extents.c revision fffb273997cc52f255bde5f18e7f6b4686c914fb
1/*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 *   Copyright (c) 2005, Bull S.A.
7 *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21 */
22
23/*
24 * Extents support for EXT4
25 *
26 * TODO:
27 *   - ext4*_error() should be used in some situations
28 *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 *   - smart tree reduction
30 */
31
32#include <linux/fs.h>
33#include <linux/time.h>
34#include <linux/jbd2.h>
35#include <linux/highuid.h>
36#include <linux/pagemap.h>
37#include <linux/quotaops.h>
38#include <linux/string.h>
39#include <linux/slab.h>
40#include <linux/falloc.h>
41#include <asm/uaccess.h>
42#include <linux/fiemap.h>
43#include "ext4_jbd2.h"
44#include "ext4_extents.h"
45#include "xattr.h"
46
47#include <trace/events/ext4.h>
48
49/*
50 * used by extent splitting.
51 */
52#define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
53					due to ENOSPC */
54#define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
55#define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
56
57#define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
58#define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
59
60static __le32 ext4_extent_block_csum(struct inode *inode,
61				     struct ext4_extent_header *eh)
62{
63	struct ext4_inode_info *ei = EXT4_I(inode);
64	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65	__u32 csum;
66
67	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68			   EXT4_EXTENT_TAIL_OFFSET(eh));
69	return cpu_to_le32(csum);
70}
71
72static int ext4_extent_block_csum_verify(struct inode *inode,
73					 struct ext4_extent_header *eh)
74{
75	struct ext4_extent_tail *et;
76
77	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
79		return 1;
80
81	et = find_ext4_extent_tail(eh);
82	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
83		return 0;
84	return 1;
85}
86
87static void ext4_extent_block_csum_set(struct inode *inode,
88				       struct ext4_extent_header *eh)
89{
90	struct ext4_extent_tail *et;
91
92	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
94		return;
95
96	et = find_ext4_extent_tail(eh);
97	et->et_checksum = ext4_extent_block_csum(inode, eh);
98}
99
100static int ext4_split_extent(handle_t *handle,
101				struct inode *inode,
102				struct ext4_ext_path *path,
103				struct ext4_map_blocks *map,
104				int split_flag,
105				int flags);
106
107static int ext4_split_extent_at(handle_t *handle,
108			     struct inode *inode,
109			     struct ext4_ext_path *path,
110			     ext4_lblk_t split,
111			     int split_flag,
112			     int flags);
113
114static int ext4_find_delayed_extent(struct inode *inode,
115				    struct extent_status *newes);
116
117static int ext4_ext_truncate_extend_restart(handle_t *handle,
118					    struct inode *inode,
119					    int needed)
120{
121	int err;
122
123	if (!ext4_handle_valid(handle))
124		return 0;
125	if (handle->h_buffer_credits > needed)
126		return 0;
127	err = ext4_journal_extend(handle, needed);
128	if (err <= 0)
129		return err;
130	err = ext4_truncate_restart_trans(handle, inode, needed);
131	if (err == 0)
132		err = -EAGAIN;
133
134	return err;
135}
136
137/*
138 * could return:
139 *  - EROFS
140 *  - ENOMEM
141 */
142static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143				struct ext4_ext_path *path)
144{
145	if (path->p_bh) {
146		/* path points to block */
147		return ext4_journal_get_write_access(handle, path->p_bh);
148	}
149	/* path points to leaf/index in inode body */
150	/* we use in-core data, no need to protect them */
151	return 0;
152}
153
154/*
155 * could return:
156 *  - EROFS
157 *  - ENOMEM
158 *  - EIO
159 */
160int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
161		     struct inode *inode, struct ext4_ext_path *path)
162{
163	int err;
164	if (path->p_bh) {
165		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
166		/* path points to block */
167		err = __ext4_handle_dirty_metadata(where, line, handle,
168						   inode, path->p_bh);
169	} else {
170		/* path points to leaf/index in inode body */
171		err = ext4_mark_inode_dirty(handle, inode);
172	}
173	return err;
174}
175
176static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
177			      struct ext4_ext_path *path,
178			      ext4_lblk_t block)
179{
180	if (path) {
181		int depth = path->p_depth;
182		struct ext4_extent *ex;
183
184		/*
185		 * Try to predict block placement assuming that we are
186		 * filling in a file which will eventually be
187		 * non-sparse --- i.e., in the case of libbfd writing
188		 * an ELF object sections out-of-order but in a way
189		 * the eventually results in a contiguous object or
190		 * executable file, or some database extending a table
191		 * space file.  However, this is actually somewhat
192		 * non-ideal if we are writing a sparse file such as
193		 * qemu or KVM writing a raw image file that is going
194		 * to stay fairly sparse, since it will end up
195		 * fragmenting the file system's free space.  Maybe we
196		 * should have some hueristics or some way to allow
197		 * userspace to pass a hint to file system,
198		 * especially if the latter case turns out to be
199		 * common.
200		 */
201		ex = path[depth].p_ext;
202		if (ex) {
203			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
204			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
205
206			if (block > ext_block)
207				return ext_pblk + (block - ext_block);
208			else
209				return ext_pblk - (ext_block - block);
210		}
211
212		/* it looks like index is empty;
213		 * try to find starting block from index itself */
214		if (path[depth].p_bh)
215			return path[depth].p_bh->b_blocknr;
216	}
217
218	/* OK. use inode's group */
219	return ext4_inode_to_goal_block(inode);
220}
221
222/*
223 * Allocation for a meta data block
224 */
225static ext4_fsblk_t
226ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
227			struct ext4_ext_path *path,
228			struct ext4_extent *ex, int *err, unsigned int flags)
229{
230	ext4_fsblk_t goal, newblock;
231
232	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
233	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
234					NULL, err);
235	return newblock;
236}
237
238static inline int ext4_ext_space_block(struct inode *inode, int check)
239{
240	int size;
241
242	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
243			/ sizeof(struct ext4_extent);
244#ifdef AGGRESSIVE_TEST
245	if (!check && size > 6)
246		size = 6;
247#endif
248	return size;
249}
250
251static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
252{
253	int size;
254
255	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
256			/ sizeof(struct ext4_extent_idx);
257#ifdef AGGRESSIVE_TEST
258	if (!check && size > 5)
259		size = 5;
260#endif
261	return size;
262}
263
264static inline int ext4_ext_space_root(struct inode *inode, int check)
265{
266	int size;
267
268	size = sizeof(EXT4_I(inode)->i_data);
269	size -= sizeof(struct ext4_extent_header);
270	size /= sizeof(struct ext4_extent);
271#ifdef AGGRESSIVE_TEST
272	if (!check && size > 3)
273		size = 3;
274#endif
275	return size;
276}
277
278static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
279{
280	int size;
281
282	size = sizeof(EXT4_I(inode)->i_data);
283	size -= sizeof(struct ext4_extent_header);
284	size /= sizeof(struct ext4_extent_idx);
285#ifdef AGGRESSIVE_TEST
286	if (!check && size > 4)
287		size = 4;
288#endif
289	return size;
290}
291
292/*
293 * Calculate the number of metadata blocks needed
294 * to allocate @blocks
295 * Worse case is one block per extent
296 */
297int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
298{
299	struct ext4_inode_info *ei = EXT4_I(inode);
300	int idxs;
301
302	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
303		/ sizeof(struct ext4_extent_idx));
304
305	/*
306	 * If the new delayed allocation block is contiguous with the
307	 * previous da block, it can share index blocks with the
308	 * previous block, so we only need to allocate a new index
309	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
310	 * an additional index block, and at ldxs**3 blocks, yet
311	 * another index blocks.
312	 */
313	if (ei->i_da_metadata_calc_len &&
314	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
315		int num = 0;
316
317		if ((ei->i_da_metadata_calc_len % idxs) == 0)
318			num++;
319		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
320			num++;
321		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
322			num++;
323			ei->i_da_metadata_calc_len = 0;
324		} else
325			ei->i_da_metadata_calc_len++;
326		ei->i_da_metadata_calc_last_lblock++;
327		return num;
328	}
329
330	/*
331	 * In the worst case we need a new set of index blocks at
332	 * every level of the inode's extent tree.
333	 */
334	ei->i_da_metadata_calc_len = 1;
335	ei->i_da_metadata_calc_last_lblock = lblock;
336	return ext_depth(inode) + 1;
337}
338
339static int
340ext4_ext_max_entries(struct inode *inode, int depth)
341{
342	int max;
343
344	if (depth == ext_depth(inode)) {
345		if (depth == 0)
346			max = ext4_ext_space_root(inode, 1);
347		else
348			max = ext4_ext_space_root_idx(inode, 1);
349	} else {
350		if (depth == 0)
351			max = ext4_ext_space_block(inode, 1);
352		else
353			max = ext4_ext_space_block_idx(inode, 1);
354	}
355
356	return max;
357}
358
359static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
360{
361	ext4_fsblk_t block = ext4_ext_pblock(ext);
362	int len = ext4_ext_get_actual_len(ext);
363
364	if (len == 0)
365		return 0;
366	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
367}
368
369static int ext4_valid_extent_idx(struct inode *inode,
370				struct ext4_extent_idx *ext_idx)
371{
372	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
373
374	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
375}
376
377static int ext4_valid_extent_entries(struct inode *inode,
378				struct ext4_extent_header *eh,
379				int depth)
380{
381	unsigned short entries;
382	if (eh->eh_entries == 0)
383		return 1;
384
385	entries = le16_to_cpu(eh->eh_entries);
386
387	if (depth == 0) {
388		/* leaf entries */
389		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
390		while (entries) {
391			if (!ext4_valid_extent(inode, ext))
392				return 0;
393			ext++;
394			entries--;
395		}
396	} else {
397		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
398		while (entries) {
399			if (!ext4_valid_extent_idx(inode, ext_idx))
400				return 0;
401			ext_idx++;
402			entries--;
403		}
404	}
405	return 1;
406}
407
408static int __ext4_ext_check(const char *function, unsigned int line,
409			    struct inode *inode, struct ext4_extent_header *eh,
410			    int depth)
411{
412	const char *error_msg;
413	int max = 0;
414
415	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
416		error_msg = "invalid magic";
417		goto corrupted;
418	}
419	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
420		error_msg = "unexpected eh_depth";
421		goto corrupted;
422	}
423	if (unlikely(eh->eh_max == 0)) {
424		error_msg = "invalid eh_max";
425		goto corrupted;
426	}
427	max = ext4_ext_max_entries(inode, depth);
428	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
429		error_msg = "too large eh_max";
430		goto corrupted;
431	}
432	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
433		error_msg = "invalid eh_entries";
434		goto corrupted;
435	}
436	if (!ext4_valid_extent_entries(inode, eh, depth)) {
437		error_msg = "invalid extent entries";
438		goto corrupted;
439	}
440	/* Verify checksum on non-root extent tree nodes */
441	if (ext_depth(inode) != depth &&
442	    !ext4_extent_block_csum_verify(inode, eh)) {
443		error_msg = "extent tree corrupted";
444		goto corrupted;
445	}
446	return 0;
447
448corrupted:
449	ext4_error_inode(inode, function, line, 0,
450			"bad header/extent: %s - magic %x, "
451			"entries %u, max %u(%u), depth %u(%u)",
452			error_msg, le16_to_cpu(eh->eh_magic),
453			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
454			max, le16_to_cpu(eh->eh_depth), depth);
455
456	return -EIO;
457}
458
459#define ext4_ext_check(inode, eh, depth)	\
460	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
461
462int ext4_ext_check_inode(struct inode *inode)
463{
464	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
465}
466
467static int __ext4_ext_check_block(const char *function, unsigned int line,
468				  struct inode *inode,
469				  struct ext4_extent_header *eh,
470				  int depth,
471				  struct buffer_head *bh)
472{
473	int ret;
474
475	if (buffer_verified(bh))
476		return 0;
477	ret = ext4_ext_check(inode, eh, depth);
478	if (ret)
479		return ret;
480	set_buffer_verified(bh);
481	return ret;
482}
483
484#define ext4_ext_check_block(inode, eh, depth, bh)	\
485	__ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
486
487#ifdef EXT_DEBUG
488static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
489{
490	int k, l = path->p_depth;
491
492	ext_debug("path:");
493	for (k = 0; k <= l; k++, path++) {
494		if (path->p_idx) {
495		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
496			    ext4_idx_pblock(path->p_idx));
497		} else if (path->p_ext) {
498			ext_debug("  %d:[%d]%d:%llu ",
499				  le32_to_cpu(path->p_ext->ee_block),
500				  ext4_ext_is_uninitialized(path->p_ext),
501				  ext4_ext_get_actual_len(path->p_ext),
502				  ext4_ext_pblock(path->p_ext));
503		} else
504			ext_debug("  []");
505	}
506	ext_debug("\n");
507}
508
509static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
510{
511	int depth = ext_depth(inode);
512	struct ext4_extent_header *eh;
513	struct ext4_extent *ex;
514	int i;
515
516	if (!path)
517		return;
518
519	eh = path[depth].p_hdr;
520	ex = EXT_FIRST_EXTENT(eh);
521
522	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
523
524	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
525		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
526			  ext4_ext_is_uninitialized(ex),
527			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
528	}
529	ext_debug("\n");
530}
531
532static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
533			ext4_fsblk_t newblock, int level)
534{
535	int depth = ext_depth(inode);
536	struct ext4_extent *ex;
537
538	if (depth != level) {
539		struct ext4_extent_idx *idx;
540		idx = path[level].p_idx;
541		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
542			ext_debug("%d: move %d:%llu in new index %llu\n", level,
543					le32_to_cpu(idx->ei_block),
544					ext4_idx_pblock(idx),
545					newblock);
546			idx++;
547		}
548
549		return;
550	}
551
552	ex = path[depth].p_ext;
553	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
554		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
555				le32_to_cpu(ex->ee_block),
556				ext4_ext_pblock(ex),
557				ext4_ext_is_uninitialized(ex),
558				ext4_ext_get_actual_len(ex),
559				newblock);
560		ex++;
561	}
562}
563
564#else
565#define ext4_ext_show_path(inode, path)
566#define ext4_ext_show_leaf(inode, path)
567#define ext4_ext_show_move(inode, path, newblock, level)
568#endif
569
570void ext4_ext_drop_refs(struct ext4_ext_path *path)
571{
572	int depth = path->p_depth;
573	int i;
574
575	for (i = 0; i <= depth; i++, path++)
576		if (path->p_bh) {
577			brelse(path->p_bh);
578			path->p_bh = NULL;
579		}
580}
581
582/*
583 * ext4_ext_binsearch_idx:
584 * binary search for the closest index of the given block
585 * the header must be checked before calling this
586 */
587static void
588ext4_ext_binsearch_idx(struct inode *inode,
589			struct ext4_ext_path *path, ext4_lblk_t block)
590{
591	struct ext4_extent_header *eh = path->p_hdr;
592	struct ext4_extent_idx *r, *l, *m;
593
594
595	ext_debug("binsearch for %u(idx):  ", block);
596
597	l = EXT_FIRST_INDEX(eh) + 1;
598	r = EXT_LAST_INDEX(eh);
599	while (l <= r) {
600		m = l + (r - l) / 2;
601		if (block < le32_to_cpu(m->ei_block))
602			r = m - 1;
603		else
604			l = m + 1;
605		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
606				m, le32_to_cpu(m->ei_block),
607				r, le32_to_cpu(r->ei_block));
608	}
609
610	path->p_idx = l - 1;
611	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
612		  ext4_idx_pblock(path->p_idx));
613
614#ifdef CHECK_BINSEARCH
615	{
616		struct ext4_extent_idx *chix, *ix;
617		int k;
618
619		chix = ix = EXT_FIRST_INDEX(eh);
620		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
621		  if (k != 0 &&
622		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
623				printk(KERN_DEBUG "k=%d, ix=0x%p, "
624				       "first=0x%p\n", k,
625				       ix, EXT_FIRST_INDEX(eh));
626				printk(KERN_DEBUG "%u <= %u\n",
627				       le32_to_cpu(ix->ei_block),
628				       le32_to_cpu(ix[-1].ei_block));
629			}
630			BUG_ON(k && le32_to_cpu(ix->ei_block)
631					   <= le32_to_cpu(ix[-1].ei_block));
632			if (block < le32_to_cpu(ix->ei_block))
633				break;
634			chix = ix;
635		}
636		BUG_ON(chix != path->p_idx);
637	}
638#endif
639
640}
641
642/*
643 * ext4_ext_binsearch:
644 * binary search for closest extent of the given block
645 * the header must be checked before calling this
646 */
647static void
648ext4_ext_binsearch(struct inode *inode,
649		struct ext4_ext_path *path, ext4_lblk_t block)
650{
651	struct ext4_extent_header *eh = path->p_hdr;
652	struct ext4_extent *r, *l, *m;
653
654	if (eh->eh_entries == 0) {
655		/*
656		 * this leaf is empty:
657		 * we get such a leaf in split/add case
658		 */
659		return;
660	}
661
662	ext_debug("binsearch for %u:  ", block);
663
664	l = EXT_FIRST_EXTENT(eh) + 1;
665	r = EXT_LAST_EXTENT(eh);
666
667	while (l <= r) {
668		m = l + (r - l) / 2;
669		if (block < le32_to_cpu(m->ee_block))
670			r = m - 1;
671		else
672			l = m + 1;
673		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
674				m, le32_to_cpu(m->ee_block),
675				r, le32_to_cpu(r->ee_block));
676	}
677
678	path->p_ext = l - 1;
679	ext_debug("  -> %d:%llu:[%d]%d ",
680			le32_to_cpu(path->p_ext->ee_block),
681			ext4_ext_pblock(path->p_ext),
682			ext4_ext_is_uninitialized(path->p_ext),
683			ext4_ext_get_actual_len(path->p_ext));
684
685#ifdef CHECK_BINSEARCH
686	{
687		struct ext4_extent *chex, *ex;
688		int k;
689
690		chex = ex = EXT_FIRST_EXTENT(eh);
691		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
692			BUG_ON(k && le32_to_cpu(ex->ee_block)
693					  <= le32_to_cpu(ex[-1].ee_block));
694			if (block < le32_to_cpu(ex->ee_block))
695				break;
696			chex = ex;
697		}
698		BUG_ON(chex != path->p_ext);
699	}
700#endif
701
702}
703
704int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
705{
706	struct ext4_extent_header *eh;
707
708	eh = ext_inode_hdr(inode);
709	eh->eh_depth = 0;
710	eh->eh_entries = 0;
711	eh->eh_magic = EXT4_EXT_MAGIC;
712	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
713	ext4_mark_inode_dirty(handle, inode);
714	return 0;
715}
716
717struct ext4_ext_path *
718ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
719					struct ext4_ext_path *path)
720{
721	struct ext4_extent_header *eh;
722	struct buffer_head *bh;
723	short int depth, i, ppos = 0, alloc = 0;
724	int ret;
725
726	eh = ext_inode_hdr(inode);
727	depth = ext_depth(inode);
728
729	/* account possible depth increase */
730	if (!path) {
731		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
732				GFP_NOFS);
733		if (!path)
734			return ERR_PTR(-ENOMEM);
735		alloc = 1;
736	}
737	path[0].p_hdr = eh;
738	path[0].p_bh = NULL;
739
740	i = depth;
741	/* walk through the tree */
742	while (i) {
743		ext_debug("depth %d: num %d, max %d\n",
744			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
745
746		ext4_ext_binsearch_idx(inode, path + ppos, block);
747		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
748		path[ppos].p_depth = i;
749		path[ppos].p_ext = NULL;
750
751		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
752		if (unlikely(!bh)) {
753			ret = -ENOMEM;
754			goto err;
755		}
756		if (!bh_uptodate_or_lock(bh)) {
757			trace_ext4_ext_load_extent(inode, block,
758						path[ppos].p_block);
759			ret = bh_submit_read(bh);
760			if (ret < 0) {
761				put_bh(bh);
762				goto err;
763			}
764		}
765		eh = ext_block_hdr(bh);
766		ppos++;
767		if (unlikely(ppos > depth)) {
768			put_bh(bh);
769			EXT4_ERROR_INODE(inode,
770					 "ppos %d > depth %d", ppos, depth);
771			ret = -EIO;
772			goto err;
773		}
774		path[ppos].p_bh = bh;
775		path[ppos].p_hdr = eh;
776		i--;
777
778		ret = ext4_ext_check_block(inode, eh, i, bh);
779		if (ret < 0)
780			goto err;
781	}
782
783	path[ppos].p_depth = i;
784	path[ppos].p_ext = NULL;
785	path[ppos].p_idx = NULL;
786
787	/* find extent */
788	ext4_ext_binsearch(inode, path + ppos, block);
789	/* if not an empty leaf */
790	if (path[ppos].p_ext)
791		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
792
793	ext4_ext_show_path(inode, path);
794
795	return path;
796
797err:
798	ext4_ext_drop_refs(path);
799	if (alloc)
800		kfree(path);
801	return ERR_PTR(ret);
802}
803
804/*
805 * ext4_ext_insert_index:
806 * insert new index [@logical;@ptr] into the block at @curp;
807 * check where to insert: before @curp or after @curp
808 */
809static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
810				 struct ext4_ext_path *curp,
811				 int logical, ext4_fsblk_t ptr)
812{
813	struct ext4_extent_idx *ix;
814	int len, err;
815
816	err = ext4_ext_get_access(handle, inode, curp);
817	if (err)
818		return err;
819
820	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
821		EXT4_ERROR_INODE(inode,
822				 "logical %d == ei_block %d!",
823				 logical, le32_to_cpu(curp->p_idx->ei_block));
824		return -EIO;
825	}
826
827	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
828			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
829		EXT4_ERROR_INODE(inode,
830				 "eh_entries %d >= eh_max %d!",
831				 le16_to_cpu(curp->p_hdr->eh_entries),
832				 le16_to_cpu(curp->p_hdr->eh_max));
833		return -EIO;
834	}
835
836	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
837		/* insert after */
838		ext_debug("insert new index %d after: %llu\n", logical, ptr);
839		ix = curp->p_idx + 1;
840	} else {
841		/* insert before */
842		ext_debug("insert new index %d before: %llu\n", logical, ptr);
843		ix = curp->p_idx;
844	}
845
846	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
847	BUG_ON(len < 0);
848	if (len > 0) {
849		ext_debug("insert new index %d: "
850				"move %d indices from 0x%p to 0x%p\n",
851				logical, len, ix, ix + 1);
852		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
853	}
854
855	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
856		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
857		return -EIO;
858	}
859
860	ix->ei_block = cpu_to_le32(logical);
861	ext4_idx_store_pblock(ix, ptr);
862	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
863
864	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
865		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
866		return -EIO;
867	}
868
869	err = ext4_ext_dirty(handle, inode, curp);
870	ext4_std_error(inode->i_sb, err);
871
872	return err;
873}
874
875/*
876 * ext4_ext_split:
877 * inserts new subtree into the path, using free index entry
878 * at depth @at:
879 * - allocates all needed blocks (new leaf and all intermediate index blocks)
880 * - makes decision where to split
881 * - moves remaining extents and index entries (right to the split point)
882 *   into the newly allocated blocks
883 * - initializes subtree
884 */
885static int ext4_ext_split(handle_t *handle, struct inode *inode,
886			  unsigned int flags,
887			  struct ext4_ext_path *path,
888			  struct ext4_extent *newext, int at)
889{
890	struct buffer_head *bh = NULL;
891	int depth = ext_depth(inode);
892	struct ext4_extent_header *neh;
893	struct ext4_extent_idx *fidx;
894	int i = at, k, m, a;
895	ext4_fsblk_t newblock, oldblock;
896	__le32 border;
897	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
898	int err = 0;
899
900	/* make decision: where to split? */
901	/* FIXME: now decision is simplest: at current extent */
902
903	/* if current leaf will be split, then we should use
904	 * border from split point */
905	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
906		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
907		return -EIO;
908	}
909	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
910		border = path[depth].p_ext[1].ee_block;
911		ext_debug("leaf will be split."
912				" next leaf starts at %d\n",
913				  le32_to_cpu(border));
914	} else {
915		border = newext->ee_block;
916		ext_debug("leaf will be added."
917				" next leaf starts at %d\n",
918				le32_to_cpu(border));
919	}
920
921	/*
922	 * If error occurs, then we break processing
923	 * and mark filesystem read-only. index won't
924	 * be inserted and tree will be in consistent
925	 * state. Next mount will repair buffers too.
926	 */
927
928	/*
929	 * Get array to track all allocated blocks.
930	 * We need this to handle errors and free blocks
931	 * upon them.
932	 */
933	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
934	if (!ablocks)
935		return -ENOMEM;
936
937	/* allocate all needed blocks */
938	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
939	for (a = 0; a < depth - at; a++) {
940		newblock = ext4_ext_new_meta_block(handle, inode, path,
941						   newext, &err, flags);
942		if (newblock == 0)
943			goto cleanup;
944		ablocks[a] = newblock;
945	}
946
947	/* initialize new leaf */
948	newblock = ablocks[--a];
949	if (unlikely(newblock == 0)) {
950		EXT4_ERROR_INODE(inode, "newblock == 0!");
951		err = -EIO;
952		goto cleanup;
953	}
954	bh = sb_getblk(inode->i_sb, newblock);
955	if (unlikely(!bh)) {
956		err = -ENOMEM;
957		goto cleanup;
958	}
959	lock_buffer(bh);
960
961	err = ext4_journal_get_create_access(handle, bh);
962	if (err)
963		goto cleanup;
964
965	neh = ext_block_hdr(bh);
966	neh->eh_entries = 0;
967	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
968	neh->eh_magic = EXT4_EXT_MAGIC;
969	neh->eh_depth = 0;
970
971	/* move remainder of path[depth] to the new leaf */
972	if (unlikely(path[depth].p_hdr->eh_entries !=
973		     path[depth].p_hdr->eh_max)) {
974		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
975				 path[depth].p_hdr->eh_entries,
976				 path[depth].p_hdr->eh_max);
977		err = -EIO;
978		goto cleanup;
979	}
980	/* start copy from next extent */
981	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
982	ext4_ext_show_move(inode, path, newblock, depth);
983	if (m) {
984		struct ext4_extent *ex;
985		ex = EXT_FIRST_EXTENT(neh);
986		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
987		le16_add_cpu(&neh->eh_entries, m);
988	}
989
990	ext4_extent_block_csum_set(inode, neh);
991	set_buffer_uptodate(bh);
992	unlock_buffer(bh);
993
994	err = ext4_handle_dirty_metadata(handle, inode, bh);
995	if (err)
996		goto cleanup;
997	brelse(bh);
998	bh = NULL;
999
1000	/* correct old leaf */
1001	if (m) {
1002		err = ext4_ext_get_access(handle, inode, path + depth);
1003		if (err)
1004			goto cleanup;
1005		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1006		err = ext4_ext_dirty(handle, inode, path + depth);
1007		if (err)
1008			goto cleanup;
1009
1010	}
1011
1012	/* create intermediate indexes */
1013	k = depth - at - 1;
1014	if (unlikely(k < 0)) {
1015		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1016		err = -EIO;
1017		goto cleanup;
1018	}
1019	if (k)
1020		ext_debug("create %d intermediate indices\n", k);
1021	/* insert new index into current index block */
1022	/* current depth stored in i var */
1023	i = depth - 1;
1024	while (k--) {
1025		oldblock = newblock;
1026		newblock = ablocks[--a];
1027		bh = sb_getblk(inode->i_sb, newblock);
1028		if (unlikely(!bh)) {
1029			err = -ENOMEM;
1030			goto cleanup;
1031		}
1032		lock_buffer(bh);
1033
1034		err = ext4_journal_get_create_access(handle, bh);
1035		if (err)
1036			goto cleanup;
1037
1038		neh = ext_block_hdr(bh);
1039		neh->eh_entries = cpu_to_le16(1);
1040		neh->eh_magic = EXT4_EXT_MAGIC;
1041		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1042		neh->eh_depth = cpu_to_le16(depth - i);
1043		fidx = EXT_FIRST_INDEX(neh);
1044		fidx->ei_block = border;
1045		ext4_idx_store_pblock(fidx, oldblock);
1046
1047		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1048				i, newblock, le32_to_cpu(border), oldblock);
1049
1050		/* move remainder of path[i] to the new index block */
1051		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1052					EXT_LAST_INDEX(path[i].p_hdr))) {
1053			EXT4_ERROR_INODE(inode,
1054					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1055					 le32_to_cpu(path[i].p_ext->ee_block));
1056			err = -EIO;
1057			goto cleanup;
1058		}
1059		/* start copy indexes */
1060		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1061		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1062				EXT_MAX_INDEX(path[i].p_hdr));
1063		ext4_ext_show_move(inode, path, newblock, i);
1064		if (m) {
1065			memmove(++fidx, path[i].p_idx,
1066				sizeof(struct ext4_extent_idx) * m);
1067			le16_add_cpu(&neh->eh_entries, m);
1068		}
1069		ext4_extent_block_csum_set(inode, neh);
1070		set_buffer_uptodate(bh);
1071		unlock_buffer(bh);
1072
1073		err = ext4_handle_dirty_metadata(handle, inode, bh);
1074		if (err)
1075			goto cleanup;
1076		brelse(bh);
1077		bh = NULL;
1078
1079		/* correct old index */
1080		if (m) {
1081			err = ext4_ext_get_access(handle, inode, path + i);
1082			if (err)
1083				goto cleanup;
1084			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1085			err = ext4_ext_dirty(handle, inode, path + i);
1086			if (err)
1087				goto cleanup;
1088		}
1089
1090		i--;
1091	}
1092
1093	/* insert new index */
1094	err = ext4_ext_insert_index(handle, inode, path + at,
1095				    le32_to_cpu(border), newblock);
1096
1097cleanup:
1098	if (bh) {
1099		if (buffer_locked(bh))
1100			unlock_buffer(bh);
1101		brelse(bh);
1102	}
1103
1104	if (err) {
1105		/* free all allocated blocks in error case */
1106		for (i = 0; i < depth; i++) {
1107			if (!ablocks[i])
1108				continue;
1109			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1110					 EXT4_FREE_BLOCKS_METADATA);
1111		}
1112	}
1113	kfree(ablocks);
1114
1115	return err;
1116}
1117
1118/*
1119 * ext4_ext_grow_indepth:
1120 * implements tree growing procedure:
1121 * - allocates new block
1122 * - moves top-level data (index block or leaf) into the new block
1123 * - initializes new top-level, creating index that points to the
1124 *   just created block
1125 */
1126static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1127				 unsigned int flags,
1128				 struct ext4_extent *newext)
1129{
1130	struct ext4_extent_header *neh;
1131	struct buffer_head *bh;
1132	ext4_fsblk_t newblock;
1133	int err = 0;
1134
1135	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1136		newext, &err, flags);
1137	if (newblock == 0)
1138		return err;
1139
1140	bh = sb_getblk(inode->i_sb, newblock);
1141	if (unlikely(!bh))
1142		return -ENOMEM;
1143	lock_buffer(bh);
1144
1145	err = ext4_journal_get_create_access(handle, bh);
1146	if (err) {
1147		unlock_buffer(bh);
1148		goto out;
1149	}
1150
1151	/* move top-level index/leaf into new block */
1152	memmove(bh->b_data, EXT4_I(inode)->i_data,
1153		sizeof(EXT4_I(inode)->i_data));
1154
1155	/* set size of new block */
1156	neh = ext_block_hdr(bh);
1157	/* old root could have indexes or leaves
1158	 * so calculate e_max right way */
1159	if (ext_depth(inode))
1160		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1161	else
1162		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1163	neh->eh_magic = EXT4_EXT_MAGIC;
1164	ext4_extent_block_csum_set(inode, neh);
1165	set_buffer_uptodate(bh);
1166	unlock_buffer(bh);
1167
1168	err = ext4_handle_dirty_metadata(handle, inode, bh);
1169	if (err)
1170		goto out;
1171
1172	/* Update top-level index: num,max,pointer */
1173	neh = ext_inode_hdr(inode);
1174	neh->eh_entries = cpu_to_le16(1);
1175	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1176	if (neh->eh_depth == 0) {
1177		/* Root extent block becomes index block */
1178		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1179		EXT_FIRST_INDEX(neh)->ei_block =
1180			EXT_FIRST_EXTENT(neh)->ee_block;
1181	}
1182	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1183		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1184		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1185		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1186
1187	le16_add_cpu(&neh->eh_depth, 1);
1188	ext4_mark_inode_dirty(handle, inode);
1189out:
1190	brelse(bh);
1191
1192	return err;
1193}
1194
1195/*
1196 * ext4_ext_create_new_leaf:
1197 * finds empty index and adds new leaf.
1198 * if no free index is found, then it requests in-depth growing.
1199 */
1200static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1201				    unsigned int flags,
1202				    struct ext4_ext_path *path,
1203				    struct ext4_extent *newext)
1204{
1205	struct ext4_ext_path *curp;
1206	int depth, i, err = 0;
1207
1208repeat:
1209	i = depth = ext_depth(inode);
1210
1211	/* walk up to the tree and look for free index entry */
1212	curp = path + depth;
1213	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1214		i--;
1215		curp--;
1216	}
1217
1218	/* we use already allocated block for index block,
1219	 * so subsequent data blocks should be contiguous */
1220	if (EXT_HAS_FREE_INDEX(curp)) {
1221		/* if we found index with free entry, then use that
1222		 * entry: create all needed subtree and add new leaf */
1223		err = ext4_ext_split(handle, inode, flags, path, newext, i);
1224		if (err)
1225			goto out;
1226
1227		/* refill path */
1228		ext4_ext_drop_refs(path);
1229		path = ext4_ext_find_extent(inode,
1230				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1231				    path);
1232		if (IS_ERR(path))
1233			err = PTR_ERR(path);
1234	} else {
1235		/* tree is full, time to grow in depth */
1236		err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1237		if (err)
1238			goto out;
1239
1240		/* refill path */
1241		ext4_ext_drop_refs(path);
1242		path = ext4_ext_find_extent(inode,
1243				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1244				    path);
1245		if (IS_ERR(path)) {
1246			err = PTR_ERR(path);
1247			goto out;
1248		}
1249
1250		/*
1251		 * only first (depth 0 -> 1) produces free space;
1252		 * in all other cases we have to split the grown tree
1253		 */
1254		depth = ext_depth(inode);
1255		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1256			/* now we need to split */
1257			goto repeat;
1258		}
1259	}
1260
1261out:
1262	return err;
1263}
1264
1265/*
1266 * search the closest allocated block to the left for *logical
1267 * and returns it at @logical + it's physical address at @phys
1268 * if *logical is the smallest allocated block, the function
1269 * returns 0 at @phys
1270 * return value contains 0 (success) or error code
1271 */
1272static int ext4_ext_search_left(struct inode *inode,
1273				struct ext4_ext_path *path,
1274				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1275{
1276	struct ext4_extent_idx *ix;
1277	struct ext4_extent *ex;
1278	int depth, ee_len;
1279
1280	if (unlikely(path == NULL)) {
1281		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1282		return -EIO;
1283	}
1284	depth = path->p_depth;
1285	*phys = 0;
1286
1287	if (depth == 0 && path->p_ext == NULL)
1288		return 0;
1289
1290	/* usually extent in the path covers blocks smaller
1291	 * then *logical, but it can be that extent is the
1292	 * first one in the file */
1293
1294	ex = path[depth].p_ext;
1295	ee_len = ext4_ext_get_actual_len(ex);
1296	if (*logical < le32_to_cpu(ex->ee_block)) {
1297		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1298			EXT4_ERROR_INODE(inode,
1299					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1300					 *logical, le32_to_cpu(ex->ee_block));
1301			return -EIO;
1302		}
1303		while (--depth >= 0) {
1304			ix = path[depth].p_idx;
1305			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1306				EXT4_ERROR_INODE(inode,
1307				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1308				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1309				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1310		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1311				  depth);
1312				return -EIO;
1313			}
1314		}
1315		return 0;
1316	}
1317
1318	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1319		EXT4_ERROR_INODE(inode,
1320				 "logical %d < ee_block %d + ee_len %d!",
1321				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1322		return -EIO;
1323	}
1324
1325	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1326	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1327	return 0;
1328}
1329
1330/*
1331 * search the closest allocated block to the right for *logical
1332 * and returns it at @logical + it's physical address at @phys
1333 * if *logical is the largest allocated block, the function
1334 * returns 0 at @phys
1335 * return value contains 0 (success) or error code
1336 */
1337static int ext4_ext_search_right(struct inode *inode,
1338				 struct ext4_ext_path *path,
1339				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1340				 struct ext4_extent **ret_ex)
1341{
1342	struct buffer_head *bh = NULL;
1343	struct ext4_extent_header *eh;
1344	struct ext4_extent_idx *ix;
1345	struct ext4_extent *ex;
1346	ext4_fsblk_t block;
1347	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1348	int ee_len;
1349
1350	if (unlikely(path == NULL)) {
1351		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1352		return -EIO;
1353	}
1354	depth = path->p_depth;
1355	*phys = 0;
1356
1357	if (depth == 0 && path->p_ext == NULL)
1358		return 0;
1359
1360	/* usually extent in the path covers blocks smaller
1361	 * then *logical, but it can be that extent is the
1362	 * first one in the file */
1363
1364	ex = path[depth].p_ext;
1365	ee_len = ext4_ext_get_actual_len(ex);
1366	if (*logical < le32_to_cpu(ex->ee_block)) {
1367		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1368			EXT4_ERROR_INODE(inode,
1369					 "first_extent(path[%d].p_hdr) != ex",
1370					 depth);
1371			return -EIO;
1372		}
1373		while (--depth >= 0) {
1374			ix = path[depth].p_idx;
1375			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1376				EXT4_ERROR_INODE(inode,
1377						 "ix != EXT_FIRST_INDEX *logical %d!",
1378						 *logical);
1379				return -EIO;
1380			}
1381		}
1382		goto found_extent;
1383	}
1384
1385	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1386		EXT4_ERROR_INODE(inode,
1387				 "logical %d < ee_block %d + ee_len %d!",
1388				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1389		return -EIO;
1390	}
1391
1392	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1393		/* next allocated block in this leaf */
1394		ex++;
1395		goto found_extent;
1396	}
1397
1398	/* go up and search for index to the right */
1399	while (--depth >= 0) {
1400		ix = path[depth].p_idx;
1401		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1402			goto got_index;
1403	}
1404
1405	/* we've gone up to the root and found no index to the right */
1406	return 0;
1407
1408got_index:
1409	/* we've found index to the right, let's
1410	 * follow it and find the closest allocated
1411	 * block to the right */
1412	ix++;
1413	block = ext4_idx_pblock(ix);
1414	while (++depth < path->p_depth) {
1415		bh = sb_bread(inode->i_sb, block);
1416		if (bh == NULL)
1417			return -EIO;
1418		eh = ext_block_hdr(bh);
1419		/* subtract from p_depth to get proper eh_depth */
1420		if (ext4_ext_check_block(inode, eh,
1421					 path->p_depth - depth, bh)) {
1422			put_bh(bh);
1423			return -EIO;
1424		}
1425		ix = EXT_FIRST_INDEX(eh);
1426		block = ext4_idx_pblock(ix);
1427		put_bh(bh);
1428	}
1429
1430	bh = sb_bread(inode->i_sb, block);
1431	if (bh == NULL)
1432		return -EIO;
1433	eh = ext_block_hdr(bh);
1434	if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1435		put_bh(bh);
1436		return -EIO;
1437	}
1438	ex = EXT_FIRST_EXTENT(eh);
1439found_extent:
1440	*logical = le32_to_cpu(ex->ee_block);
1441	*phys = ext4_ext_pblock(ex);
1442	*ret_ex = ex;
1443	if (bh)
1444		put_bh(bh);
1445	return 0;
1446}
1447
1448/*
1449 * ext4_ext_next_allocated_block:
1450 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1451 * NOTE: it considers block number from index entry as
1452 * allocated block. Thus, index entries have to be consistent
1453 * with leaves.
1454 */
1455static ext4_lblk_t
1456ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1457{
1458	int depth;
1459
1460	BUG_ON(path == NULL);
1461	depth = path->p_depth;
1462
1463	if (depth == 0 && path->p_ext == NULL)
1464		return EXT_MAX_BLOCKS;
1465
1466	while (depth >= 0) {
1467		if (depth == path->p_depth) {
1468			/* leaf */
1469			if (path[depth].p_ext &&
1470				path[depth].p_ext !=
1471					EXT_LAST_EXTENT(path[depth].p_hdr))
1472			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1473		} else {
1474			/* index */
1475			if (path[depth].p_idx !=
1476					EXT_LAST_INDEX(path[depth].p_hdr))
1477			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1478		}
1479		depth--;
1480	}
1481
1482	return EXT_MAX_BLOCKS;
1483}
1484
1485/*
1486 * ext4_ext_next_leaf_block:
1487 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1488 */
1489static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1490{
1491	int depth;
1492
1493	BUG_ON(path == NULL);
1494	depth = path->p_depth;
1495
1496	/* zero-tree has no leaf blocks at all */
1497	if (depth == 0)
1498		return EXT_MAX_BLOCKS;
1499
1500	/* go to index block */
1501	depth--;
1502
1503	while (depth >= 0) {
1504		if (path[depth].p_idx !=
1505				EXT_LAST_INDEX(path[depth].p_hdr))
1506			return (ext4_lblk_t)
1507				le32_to_cpu(path[depth].p_idx[1].ei_block);
1508		depth--;
1509	}
1510
1511	return EXT_MAX_BLOCKS;
1512}
1513
1514/*
1515 * ext4_ext_correct_indexes:
1516 * if leaf gets modified and modified extent is first in the leaf,
1517 * then we have to correct all indexes above.
1518 * TODO: do we need to correct tree in all cases?
1519 */
1520static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1521				struct ext4_ext_path *path)
1522{
1523	struct ext4_extent_header *eh;
1524	int depth = ext_depth(inode);
1525	struct ext4_extent *ex;
1526	__le32 border;
1527	int k, err = 0;
1528
1529	eh = path[depth].p_hdr;
1530	ex = path[depth].p_ext;
1531
1532	if (unlikely(ex == NULL || eh == NULL)) {
1533		EXT4_ERROR_INODE(inode,
1534				 "ex %p == NULL or eh %p == NULL", ex, eh);
1535		return -EIO;
1536	}
1537
1538	if (depth == 0) {
1539		/* there is no tree at all */
1540		return 0;
1541	}
1542
1543	if (ex != EXT_FIRST_EXTENT(eh)) {
1544		/* we correct tree if first leaf got modified only */
1545		return 0;
1546	}
1547
1548	/*
1549	 * TODO: we need correction if border is smaller than current one
1550	 */
1551	k = depth - 1;
1552	border = path[depth].p_ext->ee_block;
1553	err = ext4_ext_get_access(handle, inode, path + k);
1554	if (err)
1555		return err;
1556	path[k].p_idx->ei_block = border;
1557	err = ext4_ext_dirty(handle, inode, path + k);
1558	if (err)
1559		return err;
1560
1561	while (k--) {
1562		/* change all left-side indexes */
1563		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1564			break;
1565		err = ext4_ext_get_access(handle, inode, path + k);
1566		if (err)
1567			break;
1568		path[k].p_idx->ei_block = border;
1569		err = ext4_ext_dirty(handle, inode, path + k);
1570		if (err)
1571			break;
1572	}
1573
1574	return err;
1575}
1576
1577int
1578ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1579				struct ext4_extent *ex2)
1580{
1581	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1582
1583	/*
1584	 * Make sure that both extents are initialized. We don't merge
1585	 * uninitialized extents so that we can be sure that end_io code has
1586	 * the extent that was written properly split out and conversion to
1587	 * initialized is trivial.
1588	 */
1589	if (ext4_ext_is_uninitialized(ex1) || ext4_ext_is_uninitialized(ex2))
1590		return 0;
1591
1592	if (ext4_ext_is_uninitialized(ex1))
1593		max_len = EXT_UNINIT_MAX_LEN;
1594	else
1595		max_len = EXT_INIT_MAX_LEN;
1596
1597	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1598	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1599
1600	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1601			le32_to_cpu(ex2->ee_block))
1602		return 0;
1603
1604	/*
1605	 * To allow future support for preallocated extents to be added
1606	 * as an RO_COMPAT feature, refuse to merge to extents if
1607	 * this can result in the top bit of ee_len being set.
1608	 */
1609	if (ext1_ee_len + ext2_ee_len > max_len)
1610		return 0;
1611#ifdef AGGRESSIVE_TEST
1612	if (ext1_ee_len >= 4)
1613		return 0;
1614#endif
1615
1616	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1617		return 1;
1618	return 0;
1619}
1620
1621/*
1622 * This function tries to merge the "ex" extent to the next extent in the tree.
1623 * It always tries to merge towards right. If you want to merge towards
1624 * left, pass "ex - 1" as argument instead of "ex".
1625 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1626 * 1 if they got merged.
1627 */
1628static int ext4_ext_try_to_merge_right(struct inode *inode,
1629				 struct ext4_ext_path *path,
1630				 struct ext4_extent *ex)
1631{
1632	struct ext4_extent_header *eh;
1633	unsigned int depth, len;
1634	int merge_done = 0;
1635	int uninitialized = 0;
1636
1637	depth = ext_depth(inode);
1638	BUG_ON(path[depth].p_hdr == NULL);
1639	eh = path[depth].p_hdr;
1640
1641	while (ex < EXT_LAST_EXTENT(eh)) {
1642		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1643			break;
1644		/* merge with next extent! */
1645		if (ext4_ext_is_uninitialized(ex))
1646			uninitialized = 1;
1647		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1648				+ ext4_ext_get_actual_len(ex + 1));
1649		if (uninitialized)
1650			ext4_ext_mark_uninitialized(ex);
1651
1652		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1653			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1654				* sizeof(struct ext4_extent);
1655			memmove(ex + 1, ex + 2, len);
1656		}
1657		le16_add_cpu(&eh->eh_entries, -1);
1658		merge_done = 1;
1659		WARN_ON(eh->eh_entries == 0);
1660		if (!eh->eh_entries)
1661			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1662	}
1663
1664	return merge_done;
1665}
1666
1667/*
1668 * This function does a very simple check to see if we can collapse
1669 * an extent tree with a single extent tree leaf block into the inode.
1670 */
1671static void ext4_ext_try_to_merge_up(handle_t *handle,
1672				     struct inode *inode,
1673				     struct ext4_ext_path *path)
1674{
1675	size_t s;
1676	unsigned max_root = ext4_ext_space_root(inode, 0);
1677	ext4_fsblk_t blk;
1678
1679	if ((path[0].p_depth != 1) ||
1680	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1681	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1682		return;
1683
1684	/*
1685	 * We need to modify the block allocation bitmap and the block
1686	 * group descriptor to release the extent tree block.  If we
1687	 * can't get the journal credits, give up.
1688	 */
1689	if (ext4_journal_extend(handle, 2))
1690		return;
1691
1692	/*
1693	 * Copy the extent data up to the inode
1694	 */
1695	blk = ext4_idx_pblock(path[0].p_idx);
1696	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1697		sizeof(struct ext4_extent_idx);
1698	s += sizeof(struct ext4_extent_header);
1699
1700	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1701	path[0].p_depth = 0;
1702	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1703		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1704	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1705
1706	brelse(path[1].p_bh);
1707	ext4_free_blocks(handle, inode, NULL, blk, 1,
1708			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1709}
1710
1711/*
1712 * This function tries to merge the @ex extent to neighbours in the tree.
1713 * return 1 if merge left else 0.
1714 */
1715static void ext4_ext_try_to_merge(handle_t *handle,
1716				  struct inode *inode,
1717				  struct ext4_ext_path *path,
1718				  struct ext4_extent *ex) {
1719	struct ext4_extent_header *eh;
1720	unsigned int depth;
1721	int merge_done = 0;
1722
1723	depth = ext_depth(inode);
1724	BUG_ON(path[depth].p_hdr == NULL);
1725	eh = path[depth].p_hdr;
1726
1727	if (ex > EXT_FIRST_EXTENT(eh))
1728		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1729
1730	if (!merge_done)
1731		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1732
1733	ext4_ext_try_to_merge_up(handle, inode, path);
1734}
1735
1736/*
1737 * check if a portion of the "newext" extent overlaps with an
1738 * existing extent.
1739 *
1740 * If there is an overlap discovered, it updates the length of the newext
1741 * such that there will be no overlap, and then returns 1.
1742 * If there is no overlap found, it returns 0.
1743 */
1744static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1745					   struct inode *inode,
1746					   struct ext4_extent *newext,
1747					   struct ext4_ext_path *path)
1748{
1749	ext4_lblk_t b1, b2;
1750	unsigned int depth, len1;
1751	unsigned int ret = 0;
1752
1753	b1 = le32_to_cpu(newext->ee_block);
1754	len1 = ext4_ext_get_actual_len(newext);
1755	depth = ext_depth(inode);
1756	if (!path[depth].p_ext)
1757		goto out;
1758	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1759	b2 &= ~(sbi->s_cluster_ratio - 1);
1760
1761	/*
1762	 * get the next allocated block if the extent in the path
1763	 * is before the requested block(s)
1764	 */
1765	if (b2 < b1) {
1766		b2 = ext4_ext_next_allocated_block(path);
1767		if (b2 == EXT_MAX_BLOCKS)
1768			goto out;
1769		b2 &= ~(sbi->s_cluster_ratio - 1);
1770	}
1771
1772	/* check for wrap through zero on extent logical start block*/
1773	if (b1 + len1 < b1) {
1774		len1 = EXT_MAX_BLOCKS - b1;
1775		newext->ee_len = cpu_to_le16(len1);
1776		ret = 1;
1777	}
1778
1779	/* check for overlap */
1780	if (b1 + len1 > b2) {
1781		newext->ee_len = cpu_to_le16(b2 - b1);
1782		ret = 1;
1783	}
1784out:
1785	return ret;
1786}
1787
1788/*
1789 * ext4_ext_insert_extent:
1790 * tries to merge requsted extent into the existing extent or
1791 * inserts requested extent as new one into the tree,
1792 * creating new leaf in the no-space case.
1793 */
1794int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1795				struct ext4_ext_path *path,
1796				struct ext4_extent *newext, int flag)
1797{
1798	struct ext4_extent_header *eh;
1799	struct ext4_extent *ex, *fex;
1800	struct ext4_extent *nearex; /* nearest extent */
1801	struct ext4_ext_path *npath = NULL;
1802	int depth, len, err;
1803	ext4_lblk_t next;
1804	unsigned uninitialized = 0;
1805	int flags = 0;
1806
1807	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1808		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1809		return -EIO;
1810	}
1811	depth = ext_depth(inode);
1812	ex = path[depth].p_ext;
1813	eh = path[depth].p_hdr;
1814	if (unlikely(path[depth].p_hdr == NULL)) {
1815		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1816		return -EIO;
1817	}
1818
1819	/* try to insert block into found extent and return */
1820	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)) {
1821
1822		/*
1823		 * Try to see whether we should rather test the extent on
1824		 * right from ex, or from the left of ex. This is because
1825		 * ext4_ext_find_extent() can return either extent on the
1826		 * left, or on the right from the searched position. This
1827		 * will make merging more effective.
1828		 */
1829		if (ex < EXT_LAST_EXTENT(eh) &&
1830		    (le32_to_cpu(ex->ee_block) +
1831		    ext4_ext_get_actual_len(ex) <
1832		    le32_to_cpu(newext->ee_block))) {
1833			ex += 1;
1834			goto prepend;
1835		} else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1836			   (le32_to_cpu(newext->ee_block) +
1837			   ext4_ext_get_actual_len(newext) <
1838			   le32_to_cpu(ex->ee_block)))
1839			ex -= 1;
1840
1841		/* Try to append newex to the ex */
1842		if (ext4_can_extents_be_merged(inode, ex, newext)) {
1843			ext_debug("append [%d]%d block to %u:[%d]%d"
1844				  "(from %llu)\n",
1845				  ext4_ext_is_uninitialized(newext),
1846				  ext4_ext_get_actual_len(newext),
1847				  le32_to_cpu(ex->ee_block),
1848				  ext4_ext_is_uninitialized(ex),
1849				  ext4_ext_get_actual_len(ex),
1850				  ext4_ext_pblock(ex));
1851			err = ext4_ext_get_access(handle, inode,
1852						  path + depth);
1853			if (err)
1854				return err;
1855
1856			/*
1857			 * ext4_can_extents_be_merged should have checked
1858			 * that either both extents are uninitialized, or
1859			 * both aren't. Thus we need to check only one of
1860			 * them here.
1861			 */
1862			if (ext4_ext_is_uninitialized(ex))
1863				uninitialized = 1;
1864			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1865					+ ext4_ext_get_actual_len(newext));
1866			if (uninitialized)
1867				ext4_ext_mark_uninitialized(ex);
1868			eh = path[depth].p_hdr;
1869			nearex = ex;
1870			goto merge;
1871		}
1872
1873prepend:
1874		/* Try to prepend newex to the ex */
1875		if (ext4_can_extents_be_merged(inode, newext, ex)) {
1876			ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
1877				  "(from %llu)\n",
1878				  le32_to_cpu(newext->ee_block),
1879				  ext4_ext_is_uninitialized(newext),
1880				  ext4_ext_get_actual_len(newext),
1881				  le32_to_cpu(ex->ee_block),
1882				  ext4_ext_is_uninitialized(ex),
1883				  ext4_ext_get_actual_len(ex),
1884				  ext4_ext_pblock(ex));
1885			err = ext4_ext_get_access(handle, inode,
1886						  path + depth);
1887			if (err)
1888				return err;
1889
1890			/*
1891			 * ext4_can_extents_be_merged should have checked
1892			 * that either both extents are uninitialized, or
1893			 * both aren't. Thus we need to check only one of
1894			 * them here.
1895			 */
1896			if (ext4_ext_is_uninitialized(ex))
1897				uninitialized = 1;
1898			ex->ee_block = newext->ee_block;
1899			ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
1900			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1901					+ ext4_ext_get_actual_len(newext));
1902			if (uninitialized)
1903				ext4_ext_mark_uninitialized(ex);
1904			eh = path[depth].p_hdr;
1905			nearex = ex;
1906			goto merge;
1907		}
1908	}
1909
1910	depth = ext_depth(inode);
1911	eh = path[depth].p_hdr;
1912	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1913		goto has_space;
1914
1915	/* probably next leaf has space for us? */
1916	fex = EXT_LAST_EXTENT(eh);
1917	next = EXT_MAX_BLOCKS;
1918	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1919		next = ext4_ext_next_leaf_block(path);
1920	if (next != EXT_MAX_BLOCKS) {
1921		ext_debug("next leaf block - %u\n", next);
1922		BUG_ON(npath != NULL);
1923		npath = ext4_ext_find_extent(inode, next, NULL);
1924		if (IS_ERR(npath))
1925			return PTR_ERR(npath);
1926		BUG_ON(npath->p_depth != path->p_depth);
1927		eh = npath[depth].p_hdr;
1928		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1929			ext_debug("next leaf isn't full(%d)\n",
1930				  le16_to_cpu(eh->eh_entries));
1931			path = npath;
1932			goto has_space;
1933		}
1934		ext_debug("next leaf has no free space(%d,%d)\n",
1935			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1936	}
1937
1938	/*
1939	 * There is no free space in the found leaf.
1940	 * We're gonna add a new leaf in the tree.
1941	 */
1942	if (flag & EXT4_GET_BLOCKS_METADATA_NOFAIL)
1943		flags = EXT4_MB_USE_RESERVED;
1944	err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1945	if (err)
1946		goto cleanup;
1947	depth = ext_depth(inode);
1948	eh = path[depth].p_hdr;
1949
1950has_space:
1951	nearex = path[depth].p_ext;
1952
1953	err = ext4_ext_get_access(handle, inode, path + depth);
1954	if (err)
1955		goto cleanup;
1956
1957	if (!nearex) {
1958		/* there is no extent in this leaf, create first one */
1959		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1960				le32_to_cpu(newext->ee_block),
1961				ext4_ext_pblock(newext),
1962				ext4_ext_is_uninitialized(newext),
1963				ext4_ext_get_actual_len(newext));
1964		nearex = EXT_FIRST_EXTENT(eh);
1965	} else {
1966		if (le32_to_cpu(newext->ee_block)
1967			   > le32_to_cpu(nearex->ee_block)) {
1968			/* Insert after */
1969			ext_debug("insert %u:%llu:[%d]%d before: "
1970					"nearest %p\n",
1971					le32_to_cpu(newext->ee_block),
1972					ext4_ext_pblock(newext),
1973					ext4_ext_is_uninitialized(newext),
1974					ext4_ext_get_actual_len(newext),
1975					nearex);
1976			nearex++;
1977		} else {
1978			/* Insert before */
1979			BUG_ON(newext->ee_block == nearex->ee_block);
1980			ext_debug("insert %u:%llu:[%d]%d after: "
1981					"nearest %p\n",
1982					le32_to_cpu(newext->ee_block),
1983					ext4_ext_pblock(newext),
1984					ext4_ext_is_uninitialized(newext),
1985					ext4_ext_get_actual_len(newext),
1986					nearex);
1987		}
1988		len = EXT_LAST_EXTENT(eh) - nearex + 1;
1989		if (len > 0) {
1990			ext_debug("insert %u:%llu:[%d]%d: "
1991					"move %d extents from 0x%p to 0x%p\n",
1992					le32_to_cpu(newext->ee_block),
1993					ext4_ext_pblock(newext),
1994					ext4_ext_is_uninitialized(newext),
1995					ext4_ext_get_actual_len(newext),
1996					len, nearex, nearex + 1);
1997			memmove(nearex + 1, nearex,
1998				len * sizeof(struct ext4_extent));
1999		}
2000	}
2001
2002	le16_add_cpu(&eh->eh_entries, 1);
2003	path[depth].p_ext = nearex;
2004	nearex->ee_block = newext->ee_block;
2005	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2006	nearex->ee_len = newext->ee_len;
2007
2008merge:
2009	/* try to merge extents */
2010	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
2011		ext4_ext_try_to_merge(handle, inode, path, nearex);
2012
2013
2014	/* time to correct all indexes above */
2015	err = ext4_ext_correct_indexes(handle, inode, path);
2016	if (err)
2017		goto cleanup;
2018
2019	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2020
2021cleanup:
2022	if (npath) {
2023		ext4_ext_drop_refs(npath);
2024		kfree(npath);
2025	}
2026	return err;
2027}
2028
2029static int ext4_fill_fiemap_extents(struct inode *inode,
2030				    ext4_lblk_t block, ext4_lblk_t num,
2031				    struct fiemap_extent_info *fieinfo)
2032{
2033	struct ext4_ext_path *path = NULL;
2034	struct ext4_extent *ex;
2035	struct extent_status es;
2036	ext4_lblk_t next, next_del, start = 0, end = 0;
2037	ext4_lblk_t last = block + num;
2038	int exists, depth = 0, err = 0;
2039	unsigned int flags = 0;
2040	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2041
2042	while (block < last && block != EXT_MAX_BLOCKS) {
2043		num = last - block;
2044		/* find extent for this block */
2045		down_read(&EXT4_I(inode)->i_data_sem);
2046
2047		if (path && ext_depth(inode) != depth) {
2048			/* depth was changed. we have to realloc path */
2049			kfree(path);
2050			path = NULL;
2051		}
2052
2053		path = ext4_ext_find_extent(inode, block, path);
2054		if (IS_ERR(path)) {
2055			up_read(&EXT4_I(inode)->i_data_sem);
2056			err = PTR_ERR(path);
2057			path = NULL;
2058			break;
2059		}
2060
2061		depth = ext_depth(inode);
2062		if (unlikely(path[depth].p_hdr == NULL)) {
2063			up_read(&EXT4_I(inode)->i_data_sem);
2064			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2065			err = -EIO;
2066			break;
2067		}
2068		ex = path[depth].p_ext;
2069		next = ext4_ext_next_allocated_block(path);
2070		ext4_ext_drop_refs(path);
2071
2072		flags = 0;
2073		exists = 0;
2074		if (!ex) {
2075			/* there is no extent yet, so try to allocate
2076			 * all requested space */
2077			start = block;
2078			end = block + num;
2079		} else if (le32_to_cpu(ex->ee_block) > block) {
2080			/* need to allocate space before found extent */
2081			start = block;
2082			end = le32_to_cpu(ex->ee_block);
2083			if (block + num < end)
2084				end = block + num;
2085		} else if (block >= le32_to_cpu(ex->ee_block)
2086					+ ext4_ext_get_actual_len(ex)) {
2087			/* need to allocate space after found extent */
2088			start = block;
2089			end = block + num;
2090			if (end >= next)
2091				end = next;
2092		} else if (block >= le32_to_cpu(ex->ee_block)) {
2093			/*
2094			 * some part of requested space is covered
2095			 * by found extent
2096			 */
2097			start = block;
2098			end = le32_to_cpu(ex->ee_block)
2099				+ ext4_ext_get_actual_len(ex);
2100			if (block + num < end)
2101				end = block + num;
2102			exists = 1;
2103		} else {
2104			BUG();
2105		}
2106		BUG_ON(end <= start);
2107
2108		if (!exists) {
2109			es.es_lblk = start;
2110			es.es_len = end - start;
2111			es.es_pblk = 0;
2112		} else {
2113			es.es_lblk = le32_to_cpu(ex->ee_block);
2114			es.es_len = ext4_ext_get_actual_len(ex);
2115			es.es_pblk = ext4_ext_pblock(ex);
2116			if (ext4_ext_is_uninitialized(ex))
2117				flags |= FIEMAP_EXTENT_UNWRITTEN;
2118		}
2119
2120		/*
2121		 * Find delayed extent and update es accordingly. We call
2122		 * it even in !exists case to find out whether es is the
2123		 * last existing extent or not.
2124		 */
2125		next_del = ext4_find_delayed_extent(inode, &es);
2126		if (!exists && next_del) {
2127			exists = 1;
2128			flags |= FIEMAP_EXTENT_DELALLOC;
2129		}
2130		up_read(&EXT4_I(inode)->i_data_sem);
2131
2132		if (unlikely(es.es_len == 0)) {
2133			EXT4_ERROR_INODE(inode, "es.es_len == 0");
2134			err = -EIO;
2135			break;
2136		}
2137
2138		/*
2139		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2140		 * we need to check next == EXT_MAX_BLOCKS because it is
2141		 * possible that an extent is with unwritten and delayed
2142		 * status due to when an extent is delayed allocated and
2143		 * is allocated by fallocate status tree will track both of
2144		 * them in a extent.
2145		 *
2146		 * So we could return a unwritten and delayed extent, and
2147		 * its block is equal to 'next'.
2148		 */
2149		if (next == next_del && next == EXT_MAX_BLOCKS) {
2150			flags |= FIEMAP_EXTENT_LAST;
2151			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2152				     next != EXT_MAX_BLOCKS)) {
2153				EXT4_ERROR_INODE(inode,
2154						 "next extent == %u, next "
2155						 "delalloc extent = %u",
2156						 next, next_del);
2157				err = -EIO;
2158				break;
2159			}
2160		}
2161
2162		if (exists) {
2163			err = fiemap_fill_next_extent(fieinfo,
2164				(__u64)es.es_lblk << blksize_bits,
2165				(__u64)es.es_pblk << blksize_bits,
2166				(__u64)es.es_len << blksize_bits,
2167				flags);
2168			if (err < 0)
2169				break;
2170			if (err == 1) {
2171				err = 0;
2172				break;
2173			}
2174		}
2175
2176		block = es.es_lblk + es.es_len;
2177	}
2178
2179	if (path) {
2180		ext4_ext_drop_refs(path);
2181		kfree(path);
2182	}
2183
2184	return err;
2185}
2186
2187/*
2188 * ext4_ext_put_gap_in_cache:
2189 * calculate boundaries of the gap that the requested block fits into
2190 * and cache this gap
2191 */
2192static void
2193ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2194				ext4_lblk_t block)
2195{
2196	int depth = ext_depth(inode);
2197	unsigned long len;
2198	ext4_lblk_t lblock;
2199	struct ext4_extent *ex;
2200
2201	ex = path[depth].p_ext;
2202	if (ex == NULL) {
2203		/*
2204		 * there is no extent yet, so gap is [0;-] and we
2205		 * don't cache it
2206		 */
2207		ext_debug("cache gap(whole file):");
2208	} else if (block < le32_to_cpu(ex->ee_block)) {
2209		lblock = block;
2210		len = le32_to_cpu(ex->ee_block) - block;
2211		ext_debug("cache gap(before): %u [%u:%u]",
2212				block,
2213				le32_to_cpu(ex->ee_block),
2214				 ext4_ext_get_actual_len(ex));
2215		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2216			ext4_es_insert_extent(inode, lblock, len, ~0,
2217					      EXTENT_STATUS_HOLE);
2218	} else if (block >= le32_to_cpu(ex->ee_block)
2219			+ ext4_ext_get_actual_len(ex)) {
2220		ext4_lblk_t next;
2221		lblock = le32_to_cpu(ex->ee_block)
2222			+ ext4_ext_get_actual_len(ex);
2223
2224		next = ext4_ext_next_allocated_block(path);
2225		ext_debug("cache gap(after): [%u:%u] %u",
2226				le32_to_cpu(ex->ee_block),
2227				ext4_ext_get_actual_len(ex),
2228				block);
2229		BUG_ON(next == lblock);
2230		len = next - lblock;
2231		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2232			ext4_es_insert_extent(inode, lblock, len, ~0,
2233					      EXTENT_STATUS_HOLE);
2234	} else {
2235		lblock = len = 0;
2236		BUG();
2237	}
2238
2239	ext_debug(" -> %u:%lu\n", lblock, len);
2240}
2241
2242/*
2243 * ext4_ext_rm_idx:
2244 * removes index from the index block.
2245 */
2246static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2247			struct ext4_ext_path *path, int depth)
2248{
2249	int err;
2250	ext4_fsblk_t leaf;
2251
2252	/* free index block */
2253	depth--;
2254	path = path + depth;
2255	leaf = ext4_idx_pblock(path->p_idx);
2256	if (unlikely(path->p_hdr->eh_entries == 0)) {
2257		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2258		return -EIO;
2259	}
2260	err = ext4_ext_get_access(handle, inode, path);
2261	if (err)
2262		return err;
2263
2264	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2265		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2266		len *= sizeof(struct ext4_extent_idx);
2267		memmove(path->p_idx, path->p_idx + 1, len);
2268	}
2269
2270	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2271	err = ext4_ext_dirty(handle, inode, path);
2272	if (err)
2273		return err;
2274	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2275	trace_ext4_ext_rm_idx(inode, leaf);
2276
2277	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2278			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2279
2280	while (--depth >= 0) {
2281		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2282			break;
2283		path--;
2284		err = ext4_ext_get_access(handle, inode, path);
2285		if (err)
2286			break;
2287		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2288		err = ext4_ext_dirty(handle, inode, path);
2289		if (err)
2290			break;
2291	}
2292	return err;
2293}
2294
2295/*
2296 * ext4_ext_calc_credits_for_single_extent:
2297 * This routine returns max. credits that needed to insert an extent
2298 * to the extent tree.
2299 * When pass the actual path, the caller should calculate credits
2300 * under i_data_sem.
2301 */
2302int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2303						struct ext4_ext_path *path)
2304{
2305	if (path) {
2306		int depth = ext_depth(inode);
2307		int ret = 0;
2308
2309		/* probably there is space in leaf? */
2310		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2311				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2312
2313			/*
2314			 *  There are some space in the leaf tree, no
2315			 *  need to account for leaf block credit
2316			 *
2317			 *  bitmaps and block group descriptor blocks
2318			 *  and other metadata blocks still need to be
2319			 *  accounted.
2320			 */
2321			/* 1 bitmap, 1 block group descriptor */
2322			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2323			return ret;
2324		}
2325	}
2326
2327	return ext4_chunk_trans_blocks(inode, nrblocks);
2328}
2329
2330/*
2331 * How many index/leaf blocks need to change/allocate to add @extents extents?
2332 *
2333 * If we add a single extent, then in the worse case, each tree level
2334 * index/leaf need to be changed in case of the tree split.
2335 *
2336 * If more extents are inserted, they could cause the whole tree split more
2337 * than once, but this is really rare.
2338 */
2339int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2340{
2341	int index;
2342	int depth;
2343
2344	/* If we are converting the inline data, only one is needed here. */
2345	if (ext4_has_inline_data(inode))
2346		return 1;
2347
2348	depth = ext_depth(inode);
2349
2350	if (extents <= 1)
2351		index = depth * 2;
2352	else
2353		index = depth * 3;
2354
2355	return index;
2356}
2357
2358static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2359			      struct ext4_extent *ex,
2360			      long long *partial_cluster,
2361			      ext4_lblk_t from, ext4_lblk_t to)
2362{
2363	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2364	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2365	ext4_fsblk_t pblk;
2366	int flags = 0;
2367
2368	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2369		flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2370	else if (ext4_should_journal_data(inode))
2371		flags |= EXT4_FREE_BLOCKS_FORGET;
2372
2373	/*
2374	 * For bigalloc file systems, we never free a partial cluster
2375	 * at the beginning of the extent.  Instead, we make a note
2376	 * that we tried freeing the cluster, and check to see if we
2377	 * need to free it on a subsequent call to ext4_remove_blocks,
2378	 * or at the end of the ext4_truncate() operation.
2379	 */
2380	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2381
2382	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2383	/*
2384	 * If we have a partial cluster, and it's different from the
2385	 * cluster of the last block, we need to explicitly free the
2386	 * partial cluster here.
2387	 */
2388	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2389	if ((*partial_cluster > 0) &&
2390	    (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2391		ext4_free_blocks(handle, inode, NULL,
2392				 EXT4_C2B(sbi, *partial_cluster),
2393				 sbi->s_cluster_ratio, flags);
2394		*partial_cluster = 0;
2395	}
2396
2397#ifdef EXTENTS_STATS
2398	{
2399		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2400		spin_lock(&sbi->s_ext_stats_lock);
2401		sbi->s_ext_blocks += ee_len;
2402		sbi->s_ext_extents++;
2403		if (ee_len < sbi->s_ext_min)
2404			sbi->s_ext_min = ee_len;
2405		if (ee_len > sbi->s_ext_max)
2406			sbi->s_ext_max = ee_len;
2407		if (ext_depth(inode) > sbi->s_depth_max)
2408			sbi->s_depth_max = ext_depth(inode);
2409		spin_unlock(&sbi->s_ext_stats_lock);
2410	}
2411#endif
2412	if (from >= le32_to_cpu(ex->ee_block)
2413	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2414		/* tail removal */
2415		ext4_lblk_t num;
2416		unsigned int unaligned;
2417
2418		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2419		pblk = ext4_ext_pblock(ex) + ee_len - num;
2420		/*
2421		 * Usually we want to free partial cluster at the end of the
2422		 * extent, except for the situation when the cluster is still
2423		 * used by any other extent (partial_cluster is negative).
2424		 */
2425		if (*partial_cluster < 0 &&
2426		    -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1))
2427			flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2428
2429		ext_debug("free last %u blocks starting %llu partial %lld\n",
2430			  num, pblk, *partial_cluster);
2431		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2432		/*
2433		 * If the block range to be freed didn't start at the
2434		 * beginning of a cluster, and we removed the entire
2435		 * extent and the cluster is not used by any other extent,
2436		 * save the partial cluster here, since we might need to
2437		 * delete if we determine that the truncate operation has
2438		 * removed all of the blocks in the cluster.
2439		 *
2440		 * On the other hand, if we did not manage to free the whole
2441		 * extent, we have to mark the cluster as used (store negative
2442		 * cluster number in partial_cluster).
2443		 */
2444		unaligned = pblk & (sbi->s_cluster_ratio - 1);
2445		if (unaligned && (ee_len == num) &&
2446		    (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk))))
2447			*partial_cluster = EXT4_B2C(sbi, pblk);
2448		else if (unaligned)
2449			*partial_cluster = -((long long)EXT4_B2C(sbi, pblk));
2450		else if (*partial_cluster > 0)
2451			*partial_cluster = 0;
2452	} else
2453		ext4_error(sbi->s_sb, "strange request: removal(2) "
2454			   "%u-%u from %u:%u\n",
2455			   from, to, le32_to_cpu(ex->ee_block), ee_len);
2456	return 0;
2457}
2458
2459
2460/*
2461 * ext4_ext_rm_leaf() Removes the extents associated with the
2462 * blocks appearing between "start" and "end", and splits the extents
2463 * if "start" and "end" appear in the same extent
2464 *
2465 * @handle: The journal handle
2466 * @inode:  The files inode
2467 * @path:   The path to the leaf
2468 * @partial_cluster: The cluster which we'll have to free if all extents
2469 *                   has been released from it. It gets negative in case
2470 *                   that the cluster is still used.
2471 * @start:  The first block to remove
2472 * @end:   The last block to remove
2473 */
2474static int
2475ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2476		 struct ext4_ext_path *path,
2477		 long long *partial_cluster,
2478		 ext4_lblk_t start, ext4_lblk_t end)
2479{
2480	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2481	int err = 0, correct_index = 0;
2482	int depth = ext_depth(inode), credits;
2483	struct ext4_extent_header *eh;
2484	ext4_lblk_t a, b;
2485	unsigned num;
2486	ext4_lblk_t ex_ee_block;
2487	unsigned short ex_ee_len;
2488	unsigned uninitialized = 0;
2489	struct ext4_extent *ex;
2490	ext4_fsblk_t pblk;
2491
2492	/* the header must be checked already in ext4_ext_remove_space() */
2493	ext_debug("truncate since %u in leaf to %u\n", start, end);
2494	if (!path[depth].p_hdr)
2495		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2496	eh = path[depth].p_hdr;
2497	if (unlikely(path[depth].p_hdr == NULL)) {
2498		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2499		return -EIO;
2500	}
2501	/* find where to start removing */
2502	ex = EXT_LAST_EXTENT(eh);
2503
2504	ex_ee_block = le32_to_cpu(ex->ee_block);
2505	ex_ee_len = ext4_ext_get_actual_len(ex);
2506
2507	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2508
2509	while (ex >= EXT_FIRST_EXTENT(eh) &&
2510			ex_ee_block + ex_ee_len > start) {
2511
2512		if (ext4_ext_is_uninitialized(ex))
2513			uninitialized = 1;
2514		else
2515			uninitialized = 0;
2516
2517		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2518			 uninitialized, ex_ee_len);
2519		path[depth].p_ext = ex;
2520
2521		a = ex_ee_block > start ? ex_ee_block : start;
2522		b = ex_ee_block+ex_ee_len - 1 < end ?
2523			ex_ee_block+ex_ee_len - 1 : end;
2524
2525		ext_debug("  border %u:%u\n", a, b);
2526
2527		/* If this extent is beyond the end of the hole, skip it */
2528		if (end < ex_ee_block) {
2529			/*
2530			 * We're going to skip this extent and move to another,
2531			 * so if this extent is not cluster aligned we have
2532			 * to mark the current cluster as used to avoid
2533			 * accidentally freeing it later on
2534			 */
2535			pblk = ext4_ext_pblock(ex);
2536			if (pblk & (sbi->s_cluster_ratio - 1))
2537				*partial_cluster =
2538					-((long long)EXT4_B2C(sbi, pblk));
2539			ex--;
2540			ex_ee_block = le32_to_cpu(ex->ee_block);
2541			ex_ee_len = ext4_ext_get_actual_len(ex);
2542			continue;
2543		} else if (b != ex_ee_block + ex_ee_len - 1) {
2544			EXT4_ERROR_INODE(inode,
2545					 "can not handle truncate %u:%u "
2546					 "on extent %u:%u",
2547					 start, end, ex_ee_block,
2548					 ex_ee_block + ex_ee_len - 1);
2549			err = -EIO;
2550			goto out;
2551		} else if (a != ex_ee_block) {
2552			/* remove tail of the extent */
2553			num = a - ex_ee_block;
2554		} else {
2555			/* remove whole extent: excellent! */
2556			num = 0;
2557		}
2558		/*
2559		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2560		 * descriptor) for each block group; assume two block
2561		 * groups plus ex_ee_len/blocks_per_block_group for
2562		 * the worst case
2563		 */
2564		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2565		if (ex == EXT_FIRST_EXTENT(eh)) {
2566			correct_index = 1;
2567			credits += (ext_depth(inode)) + 1;
2568		}
2569		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2570
2571		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2572		if (err)
2573			goto out;
2574
2575		err = ext4_ext_get_access(handle, inode, path + depth);
2576		if (err)
2577			goto out;
2578
2579		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2580					 a, b);
2581		if (err)
2582			goto out;
2583
2584		if (num == 0)
2585			/* this extent is removed; mark slot entirely unused */
2586			ext4_ext_store_pblock(ex, 0);
2587
2588		ex->ee_len = cpu_to_le16(num);
2589		/*
2590		 * Do not mark uninitialized if all the blocks in the
2591		 * extent have been removed.
2592		 */
2593		if (uninitialized && num)
2594			ext4_ext_mark_uninitialized(ex);
2595		/*
2596		 * If the extent was completely released,
2597		 * we need to remove it from the leaf
2598		 */
2599		if (num == 0) {
2600			if (end != EXT_MAX_BLOCKS - 1) {
2601				/*
2602				 * For hole punching, we need to scoot all the
2603				 * extents up when an extent is removed so that
2604				 * we dont have blank extents in the middle
2605				 */
2606				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2607					sizeof(struct ext4_extent));
2608
2609				/* Now get rid of the one at the end */
2610				memset(EXT_LAST_EXTENT(eh), 0,
2611					sizeof(struct ext4_extent));
2612			}
2613			le16_add_cpu(&eh->eh_entries, -1);
2614		} else if (*partial_cluster > 0)
2615			*partial_cluster = 0;
2616
2617		err = ext4_ext_dirty(handle, inode, path + depth);
2618		if (err)
2619			goto out;
2620
2621		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2622				ext4_ext_pblock(ex));
2623		ex--;
2624		ex_ee_block = le32_to_cpu(ex->ee_block);
2625		ex_ee_len = ext4_ext_get_actual_len(ex);
2626	}
2627
2628	if (correct_index && eh->eh_entries)
2629		err = ext4_ext_correct_indexes(handle, inode, path);
2630
2631	/*
2632	 * Free the partial cluster only if the current extent does not
2633	 * reference it. Otherwise we might free used cluster.
2634	 */
2635	if (*partial_cluster > 0 &&
2636	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2637	     *partial_cluster)) {
2638		int flags = EXT4_FREE_BLOCKS_FORGET;
2639
2640		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2641			flags |= EXT4_FREE_BLOCKS_METADATA;
2642
2643		ext4_free_blocks(handle, inode, NULL,
2644				 EXT4_C2B(sbi, *partial_cluster),
2645				 sbi->s_cluster_ratio, flags);
2646		*partial_cluster = 0;
2647	}
2648
2649	/* if this leaf is free, then we should
2650	 * remove it from index block above */
2651	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2652		err = ext4_ext_rm_idx(handle, inode, path, depth);
2653
2654out:
2655	return err;
2656}
2657
2658/*
2659 * ext4_ext_more_to_rm:
2660 * returns 1 if current index has to be freed (even partial)
2661 */
2662static int
2663ext4_ext_more_to_rm(struct ext4_ext_path *path)
2664{
2665	BUG_ON(path->p_idx == NULL);
2666
2667	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2668		return 0;
2669
2670	/*
2671	 * if truncate on deeper level happened, it wasn't partial,
2672	 * so we have to consider current index for truncation
2673	 */
2674	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2675		return 0;
2676	return 1;
2677}
2678
2679int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2680			  ext4_lblk_t end)
2681{
2682	struct super_block *sb = inode->i_sb;
2683	int depth = ext_depth(inode);
2684	struct ext4_ext_path *path = NULL;
2685	long long partial_cluster = 0;
2686	handle_t *handle;
2687	int i = 0, err = 0;
2688
2689	ext_debug("truncate since %u to %u\n", start, end);
2690
2691	/* probably first extent we're gonna free will be last in block */
2692	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2693	if (IS_ERR(handle))
2694		return PTR_ERR(handle);
2695
2696again:
2697	trace_ext4_ext_remove_space(inode, start, end, depth);
2698
2699	/*
2700	 * Check if we are removing extents inside the extent tree. If that
2701	 * is the case, we are going to punch a hole inside the extent tree
2702	 * so we have to check whether we need to split the extent covering
2703	 * the last block to remove so we can easily remove the part of it
2704	 * in ext4_ext_rm_leaf().
2705	 */
2706	if (end < EXT_MAX_BLOCKS - 1) {
2707		struct ext4_extent *ex;
2708		ext4_lblk_t ee_block;
2709
2710		/* find extent for this block */
2711		path = ext4_ext_find_extent(inode, end, NULL);
2712		if (IS_ERR(path)) {
2713			ext4_journal_stop(handle);
2714			return PTR_ERR(path);
2715		}
2716		depth = ext_depth(inode);
2717		/* Leaf not may not exist only if inode has no blocks at all */
2718		ex = path[depth].p_ext;
2719		if (!ex) {
2720			if (depth) {
2721				EXT4_ERROR_INODE(inode,
2722						 "path[%d].p_hdr == NULL",
2723						 depth);
2724				err = -EIO;
2725			}
2726			goto out;
2727		}
2728
2729		ee_block = le32_to_cpu(ex->ee_block);
2730
2731		/*
2732		 * See if the last block is inside the extent, if so split
2733		 * the extent at 'end' block so we can easily remove the
2734		 * tail of the first part of the split extent in
2735		 * ext4_ext_rm_leaf().
2736		 */
2737		if (end >= ee_block &&
2738		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2739			int split_flag = 0;
2740
2741			if (ext4_ext_is_uninitialized(ex))
2742				split_flag = EXT4_EXT_MARK_UNINIT1 |
2743					     EXT4_EXT_MARK_UNINIT2;
2744
2745			/*
2746			 * Split the extent in two so that 'end' is the last
2747			 * block in the first new extent. Also we should not
2748			 * fail removing space due to ENOSPC so try to use
2749			 * reserved block if that happens.
2750			 */
2751			err = ext4_split_extent_at(handle, inode, path,
2752					end + 1, split_flag,
2753					EXT4_GET_BLOCKS_PRE_IO |
2754					EXT4_GET_BLOCKS_METADATA_NOFAIL);
2755
2756			if (err < 0)
2757				goto out;
2758		}
2759	}
2760	/*
2761	 * We start scanning from right side, freeing all the blocks
2762	 * after i_size and walking into the tree depth-wise.
2763	 */
2764	depth = ext_depth(inode);
2765	if (path) {
2766		int k = i = depth;
2767		while (--k > 0)
2768			path[k].p_block =
2769				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2770	} else {
2771		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2772			       GFP_NOFS);
2773		if (path == NULL) {
2774			ext4_journal_stop(handle);
2775			return -ENOMEM;
2776		}
2777		path[0].p_depth = depth;
2778		path[0].p_hdr = ext_inode_hdr(inode);
2779		i = 0;
2780
2781		if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2782			err = -EIO;
2783			goto out;
2784		}
2785	}
2786	err = 0;
2787
2788	while (i >= 0 && err == 0) {
2789		if (i == depth) {
2790			/* this is leaf block */
2791			err = ext4_ext_rm_leaf(handle, inode, path,
2792					       &partial_cluster, start,
2793					       end);
2794			/* root level has p_bh == NULL, brelse() eats this */
2795			brelse(path[i].p_bh);
2796			path[i].p_bh = NULL;
2797			i--;
2798			continue;
2799		}
2800
2801		/* this is index block */
2802		if (!path[i].p_hdr) {
2803			ext_debug("initialize header\n");
2804			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2805		}
2806
2807		if (!path[i].p_idx) {
2808			/* this level hasn't been touched yet */
2809			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2810			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2811			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2812				  path[i].p_hdr,
2813				  le16_to_cpu(path[i].p_hdr->eh_entries));
2814		} else {
2815			/* we were already here, see at next index */
2816			path[i].p_idx--;
2817		}
2818
2819		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2820				i, EXT_FIRST_INDEX(path[i].p_hdr),
2821				path[i].p_idx);
2822		if (ext4_ext_more_to_rm(path + i)) {
2823			struct buffer_head *bh;
2824			/* go to the next level */
2825			ext_debug("move to level %d (block %llu)\n",
2826				  i + 1, ext4_idx_pblock(path[i].p_idx));
2827			memset(path + i + 1, 0, sizeof(*path));
2828			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2829			if (!bh) {
2830				/* should we reset i_size? */
2831				err = -EIO;
2832				break;
2833			}
2834			if (WARN_ON(i + 1 > depth)) {
2835				err = -EIO;
2836				break;
2837			}
2838			if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2839							depth - i - 1, bh)) {
2840				err = -EIO;
2841				break;
2842			}
2843			path[i + 1].p_bh = bh;
2844
2845			/* save actual number of indexes since this
2846			 * number is changed at the next iteration */
2847			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2848			i++;
2849		} else {
2850			/* we finished processing this index, go up */
2851			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2852				/* index is empty, remove it;
2853				 * handle must be already prepared by the
2854				 * truncatei_leaf() */
2855				err = ext4_ext_rm_idx(handle, inode, path, i);
2856			}
2857			/* root level has p_bh == NULL, brelse() eats this */
2858			brelse(path[i].p_bh);
2859			path[i].p_bh = NULL;
2860			i--;
2861			ext_debug("return to level %d\n", i);
2862		}
2863	}
2864
2865	trace_ext4_ext_remove_space_done(inode, start, end, depth,
2866			partial_cluster, path->p_hdr->eh_entries);
2867
2868	/* If we still have something in the partial cluster and we have removed
2869	 * even the first extent, then we should free the blocks in the partial
2870	 * cluster as well. */
2871	if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) {
2872		int flags = EXT4_FREE_BLOCKS_FORGET;
2873
2874		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2875			flags |= EXT4_FREE_BLOCKS_METADATA;
2876
2877		ext4_free_blocks(handle, inode, NULL,
2878				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2879				 EXT4_SB(sb)->s_cluster_ratio, flags);
2880		partial_cluster = 0;
2881	}
2882
2883	/* TODO: flexible tree reduction should be here */
2884	if (path->p_hdr->eh_entries == 0) {
2885		/*
2886		 * truncate to zero freed all the tree,
2887		 * so we need to correct eh_depth
2888		 */
2889		err = ext4_ext_get_access(handle, inode, path);
2890		if (err == 0) {
2891			ext_inode_hdr(inode)->eh_depth = 0;
2892			ext_inode_hdr(inode)->eh_max =
2893				cpu_to_le16(ext4_ext_space_root(inode, 0));
2894			err = ext4_ext_dirty(handle, inode, path);
2895		}
2896	}
2897out:
2898	ext4_ext_drop_refs(path);
2899	kfree(path);
2900	if (err == -EAGAIN) {
2901		path = NULL;
2902		goto again;
2903	}
2904	ext4_journal_stop(handle);
2905
2906	return err;
2907}
2908
2909/*
2910 * called at mount time
2911 */
2912void ext4_ext_init(struct super_block *sb)
2913{
2914	/*
2915	 * possible initialization would be here
2916	 */
2917
2918	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2919#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2920		printk(KERN_INFO "EXT4-fs: file extents enabled"
2921#ifdef AGGRESSIVE_TEST
2922		       ", aggressive tests"
2923#endif
2924#ifdef CHECK_BINSEARCH
2925		       ", check binsearch"
2926#endif
2927#ifdef EXTENTS_STATS
2928		       ", stats"
2929#endif
2930		       "\n");
2931#endif
2932#ifdef EXTENTS_STATS
2933		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2934		EXT4_SB(sb)->s_ext_min = 1 << 30;
2935		EXT4_SB(sb)->s_ext_max = 0;
2936#endif
2937	}
2938}
2939
2940/*
2941 * called at umount time
2942 */
2943void ext4_ext_release(struct super_block *sb)
2944{
2945	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2946		return;
2947
2948#ifdef EXTENTS_STATS
2949	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2950		struct ext4_sb_info *sbi = EXT4_SB(sb);
2951		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2952			sbi->s_ext_blocks, sbi->s_ext_extents,
2953			sbi->s_ext_blocks / sbi->s_ext_extents);
2954		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2955			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2956	}
2957#endif
2958}
2959
2960/* FIXME!! we need to try to merge to left or right after zero-out  */
2961static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2962{
2963	ext4_fsblk_t ee_pblock;
2964	unsigned int ee_len;
2965	int ret;
2966
2967	ee_len    = ext4_ext_get_actual_len(ex);
2968	ee_pblock = ext4_ext_pblock(ex);
2969
2970	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2971	if (ret > 0)
2972		ret = 0;
2973
2974	return ret;
2975}
2976
2977/*
2978 * ext4_split_extent_at() splits an extent at given block.
2979 *
2980 * @handle: the journal handle
2981 * @inode: the file inode
2982 * @path: the path to the extent
2983 * @split: the logical block where the extent is splitted.
2984 * @split_flags: indicates if the extent could be zeroout if split fails, and
2985 *		 the states(init or uninit) of new extents.
2986 * @flags: flags used to insert new extent to extent tree.
2987 *
2988 *
2989 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2990 * of which are deterimined by split_flag.
2991 *
2992 * There are two cases:
2993 *  a> the extent are splitted into two extent.
2994 *  b> split is not needed, and just mark the extent.
2995 *
2996 * return 0 on success.
2997 */
2998static int ext4_split_extent_at(handle_t *handle,
2999			     struct inode *inode,
3000			     struct ext4_ext_path *path,
3001			     ext4_lblk_t split,
3002			     int split_flag,
3003			     int flags)
3004{
3005	ext4_fsblk_t newblock;
3006	ext4_lblk_t ee_block;
3007	struct ext4_extent *ex, newex, orig_ex, zero_ex;
3008	struct ext4_extent *ex2 = NULL;
3009	unsigned int ee_len, depth;
3010	int err = 0;
3011
3012	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3013	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3014
3015	ext_debug("ext4_split_extents_at: inode %lu, logical"
3016		"block %llu\n", inode->i_ino, (unsigned long long)split);
3017
3018	ext4_ext_show_leaf(inode, path);
3019
3020	depth = ext_depth(inode);
3021	ex = path[depth].p_ext;
3022	ee_block = le32_to_cpu(ex->ee_block);
3023	ee_len = ext4_ext_get_actual_len(ex);
3024	newblock = split - ee_block + ext4_ext_pblock(ex);
3025
3026	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3027	BUG_ON(!ext4_ext_is_uninitialized(ex) &&
3028	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
3029			     EXT4_EXT_MARK_UNINIT1 |
3030			     EXT4_EXT_MARK_UNINIT2));
3031
3032	err = ext4_ext_get_access(handle, inode, path + depth);
3033	if (err)
3034		goto out;
3035
3036	if (split == ee_block) {
3037		/*
3038		 * case b: block @split is the block that the extent begins with
3039		 * then we just change the state of the extent, and splitting
3040		 * is not needed.
3041		 */
3042		if (split_flag & EXT4_EXT_MARK_UNINIT2)
3043			ext4_ext_mark_uninitialized(ex);
3044		else
3045			ext4_ext_mark_initialized(ex);
3046
3047		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3048			ext4_ext_try_to_merge(handle, inode, path, ex);
3049
3050		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3051		goto out;
3052	}
3053
3054	/* case a */
3055	memcpy(&orig_ex, ex, sizeof(orig_ex));
3056	ex->ee_len = cpu_to_le16(split - ee_block);
3057	if (split_flag & EXT4_EXT_MARK_UNINIT1)
3058		ext4_ext_mark_uninitialized(ex);
3059
3060	/*
3061	 * path may lead to new leaf, not to original leaf any more
3062	 * after ext4_ext_insert_extent() returns,
3063	 */
3064	err = ext4_ext_dirty(handle, inode, path + depth);
3065	if (err)
3066		goto fix_extent_len;
3067
3068	ex2 = &newex;
3069	ex2->ee_block = cpu_to_le32(split);
3070	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
3071	ext4_ext_store_pblock(ex2, newblock);
3072	if (split_flag & EXT4_EXT_MARK_UNINIT2)
3073		ext4_ext_mark_uninitialized(ex2);
3074
3075	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3076	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3077		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3078			if (split_flag & EXT4_EXT_DATA_VALID1) {
3079				err = ext4_ext_zeroout(inode, ex2);
3080				zero_ex.ee_block = ex2->ee_block;
3081				zero_ex.ee_len = cpu_to_le16(
3082						ext4_ext_get_actual_len(ex2));
3083				ext4_ext_store_pblock(&zero_ex,
3084						      ext4_ext_pblock(ex2));
3085			} else {
3086				err = ext4_ext_zeroout(inode, ex);
3087				zero_ex.ee_block = ex->ee_block;
3088				zero_ex.ee_len = cpu_to_le16(
3089						ext4_ext_get_actual_len(ex));
3090				ext4_ext_store_pblock(&zero_ex,
3091						      ext4_ext_pblock(ex));
3092			}
3093		} else {
3094			err = ext4_ext_zeroout(inode, &orig_ex);
3095			zero_ex.ee_block = orig_ex.ee_block;
3096			zero_ex.ee_len = cpu_to_le16(
3097						ext4_ext_get_actual_len(&orig_ex));
3098			ext4_ext_store_pblock(&zero_ex,
3099					      ext4_ext_pblock(&orig_ex));
3100		}
3101
3102		if (err)
3103			goto fix_extent_len;
3104		/* update the extent length and mark as initialized */
3105		ex->ee_len = cpu_to_le16(ee_len);
3106		ext4_ext_try_to_merge(handle, inode, path, ex);
3107		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3108		if (err)
3109			goto fix_extent_len;
3110
3111		/* update extent status tree */
3112		err = ext4_es_zeroout(inode, &zero_ex);
3113
3114		goto out;
3115	} else if (err)
3116		goto fix_extent_len;
3117
3118out:
3119	ext4_ext_show_leaf(inode, path);
3120	return err;
3121
3122fix_extent_len:
3123	ex->ee_len = orig_ex.ee_len;
3124	ext4_ext_dirty(handle, inode, path + depth);
3125	return err;
3126}
3127
3128/*
3129 * ext4_split_extents() splits an extent and mark extent which is covered
3130 * by @map as split_flags indicates
3131 *
3132 * It may result in splitting the extent into multiple extents (upto three)
3133 * There are three possibilities:
3134 *   a> There is no split required
3135 *   b> Splits in two extents: Split is happening at either end of the extent
3136 *   c> Splits in three extents: Somone is splitting in middle of the extent
3137 *
3138 */
3139static int ext4_split_extent(handle_t *handle,
3140			      struct inode *inode,
3141			      struct ext4_ext_path *path,
3142			      struct ext4_map_blocks *map,
3143			      int split_flag,
3144			      int flags)
3145{
3146	ext4_lblk_t ee_block;
3147	struct ext4_extent *ex;
3148	unsigned int ee_len, depth;
3149	int err = 0;
3150	int uninitialized;
3151	int split_flag1, flags1;
3152	int allocated = map->m_len;
3153
3154	depth = ext_depth(inode);
3155	ex = path[depth].p_ext;
3156	ee_block = le32_to_cpu(ex->ee_block);
3157	ee_len = ext4_ext_get_actual_len(ex);
3158	uninitialized = ext4_ext_is_uninitialized(ex);
3159
3160	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3161		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3162		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3163		if (uninitialized)
3164			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3165				       EXT4_EXT_MARK_UNINIT2;
3166		if (split_flag & EXT4_EXT_DATA_VALID2)
3167			split_flag1 |= EXT4_EXT_DATA_VALID1;
3168		err = ext4_split_extent_at(handle, inode, path,
3169				map->m_lblk + map->m_len, split_flag1, flags1);
3170		if (err)
3171			goto out;
3172	} else {
3173		allocated = ee_len - (map->m_lblk - ee_block);
3174	}
3175	/*
3176	 * Update path is required because previous ext4_split_extent_at() may
3177	 * result in split of original leaf or extent zeroout.
3178	 */
3179	ext4_ext_drop_refs(path);
3180	path = ext4_ext_find_extent(inode, map->m_lblk, path);
3181	if (IS_ERR(path))
3182		return PTR_ERR(path);
3183	depth = ext_depth(inode);
3184	ex = path[depth].p_ext;
3185	uninitialized = ext4_ext_is_uninitialized(ex);
3186	split_flag1 = 0;
3187
3188	if (map->m_lblk >= ee_block) {
3189		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3190		if (uninitialized) {
3191			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3192			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3193						     EXT4_EXT_MARK_UNINIT2);
3194		}
3195		err = ext4_split_extent_at(handle, inode, path,
3196				map->m_lblk, split_flag1, flags);
3197		if (err)
3198			goto out;
3199	}
3200
3201	ext4_ext_show_leaf(inode, path);
3202out:
3203	return err ? err : allocated;
3204}
3205
3206/*
3207 * This function is called by ext4_ext_map_blocks() if someone tries to write
3208 * to an uninitialized extent. It may result in splitting the uninitialized
3209 * extent into multiple extents (up to three - one initialized and two
3210 * uninitialized).
3211 * There are three possibilities:
3212 *   a> There is no split required: Entire extent should be initialized
3213 *   b> Splits in two extents: Write is happening at either end of the extent
3214 *   c> Splits in three extents: Somone is writing in middle of the extent
3215 *
3216 * Pre-conditions:
3217 *  - The extent pointed to by 'path' is uninitialized.
3218 *  - The extent pointed to by 'path' contains a superset
3219 *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3220 *
3221 * Post-conditions on success:
3222 *  - the returned value is the number of blocks beyond map->l_lblk
3223 *    that are allocated and initialized.
3224 *    It is guaranteed to be >= map->m_len.
3225 */
3226static int ext4_ext_convert_to_initialized(handle_t *handle,
3227					   struct inode *inode,
3228					   struct ext4_map_blocks *map,
3229					   struct ext4_ext_path *path,
3230					   int flags)
3231{
3232	struct ext4_sb_info *sbi;
3233	struct ext4_extent_header *eh;
3234	struct ext4_map_blocks split_map;
3235	struct ext4_extent zero_ex;
3236	struct ext4_extent *ex, *abut_ex;
3237	ext4_lblk_t ee_block, eof_block;
3238	unsigned int ee_len, depth, map_len = map->m_len;
3239	int allocated = 0, max_zeroout = 0;
3240	int err = 0;
3241	int split_flag = 0;
3242
3243	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3244		"block %llu, max_blocks %u\n", inode->i_ino,
3245		(unsigned long long)map->m_lblk, map_len);
3246
3247	sbi = EXT4_SB(inode->i_sb);
3248	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3249		inode->i_sb->s_blocksize_bits;
3250	if (eof_block < map->m_lblk + map_len)
3251		eof_block = map->m_lblk + map_len;
3252
3253	depth = ext_depth(inode);
3254	eh = path[depth].p_hdr;
3255	ex = path[depth].p_ext;
3256	ee_block = le32_to_cpu(ex->ee_block);
3257	ee_len = ext4_ext_get_actual_len(ex);
3258	zero_ex.ee_len = 0;
3259
3260	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3261
3262	/* Pre-conditions */
3263	BUG_ON(!ext4_ext_is_uninitialized(ex));
3264	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3265
3266	/*
3267	 * Attempt to transfer newly initialized blocks from the currently
3268	 * uninitialized extent to its neighbor. This is much cheaper
3269	 * than an insertion followed by a merge as those involve costly
3270	 * memmove() calls. Transferring to the left is the common case in
3271	 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3272	 * followed by append writes.
3273	 *
3274	 * Limitations of the current logic:
3275	 *  - L1: we do not deal with writes covering the whole extent.
3276	 *    This would require removing the extent if the transfer
3277	 *    is possible.
3278	 *  - L2: we only attempt to merge with an extent stored in the
3279	 *    same extent tree node.
3280	 */
3281	if ((map->m_lblk == ee_block) &&
3282		/* See if we can merge left */
3283		(map_len < ee_len) &&		/*L1*/
3284		(ex > EXT_FIRST_EXTENT(eh))) {	/*L2*/
3285		ext4_lblk_t prev_lblk;
3286		ext4_fsblk_t prev_pblk, ee_pblk;
3287		unsigned int prev_len;
3288
3289		abut_ex = ex - 1;
3290		prev_lblk = le32_to_cpu(abut_ex->ee_block);
3291		prev_len = ext4_ext_get_actual_len(abut_ex);
3292		prev_pblk = ext4_ext_pblock(abut_ex);
3293		ee_pblk = ext4_ext_pblock(ex);
3294
3295		/*
3296		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3297		 * upon those conditions:
3298		 * - C1: abut_ex is initialized,
3299		 * - C2: abut_ex is logically abutting ex,
3300		 * - C3: abut_ex is physically abutting ex,
3301		 * - C4: abut_ex can receive the additional blocks without
3302		 *   overflowing the (initialized) length limit.
3303		 */
3304		if ((!ext4_ext_is_uninitialized(abut_ex)) &&		/*C1*/
3305			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3306			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3307			(prev_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3308			err = ext4_ext_get_access(handle, inode, path + depth);
3309			if (err)
3310				goto out;
3311
3312			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3313				map, ex, abut_ex);
3314
3315			/* Shift the start of ex by 'map_len' blocks */
3316			ex->ee_block = cpu_to_le32(ee_block + map_len);
3317			ext4_ext_store_pblock(ex, ee_pblk + map_len);
3318			ex->ee_len = cpu_to_le16(ee_len - map_len);
3319			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3320
3321			/* Extend abut_ex by 'map_len' blocks */
3322			abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3323
3324			/* Result: number of initialized blocks past m_lblk */
3325			allocated = map_len;
3326		}
3327	} else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3328		   (map_len < ee_len) &&	/*L1*/
3329		   ex < EXT_LAST_EXTENT(eh)) {	/*L2*/
3330		/* See if we can merge right */
3331		ext4_lblk_t next_lblk;
3332		ext4_fsblk_t next_pblk, ee_pblk;
3333		unsigned int next_len;
3334
3335		abut_ex = ex + 1;
3336		next_lblk = le32_to_cpu(abut_ex->ee_block);
3337		next_len = ext4_ext_get_actual_len(abut_ex);
3338		next_pblk = ext4_ext_pblock(abut_ex);
3339		ee_pblk = ext4_ext_pblock(ex);
3340
3341		/*
3342		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3343		 * upon those conditions:
3344		 * - C1: abut_ex is initialized,
3345		 * - C2: abut_ex is logically abutting ex,
3346		 * - C3: abut_ex is physically abutting ex,
3347		 * - C4: abut_ex can receive the additional blocks without
3348		 *   overflowing the (initialized) length limit.
3349		 */
3350		if ((!ext4_ext_is_uninitialized(abut_ex)) &&		/*C1*/
3351		    ((map->m_lblk + map_len) == next_lblk) &&		/*C2*/
3352		    ((ee_pblk + ee_len) == next_pblk) &&		/*C3*/
3353		    (next_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3354			err = ext4_ext_get_access(handle, inode, path + depth);
3355			if (err)
3356				goto out;
3357
3358			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3359				map, ex, abut_ex);
3360
3361			/* Shift the start of abut_ex by 'map_len' blocks */
3362			abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3363			ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3364			ex->ee_len = cpu_to_le16(ee_len - map_len);
3365			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3366
3367			/* Extend abut_ex by 'map_len' blocks */
3368			abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3369
3370			/* Result: number of initialized blocks past m_lblk */
3371			allocated = map_len;
3372		}
3373	}
3374	if (allocated) {
3375		/* Mark the block containing both extents as dirty */
3376		ext4_ext_dirty(handle, inode, path + depth);
3377
3378		/* Update path to point to the right extent */
3379		path[depth].p_ext = abut_ex;
3380		goto out;
3381	} else
3382		allocated = ee_len - (map->m_lblk - ee_block);
3383
3384	WARN_ON(map->m_lblk < ee_block);
3385	/*
3386	 * It is safe to convert extent to initialized via explicit
3387	 * zeroout only if extent is fully insde i_size or new_size.
3388	 */
3389	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3390
3391	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3392		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3393			(inode->i_sb->s_blocksize_bits - 10);
3394
3395	/* If extent is less than s_max_zeroout_kb, zeroout directly */
3396	if (max_zeroout && (ee_len <= max_zeroout)) {
3397		err = ext4_ext_zeroout(inode, ex);
3398		if (err)
3399			goto out;
3400		zero_ex.ee_block = ex->ee_block;
3401		zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3402		ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3403
3404		err = ext4_ext_get_access(handle, inode, path + depth);
3405		if (err)
3406			goto out;
3407		ext4_ext_mark_initialized(ex);
3408		ext4_ext_try_to_merge(handle, inode, path, ex);
3409		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3410		goto out;
3411	}
3412
3413	/*
3414	 * four cases:
3415	 * 1. split the extent into three extents.
3416	 * 2. split the extent into two extents, zeroout the first half.
3417	 * 3. split the extent into two extents, zeroout the second half.
3418	 * 4. split the extent into two extents with out zeroout.
3419	 */
3420	split_map.m_lblk = map->m_lblk;
3421	split_map.m_len = map->m_len;
3422
3423	if (max_zeroout && (allocated > map->m_len)) {
3424		if (allocated <= max_zeroout) {
3425			/* case 3 */
3426			zero_ex.ee_block =
3427					 cpu_to_le32(map->m_lblk);
3428			zero_ex.ee_len = cpu_to_le16(allocated);
3429			ext4_ext_store_pblock(&zero_ex,
3430				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3431			err = ext4_ext_zeroout(inode, &zero_ex);
3432			if (err)
3433				goto out;
3434			split_map.m_lblk = map->m_lblk;
3435			split_map.m_len = allocated;
3436		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3437			/* case 2 */
3438			if (map->m_lblk != ee_block) {
3439				zero_ex.ee_block = ex->ee_block;
3440				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3441							ee_block);
3442				ext4_ext_store_pblock(&zero_ex,
3443						      ext4_ext_pblock(ex));
3444				err = ext4_ext_zeroout(inode, &zero_ex);
3445				if (err)
3446					goto out;
3447			}
3448
3449			split_map.m_lblk = ee_block;
3450			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3451			allocated = map->m_len;
3452		}
3453	}
3454
3455	allocated = ext4_split_extent(handle, inode, path,
3456				      &split_map, split_flag, flags);
3457	if (allocated < 0)
3458		err = allocated;
3459
3460out:
3461	/* If we have gotten a failure, don't zero out status tree */
3462	if (!err)
3463		err = ext4_es_zeroout(inode, &zero_ex);
3464	return err ? err : allocated;
3465}
3466
3467/*
3468 * This function is called by ext4_ext_map_blocks() from
3469 * ext4_get_blocks_dio_write() when DIO to write
3470 * to an uninitialized extent.
3471 *
3472 * Writing to an uninitialized extent may result in splitting the uninitialized
3473 * extent into multiple initialized/uninitialized extents (up to three)
3474 * There are three possibilities:
3475 *   a> There is no split required: Entire extent should be uninitialized
3476 *   b> Splits in two extents: Write is happening at either end of the extent
3477 *   c> Splits in three extents: Somone is writing in middle of the extent
3478 *
3479 * One of more index blocks maybe needed if the extent tree grow after
3480 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3481 * complete, we need to split the uninitialized extent before DIO submit
3482 * the IO. The uninitialized extent called at this time will be split
3483 * into three uninitialized extent(at most). After IO complete, the part
3484 * being filled will be convert to initialized by the end_io callback function
3485 * via ext4_convert_unwritten_extents().
3486 *
3487 * Returns the size of uninitialized extent to be written on success.
3488 */
3489static int ext4_split_unwritten_extents(handle_t *handle,
3490					struct inode *inode,
3491					struct ext4_map_blocks *map,
3492					struct ext4_ext_path *path,
3493					int flags)
3494{
3495	ext4_lblk_t eof_block;
3496	ext4_lblk_t ee_block;
3497	struct ext4_extent *ex;
3498	unsigned int ee_len;
3499	int split_flag = 0, depth;
3500
3501	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3502		"block %llu, max_blocks %u\n", inode->i_ino,
3503		(unsigned long long)map->m_lblk, map->m_len);
3504
3505	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3506		inode->i_sb->s_blocksize_bits;
3507	if (eof_block < map->m_lblk + map->m_len)
3508		eof_block = map->m_lblk + map->m_len;
3509	/*
3510	 * It is safe to convert extent to initialized via explicit
3511	 * zeroout only if extent is fully insde i_size or new_size.
3512	 */
3513	depth = ext_depth(inode);
3514	ex = path[depth].p_ext;
3515	ee_block = le32_to_cpu(ex->ee_block);
3516	ee_len = ext4_ext_get_actual_len(ex);
3517
3518	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3519	split_flag |= EXT4_EXT_MARK_UNINIT2;
3520	if (flags & EXT4_GET_BLOCKS_CONVERT)
3521		split_flag |= EXT4_EXT_DATA_VALID2;
3522	flags |= EXT4_GET_BLOCKS_PRE_IO;
3523	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3524}
3525
3526static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3527						struct inode *inode,
3528						struct ext4_map_blocks *map,
3529						struct ext4_ext_path *path)
3530{
3531	struct ext4_extent *ex;
3532	ext4_lblk_t ee_block;
3533	unsigned int ee_len;
3534	int depth;
3535	int err = 0;
3536
3537	depth = ext_depth(inode);
3538	ex = path[depth].p_ext;
3539	ee_block = le32_to_cpu(ex->ee_block);
3540	ee_len = ext4_ext_get_actual_len(ex);
3541
3542	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3543		"block %llu, max_blocks %u\n", inode->i_ino,
3544		  (unsigned long long)ee_block, ee_len);
3545
3546	/* If extent is larger than requested it is a clear sign that we still
3547	 * have some extent state machine issues left. So extent_split is still
3548	 * required.
3549	 * TODO: Once all related issues will be fixed this situation should be
3550	 * illegal.
3551	 */
3552	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3553#ifdef EXT4_DEBUG
3554		ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3555			     " len %u; IO logical block %llu, len %u\n",
3556			     inode->i_ino, (unsigned long long)ee_block, ee_len,
3557			     (unsigned long long)map->m_lblk, map->m_len);
3558#endif
3559		err = ext4_split_unwritten_extents(handle, inode, map, path,
3560						   EXT4_GET_BLOCKS_CONVERT);
3561		if (err < 0)
3562			goto out;
3563		ext4_ext_drop_refs(path);
3564		path = ext4_ext_find_extent(inode, map->m_lblk, path);
3565		if (IS_ERR(path)) {
3566			err = PTR_ERR(path);
3567			goto out;
3568		}
3569		depth = ext_depth(inode);
3570		ex = path[depth].p_ext;
3571	}
3572
3573	err = ext4_ext_get_access(handle, inode, path + depth);
3574	if (err)
3575		goto out;
3576	/* first mark the extent as initialized */
3577	ext4_ext_mark_initialized(ex);
3578
3579	/* note: ext4_ext_correct_indexes() isn't needed here because
3580	 * borders are not changed
3581	 */
3582	ext4_ext_try_to_merge(handle, inode, path, ex);
3583
3584	/* Mark modified extent as dirty */
3585	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3586out:
3587	ext4_ext_show_leaf(inode, path);
3588	return err;
3589}
3590
3591static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3592			sector_t block, int count)
3593{
3594	int i;
3595	for (i = 0; i < count; i++)
3596                unmap_underlying_metadata(bdev, block + i);
3597}
3598
3599/*
3600 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3601 */
3602static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3603			      ext4_lblk_t lblk,
3604			      struct ext4_ext_path *path,
3605			      unsigned int len)
3606{
3607	int i, depth;
3608	struct ext4_extent_header *eh;
3609	struct ext4_extent *last_ex;
3610
3611	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3612		return 0;
3613
3614	depth = ext_depth(inode);
3615	eh = path[depth].p_hdr;
3616
3617	/*
3618	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3619	 * do not care for this case anymore. Simply remove the flag
3620	 * if there are no extents.
3621	 */
3622	if (unlikely(!eh->eh_entries))
3623		goto out;
3624	last_ex = EXT_LAST_EXTENT(eh);
3625	/*
3626	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3627	 * last block in the last extent in the file.  We test this by
3628	 * first checking to see if the caller to
3629	 * ext4_ext_get_blocks() was interested in the last block (or
3630	 * a block beyond the last block) in the current extent.  If
3631	 * this turns out to be false, we can bail out from this
3632	 * function immediately.
3633	 */
3634	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3635	    ext4_ext_get_actual_len(last_ex))
3636		return 0;
3637	/*
3638	 * If the caller does appear to be planning to write at or
3639	 * beyond the end of the current extent, we then test to see
3640	 * if the current extent is the last extent in the file, by
3641	 * checking to make sure it was reached via the rightmost node
3642	 * at each level of the tree.
3643	 */
3644	for (i = depth-1; i >= 0; i--)
3645		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3646			return 0;
3647out:
3648	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3649	return ext4_mark_inode_dirty(handle, inode);
3650}
3651
3652/**
3653 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3654 *
3655 * Return 1 if there is a delalloc block in the range, otherwise 0.
3656 */
3657int ext4_find_delalloc_range(struct inode *inode,
3658			     ext4_lblk_t lblk_start,
3659			     ext4_lblk_t lblk_end)
3660{
3661	struct extent_status es;
3662
3663	ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3664	if (es.es_len == 0)
3665		return 0; /* there is no delay extent in this tree */
3666	else if (es.es_lblk <= lblk_start &&
3667		 lblk_start < es.es_lblk + es.es_len)
3668		return 1;
3669	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3670		return 1;
3671	else
3672		return 0;
3673}
3674
3675int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3676{
3677	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3678	ext4_lblk_t lblk_start, lblk_end;
3679	lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3680	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3681
3682	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3683}
3684
3685/**
3686 * Determines how many complete clusters (out of those specified by the 'map')
3687 * are under delalloc and were reserved quota for.
3688 * This function is called when we are writing out the blocks that were
3689 * originally written with their allocation delayed, but then the space was
3690 * allocated using fallocate() before the delayed allocation could be resolved.
3691 * The cases to look for are:
3692 * ('=' indicated delayed allocated blocks
3693 *  '-' indicates non-delayed allocated blocks)
3694 * (a) partial clusters towards beginning and/or end outside of allocated range
3695 *     are not delalloc'ed.
3696 *	Ex:
3697 *	|----c---=|====c====|====c====|===-c----|
3698 *	         |++++++ allocated ++++++|
3699 *	==> 4 complete clusters in above example
3700 *
3701 * (b) partial cluster (outside of allocated range) towards either end is
3702 *     marked for delayed allocation. In this case, we will exclude that
3703 *     cluster.
3704 *	Ex:
3705 *	|----====c========|========c========|
3706 *	     |++++++ allocated ++++++|
3707 *	==> 1 complete clusters in above example
3708 *
3709 *	Ex:
3710 *	|================c================|
3711 *            |++++++ allocated ++++++|
3712 *	==> 0 complete clusters in above example
3713 *
3714 * The ext4_da_update_reserve_space will be called only if we
3715 * determine here that there were some "entire" clusters that span
3716 * this 'allocated' range.
3717 * In the non-bigalloc case, this function will just end up returning num_blks
3718 * without ever calling ext4_find_delalloc_range.
3719 */
3720static unsigned int
3721get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3722			   unsigned int num_blks)
3723{
3724	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3725	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3726	ext4_lblk_t lblk_from, lblk_to, c_offset;
3727	unsigned int allocated_clusters = 0;
3728
3729	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3730	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3731
3732	/* max possible clusters for this allocation */
3733	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3734
3735	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3736
3737	/* Check towards left side */
3738	c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3739	if (c_offset) {
3740		lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3741		lblk_to = lblk_from + c_offset - 1;
3742
3743		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3744			allocated_clusters--;
3745	}
3746
3747	/* Now check towards right. */
3748	c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3749	if (allocated_clusters && c_offset) {
3750		lblk_from = lblk_start + num_blks;
3751		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3752
3753		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3754			allocated_clusters--;
3755	}
3756
3757	return allocated_clusters;
3758}
3759
3760static int
3761ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3762			struct ext4_map_blocks *map,
3763			struct ext4_ext_path *path, int flags,
3764			unsigned int allocated, ext4_fsblk_t newblock)
3765{
3766	int ret = 0;
3767	int err = 0;
3768	ext4_io_end_t *io = ext4_inode_aio(inode);
3769
3770	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3771		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
3772		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3773		  flags, allocated);
3774	ext4_ext_show_leaf(inode, path);
3775
3776	/*
3777	 * When writing into uninitialized space, we should not fail to
3778	 * allocate metadata blocks for the new extent block if needed.
3779	 */
3780	flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
3781
3782	trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3783						    allocated, newblock);
3784
3785	/* get_block() before submit the IO, split the extent */
3786	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3787		ret = ext4_split_unwritten_extents(handle, inode, map,
3788						   path, flags);
3789		if (ret <= 0)
3790			goto out;
3791		/*
3792		 * Flag the inode(non aio case) or end_io struct (aio case)
3793		 * that this IO needs to conversion to written when IO is
3794		 * completed
3795		 */
3796		if (io)
3797			ext4_set_io_unwritten_flag(inode, io);
3798		else
3799			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3800		map->m_flags |= EXT4_MAP_UNWRITTEN;
3801		if (ext4_should_dioread_nolock(inode))
3802			map->m_flags |= EXT4_MAP_UNINIT;
3803		goto out;
3804	}
3805	/* IO end_io complete, convert the filled extent to written */
3806	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3807		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3808							path);
3809		if (ret >= 0) {
3810			ext4_update_inode_fsync_trans(handle, inode, 1);
3811			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3812						 path, map->m_len);
3813		} else
3814			err = ret;
3815		map->m_flags |= EXT4_MAP_MAPPED;
3816		if (allocated > map->m_len)
3817			allocated = map->m_len;
3818		map->m_len = allocated;
3819		goto out2;
3820	}
3821	/* buffered IO case */
3822	/*
3823	 * repeat fallocate creation request
3824	 * we already have an unwritten extent
3825	 */
3826	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
3827		map->m_flags |= EXT4_MAP_UNWRITTEN;
3828		goto map_out;
3829	}
3830
3831	/* buffered READ or buffered write_begin() lookup */
3832	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3833		/*
3834		 * We have blocks reserved already.  We
3835		 * return allocated blocks so that delalloc
3836		 * won't do block reservation for us.  But
3837		 * the buffer head will be unmapped so that
3838		 * a read from the block returns 0s.
3839		 */
3840		map->m_flags |= EXT4_MAP_UNWRITTEN;
3841		goto out1;
3842	}
3843
3844	/* buffered write, writepage time, convert*/
3845	ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags);
3846	if (ret >= 0)
3847		ext4_update_inode_fsync_trans(handle, inode, 1);
3848out:
3849	if (ret <= 0) {
3850		err = ret;
3851		goto out2;
3852	} else
3853		allocated = ret;
3854	map->m_flags |= EXT4_MAP_NEW;
3855	/*
3856	 * if we allocated more blocks than requested
3857	 * we need to make sure we unmap the extra block
3858	 * allocated. The actual needed block will get
3859	 * unmapped later when we find the buffer_head marked
3860	 * new.
3861	 */
3862	if (allocated > map->m_len) {
3863		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3864					newblock + map->m_len,
3865					allocated - map->m_len);
3866		allocated = map->m_len;
3867	}
3868	map->m_len = allocated;
3869
3870	/*
3871	 * If we have done fallocate with the offset that is already
3872	 * delayed allocated, we would have block reservation
3873	 * and quota reservation done in the delayed write path.
3874	 * But fallocate would have already updated quota and block
3875	 * count for this offset. So cancel these reservation
3876	 */
3877	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3878		unsigned int reserved_clusters;
3879		reserved_clusters = get_reserved_cluster_alloc(inode,
3880				map->m_lblk, map->m_len);
3881		if (reserved_clusters)
3882			ext4_da_update_reserve_space(inode,
3883						     reserved_clusters,
3884						     0);
3885	}
3886
3887map_out:
3888	map->m_flags |= EXT4_MAP_MAPPED;
3889	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3890		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3891					 map->m_len);
3892		if (err < 0)
3893			goto out2;
3894	}
3895out1:
3896	if (allocated > map->m_len)
3897		allocated = map->m_len;
3898	ext4_ext_show_leaf(inode, path);
3899	map->m_pblk = newblock;
3900	map->m_len = allocated;
3901out2:
3902	if (path) {
3903		ext4_ext_drop_refs(path);
3904		kfree(path);
3905	}
3906	return err ? err : allocated;
3907}
3908
3909/*
3910 * get_implied_cluster_alloc - check to see if the requested
3911 * allocation (in the map structure) overlaps with a cluster already
3912 * allocated in an extent.
3913 *	@sb	The filesystem superblock structure
3914 *	@map	The requested lblk->pblk mapping
3915 *	@ex	The extent structure which might contain an implied
3916 *			cluster allocation
3917 *
3918 * This function is called by ext4_ext_map_blocks() after we failed to
3919 * find blocks that were already in the inode's extent tree.  Hence,
3920 * we know that the beginning of the requested region cannot overlap
3921 * the extent from the inode's extent tree.  There are three cases we
3922 * want to catch.  The first is this case:
3923 *
3924 *		 |--- cluster # N--|
3925 *    |--- extent ---|	|---- requested region ---|
3926 *			|==========|
3927 *
3928 * The second case that we need to test for is this one:
3929 *
3930 *   |--------- cluster # N ----------------|
3931 *	   |--- requested region --|   |------- extent ----|
3932 *	   |=======================|
3933 *
3934 * The third case is when the requested region lies between two extents
3935 * within the same cluster:
3936 *          |------------- cluster # N-------------|
3937 * |----- ex -----|                  |---- ex_right ----|
3938 *                  |------ requested region ------|
3939 *                  |================|
3940 *
3941 * In each of the above cases, we need to set the map->m_pblk and
3942 * map->m_len so it corresponds to the return the extent labelled as
3943 * "|====|" from cluster #N, since it is already in use for data in
3944 * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
3945 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3946 * as a new "allocated" block region.  Otherwise, we will return 0 and
3947 * ext4_ext_map_blocks() will then allocate one or more new clusters
3948 * by calling ext4_mb_new_blocks().
3949 */
3950static int get_implied_cluster_alloc(struct super_block *sb,
3951				     struct ext4_map_blocks *map,
3952				     struct ext4_extent *ex,
3953				     struct ext4_ext_path *path)
3954{
3955	struct ext4_sb_info *sbi = EXT4_SB(sb);
3956	ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3957	ext4_lblk_t ex_cluster_start, ex_cluster_end;
3958	ext4_lblk_t rr_cluster_start;
3959	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3960	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3961	unsigned short ee_len = ext4_ext_get_actual_len(ex);
3962
3963	/* The extent passed in that we are trying to match */
3964	ex_cluster_start = EXT4_B2C(sbi, ee_block);
3965	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3966
3967	/* The requested region passed into ext4_map_blocks() */
3968	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3969
3970	if ((rr_cluster_start == ex_cluster_end) ||
3971	    (rr_cluster_start == ex_cluster_start)) {
3972		if (rr_cluster_start == ex_cluster_end)
3973			ee_start += ee_len - 1;
3974		map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3975			c_offset;
3976		map->m_len = min(map->m_len,
3977				 (unsigned) sbi->s_cluster_ratio - c_offset);
3978		/*
3979		 * Check for and handle this case:
3980		 *
3981		 *   |--------- cluster # N-------------|
3982		 *		       |------- extent ----|
3983		 *	   |--- requested region ---|
3984		 *	   |===========|
3985		 */
3986
3987		if (map->m_lblk < ee_block)
3988			map->m_len = min(map->m_len, ee_block - map->m_lblk);
3989
3990		/*
3991		 * Check for the case where there is already another allocated
3992		 * block to the right of 'ex' but before the end of the cluster.
3993		 *
3994		 *          |------------- cluster # N-------------|
3995		 * |----- ex -----|                  |---- ex_right ----|
3996		 *                  |------ requested region ------|
3997		 *                  |================|
3998		 */
3999		if (map->m_lblk > ee_block) {
4000			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4001			map->m_len = min(map->m_len, next - map->m_lblk);
4002		}
4003
4004		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4005		return 1;
4006	}
4007
4008	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4009	return 0;
4010}
4011
4012
4013/*
4014 * Block allocation/map/preallocation routine for extents based files
4015 *
4016 *
4017 * Need to be called with
4018 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4019 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4020 *
4021 * return > 0, number of of blocks already mapped/allocated
4022 *          if create == 0 and these are pre-allocated blocks
4023 *          	buffer head is unmapped
4024 *          otherwise blocks are mapped
4025 *
4026 * return = 0, if plain look up failed (blocks have not been allocated)
4027 *          buffer head is unmapped
4028 *
4029 * return < 0, error case.
4030 */
4031int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4032			struct ext4_map_blocks *map, int flags)
4033{
4034	struct ext4_ext_path *path = NULL;
4035	struct ext4_extent newex, *ex, *ex2;
4036	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4037	ext4_fsblk_t newblock = 0;
4038	int free_on_err = 0, err = 0, depth;
4039	unsigned int allocated = 0, offset = 0;
4040	unsigned int allocated_clusters = 0;
4041	struct ext4_allocation_request ar;
4042	ext4_io_end_t *io = ext4_inode_aio(inode);
4043	ext4_lblk_t cluster_offset;
4044	int set_unwritten = 0;
4045
4046	ext_debug("blocks %u/%u requested for inode %lu\n",
4047		  map->m_lblk, map->m_len, inode->i_ino);
4048	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4049
4050	/* find extent for this block */
4051	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
4052	if (IS_ERR(path)) {
4053		err = PTR_ERR(path);
4054		path = NULL;
4055		goto out2;
4056	}
4057
4058	depth = ext_depth(inode);
4059
4060	/*
4061	 * consistent leaf must not be empty;
4062	 * this situation is possible, though, _during_ tree modification;
4063	 * this is why assert can't be put in ext4_ext_find_extent()
4064	 */
4065	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4066		EXT4_ERROR_INODE(inode, "bad extent address "
4067				 "lblock: %lu, depth: %d pblock %lld",
4068				 (unsigned long) map->m_lblk, depth,
4069				 path[depth].p_block);
4070		err = -EIO;
4071		goto out2;
4072	}
4073
4074	ex = path[depth].p_ext;
4075	if (ex) {
4076		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4077		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4078		unsigned short ee_len;
4079
4080		/*
4081		 * Uninitialized extents are treated as holes, except that
4082		 * we split out initialized portions during a write.
4083		 */
4084		ee_len = ext4_ext_get_actual_len(ex);
4085
4086		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4087
4088		/* if found extent covers block, simply return it */
4089		if (in_range(map->m_lblk, ee_block, ee_len)) {
4090			newblock = map->m_lblk - ee_block + ee_start;
4091			/* number of remaining blocks in the extent */
4092			allocated = ee_len - (map->m_lblk - ee_block);
4093			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4094				  ee_block, ee_len, newblock);
4095
4096			if (!ext4_ext_is_uninitialized(ex))
4097				goto out;
4098
4099			allocated = ext4_ext_handle_uninitialized_extents(
4100				handle, inode, map, path, flags,
4101				allocated, newblock);
4102			goto out3;
4103		}
4104	}
4105
4106	if ((sbi->s_cluster_ratio > 1) &&
4107	    ext4_find_delalloc_cluster(inode, map->m_lblk))
4108		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4109
4110	/*
4111	 * requested block isn't allocated yet;
4112	 * we couldn't try to create block if create flag is zero
4113	 */
4114	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4115		/*
4116		 * put just found gap into cache to speed up
4117		 * subsequent requests
4118		 */
4119		if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4120			ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4121		goto out2;
4122	}
4123
4124	/*
4125	 * Okay, we need to do block allocation.
4126	 */
4127	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4128	newex.ee_block = cpu_to_le32(map->m_lblk);
4129	cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4130
4131	/*
4132	 * If we are doing bigalloc, check to see if the extent returned
4133	 * by ext4_ext_find_extent() implies a cluster we can use.
4134	 */
4135	if (cluster_offset && ex &&
4136	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4137		ar.len = allocated = map->m_len;
4138		newblock = map->m_pblk;
4139		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4140		goto got_allocated_blocks;
4141	}
4142
4143	/* find neighbour allocated blocks */
4144	ar.lleft = map->m_lblk;
4145	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4146	if (err)
4147		goto out2;
4148	ar.lright = map->m_lblk;
4149	ex2 = NULL;
4150	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4151	if (err)
4152		goto out2;
4153
4154	/* Check if the extent after searching to the right implies a
4155	 * cluster we can use. */
4156	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4157	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4158		ar.len = allocated = map->m_len;
4159		newblock = map->m_pblk;
4160		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4161		goto got_allocated_blocks;
4162	}
4163
4164	/*
4165	 * See if request is beyond maximum number of blocks we can have in
4166	 * a single extent. For an initialized extent this limit is
4167	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4168	 * EXT_UNINIT_MAX_LEN.
4169	 */
4170	if (map->m_len > EXT_INIT_MAX_LEN &&
4171	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4172		map->m_len = EXT_INIT_MAX_LEN;
4173	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4174		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4175		map->m_len = EXT_UNINIT_MAX_LEN;
4176
4177	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4178	newex.ee_len = cpu_to_le16(map->m_len);
4179	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4180	if (err)
4181		allocated = ext4_ext_get_actual_len(&newex);
4182	else
4183		allocated = map->m_len;
4184
4185	/* allocate new block */
4186	ar.inode = inode;
4187	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4188	ar.logical = map->m_lblk;
4189	/*
4190	 * We calculate the offset from the beginning of the cluster
4191	 * for the logical block number, since when we allocate a
4192	 * physical cluster, the physical block should start at the
4193	 * same offset from the beginning of the cluster.  This is
4194	 * needed so that future calls to get_implied_cluster_alloc()
4195	 * work correctly.
4196	 */
4197	offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4198	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4199	ar.goal -= offset;
4200	ar.logical -= offset;
4201	if (S_ISREG(inode->i_mode))
4202		ar.flags = EXT4_MB_HINT_DATA;
4203	else
4204		/* disable in-core preallocation for non-regular files */
4205		ar.flags = 0;
4206	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4207		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4208	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4209	if (!newblock)
4210		goto out2;
4211	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4212		  ar.goal, newblock, allocated);
4213	free_on_err = 1;
4214	allocated_clusters = ar.len;
4215	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4216	if (ar.len > allocated)
4217		ar.len = allocated;
4218
4219got_allocated_blocks:
4220	/* try to insert new extent into found leaf and return */
4221	ext4_ext_store_pblock(&newex, newblock + offset);
4222	newex.ee_len = cpu_to_le16(ar.len);
4223	/* Mark uninitialized */
4224	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4225		ext4_ext_mark_uninitialized(&newex);
4226		map->m_flags |= EXT4_MAP_UNWRITTEN;
4227		/*
4228		 * io_end structure was created for every IO write to an
4229		 * uninitialized extent. To avoid unnecessary conversion,
4230		 * here we flag the IO that really needs the conversion.
4231		 * For non asycn direct IO case, flag the inode state
4232		 * that we need to perform conversion when IO is done.
4233		 */
4234		if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4235			set_unwritten = 1;
4236		if (ext4_should_dioread_nolock(inode))
4237			map->m_flags |= EXT4_MAP_UNINIT;
4238	}
4239
4240	err = 0;
4241	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4242		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4243					 path, ar.len);
4244	if (!err)
4245		err = ext4_ext_insert_extent(handle, inode, path,
4246					     &newex, flags);
4247
4248	if (!err && set_unwritten) {
4249		if (io)
4250			ext4_set_io_unwritten_flag(inode, io);
4251		else
4252			ext4_set_inode_state(inode,
4253					     EXT4_STATE_DIO_UNWRITTEN);
4254	}
4255
4256	if (err && free_on_err) {
4257		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4258			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4259		/* free data blocks we just allocated */
4260		/* not a good idea to call discard here directly,
4261		 * but otherwise we'd need to call it every free() */
4262		ext4_discard_preallocations(inode);
4263		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4264				 ext4_ext_get_actual_len(&newex), fb_flags);
4265		goto out2;
4266	}
4267
4268	/* previous routine could use block we allocated */
4269	newblock = ext4_ext_pblock(&newex);
4270	allocated = ext4_ext_get_actual_len(&newex);
4271	if (allocated > map->m_len)
4272		allocated = map->m_len;
4273	map->m_flags |= EXT4_MAP_NEW;
4274
4275	/*
4276	 * Update reserved blocks/metadata blocks after successful
4277	 * block allocation which had been deferred till now.
4278	 */
4279	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4280		unsigned int reserved_clusters;
4281		/*
4282		 * Check how many clusters we had reserved this allocated range
4283		 */
4284		reserved_clusters = get_reserved_cluster_alloc(inode,
4285						map->m_lblk, allocated);
4286		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4287			if (reserved_clusters) {
4288				/*
4289				 * We have clusters reserved for this range.
4290				 * But since we are not doing actual allocation
4291				 * and are simply using blocks from previously
4292				 * allocated cluster, we should release the
4293				 * reservation and not claim quota.
4294				 */
4295				ext4_da_update_reserve_space(inode,
4296						reserved_clusters, 0);
4297			}
4298		} else {
4299			BUG_ON(allocated_clusters < reserved_clusters);
4300			if (reserved_clusters < allocated_clusters) {
4301				struct ext4_inode_info *ei = EXT4_I(inode);
4302				int reservation = allocated_clusters -
4303						  reserved_clusters;
4304				/*
4305				 * It seems we claimed few clusters outside of
4306				 * the range of this allocation. We should give
4307				 * it back to the reservation pool. This can
4308				 * happen in the following case:
4309				 *
4310				 * * Suppose s_cluster_ratio is 4 (i.e., each
4311				 *   cluster has 4 blocks. Thus, the clusters
4312				 *   are [0-3],[4-7],[8-11]...
4313				 * * First comes delayed allocation write for
4314				 *   logical blocks 10 & 11. Since there were no
4315				 *   previous delayed allocated blocks in the
4316				 *   range [8-11], we would reserve 1 cluster
4317				 *   for this write.
4318				 * * Next comes write for logical blocks 3 to 8.
4319				 *   In this case, we will reserve 2 clusters
4320				 *   (for [0-3] and [4-7]; and not for [8-11] as
4321				 *   that range has a delayed allocated blocks.
4322				 *   Thus total reserved clusters now becomes 3.
4323				 * * Now, during the delayed allocation writeout
4324				 *   time, we will first write blocks [3-8] and
4325				 *   allocate 3 clusters for writing these
4326				 *   blocks. Also, we would claim all these
4327				 *   three clusters above.
4328				 * * Now when we come here to writeout the
4329				 *   blocks [10-11], we would expect to claim
4330				 *   the reservation of 1 cluster we had made
4331				 *   (and we would claim it since there are no
4332				 *   more delayed allocated blocks in the range
4333				 *   [8-11]. But our reserved cluster count had
4334				 *   already gone to 0.
4335				 *
4336				 *   Thus, at the step 4 above when we determine
4337				 *   that there are still some unwritten delayed
4338				 *   allocated blocks outside of our current
4339				 *   block range, we should increment the
4340				 *   reserved clusters count so that when the
4341				 *   remaining blocks finally gets written, we
4342				 *   could claim them.
4343				 */
4344				dquot_reserve_block(inode,
4345						EXT4_C2B(sbi, reservation));
4346				spin_lock(&ei->i_block_reservation_lock);
4347				ei->i_reserved_data_blocks += reservation;
4348				spin_unlock(&ei->i_block_reservation_lock);
4349			}
4350			/*
4351			 * We will claim quota for all newly allocated blocks.
4352			 * We're updating the reserved space *after* the
4353			 * correction above so we do not accidentally free
4354			 * all the metadata reservation because we might
4355			 * actually need it later on.
4356			 */
4357			ext4_da_update_reserve_space(inode, allocated_clusters,
4358							1);
4359		}
4360	}
4361
4362	/*
4363	 * Cache the extent and update transaction to commit on fdatasync only
4364	 * when it is _not_ an uninitialized extent.
4365	 */
4366	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
4367		ext4_update_inode_fsync_trans(handle, inode, 1);
4368	else
4369		ext4_update_inode_fsync_trans(handle, inode, 0);
4370out:
4371	if (allocated > map->m_len)
4372		allocated = map->m_len;
4373	ext4_ext_show_leaf(inode, path);
4374	map->m_flags |= EXT4_MAP_MAPPED;
4375	map->m_pblk = newblock;
4376	map->m_len = allocated;
4377out2:
4378	if (path) {
4379		ext4_ext_drop_refs(path);
4380		kfree(path);
4381	}
4382
4383out3:
4384	trace_ext4_ext_map_blocks_exit(inode, map, err ? err : allocated);
4385
4386	return err ? err : allocated;
4387}
4388
4389void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4390{
4391	struct super_block *sb = inode->i_sb;
4392	ext4_lblk_t last_block;
4393	int err = 0;
4394
4395	/*
4396	 * TODO: optimization is possible here.
4397	 * Probably we need not scan at all,
4398	 * because page truncation is enough.
4399	 */
4400
4401	/* we have to know where to truncate from in crash case */
4402	EXT4_I(inode)->i_disksize = inode->i_size;
4403	ext4_mark_inode_dirty(handle, inode);
4404
4405	last_block = (inode->i_size + sb->s_blocksize - 1)
4406			>> EXT4_BLOCK_SIZE_BITS(sb);
4407	err = ext4_es_remove_extent(inode, last_block,
4408				    EXT_MAX_BLOCKS - last_block);
4409	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4410}
4411
4412static void ext4_falloc_update_inode(struct inode *inode,
4413				int mode, loff_t new_size, int update_ctime)
4414{
4415	struct timespec now;
4416
4417	if (update_ctime) {
4418		now = current_fs_time(inode->i_sb);
4419		if (!timespec_equal(&inode->i_ctime, &now))
4420			inode->i_ctime = now;
4421	}
4422	/*
4423	 * Update only when preallocation was requested beyond
4424	 * the file size.
4425	 */
4426	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4427		if (new_size > i_size_read(inode))
4428			i_size_write(inode, new_size);
4429		if (new_size > EXT4_I(inode)->i_disksize)
4430			ext4_update_i_disksize(inode, new_size);
4431	} else {
4432		/*
4433		 * Mark that we allocate beyond EOF so the subsequent truncate
4434		 * can proceed even if the new size is the same as i_size.
4435		 */
4436		if (new_size > i_size_read(inode))
4437			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4438	}
4439
4440}
4441
4442/*
4443 * preallocate space for a file. This implements ext4's fallocate file
4444 * operation, which gets called from sys_fallocate system call.
4445 * For block-mapped files, posix_fallocate should fall back to the method
4446 * of writing zeroes to the required new blocks (the same behavior which is
4447 * expected for file systems which do not support fallocate() system call).
4448 */
4449long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4450{
4451	struct inode *inode = file_inode(file);
4452	handle_t *handle;
4453	loff_t new_size;
4454	unsigned int max_blocks;
4455	int ret = 0;
4456	int ret2 = 0;
4457	int retries = 0;
4458	int flags;
4459	struct ext4_map_blocks map;
4460	unsigned int credits, blkbits = inode->i_blkbits;
4461
4462	/* Return error if mode is not supported */
4463	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4464		return -EOPNOTSUPP;
4465
4466	if (mode & FALLOC_FL_PUNCH_HOLE)
4467		return ext4_punch_hole(file, offset, len);
4468
4469	ret = ext4_convert_inline_data(inode);
4470	if (ret)
4471		return ret;
4472
4473	/*
4474	 * currently supporting (pre)allocate mode for extent-based
4475	 * files _only_
4476	 */
4477	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4478		return -EOPNOTSUPP;
4479
4480	trace_ext4_fallocate_enter(inode, offset, len, mode);
4481	map.m_lblk = offset >> blkbits;
4482	/*
4483	 * We can't just convert len to max_blocks because
4484	 * If blocksize = 4096 offset = 3072 and len = 2048
4485	 */
4486	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4487		- map.m_lblk;
4488	/*
4489	 * credits to insert 1 extent into extent tree
4490	 */
4491	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4492	mutex_lock(&inode->i_mutex);
4493	ret = inode_newsize_ok(inode, (len + offset));
4494	if (ret) {
4495		mutex_unlock(&inode->i_mutex);
4496		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4497		return ret;
4498	}
4499	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4500	if (mode & FALLOC_FL_KEEP_SIZE)
4501		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4502	/*
4503	 * Don't normalize the request if it can fit in one extent so
4504	 * that it doesn't get unnecessarily split into multiple
4505	 * extents.
4506	 */
4507	if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4508		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4509
4510retry:
4511	while (ret >= 0 && ret < max_blocks) {
4512		map.m_lblk = map.m_lblk + ret;
4513		map.m_len = max_blocks = max_blocks - ret;
4514		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4515					    credits);
4516		if (IS_ERR(handle)) {
4517			ret = PTR_ERR(handle);
4518			break;
4519		}
4520		ret = ext4_map_blocks(handle, inode, &map, flags);
4521		if (ret <= 0) {
4522#ifdef EXT4FS_DEBUG
4523			ext4_warning(inode->i_sb,
4524				     "inode #%lu: block %u: len %u: "
4525				     "ext4_ext_map_blocks returned %d",
4526				     inode->i_ino, map.m_lblk,
4527				     map.m_len, ret);
4528#endif
4529			ext4_mark_inode_dirty(handle, inode);
4530			ret2 = ext4_journal_stop(handle);
4531			break;
4532		}
4533		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4534						blkbits) >> blkbits))
4535			new_size = offset + len;
4536		else
4537			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4538
4539		ext4_falloc_update_inode(inode, mode, new_size,
4540					 (map.m_flags & EXT4_MAP_NEW));
4541		ext4_mark_inode_dirty(handle, inode);
4542		if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4543			ext4_handle_sync(handle);
4544		ret2 = ext4_journal_stop(handle);
4545		if (ret2)
4546			break;
4547	}
4548	if (ret == -ENOSPC &&
4549			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4550		ret = 0;
4551		goto retry;
4552	}
4553	mutex_unlock(&inode->i_mutex);
4554	trace_ext4_fallocate_exit(inode, offset, max_blocks,
4555				ret > 0 ? ret2 : ret);
4556	return ret > 0 ? ret2 : ret;
4557}
4558
4559/*
4560 * This function convert a range of blocks to written extents
4561 * The caller of this function will pass the start offset and the size.
4562 * all unwritten extents within this range will be converted to
4563 * written extents.
4564 *
4565 * This function is called from the direct IO end io call back
4566 * function, to convert the fallocated extents after IO is completed.
4567 * Returns 0 on success.
4568 */
4569int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4570				    ssize_t len)
4571{
4572	handle_t *handle;
4573	unsigned int max_blocks;
4574	int ret = 0;
4575	int ret2 = 0;
4576	struct ext4_map_blocks map;
4577	unsigned int credits, blkbits = inode->i_blkbits;
4578
4579	map.m_lblk = offset >> blkbits;
4580	/*
4581	 * We can't just convert len to max_blocks because
4582	 * If blocksize = 4096 offset = 3072 and len = 2048
4583	 */
4584	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4585		      map.m_lblk);
4586	/*
4587	 * credits to insert 1 extent into extent tree
4588	 */
4589	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4590	while (ret >= 0 && ret < max_blocks) {
4591		map.m_lblk += ret;
4592		map.m_len = (max_blocks -= ret);
4593		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
4594		if (IS_ERR(handle)) {
4595			ret = PTR_ERR(handle);
4596			break;
4597		}
4598		ret = ext4_map_blocks(handle, inode, &map,
4599				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4600		if (ret <= 0)
4601			ext4_warning(inode->i_sb,
4602				     "inode #%lu: block %u: len %u: "
4603				     "ext4_ext_map_blocks returned %d",
4604				     inode->i_ino, map.m_lblk,
4605				     map.m_len, ret);
4606		ext4_mark_inode_dirty(handle, inode);
4607		ret2 = ext4_journal_stop(handle);
4608		if (ret <= 0 || ret2 )
4609			break;
4610	}
4611	return ret > 0 ? ret2 : ret;
4612}
4613
4614/*
4615 * If newes is not existing extent (newes->ec_pblk equals zero) find
4616 * delayed extent at start of newes and update newes accordingly and
4617 * return start of the next delayed extent.
4618 *
4619 * If newes is existing extent (newes->ec_pblk is not equal zero)
4620 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4621 * extent found. Leave newes unmodified.
4622 */
4623static int ext4_find_delayed_extent(struct inode *inode,
4624				    struct extent_status *newes)
4625{
4626	struct extent_status es;
4627	ext4_lblk_t block, next_del;
4628
4629	if (newes->es_pblk == 0) {
4630		ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
4631				newes->es_lblk + newes->es_len - 1, &es);
4632
4633		/*
4634		 * No extent in extent-tree contains block @newes->es_pblk,
4635		 * then the block may stay in 1)a hole or 2)delayed-extent.
4636		 */
4637		if (es.es_len == 0)
4638			/* A hole found. */
4639			return 0;
4640
4641		if (es.es_lblk > newes->es_lblk) {
4642			/* A hole found. */
4643			newes->es_len = min(es.es_lblk - newes->es_lblk,
4644					    newes->es_len);
4645			return 0;
4646		}
4647
4648		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
4649	}
4650
4651	block = newes->es_lblk + newes->es_len;
4652	ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
4653	if (es.es_len == 0)
4654		next_del = EXT_MAX_BLOCKS;
4655	else
4656		next_del = es.es_lblk;
4657
4658	return next_del;
4659}
4660/* fiemap flags we can handle specified here */
4661#define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4662
4663static int ext4_xattr_fiemap(struct inode *inode,
4664				struct fiemap_extent_info *fieinfo)
4665{
4666	__u64 physical = 0;
4667	__u64 length;
4668	__u32 flags = FIEMAP_EXTENT_LAST;
4669	int blockbits = inode->i_sb->s_blocksize_bits;
4670	int error = 0;
4671
4672	/* in-inode? */
4673	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4674		struct ext4_iloc iloc;
4675		int offset;	/* offset of xattr in inode */
4676
4677		error = ext4_get_inode_loc(inode, &iloc);
4678		if (error)
4679			return error;
4680		physical = (__u64)iloc.bh->b_blocknr << blockbits;
4681		offset = EXT4_GOOD_OLD_INODE_SIZE +
4682				EXT4_I(inode)->i_extra_isize;
4683		physical += offset;
4684		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4685		flags |= FIEMAP_EXTENT_DATA_INLINE;
4686		brelse(iloc.bh);
4687	} else { /* external block */
4688		physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
4689		length = inode->i_sb->s_blocksize;
4690	}
4691
4692	if (physical)
4693		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4694						length, flags);
4695	return (error < 0 ? error : 0);
4696}
4697
4698int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4699		__u64 start, __u64 len)
4700{
4701	ext4_lblk_t start_blk;
4702	int error = 0;
4703
4704	if (ext4_has_inline_data(inode)) {
4705		int has_inline = 1;
4706
4707		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4708
4709		if (has_inline)
4710			return error;
4711	}
4712
4713	/* fallback to generic here if not in extents fmt */
4714	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4715		return generic_block_fiemap(inode, fieinfo, start, len,
4716			ext4_get_block);
4717
4718	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4719		return -EBADR;
4720
4721	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4722		error = ext4_xattr_fiemap(inode, fieinfo);
4723	} else {
4724		ext4_lblk_t len_blks;
4725		__u64 last_blk;
4726
4727		start_blk = start >> inode->i_sb->s_blocksize_bits;
4728		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4729		if (last_blk >= EXT_MAX_BLOCKS)
4730			last_blk = EXT_MAX_BLOCKS-1;
4731		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4732
4733		/*
4734		 * Walk the extent tree gathering extent information
4735		 * and pushing extents back to the user.
4736		 */
4737		error = ext4_fill_fiemap_extents(inode, start_blk,
4738						 len_blks, fieinfo);
4739	}
4740
4741	return error;
4742}
4743