extents.c revision ff95ec22cd7faa0d8b58dcc4207f21502df7b00b
1/*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 *   Copyright (c) 2005, Bull S.A.
7 *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21 */
22
23/*
24 * Extents support for EXT4
25 *
26 * TODO:
27 *   - ext4*_error() should be used in some situations
28 *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 *   - smart tree reduction
30 */
31
32#include <linux/fs.h>
33#include <linux/time.h>
34#include <linux/jbd2.h>
35#include <linux/highuid.h>
36#include <linux/pagemap.h>
37#include <linux/quotaops.h>
38#include <linux/string.h>
39#include <linux/slab.h>
40#include <linux/falloc.h>
41#include <asm/uaccess.h>
42#include <linux/fiemap.h>
43#include "ext4_jbd2.h"
44#include "ext4_extents.h"
45#include "xattr.h"
46
47#include <trace/events/ext4.h>
48
49/*
50 * used by extent splitting.
51 */
52#define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
53					due to ENOSPC */
54#define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
55#define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
56
57#define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
58#define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
59
60static __le32 ext4_extent_block_csum(struct inode *inode,
61				     struct ext4_extent_header *eh)
62{
63	struct ext4_inode_info *ei = EXT4_I(inode);
64	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65	__u32 csum;
66
67	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68			   EXT4_EXTENT_TAIL_OFFSET(eh));
69	return cpu_to_le32(csum);
70}
71
72static int ext4_extent_block_csum_verify(struct inode *inode,
73					 struct ext4_extent_header *eh)
74{
75	struct ext4_extent_tail *et;
76
77	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
79		return 1;
80
81	et = find_ext4_extent_tail(eh);
82	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
83		return 0;
84	return 1;
85}
86
87static void ext4_extent_block_csum_set(struct inode *inode,
88				       struct ext4_extent_header *eh)
89{
90	struct ext4_extent_tail *et;
91
92	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
94		return;
95
96	et = find_ext4_extent_tail(eh);
97	et->et_checksum = ext4_extent_block_csum(inode, eh);
98}
99
100static int ext4_split_extent(handle_t *handle,
101				struct inode *inode,
102				struct ext4_ext_path *path,
103				struct ext4_map_blocks *map,
104				int split_flag,
105				int flags);
106
107static int ext4_split_extent_at(handle_t *handle,
108			     struct inode *inode,
109			     struct ext4_ext_path *path,
110			     ext4_lblk_t split,
111			     int split_flag,
112			     int flags);
113
114static int ext4_find_delayed_extent(struct inode *inode,
115				    struct extent_status *newes);
116
117static int ext4_ext_truncate_extend_restart(handle_t *handle,
118					    struct inode *inode,
119					    int needed)
120{
121	int err;
122
123	if (!ext4_handle_valid(handle))
124		return 0;
125	if (handle->h_buffer_credits > needed)
126		return 0;
127	err = ext4_journal_extend(handle, needed);
128	if (err <= 0)
129		return err;
130	err = ext4_truncate_restart_trans(handle, inode, needed);
131	if (err == 0)
132		err = -EAGAIN;
133
134	return err;
135}
136
137/*
138 * could return:
139 *  - EROFS
140 *  - ENOMEM
141 */
142static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143				struct ext4_ext_path *path)
144{
145	if (path->p_bh) {
146		/* path points to block */
147		return ext4_journal_get_write_access(handle, path->p_bh);
148	}
149	/* path points to leaf/index in inode body */
150	/* we use in-core data, no need to protect them */
151	return 0;
152}
153
154/*
155 * could return:
156 *  - EROFS
157 *  - ENOMEM
158 *  - EIO
159 */
160#define ext4_ext_dirty(handle, inode, path) \
161		__ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
162static int __ext4_ext_dirty(const char *where, unsigned int line,
163			    handle_t *handle, struct inode *inode,
164			    struct ext4_ext_path *path)
165{
166	int err;
167	if (path->p_bh) {
168		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
169		/* path points to block */
170		err = __ext4_handle_dirty_metadata(where, line, handle,
171						   inode, path->p_bh);
172	} else {
173		/* path points to leaf/index in inode body */
174		err = ext4_mark_inode_dirty(handle, inode);
175	}
176	return err;
177}
178
179static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
180			      struct ext4_ext_path *path,
181			      ext4_lblk_t block)
182{
183	if (path) {
184		int depth = path->p_depth;
185		struct ext4_extent *ex;
186
187		/*
188		 * Try to predict block placement assuming that we are
189		 * filling in a file which will eventually be
190		 * non-sparse --- i.e., in the case of libbfd writing
191		 * an ELF object sections out-of-order but in a way
192		 * the eventually results in a contiguous object or
193		 * executable file, or some database extending a table
194		 * space file.  However, this is actually somewhat
195		 * non-ideal if we are writing a sparse file such as
196		 * qemu or KVM writing a raw image file that is going
197		 * to stay fairly sparse, since it will end up
198		 * fragmenting the file system's free space.  Maybe we
199		 * should have some hueristics or some way to allow
200		 * userspace to pass a hint to file system,
201		 * especially if the latter case turns out to be
202		 * common.
203		 */
204		ex = path[depth].p_ext;
205		if (ex) {
206			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
207			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
208
209			if (block > ext_block)
210				return ext_pblk + (block - ext_block);
211			else
212				return ext_pblk - (ext_block - block);
213		}
214
215		/* it looks like index is empty;
216		 * try to find starting block from index itself */
217		if (path[depth].p_bh)
218			return path[depth].p_bh->b_blocknr;
219	}
220
221	/* OK. use inode's group */
222	return ext4_inode_to_goal_block(inode);
223}
224
225/*
226 * Allocation for a meta data block
227 */
228static ext4_fsblk_t
229ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
230			struct ext4_ext_path *path,
231			struct ext4_extent *ex, int *err, unsigned int flags)
232{
233	ext4_fsblk_t goal, newblock;
234
235	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
236	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
237					NULL, err);
238	return newblock;
239}
240
241static inline int ext4_ext_space_block(struct inode *inode, int check)
242{
243	int size;
244
245	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
246			/ sizeof(struct ext4_extent);
247#ifdef AGGRESSIVE_TEST
248	if (!check && size > 6)
249		size = 6;
250#endif
251	return size;
252}
253
254static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
255{
256	int size;
257
258	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
259			/ sizeof(struct ext4_extent_idx);
260#ifdef AGGRESSIVE_TEST
261	if (!check && size > 5)
262		size = 5;
263#endif
264	return size;
265}
266
267static inline int ext4_ext_space_root(struct inode *inode, int check)
268{
269	int size;
270
271	size = sizeof(EXT4_I(inode)->i_data);
272	size -= sizeof(struct ext4_extent_header);
273	size /= sizeof(struct ext4_extent);
274#ifdef AGGRESSIVE_TEST
275	if (!check && size > 3)
276		size = 3;
277#endif
278	return size;
279}
280
281static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
282{
283	int size;
284
285	size = sizeof(EXT4_I(inode)->i_data);
286	size -= sizeof(struct ext4_extent_header);
287	size /= sizeof(struct ext4_extent_idx);
288#ifdef AGGRESSIVE_TEST
289	if (!check && size > 4)
290		size = 4;
291#endif
292	return size;
293}
294
295/*
296 * Calculate the number of metadata blocks needed
297 * to allocate @blocks
298 * Worse case is one block per extent
299 */
300int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
301{
302	struct ext4_inode_info *ei = EXT4_I(inode);
303	int idxs;
304
305	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
306		/ sizeof(struct ext4_extent_idx));
307
308	/*
309	 * If the new delayed allocation block is contiguous with the
310	 * previous da block, it can share index blocks with the
311	 * previous block, so we only need to allocate a new index
312	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
313	 * an additional index block, and at ldxs**3 blocks, yet
314	 * another index blocks.
315	 */
316	if (ei->i_da_metadata_calc_len &&
317	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
318		int num = 0;
319
320		if ((ei->i_da_metadata_calc_len % idxs) == 0)
321			num++;
322		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
323			num++;
324		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
325			num++;
326			ei->i_da_metadata_calc_len = 0;
327		} else
328			ei->i_da_metadata_calc_len++;
329		ei->i_da_metadata_calc_last_lblock++;
330		return num;
331	}
332
333	/*
334	 * In the worst case we need a new set of index blocks at
335	 * every level of the inode's extent tree.
336	 */
337	ei->i_da_metadata_calc_len = 1;
338	ei->i_da_metadata_calc_last_lblock = lblock;
339	return ext_depth(inode) + 1;
340}
341
342static int
343ext4_ext_max_entries(struct inode *inode, int depth)
344{
345	int max;
346
347	if (depth == ext_depth(inode)) {
348		if (depth == 0)
349			max = ext4_ext_space_root(inode, 1);
350		else
351			max = ext4_ext_space_root_idx(inode, 1);
352	} else {
353		if (depth == 0)
354			max = ext4_ext_space_block(inode, 1);
355		else
356			max = ext4_ext_space_block_idx(inode, 1);
357	}
358
359	return max;
360}
361
362static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
363{
364	ext4_fsblk_t block = ext4_ext_pblock(ext);
365	int len = ext4_ext_get_actual_len(ext);
366
367	if (len == 0)
368		return 0;
369	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
370}
371
372static int ext4_valid_extent_idx(struct inode *inode,
373				struct ext4_extent_idx *ext_idx)
374{
375	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
376
377	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
378}
379
380static int ext4_valid_extent_entries(struct inode *inode,
381				struct ext4_extent_header *eh,
382				int depth)
383{
384	unsigned short entries;
385	if (eh->eh_entries == 0)
386		return 1;
387
388	entries = le16_to_cpu(eh->eh_entries);
389
390	if (depth == 0) {
391		/* leaf entries */
392		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
393		while (entries) {
394			if (!ext4_valid_extent(inode, ext))
395				return 0;
396			ext++;
397			entries--;
398		}
399	} else {
400		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
401		while (entries) {
402			if (!ext4_valid_extent_idx(inode, ext_idx))
403				return 0;
404			ext_idx++;
405			entries--;
406		}
407	}
408	return 1;
409}
410
411static int __ext4_ext_check(const char *function, unsigned int line,
412			    struct inode *inode, struct ext4_extent_header *eh,
413			    int depth)
414{
415	const char *error_msg;
416	int max = 0;
417
418	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
419		error_msg = "invalid magic";
420		goto corrupted;
421	}
422	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
423		error_msg = "unexpected eh_depth";
424		goto corrupted;
425	}
426	if (unlikely(eh->eh_max == 0)) {
427		error_msg = "invalid eh_max";
428		goto corrupted;
429	}
430	max = ext4_ext_max_entries(inode, depth);
431	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
432		error_msg = "too large eh_max";
433		goto corrupted;
434	}
435	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
436		error_msg = "invalid eh_entries";
437		goto corrupted;
438	}
439	if (!ext4_valid_extent_entries(inode, eh, depth)) {
440		error_msg = "invalid extent entries";
441		goto corrupted;
442	}
443	/* Verify checksum on non-root extent tree nodes */
444	if (ext_depth(inode) != depth &&
445	    !ext4_extent_block_csum_verify(inode, eh)) {
446		error_msg = "extent tree corrupted";
447		goto corrupted;
448	}
449	return 0;
450
451corrupted:
452	ext4_error_inode(inode, function, line, 0,
453			"bad header/extent: %s - magic %x, "
454			"entries %u, max %u(%u), depth %u(%u)",
455			error_msg, le16_to_cpu(eh->eh_magic),
456			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
457			max, le16_to_cpu(eh->eh_depth), depth);
458
459	return -EIO;
460}
461
462#define ext4_ext_check(inode, eh, depth)	\
463	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
464
465int ext4_ext_check_inode(struct inode *inode)
466{
467	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
468}
469
470static int __ext4_ext_check_block(const char *function, unsigned int line,
471				  struct inode *inode,
472				  struct ext4_extent_header *eh,
473				  int depth,
474				  struct buffer_head *bh)
475{
476	int ret;
477
478	if (buffer_verified(bh))
479		return 0;
480	ret = ext4_ext_check(inode, eh, depth);
481	if (ret)
482		return ret;
483	set_buffer_verified(bh);
484	return ret;
485}
486
487#define ext4_ext_check_block(inode, eh, depth, bh)	\
488	__ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
489
490#ifdef EXT_DEBUG
491static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
492{
493	int k, l = path->p_depth;
494
495	ext_debug("path:");
496	for (k = 0; k <= l; k++, path++) {
497		if (path->p_idx) {
498		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
499			    ext4_idx_pblock(path->p_idx));
500		} else if (path->p_ext) {
501			ext_debug("  %d:[%d]%d:%llu ",
502				  le32_to_cpu(path->p_ext->ee_block),
503				  ext4_ext_is_uninitialized(path->p_ext),
504				  ext4_ext_get_actual_len(path->p_ext),
505				  ext4_ext_pblock(path->p_ext));
506		} else
507			ext_debug("  []");
508	}
509	ext_debug("\n");
510}
511
512static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
513{
514	int depth = ext_depth(inode);
515	struct ext4_extent_header *eh;
516	struct ext4_extent *ex;
517	int i;
518
519	if (!path)
520		return;
521
522	eh = path[depth].p_hdr;
523	ex = EXT_FIRST_EXTENT(eh);
524
525	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
526
527	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
528		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
529			  ext4_ext_is_uninitialized(ex),
530			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
531	}
532	ext_debug("\n");
533}
534
535static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
536			ext4_fsblk_t newblock, int level)
537{
538	int depth = ext_depth(inode);
539	struct ext4_extent *ex;
540
541	if (depth != level) {
542		struct ext4_extent_idx *idx;
543		idx = path[level].p_idx;
544		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
545			ext_debug("%d: move %d:%llu in new index %llu\n", level,
546					le32_to_cpu(idx->ei_block),
547					ext4_idx_pblock(idx),
548					newblock);
549			idx++;
550		}
551
552		return;
553	}
554
555	ex = path[depth].p_ext;
556	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
557		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
558				le32_to_cpu(ex->ee_block),
559				ext4_ext_pblock(ex),
560				ext4_ext_is_uninitialized(ex),
561				ext4_ext_get_actual_len(ex),
562				newblock);
563		ex++;
564	}
565}
566
567#else
568#define ext4_ext_show_path(inode, path)
569#define ext4_ext_show_leaf(inode, path)
570#define ext4_ext_show_move(inode, path, newblock, level)
571#endif
572
573void ext4_ext_drop_refs(struct ext4_ext_path *path)
574{
575	int depth = path->p_depth;
576	int i;
577
578	for (i = 0; i <= depth; i++, path++)
579		if (path->p_bh) {
580			brelse(path->p_bh);
581			path->p_bh = NULL;
582		}
583}
584
585/*
586 * ext4_ext_binsearch_idx:
587 * binary search for the closest index of the given block
588 * the header must be checked before calling this
589 */
590static void
591ext4_ext_binsearch_idx(struct inode *inode,
592			struct ext4_ext_path *path, ext4_lblk_t block)
593{
594	struct ext4_extent_header *eh = path->p_hdr;
595	struct ext4_extent_idx *r, *l, *m;
596
597
598	ext_debug("binsearch for %u(idx):  ", block);
599
600	l = EXT_FIRST_INDEX(eh) + 1;
601	r = EXT_LAST_INDEX(eh);
602	while (l <= r) {
603		m = l + (r - l) / 2;
604		if (block < le32_to_cpu(m->ei_block))
605			r = m - 1;
606		else
607			l = m + 1;
608		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
609				m, le32_to_cpu(m->ei_block),
610				r, le32_to_cpu(r->ei_block));
611	}
612
613	path->p_idx = l - 1;
614	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
615		  ext4_idx_pblock(path->p_idx));
616
617#ifdef CHECK_BINSEARCH
618	{
619		struct ext4_extent_idx *chix, *ix;
620		int k;
621
622		chix = ix = EXT_FIRST_INDEX(eh);
623		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
624		  if (k != 0 &&
625		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
626				printk(KERN_DEBUG "k=%d, ix=0x%p, "
627				       "first=0x%p\n", k,
628				       ix, EXT_FIRST_INDEX(eh));
629				printk(KERN_DEBUG "%u <= %u\n",
630				       le32_to_cpu(ix->ei_block),
631				       le32_to_cpu(ix[-1].ei_block));
632			}
633			BUG_ON(k && le32_to_cpu(ix->ei_block)
634					   <= le32_to_cpu(ix[-1].ei_block));
635			if (block < le32_to_cpu(ix->ei_block))
636				break;
637			chix = ix;
638		}
639		BUG_ON(chix != path->p_idx);
640	}
641#endif
642
643}
644
645/*
646 * ext4_ext_binsearch:
647 * binary search for closest extent of the given block
648 * the header must be checked before calling this
649 */
650static void
651ext4_ext_binsearch(struct inode *inode,
652		struct ext4_ext_path *path, ext4_lblk_t block)
653{
654	struct ext4_extent_header *eh = path->p_hdr;
655	struct ext4_extent *r, *l, *m;
656
657	if (eh->eh_entries == 0) {
658		/*
659		 * this leaf is empty:
660		 * we get such a leaf in split/add case
661		 */
662		return;
663	}
664
665	ext_debug("binsearch for %u:  ", block);
666
667	l = EXT_FIRST_EXTENT(eh) + 1;
668	r = EXT_LAST_EXTENT(eh);
669
670	while (l <= r) {
671		m = l + (r - l) / 2;
672		if (block < le32_to_cpu(m->ee_block))
673			r = m - 1;
674		else
675			l = m + 1;
676		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
677				m, le32_to_cpu(m->ee_block),
678				r, le32_to_cpu(r->ee_block));
679	}
680
681	path->p_ext = l - 1;
682	ext_debug("  -> %d:%llu:[%d]%d ",
683			le32_to_cpu(path->p_ext->ee_block),
684			ext4_ext_pblock(path->p_ext),
685			ext4_ext_is_uninitialized(path->p_ext),
686			ext4_ext_get_actual_len(path->p_ext));
687
688#ifdef CHECK_BINSEARCH
689	{
690		struct ext4_extent *chex, *ex;
691		int k;
692
693		chex = ex = EXT_FIRST_EXTENT(eh);
694		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
695			BUG_ON(k && le32_to_cpu(ex->ee_block)
696					  <= le32_to_cpu(ex[-1].ee_block));
697			if (block < le32_to_cpu(ex->ee_block))
698				break;
699			chex = ex;
700		}
701		BUG_ON(chex != path->p_ext);
702	}
703#endif
704
705}
706
707int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
708{
709	struct ext4_extent_header *eh;
710
711	eh = ext_inode_hdr(inode);
712	eh->eh_depth = 0;
713	eh->eh_entries = 0;
714	eh->eh_magic = EXT4_EXT_MAGIC;
715	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
716	ext4_mark_inode_dirty(handle, inode);
717	return 0;
718}
719
720struct ext4_ext_path *
721ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
722					struct ext4_ext_path *path)
723{
724	struct ext4_extent_header *eh;
725	struct buffer_head *bh;
726	short int depth, i, ppos = 0, alloc = 0;
727	int ret;
728
729	eh = ext_inode_hdr(inode);
730	depth = ext_depth(inode);
731
732	/* account possible depth increase */
733	if (!path) {
734		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
735				GFP_NOFS);
736		if (!path)
737			return ERR_PTR(-ENOMEM);
738		alloc = 1;
739	}
740	path[0].p_hdr = eh;
741	path[0].p_bh = NULL;
742
743	i = depth;
744	/* walk through the tree */
745	while (i) {
746		ext_debug("depth %d: num %d, max %d\n",
747			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
748
749		ext4_ext_binsearch_idx(inode, path + ppos, block);
750		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
751		path[ppos].p_depth = i;
752		path[ppos].p_ext = NULL;
753
754		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
755		if (unlikely(!bh)) {
756			ret = -ENOMEM;
757			goto err;
758		}
759		if (!bh_uptodate_or_lock(bh)) {
760			trace_ext4_ext_load_extent(inode, block,
761						path[ppos].p_block);
762			ret = bh_submit_read(bh);
763			if (ret < 0) {
764				put_bh(bh);
765				goto err;
766			}
767		}
768		eh = ext_block_hdr(bh);
769		ppos++;
770		if (unlikely(ppos > depth)) {
771			put_bh(bh);
772			EXT4_ERROR_INODE(inode,
773					 "ppos %d > depth %d", ppos, depth);
774			ret = -EIO;
775			goto err;
776		}
777		path[ppos].p_bh = bh;
778		path[ppos].p_hdr = eh;
779		i--;
780
781		ret = ext4_ext_check_block(inode, eh, i, bh);
782		if (ret < 0)
783			goto err;
784	}
785
786	path[ppos].p_depth = i;
787	path[ppos].p_ext = NULL;
788	path[ppos].p_idx = NULL;
789
790	/* find extent */
791	ext4_ext_binsearch(inode, path + ppos, block);
792	/* if not an empty leaf */
793	if (path[ppos].p_ext)
794		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
795
796	ext4_ext_show_path(inode, path);
797
798	return path;
799
800err:
801	ext4_ext_drop_refs(path);
802	if (alloc)
803		kfree(path);
804	return ERR_PTR(ret);
805}
806
807/*
808 * ext4_ext_insert_index:
809 * insert new index [@logical;@ptr] into the block at @curp;
810 * check where to insert: before @curp or after @curp
811 */
812static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
813				 struct ext4_ext_path *curp,
814				 int logical, ext4_fsblk_t ptr)
815{
816	struct ext4_extent_idx *ix;
817	int len, err;
818
819	err = ext4_ext_get_access(handle, inode, curp);
820	if (err)
821		return err;
822
823	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
824		EXT4_ERROR_INODE(inode,
825				 "logical %d == ei_block %d!",
826				 logical, le32_to_cpu(curp->p_idx->ei_block));
827		return -EIO;
828	}
829
830	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
831			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
832		EXT4_ERROR_INODE(inode,
833				 "eh_entries %d >= eh_max %d!",
834				 le16_to_cpu(curp->p_hdr->eh_entries),
835				 le16_to_cpu(curp->p_hdr->eh_max));
836		return -EIO;
837	}
838
839	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
840		/* insert after */
841		ext_debug("insert new index %d after: %llu\n", logical, ptr);
842		ix = curp->p_idx + 1;
843	} else {
844		/* insert before */
845		ext_debug("insert new index %d before: %llu\n", logical, ptr);
846		ix = curp->p_idx;
847	}
848
849	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
850	BUG_ON(len < 0);
851	if (len > 0) {
852		ext_debug("insert new index %d: "
853				"move %d indices from 0x%p to 0x%p\n",
854				logical, len, ix, ix + 1);
855		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
856	}
857
858	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
859		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
860		return -EIO;
861	}
862
863	ix->ei_block = cpu_to_le32(logical);
864	ext4_idx_store_pblock(ix, ptr);
865	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
866
867	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
868		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
869		return -EIO;
870	}
871
872	err = ext4_ext_dirty(handle, inode, curp);
873	ext4_std_error(inode->i_sb, err);
874
875	return err;
876}
877
878/*
879 * ext4_ext_split:
880 * inserts new subtree into the path, using free index entry
881 * at depth @at:
882 * - allocates all needed blocks (new leaf and all intermediate index blocks)
883 * - makes decision where to split
884 * - moves remaining extents and index entries (right to the split point)
885 *   into the newly allocated blocks
886 * - initializes subtree
887 */
888static int ext4_ext_split(handle_t *handle, struct inode *inode,
889			  unsigned int flags,
890			  struct ext4_ext_path *path,
891			  struct ext4_extent *newext, int at)
892{
893	struct buffer_head *bh = NULL;
894	int depth = ext_depth(inode);
895	struct ext4_extent_header *neh;
896	struct ext4_extent_idx *fidx;
897	int i = at, k, m, a;
898	ext4_fsblk_t newblock, oldblock;
899	__le32 border;
900	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
901	int err = 0;
902
903	/* make decision: where to split? */
904	/* FIXME: now decision is simplest: at current extent */
905
906	/* if current leaf will be split, then we should use
907	 * border from split point */
908	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
909		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
910		return -EIO;
911	}
912	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
913		border = path[depth].p_ext[1].ee_block;
914		ext_debug("leaf will be split."
915				" next leaf starts at %d\n",
916				  le32_to_cpu(border));
917	} else {
918		border = newext->ee_block;
919		ext_debug("leaf will be added."
920				" next leaf starts at %d\n",
921				le32_to_cpu(border));
922	}
923
924	/*
925	 * If error occurs, then we break processing
926	 * and mark filesystem read-only. index won't
927	 * be inserted and tree will be in consistent
928	 * state. Next mount will repair buffers too.
929	 */
930
931	/*
932	 * Get array to track all allocated blocks.
933	 * We need this to handle errors and free blocks
934	 * upon them.
935	 */
936	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
937	if (!ablocks)
938		return -ENOMEM;
939
940	/* allocate all needed blocks */
941	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
942	for (a = 0; a < depth - at; a++) {
943		newblock = ext4_ext_new_meta_block(handle, inode, path,
944						   newext, &err, flags);
945		if (newblock == 0)
946			goto cleanup;
947		ablocks[a] = newblock;
948	}
949
950	/* initialize new leaf */
951	newblock = ablocks[--a];
952	if (unlikely(newblock == 0)) {
953		EXT4_ERROR_INODE(inode, "newblock == 0!");
954		err = -EIO;
955		goto cleanup;
956	}
957	bh = sb_getblk(inode->i_sb, newblock);
958	if (unlikely(!bh)) {
959		err = -ENOMEM;
960		goto cleanup;
961	}
962	lock_buffer(bh);
963
964	err = ext4_journal_get_create_access(handle, bh);
965	if (err)
966		goto cleanup;
967
968	neh = ext_block_hdr(bh);
969	neh->eh_entries = 0;
970	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
971	neh->eh_magic = EXT4_EXT_MAGIC;
972	neh->eh_depth = 0;
973
974	/* move remainder of path[depth] to the new leaf */
975	if (unlikely(path[depth].p_hdr->eh_entries !=
976		     path[depth].p_hdr->eh_max)) {
977		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
978				 path[depth].p_hdr->eh_entries,
979				 path[depth].p_hdr->eh_max);
980		err = -EIO;
981		goto cleanup;
982	}
983	/* start copy from next extent */
984	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
985	ext4_ext_show_move(inode, path, newblock, depth);
986	if (m) {
987		struct ext4_extent *ex;
988		ex = EXT_FIRST_EXTENT(neh);
989		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
990		le16_add_cpu(&neh->eh_entries, m);
991	}
992
993	ext4_extent_block_csum_set(inode, neh);
994	set_buffer_uptodate(bh);
995	unlock_buffer(bh);
996
997	err = ext4_handle_dirty_metadata(handle, inode, bh);
998	if (err)
999		goto cleanup;
1000	brelse(bh);
1001	bh = NULL;
1002
1003	/* correct old leaf */
1004	if (m) {
1005		err = ext4_ext_get_access(handle, inode, path + depth);
1006		if (err)
1007			goto cleanup;
1008		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1009		err = ext4_ext_dirty(handle, inode, path + depth);
1010		if (err)
1011			goto cleanup;
1012
1013	}
1014
1015	/* create intermediate indexes */
1016	k = depth - at - 1;
1017	if (unlikely(k < 0)) {
1018		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1019		err = -EIO;
1020		goto cleanup;
1021	}
1022	if (k)
1023		ext_debug("create %d intermediate indices\n", k);
1024	/* insert new index into current index block */
1025	/* current depth stored in i var */
1026	i = depth - 1;
1027	while (k--) {
1028		oldblock = newblock;
1029		newblock = ablocks[--a];
1030		bh = sb_getblk(inode->i_sb, newblock);
1031		if (unlikely(!bh)) {
1032			err = -ENOMEM;
1033			goto cleanup;
1034		}
1035		lock_buffer(bh);
1036
1037		err = ext4_journal_get_create_access(handle, bh);
1038		if (err)
1039			goto cleanup;
1040
1041		neh = ext_block_hdr(bh);
1042		neh->eh_entries = cpu_to_le16(1);
1043		neh->eh_magic = EXT4_EXT_MAGIC;
1044		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1045		neh->eh_depth = cpu_to_le16(depth - i);
1046		fidx = EXT_FIRST_INDEX(neh);
1047		fidx->ei_block = border;
1048		ext4_idx_store_pblock(fidx, oldblock);
1049
1050		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1051				i, newblock, le32_to_cpu(border), oldblock);
1052
1053		/* move remainder of path[i] to the new index block */
1054		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1055					EXT_LAST_INDEX(path[i].p_hdr))) {
1056			EXT4_ERROR_INODE(inode,
1057					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1058					 le32_to_cpu(path[i].p_ext->ee_block));
1059			err = -EIO;
1060			goto cleanup;
1061		}
1062		/* start copy indexes */
1063		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1064		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1065				EXT_MAX_INDEX(path[i].p_hdr));
1066		ext4_ext_show_move(inode, path, newblock, i);
1067		if (m) {
1068			memmove(++fidx, path[i].p_idx,
1069				sizeof(struct ext4_extent_idx) * m);
1070			le16_add_cpu(&neh->eh_entries, m);
1071		}
1072		ext4_extent_block_csum_set(inode, neh);
1073		set_buffer_uptodate(bh);
1074		unlock_buffer(bh);
1075
1076		err = ext4_handle_dirty_metadata(handle, inode, bh);
1077		if (err)
1078			goto cleanup;
1079		brelse(bh);
1080		bh = NULL;
1081
1082		/* correct old index */
1083		if (m) {
1084			err = ext4_ext_get_access(handle, inode, path + i);
1085			if (err)
1086				goto cleanup;
1087			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1088			err = ext4_ext_dirty(handle, inode, path + i);
1089			if (err)
1090				goto cleanup;
1091		}
1092
1093		i--;
1094	}
1095
1096	/* insert new index */
1097	err = ext4_ext_insert_index(handle, inode, path + at,
1098				    le32_to_cpu(border), newblock);
1099
1100cleanup:
1101	if (bh) {
1102		if (buffer_locked(bh))
1103			unlock_buffer(bh);
1104		brelse(bh);
1105	}
1106
1107	if (err) {
1108		/* free all allocated blocks in error case */
1109		for (i = 0; i < depth; i++) {
1110			if (!ablocks[i])
1111				continue;
1112			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1113					 EXT4_FREE_BLOCKS_METADATA);
1114		}
1115	}
1116	kfree(ablocks);
1117
1118	return err;
1119}
1120
1121/*
1122 * ext4_ext_grow_indepth:
1123 * implements tree growing procedure:
1124 * - allocates new block
1125 * - moves top-level data (index block or leaf) into the new block
1126 * - initializes new top-level, creating index that points to the
1127 *   just created block
1128 */
1129static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1130				 unsigned int flags,
1131				 struct ext4_extent *newext)
1132{
1133	struct ext4_extent_header *neh;
1134	struct buffer_head *bh;
1135	ext4_fsblk_t newblock;
1136	int err = 0;
1137
1138	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1139		newext, &err, flags);
1140	if (newblock == 0)
1141		return err;
1142
1143	bh = sb_getblk(inode->i_sb, newblock);
1144	if (unlikely(!bh))
1145		return -ENOMEM;
1146	lock_buffer(bh);
1147
1148	err = ext4_journal_get_create_access(handle, bh);
1149	if (err) {
1150		unlock_buffer(bh);
1151		goto out;
1152	}
1153
1154	/* move top-level index/leaf into new block */
1155	memmove(bh->b_data, EXT4_I(inode)->i_data,
1156		sizeof(EXT4_I(inode)->i_data));
1157
1158	/* set size of new block */
1159	neh = ext_block_hdr(bh);
1160	/* old root could have indexes or leaves
1161	 * so calculate e_max right way */
1162	if (ext_depth(inode))
1163		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1164	else
1165		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1166	neh->eh_magic = EXT4_EXT_MAGIC;
1167	ext4_extent_block_csum_set(inode, neh);
1168	set_buffer_uptodate(bh);
1169	unlock_buffer(bh);
1170
1171	err = ext4_handle_dirty_metadata(handle, inode, bh);
1172	if (err)
1173		goto out;
1174
1175	/* Update top-level index: num,max,pointer */
1176	neh = ext_inode_hdr(inode);
1177	neh->eh_entries = cpu_to_le16(1);
1178	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1179	if (neh->eh_depth == 0) {
1180		/* Root extent block becomes index block */
1181		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1182		EXT_FIRST_INDEX(neh)->ei_block =
1183			EXT_FIRST_EXTENT(neh)->ee_block;
1184	}
1185	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1186		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1187		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1188		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1189
1190	le16_add_cpu(&neh->eh_depth, 1);
1191	ext4_mark_inode_dirty(handle, inode);
1192out:
1193	brelse(bh);
1194
1195	return err;
1196}
1197
1198/*
1199 * ext4_ext_create_new_leaf:
1200 * finds empty index and adds new leaf.
1201 * if no free index is found, then it requests in-depth growing.
1202 */
1203static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1204				    unsigned int flags,
1205				    struct ext4_ext_path *path,
1206				    struct ext4_extent *newext)
1207{
1208	struct ext4_ext_path *curp;
1209	int depth, i, err = 0;
1210
1211repeat:
1212	i = depth = ext_depth(inode);
1213
1214	/* walk up to the tree and look for free index entry */
1215	curp = path + depth;
1216	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1217		i--;
1218		curp--;
1219	}
1220
1221	/* we use already allocated block for index block,
1222	 * so subsequent data blocks should be contiguous */
1223	if (EXT_HAS_FREE_INDEX(curp)) {
1224		/* if we found index with free entry, then use that
1225		 * entry: create all needed subtree and add new leaf */
1226		err = ext4_ext_split(handle, inode, flags, path, newext, i);
1227		if (err)
1228			goto out;
1229
1230		/* refill path */
1231		ext4_ext_drop_refs(path);
1232		path = ext4_ext_find_extent(inode,
1233				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1234				    path);
1235		if (IS_ERR(path))
1236			err = PTR_ERR(path);
1237	} else {
1238		/* tree is full, time to grow in depth */
1239		err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1240		if (err)
1241			goto out;
1242
1243		/* refill path */
1244		ext4_ext_drop_refs(path);
1245		path = ext4_ext_find_extent(inode,
1246				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1247				    path);
1248		if (IS_ERR(path)) {
1249			err = PTR_ERR(path);
1250			goto out;
1251		}
1252
1253		/*
1254		 * only first (depth 0 -> 1) produces free space;
1255		 * in all other cases we have to split the grown tree
1256		 */
1257		depth = ext_depth(inode);
1258		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1259			/* now we need to split */
1260			goto repeat;
1261		}
1262	}
1263
1264out:
1265	return err;
1266}
1267
1268/*
1269 * search the closest allocated block to the left for *logical
1270 * and returns it at @logical + it's physical address at @phys
1271 * if *logical is the smallest allocated block, the function
1272 * returns 0 at @phys
1273 * return value contains 0 (success) or error code
1274 */
1275static int ext4_ext_search_left(struct inode *inode,
1276				struct ext4_ext_path *path,
1277				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1278{
1279	struct ext4_extent_idx *ix;
1280	struct ext4_extent *ex;
1281	int depth, ee_len;
1282
1283	if (unlikely(path == NULL)) {
1284		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1285		return -EIO;
1286	}
1287	depth = path->p_depth;
1288	*phys = 0;
1289
1290	if (depth == 0 && path->p_ext == NULL)
1291		return 0;
1292
1293	/* usually extent in the path covers blocks smaller
1294	 * then *logical, but it can be that extent is the
1295	 * first one in the file */
1296
1297	ex = path[depth].p_ext;
1298	ee_len = ext4_ext_get_actual_len(ex);
1299	if (*logical < le32_to_cpu(ex->ee_block)) {
1300		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1301			EXT4_ERROR_INODE(inode,
1302					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1303					 *logical, le32_to_cpu(ex->ee_block));
1304			return -EIO;
1305		}
1306		while (--depth >= 0) {
1307			ix = path[depth].p_idx;
1308			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1309				EXT4_ERROR_INODE(inode,
1310				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1311				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1312				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1313		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1314				  depth);
1315				return -EIO;
1316			}
1317		}
1318		return 0;
1319	}
1320
1321	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1322		EXT4_ERROR_INODE(inode,
1323				 "logical %d < ee_block %d + ee_len %d!",
1324				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1325		return -EIO;
1326	}
1327
1328	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1329	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1330	return 0;
1331}
1332
1333/*
1334 * search the closest allocated block to the right for *logical
1335 * and returns it at @logical + it's physical address at @phys
1336 * if *logical is the largest allocated block, the function
1337 * returns 0 at @phys
1338 * return value contains 0 (success) or error code
1339 */
1340static int ext4_ext_search_right(struct inode *inode,
1341				 struct ext4_ext_path *path,
1342				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1343				 struct ext4_extent **ret_ex)
1344{
1345	struct buffer_head *bh = NULL;
1346	struct ext4_extent_header *eh;
1347	struct ext4_extent_idx *ix;
1348	struct ext4_extent *ex;
1349	ext4_fsblk_t block;
1350	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1351	int ee_len;
1352
1353	if (unlikely(path == NULL)) {
1354		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1355		return -EIO;
1356	}
1357	depth = path->p_depth;
1358	*phys = 0;
1359
1360	if (depth == 0 && path->p_ext == NULL)
1361		return 0;
1362
1363	/* usually extent in the path covers blocks smaller
1364	 * then *logical, but it can be that extent is the
1365	 * first one in the file */
1366
1367	ex = path[depth].p_ext;
1368	ee_len = ext4_ext_get_actual_len(ex);
1369	if (*logical < le32_to_cpu(ex->ee_block)) {
1370		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1371			EXT4_ERROR_INODE(inode,
1372					 "first_extent(path[%d].p_hdr) != ex",
1373					 depth);
1374			return -EIO;
1375		}
1376		while (--depth >= 0) {
1377			ix = path[depth].p_idx;
1378			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1379				EXT4_ERROR_INODE(inode,
1380						 "ix != EXT_FIRST_INDEX *logical %d!",
1381						 *logical);
1382				return -EIO;
1383			}
1384		}
1385		goto found_extent;
1386	}
1387
1388	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1389		EXT4_ERROR_INODE(inode,
1390				 "logical %d < ee_block %d + ee_len %d!",
1391				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1392		return -EIO;
1393	}
1394
1395	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1396		/* next allocated block in this leaf */
1397		ex++;
1398		goto found_extent;
1399	}
1400
1401	/* go up and search for index to the right */
1402	while (--depth >= 0) {
1403		ix = path[depth].p_idx;
1404		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1405			goto got_index;
1406	}
1407
1408	/* we've gone up to the root and found no index to the right */
1409	return 0;
1410
1411got_index:
1412	/* we've found index to the right, let's
1413	 * follow it and find the closest allocated
1414	 * block to the right */
1415	ix++;
1416	block = ext4_idx_pblock(ix);
1417	while (++depth < path->p_depth) {
1418		bh = sb_bread(inode->i_sb, block);
1419		if (bh == NULL)
1420			return -EIO;
1421		eh = ext_block_hdr(bh);
1422		/* subtract from p_depth to get proper eh_depth */
1423		if (ext4_ext_check_block(inode, eh,
1424					 path->p_depth - depth, bh)) {
1425			put_bh(bh);
1426			return -EIO;
1427		}
1428		ix = EXT_FIRST_INDEX(eh);
1429		block = ext4_idx_pblock(ix);
1430		put_bh(bh);
1431	}
1432
1433	bh = sb_bread(inode->i_sb, block);
1434	if (bh == NULL)
1435		return -EIO;
1436	eh = ext_block_hdr(bh);
1437	if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1438		put_bh(bh);
1439		return -EIO;
1440	}
1441	ex = EXT_FIRST_EXTENT(eh);
1442found_extent:
1443	*logical = le32_to_cpu(ex->ee_block);
1444	*phys = ext4_ext_pblock(ex);
1445	*ret_ex = ex;
1446	if (bh)
1447		put_bh(bh);
1448	return 0;
1449}
1450
1451/*
1452 * ext4_ext_next_allocated_block:
1453 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1454 * NOTE: it considers block number from index entry as
1455 * allocated block. Thus, index entries have to be consistent
1456 * with leaves.
1457 */
1458static ext4_lblk_t
1459ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1460{
1461	int depth;
1462
1463	BUG_ON(path == NULL);
1464	depth = path->p_depth;
1465
1466	if (depth == 0 && path->p_ext == NULL)
1467		return EXT_MAX_BLOCKS;
1468
1469	while (depth >= 0) {
1470		if (depth == path->p_depth) {
1471			/* leaf */
1472			if (path[depth].p_ext &&
1473				path[depth].p_ext !=
1474					EXT_LAST_EXTENT(path[depth].p_hdr))
1475			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1476		} else {
1477			/* index */
1478			if (path[depth].p_idx !=
1479					EXT_LAST_INDEX(path[depth].p_hdr))
1480			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1481		}
1482		depth--;
1483	}
1484
1485	return EXT_MAX_BLOCKS;
1486}
1487
1488/*
1489 * ext4_ext_next_leaf_block:
1490 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1491 */
1492static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1493{
1494	int depth;
1495
1496	BUG_ON(path == NULL);
1497	depth = path->p_depth;
1498
1499	/* zero-tree has no leaf blocks at all */
1500	if (depth == 0)
1501		return EXT_MAX_BLOCKS;
1502
1503	/* go to index block */
1504	depth--;
1505
1506	while (depth >= 0) {
1507		if (path[depth].p_idx !=
1508				EXT_LAST_INDEX(path[depth].p_hdr))
1509			return (ext4_lblk_t)
1510				le32_to_cpu(path[depth].p_idx[1].ei_block);
1511		depth--;
1512	}
1513
1514	return EXT_MAX_BLOCKS;
1515}
1516
1517/*
1518 * ext4_ext_correct_indexes:
1519 * if leaf gets modified and modified extent is first in the leaf,
1520 * then we have to correct all indexes above.
1521 * TODO: do we need to correct tree in all cases?
1522 */
1523static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1524				struct ext4_ext_path *path)
1525{
1526	struct ext4_extent_header *eh;
1527	int depth = ext_depth(inode);
1528	struct ext4_extent *ex;
1529	__le32 border;
1530	int k, err = 0;
1531
1532	eh = path[depth].p_hdr;
1533	ex = path[depth].p_ext;
1534
1535	if (unlikely(ex == NULL || eh == NULL)) {
1536		EXT4_ERROR_INODE(inode,
1537				 "ex %p == NULL or eh %p == NULL", ex, eh);
1538		return -EIO;
1539	}
1540
1541	if (depth == 0) {
1542		/* there is no tree at all */
1543		return 0;
1544	}
1545
1546	if (ex != EXT_FIRST_EXTENT(eh)) {
1547		/* we correct tree if first leaf got modified only */
1548		return 0;
1549	}
1550
1551	/*
1552	 * TODO: we need correction if border is smaller than current one
1553	 */
1554	k = depth - 1;
1555	border = path[depth].p_ext->ee_block;
1556	err = ext4_ext_get_access(handle, inode, path + k);
1557	if (err)
1558		return err;
1559	path[k].p_idx->ei_block = border;
1560	err = ext4_ext_dirty(handle, inode, path + k);
1561	if (err)
1562		return err;
1563
1564	while (k--) {
1565		/* change all left-side indexes */
1566		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1567			break;
1568		err = ext4_ext_get_access(handle, inode, path + k);
1569		if (err)
1570			break;
1571		path[k].p_idx->ei_block = border;
1572		err = ext4_ext_dirty(handle, inode, path + k);
1573		if (err)
1574			break;
1575	}
1576
1577	return err;
1578}
1579
1580int
1581ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1582				struct ext4_extent *ex2)
1583{
1584	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1585
1586	/*
1587	 * Make sure that both extents are initialized. We don't merge
1588	 * uninitialized extents so that we can be sure that end_io code has
1589	 * the extent that was written properly split out and conversion to
1590	 * initialized is trivial.
1591	 */
1592	if (ext4_ext_is_uninitialized(ex1) || ext4_ext_is_uninitialized(ex2))
1593		return 0;
1594
1595	if (ext4_ext_is_uninitialized(ex1))
1596		max_len = EXT_UNINIT_MAX_LEN;
1597	else
1598		max_len = EXT_INIT_MAX_LEN;
1599
1600	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1601	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1602
1603	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1604			le32_to_cpu(ex2->ee_block))
1605		return 0;
1606
1607	/*
1608	 * To allow future support for preallocated extents to be added
1609	 * as an RO_COMPAT feature, refuse to merge to extents if
1610	 * this can result in the top bit of ee_len being set.
1611	 */
1612	if (ext1_ee_len + ext2_ee_len > max_len)
1613		return 0;
1614#ifdef AGGRESSIVE_TEST
1615	if (ext1_ee_len >= 4)
1616		return 0;
1617#endif
1618
1619	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1620		return 1;
1621	return 0;
1622}
1623
1624/*
1625 * This function tries to merge the "ex" extent to the next extent in the tree.
1626 * It always tries to merge towards right. If you want to merge towards
1627 * left, pass "ex - 1" as argument instead of "ex".
1628 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1629 * 1 if they got merged.
1630 */
1631static int ext4_ext_try_to_merge_right(struct inode *inode,
1632				 struct ext4_ext_path *path,
1633				 struct ext4_extent *ex)
1634{
1635	struct ext4_extent_header *eh;
1636	unsigned int depth, len;
1637	int merge_done = 0;
1638	int uninitialized = 0;
1639
1640	depth = ext_depth(inode);
1641	BUG_ON(path[depth].p_hdr == NULL);
1642	eh = path[depth].p_hdr;
1643
1644	while (ex < EXT_LAST_EXTENT(eh)) {
1645		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1646			break;
1647		/* merge with next extent! */
1648		if (ext4_ext_is_uninitialized(ex))
1649			uninitialized = 1;
1650		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1651				+ ext4_ext_get_actual_len(ex + 1));
1652		if (uninitialized)
1653			ext4_ext_mark_uninitialized(ex);
1654
1655		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1656			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1657				* sizeof(struct ext4_extent);
1658			memmove(ex + 1, ex + 2, len);
1659		}
1660		le16_add_cpu(&eh->eh_entries, -1);
1661		merge_done = 1;
1662		WARN_ON(eh->eh_entries == 0);
1663		if (!eh->eh_entries)
1664			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1665	}
1666
1667	return merge_done;
1668}
1669
1670/*
1671 * This function does a very simple check to see if we can collapse
1672 * an extent tree with a single extent tree leaf block into the inode.
1673 */
1674static void ext4_ext_try_to_merge_up(handle_t *handle,
1675				     struct inode *inode,
1676				     struct ext4_ext_path *path)
1677{
1678	size_t s;
1679	unsigned max_root = ext4_ext_space_root(inode, 0);
1680	ext4_fsblk_t blk;
1681
1682	if ((path[0].p_depth != 1) ||
1683	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1684	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1685		return;
1686
1687	/*
1688	 * We need to modify the block allocation bitmap and the block
1689	 * group descriptor to release the extent tree block.  If we
1690	 * can't get the journal credits, give up.
1691	 */
1692	if (ext4_journal_extend(handle, 2))
1693		return;
1694
1695	/*
1696	 * Copy the extent data up to the inode
1697	 */
1698	blk = ext4_idx_pblock(path[0].p_idx);
1699	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1700		sizeof(struct ext4_extent_idx);
1701	s += sizeof(struct ext4_extent_header);
1702
1703	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1704	path[0].p_depth = 0;
1705	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1706		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1707	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1708
1709	brelse(path[1].p_bh);
1710	ext4_free_blocks(handle, inode, NULL, blk, 1,
1711			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1712}
1713
1714/*
1715 * This function tries to merge the @ex extent to neighbours in the tree.
1716 * return 1 if merge left else 0.
1717 */
1718static void ext4_ext_try_to_merge(handle_t *handle,
1719				  struct inode *inode,
1720				  struct ext4_ext_path *path,
1721				  struct ext4_extent *ex) {
1722	struct ext4_extent_header *eh;
1723	unsigned int depth;
1724	int merge_done = 0;
1725
1726	depth = ext_depth(inode);
1727	BUG_ON(path[depth].p_hdr == NULL);
1728	eh = path[depth].p_hdr;
1729
1730	if (ex > EXT_FIRST_EXTENT(eh))
1731		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1732
1733	if (!merge_done)
1734		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1735
1736	ext4_ext_try_to_merge_up(handle, inode, path);
1737}
1738
1739/*
1740 * check if a portion of the "newext" extent overlaps with an
1741 * existing extent.
1742 *
1743 * If there is an overlap discovered, it updates the length of the newext
1744 * such that there will be no overlap, and then returns 1.
1745 * If there is no overlap found, it returns 0.
1746 */
1747static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1748					   struct inode *inode,
1749					   struct ext4_extent *newext,
1750					   struct ext4_ext_path *path)
1751{
1752	ext4_lblk_t b1, b2;
1753	unsigned int depth, len1;
1754	unsigned int ret = 0;
1755
1756	b1 = le32_to_cpu(newext->ee_block);
1757	len1 = ext4_ext_get_actual_len(newext);
1758	depth = ext_depth(inode);
1759	if (!path[depth].p_ext)
1760		goto out;
1761	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1762	b2 &= ~(sbi->s_cluster_ratio - 1);
1763
1764	/*
1765	 * get the next allocated block if the extent in the path
1766	 * is before the requested block(s)
1767	 */
1768	if (b2 < b1) {
1769		b2 = ext4_ext_next_allocated_block(path);
1770		if (b2 == EXT_MAX_BLOCKS)
1771			goto out;
1772		b2 &= ~(sbi->s_cluster_ratio - 1);
1773	}
1774
1775	/* check for wrap through zero on extent logical start block*/
1776	if (b1 + len1 < b1) {
1777		len1 = EXT_MAX_BLOCKS - b1;
1778		newext->ee_len = cpu_to_le16(len1);
1779		ret = 1;
1780	}
1781
1782	/* check for overlap */
1783	if (b1 + len1 > b2) {
1784		newext->ee_len = cpu_to_le16(b2 - b1);
1785		ret = 1;
1786	}
1787out:
1788	return ret;
1789}
1790
1791/*
1792 * ext4_ext_insert_extent:
1793 * tries to merge requsted extent into the existing extent or
1794 * inserts requested extent as new one into the tree,
1795 * creating new leaf in the no-space case.
1796 */
1797int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1798				struct ext4_ext_path *path,
1799				struct ext4_extent *newext, int flag)
1800{
1801	struct ext4_extent_header *eh;
1802	struct ext4_extent *ex, *fex;
1803	struct ext4_extent *nearex; /* nearest extent */
1804	struct ext4_ext_path *npath = NULL;
1805	int depth, len, err;
1806	ext4_lblk_t next;
1807	unsigned uninitialized = 0;
1808	int flags = 0;
1809
1810	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1811		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1812		return -EIO;
1813	}
1814	depth = ext_depth(inode);
1815	ex = path[depth].p_ext;
1816	if (unlikely(path[depth].p_hdr == NULL)) {
1817		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1818		return -EIO;
1819	}
1820
1821	/* try to insert block into found extent and return */
1822	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1823		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1824		ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1825			  ext4_ext_is_uninitialized(newext),
1826			  ext4_ext_get_actual_len(newext),
1827			  le32_to_cpu(ex->ee_block),
1828			  ext4_ext_is_uninitialized(ex),
1829			  ext4_ext_get_actual_len(ex),
1830			  ext4_ext_pblock(ex));
1831		err = ext4_ext_get_access(handle, inode, path + depth);
1832		if (err)
1833			return err;
1834
1835		/*
1836		 * ext4_can_extents_be_merged should have checked that either
1837		 * both extents are uninitialized, or both aren't. Thus we
1838		 * need to check only one of them here.
1839		 */
1840		if (ext4_ext_is_uninitialized(ex))
1841			uninitialized = 1;
1842		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1843					+ ext4_ext_get_actual_len(newext));
1844		if (uninitialized)
1845			ext4_ext_mark_uninitialized(ex);
1846		eh = path[depth].p_hdr;
1847		nearex = ex;
1848		goto merge;
1849	}
1850
1851	depth = ext_depth(inode);
1852	eh = path[depth].p_hdr;
1853	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1854		goto has_space;
1855
1856	/* probably next leaf has space for us? */
1857	fex = EXT_LAST_EXTENT(eh);
1858	next = EXT_MAX_BLOCKS;
1859	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1860		next = ext4_ext_next_leaf_block(path);
1861	if (next != EXT_MAX_BLOCKS) {
1862		ext_debug("next leaf block - %u\n", next);
1863		BUG_ON(npath != NULL);
1864		npath = ext4_ext_find_extent(inode, next, NULL);
1865		if (IS_ERR(npath))
1866			return PTR_ERR(npath);
1867		BUG_ON(npath->p_depth != path->p_depth);
1868		eh = npath[depth].p_hdr;
1869		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1870			ext_debug("next leaf isn't full(%d)\n",
1871				  le16_to_cpu(eh->eh_entries));
1872			path = npath;
1873			goto has_space;
1874		}
1875		ext_debug("next leaf has no free space(%d,%d)\n",
1876			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1877	}
1878
1879	/*
1880	 * There is no free space in the found leaf.
1881	 * We're gonna add a new leaf in the tree.
1882	 */
1883	if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1884		flags = EXT4_MB_USE_ROOT_BLOCKS;
1885	err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1886	if (err)
1887		goto cleanup;
1888	depth = ext_depth(inode);
1889	eh = path[depth].p_hdr;
1890
1891has_space:
1892	nearex = path[depth].p_ext;
1893
1894	err = ext4_ext_get_access(handle, inode, path + depth);
1895	if (err)
1896		goto cleanup;
1897
1898	if (!nearex) {
1899		/* there is no extent in this leaf, create first one */
1900		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1901				le32_to_cpu(newext->ee_block),
1902				ext4_ext_pblock(newext),
1903				ext4_ext_is_uninitialized(newext),
1904				ext4_ext_get_actual_len(newext));
1905		nearex = EXT_FIRST_EXTENT(eh);
1906	} else {
1907		if (le32_to_cpu(newext->ee_block)
1908			   > le32_to_cpu(nearex->ee_block)) {
1909			/* Insert after */
1910			ext_debug("insert %u:%llu:[%d]%d before: "
1911					"nearest %p\n",
1912					le32_to_cpu(newext->ee_block),
1913					ext4_ext_pblock(newext),
1914					ext4_ext_is_uninitialized(newext),
1915					ext4_ext_get_actual_len(newext),
1916					nearex);
1917			nearex++;
1918		} else {
1919			/* Insert before */
1920			BUG_ON(newext->ee_block == nearex->ee_block);
1921			ext_debug("insert %u:%llu:[%d]%d after: "
1922					"nearest %p\n",
1923					le32_to_cpu(newext->ee_block),
1924					ext4_ext_pblock(newext),
1925					ext4_ext_is_uninitialized(newext),
1926					ext4_ext_get_actual_len(newext),
1927					nearex);
1928		}
1929		len = EXT_LAST_EXTENT(eh) - nearex + 1;
1930		if (len > 0) {
1931			ext_debug("insert %u:%llu:[%d]%d: "
1932					"move %d extents from 0x%p to 0x%p\n",
1933					le32_to_cpu(newext->ee_block),
1934					ext4_ext_pblock(newext),
1935					ext4_ext_is_uninitialized(newext),
1936					ext4_ext_get_actual_len(newext),
1937					len, nearex, nearex + 1);
1938			memmove(nearex + 1, nearex,
1939				len * sizeof(struct ext4_extent));
1940		}
1941	}
1942
1943	le16_add_cpu(&eh->eh_entries, 1);
1944	path[depth].p_ext = nearex;
1945	nearex->ee_block = newext->ee_block;
1946	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1947	nearex->ee_len = newext->ee_len;
1948
1949merge:
1950	/* try to merge extents */
1951	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1952		ext4_ext_try_to_merge(handle, inode, path, nearex);
1953
1954
1955	/* time to correct all indexes above */
1956	err = ext4_ext_correct_indexes(handle, inode, path);
1957	if (err)
1958		goto cleanup;
1959
1960	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
1961
1962cleanup:
1963	if (npath) {
1964		ext4_ext_drop_refs(npath);
1965		kfree(npath);
1966	}
1967	return err;
1968}
1969
1970static int ext4_fill_fiemap_extents(struct inode *inode,
1971				    ext4_lblk_t block, ext4_lblk_t num,
1972				    struct fiemap_extent_info *fieinfo)
1973{
1974	struct ext4_ext_path *path = NULL;
1975	struct ext4_extent *ex;
1976	struct extent_status es;
1977	ext4_lblk_t next, next_del, start = 0, end = 0;
1978	ext4_lblk_t last = block + num;
1979	int exists, depth = 0, err = 0;
1980	unsigned int flags = 0;
1981	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
1982
1983	while (block < last && block != EXT_MAX_BLOCKS) {
1984		num = last - block;
1985		/* find extent for this block */
1986		down_read(&EXT4_I(inode)->i_data_sem);
1987
1988		if (path && ext_depth(inode) != depth) {
1989			/* depth was changed. we have to realloc path */
1990			kfree(path);
1991			path = NULL;
1992		}
1993
1994		path = ext4_ext_find_extent(inode, block, path);
1995		if (IS_ERR(path)) {
1996			up_read(&EXT4_I(inode)->i_data_sem);
1997			err = PTR_ERR(path);
1998			path = NULL;
1999			break;
2000		}
2001
2002		depth = ext_depth(inode);
2003		if (unlikely(path[depth].p_hdr == NULL)) {
2004			up_read(&EXT4_I(inode)->i_data_sem);
2005			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2006			err = -EIO;
2007			break;
2008		}
2009		ex = path[depth].p_ext;
2010		next = ext4_ext_next_allocated_block(path);
2011		ext4_ext_drop_refs(path);
2012
2013		flags = 0;
2014		exists = 0;
2015		if (!ex) {
2016			/* there is no extent yet, so try to allocate
2017			 * all requested space */
2018			start = block;
2019			end = block + num;
2020		} else if (le32_to_cpu(ex->ee_block) > block) {
2021			/* need to allocate space before found extent */
2022			start = block;
2023			end = le32_to_cpu(ex->ee_block);
2024			if (block + num < end)
2025				end = block + num;
2026		} else if (block >= le32_to_cpu(ex->ee_block)
2027					+ ext4_ext_get_actual_len(ex)) {
2028			/* need to allocate space after found extent */
2029			start = block;
2030			end = block + num;
2031			if (end >= next)
2032				end = next;
2033		} else if (block >= le32_to_cpu(ex->ee_block)) {
2034			/*
2035			 * some part of requested space is covered
2036			 * by found extent
2037			 */
2038			start = block;
2039			end = le32_to_cpu(ex->ee_block)
2040				+ ext4_ext_get_actual_len(ex);
2041			if (block + num < end)
2042				end = block + num;
2043			exists = 1;
2044		} else {
2045			BUG();
2046		}
2047		BUG_ON(end <= start);
2048
2049		if (!exists) {
2050			es.es_lblk = start;
2051			es.es_len = end - start;
2052			es.es_pblk = 0;
2053		} else {
2054			es.es_lblk = le32_to_cpu(ex->ee_block);
2055			es.es_len = ext4_ext_get_actual_len(ex);
2056			es.es_pblk = ext4_ext_pblock(ex);
2057			if (ext4_ext_is_uninitialized(ex))
2058				flags |= FIEMAP_EXTENT_UNWRITTEN;
2059		}
2060
2061		/*
2062		 * Find delayed extent and update es accordingly. We call
2063		 * it even in !exists case to find out whether es is the
2064		 * last existing extent or not.
2065		 */
2066		next_del = ext4_find_delayed_extent(inode, &es);
2067		if (!exists && next_del) {
2068			exists = 1;
2069			flags |= FIEMAP_EXTENT_DELALLOC;
2070		}
2071		up_read(&EXT4_I(inode)->i_data_sem);
2072
2073		if (unlikely(es.es_len == 0)) {
2074			EXT4_ERROR_INODE(inode, "es.es_len == 0");
2075			err = -EIO;
2076			break;
2077		}
2078
2079		/*
2080		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2081		 * we need to check next == EXT_MAX_BLOCKS because it is
2082		 * possible that an extent is with unwritten and delayed
2083		 * status due to when an extent is delayed allocated and
2084		 * is allocated by fallocate status tree will track both of
2085		 * them in a extent.
2086		 *
2087		 * So we could return a unwritten and delayed extent, and
2088		 * its block is equal to 'next'.
2089		 */
2090		if (next == next_del && next == EXT_MAX_BLOCKS) {
2091			flags |= FIEMAP_EXTENT_LAST;
2092			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2093				     next != EXT_MAX_BLOCKS)) {
2094				EXT4_ERROR_INODE(inode,
2095						 "next extent == %u, next "
2096						 "delalloc extent = %u",
2097						 next, next_del);
2098				err = -EIO;
2099				break;
2100			}
2101		}
2102
2103		if (exists) {
2104			err = fiemap_fill_next_extent(fieinfo,
2105				(__u64)es.es_lblk << blksize_bits,
2106				(__u64)es.es_pblk << blksize_bits,
2107				(__u64)es.es_len << blksize_bits,
2108				flags);
2109			if (err < 0)
2110				break;
2111			if (err == 1) {
2112				err = 0;
2113				break;
2114			}
2115		}
2116
2117		block = es.es_lblk + es.es_len;
2118	}
2119
2120	if (path) {
2121		ext4_ext_drop_refs(path);
2122		kfree(path);
2123	}
2124
2125	return err;
2126}
2127
2128/*
2129 * ext4_ext_put_gap_in_cache:
2130 * calculate boundaries of the gap that the requested block fits into
2131 * and cache this gap
2132 */
2133static void
2134ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2135				ext4_lblk_t block)
2136{
2137	int depth = ext_depth(inode);
2138	unsigned long len;
2139	ext4_lblk_t lblock;
2140	struct ext4_extent *ex;
2141
2142	ex = path[depth].p_ext;
2143	if (ex == NULL) {
2144		/*
2145		 * there is no extent yet, so gap is [0;-] and we
2146		 * don't cache it
2147		 */
2148		ext_debug("cache gap(whole file):");
2149	} else if (block < le32_to_cpu(ex->ee_block)) {
2150		lblock = block;
2151		len = le32_to_cpu(ex->ee_block) - block;
2152		ext_debug("cache gap(before): %u [%u:%u]",
2153				block,
2154				le32_to_cpu(ex->ee_block),
2155				 ext4_ext_get_actual_len(ex));
2156		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2157			ext4_es_insert_extent(inode, lblock, len, ~0,
2158					      EXTENT_STATUS_HOLE);
2159	} else if (block >= le32_to_cpu(ex->ee_block)
2160			+ ext4_ext_get_actual_len(ex)) {
2161		ext4_lblk_t next;
2162		lblock = le32_to_cpu(ex->ee_block)
2163			+ ext4_ext_get_actual_len(ex);
2164
2165		next = ext4_ext_next_allocated_block(path);
2166		ext_debug("cache gap(after): [%u:%u] %u",
2167				le32_to_cpu(ex->ee_block),
2168				ext4_ext_get_actual_len(ex),
2169				block);
2170		BUG_ON(next == lblock);
2171		len = next - lblock;
2172		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2173			ext4_es_insert_extent(inode, lblock, len, ~0,
2174					      EXTENT_STATUS_HOLE);
2175	} else {
2176		lblock = len = 0;
2177		BUG();
2178	}
2179
2180	ext_debug(" -> %u:%lu\n", lblock, len);
2181}
2182
2183/*
2184 * ext4_ext_rm_idx:
2185 * removes index from the index block.
2186 */
2187static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2188			struct ext4_ext_path *path, int depth)
2189{
2190	int err;
2191	ext4_fsblk_t leaf;
2192
2193	/* free index block */
2194	depth--;
2195	path = path + depth;
2196	leaf = ext4_idx_pblock(path->p_idx);
2197	if (unlikely(path->p_hdr->eh_entries == 0)) {
2198		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2199		return -EIO;
2200	}
2201	err = ext4_ext_get_access(handle, inode, path);
2202	if (err)
2203		return err;
2204
2205	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2206		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2207		len *= sizeof(struct ext4_extent_idx);
2208		memmove(path->p_idx, path->p_idx + 1, len);
2209	}
2210
2211	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2212	err = ext4_ext_dirty(handle, inode, path);
2213	if (err)
2214		return err;
2215	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2216	trace_ext4_ext_rm_idx(inode, leaf);
2217
2218	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2219			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2220
2221	while (--depth >= 0) {
2222		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2223			break;
2224		path--;
2225		err = ext4_ext_get_access(handle, inode, path);
2226		if (err)
2227			break;
2228		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2229		err = ext4_ext_dirty(handle, inode, path);
2230		if (err)
2231			break;
2232	}
2233	return err;
2234}
2235
2236/*
2237 * ext4_ext_calc_credits_for_single_extent:
2238 * This routine returns max. credits that needed to insert an extent
2239 * to the extent tree.
2240 * When pass the actual path, the caller should calculate credits
2241 * under i_data_sem.
2242 */
2243int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2244						struct ext4_ext_path *path)
2245{
2246	if (path) {
2247		int depth = ext_depth(inode);
2248		int ret = 0;
2249
2250		/* probably there is space in leaf? */
2251		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2252				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2253
2254			/*
2255			 *  There are some space in the leaf tree, no
2256			 *  need to account for leaf block credit
2257			 *
2258			 *  bitmaps and block group descriptor blocks
2259			 *  and other metadata blocks still need to be
2260			 *  accounted.
2261			 */
2262			/* 1 bitmap, 1 block group descriptor */
2263			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2264			return ret;
2265		}
2266	}
2267
2268	return ext4_chunk_trans_blocks(inode, nrblocks);
2269}
2270
2271/*
2272 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2273 *
2274 * if nrblocks are fit in a single extent (chunk flag is 1), then
2275 * in the worse case, each tree level index/leaf need to be changed
2276 * if the tree split due to insert a new extent, then the old tree
2277 * index/leaf need to be updated too
2278 *
2279 * If the nrblocks are discontiguous, they could cause
2280 * the whole tree split more than once, but this is really rare.
2281 */
2282int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2283{
2284	int index;
2285	int depth;
2286
2287	/* If we are converting the inline data, only one is needed here. */
2288	if (ext4_has_inline_data(inode))
2289		return 1;
2290
2291	depth = ext_depth(inode);
2292
2293	if (chunk)
2294		index = depth * 2;
2295	else
2296		index = depth * 3;
2297
2298	return index;
2299}
2300
2301static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2302			      struct ext4_extent *ex,
2303			      ext4_fsblk_t *partial_cluster,
2304			      ext4_lblk_t from, ext4_lblk_t to)
2305{
2306	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2307	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2308	ext4_fsblk_t pblk;
2309	int flags = 0;
2310
2311	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2312		flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2313	else if (ext4_should_journal_data(inode))
2314		flags |= EXT4_FREE_BLOCKS_FORGET;
2315
2316	/*
2317	 * For bigalloc file systems, we never free a partial cluster
2318	 * at the beginning of the extent.  Instead, we make a note
2319	 * that we tried freeing the cluster, and check to see if we
2320	 * need to free it on a subsequent call to ext4_remove_blocks,
2321	 * or at the end of the ext4_truncate() operation.
2322	 */
2323	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2324
2325	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2326	/*
2327	 * If we have a partial cluster, and it's different from the
2328	 * cluster of the last block, we need to explicitly free the
2329	 * partial cluster here.
2330	 */
2331	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2332	if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2333		ext4_free_blocks(handle, inode, NULL,
2334				 EXT4_C2B(sbi, *partial_cluster),
2335				 sbi->s_cluster_ratio, flags);
2336		*partial_cluster = 0;
2337	}
2338
2339#ifdef EXTENTS_STATS
2340	{
2341		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2342		spin_lock(&sbi->s_ext_stats_lock);
2343		sbi->s_ext_blocks += ee_len;
2344		sbi->s_ext_extents++;
2345		if (ee_len < sbi->s_ext_min)
2346			sbi->s_ext_min = ee_len;
2347		if (ee_len > sbi->s_ext_max)
2348			sbi->s_ext_max = ee_len;
2349		if (ext_depth(inode) > sbi->s_depth_max)
2350			sbi->s_depth_max = ext_depth(inode);
2351		spin_unlock(&sbi->s_ext_stats_lock);
2352	}
2353#endif
2354	if (from >= le32_to_cpu(ex->ee_block)
2355	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2356		/* tail removal */
2357		ext4_lblk_t num;
2358
2359		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2360		pblk = ext4_ext_pblock(ex) + ee_len - num;
2361		ext_debug("free last %u blocks starting %llu\n", num, pblk);
2362		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2363		/*
2364		 * If the block range to be freed didn't start at the
2365		 * beginning of a cluster, and we removed the entire
2366		 * extent, save the partial cluster here, since we
2367		 * might need to delete if we determine that the
2368		 * truncate operation has removed all of the blocks in
2369		 * the cluster.
2370		 */
2371		if (pblk & (sbi->s_cluster_ratio - 1) &&
2372		    (ee_len == num))
2373			*partial_cluster = EXT4_B2C(sbi, pblk);
2374		else
2375			*partial_cluster = 0;
2376	} else if (from == le32_to_cpu(ex->ee_block)
2377		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2378		/* head removal */
2379		ext4_lblk_t num;
2380		ext4_fsblk_t start;
2381
2382		num = to - from;
2383		start = ext4_ext_pblock(ex);
2384
2385		ext_debug("free first %u blocks starting %llu\n", num, start);
2386		ext4_free_blocks(handle, inode, NULL, start, num, flags);
2387
2388	} else {
2389		printk(KERN_INFO "strange request: removal(2) "
2390				"%u-%u from %u:%u\n",
2391				from, to, le32_to_cpu(ex->ee_block), ee_len);
2392	}
2393	return 0;
2394}
2395
2396
2397/*
2398 * ext4_ext_rm_leaf() Removes the extents associated with the
2399 * blocks appearing between "start" and "end", and splits the extents
2400 * if "start" and "end" appear in the same extent
2401 *
2402 * @handle: The journal handle
2403 * @inode:  The files inode
2404 * @path:   The path to the leaf
2405 * @start:  The first block to remove
2406 * @end:   The last block to remove
2407 */
2408static int
2409ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2410		 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2411		 ext4_lblk_t start, ext4_lblk_t end)
2412{
2413	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2414	int err = 0, correct_index = 0;
2415	int depth = ext_depth(inode), credits;
2416	struct ext4_extent_header *eh;
2417	ext4_lblk_t a, b;
2418	unsigned num;
2419	ext4_lblk_t ex_ee_block;
2420	unsigned short ex_ee_len;
2421	unsigned uninitialized = 0;
2422	struct ext4_extent *ex;
2423
2424	/* the header must be checked already in ext4_ext_remove_space() */
2425	ext_debug("truncate since %u in leaf to %u\n", start, end);
2426	if (!path[depth].p_hdr)
2427		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2428	eh = path[depth].p_hdr;
2429	if (unlikely(path[depth].p_hdr == NULL)) {
2430		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2431		return -EIO;
2432	}
2433	/* find where to start removing */
2434	ex = EXT_LAST_EXTENT(eh);
2435
2436	ex_ee_block = le32_to_cpu(ex->ee_block);
2437	ex_ee_len = ext4_ext_get_actual_len(ex);
2438
2439	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2440
2441	while (ex >= EXT_FIRST_EXTENT(eh) &&
2442			ex_ee_block + ex_ee_len > start) {
2443
2444		if (ext4_ext_is_uninitialized(ex))
2445			uninitialized = 1;
2446		else
2447			uninitialized = 0;
2448
2449		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2450			 uninitialized, ex_ee_len);
2451		path[depth].p_ext = ex;
2452
2453		a = ex_ee_block > start ? ex_ee_block : start;
2454		b = ex_ee_block+ex_ee_len - 1 < end ?
2455			ex_ee_block+ex_ee_len - 1 : end;
2456
2457		ext_debug("  border %u:%u\n", a, b);
2458
2459		/* If this extent is beyond the end of the hole, skip it */
2460		if (end < ex_ee_block) {
2461			ex--;
2462			ex_ee_block = le32_to_cpu(ex->ee_block);
2463			ex_ee_len = ext4_ext_get_actual_len(ex);
2464			continue;
2465		} else if (b != ex_ee_block + ex_ee_len - 1) {
2466			EXT4_ERROR_INODE(inode,
2467					 "can not handle truncate %u:%u "
2468					 "on extent %u:%u",
2469					 start, end, ex_ee_block,
2470					 ex_ee_block + ex_ee_len - 1);
2471			err = -EIO;
2472			goto out;
2473		} else if (a != ex_ee_block) {
2474			/* remove tail of the extent */
2475			num = a - ex_ee_block;
2476		} else {
2477			/* remove whole extent: excellent! */
2478			num = 0;
2479		}
2480		/*
2481		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2482		 * descriptor) for each block group; assume two block
2483		 * groups plus ex_ee_len/blocks_per_block_group for
2484		 * the worst case
2485		 */
2486		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2487		if (ex == EXT_FIRST_EXTENT(eh)) {
2488			correct_index = 1;
2489			credits += (ext_depth(inode)) + 1;
2490		}
2491		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2492
2493		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2494		if (err)
2495			goto out;
2496
2497		err = ext4_ext_get_access(handle, inode, path + depth);
2498		if (err)
2499			goto out;
2500
2501		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2502					 a, b);
2503		if (err)
2504			goto out;
2505
2506		if (num == 0)
2507			/* this extent is removed; mark slot entirely unused */
2508			ext4_ext_store_pblock(ex, 0);
2509
2510		ex->ee_len = cpu_to_le16(num);
2511		/*
2512		 * Do not mark uninitialized if all the blocks in the
2513		 * extent have been removed.
2514		 */
2515		if (uninitialized && num)
2516			ext4_ext_mark_uninitialized(ex);
2517		/*
2518		 * If the extent was completely released,
2519		 * we need to remove it from the leaf
2520		 */
2521		if (num == 0) {
2522			if (end != EXT_MAX_BLOCKS - 1) {
2523				/*
2524				 * For hole punching, we need to scoot all the
2525				 * extents up when an extent is removed so that
2526				 * we dont have blank extents in the middle
2527				 */
2528				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2529					sizeof(struct ext4_extent));
2530
2531				/* Now get rid of the one at the end */
2532				memset(EXT_LAST_EXTENT(eh), 0,
2533					sizeof(struct ext4_extent));
2534			}
2535			le16_add_cpu(&eh->eh_entries, -1);
2536		} else
2537			*partial_cluster = 0;
2538
2539		err = ext4_ext_dirty(handle, inode, path + depth);
2540		if (err)
2541			goto out;
2542
2543		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2544				ext4_ext_pblock(ex));
2545		ex--;
2546		ex_ee_block = le32_to_cpu(ex->ee_block);
2547		ex_ee_len = ext4_ext_get_actual_len(ex);
2548	}
2549
2550	if (correct_index && eh->eh_entries)
2551		err = ext4_ext_correct_indexes(handle, inode, path);
2552
2553	/*
2554	 * If there is still a entry in the leaf node, check to see if
2555	 * it references the partial cluster.  This is the only place
2556	 * where it could; if it doesn't, we can free the cluster.
2557	 */
2558	if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2559	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2560	     *partial_cluster)) {
2561		int flags = EXT4_FREE_BLOCKS_FORGET;
2562
2563		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2564			flags |= EXT4_FREE_BLOCKS_METADATA;
2565
2566		ext4_free_blocks(handle, inode, NULL,
2567				 EXT4_C2B(sbi, *partial_cluster),
2568				 sbi->s_cluster_ratio, flags);
2569		*partial_cluster = 0;
2570	}
2571
2572	/* if this leaf is free, then we should
2573	 * remove it from index block above */
2574	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2575		err = ext4_ext_rm_idx(handle, inode, path, depth);
2576
2577out:
2578	return err;
2579}
2580
2581/*
2582 * ext4_ext_more_to_rm:
2583 * returns 1 if current index has to be freed (even partial)
2584 */
2585static int
2586ext4_ext_more_to_rm(struct ext4_ext_path *path)
2587{
2588	BUG_ON(path->p_idx == NULL);
2589
2590	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2591		return 0;
2592
2593	/*
2594	 * if truncate on deeper level happened, it wasn't partial,
2595	 * so we have to consider current index for truncation
2596	 */
2597	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2598		return 0;
2599	return 1;
2600}
2601
2602static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2603				 ext4_lblk_t end)
2604{
2605	struct super_block *sb = inode->i_sb;
2606	int depth = ext_depth(inode);
2607	struct ext4_ext_path *path = NULL;
2608	ext4_fsblk_t partial_cluster = 0;
2609	handle_t *handle;
2610	int i = 0, err = 0;
2611
2612	ext_debug("truncate since %u to %u\n", start, end);
2613
2614	/* probably first extent we're gonna free will be last in block */
2615	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2616	if (IS_ERR(handle))
2617		return PTR_ERR(handle);
2618
2619again:
2620	trace_ext4_ext_remove_space(inode, start, depth);
2621
2622	/*
2623	 * Check if we are removing extents inside the extent tree. If that
2624	 * is the case, we are going to punch a hole inside the extent tree
2625	 * so we have to check whether we need to split the extent covering
2626	 * the last block to remove so we can easily remove the part of it
2627	 * in ext4_ext_rm_leaf().
2628	 */
2629	if (end < EXT_MAX_BLOCKS - 1) {
2630		struct ext4_extent *ex;
2631		ext4_lblk_t ee_block;
2632
2633		/* find extent for this block */
2634		path = ext4_ext_find_extent(inode, end, NULL);
2635		if (IS_ERR(path)) {
2636			ext4_journal_stop(handle);
2637			return PTR_ERR(path);
2638		}
2639		depth = ext_depth(inode);
2640		/* Leaf not may not exist only if inode has no blocks at all */
2641		ex = path[depth].p_ext;
2642		if (!ex) {
2643			if (depth) {
2644				EXT4_ERROR_INODE(inode,
2645						 "path[%d].p_hdr == NULL",
2646						 depth);
2647				err = -EIO;
2648			}
2649			goto out;
2650		}
2651
2652		ee_block = le32_to_cpu(ex->ee_block);
2653
2654		/*
2655		 * See if the last block is inside the extent, if so split
2656		 * the extent at 'end' block so we can easily remove the
2657		 * tail of the first part of the split extent in
2658		 * ext4_ext_rm_leaf().
2659		 */
2660		if (end >= ee_block &&
2661		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2662			int split_flag = 0;
2663
2664			if (ext4_ext_is_uninitialized(ex))
2665				split_flag = EXT4_EXT_MARK_UNINIT1 |
2666					     EXT4_EXT_MARK_UNINIT2;
2667
2668			/*
2669			 * Split the extent in two so that 'end' is the last
2670			 * block in the first new extent
2671			 */
2672			err = ext4_split_extent_at(handle, inode, path,
2673						end + 1, split_flag,
2674						EXT4_GET_BLOCKS_PRE_IO |
2675						EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2676
2677			if (err < 0)
2678				goto out;
2679		}
2680	}
2681	/*
2682	 * We start scanning from right side, freeing all the blocks
2683	 * after i_size and walking into the tree depth-wise.
2684	 */
2685	depth = ext_depth(inode);
2686	if (path) {
2687		int k = i = depth;
2688		while (--k > 0)
2689			path[k].p_block =
2690				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2691	} else {
2692		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2693			       GFP_NOFS);
2694		if (path == NULL) {
2695			ext4_journal_stop(handle);
2696			return -ENOMEM;
2697		}
2698		path[0].p_depth = depth;
2699		path[0].p_hdr = ext_inode_hdr(inode);
2700		i = 0;
2701
2702		if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2703			err = -EIO;
2704			goto out;
2705		}
2706	}
2707	err = 0;
2708
2709	while (i >= 0 && err == 0) {
2710		if (i == depth) {
2711			/* this is leaf block */
2712			err = ext4_ext_rm_leaf(handle, inode, path,
2713					       &partial_cluster, start,
2714					       end);
2715			/* root level has p_bh == NULL, brelse() eats this */
2716			brelse(path[i].p_bh);
2717			path[i].p_bh = NULL;
2718			i--;
2719			continue;
2720		}
2721
2722		/* this is index block */
2723		if (!path[i].p_hdr) {
2724			ext_debug("initialize header\n");
2725			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2726		}
2727
2728		if (!path[i].p_idx) {
2729			/* this level hasn't been touched yet */
2730			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2731			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2732			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2733				  path[i].p_hdr,
2734				  le16_to_cpu(path[i].p_hdr->eh_entries));
2735		} else {
2736			/* we were already here, see at next index */
2737			path[i].p_idx--;
2738		}
2739
2740		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2741				i, EXT_FIRST_INDEX(path[i].p_hdr),
2742				path[i].p_idx);
2743		if (ext4_ext_more_to_rm(path + i)) {
2744			struct buffer_head *bh;
2745			/* go to the next level */
2746			ext_debug("move to level %d (block %llu)\n",
2747				  i + 1, ext4_idx_pblock(path[i].p_idx));
2748			memset(path + i + 1, 0, sizeof(*path));
2749			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2750			if (!bh) {
2751				/* should we reset i_size? */
2752				err = -EIO;
2753				break;
2754			}
2755			if (WARN_ON(i + 1 > depth)) {
2756				err = -EIO;
2757				break;
2758			}
2759			if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2760							depth - i - 1, bh)) {
2761				err = -EIO;
2762				break;
2763			}
2764			path[i + 1].p_bh = bh;
2765
2766			/* save actual number of indexes since this
2767			 * number is changed at the next iteration */
2768			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2769			i++;
2770		} else {
2771			/* we finished processing this index, go up */
2772			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2773				/* index is empty, remove it;
2774				 * handle must be already prepared by the
2775				 * truncatei_leaf() */
2776				err = ext4_ext_rm_idx(handle, inode, path, i);
2777			}
2778			/* root level has p_bh == NULL, brelse() eats this */
2779			brelse(path[i].p_bh);
2780			path[i].p_bh = NULL;
2781			i--;
2782			ext_debug("return to level %d\n", i);
2783		}
2784	}
2785
2786	trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2787			path->p_hdr->eh_entries);
2788
2789	/* If we still have something in the partial cluster and we have removed
2790	 * even the first extent, then we should free the blocks in the partial
2791	 * cluster as well. */
2792	if (partial_cluster && path->p_hdr->eh_entries == 0) {
2793		int flags = EXT4_FREE_BLOCKS_FORGET;
2794
2795		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2796			flags |= EXT4_FREE_BLOCKS_METADATA;
2797
2798		ext4_free_blocks(handle, inode, NULL,
2799				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2800				 EXT4_SB(sb)->s_cluster_ratio, flags);
2801		partial_cluster = 0;
2802	}
2803
2804	/* TODO: flexible tree reduction should be here */
2805	if (path->p_hdr->eh_entries == 0) {
2806		/*
2807		 * truncate to zero freed all the tree,
2808		 * so we need to correct eh_depth
2809		 */
2810		err = ext4_ext_get_access(handle, inode, path);
2811		if (err == 0) {
2812			ext_inode_hdr(inode)->eh_depth = 0;
2813			ext_inode_hdr(inode)->eh_max =
2814				cpu_to_le16(ext4_ext_space_root(inode, 0));
2815			err = ext4_ext_dirty(handle, inode, path);
2816		}
2817	}
2818out:
2819	ext4_ext_drop_refs(path);
2820	kfree(path);
2821	if (err == -EAGAIN) {
2822		path = NULL;
2823		goto again;
2824	}
2825	ext4_journal_stop(handle);
2826
2827	return err;
2828}
2829
2830/*
2831 * called at mount time
2832 */
2833void ext4_ext_init(struct super_block *sb)
2834{
2835	/*
2836	 * possible initialization would be here
2837	 */
2838
2839	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2840#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2841		printk(KERN_INFO "EXT4-fs: file extents enabled"
2842#ifdef AGGRESSIVE_TEST
2843		       ", aggressive tests"
2844#endif
2845#ifdef CHECK_BINSEARCH
2846		       ", check binsearch"
2847#endif
2848#ifdef EXTENTS_STATS
2849		       ", stats"
2850#endif
2851		       "\n");
2852#endif
2853#ifdef EXTENTS_STATS
2854		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2855		EXT4_SB(sb)->s_ext_min = 1 << 30;
2856		EXT4_SB(sb)->s_ext_max = 0;
2857#endif
2858	}
2859}
2860
2861/*
2862 * called at umount time
2863 */
2864void ext4_ext_release(struct super_block *sb)
2865{
2866	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2867		return;
2868
2869#ifdef EXTENTS_STATS
2870	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2871		struct ext4_sb_info *sbi = EXT4_SB(sb);
2872		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2873			sbi->s_ext_blocks, sbi->s_ext_extents,
2874			sbi->s_ext_blocks / sbi->s_ext_extents);
2875		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2876			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2877	}
2878#endif
2879}
2880
2881/* FIXME!! we need to try to merge to left or right after zero-out  */
2882static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2883{
2884	ext4_fsblk_t ee_pblock;
2885	unsigned int ee_len;
2886	int ret;
2887
2888	ee_len    = ext4_ext_get_actual_len(ex);
2889	ee_pblock = ext4_ext_pblock(ex);
2890
2891	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2892	if (ret > 0)
2893		ret = 0;
2894
2895	return ret;
2896}
2897
2898/*
2899 * ext4_split_extent_at() splits an extent at given block.
2900 *
2901 * @handle: the journal handle
2902 * @inode: the file inode
2903 * @path: the path to the extent
2904 * @split: the logical block where the extent is splitted.
2905 * @split_flags: indicates if the extent could be zeroout if split fails, and
2906 *		 the states(init or uninit) of new extents.
2907 * @flags: flags used to insert new extent to extent tree.
2908 *
2909 *
2910 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2911 * of which are deterimined by split_flag.
2912 *
2913 * There are two cases:
2914 *  a> the extent are splitted into two extent.
2915 *  b> split is not needed, and just mark the extent.
2916 *
2917 * return 0 on success.
2918 */
2919static int ext4_split_extent_at(handle_t *handle,
2920			     struct inode *inode,
2921			     struct ext4_ext_path *path,
2922			     ext4_lblk_t split,
2923			     int split_flag,
2924			     int flags)
2925{
2926	ext4_fsblk_t newblock;
2927	ext4_lblk_t ee_block;
2928	struct ext4_extent *ex, newex, orig_ex;
2929	struct ext4_extent *ex2 = NULL;
2930	unsigned int ee_len, depth;
2931	int err = 0;
2932
2933	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
2934	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
2935
2936	ext_debug("ext4_split_extents_at: inode %lu, logical"
2937		"block %llu\n", inode->i_ino, (unsigned long long)split);
2938
2939	ext4_ext_show_leaf(inode, path);
2940
2941	depth = ext_depth(inode);
2942	ex = path[depth].p_ext;
2943	ee_block = le32_to_cpu(ex->ee_block);
2944	ee_len = ext4_ext_get_actual_len(ex);
2945	newblock = split - ee_block + ext4_ext_pblock(ex);
2946
2947	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2948	BUG_ON(!ext4_ext_is_uninitialized(ex) &&
2949	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
2950			     EXT4_EXT_MARK_UNINIT1 |
2951			     EXT4_EXT_MARK_UNINIT2));
2952
2953	err = ext4_ext_get_access(handle, inode, path + depth);
2954	if (err)
2955		goto out;
2956
2957	if (split == ee_block) {
2958		/*
2959		 * case b: block @split is the block that the extent begins with
2960		 * then we just change the state of the extent, and splitting
2961		 * is not needed.
2962		 */
2963		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2964			ext4_ext_mark_uninitialized(ex);
2965		else
2966			ext4_ext_mark_initialized(ex);
2967
2968		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2969			ext4_ext_try_to_merge(handle, inode, path, ex);
2970
2971		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2972		goto out;
2973	}
2974
2975	/* case a */
2976	memcpy(&orig_ex, ex, sizeof(orig_ex));
2977	ex->ee_len = cpu_to_le16(split - ee_block);
2978	if (split_flag & EXT4_EXT_MARK_UNINIT1)
2979		ext4_ext_mark_uninitialized(ex);
2980
2981	/*
2982	 * path may lead to new leaf, not to original leaf any more
2983	 * after ext4_ext_insert_extent() returns,
2984	 */
2985	err = ext4_ext_dirty(handle, inode, path + depth);
2986	if (err)
2987		goto fix_extent_len;
2988
2989	ex2 = &newex;
2990	ex2->ee_block = cpu_to_le32(split);
2991	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
2992	ext4_ext_store_pblock(ex2, newblock);
2993	if (split_flag & EXT4_EXT_MARK_UNINIT2)
2994		ext4_ext_mark_uninitialized(ex2);
2995
2996	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2997	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2998		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
2999			if (split_flag & EXT4_EXT_DATA_VALID1)
3000				err = ext4_ext_zeroout(inode, ex2);
3001			else
3002				err = ext4_ext_zeroout(inode, ex);
3003		} else
3004			err = ext4_ext_zeroout(inode, &orig_ex);
3005
3006		if (err)
3007			goto fix_extent_len;
3008		/* update the extent length and mark as initialized */
3009		ex->ee_len = cpu_to_le16(ee_len);
3010		ext4_ext_try_to_merge(handle, inode, path, ex);
3011		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3012		goto out;
3013	} else if (err)
3014		goto fix_extent_len;
3015
3016out:
3017	ext4_ext_show_leaf(inode, path);
3018	return err;
3019
3020fix_extent_len:
3021	ex->ee_len = orig_ex.ee_len;
3022	ext4_ext_dirty(handle, inode, path + depth);
3023	return err;
3024}
3025
3026/*
3027 * ext4_split_extents() splits an extent and mark extent which is covered
3028 * by @map as split_flags indicates
3029 *
3030 * It may result in splitting the extent into multiple extents (upto three)
3031 * There are three possibilities:
3032 *   a> There is no split required
3033 *   b> Splits in two extents: Split is happening at either end of the extent
3034 *   c> Splits in three extents: Somone is splitting in middle of the extent
3035 *
3036 */
3037static int ext4_split_extent(handle_t *handle,
3038			      struct inode *inode,
3039			      struct ext4_ext_path *path,
3040			      struct ext4_map_blocks *map,
3041			      int split_flag,
3042			      int flags)
3043{
3044	ext4_lblk_t ee_block;
3045	struct ext4_extent *ex;
3046	unsigned int ee_len, depth;
3047	int err = 0;
3048	int uninitialized;
3049	int split_flag1, flags1;
3050
3051	depth = ext_depth(inode);
3052	ex = path[depth].p_ext;
3053	ee_block = le32_to_cpu(ex->ee_block);
3054	ee_len = ext4_ext_get_actual_len(ex);
3055	uninitialized = ext4_ext_is_uninitialized(ex);
3056
3057	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3058		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3059		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3060		if (uninitialized)
3061			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3062				       EXT4_EXT_MARK_UNINIT2;
3063		if (split_flag & EXT4_EXT_DATA_VALID2)
3064			split_flag1 |= EXT4_EXT_DATA_VALID1;
3065		err = ext4_split_extent_at(handle, inode, path,
3066				map->m_lblk + map->m_len, split_flag1, flags1);
3067		if (err)
3068			goto out;
3069	}
3070	/*
3071	 * Update path is required because previous ext4_split_extent_at() may
3072	 * result in split of original leaf or extent zeroout.
3073	 */
3074	ext4_ext_drop_refs(path);
3075	path = ext4_ext_find_extent(inode, map->m_lblk, path);
3076	if (IS_ERR(path))
3077		return PTR_ERR(path);
3078	depth = ext_depth(inode);
3079	ex = path[depth].p_ext;
3080	uninitialized = ext4_ext_is_uninitialized(ex);
3081	split_flag1 = 0;
3082
3083	if (map->m_lblk >= ee_block) {
3084		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3085		if (uninitialized) {
3086			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3087			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3088						     EXT4_EXT_MARK_UNINIT2);
3089		}
3090		err = ext4_split_extent_at(handle, inode, path,
3091				map->m_lblk, split_flag1, flags);
3092		if (err)
3093			goto out;
3094	}
3095
3096	ext4_ext_show_leaf(inode, path);
3097out:
3098	return err ? err : map->m_len;
3099}
3100
3101/*
3102 * This function is called by ext4_ext_map_blocks() if someone tries to write
3103 * to an uninitialized extent. It may result in splitting the uninitialized
3104 * extent into multiple extents (up to three - one initialized and two
3105 * uninitialized).
3106 * There are three possibilities:
3107 *   a> There is no split required: Entire extent should be initialized
3108 *   b> Splits in two extents: Write is happening at either end of the extent
3109 *   c> Splits in three extents: Somone is writing in middle of the extent
3110 *
3111 * Pre-conditions:
3112 *  - The extent pointed to by 'path' is uninitialized.
3113 *  - The extent pointed to by 'path' contains a superset
3114 *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3115 *
3116 * Post-conditions on success:
3117 *  - the returned value is the number of blocks beyond map->l_lblk
3118 *    that are allocated and initialized.
3119 *    It is guaranteed to be >= map->m_len.
3120 */
3121static int ext4_ext_convert_to_initialized(handle_t *handle,
3122					   struct inode *inode,
3123					   struct ext4_map_blocks *map,
3124					   struct ext4_ext_path *path)
3125{
3126	struct ext4_sb_info *sbi;
3127	struct ext4_extent_header *eh;
3128	struct ext4_map_blocks split_map;
3129	struct ext4_extent zero_ex;
3130	struct ext4_extent *ex;
3131	ext4_lblk_t ee_block, eof_block;
3132	unsigned int ee_len, depth;
3133	int allocated, max_zeroout = 0;
3134	int err = 0;
3135	int split_flag = 0;
3136
3137	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3138		"block %llu, max_blocks %u\n", inode->i_ino,
3139		(unsigned long long)map->m_lblk, map->m_len);
3140
3141	sbi = EXT4_SB(inode->i_sb);
3142	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3143		inode->i_sb->s_blocksize_bits;
3144	if (eof_block < map->m_lblk + map->m_len)
3145		eof_block = map->m_lblk + map->m_len;
3146
3147	depth = ext_depth(inode);
3148	eh = path[depth].p_hdr;
3149	ex = path[depth].p_ext;
3150	ee_block = le32_to_cpu(ex->ee_block);
3151	ee_len = ext4_ext_get_actual_len(ex);
3152	allocated = ee_len - (map->m_lblk - ee_block);
3153
3154	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3155
3156	/* Pre-conditions */
3157	BUG_ON(!ext4_ext_is_uninitialized(ex));
3158	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3159
3160	/*
3161	 * Attempt to transfer newly initialized blocks from the currently
3162	 * uninitialized extent to its left neighbor. This is much cheaper
3163	 * than an insertion followed by a merge as those involve costly
3164	 * memmove() calls. This is the common case in steady state for
3165	 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3166	 * writes.
3167	 *
3168	 * Limitations of the current logic:
3169	 *  - L1: we only deal with writes at the start of the extent.
3170	 *    The approach could be extended to writes at the end
3171	 *    of the extent but this scenario was deemed less common.
3172	 *  - L2: we do not deal with writes covering the whole extent.
3173	 *    This would require removing the extent if the transfer
3174	 *    is possible.
3175	 *  - L3: we only attempt to merge with an extent stored in the
3176	 *    same extent tree node.
3177	 */
3178	if ((map->m_lblk == ee_block) &&	/*L1*/
3179		(map->m_len < ee_len) &&	/*L2*/
3180		(ex > EXT_FIRST_EXTENT(eh))) {	/*L3*/
3181		struct ext4_extent *prev_ex;
3182		ext4_lblk_t prev_lblk;
3183		ext4_fsblk_t prev_pblk, ee_pblk;
3184		unsigned int prev_len, write_len;
3185
3186		prev_ex = ex - 1;
3187		prev_lblk = le32_to_cpu(prev_ex->ee_block);
3188		prev_len = ext4_ext_get_actual_len(prev_ex);
3189		prev_pblk = ext4_ext_pblock(prev_ex);
3190		ee_pblk = ext4_ext_pblock(ex);
3191		write_len = map->m_len;
3192
3193		/*
3194		 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3195		 * upon those conditions:
3196		 * - C1: prev_ex is initialized,
3197		 * - C2: prev_ex is logically abutting ex,
3198		 * - C3: prev_ex is physically abutting ex,
3199		 * - C4: prev_ex can receive the additional blocks without
3200		 *   overflowing the (initialized) length limit.
3201		 */
3202		if ((!ext4_ext_is_uninitialized(prev_ex)) &&		/*C1*/
3203			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3204			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3205			(prev_len < (EXT_INIT_MAX_LEN - write_len))) {	/*C4*/
3206			err = ext4_ext_get_access(handle, inode, path + depth);
3207			if (err)
3208				goto out;
3209
3210			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3211				map, ex, prev_ex);
3212
3213			/* Shift the start of ex by 'write_len' blocks */
3214			ex->ee_block = cpu_to_le32(ee_block + write_len);
3215			ext4_ext_store_pblock(ex, ee_pblk + write_len);
3216			ex->ee_len = cpu_to_le16(ee_len - write_len);
3217			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3218
3219			/* Extend prev_ex by 'write_len' blocks */
3220			prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3221
3222			/* Mark the block containing both extents as dirty */
3223			ext4_ext_dirty(handle, inode, path + depth);
3224
3225			/* Update path to point to the right extent */
3226			path[depth].p_ext = prev_ex;
3227
3228			/* Result: number of initialized blocks past m_lblk */
3229			allocated = write_len;
3230			goto out;
3231		}
3232	}
3233
3234	WARN_ON(map->m_lblk < ee_block);
3235	/*
3236	 * It is safe to convert extent to initialized via explicit
3237	 * zeroout only if extent is fully insde i_size or new_size.
3238	 */
3239	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3240
3241	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3242		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3243			inode->i_sb->s_blocksize_bits;
3244
3245	/* If extent is less than s_max_zeroout_kb, zeroout directly */
3246	if (max_zeroout && (ee_len <= max_zeroout)) {
3247		err = ext4_ext_zeroout(inode, ex);
3248		if (err)
3249			goto out;
3250
3251		err = ext4_ext_get_access(handle, inode, path + depth);
3252		if (err)
3253			goto out;
3254		ext4_ext_mark_initialized(ex);
3255		ext4_ext_try_to_merge(handle, inode, path, ex);
3256		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3257		goto out;
3258	}
3259
3260	/*
3261	 * four cases:
3262	 * 1. split the extent into three extents.
3263	 * 2. split the extent into two extents, zeroout the first half.
3264	 * 3. split the extent into two extents, zeroout the second half.
3265	 * 4. split the extent into two extents with out zeroout.
3266	 */
3267	split_map.m_lblk = map->m_lblk;
3268	split_map.m_len = map->m_len;
3269
3270	if (max_zeroout && (allocated > map->m_len)) {
3271		if (allocated <= max_zeroout) {
3272			/* case 3 */
3273			zero_ex.ee_block =
3274					 cpu_to_le32(map->m_lblk);
3275			zero_ex.ee_len = cpu_to_le16(allocated);
3276			ext4_ext_store_pblock(&zero_ex,
3277				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3278			err = ext4_ext_zeroout(inode, &zero_ex);
3279			if (err)
3280				goto out;
3281			split_map.m_lblk = map->m_lblk;
3282			split_map.m_len = allocated;
3283		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3284			/* case 2 */
3285			if (map->m_lblk != ee_block) {
3286				zero_ex.ee_block = ex->ee_block;
3287				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3288							ee_block);
3289				ext4_ext_store_pblock(&zero_ex,
3290						      ext4_ext_pblock(ex));
3291				err = ext4_ext_zeroout(inode, &zero_ex);
3292				if (err)
3293					goto out;
3294			}
3295
3296			split_map.m_lblk = ee_block;
3297			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3298			allocated = map->m_len;
3299		}
3300	}
3301
3302	allocated = ext4_split_extent(handle, inode, path,
3303				      &split_map, split_flag, 0);
3304	if (allocated < 0)
3305		err = allocated;
3306
3307out:
3308	return err ? err : allocated;
3309}
3310
3311/*
3312 * This function is called by ext4_ext_map_blocks() from
3313 * ext4_get_blocks_dio_write() when DIO to write
3314 * to an uninitialized extent.
3315 *
3316 * Writing to an uninitialized extent may result in splitting the uninitialized
3317 * extent into multiple initialized/uninitialized extents (up to three)
3318 * There are three possibilities:
3319 *   a> There is no split required: Entire extent should be uninitialized
3320 *   b> Splits in two extents: Write is happening at either end of the extent
3321 *   c> Splits in three extents: Somone is writing in middle of the extent
3322 *
3323 * One of more index blocks maybe needed if the extent tree grow after
3324 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3325 * complete, we need to split the uninitialized extent before DIO submit
3326 * the IO. The uninitialized extent called at this time will be split
3327 * into three uninitialized extent(at most). After IO complete, the part
3328 * being filled will be convert to initialized by the end_io callback function
3329 * via ext4_convert_unwritten_extents().
3330 *
3331 * Returns the size of uninitialized extent to be written on success.
3332 */
3333static int ext4_split_unwritten_extents(handle_t *handle,
3334					struct inode *inode,
3335					struct ext4_map_blocks *map,
3336					struct ext4_ext_path *path,
3337					int flags)
3338{
3339	ext4_lblk_t eof_block;
3340	ext4_lblk_t ee_block;
3341	struct ext4_extent *ex;
3342	unsigned int ee_len;
3343	int split_flag = 0, depth;
3344
3345	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3346		"block %llu, max_blocks %u\n", inode->i_ino,
3347		(unsigned long long)map->m_lblk, map->m_len);
3348
3349	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3350		inode->i_sb->s_blocksize_bits;
3351	if (eof_block < map->m_lblk + map->m_len)
3352		eof_block = map->m_lblk + map->m_len;
3353	/*
3354	 * It is safe to convert extent to initialized via explicit
3355	 * zeroout only if extent is fully insde i_size or new_size.
3356	 */
3357	depth = ext_depth(inode);
3358	ex = path[depth].p_ext;
3359	ee_block = le32_to_cpu(ex->ee_block);
3360	ee_len = ext4_ext_get_actual_len(ex);
3361
3362	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3363	split_flag |= EXT4_EXT_MARK_UNINIT2;
3364	if (flags & EXT4_GET_BLOCKS_CONVERT)
3365		split_flag |= EXT4_EXT_DATA_VALID2;
3366	flags |= EXT4_GET_BLOCKS_PRE_IO;
3367	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3368}
3369
3370static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3371						struct inode *inode,
3372						struct ext4_map_blocks *map,
3373						struct ext4_ext_path *path)
3374{
3375	struct ext4_extent *ex;
3376	ext4_lblk_t ee_block;
3377	unsigned int ee_len;
3378	int depth;
3379	int err = 0;
3380
3381	depth = ext_depth(inode);
3382	ex = path[depth].p_ext;
3383	ee_block = le32_to_cpu(ex->ee_block);
3384	ee_len = ext4_ext_get_actual_len(ex);
3385
3386	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3387		"block %llu, max_blocks %u\n", inode->i_ino,
3388		  (unsigned long long)ee_block, ee_len);
3389
3390	/* If extent is larger than requested it is a clear sign that we still
3391	 * have some extent state machine issues left. So extent_split is still
3392	 * required.
3393	 * TODO: Once all related issues will be fixed this situation should be
3394	 * illegal.
3395	 */
3396	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3397#ifdef EXT4_DEBUG
3398		ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3399			     " len %u; IO logical block %llu, len %u\n",
3400			     inode->i_ino, (unsigned long long)ee_block, ee_len,
3401			     (unsigned long long)map->m_lblk, map->m_len);
3402#endif
3403		err = ext4_split_unwritten_extents(handle, inode, map, path,
3404						   EXT4_GET_BLOCKS_CONVERT);
3405		if (err < 0)
3406			goto out;
3407		ext4_ext_drop_refs(path);
3408		path = ext4_ext_find_extent(inode, map->m_lblk, path);
3409		if (IS_ERR(path)) {
3410			err = PTR_ERR(path);
3411			goto out;
3412		}
3413		depth = ext_depth(inode);
3414		ex = path[depth].p_ext;
3415	}
3416
3417	err = ext4_ext_get_access(handle, inode, path + depth);
3418	if (err)
3419		goto out;
3420	/* first mark the extent as initialized */
3421	ext4_ext_mark_initialized(ex);
3422
3423	/* note: ext4_ext_correct_indexes() isn't needed here because
3424	 * borders are not changed
3425	 */
3426	ext4_ext_try_to_merge(handle, inode, path, ex);
3427
3428	/* Mark modified extent as dirty */
3429	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3430out:
3431	ext4_ext_show_leaf(inode, path);
3432	return err;
3433}
3434
3435static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3436			sector_t block, int count)
3437{
3438	int i;
3439	for (i = 0; i < count; i++)
3440                unmap_underlying_metadata(bdev, block + i);
3441}
3442
3443/*
3444 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3445 */
3446static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3447			      ext4_lblk_t lblk,
3448			      struct ext4_ext_path *path,
3449			      unsigned int len)
3450{
3451	int i, depth;
3452	struct ext4_extent_header *eh;
3453	struct ext4_extent *last_ex;
3454
3455	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3456		return 0;
3457
3458	depth = ext_depth(inode);
3459	eh = path[depth].p_hdr;
3460
3461	/*
3462	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3463	 * do not care for this case anymore. Simply remove the flag
3464	 * if there are no extents.
3465	 */
3466	if (unlikely(!eh->eh_entries))
3467		goto out;
3468	last_ex = EXT_LAST_EXTENT(eh);
3469	/*
3470	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3471	 * last block in the last extent in the file.  We test this by
3472	 * first checking to see if the caller to
3473	 * ext4_ext_get_blocks() was interested in the last block (or
3474	 * a block beyond the last block) in the current extent.  If
3475	 * this turns out to be false, we can bail out from this
3476	 * function immediately.
3477	 */
3478	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3479	    ext4_ext_get_actual_len(last_ex))
3480		return 0;
3481	/*
3482	 * If the caller does appear to be planning to write at or
3483	 * beyond the end of the current extent, we then test to see
3484	 * if the current extent is the last extent in the file, by
3485	 * checking to make sure it was reached via the rightmost node
3486	 * at each level of the tree.
3487	 */
3488	for (i = depth-1; i >= 0; i--)
3489		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3490			return 0;
3491out:
3492	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3493	return ext4_mark_inode_dirty(handle, inode);
3494}
3495
3496/**
3497 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3498 *
3499 * Return 1 if there is a delalloc block in the range, otherwise 0.
3500 */
3501int ext4_find_delalloc_range(struct inode *inode,
3502			     ext4_lblk_t lblk_start,
3503			     ext4_lblk_t lblk_end)
3504{
3505	struct extent_status es;
3506
3507	ext4_es_find_delayed_extent(inode, lblk_start, &es);
3508	if (es.es_len == 0)
3509		return 0; /* there is no delay extent in this tree */
3510	else if (es.es_lblk <= lblk_start &&
3511		 lblk_start < es.es_lblk + es.es_len)
3512		return 1;
3513	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3514		return 1;
3515	else
3516		return 0;
3517}
3518
3519int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3520{
3521	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3522	ext4_lblk_t lblk_start, lblk_end;
3523	lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3524	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3525
3526	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3527}
3528
3529/**
3530 * Determines how many complete clusters (out of those specified by the 'map')
3531 * are under delalloc and were reserved quota for.
3532 * This function is called when we are writing out the blocks that were
3533 * originally written with their allocation delayed, but then the space was
3534 * allocated using fallocate() before the delayed allocation could be resolved.
3535 * The cases to look for are:
3536 * ('=' indicated delayed allocated blocks
3537 *  '-' indicates non-delayed allocated blocks)
3538 * (a) partial clusters towards beginning and/or end outside of allocated range
3539 *     are not delalloc'ed.
3540 *	Ex:
3541 *	|----c---=|====c====|====c====|===-c----|
3542 *	         |++++++ allocated ++++++|
3543 *	==> 4 complete clusters in above example
3544 *
3545 * (b) partial cluster (outside of allocated range) towards either end is
3546 *     marked for delayed allocation. In this case, we will exclude that
3547 *     cluster.
3548 *	Ex:
3549 *	|----====c========|========c========|
3550 *	     |++++++ allocated ++++++|
3551 *	==> 1 complete clusters in above example
3552 *
3553 *	Ex:
3554 *	|================c================|
3555 *            |++++++ allocated ++++++|
3556 *	==> 0 complete clusters in above example
3557 *
3558 * The ext4_da_update_reserve_space will be called only if we
3559 * determine here that there were some "entire" clusters that span
3560 * this 'allocated' range.
3561 * In the non-bigalloc case, this function will just end up returning num_blks
3562 * without ever calling ext4_find_delalloc_range.
3563 */
3564static unsigned int
3565get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3566			   unsigned int num_blks)
3567{
3568	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3569	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3570	ext4_lblk_t lblk_from, lblk_to, c_offset;
3571	unsigned int allocated_clusters = 0;
3572
3573	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3574	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3575
3576	/* max possible clusters for this allocation */
3577	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3578
3579	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3580
3581	/* Check towards left side */
3582	c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3583	if (c_offset) {
3584		lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3585		lblk_to = lblk_from + c_offset - 1;
3586
3587		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3588			allocated_clusters--;
3589	}
3590
3591	/* Now check towards right. */
3592	c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3593	if (allocated_clusters && c_offset) {
3594		lblk_from = lblk_start + num_blks;
3595		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3596
3597		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3598			allocated_clusters--;
3599	}
3600
3601	return allocated_clusters;
3602}
3603
3604static int
3605ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3606			struct ext4_map_blocks *map,
3607			struct ext4_ext_path *path, int flags,
3608			unsigned int allocated, ext4_fsblk_t newblock)
3609{
3610	int ret = 0;
3611	int err = 0;
3612	ext4_io_end_t *io = ext4_inode_aio(inode);
3613
3614	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3615		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
3616		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3617		  flags, allocated);
3618	ext4_ext_show_leaf(inode, path);
3619
3620	trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3621						    allocated, newblock);
3622
3623	/* get_block() before submit the IO, split the extent */
3624	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3625		ret = ext4_split_unwritten_extents(handle, inode, map,
3626						   path, flags);
3627		if (ret <= 0)
3628			goto out;
3629		/*
3630		 * Flag the inode(non aio case) or end_io struct (aio case)
3631		 * that this IO needs to conversion to written when IO is
3632		 * completed
3633		 */
3634		if (io)
3635			ext4_set_io_unwritten_flag(inode, io);
3636		else
3637			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3638		map->m_flags |= EXT4_MAP_UNWRITTEN;
3639		if (ext4_should_dioread_nolock(inode))
3640			map->m_flags |= EXT4_MAP_UNINIT;
3641		goto out;
3642	}
3643	/* IO end_io complete, convert the filled extent to written */
3644	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3645		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3646							path);
3647		if (ret >= 0) {
3648			ext4_update_inode_fsync_trans(handle, inode, 1);
3649			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3650						 path, map->m_len);
3651		} else
3652			err = ret;
3653		goto out2;
3654	}
3655	/* buffered IO case */
3656	/*
3657	 * repeat fallocate creation request
3658	 * we already have an unwritten extent
3659	 */
3660	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
3661		map->m_flags |= EXT4_MAP_UNWRITTEN;
3662		goto map_out;
3663	}
3664
3665	/* buffered READ or buffered write_begin() lookup */
3666	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3667		/*
3668		 * We have blocks reserved already.  We
3669		 * return allocated blocks so that delalloc
3670		 * won't do block reservation for us.  But
3671		 * the buffer head will be unmapped so that
3672		 * a read from the block returns 0s.
3673		 */
3674		map->m_flags |= EXT4_MAP_UNWRITTEN;
3675		goto out1;
3676	}
3677
3678	/* buffered write, writepage time, convert*/
3679	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3680	if (ret >= 0)
3681		ext4_update_inode_fsync_trans(handle, inode, 1);
3682out:
3683	if (ret <= 0) {
3684		err = ret;
3685		goto out2;
3686	} else
3687		allocated = ret;
3688	map->m_flags |= EXT4_MAP_NEW;
3689	/*
3690	 * if we allocated more blocks than requested
3691	 * we need to make sure we unmap the extra block
3692	 * allocated. The actual needed block will get
3693	 * unmapped later when we find the buffer_head marked
3694	 * new.
3695	 */
3696	if (allocated > map->m_len) {
3697		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3698					newblock + map->m_len,
3699					allocated - map->m_len);
3700		allocated = map->m_len;
3701	}
3702
3703	/*
3704	 * If we have done fallocate with the offset that is already
3705	 * delayed allocated, we would have block reservation
3706	 * and quota reservation done in the delayed write path.
3707	 * But fallocate would have already updated quota and block
3708	 * count for this offset. So cancel these reservation
3709	 */
3710	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3711		unsigned int reserved_clusters;
3712		reserved_clusters = get_reserved_cluster_alloc(inode,
3713				map->m_lblk, map->m_len);
3714		if (reserved_clusters)
3715			ext4_da_update_reserve_space(inode,
3716						     reserved_clusters,
3717						     0);
3718	}
3719
3720map_out:
3721	map->m_flags |= EXT4_MAP_MAPPED;
3722	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3723		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3724					 map->m_len);
3725		if (err < 0)
3726			goto out2;
3727	}
3728out1:
3729	if (allocated > map->m_len)
3730		allocated = map->m_len;
3731	ext4_ext_show_leaf(inode, path);
3732	map->m_pblk = newblock;
3733	map->m_len = allocated;
3734out2:
3735	if (path) {
3736		ext4_ext_drop_refs(path);
3737		kfree(path);
3738	}
3739	return err ? err : allocated;
3740}
3741
3742/*
3743 * get_implied_cluster_alloc - check to see if the requested
3744 * allocation (in the map structure) overlaps with a cluster already
3745 * allocated in an extent.
3746 *	@sb	The filesystem superblock structure
3747 *	@map	The requested lblk->pblk mapping
3748 *	@ex	The extent structure which might contain an implied
3749 *			cluster allocation
3750 *
3751 * This function is called by ext4_ext_map_blocks() after we failed to
3752 * find blocks that were already in the inode's extent tree.  Hence,
3753 * we know that the beginning of the requested region cannot overlap
3754 * the extent from the inode's extent tree.  There are three cases we
3755 * want to catch.  The first is this case:
3756 *
3757 *		 |--- cluster # N--|
3758 *    |--- extent ---|	|---- requested region ---|
3759 *			|==========|
3760 *
3761 * The second case that we need to test for is this one:
3762 *
3763 *   |--------- cluster # N ----------------|
3764 *	   |--- requested region --|   |------- extent ----|
3765 *	   |=======================|
3766 *
3767 * The third case is when the requested region lies between two extents
3768 * within the same cluster:
3769 *          |------------- cluster # N-------------|
3770 * |----- ex -----|                  |---- ex_right ----|
3771 *                  |------ requested region ------|
3772 *                  |================|
3773 *
3774 * In each of the above cases, we need to set the map->m_pblk and
3775 * map->m_len so it corresponds to the return the extent labelled as
3776 * "|====|" from cluster #N, since it is already in use for data in
3777 * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
3778 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3779 * as a new "allocated" block region.  Otherwise, we will return 0 and
3780 * ext4_ext_map_blocks() will then allocate one or more new clusters
3781 * by calling ext4_mb_new_blocks().
3782 */
3783static int get_implied_cluster_alloc(struct super_block *sb,
3784				     struct ext4_map_blocks *map,
3785				     struct ext4_extent *ex,
3786				     struct ext4_ext_path *path)
3787{
3788	struct ext4_sb_info *sbi = EXT4_SB(sb);
3789	ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3790	ext4_lblk_t ex_cluster_start, ex_cluster_end;
3791	ext4_lblk_t rr_cluster_start;
3792	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3793	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3794	unsigned short ee_len = ext4_ext_get_actual_len(ex);
3795
3796	/* The extent passed in that we are trying to match */
3797	ex_cluster_start = EXT4_B2C(sbi, ee_block);
3798	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3799
3800	/* The requested region passed into ext4_map_blocks() */
3801	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3802
3803	if ((rr_cluster_start == ex_cluster_end) ||
3804	    (rr_cluster_start == ex_cluster_start)) {
3805		if (rr_cluster_start == ex_cluster_end)
3806			ee_start += ee_len - 1;
3807		map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3808			c_offset;
3809		map->m_len = min(map->m_len,
3810				 (unsigned) sbi->s_cluster_ratio - c_offset);
3811		/*
3812		 * Check for and handle this case:
3813		 *
3814		 *   |--------- cluster # N-------------|
3815		 *		       |------- extent ----|
3816		 *	   |--- requested region ---|
3817		 *	   |===========|
3818		 */
3819
3820		if (map->m_lblk < ee_block)
3821			map->m_len = min(map->m_len, ee_block - map->m_lblk);
3822
3823		/*
3824		 * Check for the case where there is already another allocated
3825		 * block to the right of 'ex' but before the end of the cluster.
3826		 *
3827		 *          |------------- cluster # N-------------|
3828		 * |----- ex -----|                  |---- ex_right ----|
3829		 *                  |------ requested region ------|
3830		 *                  |================|
3831		 */
3832		if (map->m_lblk > ee_block) {
3833			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3834			map->m_len = min(map->m_len, next - map->m_lblk);
3835		}
3836
3837		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3838		return 1;
3839	}
3840
3841	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3842	return 0;
3843}
3844
3845
3846/*
3847 * Block allocation/map/preallocation routine for extents based files
3848 *
3849 *
3850 * Need to be called with
3851 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3852 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3853 *
3854 * return > 0, number of of blocks already mapped/allocated
3855 *          if create == 0 and these are pre-allocated blocks
3856 *          	buffer head is unmapped
3857 *          otherwise blocks are mapped
3858 *
3859 * return = 0, if plain look up failed (blocks have not been allocated)
3860 *          buffer head is unmapped
3861 *
3862 * return < 0, error case.
3863 */
3864int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3865			struct ext4_map_blocks *map, int flags)
3866{
3867	struct ext4_ext_path *path = NULL;
3868	struct ext4_extent newex, *ex, *ex2;
3869	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3870	ext4_fsblk_t newblock = 0;
3871	int free_on_err = 0, err = 0, depth;
3872	unsigned int allocated = 0, offset = 0;
3873	unsigned int allocated_clusters = 0;
3874	struct ext4_allocation_request ar;
3875	ext4_io_end_t *io = ext4_inode_aio(inode);
3876	ext4_lblk_t cluster_offset;
3877	int set_unwritten = 0;
3878
3879	ext_debug("blocks %u/%u requested for inode %lu\n",
3880		  map->m_lblk, map->m_len, inode->i_ino);
3881	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3882
3883	/* find extent for this block */
3884	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3885	if (IS_ERR(path)) {
3886		err = PTR_ERR(path);
3887		path = NULL;
3888		goto out2;
3889	}
3890
3891	depth = ext_depth(inode);
3892
3893	/*
3894	 * consistent leaf must not be empty;
3895	 * this situation is possible, though, _during_ tree modification;
3896	 * this is why assert can't be put in ext4_ext_find_extent()
3897	 */
3898	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3899		EXT4_ERROR_INODE(inode, "bad extent address "
3900				 "lblock: %lu, depth: %d pblock %lld",
3901				 (unsigned long) map->m_lblk, depth,
3902				 path[depth].p_block);
3903		err = -EIO;
3904		goto out2;
3905	}
3906
3907	ex = path[depth].p_ext;
3908	if (ex) {
3909		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3910		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3911		unsigned short ee_len;
3912
3913		/*
3914		 * Uninitialized extents are treated as holes, except that
3915		 * we split out initialized portions during a write.
3916		 */
3917		ee_len = ext4_ext_get_actual_len(ex);
3918
3919		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3920
3921		/* if found extent covers block, simply return it */
3922		if (in_range(map->m_lblk, ee_block, ee_len)) {
3923			newblock = map->m_lblk - ee_block + ee_start;
3924			/* number of remaining blocks in the extent */
3925			allocated = ee_len - (map->m_lblk - ee_block);
3926			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3927				  ee_block, ee_len, newblock);
3928
3929			if (!ext4_ext_is_uninitialized(ex))
3930				goto out;
3931
3932			allocated = ext4_ext_handle_uninitialized_extents(
3933				handle, inode, map, path, flags,
3934				allocated, newblock);
3935			goto out3;
3936		}
3937	}
3938
3939	if ((sbi->s_cluster_ratio > 1) &&
3940	    ext4_find_delalloc_cluster(inode, map->m_lblk))
3941		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3942
3943	/*
3944	 * requested block isn't allocated yet;
3945	 * we couldn't try to create block if create flag is zero
3946	 */
3947	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3948		/*
3949		 * put just found gap into cache to speed up
3950		 * subsequent requests
3951		 */
3952		if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
3953			ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3954		goto out2;
3955	}
3956
3957	/*
3958	 * Okay, we need to do block allocation.
3959	 */
3960	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3961	newex.ee_block = cpu_to_le32(map->m_lblk);
3962	cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3963
3964	/*
3965	 * If we are doing bigalloc, check to see if the extent returned
3966	 * by ext4_ext_find_extent() implies a cluster we can use.
3967	 */
3968	if (cluster_offset && ex &&
3969	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
3970		ar.len = allocated = map->m_len;
3971		newblock = map->m_pblk;
3972		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3973		goto got_allocated_blocks;
3974	}
3975
3976	/* find neighbour allocated blocks */
3977	ar.lleft = map->m_lblk;
3978	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3979	if (err)
3980		goto out2;
3981	ar.lright = map->m_lblk;
3982	ex2 = NULL;
3983	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
3984	if (err)
3985		goto out2;
3986
3987	/* Check if the extent after searching to the right implies a
3988	 * cluster we can use. */
3989	if ((sbi->s_cluster_ratio > 1) && ex2 &&
3990	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
3991		ar.len = allocated = map->m_len;
3992		newblock = map->m_pblk;
3993		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3994		goto got_allocated_blocks;
3995	}
3996
3997	/*
3998	 * See if request is beyond maximum number of blocks we can have in
3999	 * a single extent. For an initialized extent this limit is
4000	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4001	 * EXT_UNINIT_MAX_LEN.
4002	 */
4003	if (map->m_len > EXT_INIT_MAX_LEN &&
4004	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4005		map->m_len = EXT_INIT_MAX_LEN;
4006	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4007		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4008		map->m_len = EXT_UNINIT_MAX_LEN;
4009
4010	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4011	newex.ee_len = cpu_to_le16(map->m_len);
4012	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4013	if (err)
4014		allocated = ext4_ext_get_actual_len(&newex);
4015	else
4016		allocated = map->m_len;
4017
4018	/* allocate new block */
4019	ar.inode = inode;
4020	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4021	ar.logical = map->m_lblk;
4022	/*
4023	 * We calculate the offset from the beginning of the cluster
4024	 * for the logical block number, since when we allocate a
4025	 * physical cluster, the physical block should start at the
4026	 * same offset from the beginning of the cluster.  This is
4027	 * needed so that future calls to get_implied_cluster_alloc()
4028	 * work correctly.
4029	 */
4030	offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4031	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4032	ar.goal -= offset;
4033	ar.logical -= offset;
4034	if (S_ISREG(inode->i_mode))
4035		ar.flags = EXT4_MB_HINT_DATA;
4036	else
4037		/* disable in-core preallocation for non-regular files */
4038		ar.flags = 0;
4039	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4040		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4041	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4042	if (!newblock)
4043		goto out2;
4044	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4045		  ar.goal, newblock, allocated);
4046	free_on_err = 1;
4047	allocated_clusters = ar.len;
4048	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4049	if (ar.len > allocated)
4050		ar.len = allocated;
4051
4052got_allocated_blocks:
4053	/* try to insert new extent into found leaf and return */
4054	ext4_ext_store_pblock(&newex, newblock + offset);
4055	newex.ee_len = cpu_to_le16(ar.len);
4056	/* Mark uninitialized */
4057	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4058		ext4_ext_mark_uninitialized(&newex);
4059		map->m_flags |= EXT4_MAP_UNWRITTEN;
4060		/*
4061		 * io_end structure was created for every IO write to an
4062		 * uninitialized extent. To avoid unnecessary conversion,
4063		 * here we flag the IO that really needs the conversion.
4064		 * For non asycn direct IO case, flag the inode state
4065		 * that we need to perform conversion when IO is done.
4066		 */
4067		if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4068			set_unwritten = 1;
4069		if (ext4_should_dioread_nolock(inode))
4070			map->m_flags |= EXT4_MAP_UNINIT;
4071	}
4072
4073	err = 0;
4074	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4075		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4076					 path, ar.len);
4077	if (!err)
4078		err = ext4_ext_insert_extent(handle, inode, path,
4079					     &newex, flags);
4080
4081	if (!err && set_unwritten) {
4082		if (io)
4083			ext4_set_io_unwritten_flag(inode, io);
4084		else
4085			ext4_set_inode_state(inode,
4086					     EXT4_STATE_DIO_UNWRITTEN);
4087	}
4088
4089	if (err && free_on_err) {
4090		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4091			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4092		/* free data blocks we just allocated */
4093		/* not a good idea to call discard here directly,
4094		 * but otherwise we'd need to call it every free() */
4095		ext4_discard_preallocations(inode);
4096		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4097				 ext4_ext_get_actual_len(&newex), fb_flags);
4098		goto out2;
4099	}
4100
4101	/* previous routine could use block we allocated */
4102	newblock = ext4_ext_pblock(&newex);
4103	allocated = ext4_ext_get_actual_len(&newex);
4104	if (allocated > map->m_len)
4105		allocated = map->m_len;
4106	map->m_flags |= EXT4_MAP_NEW;
4107
4108	/*
4109	 * Update reserved blocks/metadata blocks after successful
4110	 * block allocation which had been deferred till now.
4111	 */
4112	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4113		unsigned int reserved_clusters;
4114		/*
4115		 * Check how many clusters we had reserved this allocated range
4116		 */
4117		reserved_clusters = get_reserved_cluster_alloc(inode,
4118						map->m_lblk, allocated);
4119		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4120			if (reserved_clusters) {
4121				/*
4122				 * We have clusters reserved for this range.
4123				 * But since we are not doing actual allocation
4124				 * and are simply using blocks from previously
4125				 * allocated cluster, we should release the
4126				 * reservation and not claim quota.
4127				 */
4128				ext4_da_update_reserve_space(inode,
4129						reserved_clusters, 0);
4130			}
4131		} else {
4132			BUG_ON(allocated_clusters < reserved_clusters);
4133			/* We will claim quota for all newly allocated blocks.*/
4134			ext4_da_update_reserve_space(inode, allocated_clusters,
4135							1);
4136			if (reserved_clusters < allocated_clusters) {
4137				struct ext4_inode_info *ei = EXT4_I(inode);
4138				int reservation = allocated_clusters -
4139						  reserved_clusters;
4140				/*
4141				 * It seems we claimed few clusters outside of
4142				 * the range of this allocation. We should give
4143				 * it back to the reservation pool. This can
4144				 * happen in the following case:
4145				 *
4146				 * * Suppose s_cluster_ratio is 4 (i.e., each
4147				 *   cluster has 4 blocks. Thus, the clusters
4148				 *   are [0-3],[4-7],[8-11]...
4149				 * * First comes delayed allocation write for
4150				 *   logical blocks 10 & 11. Since there were no
4151				 *   previous delayed allocated blocks in the
4152				 *   range [8-11], we would reserve 1 cluster
4153				 *   for this write.
4154				 * * Next comes write for logical blocks 3 to 8.
4155				 *   In this case, we will reserve 2 clusters
4156				 *   (for [0-3] and [4-7]; and not for [8-11] as
4157				 *   that range has a delayed allocated blocks.
4158				 *   Thus total reserved clusters now becomes 3.
4159				 * * Now, during the delayed allocation writeout
4160				 *   time, we will first write blocks [3-8] and
4161				 *   allocate 3 clusters for writing these
4162				 *   blocks. Also, we would claim all these
4163				 *   three clusters above.
4164				 * * Now when we come here to writeout the
4165				 *   blocks [10-11], we would expect to claim
4166				 *   the reservation of 1 cluster we had made
4167				 *   (and we would claim it since there are no
4168				 *   more delayed allocated blocks in the range
4169				 *   [8-11]. But our reserved cluster count had
4170				 *   already gone to 0.
4171				 *
4172				 *   Thus, at the step 4 above when we determine
4173				 *   that there are still some unwritten delayed
4174				 *   allocated blocks outside of our current
4175				 *   block range, we should increment the
4176				 *   reserved clusters count so that when the
4177				 *   remaining blocks finally gets written, we
4178				 *   could claim them.
4179				 */
4180				dquot_reserve_block(inode,
4181						EXT4_C2B(sbi, reservation));
4182				spin_lock(&ei->i_block_reservation_lock);
4183				ei->i_reserved_data_blocks += reservation;
4184				spin_unlock(&ei->i_block_reservation_lock);
4185			}
4186		}
4187	}
4188
4189	/*
4190	 * Cache the extent and update transaction to commit on fdatasync only
4191	 * when it is _not_ an uninitialized extent.
4192	 */
4193	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
4194		ext4_update_inode_fsync_trans(handle, inode, 1);
4195	else
4196		ext4_update_inode_fsync_trans(handle, inode, 0);
4197out:
4198	if (allocated > map->m_len)
4199		allocated = map->m_len;
4200	ext4_ext_show_leaf(inode, path);
4201	map->m_flags |= EXT4_MAP_MAPPED;
4202	map->m_pblk = newblock;
4203	map->m_len = allocated;
4204out2:
4205	if (path) {
4206		ext4_ext_drop_refs(path);
4207		kfree(path);
4208	}
4209
4210out3:
4211	trace_ext4_ext_map_blocks_exit(inode, map, err ? err : allocated);
4212
4213	return err ? err : allocated;
4214}
4215
4216void ext4_ext_truncate(struct inode *inode)
4217{
4218	struct address_space *mapping = inode->i_mapping;
4219	struct super_block *sb = inode->i_sb;
4220	ext4_lblk_t last_block;
4221	handle_t *handle;
4222	loff_t page_len;
4223	int err = 0;
4224
4225	/*
4226	 * finish any pending end_io work so we won't run the risk of
4227	 * converting any truncated blocks to initialized later
4228	 */
4229	ext4_flush_unwritten_io(inode);
4230
4231	/*
4232	 * probably first extent we're gonna free will be last in block
4233	 */
4234	err = ext4_writepage_trans_blocks(inode);
4235	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, err);
4236	if (IS_ERR(handle))
4237		return;
4238
4239	if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4240		page_len = PAGE_CACHE_SIZE -
4241			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4242
4243		err = ext4_discard_partial_page_buffers(handle,
4244			mapping, inode->i_size, page_len, 0);
4245
4246		if (err)
4247			goto out_stop;
4248	}
4249
4250	if (ext4_orphan_add(handle, inode))
4251		goto out_stop;
4252
4253	down_write(&EXT4_I(inode)->i_data_sem);
4254
4255	ext4_discard_preallocations(inode);
4256
4257	/*
4258	 * TODO: optimization is possible here.
4259	 * Probably we need not scan at all,
4260	 * because page truncation is enough.
4261	 */
4262
4263	/* we have to know where to truncate from in crash case */
4264	EXT4_I(inode)->i_disksize = inode->i_size;
4265	ext4_mark_inode_dirty(handle, inode);
4266
4267	last_block = (inode->i_size + sb->s_blocksize - 1)
4268			>> EXT4_BLOCK_SIZE_BITS(sb);
4269	err = ext4_es_remove_extent(inode, last_block,
4270				    EXT_MAX_BLOCKS - last_block);
4271	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4272
4273	/* In a multi-transaction truncate, we only make the final
4274	 * transaction synchronous.
4275	 */
4276	if (IS_SYNC(inode))
4277		ext4_handle_sync(handle);
4278
4279	up_write(&EXT4_I(inode)->i_data_sem);
4280
4281out_stop:
4282	/*
4283	 * If this was a simple ftruncate() and the file will remain alive,
4284	 * then we need to clear up the orphan record which we created above.
4285	 * However, if this was a real unlink then we were called by
4286	 * ext4_delete_inode(), and we allow that function to clean up the
4287	 * orphan info for us.
4288	 */
4289	if (inode->i_nlink)
4290		ext4_orphan_del(handle, inode);
4291
4292	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4293	ext4_mark_inode_dirty(handle, inode);
4294	ext4_journal_stop(handle);
4295}
4296
4297static void ext4_falloc_update_inode(struct inode *inode,
4298				int mode, loff_t new_size, int update_ctime)
4299{
4300	struct timespec now;
4301
4302	if (update_ctime) {
4303		now = current_fs_time(inode->i_sb);
4304		if (!timespec_equal(&inode->i_ctime, &now))
4305			inode->i_ctime = now;
4306	}
4307	/*
4308	 * Update only when preallocation was requested beyond
4309	 * the file size.
4310	 */
4311	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4312		if (new_size > i_size_read(inode))
4313			i_size_write(inode, new_size);
4314		if (new_size > EXT4_I(inode)->i_disksize)
4315			ext4_update_i_disksize(inode, new_size);
4316	} else {
4317		/*
4318		 * Mark that we allocate beyond EOF so the subsequent truncate
4319		 * can proceed even if the new size is the same as i_size.
4320		 */
4321		if (new_size > i_size_read(inode))
4322			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4323	}
4324
4325}
4326
4327/*
4328 * preallocate space for a file. This implements ext4's fallocate file
4329 * operation, which gets called from sys_fallocate system call.
4330 * For block-mapped files, posix_fallocate should fall back to the method
4331 * of writing zeroes to the required new blocks (the same behavior which is
4332 * expected for file systems which do not support fallocate() system call).
4333 */
4334long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4335{
4336	struct inode *inode = file->f_path.dentry->d_inode;
4337	handle_t *handle;
4338	loff_t new_size;
4339	unsigned int max_blocks;
4340	int ret = 0;
4341	int ret2 = 0;
4342	int retries = 0;
4343	int flags;
4344	struct ext4_map_blocks map;
4345	unsigned int credits, blkbits = inode->i_blkbits;
4346
4347	/* Return error if mode is not supported */
4348	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4349		return -EOPNOTSUPP;
4350
4351	if (mode & FALLOC_FL_PUNCH_HOLE)
4352		return ext4_punch_hole(file, offset, len);
4353
4354	ret = ext4_convert_inline_data(inode);
4355	if (ret)
4356		return ret;
4357
4358	/*
4359	 * currently supporting (pre)allocate mode for extent-based
4360	 * files _only_
4361	 */
4362	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4363		return -EOPNOTSUPP;
4364
4365	trace_ext4_fallocate_enter(inode, offset, len, mode);
4366	map.m_lblk = offset >> blkbits;
4367	/*
4368	 * We can't just convert len to max_blocks because
4369	 * If blocksize = 4096 offset = 3072 and len = 2048
4370	 */
4371	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4372		- map.m_lblk;
4373	/*
4374	 * credits to insert 1 extent into extent tree
4375	 */
4376	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4377	mutex_lock(&inode->i_mutex);
4378	ret = inode_newsize_ok(inode, (len + offset));
4379	if (ret) {
4380		mutex_unlock(&inode->i_mutex);
4381		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4382		return ret;
4383	}
4384	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4385	if (mode & FALLOC_FL_KEEP_SIZE)
4386		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4387	/*
4388	 * Don't normalize the request if it can fit in one extent so
4389	 * that it doesn't get unnecessarily split into multiple
4390	 * extents.
4391	 */
4392	if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4393		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4394
4395	/* Prevent race condition between unwritten */
4396	ext4_flush_unwritten_io(inode);
4397retry:
4398	while (ret >= 0 && ret < max_blocks) {
4399		map.m_lblk = map.m_lblk + ret;
4400		map.m_len = max_blocks = max_blocks - ret;
4401		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4402					    credits);
4403		if (IS_ERR(handle)) {
4404			ret = PTR_ERR(handle);
4405			break;
4406		}
4407		ret = ext4_map_blocks(handle, inode, &map, flags);
4408		if (ret <= 0) {
4409#ifdef EXT4FS_DEBUG
4410			ext4_warning(inode->i_sb,
4411				     "inode #%lu: block %u: len %u: "
4412				     "ext4_ext_map_blocks returned %d",
4413				     inode->i_ino, map.m_lblk,
4414				     map.m_len, ret);
4415#endif
4416			ext4_mark_inode_dirty(handle, inode);
4417			ret2 = ext4_journal_stop(handle);
4418			break;
4419		}
4420		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4421						blkbits) >> blkbits))
4422			new_size = offset + len;
4423		else
4424			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4425
4426		ext4_falloc_update_inode(inode, mode, new_size,
4427					 (map.m_flags & EXT4_MAP_NEW));
4428		ext4_mark_inode_dirty(handle, inode);
4429		if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4430			ext4_handle_sync(handle);
4431		ret2 = ext4_journal_stop(handle);
4432		if (ret2)
4433			break;
4434	}
4435	if (ret == -ENOSPC &&
4436			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4437		ret = 0;
4438		goto retry;
4439	}
4440	mutex_unlock(&inode->i_mutex);
4441	trace_ext4_fallocate_exit(inode, offset, max_blocks,
4442				ret > 0 ? ret2 : ret);
4443	return ret > 0 ? ret2 : ret;
4444}
4445
4446/*
4447 * This function convert a range of blocks to written extents
4448 * The caller of this function will pass the start offset and the size.
4449 * all unwritten extents within this range will be converted to
4450 * written extents.
4451 *
4452 * This function is called from the direct IO end io call back
4453 * function, to convert the fallocated extents after IO is completed.
4454 * Returns 0 on success.
4455 */
4456int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4457				    ssize_t len)
4458{
4459	handle_t *handle;
4460	unsigned int max_blocks;
4461	int ret = 0;
4462	int ret2 = 0;
4463	struct ext4_map_blocks map;
4464	unsigned int credits, blkbits = inode->i_blkbits;
4465
4466	map.m_lblk = offset >> blkbits;
4467	/*
4468	 * We can't just convert len to max_blocks because
4469	 * If blocksize = 4096 offset = 3072 and len = 2048
4470	 */
4471	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4472		      map.m_lblk);
4473	/*
4474	 * credits to insert 1 extent into extent tree
4475	 */
4476	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4477	while (ret >= 0 && ret < max_blocks) {
4478		map.m_lblk += ret;
4479		map.m_len = (max_blocks -= ret);
4480		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
4481		if (IS_ERR(handle)) {
4482			ret = PTR_ERR(handle);
4483			break;
4484		}
4485		ret = ext4_map_blocks(handle, inode, &map,
4486				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4487		if (ret <= 0)
4488			ext4_warning(inode->i_sb,
4489				     "inode #%lu: block %u: len %u: "
4490				     "ext4_ext_map_blocks returned %d",
4491				     inode->i_ino, map.m_lblk,
4492				     map.m_len, ret);
4493		ext4_mark_inode_dirty(handle, inode);
4494		ret2 = ext4_journal_stop(handle);
4495		if (ret <= 0 || ret2 )
4496			break;
4497	}
4498	return ret > 0 ? ret2 : ret;
4499}
4500
4501/*
4502 * If newes is not existing extent (newes->ec_pblk equals zero) find
4503 * delayed extent at start of newes and update newes accordingly and
4504 * return start of the next delayed extent.
4505 *
4506 * If newes is existing extent (newes->ec_pblk is not equal zero)
4507 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4508 * extent found. Leave newes unmodified.
4509 */
4510static int ext4_find_delayed_extent(struct inode *inode,
4511				    struct extent_status *newes)
4512{
4513	struct extent_status es;
4514	ext4_lblk_t block, next_del;
4515
4516	ext4_es_find_delayed_extent(inode, newes->es_lblk, &es);
4517
4518	if (newes->es_pblk == 0) {
4519		/*
4520		 * No extent in extent-tree contains block @newes->es_pblk,
4521		 * then the block may stay in 1)a hole or 2)delayed-extent.
4522		 */
4523		if (es.es_len == 0)
4524			/* A hole found. */
4525			return 0;
4526
4527		if (es.es_lblk > newes->es_lblk) {
4528			/* A hole found. */
4529			newes->es_len = min(es.es_lblk - newes->es_lblk,
4530					    newes->es_len);
4531			return 0;
4532		}
4533
4534		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
4535	}
4536
4537	block = newes->es_lblk + newes->es_len;
4538	ext4_es_find_delayed_extent(inode, block, &es);
4539	if (es.es_len == 0)
4540		next_del = EXT_MAX_BLOCKS;
4541	else
4542		next_del = es.es_lblk;
4543
4544	return next_del;
4545}
4546/* fiemap flags we can handle specified here */
4547#define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4548
4549static int ext4_xattr_fiemap(struct inode *inode,
4550				struct fiemap_extent_info *fieinfo)
4551{
4552	__u64 physical = 0;
4553	__u64 length;
4554	__u32 flags = FIEMAP_EXTENT_LAST;
4555	int blockbits = inode->i_sb->s_blocksize_bits;
4556	int error = 0;
4557
4558	/* in-inode? */
4559	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4560		struct ext4_iloc iloc;
4561		int offset;	/* offset of xattr in inode */
4562
4563		error = ext4_get_inode_loc(inode, &iloc);
4564		if (error)
4565			return error;
4566		physical = iloc.bh->b_blocknr << blockbits;
4567		offset = EXT4_GOOD_OLD_INODE_SIZE +
4568				EXT4_I(inode)->i_extra_isize;
4569		physical += offset;
4570		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4571		flags |= FIEMAP_EXTENT_DATA_INLINE;
4572		brelse(iloc.bh);
4573	} else { /* external block */
4574		physical = EXT4_I(inode)->i_file_acl << blockbits;
4575		length = inode->i_sb->s_blocksize;
4576	}
4577
4578	if (physical)
4579		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4580						length, flags);
4581	return (error < 0 ? error : 0);
4582}
4583
4584/*
4585 * ext4_ext_punch_hole
4586 *
4587 * Punches a hole of "length" bytes in a file starting
4588 * at byte "offset"
4589 *
4590 * @inode:  The inode of the file to punch a hole in
4591 * @offset: The starting byte offset of the hole
4592 * @length: The length of the hole
4593 *
4594 * Returns the number of blocks removed or negative on err
4595 */
4596int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4597{
4598	struct inode *inode = file->f_path.dentry->d_inode;
4599	struct super_block *sb = inode->i_sb;
4600	ext4_lblk_t first_block, stop_block;
4601	struct address_space *mapping = inode->i_mapping;
4602	handle_t *handle;
4603	loff_t first_page, last_page, page_len;
4604	loff_t first_page_offset, last_page_offset;
4605	int credits, err = 0;
4606
4607	/*
4608	 * Write out all dirty pages to avoid race conditions
4609	 * Then release them.
4610	 */
4611	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4612		err = filemap_write_and_wait_range(mapping,
4613			offset, offset + length - 1);
4614
4615		if (err)
4616			return err;
4617	}
4618
4619	mutex_lock(&inode->i_mutex);
4620	/* It's not possible punch hole on append only file */
4621	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4622		err = -EPERM;
4623		goto out_mutex;
4624	}
4625	if (IS_SWAPFILE(inode)) {
4626		err = -ETXTBSY;
4627		goto out_mutex;
4628	}
4629
4630	/* No need to punch hole beyond i_size */
4631	if (offset >= inode->i_size)
4632		goto out_mutex;
4633
4634	/*
4635	 * If the hole extends beyond i_size, set the hole
4636	 * to end after the page that contains i_size
4637	 */
4638	if (offset + length > inode->i_size) {
4639		length = inode->i_size +
4640		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4641		   offset;
4642	}
4643
4644	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4645	last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4646
4647	first_page_offset = first_page << PAGE_CACHE_SHIFT;
4648	last_page_offset = last_page << PAGE_CACHE_SHIFT;
4649
4650	/* Now release the pages */
4651	if (last_page_offset > first_page_offset) {
4652		truncate_pagecache_range(inode, first_page_offset,
4653					 last_page_offset - 1);
4654	}
4655
4656	/* Wait all existing dio workers, newcomers will block on i_mutex */
4657	ext4_inode_block_unlocked_dio(inode);
4658	err = ext4_flush_unwritten_io(inode);
4659	if (err)
4660		goto out_dio;
4661	inode_dio_wait(inode);
4662
4663	credits = ext4_writepage_trans_blocks(inode);
4664	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4665	if (IS_ERR(handle)) {
4666		err = PTR_ERR(handle);
4667		goto out_dio;
4668	}
4669
4670
4671	/*
4672	 * Now we need to zero out the non-page-aligned data in the
4673	 * pages at the start and tail of the hole, and unmap the buffer
4674	 * heads for the block aligned regions of the page that were
4675	 * completely zeroed.
4676	 */
4677	if (first_page > last_page) {
4678		/*
4679		 * If the file space being truncated is contained within a page
4680		 * just zero out and unmap the middle of that page
4681		 */
4682		err = ext4_discard_partial_page_buffers(handle,
4683			mapping, offset, length, 0);
4684
4685		if (err)
4686			goto out;
4687	} else {
4688		/*
4689		 * zero out and unmap the partial page that contains
4690		 * the start of the hole
4691		 */
4692		page_len  = first_page_offset - offset;
4693		if (page_len > 0) {
4694			err = ext4_discard_partial_page_buffers(handle, mapping,
4695						   offset, page_len, 0);
4696			if (err)
4697				goto out;
4698		}
4699
4700		/*
4701		 * zero out and unmap the partial page that contains
4702		 * the end of the hole
4703		 */
4704		page_len = offset + length - last_page_offset;
4705		if (page_len > 0) {
4706			err = ext4_discard_partial_page_buffers(handle, mapping,
4707					last_page_offset, page_len, 0);
4708			if (err)
4709				goto out;
4710		}
4711	}
4712
4713	/*
4714	 * If i_size is contained in the last page, we need to
4715	 * unmap and zero the partial page after i_size
4716	 */
4717	if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4718	   inode->i_size % PAGE_CACHE_SIZE != 0) {
4719
4720		page_len = PAGE_CACHE_SIZE -
4721			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4722
4723		if (page_len > 0) {
4724			err = ext4_discard_partial_page_buffers(handle,
4725			  mapping, inode->i_size, page_len, 0);
4726
4727			if (err)
4728				goto out;
4729		}
4730	}
4731
4732	first_block = (offset + sb->s_blocksize - 1) >>
4733		EXT4_BLOCK_SIZE_BITS(sb);
4734	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4735
4736	/* If there are no blocks to remove, return now */
4737	if (first_block >= stop_block)
4738		goto out;
4739
4740	down_write(&EXT4_I(inode)->i_data_sem);
4741	ext4_discard_preallocations(inode);
4742
4743	err = ext4_es_remove_extent(inode, first_block,
4744				    stop_block - first_block);
4745	err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4746
4747	ext4_discard_preallocations(inode);
4748
4749	if (IS_SYNC(inode))
4750		ext4_handle_sync(handle);
4751
4752	up_write(&EXT4_I(inode)->i_data_sem);
4753
4754out:
4755	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4756	ext4_mark_inode_dirty(handle, inode);
4757	ext4_journal_stop(handle);
4758out_dio:
4759	ext4_inode_resume_unlocked_dio(inode);
4760out_mutex:
4761	mutex_unlock(&inode->i_mutex);
4762	return err;
4763}
4764
4765int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4766		__u64 start, __u64 len)
4767{
4768	ext4_lblk_t start_blk;
4769	int error = 0;
4770
4771	if (ext4_has_inline_data(inode)) {
4772		int has_inline = 1;
4773
4774		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4775
4776		if (has_inline)
4777			return error;
4778	}
4779
4780	/* fallback to generic here if not in extents fmt */
4781	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4782		return generic_block_fiemap(inode, fieinfo, start, len,
4783			ext4_get_block);
4784
4785	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4786		return -EBADR;
4787
4788	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4789		error = ext4_xattr_fiemap(inode, fieinfo);
4790	} else {
4791		ext4_lblk_t len_blks;
4792		__u64 last_blk;
4793
4794		start_blk = start >> inode->i_sb->s_blocksize_bits;
4795		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4796		if (last_blk >= EXT_MAX_BLOCKS)
4797			last_blk = EXT_MAX_BLOCKS-1;
4798		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4799
4800		/*
4801		 * Walk the extent tree gathering extent information
4802		 * and pushing extents back to the user.
4803		 */
4804		error = ext4_fill_fiemap_extents(inode, start_blk,
4805						 len_blks, fieinfo);
4806	}
4807
4808	return error;
4809}
4810