2533		 *
2534		 * On the other hand, if we did not manage to free the whole
2535		 * extent, we have to mark the cluster as used (store negative
2536		 * cluster number in partial_cluster).
2537		 */
2538		unaligned = pblk & (sbi->s_cluster_ratio - 1);
2539		if (unaligned && (ee_len == num) &&
2540		    (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk))))
2541			*partial_cluster = EXT4_B2C(sbi, pblk);
2542		else if (unaligned)
2543			*partial_cluster = -((long long)EXT4_B2C(sbi, pblk));
2544		else if (*partial_cluster > 0)
2545			*partial_cluster = 0;
2546	} else
2547		ext4_error(sbi->s_sb, "strange request: removal(2) "
2548			   "%u-%u from %u:%u\n",
2549			   from, to, le32_to_cpu(ex->ee_block), ee_len);
2550	return 0;
2551}
2552
2553
2554/*
2555 * ext4_ext_rm_leaf() Removes the extents associated with the
2556 * blocks appearing between "start" and "end", and splits the extents
2557 * if "start" and "end" appear in the same extent
2558 *
2559 * @handle: The journal handle
2560 * @inode:  The files inode
2561 * @path:   The path to the leaf
2562 * @partial_cluster: The cluster which we'll have to free if all extents
2563 *                   has been released from it. It gets negative in case
2564 *                   that the cluster is still used.
2565 * @start:  The first block to remove
2566 * @end:   The last block to remove
2567 */
2568static int
2569ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2570		 struct ext4_ext_path *path,
2571		 long long *partial_cluster,
2572		 ext4_lblk_t start, ext4_lblk_t end)
2573{
2574	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2575	int err = 0, correct_index = 0;
2576	int depth = ext_depth(inode), credits;
2577	struct ext4_extent_header *eh;
2578	ext4_lblk_t a, b;
2579	unsigned num;
2580	ext4_lblk_t ex_ee_block;
2581	unsigned short ex_ee_len;
2582	unsigned uninitialized = 0;
2583	struct ext4_extent *ex;
2584	ext4_fsblk_t pblk;
2585
2586	/* the header must be checked already in ext4_ext_remove_space() */
2587	ext_debug("truncate since %u in leaf to %u\n", start, end);
2588	if (!path[depth].p_hdr)
2589		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2590	eh = path[depth].p_hdr;
2591	if (unlikely(path[depth].p_hdr == NULL)) {
2592		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2593		return -EIO;
2594	}
2595	/* find where to start removing */
2596	ex = path[depth].p_ext;
2597	if (!ex)
2598		ex = EXT_LAST_EXTENT(eh);
2599
2600	ex_ee_block = le32_to_cpu(ex->ee_block);
2601	ex_ee_len = ext4_ext_get_actual_len(ex);
2602
2603	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2604
2605	while (ex >= EXT_FIRST_EXTENT(eh) &&
2606			ex_ee_block + ex_ee_len > start) {
2607
2608		if (ext4_ext_is_uninitialized(ex))
2609			uninitialized = 1;
2610		else
2611			uninitialized = 0;
2612
2613		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2614			 uninitialized, ex_ee_len);
2615		path[depth].p_ext = ex;
2616
2617		a = ex_ee_block > start ? ex_ee_block : start;
2618		b = ex_ee_block+ex_ee_len - 1 < end ?
2619			ex_ee_block+ex_ee_len - 1 : end;
2620
2621		ext_debug("  border %u:%u\n", a, b);
2622
2623		/* If this extent is beyond the end of the hole, skip it */
2624		if (end < ex_ee_block) {
2625			/*
2626			 * We're going to skip this extent and move to another,
2627			 * so if this extent is not cluster aligned we have
2628			 * to mark the current cluster as used to avoid
2629			 * accidentally freeing it later on
2630			 */
2631			pblk = ext4_ext_pblock(ex);
2632			if (pblk & (sbi->s_cluster_ratio - 1))
2633				*partial_cluster =
2634					-((long long)EXT4_B2C(sbi, pblk));
2635			ex--;
2636			ex_ee_block = le32_to_cpu(ex->ee_block);
2637			ex_ee_len = ext4_ext_get_actual_len(ex);
2638			continue;
2639		} else if (b != ex_ee_block + ex_ee_len - 1) {
2640			EXT4_ERROR_INODE(inode,
2641					 "can not handle truncate %u:%u "
2642					 "on extent %u:%u",
2643					 start, end, ex_ee_block,
2644					 ex_ee_block + ex_ee_len - 1);
2645			err = -EIO;
2646			goto out;
2647		} else if (a != ex_ee_block) {
2648			/* remove tail of the extent */
2649			num = a - ex_ee_block;
2650		} else {
2651			/* remove whole extent: excellent! */
2652			num = 0;
2653		}
2654		/*
2655		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2656		 * descriptor) for each block group; assume two block
2657		 * groups plus ex_ee_len/blocks_per_block_group for
2658		 * the worst case
2659		 */
2660		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2661		if (ex == EXT_FIRST_EXTENT(eh)) {
2662			correct_index = 1;
2663			credits += (ext_depth(inode)) + 1;
2664		}
2665		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2666
2667		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2668		if (err)
2669			goto out;
2670
2671		err = ext4_ext_get_access(handle, inode, path + depth);
2672		if (err)
2673			goto out;
2674
2675		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2676					 a, b);
2677		if (err)
2678			goto out;
2679
2680		if (num == 0)
2681			/* this extent is removed; mark slot entirely unused */
2682			ext4_ext_store_pblock(ex, 0);
2683
2684		ex->ee_len = cpu_to_le16(num);
2685		/*
2686		 * Do not mark uninitialized if all the blocks in the
2687		 * extent have been removed.
2688		 */
2689		if (uninitialized && num)
2690			ext4_ext_mark_uninitialized(ex);
2691		/*
2692		 * If the extent was completely released,
2693		 * we need to remove it from the leaf
2694		 */
2695		if (num == 0) {
2696			if (end != EXT_MAX_BLOCKS - 1) {
2697				/*
2698				 * For hole punching, we need to scoot all the
2699				 * extents up when an extent is removed so that
2700				 * we dont have blank extents in the middle
2701				 */
2702				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2703					sizeof(struct ext4_extent));
2704
2705				/* Now get rid of the one at the end */
2706				memset(EXT_LAST_EXTENT(eh), 0,
2707					sizeof(struct ext4_extent));
2708			}
2709			le16_add_cpu(&eh->eh_entries, -1);
2710		} else if (*partial_cluster > 0)
2711			*partial_cluster = 0;
2712
2713		err = ext4_ext_dirty(handle, inode, path + depth);
2714		if (err)
2715			goto out;
2716
2717		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2718				ext4_ext_pblock(ex));
2719		ex--;
2720		ex_ee_block = le32_to_cpu(ex->ee_block);
2721		ex_ee_len = ext4_ext_get_actual_len(ex);
2722	}
2723
2724	if (correct_index && eh->eh_entries)
2725		err = ext4_ext_correct_indexes(handle, inode, path);
2726
2727	/*
2728	 * Free the partial cluster only if the current extent does not
2729	 * reference it. Otherwise we might free used cluster.
2730	 */
2731	if (*partial_cluster > 0 &&
2732	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2733	     *partial_cluster)) {
2734		int flags = get_default_free_blocks_flags(inode);
2735
2736		ext4_free_blocks(handle, inode, NULL,
2737				 EXT4_C2B(sbi, *partial_cluster),
2738				 sbi->s_cluster_ratio, flags);
2739		*partial_cluster = 0;
2740	}
2741
2742	/* if this leaf is free, then we should
2743	 * remove it from index block above */
2744	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2745		err = ext4_ext_rm_idx(handle, inode, path, depth);
2746
2747out:
2748	return err;
2749}
2750
2751/*
2752 * ext4_ext_more_to_rm:
2753 * returns 1 if current index has to be freed (even partial)
2754 */
2755static int
2756ext4_ext_more_to_rm(struct ext4_ext_path *path)
2757{
2758	BUG_ON(path->p_idx == NULL);
2759
2760	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2761		return 0;
2762
2763	/*
2764	 * if truncate on deeper level happened, it wasn't partial,
2765	 * so we have to consider current index for truncation
2766	 */
2767	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2768		return 0;
2769	return 1;
2770}
2771
2772int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2773			  ext4_lblk_t end)
2774{
2775	struct super_block *sb = inode->i_sb;
2776	int depth = ext_depth(inode);
2777	struct ext4_ext_path *path = NULL;
2778	long long partial_cluster = 0;
2779	handle_t *handle;
2780	int i = 0, err = 0;
2781
2782	ext_debug("truncate since %u to %u\n", start, end);
2783
2784	/* probably first extent we're gonna free will be last in block */
2785	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2786	if (IS_ERR(handle))
2787		return PTR_ERR(handle);
2788
2789again:
2790	trace_ext4_ext_remove_space(inode, start, end, depth);
2791
2792	/*
2793	 * Check if we are removing extents inside the extent tree. If that
2794	 * is the case, we are going to punch a hole inside the extent tree
2795	 * so we have to check whether we need to split the extent covering
2796	 * the last block to remove so we can easily remove the part of it
2797	 * in ext4_ext_rm_leaf().
2798	 */
2799	if (end < EXT_MAX_BLOCKS - 1) {
2800		struct ext4_extent *ex;
2801		ext4_lblk_t ee_block;
2802
2803		/* find extent for this block */
2804		path = ext4_ext_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2805		if (IS_ERR(path)) {
2806			ext4_journal_stop(handle);
2807			return PTR_ERR(path);
2808		}
2809		depth = ext_depth(inode);
2810		/* Leaf not may not exist only if inode has no blocks at all */
2811		ex = path[depth].p_ext;
2812		if (!ex) {
2813			if (depth) {
2814				EXT4_ERROR_INODE(inode,
2815						 "path[%d].p_hdr == NULL",
2816						 depth);
2817				err = -EIO;
2818			}
2819			goto out;
2820		}
2821
2822		ee_block = le32_to_cpu(ex->ee_block);
2823
2824		/*
2825		 * See if the last block is inside the extent, if so split
2826		 * the extent at 'end' block so we can easily remove the
2827		 * tail of the first part of the split extent in
2828		 * ext4_ext_rm_leaf().
2829		 */
2830		if (end >= ee_block &&
2831		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2832			int split_flag = 0;
2833
2834			if (ext4_ext_is_uninitialized(ex))
2835				split_flag = EXT4_EXT_MARK_UNINIT1 |
2836					     EXT4_EXT_MARK_UNINIT2;
2837
2838			/*
2839			 * Split the extent in two so that 'end' is the last
2840			 * block in the first new extent. Also we should not
2841			 * fail removing space due to ENOSPC so try to use
2842			 * reserved block if that happens.
2843			 */
2844			err = ext4_split_extent_at(handle, inode, path,
2845					end + 1, split_flag,
2846					EXT4_EX_NOCACHE |
2847					EXT4_GET_BLOCKS_PRE_IO |
2848					EXT4_GET_BLOCKS_METADATA_NOFAIL);
2849
2850			if (err < 0)
2851				goto out;
2852		}
2853	}
2854	/*
2855	 * We start scanning from right side, freeing all the blocks
2856	 * after i_size and walking into the tree depth-wise.
2857	 */
2858	depth = ext_depth(inode);
2859	if (path) {
2860		int k = i = depth;
2861		while (--k > 0)
2862			path[k].p_block =
2863				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2864	} else {
2865		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2866			       GFP_NOFS);
2867		if (path == NULL) {
2868			ext4_journal_stop(handle);
2869			return -ENOMEM;
2870		}
2871		path[0].p_depth = depth;
2872		path[0].p_hdr = ext_inode_hdr(inode);
2873		i = 0;
2874
2875		if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2876			err = -EIO;
2877			goto out;
2878		}
2879	}
2880	err = 0;
2881
2882	while (i >= 0 && err == 0) {
2883		if (i == depth) {
2884			/* this is leaf block */
2885			err = ext4_ext_rm_leaf(handle, inode, path,
2886					       &partial_cluster, start,
2887					       end);
2888			/* root level has p_bh == NULL, brelse() eats this */
2889			brelse(path[i].p_bh);
2890			path[i].p_bh = NULL;
2891			i--;
2892			continue;
2893		}
2894
2895		/* this is index block */
2896		if (!path[i].p_hdr) {
2897			ext_debug("initialize header\n");
2898			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2899		}
2900
2901		if (!path[i].p_idx) {
2902			/* this level hasn't been touched yet */
2903			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2904			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2905			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2906				  path[i].p_hdr,
2907				  le16_to_cpu(path[i].p_hdr->eh_entries));
2908		} else {
2909			/* we were already here, see at next index */
2910			path[i].p_idx--;
2911		}
2912
2913		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2914				i, EXT_FIRST_INDEX(path[i].p_hdr),
2915				path[i].p_idx);
2916		if (ext4_ext_more_to_rm(path + i)) {
2917			struct buffer_head *bh;
2918			/* go to the next level */
2919			ext_debug("move to level %d (block %llu)\n",
2920				  i + 1, ext4_idx_pblock(path[i].p_idx));
2921			memset(path + i + 1, 0, sizeof(*path));
2922			bh = read_extent_tree_block(inode,
2923				ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2924				EXT4_EX_NOCACHE);
2925			if (IS_ERR(bh)) {
2926				/* should we reset i_size? */
2927				err = PTR_ERR(bh);
2928				break;
2929			}
2930			/* Yield here to deal with large extent trees.
2931			 * Should be a no-op if we did IO above. */
2932			cond_resched();
2933			if (WARN_ON(i + 1 > depth)) {
2934				err = -EIO;
2935				break;
2936			}
2937			path[i + 1].p_bh = bh;
2938
2939			/* save actual number of indexes since this
2940			 * number is changed at the next iteration */
2941			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2942			i++;
2943		} else {
2944			/* we finished processing this index, go up */
2945			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2946				/* index is empty, remove it;
2947				 * handle must be already prepared by the
2948				 * truncatei_leaf() */
2949				err = ext4_ext_rm_idx(handle, inode, path, i);
2950			}
2951			/* root level has p_bh == NULL, brelse() eats this */
2952			brelse(path[i].p_bh);
2953			path[i].p_bh = NULL;
2954			i--;
2955			ext_debug("return to level %d\n", i);
2956		}
2957	}
2958
2959	trace_ext4_ext_remove_space_done(inode, start, end, depth,
2960			partial_cluster, path->p_hdr->eh_entries);
2961
2962	/* If we still have something in the partial cluster and we have removed
2963	 * even the first extent, then we should free the blocks in the partial
2964	 * cluster as well. */
2965	if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) {
2966		int flags = get_default_free_blocks_flags(inode);
2967
2968		ext4_free_blocks(handle, inode, NULL,
2969				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2970				 EXT4_SB(sb)->s_cluster_ratio, flags);
2971		partial_cluster = 0;
2972	}
2973
2974	/* TODO: flexible tree reduction should be here */
2975	if (path->p_hdr->eh_entries == 0) {
2976		/*
2977		 * truncate to zero freed all the tree,
2978		 * so we need to correct eh_depth
2979		 */
2980		err = ext4_ext_get_access(handle, inode, path);
2981		if (err == 0) {
2982			ext_inode_hdr(inode)->eh_depth = 0;
2983			ext_inode_hdr(inode)->eh_max =
2984				cpu_to_le16(ext4_ext_space_root(inode, 0));
2985			err = ext4_ext_dirty(handle, inode, path);
2986		}
2987	}
2988out:
2989	ext4_ext_drop_refs(path);
2990	kfree(path);
2991	if (err == -EAGAIN) {
2992		path = NULL;
2993		goto again;
2994	}
2995	ext4_journal_stop(handle);
2996
2997	return err;
2998}
2999
3000/*
3001 * called at mount time
3002 */
3003void ext4_ext_init(struct super_block *sb)
3004{
3005	/*
3006	 * possible initialization would be here
3007	 */
3008
3009	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
3010#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3011		printk(KERN_INFO "EXT4-fs: file extents enabled"
3012#ifdef AGGRESSIVE_TEST
3013		       ", aggressive tests"
3014#endif
3015#ifdef CHECK_BINSEARCH
3016		       ", check binsearch"
3017#endif
3018#ifdef EXTENTS_STATS
3019		       ", stats"
3020#endif
3021		       "\n");
3022#endif
3023#ifdef EXTENTS_STATS
3024		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3025		EXT4_SB(sb)->s_ext_min = 1 << 30;
3026		EXT4_SB(sb)->s_ext_max = 0;
3027#endif
3028	}
3029}
3030
3031/*
3032 * called at umount time
3033 */
3034void ext4_ext_release(struct super_block *sb)
3035{
3036	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3037		return;
3038
3039#ifdef EXTENTS_STATS
3040	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3041		struct ext4_sb_info *sbi = EXT4_SB(sb);
3042		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3043			sbi->s_ext_blocks, sbi->s_ext_extents,
3044			sbi->s_ext_blocks / sbi->s_ext_extents);
3045		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3046			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3047	}
3048#endif
3049}
3050
3051static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3052{
3053	ext4_lblk_t  ee_block;
3054	ext4_fsblk_t ee_pblock;
3055	unsigned int ee_len;
3056
3057	ee_block  = le32_to_cpu(ex->ee_block);
3058	ee_len    = ext4_ext_get_actual_len(ex);
3059	ee_pblock = ext4_ext_pblock(ex);
3060
3061	if (ee_len == 0)
3062		return 0;
3063
3064	return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3065				     EXTENT_STATUS_WRITTEN);
3066}
3067
3068/* FIXME!! we need to try to merge to left or right after zero-out  */
3069static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3070{
3071	ext4_fsblk_t ee_pblock;
3072	unsigned int ee_len;
3073	int ret;
3074
3075	ee_len    = ext4_ext_get_actual_len(ex);
3076	ee_pblock = ext4_ext_pblock(ex);
3077
3078	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
3079	if (ret > 0)
3080		ret = 0;
3081
3082	return ret;
3083}
3084
3085/*
3086 * ext4_split_extent_at() splits an extent at given block.
3087 *
3088 * @handle: the journal handle
3089 * @inode: the file inode
3090 * @path: the path to the extent
3091 * @split: the logical block where the extent is splitted.
3092 * @split_flags: indicates if the extent could be zeroout if split fails, and
3093 *		 the states(init or uninit) of new extents.
3094 * @flags: flags used to insert new extent to extent tree.
3095 *
3096 *
3097 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3098 * of which are deterimined by split_flag.
3099 *
3100 * There are two cases:
3101 *  a> the extent are splitted into two extent.
3102 *  b> split is not needed, and just mark the extent.
3103 *
3104 * return 0 on success.
3105 */
3106static int ext4_split_extent_at(handle_t *handle,
3107			     struct inode *inode,
3108			     struct ext4_ext_path *path,
3109			     ext4_lblk_t split,
3110			     int split_flag,
3111			     int flags)
3112{
3113	ext4_fsblk_t newblock;
3114	ext4_lblk_t ee_block;
3115	struct ext4_extent *ex, newex, orig_ex, zero_ex;
3116	struct ext4_extent *ex2 = NULL;
3117	unsigned int ee_len, depth;
3118	int err = 0;
3119
3120	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3121	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3122
3123	ext_debug("ext4_split_extents_at: inode %lu, logical"
3124		"block %llu\n", inode->i_ino, (unsigned long long)split);
3125
3126	ext4_ext_show_leaf(inode, path);
3127
3128	depth = ext_depth(inode);
3129	ex = path[depth].p_ext;
3130	ee_block = le32_to_cpu(ex->ee_block);
3131	ee_len = ext4_ext_get_actual_len(ex);
3132	newblock = split - ee_block + ext4_ext_pblock(ex);
3133
3134	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3135	BUG_ON(!ext4_ext_is_uninitialized(ex) &&
3136	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
3137			     EXT4_EXT_MARK_UNINIT1 |
3138			     EXT4_EXT_MARK_UNINIT2));
3139
3140	err = ext4_ext_get_access(handle, inode, path + depth);
3141	if (err)
3142		goto out;
3143
3144	if (split == ee_block) {
3145		/*
3146		 * case b: block @split is the block that the extent begins with
3147		 * then we just change the state of the extent, and splitting
3148		 * is not needed.
3149		 */
3150		if (split_flag & EXT4_EXT_MARK_UNINIT2)
3151			ext4_ext_mark_uninitialized(ex);
3152		else
3153			ext4_ext_mark_initialized(ex);
3154
3155		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3156			ext4_ext_try_to_merge(handle, inode, path, ex);
3157
3158		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3159		goto out;
3160	}
3161
3162	/* case a */
3163	memcpy(&orig_ex, ex, sizeof(orig_ex));
3164	ex->ee_len = cpu_to_le16(split - ee_block);
3165	if (split_flag & EXT4_EXT_MARK_UNINIT1)
3166		ext4_ext_mark_uninitialized(ex);
3167
3168	/*
3169	 * path may lead to new leaf, not to original leaf any more
3170	 * after ext4_ext_insert_extent() returns,
3171	 */
3172	err = ext4_ext_dirty(handle, inode, path + depth);
3173	if (err)
3174		goto fix_extent_len;
3175
3176	ex2 = &newex;
3177	ex2->ee_block = cpu_to_le32(split);
3178	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
3179	ext4_ext_store_pblock(ex2, newblock);
3180	if (split_flag & EXT4_EXT_MARK_UNINIT2)
3181		ext4_ext_mark_uninitialized(ex2);
3182
3183	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3184	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3185		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3186			if (split_flag & EXT4_EXT_DATA_VALID1) {
3187				err = ext4_ext_zeroout(inode, ex2);
3188				zero_ex.ee_block = ex2->ee_block;
3189				zero_ex.ee_len = cpu_to_le16(
3190						ext4_ext_get_actual_len(ex2));
3191				ext4_ext_store_pblock(&zero_ex,
3192						      ext4_ext_pblock(ex2));
3193			} else {
3194				err = ext4_ext_zeroout(inode, ex);
3195				zero_ex.ee_block = ex->ee_block;
3196				zero_ex.ee_len = cpu_to_le16(
3197						ext4_ext_get_actual_len(ex));
3198				ext4_ext_store_pblock(&zero_ex,
3199						      ext4_ext_pblock(ex));
3200			}
3201		} else {
3202			err = ext4_ext_zeroout(inode, &orig_ex);
3203			zero_ex.ee_block = orig_ex.ee_block;
3204			zero_ex.ee_len = cpu_to_le16(
3205						ext4_ext_get_actual_len(&orig_ex));
3206			ext4_ext_store_pblock(&zero_ex,
3207					      ext4_ext_pblock(&orig_ex));
3208		}
3209
3210		if (err)
3211			goto fix_extent_len;
3212		/* update the extent length and mark as initialized */
3213		ex->ee_len = cpu_to_le16(ee_len);
3214		ext4_ext_try_to_merge(handle, inode, path, ex);
3215		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3216		if (err)
3217			goto fix_extent_len;
3218
3219		/* update extent status tree */
3220		err = ext4_zeroout_es(inode, &zero_ex);
3221
3222		goto out;
3223	} else if (err)
3224		goto fix_extent_len;
3225
3226out:
3227	ext4_ext_show_leaf(inode, path);
3228	return err;
3229
3230fix_extent_len:
3231	ex->ee_len = orig_ex.ee_len;
3232	ext4_ext_dirty(handle, inode, path + depth);
3233	return err;
3234}
3235
3236/*
3237 * ext4_split_extents() splits an extent and mark extent which is covered
3238 * by @map as split_flags indicates
3239 *
3240 * It may result in splitting the extent into multiple extents (up to three)
3241 * There are three possibilities:
3242 *   a> There is no split required
3243 *   b> Splits in two extents: Split is happening at either end of the extent
3244 *   c> Splits in three extents: Somone is splitting in middle of the extent
3245 *
3246 */
3247static int ext4_split_extent(handle_t *handle,
3248			      struct inode *inode,
3249			      struct ext4_ext_path *path,
3250			      struct ext4_map_blocks *map,
3251			      int split_flag,
3252			      int flags)
3253{
3254	ext4_lblk_t ee_block;
3255	struct ext4_extent *ex;
3256	unsigned int ee_len, depth;
3257	int err = 0;
3258	int uninitialized;
3259	int split_flag1, flags1;
3260	int allocated = map->m_len;
3261
3262	depth = ext_depth(inode);
3263	ex = path[depth].p_ext;
3264	ee_block = le32_to_cpu(ex->ee_block);
3265	ee_len = ext4_ext_get_actual_len(ex);
3266	uninitialized = ext4_ext_is_uninitialized(ex);
3267
3268	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3269		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3270		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3271		if (uninitialized)
3272			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3273				       EXT4_EXT_MARK_UNINIT2;
3274		if (split_flag & EXT4_EXT_DATA_VALID2)
3275			split_flag1 |= EXT4_EXT_DATA_VALID1;
3276		err = ext4_split_extent_at(handle, inode, path,
3277				map->m_lblk + map->m_len, split_flag1, flags1);
3278		if (err)
3279			goto out;
3280	} else {
3281		allocated = ee_len - (map->m_lblk - ee_block);
3282	}
3283	/*
3284	 * Update path is required because previous ext4_split_extent_at() may
3285	 * result in split of original leaf or extent zeroout.
3286	 */
3287	ext4_ext_drop_refs(path);
3288	path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3289	if (IS_ERR(path))
3290		return PTR_ERR(path);
3291	depth = ext_depth(inode);
3292	ex = path[depth].p_ext;
3293	uninitialized = ext4_ext_is_uninitialized(ex);
3294	split_flag1 = 0;
3295
3296	if (map->m_lblk >= ee_block) {
3297		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3298		if (uninitialized) {
3299			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3300			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3301						     EXT4_EXT_MARK_UNINIT2);
3302		}
3303		err = ext4_split_extent_at(handle, inode, path,
3304				map->m_lblk, split_flag1, flags);
3305		if (err)
3306			goto out;
3307	}
3308
3309	ext4_ext_show_leaf(inode, path);
3310out:
3311	return err ? err : allocated;
3312}
3313
3314/*
3315 * This function is called by ext4_ext_map_blocks() if someone tries to write
3316 * to an uninitialized extent. It may result in splitting the uninitialized
3317 * extent into multiple extents (up to three - one initialized and two
3318 * uninitialized).
3319 * There are three possibilities:
3320 *   a> There is no split required: Entire extent should be initialized
3321 *   b> Splits in two extents: Write is happening at either end of the extent
3322 *   c> Splits in three extents: Somone is writing in middle of the extent
3323 *
3324 * Pre-conditions:
3325 *  - The extent pointed to by 'path' is uninitialized.
3326 *  - The extent pointed to by 'path' contains a superset
3327 *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3328 *
3329 * Post-conditions on success:
3330 *  - the returned value is the number of blocks beyond map->l_lblk
3331 *    that are allocated and initialized.
3332 *    It is guaranteed to be >= map->m_len.
3333 */
3334static int ext4_ext_convert_to_initialized(handle_t *handle,
3335					   struct inode *inode,
3336					   struct ext4_map_blocks *map,
3337					   struct ext4_ext_path *path,
3338					   int flags)
3339{
3340	struct ext4_sb_info *sbi;
3341	struct ext4_extent_header *eh;
3342	struct ext4_map_blocks split_map;
3343	struct ext4_extent zero_ex;
3344	struct ext4_extent *ex, *abut_ex;
3345	ext4_lblk_t ee_block, eof_block;
3346	unsigned int ee_len, depth, map_len = map->m_len;
3347	int allocated = 0, max_zeroout = 0;
3348	int err = 0;
3349	int split_flag = 0;
3350
3351	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3352		"block %llu, max_blocks %u\n", inode->i_ino,
3353		(unsigned long long)map->m_lblk, map_len);
3354
3355	sbi = EXT4_SB(inode->i_sb);
3356	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3357		inode->i_sb->s_blocksize_bits;
3358	if (eof_block < map->m_lblk + map_len)
3359		eof_block = map->m_lblk + map_len;
3360
3361	depth = ext_depth(inode);
3362	eh = path[depth].p_hdr;
3363	ex = path[depth].p_ext;
3364	ee_block = le32_to_cpu(ex->ee_block);
3365	ee_len = ext4_ext_get_actual_len(ex);
3366	zero_ex.ee_len = 0;
3367
3368	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3369
3370	/* Pre-conditions */
3371	BUG_ON(!ext4_ext_is_uninitialized(ex));
3372	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3373
3374	/*
3375	 * Attempt to transfer newly initialized blocks from the currently
3376	 * uninitialized extent to its neighbor. This is much cheaper
3377	 * than an insertion followed by a merge as those involve costly
3378	 * memmove() calls. Transferring to the left is the common case in
3379	 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3380	 * followed by append writes.
3381	 *
3382	 * Limitations of the current logic:
3383	 *  - L1: we do not deal with writes covering the whole extent.
3384	 *    This would require removing the extent if the transfer
3385	 *    is possible.
3386	 *  - L2: we only attempt to merge with an extent stored in the
3387	 *    same extent tree node.
3388	 */
3389	if ((map->m_lblk == ee_block) &&
3390		/* See if we can merge left */
3391		(map_len < ee_len) &&		/*L1*/
3392		(ex > EXT_FIRST_EXTENT(eh))) {	/*L2*/
3393		ext4_lblk_t prev_lblk;
3394		ext4_fsblk_t prev_pblk, ee_pblk;
3395		unsigned int prev_len;
3396
3397		abut_ex = ex - 1;
3398		prev_lblk = le32_to_cpu(abut_ex->ee_block);
3399		prev_len = ext4_ext_get_actual_len(abut_ex);
3400		prev_pblk = ext4_ext_pblock(abut_ex);
3401		ee_pblk = ext4_ext_pblock(ex);
3402
3403		/*
3404		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3405		 * upon those conditions:
3406		 * - C1: abut_ex is initialized,
3407		 * - C2: abut_ex is logically abutting ex,
3408		 * - C3: abut_ex is physically abutting ex,
3409		 * - C4: abut_ex can receive the additional blocks without
3410		 *   overflowing the (initialized) length limit.
3411		 */
3412		if ((!ext4_ext_is_uninitialized(abut_ex)) &&		/*C1*/
3413			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3414			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3415			(prev_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3416			err = ext4_ext_get_access(handle, inode, path + depth);
3417			if (err)
3418				goto out;
3419
3420			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3421				map, ex, abut_ex);
3422
3423			/* Shift the start of ex by 'map_len' blocks */
3424			ex->ee_block = cpu_to_le32(ee_block + map_len);
3425			ext4_ext_store_pblock(ex, ee_pblk + map_len);
3426			ex->ee_len = cpu_to_le16(ee_len - map_len);
3427			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3428
3429			/* Extend abut_ex by 'map_len' blocks */
3430			abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3431
3432			/* Result: number of initialized blocks past m_lblk */
3433			allocated = map_len;
3434		}
3435	} else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3436		   (map_len < ee_len) &&	/*L1*/
3437		   ex < EXT_LAST_EXTENT(eh)) {	/*L2*/
3438		/* See if we can merge right */
3439		ext4_lblk_t next_lblk;
3440		ext4_fsblk_t next_pblk, ee_pblk;
3441		unsigned int next_len;
3442
3443		abut_ex = ex + 1;
3444		next_lblk = le32_to_cpu(abut_ex->ee_block);
3445		next_len = ext4_ext_get_actual_len(abut_ex);
3446		next_pblk = ext4_ext_pblock(abut_ex);
3447		ee_pblk = ext4_ext_pblock(ex);
3448
3449		/*
3450		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3451		 * upon those conditions:
3452		 * - C1: abut_ex is initialized,
3453		 * - C2: abut_ex is logically abutting ex,
3454		 * - C3: abut_ex is physically abutting ex,
3455		 * - C4: abut_ex can receive the additional blocks without
3456		 *   overflowing the (initialized) length limit.
3457		 */
3458		if ((!ext4_ext_is_uninitialized(abut_ex)) &&		/*C1*/
3459		    ((map->m_lblk + map_len) == next_lblk) &&		/*C2*/
3460		    ((ee_pblk + ee_len) == next_pblk) &&		/*C3*/
3461		    (next_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3462			err = ext4_ext_get_access(handle, inode, path + depth);
3463			if (err)
3464				goto out;
3465
3466			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3467				map, ex, abut_ex);
3468
3469			/* Shift the start of abut_ex by 'map_len' blocks */
3470			abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3471			ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3472			ex->ee_len = cpu_to_le16(ee_len - map_len);
3473			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3474
3475			/* Extend abut_ex by 'map_len' blocks */
3476			abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3477
3478			/* Result: number of initialized blocks past m_lblk */
3479			allocated = map_len;
3480		}
3481	}
3482	if (allocated) {
3483		/* Mark the block containing both extents as dirty */
3484		ext4_ext_dirty(handle, inode, path + depth);
3485
3486		/* Update path to point to the right extent */
3487		path[depth].p_ext = abut_ex;
3488		goto out;
3489	} else
3490		allocated = ee_len - (map->m_lblk - ee_block);
3491
3492	WARN_ON(map->m_lblk < ee_block);
3493	/*
3494	 * It is safe to convert extent to initialized via explicit
3495	 * zeroout only if extent is fully insde i_size or new_size.
3496	 */
3497	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3498
3499	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3500		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3501			(inode->i_sb->s_blocksize_bits - 10);
3502
3503	/* If extent is less than s_max_zeroout_kb, zeroout directly */
3504	if (max_zeroout && (ee_len <= max_zeroout)) {
3505		err = ext4_ext_zeroout(inode, ex);
3506		if (err)
3507			goto out;
3508		zero_ex.ee_block = ex->ee_block;
3509		zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3510		ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3511
3512		err = ext4_ext_get_access(handle, inode, path + depth);
3513		if (err)
3514			goto out;
3515		ext4_ext_mark_initialized(ex);
3516		ext4_ext_try_to_merge(handle, inode, path, ex);
3517		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3518		goto out;
3519	}
3520
3521	/*
3522	 * four cases:
3523	 * 1. split the extent into three extents.
3524	 * 2. split the extent into two extents, zeroout the first half.
3525	 * 3. split the extent into two extents, zeroout the second half.
3526	 * 4. split the extent into two extents with out zeroout.
3527	 */
3528	split_map.m_lblk = map->m_lblk;
3529	split_map.m_len = map->m_len;
3530
3531	if (max_zeroout && (allocated > map->m_len)) {
3532		if (allocated <= max_zeroout) {
3533			/* case 3 */
3534			zero_ex.ee_block =
3535					 cpu_to_le32(map->m_lblk);
3536			zero_ex.ee_len = cpu_to_le16(allocated);
3537			ext4_ext_store_pblock(&zero_ex,
3538				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3539			err = ext4_ext_zeroout(inode, &zero_ex);
3540			if (err)
3541				goto out;
3542			split_map.m_lblk = map->m_lblk;
3543			split_map.m_len = allocated;
3544		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3545			/* case 2 */
3546			if (map->m_lblk != ee_block) {
3547				zero_ex.ee_block = ex->ee_block;
3548				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3549							ee_block);
3550				ext4_ext_store_pblock(&zero_ex,
3551						      ext4_ext_pblock(ex));
3552				err = ext4_ext_zeroout(inode, &zero_ex);
3553				if (err)
3554					goto out;
3555			}
3556
3557			split_map.m_lblk = ee_block;
3558			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3559			allocated = map->m_len;
3560		}
3561	}
3562
3563	allocated = ext4_split_extent(handle, inode, path,
3564				      &split_map, split_flag, flags);
3565	if (allocated < 0)
3566		err = allocated;
3567
3568out:
3569	/* If we have gotten a failure, don't zero out status tree */
3570	if (!err)
3571		err = ext4_zeroout_es(inode, &zero_ex);
3572	return err ? err : allocated;
3573}
3574
3575/*
3576 * This function is called by ext4_ext_map_blocks() from
3577 * ext4_get_blocks_dio_write() when DIO to write
3578 * to an uninitialized extent.
3579 *
3580 * Writing to an uninitialized extent may result in splitting the uninitialized
3581 * extent into multiple initialized/uninitialized extents (up to three)
3582 * There are three possibilities:
3583 *   a> There is no split required: Entire extent should be uninitialized
3584 *   b> Splits in two extents: Write is happening at either end of the extent
3585 *   c> Splits in three extents: Somone is writing in middle of the extent
3586 *
3587 * One of more index blocks maybe needed if the extent tree grow after
3588 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3589 * complete, we need to split the uninitialized extent before DIO submit
3590 * the IO. The uninitialized extent called at this time will be split
3591 * into three uninitialized extent(at most). After IO complete, the part
3592 * being filled will be convert to initialized by the end_io callback function
3593 * via ext4_convert_unwritten_extents().
3594 *
3595 * Returns the size of uninitialized extent to be written on success.
3596 */
3597static int ext4_split_unwritten_extents(handle_t *handle,
3598					struct inode *inode,
3599					struct ext4_map_blocks *map,
3600					struct ext4_ext_path *path,
3601					int flags)
3602{
3603	ext4_lblk_t eof_block;
3604	ext4_lblk_t ee_block;
3605	struct ext4_extent *ex;
3606	unsigned int ee_len;
3607	int split_flag = 0, depth;
3608
3609	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3610		"block %llu, max_blocks %u\n", inode->i_ino,
3611		(unsigned long long)map->m_lblk, map->m_len);
3612
3613	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3614		inode->i_sb->s_blocksize_bits;
3615	if (eof_block < map->m_lblk + map->m_len)
3616		eof_block = map->m_lblk + map->m_len;
3617	/*
3618	 * It is safe to convert extent to initialized via explicit
3619	 * zeroout only if extent is fully insde i_size or new_size.
3620	 */
3621	depth = ext_depth(inode);
3622	ex = path[depth].p_ext;
3623	ee_block = le32_to_cpu(ex->ee_block);
3624	ee_len = ext4_ext_get_actual_len(ex);
3625
3626	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3627	split_flag |= EXT4_EXT_MARK_UNINIT2;
3628	if (flags & EXT4_GET_BLOCKS_CONVERT)
3629		split_flag |= EXT4_EXT_DATA_VALID2;
3630	flags |= EXT4_GET_BLOCKS_PRE_IO;
3631	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3632}
3633
3634static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3635						struct inode *inode,
3636						struct ext4_map_blocks *map,
3637						struct ext4_ext_path *path)
3638{
3639	struct ext4_extent *ex;
3640	ext4_lblk_t ee_block;
3641	unsigned int ee_len;
3642	int depth;
3643	int err = 0;
3644
3645	depth = ext_depth(inode);
3646	ex = path[depth].p_ext;
3647	ee_block = le32_to_cpu(ex->ee_block);
3648	ee_len = ext4_ext_get_actual_len(ex);
3649
3650	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3651		"block %llu, max_blocks %u\n", inode->i_ino,
3652		  (unsigned long long)ee_block, ee_len);
3653
3654	/* If extent is larger than requested it is a clear sign that we still
3655	 * have some extent state machine issues left. So extent_split is still
3656	 * required.
3657	 * TODO: Once all related issues will be fixed this situation should be
3658	 * illegal.
3659	 */
3660	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3661#ifdef EXT4_DEBUG
3662		ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3663			     " len %u; IO logical block %llu, len %u\n",
3664			     inode->i_ino, (unsigned long long)ee_block, ee_len,
3665			     (unsigned long long)map->m_lblk, map->m_len);
3666#endif
3667		err = ext4_split_unwritten_extents(handle, inode, map, path,
3668						   EXT4_GET_BLOCKS_CONVERT);
3669		if (err < 0)
3670			goto out;
3671		ext4_ext_drop_refs(path);
3672		path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3673		if (IS_ERR(path)) {
3674			err = PTR_ERR(path);
3675			goto out;
3676		}
3677		depth = ext_depth(inode);
3678		ex = path[depth].p_ext;
3679	}
3680
3681	err = ext4_ext_get_access(handle, inode, path + depth);
3682	if (err)
3683		goto out;
3684	/* first mark the extent as initialized */
3685	ext4_ext_mark_initialized(ex);
3686
3687	/* note: ext4_ext_correct_indexes() isn't needed here because
3688	 * borders are not changed
3689	 */
3690	ext4_ext_try_to_merge(handle, inode, path, ex);
3691
3692	/* Mark modified extent as dirty */
3693	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3694out:
3695	ext4_ext_show_leaf(inode, path);
3696	return err;
3697}
3698
3699static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3700			sector_t block, int count)
3701{
3702	int i;
3703	for (i = 0; i < count; i++)
3704                unmap_underlying_metadata(bdev, block + i);
3705}
3706
3707/*
3708 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3709 */
3710static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3711			      ext4_lblk_t lblk,
3712			      struct ext4_ext_path *path,
3713			      unsigned int len)
3714{
3715	int i, depth;
3716	struct ext4_extent_header *eh;
3717	struct ext4_extent *last_ex;
3718
3719	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3720		return 0;
3721
3722	depth = ext_depth(inode);
3723	eh = path[depth].p_hdr;
3724
3725	/*
3726	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3727	 * do not care for this case anymore. Simply remove the flag
3728	 * if there are no extents.
3729	 */
3730	if (unlikely(!eh->eh_entries))
3731		goto out;
3732	last_ex = EXT_LAST_EXTENT(eh);
3733	/*
3734	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3735	 * last block in the last extent in the file.  We test this by
3736	 * first checking to see if the caller to
3737	 * ext4_ext_get_blocks() was interested in the last block (or
3738	 * a block beyond the last block) in the current extent.  If
3739	 * this turns out to be false, we can bail out from this
3740	 * function immediately.
3741	 */
3742	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3743	    ext4_ext_get_actual_len(last_ex))
3744		return 0;
3745	/*
3746	 * If the caller does appear to be planning to write at or
3747	 * beyond the end of the current extent, we then test to see
3748	 * if the current extent is the last extent in the file, by
3749	 * checking to make sure it was reached via the rightmost node
3750	 * at each level of the tree.
3751	 */
3752	for (i = depth-1; i >= 0; i--)
3753		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3754			return 0;
3755out:
3756	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3757	return ext4_mark_inode_dirty(handle, inode);
3758}
3759
3760/**
3761 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3762 *
3763 * Return 1 if there is a delalloc block in the range, otherwise 0.
3764 */
3765int ext4_find_delalloc_range(struct inode *inode,
3766			     ext4_lblk_t lblk_start,
3767			     ext4_lblk_t lblk_end)
3768{
3769	struct extent_status es;
3770
3771	ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3772	if (es.es_len == 0)
3773		return 0; /* there is no delay extent in this tree */
3774	else if (es.es_lblk <= lblk_start &&
3775		 lblk_start < es.es_lblk + es.es_len)
3776		return 1;
3777	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3778		return 1;
3779	else
3780		return 0;
3781}
3782
3783int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3784{
3785	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3786	ext4_lblk_t lblk_start, lblk_end;
3787	lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3788	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3789
3790	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3791}
3792
3793/**
3794 * Determines how many complete clusters (out of those specified by the 'map')
3795 * are under delalloc and were reserved quota for.
3796 * This function is called when we are writing out the blocks that were
3797 * originally written with their allocation delayed, but then the space was
3798 * allocated using fallocate() before the delayed allocation could be resolved.
3799 * The cases to look for are:
3800 * ('=' indicated delayed allocated blocks
3801 *  '-' indicates non-delayed allocated blocks)
3802 * (a) partial clusters towards beginning and/or end outside of allocated range
3803 *     are not delalloc'ed.
3804 *	Ex:
3805 *	|----c---=|====c====|====c====|===-c----|
3806 *	         |++++++ allocated ++++++|
3807 *	==> 4 complete clusters in above example
3808 *
3809 * (b) partial cluster (outside of allocated range) towards either end is
3810 *     marked for delayed allocation. In this case, we will exclude that
3811 *     cluster.
3812 *	Ex:
3813 *	|----====c========|========c========|
3814 *	     |++++++ allocated ++++++|
3815 *	==> 1 complete clusters in above example
3816 *
3817 *	Ex:
3818 *	|================c================|
3819 *            |++++++ allocated ++++++|
3820 *	==> 0 complete clusters in above example
3821 *
3822 * The ext4_da_update_reserve_space will be called only if we
3823 * determine here that there were some "entire" clusters that span
3824 * this 'allocated' range.
3825 * In the non-bigalloc case, this function will just end up returning num_blks
3826 * without ever calling ext4_find_delalloc_range.
3827 */
3828static unsigned int
3829get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3830			   unsigned int num_blks)
3831{
3832	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3833	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3834	ext4_lblk_t lblk_from, lblk_to, c_offset;
3835	unsigned int allocated_clusters = 0;
3836
3837	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3838	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3839
3840	/* max possible clusters for this allocation */
3841	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3842
3843	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3844
3845	/* Check towards left side */
3846	c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3847	if (c_offset) {
3848		lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3849		lblk_to = lblk_from + c_offset - 1;
3850
3851		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3852			allocated_clusters--;
3853	}
3854
3855	/* Now check towards right. */
3856	c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3857	if (allocated_clusters && c_offset) {
3858		lblk_from = lblk_start + num_blks;
3859		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3860
3861		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3862			allocated_clusters--;
3863	}
3864
3865	return allocated_clusters;
3866}
3867
3868static int
3869ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3870			struct ext4_map_blocks *map,
3871			struct ext4_ext_path *path, int flags,
3872			unsigned int allocated, ext4_fsblk_t newblock)
3873{
3874	int ret = 0;
3875	int err = 0;
3876	ext4_io_end_t *io = ext4_inode_aio(inode);
3877
3878	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3879		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
3880		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3881		  flags, allocated);
3882	ext4_ext_show_leaf(inode, path);
3883
3884	/*
3885	 * When writing into uninitialized space, we should not fail to
3886	 * allocate metadata blocks for the new extent block if needed.
3887	 */
3888	flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
3889
3890	trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3891						    allocated, newblock);
3892
3893	/* get_block() before submit the IO, split the extent */
3894	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3895		ret = ext4_split_unwritten_extents(handle, inode, map,
3896						   path, flags);
3897		if (ret <= 0)
3898			goto out;
3899		/*
3900		 * Flag the inode(non aio case) or end_io struct (aio case)
3901		 * that this IO needs to conversion to written when IO is
3902		 * completed
3903		 */
3904		if (io)
3905			ext4_set_io_unwritten_flag(inode, io);
3906		else
3907			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3908		map->m_flags |= EXT4_MAP_UNWRITTEN;
3909		if (ext4_should_dioread_nolock(inode))
3910			map->m_flags |= EXT4_MAP_UNINIT;
3911		goto out;
3912	}
3913	/* IO end_io complete, convert the filled extent to written */
3914	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3915		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3916							path);
3917		if (ret >= 0) {
3918			ext4_update_inode_fsync_trans(handle, inode, 1);
3919			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3920						 path, map->m_len);
3921		} else
3922			err = ret;
3923		map->m_flags |= EXT4_MAP_MAPPED;
3924		if (allocated > map->m_len)
3925			allocated = map->m_len;
3926		map->m_len = allocated;
3927		goto out2;
3928	}
3929	/* buffered IO case */
3930	/*
3931	 * repeat fallocate creation request
3932	 * we already have an unwritten extent
3933	 */
3934	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
3935		map->m_flags |= EXT4_MAP_UNWRITTEN;
3936		goto map_out;
3937	}
3938
3939	/* buffered READ or buffered write_begin() lookup */
3940	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3941		/*
3942		 * We have blocks reserved already.  We
3943		 * return allocated blocks so that delalloc
3944		 * won't do block reservation for us.  But
3945		 * the buffer head will be unmapped so that
3946		 * a read from the block returns 0s.
3947		 */
3948		map->m_flags |= EXT4_MAP_UNWRITTEN;
3949		goto out1;
3950	}
3951
3952	/* buffered write, writepage time, convert*/
3953	ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags);
3954	if (ret >= 0)
3955		ext4_update_inode_fsync_trans(handle, inode, 1);
3956out:
3957	if (ret <= 0) {
3958		err = ret;
3959		goto out2;
3960	} else
3961		allocated = ret;
3962	map->m_flags |= EXT4_MAP_NEW;
3963	/*
3964	 * if we allocated more blocks than requested
3965	 * we need to make sure we unmap the extra block
3966	 * allocated. The actual needed block will get
3967	 * unmapped later when we find the buffer_head marked
3968	 * new.
3969	 */
3970	if (allocated > map->m_len) {
3971		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3972					newblock + map->m_len,
3973					allocated - map->m_len);
3974		allocated = map->m_len;
3975	}
3976	map->m_len = allocated;
3977
3978	/*
3979	 * If we have done fallocate with the offset that is already
3980	 * delayed allocated, we would have block reservation
3981	 * and quota reservation done in the delayed write path.
3982	 * But fallocate would have already updated quota and block
3983	 * count for this offset. So cancel these reservation
3984	 */
3985	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3986		unsigned int reserved_clusters;
3987		reserved_clusters = get_reserved_cluster_alloc(inode,
3988				map->m_lblk, map->m_len);
3989		if (reserved_clusters)
3990			ext4_da_update_reserve_space(inode,
3991						     reserved_clusters,
3992						     0);
3993	}
3994
3995map_out:
3996	map->m_flags |= EXT4_MAP_MAPPED;
3997	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3998		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3999					 map->m_len);
4000		if (err < 0)
4001			goto out2;
4002	}
4003out1:
4004	if (allocated > map->m_len)
4005		allocated = map->m_len;
4006	ext4_ext_show_leaf(inode, path);
4007	map->m_pblk = newblock;
4008	map->m_len = allocated;
4009out2:
4010	if (path) {
4011		ext4_ext_drop_refs(path);
4012		kfree(path);
4013	}
4014	return err ? err : allocated;
4015}
4016
4017/*
4018 * get_implied_cluster_alloc - check to see if the requested
4019 * allocation (in the map structure) overlaps with a cluster already
4020 * allocated in an extent.
4021 *	@sb	The filesystem superblock structure
4022 *	@map	The requested lblk->pblk mapping
4023 *	@ex	The extent structure which might contain an implied
4024 *			cluster allocation
4025 *
4026 * This function is called by ext4_ext_map_blocks() after we failed to
4027 * find blocks that were already in the inode's extent tree.  Hence,
4028 * we know that the beginning of the requested region cannot overlap
4029 * the extent from the inode's extent tree.  There are three cases we
4030 * want to catch.  The first is this case:
4031 *
4032 *		 |--- cluster # N--|
4033 *    |--- extent ---|	|---- requested region ---|
4034 *			|==========|
4035 *
4036 * The second case that we need to test for is this one:
4037 *
4038 *   |--------- cluster # N ----------------|
4039 *	   |--- requested region --|   |------- extent ----|
4040 *	   |=======================|
4041 *
4042 * The third case is when the requested region lies between two extents
4043 * within the same cluster:
4044 *          |------------- cluster # N-------------|
4045 * |----- ex -----|                  |---- ex_right ----|
4046 *                  |------ requested region ------|
4047 *                  |================|
4048 *
4049 * In each of the above cases, we need to set the map->m_pblk and
4050 * map->m_len so it corresponds to the return the extent labelled as
4051 * "|====|" from cluster #N, since it is already in use for data in
4052 * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
4053 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4054 * as a new "allocated" block region.  Otherwise, we will return 0 and
4055 * ext4_ext_map_blocks() will then allocate one or more new clusters
4056 * by calling ext4_mb_new_blocks().
4057 */
4058static int get_implied_cluster_alloc(struct super_block *sb,
4059				     struct ext4_map_blocks *map,
4060				     struct ext4_extent *ex,
4061				     struct ext4_ext_path *path)
4062{
4063	struct ext4_sb_info *sbi = EXT4_SB(sb);
4064	ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4065	ext4_lblk_t ex_cluster_start, ex_cluster_end;
4066	ext4_lblk_t rr_cluster_start;
4067	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4068	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4069	unsigned short ee_len = ext4_ext_get_actual_len(ex);
4070
4071	/* The extent passed in that we are trying to match */
4072	ex_cluster_start = EXT4_B2C(sbi, ee_block);
4073	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4074
4075	/* The requested region passed into ext4_map_blocks() */
4076	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4077
4078	if ((rr_cluster_start == ex_cluster_end) ||
4079	    (rr_cluster_start == ex_cluster_start)) {
4080		if (rr_cluster_start == ex_cluster_end)
4081			ee_start += ee_len - 1;
4082		map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
4083			c_offset;
4084		map->m_len = min(map->m_len,
4085				 (unsigned) sbi->s_cluster_ratio - c_offset);
4086		/*
4087		 * Check for and handle this case:
4088		 *
4089		 *   |--------- cluster # N-------------|
4090		 *		       |------- extent ----|
4091		 *	   |--- requested region ---|
4092		 *	   |===========|
4093		 */
4094
4095		if (map->m_lblk < ee_block)
4096			map->m_len = min(map->m_len, ee_block - map->m_lblk);
4097
4098		/*
4099		 * Check for the case where there is already another allocated
4100		 * block to the right of 'ex' but before the end of the cluster.
4101		 *
4102		 *          |------------- cluster # N-------------|
4103		 * |----- ex -----|                  |---- ex_right ----|
4104		 *                  |------ requested region ------|
4105		 *                  |================|
4106		 */
4107		if (map->m_lblk > ee_block) {
4108			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4109			map->m_len = min(map->m_len, next - map->m_lblk);
4110		}
4111
4112		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4113		return 1;
4114	}
4115
4116	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4117	return 0;
4118}
4119
4120
4121/*
4122 * Block allocation/map/preallocation routine for extents based files
4123 *
4124 *
4125 * Need to be called with
4126 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4127 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4128 *
4129 * return > 0, number of of blocks already mapped/allocated
4130 *          if create == 0 and these are pre-allocated blocks
4131 *          	buffer head is unmapped
4132 *          otherwise blocks are mapped
4133 *
4134 * return = 0, if plain look up failed (blocks have not been allocated)
4135 *          buffer head is unmapped
4136 *
4137 * return < 0, error case.
4138 */
4139int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4140			struct ext4_map_blocks *map, int flags)
4141{
4142	struct ext4_ext_path *path = NULL;
4143	struct ext4_extent newex, *ex, *ex2;
4144	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4145	ext4_fsblk_t newblock = 0;
4146	int free_on_err = 0, err = 0, depth;
4147	unsigned int allocated = 0, offset = 0;
4148	unsigned int allocated_clusters = 0;
4149	struct ext4_allocation_request ar;
4150	ext4_io_end_t *io = ext4_inode_aio(inode);
4151	ext4_lblk_t cluster_offset;
4152	int set_unwritten = 0;
4153
4154	ext_debug("blocks %u/%u requested for inode %lu\n",
4155		  map->m_lblk, map->m_len, inode->i_ino);
4156	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4157
4158	/* find extent for this block */
4159	path = ext4_ext_find_extent(inode, map->m_lblk, NULL, 0);
4160	if (IS_ERR(path)) {
4161		err = PTR_ERR(path);
4162		path = NULL;
4163		goto out2;
4164	}
4165
4166	depth = ext_depth(inode);
4167
4168	/*
4169	 * consistent leaf must not be empty;
4170	 * this situation is possible, though, _during_ tree modification;
4171	 * this is why assert can't be put in ext4_ext_find_extent()
4172	 */
4173	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4174		EXT4_ERROR_INODE(inode, "bad extent address "
4175				 "lblock: %lu, depth: %d pblock %lld",
4176				 (unsigned long) map->m_lblk, depth,
4177				 path[depth].p_block);
4178		err = -EIO;
4179		goto out2;
4180	}
4181
4182	ex = path[depth].p_ext;
4183	if (ex) {
4184		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4185		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4186		unsigned short ee_len;
4187
4188		/*
4189		 * Uninitialized extents are treated as holes, except that
4190		 * we split out initialized portions during a write.
4191		 */
4192		ee_len = ext4_ext_get_actual_len(ex);
4193
4194		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4195
4196		/* if found extent covers block, simply return it */
4197		if (in_range(map->m_lblk, ee_block, ee_len)) {
4198			newblock = map->m_lblk - ee_block + ee_start;
4199			/* number of remaining blocks in the extent */
4200			allocated = ee_len - (map->m_lblk - ee_block);
4201			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4202				  ee_block, ee_len, newblock);
4203
4204			if (!ext4_ext_is_uninitialized(ex))
4205				goto out;
4206
4207			allocated = ext4_ext_handle_uninitialized_extents(
4208				handle, inode, map, path, flags,
4209				allocated, newblock);
4210			goto out3;
4211		}
4212	}
4213
4214	if ((sbi->s_cluster_ratio > 1) &&
4215	    ext4_find_delalloc_cluster(inode, map->m_lblk))
4216		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4217
4218	/*
4219	 * requested block isn't allocated yet;
4220	 * we couldn't try to create block if create flag is zero
4221	 */
4222	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4223		/*
4224		 * put just found gap into cache to speed up
4225		 * subsequent requests
4226		 */
4227		if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4228			ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4229		goto out2;
4230	}
4231
4232	/*
4233	 * Okay, we need to do block allocation.
4234	 */
4235	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4236	newex.ee_block = cpu_to_le32(map->m_lblk);
4237	cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4238
4239	/*
4240	 * If we are doing bigalloc, check to see if the extent returned
4241	 * by ext4_ext_find_extent() implies a cluster we can use.
4242	 */
4243	if (cluster_offset && ex &&
4244	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4245		ar.len = allocated = map->m_len;
4246		newblock = map->m_pblk;
4247		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4248		goto got_allocated_blocks;
4249	}
4250
4251	/* find neighbour allocated blocks */
4252	ar.lleft = map->m_lblk;
4253	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4254	if (err)
4255		goto out2;
4256	ar.lright = map->m_lblk;
4257	ex2 = NULL;
4258	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4259	if (err)
4260		goto out2;
4261
4262	/* Check if the extent after searching to the right implies a
4263	 * cluster we can use. */
4264	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4265	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4266		ar.len = allocated = map->m_len;
4267		newblock = map->m_pblk;
4268		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4269		goto got_allocated_blocks;
4270	}
4271
4272	/*
4273	 * See if request is beyond maximum number of blocks we can have in
4274	 * a single extent. For an initialized extent this limit is
4275	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4276	 * EXT_UNINIT_MAX_LEN.
4277	 */
4278	if (map->m_len > EXT_INIT_MAX_LEN &&
4279	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4280		map->m_len = EXT_INIT_MAX_LEN;
4281	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4282		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4283		map->m_len = EXT_UNINIT_MAX_LEN;
4284
4285	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4286	newex.ee_len = cpu_to_le16(map->m_len);
4287	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4288	if (err)
4289		allocated = ext4_ext_get_actual_len(&newex);
4290	else
4291		allocated = map->m_len;
4292
4293	/* allocate new block */
4294	ar.inode = inode;
4295	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4296	ar.logical = map->m_lblk;
4297	/*
4298	 * We calculate the offset from the beginning of the cluster
4299	 * for the logical block number, since when we allocate a
4300	 * physical cluster, the physical block should start at the
4301	 * same offset from the beginning of the cluster.  This is
4302	 * needed so that future calls to get_implied_cluster_alloc()
4303	 * work correctly.
4304	 */
4305	offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4306	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4307	ar.goal -= offset;
4308	ar.logical -= offset;
4309	if (S_ISREG(inode->i_mode))
4310		ar.flags = EXT4_MB_HINT_DATA;
4311	else
4312		/* disable in-core preallocation for non-regular files */
4313		ar.flags = 0;
4314	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4315		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4316	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4317	if (!newblock)
4318		goto out2;
4319	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4320		  ar.goal, newblock, allocated);
4321	free_on_err = 1;
4322	allocated_clusters = ar.len;
4323	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4324	if (ar.len > allocated)
4325		ar.len = allocated;
4326
4327got_allocated_blocks:
4328	/* try to insert new extent into found leaf and return */
4329	ext4_ext_store_pblock(&newex, newblock + offset);
4330	newex.ee_len = cpu_to_le16(ar.len);
4331	/* Mark uninitialized */
4332	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4333		ext4_ext_mark_uninitialized(&newex);
4334		map->m_flags |= EXT4_MAP_UNWRITTEN;
4335		/*
4336		 * io_end structure was created for every IO write to an
4337		 * uninitialized extent. To avoid unnecessary conversion,
4338		 * here we flag the IO that really needs the conversion.
4339		 * For non asycn direct IO case, flag the inode state
4340		 * that we need to perform conversion when IO is done.
4341		 */
4342		if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4343			set_unwritten = 1;
4344		if (ext4_should_dioread_nolock(inode))
4345			map->m_flags |= EXT4_MAP_UNINIT;
4346	}
4347
4348	err = 0;
4349	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4350		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4351					 path, ar.len);
4352	if (!err)
4353		err = ext4_ext_insert_extent(handle, inode, path,
4354					     &newex, flags);
4355
4356	if (!err && set_unwritten) {
4357		if (io)
4358			ext4_set_io_unwritten_flag(inode, io);
4359		else
4360			ext4_set_inode_state(inode,
4361					     EXT4_STATE_DIO_UNWRITTEN);
4362	}
4363
4364	if (err && free_on_err) {
4365		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4366			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4367		/* free data blocks we just allocated */
4368		/* not a good idea to call discard here directly,
4369		 * but otherwise we'd need to call it every free() */
4370		ext4_discard_preallocations(inode);
4371		ext4_free_blocks(handle, inode, NULL, newblock,
4372				 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4373		goto out2;
4374	}
4375
4376	/* previous routine could use block we allocated */
4377	newblock = ext4_ext_pblock(&newex);
4378	allocated = ext4_ext_get_actual_len(&newex);
4379	if (allocated > map->m_len)
4380		allocated = map->m_len;
4381	map->m_flags |= EXT4_MAP_NEW;
4382
4383	/*
4384	 * Update reserved blocks/metadata blocks after successful
4385	 * block allocation which had been deferred till now.
4386	 */
4387	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4388		unsigned int reserved_clusters;
4389		/*
4390		 * Check how many clusters we had reserved this allocated range
4391		 */
4392		reserved_clusters = get_reserved_cluster_alloc(inode,
4393						map->m_lblk, allocated);
4394		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4395			if (reserved_clusters) {
4396				/*
4397				 * We have clusters reserved for this range.
4398				 * But since we are not doing actual allocation
4399				 * and are simply using blocks from previously
4400				 * allocated cluster, we should release the
4401				 * reservation and not claim quota.
4402				 */
4403				ext4_da_update_reserve_space(inode,
4404						reserved_clusters, 0);
4405			}
4406		} else {
4407			BUG_ON(allocated_clusters < reserved_clusters);
4408			if (reserved_clusters < allocated_clusters) {
4409				struct ext4_inode_info *ei = EXT4_I(inode);
4410				int reservation = allocated_clusters -
4411						  reserved_clusters;
4412				/*
4413				 * It seems we claimed few clusters outside of
4414				 * the range of this allocation. We should give
4415				 * it back to the reservation pool. This can
4416				 * happen in the following case:
4417				 *
4418				 * * Suppose s_cluster_ratio is 4 (i.e., each
4419				 *   cluster has 4 blocks. Thus, the clusters
4420				 *   are [0-3],[4-7],[8-11]...
4421				 * * First comes delayed allocation write for
4422				 *   logical blocks 10 & 11. Since there were no
4423				 *   previous delayed allocated blocks in the
4424				 *   range [8-11], we would reserve 1 cluster
4425				 *   for this write.
4426				 * * Next comes write for logical blocks 3 to 8.
4427				 *   In this case, we will reserve 2 clusters
4428				 *   (for [0-3] and [4-7]; and not for [8-11] as
4429				 *   that range has a delayed allocated blocks.
4430				 *   Thus total reserved clusters now becomes 3.
4431				 * * Now, during the delayed allocation writeout
4432				 *   time, we will first write blocks [3-8] and
4433				 *   allocate 3 clusters for writing these
4434				 *   blocks. Also, we would claim all these
4435				 *   three clusters above.
4436				 * * Now when we come here to writeout the
4437				 *   blocks [10-11], we would expect to claim
4438				 *   the reservation of 1 cluster we had made
4439				 *   (and we would claim it since there are no
4440				 *   more delayed allocated blocks in the range
4441				 *   [8-11]. But our reserved cluster count had
4442				 *   already gone to 0.
4443				 *
4444				 *   Thus, at the step 4 above when we determine
4445				 *   that there are still some unwritten delayed
4446				 *   allocated blocks outside of our current
4447				 *   block range, we should increment the
4448				 *   reserved clusters count so that when the
4449				 *   remaining blocks finally gets written, we
4450				 *   could claim them.
4451				 */
4452				dquot_reserve_block(inode,
4453						EXT4_C2B(sbi, reservation));
4454				spin_lock(&ei->i_block_reservation_lock);
4455				ei->i_reserved_data_blocks += reservation;
4456				spin_unlock(&ei->i_block_reservation_lock);
4457			}
4458			/*
4459			 * We will claim quota for all newly allocated blocks.
4460			 * We're updating the reserved space *after* the
4461			 * correction above so we do not accidentally free
4462			 * all the metadata reservation because we might
4463			 * actually need it later on.
4464			 */
4465			ext4_da_update_reserve_space(inode, allocated_clusters,
4466							1);
4467		}
4468	}
4469
4470	/*
4471	 * Cache the extent and update transaction to commit on fdatasync only
4472	 * when it is _not_ an uninitialized extent.
4473	 */
4474	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
4475		ext4_update_inode_fsync_trans(handle, inode, 1);
4476	else
4477		ext4_update_inode_fsync_trans(handle, inode, 0);
4478out:
4479	if (allocated > map->m_len)
4480		allocated = map->m_len;
4481	ext4_ext_show_leaf(inode, path);
4482	map->m_flags |= EXT4_MAP_MAPPED;
4483	map->m_pblk = newblock;
4484	map->m_len = allocated;
4485out2:
4486	if (path) {
4487		ext4_ext_drop_refs(path);
4488		kfree(path);
4489	}
4490
4491out3:
4492	trace_ext4_ext_map_blocks_exit(inode, flags, map,
4493				       err ? err : allocated);
4494	ext4_es_lru_add(inode);
4495	return err ? err : allocated;
4496}
4497
4498void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4499{
4500	struct super_block *sb = inode->i_sb;
4501	ext4_lblk_t last_block;
4502	int err = 0;
4503
4504	/*
4505	 * TODO: optimization is possible here.
4506	 * Probably we need not scan at all,
4507	 * because page truncation is enough.
4508	 */
4509
4510	/* we have to know where to truncate from in crash case */
4511	EXT4_I(inode)->i_disksize = inode->i_size;
4512	ext4_mark_inode_dirty(handle, inode);
4513
4514	last_block = (inode->i_size + sb->s_blocksize - 1)
4515			>> EXT4_BLOCK_SIZE_BITS(sb);
4516retry:
4517	err = ext4_es_remove_extent(inode, last_block,
4518				    EXT_MAX_BLOCKS - last_block);
4519	if (err == -ENOMEM) {
4520		cond_resched();
4521		congestion_wait(BLK_RW_ASYNC, HZ/50);
4522		goto retry;
4523	}
4524	if (err) {
4525		ext4_std_error(inode->i_sb, err);
4526		return;
4527	}
4528	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4529	ext4_std_error(inode->i_sb, err);
4530}
4531
4532static void ext4_falloc_update_inode(struct inode *inode,
4533				int mode, loff_t new_size, int update_ctime)
4534{
4535	struct timespec now;
4536
4537	if (update_ctime) {
4538		now = current_fs_time(inode->i_sb);
4539		if (!timespec_equal(&inode->i_ctime, &now))
4540			inode->i_ctime = now;
4541	}
4542	/*
4543	 * Update only when preallocation was requested beyond
4544	 * the file size.
4545	 */
4546	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4547		if (new_size > i_size_read(inode))
4548			i_size_write(inode, new_size);
4549		if (new_size > EXT4_I(inode)->i_disksize)
4550			ext4_update_i_disksize(inode, new_size);
4551	} else {
4552		/*
4553		 * Mark that we allocate beyond EOF so the subsequent truncate
4554		 * can proceed even if the new size is the same as i_size.
4555		 */
4556		if (new_size > i_size_read(inode))
4557			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4558	}
4559
4560}
4561
4562/*
4563 * preallocate space for a file. This implements ext4's fallocate file
4564 * operation, which gets called from sys_fallocate system call.
4565 * For block-mapped files, posix_fallocate should fall back to the method
4566 * of writing zeroes to the required new blocks (the same behavior which is
4567 * expected for file systems which do not support fallocate() system call).
4568 */
4569long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4570{
4571	struct inode *inode = file_inode(file);
4572	handle_t *handle;
4573	loff_t new_size;
4574	unsigned int max_blocks;
4575	int ret = 0;
4576	int ret2 = 0;
4577	int retries = 0;
4578	int flags;
4579	struct ext4_map_blocks map;
4580	unsigned int credits, blkbits = inode->i_blkbits;
4581
4582	/* Return error if mode is not supported */
4583	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4584		return -EOPNOTSUPP;
4585
4586	if (mode & FALLOC_FL_PUNCH_HOLE)
4587		return ext4_punch_hole(inode, offset, len);
4588
4589	ret = ext4_convert_inline_data(inode);
4590	if (ret)
4591		return ret;
4592
4593	/*
4594	 * currently supporting (pre)allocate mode for extent-based
4595	 * files _only_
4596	 */
4597	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4598		return -EOPNOTSUPP;
4599
4600	trace_ext4_fallocate_enter(inode, offset, len, mode);
4601	map.m_lblk = offset >> blkbits;
4602	/*
4603	 * We can't just convert len to max_blocks because
4604	 * If blocksize = 4096 offset = 3072 and len = 2048
4605	 */
4606	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4607		- map.m_lblk;
4608	/*
4609	 * credits to insert 1 extent into extent tree
4610	 */
4611	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4612	mutex_lock(&inode->i_mutex);
4613	ret = inode_newsize_ok(inode, (len + offset));
4614	if (ret) {
4615		mutex_unlock(&inode->i_mutex);
4616		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4617		return ret;
4618	}
4619	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4620	if (mode & FALLOC_FL_KEEP_SIZE)
4621		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4622	/*
4623	 * Don't normalize the request if it can fit in one extent so
4624	 * that it doesn't get unnecessarily split into multiple
4625	 * extents.
4626	 */
4627	if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4628		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4629
4630retry:
4631	while (ret >= 0 && ret < max_blocks) {
4632		map.m_lblk = map.m_lblk + ret;
4633		map.m_len = max_blocks = max_blocks - ret;
4634		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4635					    credits);
4636		if (IS_ERR(handle)) {
4637			ret = PTR_ERR(handle);
4638			break;
4639		}
4640		ret = ext4_map_blocks(handle, inode, &map, flags);
4641		if (ret <= 0) {
4642#ifdef EXT4FS_DEBUG
4643			ext4_warning(inode->i_sb,
4644				     "inode #%lu: block %u: len %u: "
4645				     "ext4_ext_map_blocks returned %d",
4646				     inode->i_ino, map.m_lblk,
4647				     map.m_len, ret);
4648#endif
4649			ext4_mark_inode_dirty(handle, inode);
4650			ret2 = ext4_journal_stop(handle);
4651			break;
4652		}
4653		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4654						blkbits) >> blkbits))
4655			new_size = offset + len;
4656		else
4657			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4658
4659		ext4_falloc_update_inode(inode, mode, new_size,
4660					 (map.m_flags & EXT4_MAP_NEW));
4661		ext4_mark_inode_dirty(handle, inode);
4662		if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4663			ext4_handle_sync(handle);
4664		ret2 = ext4_journal_stop(handle);
4665		if (ret2)
4666			break;
4667	}
4668	if (ret == -ENOSPC &&
4669			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4670		ret = 0;
4671		goto retry;
4672	}
4673	mutex_unlock(&inode->i_mutex);
4674	trace_ext4_fallocate_exit(inode, offset, max_blocks,
4675				ret > 0 ? ret2 : ret);
4676	return ret > 0 ? ret2 : ret;
4677}
4678
4679/*
4680 * This function convert a range of blocks to written extents
4681 * The caller of this function will pass the start offset and the size.
4682 * all unwritten extents within this range will be converted to
4683 * written extents.
4684 *
4685 * This function is called from the direct IO end io call back
4686 * function, to convert the fallocated extents after IO is completed.
4687 * Returns 0 on success.
4688 */
4689int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4690				   loff_t offset, ssize_t len)
4691{
4692	unsigned int max_blocks;
4693	int ret = 0;
4694	int ret2 = 0;
4695	struct ext4_map_blocks map;
4696	unsigned int credits, blkbits = inode->i_blkbits;
4697
4698	map.m_lblk = offset >> blkbits;
4699	/*
4700	 * We can't just convert len to max_blocks because
4701	 * If blocksize = 4096 offset = 3072 and len = 2048
4702	 */
4703	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4704		      map.m_lblk);
4705	/*
4706	 * This is somewhat ugly but the idea is clear: When transaction is
4707	 * reserved, everything goes into it. Otherwise we rather start several
4708	 * smaller transactions for conversion of each extent separately.
4709	 */
4710	if (handle) {
4711		handle = ext4_journal_start_reserved(handle,
4712						     EXT4_HT_EXT_CONVERT);
4713		if (IS_ERR(handle))
4714			return PTR_ERR(handle);
4715		credits = 0;
4716	} else {
4717		/*
4718		 * credits to insert 1 extent into extent tree
4719		 */
4720		credits = ext4_chunk_trans_blocks(inode, max_blocks);
4721	}
4722	while (ret >= 0 && ret < max_blocks) {
4723		map.m_lblk += ret;
4724		map.m_len = (max_blocks -= ret);
4725		if (credits) {
4726			handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4727						    credits);
4728			if (IS_ERR(handle)) {
4729				ret = PTR_ERR(handle);
4730				break;
4731			}
4732		}
4733		ret = ext4_map_blocks(handle, inode, &map,
4734				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4735		if (ret <= 0)
4736			ext4_warning(inode->i_sb,
4737				     "inode #%lu: block %u: len %u: "
4738				     "ext4_ext_map_blocks returned %d",
4739				     inode->i_ino, map.m_lblk,
4740				     map.m_len, ret);
4741		ext4_mark_inode_dirty(handle, inode);
4742		if (credits)
4743			ret2 = ext4_journal_stop(handle);
4744		if (ret <= 0 || ret2)
4745			break;
4746	}
4747	if (!credits)
4748		ret2 = ext4_journal_stop(handle);
4749	return ret > 0 ? ret2 : ret;
4750}
4751
4752/*
4753 * If newes is not existing extent (newes->ec_pblk equals zero) find
4754 * delayed extent at start of newes and update newes accordingly and
4755 * return start of the next delayed extent.
4756 *
4757 * If newes is existing extent (newes->ec_pblk is not equal zero)
4758 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4759 * extent found. Leave newes unmodified.
4760 */
4761static int ext4_find_delayed_extent(struct inode *inode,
4762				    struct extent_status *newes)
4763{
4764	struct extent_status es;
4765	ext4_lblk_t block, next_del;
4766
4767	if (newes->es_pblk == 0) {
4768		ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
4769				newes->es_lblk + newes->es_len - 1, &es);
4770
4771		/*
4772		 * No extent in extent-tree contains block @newes->es_pblk,
4773		 * then the block may stay in 1)a hole or 2)delayed-extent.
4774		 */
4775		if (es.es_len == 0)
4776			/* A hole found. */
4777			return 0;
4778
4779		if (es.es_lblk > newes->es_lblk) {
4780			/* A hole found. */
4781			newes->es_len = min(es.es_lblk - newes->es_lblk,
4782					    newes->es_len);
4783			return 0;
4784		}
4785
4786		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
4787	}
4788
4789	block = newes->es_lblk + newes->es_len;
4790	ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
4791	if (es.es_len == 0)
4792		next_del = EXT_MAX_BLOCKS;
4793	else
4794		next_del = es.es_lblk;
4795
4796	return next_del;
4797}
4798/* fiemap flags we can handle specified here */
4799#define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4800
4801static int ext4_xattr_fiemap(struct inode *inode,
4802				struct fiemap_extent_info *fieinfo)
4803{
4804	__u64 physical = 0;
4805	__u64 length;
4806	__u32 flags = FIEMAP_EXTENT_LAST;
4807	int blockbits = inode->i_sb->s_blocksize_bits;
4808	int error = 0;
4809
4810	/* in-inode? */
4811	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4812		struct ext4_iloc iloc;
4813		int offset;	/* offset of xattr in inode */
4814
4815		error = ext4_get_inode_loc(inode, &iloc);
4816		if (error)
4817			return error;
4818		physical = (__u64)iloc.bh->b_blocknr << blockbits;
4819		offset = EXT4_GOOD_OLD_INODE_SIZE +
4820				EXT4_I(inode)->i_extra_isize;
4821		physical += offset;
4822		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4823		flags |= FIEMAP_EXTENT_DATA_INLINE;
4824		brelse(iloc.bh);
4825	} else { /* external block */
4826		physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
4827		length = inode->i_sb->s_blocksize;
4828	}
4829
4830	if (physical)
4831		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4832						length, flags);
4833	return (error < 0 ? error : 0);
4834}
4835
4836int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4837		__u64 start, __u64 len)
4838{
4839	ext4_lblk_t start_blk;
4840	int error = 0;
4841
4842	if (ext4_has_inline_data(inode)) {
4843		int has_inline = 1;
4844
4845		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4846
4847		if (has_inline)
4848			return error;
4849	}
4850
4851	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
4852		error = ext4_ext_precache(inode);
4853		if (error)
4854			return error;
4855	}
4856
4857	/* fallback to generic here if not in extents fmt */
4858	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4859		return generic_block_fiemap(inode, fieinfo, start, len,
4860			ext4_get_block);
4861
4862	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4863		return -EBADR;
4864
4865	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4866		error = ext4_xattr_fiemap(inode, fieinfo);
4867	} else {
4868		ext4_lblk_t len_blks;
4869		__u64 last_blk;
4870
4871		start_blk = start >> inode->i_sb->s_blocksize_bits;
4872		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4873		if (last_blk >= EXT_MAX_BLOCKS)
4874			last_blk = EXT_MAX_BLOCKS-1;
4875		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4876
4877		/*
4878		 * Walk the extent tree gathering extent information
4879		 * and pushing extents back to the user.
4880		 */
4881		error = ext4_fill_fiemap_extents(inode, start_blk,
4882						 len_blks, fieinfo);
4883	}
4884	ext4_es_lru_add(inode);
4885	return error;
4886}
4887