segment.c revision 1042d60f917d78ef1a6eaea297a1020484d4bf74
1/*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 *             http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/bio.h>
14#include <linux/blkdev.h>
15#include <linux/vmalloc.h>
16
17#include "f2fs.h"
18#include "segment.h"
19#include "node.h"
20
21static int need_to_flush(struct f2fs_sb_info *sbi)
22{
23	unsigned int pages_per_sec = (1 << sbi->log_blocks_per_seg) *
24			sbi->segs_per_sec;
25	int node_secs = ((get_pages(sbi, F2FS_DIRTY_NODES) + pages_per_sec - 1)
26		>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
27	int dent_secs = ((get_pages(sbi, F2FS_DIRTY_DENTS) + pages_per_sec - 1)
28		>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
29
30	if (sbi->por_doing)
31		return 0;
32
33	if (free_sections(sbi) <= (node_secs + 2 * dent_secs +
34						reserved_sections(sbi)))
35		return 1;
36	return 0;
37}
38
39/*
40 * This function balances dirty node and dentry pages.
41 * In addition, it controls garbage collection.
42 */
43void f2fs_balance_fs(struct f2fs_sb_info *sbi)
44{
45	struct writeback_control wbc = {
46		.sync_mode = WB_SYNC_ALL,
47		.nr_to_write = LONG_MAX,
48		.for_reclaim = 0,
49	};
50
51	if (sbi->por_doing)
52		return;
53
54	/*
55	 * We should do checkpoint when there are so many dirty node pages
56	 * with enough free segments. After then, we should do GC.
57	 */
58	if (need_to_flush(sbi)) {
59		sync_dirty_dir_inodes(sbi);
60		sync_node_pages(sbi, 0, &wbc);
61	}
62
63	if (has_not_enough_free_secs(sbi)) {
64		mutex_lock(&sbi->gc_mutex);
65		f2fs_gc(sbi, 1);
66	}
67}
68
69static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
70		enum dirty_type dirty_type)
71{
72	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
73
74	/* need not be added */
75	if (IS_CURSEG(sbi, segno))
76		return;
77
78	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
79		dirty_i->nr_dirty[dirty_type]++;
80
81	if (dirty_type == DIRTY) {
82		struct seg_entry *sentry = get_seg_entry(sbi, segno);
83		dirty_type = sentry->type;
84		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
85			dirty_i->nr_dirty[dirty_type]++;
86	}
87}
88
89static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
90		enum dirty_type dirty_type)
91{
92	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
93
94	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
95		dirty_i->nr_dirty[dirty_type]--;
96
97	if (dirty_type == DIRTY) {
98		struct seg_entry *sentry = get_seg_entry(sbi, segno);
99		dirty_type = sentry->type;
100		if (test_and_clear_bit(segno,
101					dirty_i->dirty_segmap[dirty_type]))
102			dirty_i->nr_dirty[dirty_type]--;
103		clear_bit(segno, dirty_i->victim_segmap[FG_GC]);
104		clear_bit(segno, dirty_i->victim_segmap[BG_GC]);
105	}
106}
107
108/*
109 * Should not occur error such as -ENOMEM.
110 * Adding dirty entry into seglist is not critical operation.
111 * If a given segment is one of current working segments, it won't be added.
112 */
113void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
114{
115	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
116	unsigned short valid_blocks;
117
118	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
119		return;
120
121	mutex_lock(&dirty_i->seglist_lock);
122
123	valid_blocks = get_valid_blocks(sbi, segno, 0);
124
125	if (valid_blocks == 0) {
126		__locate_dirty_segment(sbi, segno, PRE);
127		__remove_dirty_segment(sbi, segno, DIRTY);
128	} else if (valid_blocks < sbi->blocks_per_seg) {
129		__locate_dirty_segment(sbi, segno, DIRTY);
130	} else {
131		/* Recovery routine with SSR needs this */
132		__remove_dirty_segment(sbi, segno, DIRTY);
133	}
134
135	mutex_unlock(&dirty_i->seglist_lock);
136	return;
137}
138
139/*
140 * Should call clear_prefree_segments after checkpoint is done.
141 */
142static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
143{
144	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
145	unsigned int segno, offset = 0;
146	unsigned int total_segs = TOTAL_SEGS(sbi);
147
148	mutex_lock(&dirty_i->seglist_lock);
149	while (1) {
150		segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
151				offset);
152		if (segno >= total_segs)
153			break;
154		__set_test_and_free(sbi, segno);
155		offset = segno + 1;
156	}
157	mutex_unlock(&dirty_i->seglist_lock);
158}
159
160void clear_prefree_segments(struct f2fs_sb_info *sbi)
161{
162	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
163	unsigned int segno, offset = 0;
164	unsigned int total_segs = TOTAL_SEGS(sbi);
165
166	mutex_lock(&dirty_i->seglist_lock);
167	while (1) {
168		segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
169				offset);
170		if (segno >= total_segs)
171			break;
172
173		offset = segno + 1;
174		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[PRE]))
175			dirty_i->nr_dirty[PRE]--;
176
177		/* Let's use trim */
178		if (test_opt(sbi, DISCARD))
179			blkdev_issue_discard(sbi->sb->s_bdev,
180					START_BLOCK(sbi, segno) <<
181					sbi->log_sectors_per_block,
182					1 << (sbi->log_sectors_per_block +
183						sbi->log_blocks_per_seg),
184					GFP_NOFS, 0);
185	}
186	mutex_unlock(&dirty_i->seglist_lock);
187}
188
189static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
190{
191	struct sit_info *sit_i = SIT_I(sbi);
192	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
193		sit_i->dirty_sentries++;
194}
195
196static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
197					unsigned int segno, int modified)
198{
199	struct seg_entry *se = get_seg_entry(sbi, segno);
200	se->type = type;
201	if (modified)
202		__mark_sit_entry_dirty(sbi, segno);
203}
204
205static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
206{
207	struct seg_entry *se;
208	unsigned int segno, offset;
209	long int new_vblocks;
210
211	segno = GET_SEGNO(sbi, blkaddr);
212
213	se = get_seg_entry(sbi, segno);
214	new_vblocks = se->valid_blocks + del;
215	offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
216
217	BUG_ON((new_vblocks >> (sizeof(unsigned short) << 3) ||
218				(new_vblocks > sbi->blocks_per_seg)));
219
220	se->valid_blocks = new_vblocks;
221	se->mtime = get_mtime(sbi);
222	SIT_I(sbi)->max_mtime = se->mtime;
223
224	/* Update valid block bitmap */
225	if (del > 0) {
226		if (f2fs_set_bit(offset, se->cur_valid_map))
227			BUG();
228	} else {
229		if (!f2fs_clear_bit(offset, se->cur_valid_map))
230			BUG();
231	}
232	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
233		se->ckpt_valid_blocks += del;
234
235	__mark_sit_entry_dirty(sbi, segno);
236
237	/* update total number of valid blocks to be written in ckpt area */
238	SIT_I(sbi)->written_valid_blocks += del;
239
240	if (sbi->segs_per_sec > 1)
241		get_sec_entry(sbi, segno)->valid_blocks += del;
242}
243
244static void refresh_sit_entry(struct f2fs_sb_info *sbi,
245			block_t old_blkaddr, block_t new_blkaddr)
246{
247	update_sit_entry(sbi, new_blkaddr, 1);
248	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
249		update_sit_entry(sbi, old_blkaddr, -1);
250}
251
252void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
253{
254	unsigned int segno = GET_SEGNO(sbi, addr);
255	struct sit_info *sit_i = SIT_I(sbi);
256
257	BUG_ON(addr == NULL_ADDR);
258	if (addr == NEW_ADDR)
259		return;
260
261	/* add it into sit main buffer */
262	mutex_lock(&sit_i->sentry_lock);
263
264	update_sit_entry(sbi, addr, -1);
265
266	/* add it into dirty seglist */
267	locate_dirty_segment(sbi, segno);
268
269	mutex_unlock(&sit_i->sentry_lock);
270}
271
272/*
273 * This function should be resided under the curseg_mutex lock
274 */
275static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
276		struct f2fs_summary *sum, unsigned short offset)
277{
278	struct curseg_info *curseg = CURSEG_I(sbi, type);
279	void *addr = curseg->sum_blk;
280	addr += offset * sizeof(struct f2fs_summary);
281	memcpy(addr, sum, sizeof(struct f2fs_summary));
282	return;
283}
284
285/*
286 * Calculate the number of current summary pages for writing
287 */
288int npages_for_summary_flush(struct f2fs_sb_info *sbi)
289{
290	int total_size_bytes = 0;
291	int valid_sum_count = 0;
292	int i, sum_space;
293
294	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
295		if (sbi->ckpt->alloc_type[i] == SSR)
296			valid_sum_count += sbi->blocks_per_seg;
297		else
298			valid_sum_count += curseg_blkoff(sbi, i);
299	}
300
301	total_size_bytes = valid_sum_count * (SUMMARY_SIZE + 1)
302			+ sizeof(struct nat_journal) + 2
303			+ sizeof(struct sit_journal) + 2;
304	sum_space = PAGE_CACHE_SIZE - SUM_FOOTER_SIZE;
305	if (total_size_bytes < sum_space)
306		return 1;
307	else if (total_size_bytes < 2 * sum_space)
308		return 2;
309	return 3;
310}
311
312/*
313 * Caller should put this summary page
314 */
315struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
316{
317	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
318}
319
320static void write_sum_page(struct f2fs_sb_info *sbi,
321			struct f2fs_summary_block *sum_blk, block_t blk_addr)
322{
323	struct page *page = grab_meta_page(sbi, blk_addr);
324	void *kaddr = page_address(page);
325	memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
326	set_page_dirty(page);
327	f2fs_put_page(page, 1);
328}
329
330static unsigned int check_prefree_segments(struct f2fs_sb_info *sbi,
331					int ofs_unit, int type)
332{
333	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
334	unsigned long *prefree_segmap = dirty_i->dirty_segmap[PRE];
335	unsigned int segno, next_segno, i;
336	int ofs = 0;
337
338	/*
339	 * If there is not enough reserved sections,
340	 * we should not reuse prefree segments.
341	 */
342	if (has_not_enough_free_secs(sbi))
343		return NULL_SEGNO;
344
345	/*
346	 * NODE page should not reuse prefree segment,
347	 * since those information is used for SPOR.
348	 */
349	if (IS_NODESEG(type))
350		return NULL_SEGNO;
351next:
352	segno = find_next_bit(prefree_segmap, TOTAL_SEGS(sbi), ofs++);
353	ofs = ((segno / ofs_unit) * ofs_unit) + ofs_unit;
354	if (segno < TOTAL_SEGS(sbi)) {
355		/* skip intermediate segments in a section */
356		if (segno % ofs_unit)
357			goto next;
358
359		/* skip if whole section is not prefree */
360		next_segno = find_next_zero_bit(prefree_segmap,
361						TOTAL_SEGS(sbi), segno + 1);
362		if (next_segno - segno < ofs_unit)
363			goto next;
364
365		/* skip if whole section was not free at the last checkpoint */
366		for (i = 0; i < ofs_unit; i++)
367			if (get_seg_entry(sbi, segno)->ckpt_valid_blocks)
368				goto next;
369		return segno;
370	}
371	return NULL_SEGNO;
372}
373
374/*
375 * Find a new segment from the free segments bitmap to right order
376 * This function should be returned with success, otherwise BUG
377 */
378static void get_new_segment(struct f2fs_sb_info *sbi,
379			unsigned int *newseg, bool new_sec, int dir)
380{
381	struct free_segmap_info *free_i = FREE_I(sbi);
382	unsigned int total_secs = sbi->total_sections;
383	unsigned int segno, secno, zoneno;
384	unsigned int total_zones = sbi->total_sections / sbi->secs_per_zone;
385	unsigned int hint = *newseg / sbi->segs_per_sec;
386	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
387	unsigned int left_start = hint;
388	bool init = true;
389	int go_left = 0;
390	int i;
391
392	write_lock(&free_i->segmap_lock);
393
394	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
395		segno = find_next_zero_bit(free_i->free_segmap,
396					TOTAL_SEGS(sbi), *newseg + 1);
397		if (segno < TOTAL_SEGS(sbi))
398			goto got_it;
399	}
400find_other_zone:
401	secno = find_next_zero_bit(free_i->free_secmap, total_secs, hint);
402	if (secno >= total_secs) {
403		if (dir == ALLOC_RIGHT) {
404			secno = find_next_zero_bit(free_i->free_secmap,
405						total_secs, 0);
406			BUG_ON(secno >= total_secs);
407		} else {
408			go_left = 1;
409			left_start = hint - 1;
410		}
411	}
412	if (go_left == 0)
413		goto skip_left;
414
415	while (test_bit(left_start, free_i->free_secmap)) {
416		if (left_start > 0) {
417			left_start--;
418			continue;
419		}
420		left_start = find_next_zero_bit(free_i->free_secmap,
421						total_secs, 0);
422		BUG_ON(left_start >= total_secs);
423		break;
424	}
425	secno = left_start;
426skip_left:
427	hint = secno;
428	segno = secno * sbi->segs_per_sec;
429	zoneno = secno / sbi->secs_per_zone;
430
431	/* give up on finding another zone */
432	if (!init)
433		goto got_it;
434	if (sbi->secs_per_zone == 1)
435		goto got_it;
436	if (zoneno == old_zoneno)
437		goto got_it;
438	if (dir == ALLOC_LEFT) {
439		if (!go_left && zoneno + 1 >= total_zones)
440			goto got_it;
441		if (go_left && zoneno == 0)
442			goto got_it;
443	}
444	for (i = 0; i < NR_CURSEG_TYPE; i++)
445		if (CURSEG_I(sbi, i)->zone == zoneno)
446			break;
447
448	if (i < NR_CURSEG_TYPE) {
449		/* zone is in user, try another */
450		if (go_left)
451			hint = zoneno * sbi->secs_per_zone - 1;
452		else if (zoneno + 1 >= total_zones)
453			hint = 0;
454		else
455			hint = (zoneno + 1) * sbi->secs_per_zone;
456		init = false;
457		goto find_other_zone;
458	}
459got_it:
460	/* set it as dirty segment in free segmap */
461	BUG_ON(test_bit(segno, free_i->free_segmap));
462	__set_inuse(sbi, segno);
463	*newseg = segno;
464	write_unlock(&free_i->segmap_lock);
465}
466
467static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
468{
469	struct curseg_info *curseg = CURSEG_I(sbi, type);
470	struct summary_footer *sum_footer;
471
472	curseg->segno = curseg->next_segno;
473	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
474	curseg->next_blkoff = 0;
475	curseg->next_segno = NULL_SEGNO;
476
477	sum_footer = &(curseg->sum_blk->footer);
478	memset(sum_footer, 0, sizeof(struct summary_footer));
479	if (IS_DATASEG(type))
480		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
481	if (IS_NODESEG(type))
482		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
483	__set_sit_entry_type(sbi, type, curseg->segno, modified);
484}
485
486/*
487 * Allocate a current working segment.
488 * This function always allocates a free segment in LFS manner.
489 */
490static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
491{
492	struct curseg_info *curseg = CURSEG_I(sbi, type);
493	unsigned int segno = curseg->segno;
494	int dir = ALLOC_LEFT;
495
496	write_sum_page(sbi, curseg->sum_blk,
497				GET_SUM_BLOCK(sbi, curseg->segno));
498	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
499		dir = ALLOC_RIGHT;
500
501	if (test_opt(sbi, NOHEAP))
502		dir = ALLOC_RIGHT;
503
504	get_new_segment(sbi, &segno, new_sec, dir);
505	curseg->next_segno = segno;
506	reset_curseg(sbi, type, 1);
507	curseg->alloc_type = LFS;
508}
509
510static void __next_free_blkoff(struct f2fs_sb_info *sbi,
511			struct curseg_info *seg, block_t start)
512{
513	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
514	block_t ofs;
515	for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) {
516		if (!f2fs_test_bit(ofs, se->ckpt_valid_map)
517			&& !f2fs_test_bit(ofs, se->cur_valid_map))
518			break;
519	}
520	seg->next_blkoff = ofs;
521}
522
523/*
524 * If a segment is written by LFS manner, next block offset is just obtained
525 * by increasing the current block offset. However, if a segment is written by
526 * SSR manner, next block offset obtained by calling __next_free_blkoff
527 */
528static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
529				struct curseg_info *seg)
530{
531	if (seg->alloc_type == SSR)
532		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
533	else
534		seg->next_blkoff++;
535}
536
537/*
538 * This function always allocates a used segment (from dirty seglist) by SSR
539 * manner, so it should recover the existing segment information of valid blocks
540 */
541static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
542{
543	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
544	struct curseg_info *curseg = CURSEG_I(sbi, type);
545	unsigned int new_segno = curseg->next_segno;
546	struct f2fs_summary_block *sum_node;
547	struct page *sum_page;
548
549	write_sum_page(sbi, curseg->sum_blk,
550				GET_SUM_BLOCK(sbi, curseg->segno));
551	__set_test_and_inuse(sbi, new_segno);
552
553	mutex_lock(&dirty_i->seglist_lock);
554	__remove_dirty_segment(sbi, new_segno, PRE);
555	__remove_dirty_segment(sbi, new_segno, DIRTY);
556	mutex_unlock(&dirty_i->seglist_lock);
557
558	reset_curseg(sbi, type, 1);
559	curseg->alloc_type = SSR;
560	__next_free_blkoff(sbi, curseg, 0);
561
562	if (reuse) {
563		sum_page = get_sum_page(sbi, new_segno);
564		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
565		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
566		f2fs_put_page(sum_page, 1);
567	}
568}
569
570/*
571 * flush out current segment and replace it with new segment
572 * This function should be returned with success, otherwise BUG
573 */
574static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
575						int type, bool force)
576{
577	struct curseg_info *curseg = CURSEG_I(sbi, type);
578	unsigned int ofs_unit;
579
580	if (force) {
581		new_curseg(sbi, type, true);
582		goto out;
583	}
584
585	ofs_unit = need_SSR(sbi) ? 1 : sbi->segs_per_sec;
586	curseg->next_segno = check_prefree_segments(sbi, ofs_unit, type);
587
588	if (curseg->next_segno != NULL_SEGNO)
589		change_curseg(sbi, type, false);
590	else if (type == CURSEG_WARM_NODE)
591		new_curseg(sbi, type, false);
592	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
593		change_curseg(sbi, type, true);
594	else
595		new_curseg(sbi, type, false);
596out:
597	sbi->segment_count[curseg->alloc_type]++;
598}
599
600void allocate_new_segments(struct f2fs_sb_info *sbi)
601{
602	struct curseg_info *curseg;
603	unsigned int old_curseg;
604	int i;
605
606	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
607		curseg = CURSEG_I(sbi, i);
608		old_curseg = curseg->segno;
609		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
610		locate_dirty_segment(sbi, old_curseg);
611	}
612}
613
614static const struct segment_allocation default_salloc_ops = {
615	.allocate_segment = allocate_segment_by_default,
616};
617
618static void f2fs_end_io_write(struct bio *bio, int err)
619{
620	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
621	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
622	struct bio_private *p = bio->bi_private;
623
624	do {
625		struct page *page = bvec->bv_page;
626
627		if (--bvec >= bio->bi_io_vec)
628			prefetchw(&bvec->bv_page->flags);
629		if (!uptodate) {
630			SetPageError(page);
631			if (page->mapping)
632				set_bit(AS_EIO, &page->mapping->flags);
633			set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
634			set_page_dirty(page);
635		}
636		end_page_writeback(page);
637		dec_page_count(p->sbi, F2FS_WRITEBACK);
638	} while (bvec >= bio->bi_io_vec);
639
640	if (p->is_sync)
641		complete(p->wait);
642	kfree(p);
643	bio_put(bio);
644}
645
646struct bio *f2fs_bio_alloc(struct block_device *bdev, sector_t first_sector,
647					int nr_vecs, gfp_t gfp_flags)
648{
649	struct bio *bio;
650repeat:
651	/* allocate new bio */
652	bio = bio_alloc(gfp_flags, nr_vecs);
653
654	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
655		while (!bio && (nr_vecs /= 2))
656			bio = bio_alloc(gfp_flags, nr_vecs);
657	}
658	if (bio) {
659		bio->bi_bdev = bdev;
660		bio->bi_sector = first_sector;
661retry:
662		bio->bi_private = kmalloc(sizeof(struct bio_private),
663						GFP_NOFS | __GFP_HIGH);
664		if (!bio->bi_private) {
665			cond_resched();
666			goto retry;
667		}
668	}
669	if (bio == NULL) {
670		cond_resched();
671		goto repeat;
672	}
673	return bio;
674}
675
676static void do_submit_bio(struct f2fs_sb_info *sbi,
677				enum page_type type, bool sync)
678{
679	int rw = sync ? WRITE_SYNC : WRITE;
680	enum page_type btype = type > META ? META : type;
681
682	if (type >= META_FLUSH)
683		rw = WRITE_FLUSH_FUA;
684
685	if (sbi->bio[btype]) {
686		struct bio_private *p = sbi->bio[btype]->bi_private;
687		p->sbi = sbi;
688		sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
689		if (type == META_FLUSH) {
690			DECLARE_COMPLETION_ONSTACK(wait);
691			p->is_sync = true;
692			p->wait = &wait;
693			submit_bio(rw, sbi->bio[btype]);
694			wait_for_completion(&wait);
695		} else {
696			p->is_sync = false;
697			submit_bio(rw, sbi->bio[btype]);
698		}
699		sbi->bio[btype] = NULL;
700	}
701}
702
703void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
704{
705	down_write(&sbi->bio_sem);
706	do_submit_bio(sbi, type, sync);
707	up_write(&sbi->bio_sem);
708}
709
710static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
711				block_t blk_addr, enum page_type type)
712{
713	struct block_device *bdev = sbi->sb->s_bdev;
714
715	verify_block_addr(sbi, blk_addr);
716
717	down_write(&sbi->bio_sem);
718
719	inc_page_count(sbi, F2FS_WRITEBACK);
720
721	if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
722		do_submit_bio(sbi, type, false);
723alloc_new:
724	if (sbi->bio[type] == NULL)
725		sbi->bio[type] = f2fs_bio_alloc(bdev,
726				blk_addr << (sbi->log_blocksize - 9),
727				bio_get_nr_vecs(bdev), GFP_NOFS | __GFP_HIGH);
728
729	if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
730							PAGE_CACHE_SIZE) {
731		do_submit_bio(sbi, type, false);
732		goto alloc_new;
733	}
734
735	sbi->last_block_in_bio[type] = blk_addr;
736
737	up_write(&sbi->bio_sem);
738}
739
740static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
741{
742	struct curseg_info *curseg = CURSEG_I(sbi, type);
743	if (curseg->next_blkoff < sbi->blocks_per_seg)
744		return true;
745	return false;
746}
747
748static int __get_segment_type_2(struct page *page, enum page_type p_type)
749{
750	if (p_type == DATA)
751		return CURSEG_HOT_DATA;
752	else
753		return CURSEG_HOT_NODE;
754}
755
756static int __get_segment_type_4(struct page *page, enum page_type p_type)
757{
758	if (p_type == DATA) {
759		struct inode *inode = page->mapping->host;
760
761		if (S_ISDIR(inode->i_mode))
762			return CURSEG_HOT_DATA;
763		else
764			return CURSEG_COLD_DATA;
765	} else {
766		if (IS_DNODE(page) && !is_cold_node(page))
767			return CURSEG_HOT_NODE;
768		else
769			return CURSEG_COLD_NODE;
770	}
771}
772
773static int __get_segment_type_6(struct page *page, enum page_type p_type)
774{
775	if (p_type == DATA) {
776		struct inode *inode = page->mapping->host;
777
778		if (S_ISDIR(inode->i_mode))
779			return CURSEG_HOT_DATA;
780		else if (is_cold_data(page) || is_cold_file(inode))
781			return CURSEG_COLD_DATA;
782		else
783			return CURSEG_WARM_DATA;
784	} else {
785		if (IS_DNODE(page))
786			return is_cold_node(page) ? CURSEG_WARM_NODE :
787						CURSEG_HOT_NODE;
788		else
789			return CURSEG_COLD_NODE;
790	}
791}
792
793static int __get_segment_type(struct page *page, enum page_type p_type)
794{
795	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
796	switch (sbi->active_logs) {
797	case 2:
798		return __get_segment_type_2(page, p_type);
799	case 4:
800		return __get_segment_type_4(page, p_type);
801	case 6:
802		return __get_segment_type_6(page, p_type);
803	default:
804		BUG();
805	}
806}
807
808static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
809			block_t old_blkaddr, block_t *new_blkaddr,
810			struct f2fs_summary *sum, enum page_type p_type)
811{
812	struct sit_info *sit_i = SIT_I(sbi);
813	struct curseg_info *curseg;
814	unsigned int old_cursegno;
815	int type;
816
817	type = __get_segment_type(page, p_type);
818	curseg = CURSEG_I(sbi, type);
819
820	mutex_lock(&curseg->curseg_mutex);
821
822	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
823	old_cursegno = curseg->segno;
824
825	/*
826	 * __add_sum_entry should be resided under the curseg_mutex
827	 * because, this function updates a summary entry in the
828	 * current summary block.
829	 */
830	__add_sum_entry(sbi, type, sum, curseg->next_blkoff);
831
832	mutex_lock(&sit_i->sentry_lock);
833	__refresh_next_blkoff(sbi, curseg);
834	sbi->block_count[curseg->alloc_type]++;
835
836	/*
837	 * SIT information should be updated before segment allocation,
838	 * since SSR needs latest valid block information.
839	 */
840	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
841
842	if (!__has_curseg_space(sbi, type))
843		sit_i->s_ops->allocate_segment(sbi, type, false);
844
845	locate_dirty_segment(sbi, old_cursegno);
846	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
847	mutex_unlock(&sit_i->sentry_lock);
848
849	if (p_type == NODE)
850		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
851
852	/* writeout dirty page into bdev */
853	submit_write_page(sbi, page, *new_blkaddr, p_type);
854
855	mutex_unlock(&curseg->curseg_mutex);
856}
857
858int write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
859			struct writeback_control *wbc)
860{
861	if (wbc->for_reclaim)
862		return AOP_WRITEPAGE_ACTIVATE;
863
864	set_page_writeback(page);
865	submit_write_page(sbi, page, page->index, META);
866	return 0;
867}
868
869void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
870		unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
871{
872	struct f2fs_summary sum;
873	set_summary(&sum, nid, 0, 0);
874	do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
875}
876
877void write_data_page(struct inode *inode, struct page *page,
878		struct dnode_of_data *dn, block_t old_blkaddr,
879		block_t *new_blkaddr)
880{
881	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
882	struct f2fs_summary sum;
883	struct node_info ni;
884
885	BUG_ON(old_blkaddr == NULL_ADDR);
886	get_node_info(sbi, dn->nid, &ni);
887	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
888
889	do_write_page(sbi, page, old_blkaddr,
890			new_blkaddr, &sum, DATA);
891}
892
893void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
894					block_t old_blk_addr)
895{
896	submit_write_page(sbi, page, old_blk_addr, DATA);
897}
898
899void recover_data_page(struct f2fs_sb_info *sbi,
900			struct page *page, struct f2fs_summary *sum,
901			block_t old_blkaddr, block_t new_blkaddr)
902{
903	struct sit_info *sit_i = SIT_I(sbi);
904	struct curseg_info *curseg;
905	unsigned int segno, old_cursegno;
906	struct seg_entry *se;
907	int type;
908
909	segno = GET_SEGNO(sbi, new_blkaddr);
910	se = get_seg_entry(sbi, segno);
911	type = se->type;
912
913	if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
914		if (old_blkaddr == NULL_ADDR)
915			type = CURSEG_COLD_DATA;
916		else
917			type = CURSEG_WARM_DATA;
918	}
919	curseg = CURSEG_I(sbi, type);
920
921	mutex_lock(&curseg->curseg_mutex);
922	mutex_lock(&sit_i->sentry_lock);
923
924	old_cursegno = curseg->segno;
925
926	/* change the current segment */
927	if (segno != curseg->segno) {
928		curseg->next_segno = segno;
929		change_curseg(sbi, type, true);
930	}
931
932	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
933					(sbi->blocks_per_seg - 1);
934	__add_sum_entry(sbi, type, sum, curseg->next_blkoff);
935
936	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
937
938	locate_dirty_segment(sbi, old_cursegno);
939	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
940
941	mutex_unlock(&sit_i->sentry_lock);
942	mutex_unlock(&curseg->curseg_mutex);
943}
944
945void rewrite_node_page(struct f2fs_sb_info *sbi,
946			struct page *page, struct f2fs_summary *sum,
947			block_t old_blkaddr, block_t new_blkaddr)
948{
949	struct sit_info *sit_i = SIT_I(sbi);
950	int type = CURSEG_WARM_NODE;
951	struct curseg_info *curseg;
952	unsigned int segno, old_cursegno;
953	block_t next_blkaddr = next_blkaddr_of_node(page);
954	unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
955
956	curseg = CURSEG_I(sbi, type);
957
958	mutex_lock(&curseg->curseg_mutex);
959	mutex_lock(&sit_i->sentry_lock);
960
961	segno = GET_SEGNO(sbi, new_blkaddr);
962	old_cursegno = curseg->segno;
963
964	/* change the current segment */
965	if (segno != curseg->segno) {
966		curseg->next_segno = segno;
967		change_curseg(sbi, type, true);
968	}
969	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
970					(sbi->blocks_per_seg - 1);
971	__add_sum_entry(sbi, type, sum, curseg->next_blkoff);
972
973	/* change the current log to the next block addr in advance */
974	if (next_segno != segno) {
975		curseg->next_segno = next_segno;
976		change_curseg(sbi, type, true);
977	}
978	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
979					(sbi->blocks_per_seg - 1);
980
981	/* rewrite node page */
982	set_page_writeback(page);
983	submit_write_page(sbi, page, new_blkaddr, NODE);
984	f2fs_submit_bio(sbi, NODE, true);
985	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
986
987	locate_dirty_segment(sbi, old_cursegno);
988	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
989
990	mutex_unlock(&sit_i->sentry_lock);
991	mutex_unlock(&curseg->curseg_mutex);
992}
993
994static int read_compacted_summaries(struct f2fs_sb_info *sbi)
995{
996	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
997	struct curseg_info *seg_i;
998	unsigned char *kaddr;
999	struct page *page;
1000	block_t start;
1001	int i, j, offset;
1002
1003	start = start_sum_block(sbi);
1004
1005	page = get_meta_page(sbi, start++);
1006	kaddr = (unsigned char *)page_address(page);
1007
1008	/* Step 1: restore nat cache */
1009	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1010	memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1011
1012	/* Step 2: restore sit cache */
1013	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1014	memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1015						SUM_JOURNAL_SIZE);
1016	offset = 2 * SUM_JOURNAL_SIZE;
1017
1018	/* Step 3: restore summary entries */
1019	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1020		unsigned short blk_off;
1021		unsigned int segno;
1022
1023		seg_i = CURSEG_I(sbi, i);
1024		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1025		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1026		seg_i->next_segno = segno;
1027		reset_curseg(sbi, i, 0);
1028		seg_i->alloc_type = ckpt->alloc_type[i];
1029		seg_i->next_blkoff = blk_off;
1030
1031		if (seg_i->alloc_type == SSR)
1032			blk_off = sbi->blocks_per_seg;
1033
1034		for (j = 0; j < blk_off; j++) {
1035			struct f2fs_summary *s;
1036			s = (struct f2fs_summary *)(kaddr + offset);
1037			seg_i->sum_blk->entries[j] = *s;
1038			offset += SUMMARY_SIZE;
1039			if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1040						SUM_FOOTER_SIZE)
1041				continue;
1042
1043			f2fs_put_page(page, 1);
1044			page = NULL;
1045
1046			page = get_meta_page(sbi, start++);
1047			kaddr = (unsigned char *)page_address(page);
1048			offset = 0;
1049		}
1050	}
1051	f2fs_put_page(page, 1);
1052	return 0;
1053}
1054
1055static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1056{
1057	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1058	struct f2fs_summary_block *sum;
1059	struct curseg_info *curseg;
1060	struct page *new;
1061	unsigned short blk_off;
1062	unsigned int segno = 0;
1063	block_t blk_addr = 0;
1064
1065	/* get segment number and block addr */
1066	if (IS_DATASEG(type)) {
1067		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1068		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1069							CURSEG_HOT_DATA]);
1070		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1071			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1072		else
1073			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1074	} else {
1075		segno = le32_to_cpu(ckpt->cur_node_segno[type -
1076							CURSEG_HOT_NODE]);
1077		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1078							CURSEG_HOT_NODE]);
1079		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1080			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1081							type - CURSEG_HOT_NODE);
1082		else
1083			blk_addr = GET_SUM_BLOCK(sbi, segno);
1084	}
1085
1086	new = get_meta_page(sbi, blk_addr);
1087	sum = (struct f2fs_summary_block *)page_address(new);
1088
1089	if (IS_NODESEG(type)) {
1090		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1091			struct f2fs_summary *ns = &sum->entries[0];
1092			int i;
1093			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1094				ns->version = 0;
1095				ns->ofs_in_node = 0;
1096			}
1097		} else {
1098			if (restore_node_summary(sbi, segno, sum)) {
1099				f2fs_put_page(new, 1);
1100				return -EINVAL;
1101			}
1102		}
1103	}
1104
1105	/* set uncompleted segment to curseg */
1106	curseg = CURSEG_I(sbi, type);
1107	mutex_lock(&curseg->curseg_mutex);
1108	memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1109	curseg->next_segno = segno;
1110	reset_curseg(sbi, type, 0);
1111	curseg->alloc_type = ckpt->alloc_type[type];
1112	curseg->next_blkoff = blk_off;
1113	mutex_unlock(&curseg->curseg_mutex);
1114	f2fs_put_page(new, 1);
1115	return 0;
1116}
1117
1118static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1119{
1120	int type = CURSEG_HOT_DATA;
1121
1122	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1123		/* restore for compacted data summary */
1124		if (read_compacted_summaries(sbi))
1125			return -EINVAL;
1126		type = CURSEG_HOT_NODE;
1127	}
1128
1129	for (; type <= CURSEG_COLD_NODE; type++)
1130		if (read_normal_summaries(sbi, type))
1131			return -EINVAL;
1132	return 0;
1133}
1134
1135static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1136{
1137	struct page *page;
1138	unsigned char *kaddr;
1139	struct f2fs_summary *summary;
1140	struct curseg_info *seg_i;
1141	int written_size = 0;
1142	int i, j;
1143
1144	page = grab_meta_page(sbi, blkaddr++);
1145	kaddr = (unsigned char *)page_address(page);
1146
1147	/* Step 1: write nat cache */
1148	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1149	memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1150	written_size += SUM_JOURNAL_SIZE;
1151
1152	/* Step 2: write sit cache */
1153	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1154	memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1155						SUM_JOURNAL_SIZE);
1156	written_size += SUM_JOURNAL_SIZE;
1157
1158	set_page_dirty(page);
1159
1160	/* Step 3: write summary entries */
1161	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1162		unsigned short blkoff;
1163		seg_i = CURSEG_I(sbi, i);
1164		if (sbi->ckpt->alloc_type[i] == SSR)
1165			blkoff = sbi->blocks_per_seg;
1166		else
1167			blkoff = curseg_blkoff(sbi, i);
1168
1169		for (j = 0; j < blkoff; j++) {
1170			if (!page) {
1171				page = grab_meta_page(sbi, blkaddr++);
1172				kaddr = (unsigned char *)page_address(page);
1173				written_size = 0;
1174			}
1175			summary = (struct f2fs_summary *)(kaddr + written_size);
1176			*summary = seg_i->sum_blk->entries[j];
1177			written_size += SUMMARY_SIZE;
1178			set_page_dirty(page);
1179
1180			if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1181							SUM_FOOTER_SIZE)
1182				continue;
1183
1184			f2fs_put_page(page, 1);
1185			page = NULL;
1186		}
1187	}
1188	if (page)
1189		f2fs_put_page(page, 1);
1190}
1191
1192static void write_normal_summaries(struct f2fs_sb_info *sbi,
1193					block_t blkaddr, int type)
1194{
1195	int i, end;
1196	if (IS_DATASEG(type))
1197		end = type + NR_CURSEG_DATA_TYPE;
1198	else
1199		end = type + NR_CURSEG_NODE_TYPE;
1200
1201	for (i = type; i < end; i++) {
1202		struct curseg_info *sum = CURSEG_I(sbi, i);
1203		mutex_lock(&sum->curseg_mutex);
1204		write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1205		mutex_unlock(&sum->curseg_mutex);
1206	}
1207}
1208
1209void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1210{
1211	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1212		write_compacted_summaries(sbi, start_blk);
1213	else
1214		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1215}
1216
1217void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1218{
1219	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1220		write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1221	return;
1222}
1223
1224int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1225					unsigned int val, int alloc)
1226{
1227	int i;
1228
1229	if (type == NAT_JOURNAL) {
1230		for (i = 0; i < nats_in_cursum(sum); i++) {
1231			if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1232				return i;
1233		}
1234		if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1235			return update_nats_in_cursum(sum, 1);
1236	} else if (type == SIT_JOURNAL) {
1237		for (i = 0; i < sits_in_cursum(sum); i++)
1238			if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1239				return i;
1240		if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1241			return update_sits_in_cursum(sum, 1);
1242	}
1243	return -1;
1244}
1245
1246static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1247					unsigned int segno)
1248{
1249	struct sit_info *sit_i = SIT_I(sbi);
1250	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1251	block_t blk_addr = sit_i->sit_base_addr + offset;
1252
1253	check_seg_range(sbi, segno);
1254
1255	/* calculate sit block address */
1256	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1257		blk_addr += sit_i->sit_blocks;
1258
1259	return get_meta_page(sbi, blk_addr);
1260}
1261
1262static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1263					unsigned int start)
1264{
1265	struct sit_info *sit_i = SIT_I(sbi);
1266	struct page *src_page, *dst_page;
1267	pgoff_t src_off, dst_off;
1268	void *src_addr, *dst_addr;
1269
1270	src_off = current_sit_addr(sbi, start);
1271	dst_off = next_sit_addr(sbi, src_off);
1272
1273	/* get current sit block page without lock */
1274	src_page = get_meta_page(sbi, src_off);
1275	dst_page = grab_meta_page(sbi, dst_off);
1276	BUG_ON(PageDirty(src_page));
1277
1278	src_addr = page_address(src_page);
1279	dst_addr = page_address(dst_page);
1280	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1281
1282	set_page_dirty(dst_page);
1283	f2fs_put_page(src_page, 1);
1284
1285	set_to_next_sit(sit_i, start);
1286
1287	return dst_page;
1288}
1289
1290static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1291{
1292	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1293	struct f2fs_summary_block *sum = curseg->sum_blk;
1294	int i;
1295
1296	/*
1297	 * If the journal area in the current summary is full of sit entries,
1298	 * all the sit entries will be flushed. Otherwise the sit entries
1299	 * are not able to replace with newly hot sit entries.
1300	 */
1301	if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1302		for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1303			unsigned int segno;
1304			segno = le32_to_cpu(segno_in_journal(sum, i));
1305			__mark_sit_entry_dirty(sbi, segno);
1306		}
1307		update_sits_in_cursum(sum, -sits_in_cursum(sum));
1308		return 1;
1309	}
1310	return 0;
1311}
1312
1313/*
1314 * CP calls this function, which flushes SIT entries including sit_journal,
1315 * and moves prefree segs to free segs.
1316 */
1317void flush_sit_entries(struct f2fs_sb_info *sbi)
1318{
1319	struct sit_info *sit_i = SIT_I(sbi);
1320	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1321	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1322	struct f2fs_summary_block *sum = curseg->sum_blk;
1323	unsigned long nsegs = TOTAL_SEGS(sbi);
1324	struct page *page = NULL;
1325	struct f2fs_sit_block *raw_sit = NULL;
1326	unsigned int start = 0, end = 0;
1327	unsigned int segno = -1;
1328	bool flushed;
1329
1330	mutex_lock(&curseg->curseg_mutex);
1331	mutex_lock(&sit_i->sentry_lock);
1332
1333	/*
1334	 * "flushed" indicates whether sit entries in journal are flushed
1335	 * to the SIT area or not.
1336	 */
1337	flushed = flush_sits_in_journal(sbi);
1338
1339	while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1340		struct seg_entry *se = get_seg_entry(sbi, segno);
1341		int sit_offset, offset;
1342
1343		sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1344
1345		if (flushed)
1346			goto to_sit_page;
1347
1348		offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1349		if (offset >= 0) {
1350			segno_in_journal(sum, offset) = cpu_to_le32(segno);
1351			seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1352			goto flush_done;
1353		}
1354to_sit_page:
1355		if (!page || (start > segno) || (segno > end)) {
1356			if (page) {
1357				f2fs_put_page(page, 1);
1358				page = NULL;
1359			}
1360
1361			start = START_SEGNO(sit_i, segno);
1362			end = start + SIT_ENTRY_PER_BLOCK - 1;
1363
1364			/* read sit block that will be updated */
1365			page = get_next_sit_page(sbi, start);
1366			raw_sit = page_address(page);
1367		}
1368
1369		/* udpate entry in SIT block */
1370		seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1371flush_done:
1372		__clear_bit(segno, bitmap);
1373		sit_i->dirty_sentries--;
1374	}
1375	mutex_unlock(&sit_i->sentry_lock);
1376	mutex_unlock(&curseg->curseg_mutex);
1377
1378	/* writeout last modified SIT block */
1379	f2fs_put_page(page, 1);
1380
1381	set_prefree_as_free_segments(sbi);
1382}
1383
1384static int build_sit_info(struct f2fs_sb_info *sbi)
1385{
1386	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1387	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1388	struct sit_info *sit_i;
1389	unsigned int sit_segs, start;
1390	char *src_bitmap, *dst_bitmap;
1391	unsigned int bitmap_size;
1392
1393	/* allocate memory for SIT information */
1394	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1395	if (!sit_i)
1396		return -ENOMEM;
1397
1398	SM_I(sbi)->sit_info = sit_i;
1399
1400	sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1401	if (!sit_i->sentries)
1402		return -ENOMEM;
1403
1404	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1405	sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1406	if (!sit_i->dirty_sentries_bitmap)
1407		return -ENOMEM;
1408
1409	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1410		sit_i->sentries[start].cur_valid_map
1411			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1412		sit_i->sentries[start].ckpt_valid_map
1413			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1414		if (!sit_i->sentries[start].cur_valid_map
1415				|| !sit_i->sentries[start].ckpt_valid_map)
1416			return -ENOMEM;
1417	}
1418
1419	if (sbi->segs_per_sec > 1) {
1420		sit_i->sec_entries = vzalloc(sbi->total_sections *
1421					sizeof(struct sec_entry));
1422		if (!sit_i->sec_entries)
1423			return -ENOMEM;
1424	}
1425
1426	/* get information related with SIT */
1427	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1428
1429	/* setup SIT bitmap from ckeckpoint pack */
1430	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1431	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1432
1433	dst_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1434	if (!dst_bitmap)
1435		return -ENOMEM;
1436	memcpy(dst_bitmap, src_bitmap, bitmap_size);
1437
1438	/* init SIT information */
1439	sit_i->s_ops = &default_salloc_ops;
1440
1441	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1442	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1443	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1444	sit_i->sit_bitmap = dst_bitmap;
1445	sit_i->bitmap_size = bitmap_size;
1446	sit_i->dirty_sentries = 0;
1447	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1448	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1449	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1450	mutex_init(&sit_i->sentry_lock);
1451	return 0;
1452}
1453
1454static int build_free_segmap(struct f2fs_sb_info *sbi)
1455{
1456	struct f2fs_sm_info *sm_info = SM_I(sbi);
1457	struct free_segmap_info *free_i;
1458	unsigned int bitmap_size, sec_bitmap_size;
1459
1460	/* allocate memory for free segmap information */
1461	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1462	if (!free_i)
1463		return -ENOMEM;
1464
1465	SM_I(sbi)->free_info = free_i;
1466
1467	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1468	free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1469	if (!free_i->free_segmap)
1470		return -ENOMEM;
1471
1472	sec_bitmap_size = f2fs_bitmap_size(sbi->total_sections);
1473	free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1474	if (!free_i->free_secmap)
1475		return -ENOMEM;
1476
1477	/* set all segments as dirty temporarily */
1478	memset(free_i->free_segmap, 0xff, bitmap_size);
1479	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1480
1481	/* init free segmap information */
1482	free_i->start_segno =
1483		(unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1484	free_i->free_segments = 0;
1485	free_i->free_sections = 0;
1486	rwlock_init(&free_i->segmap_lock);
1487	return 0;
1488}
1489
1490static int build_curseg(struct f2fs_sb_info *sbi)
1491{
1492	struct curseg_info *array;
1493	int i;
1494
1495	array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1496	if (!array)
1497		return -ENOMEM;
1498
1499	SM_I(sbi)->curseg_array = array;
1500
1501	for (i = 0; i < NR_CURSEG_TYPE; i++) {
1502		mutex_init(&array[i].curseg_mutex);
1503		array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1504		if (!array[i].sum_blk)
1505			return -ENOMEM;
1506		array[i].segno = NULL_SEGNO;
1507		array[i].next_blkoff = 0;
1508	}
1509	return restore_curseg_summaries(sbi);
1510}
1511
1512static void build_sit_entries(struct f2fs_sb_info *sbi)
1513{
1514	struct sit_info *sit_i = SIT_I(sbi);
1515	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1516	struct f2fs_summary_block *sum = curseg->sum_blk;
1517	unsigned int start;
1518
1519	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1520		struct seg_entry *se = &sit_i->sentries[start];
1521		struct f2fs_sit_block *sit_blk;
1522		struct f2fs_sit_entry sit;
1523		struct page *page;
1524		int i;
1525
1526		mutex_lock(&curseg->curseg_mutex);
1527		for (i = 0; i < sits_in_cursum(sum); i++) {
1528			if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1529				sit = sit_in_journal(sum, i);
1530				mutex_unlock(&curseg->curseg_mutex);
1531				goto got_it;
1532			}
1533		}
1534		mutex_unlock(&curseg->curseg_mutex);
1535		page = get_current_sit_page(sbi, start);
1536		sit_blk = (struct f2fs_sit_block *)page_address(page);
1537		sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1538		f2fs_put_page(page, 1);
1539got_it:
1540		check_block_count(sbi, start, &sit);
1541		seg_info_from_raw_sit(se, &sit);
1542		if (sbi->segs_per_sec > 1) {
1543			struct sec_entry *e = get_sec_entry(sbi, start);
1544			e->valid_blocks += se->valid_blocks;
1545		}
1546	}
1547}
1548
1549static void init_free_segmap(struct f2fs_sb_info *sbi)
1550{
1551	unsigned int start;
1552	int type;
1553
1554	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1555		struct seg_entry *sentry = get_seg_entry(sbi, start);
1556		if (!sentry->valid_blocks)
1557			__set_free(sbi, start);
1558	}
1559
1560	/* set use the current segments */
1561	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1562		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1563		__set_test_and_inuse(sbi, curseg_t->segno);
1564	}
1565}
1566
1567static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1568{
1569	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1570	struct free_segmap_info *free_i = FREE_I(sbi);
1571	unsigned int segno = 0, offset = 0;
1572	unsigned short valid_blocks;
1573
1574	while (segno < TOTAL_SEGS(sbi)) {
1575		/* find dirty segment based on free segmap */
1576		segno = find_next_inuse(free_i, TOTAL_SEGS(sbi), offset);
1577		if (segno >= TOTAL_SEGS(sbi))
1578			break;
1579		offset = segno + 1;
1580		valid_blocks = get_valid_blocks(sbi, segno, 0);
1581		if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1582			continue;
1583		mutex_lock(&dirty_i->seglist_lock);
1584		__locate_dirty_segment(sbi, segno, DIRTY);
1585		mutex_unlock(&dirty_i->seglist_lock);
1586	}
1587}
1588
1589static int init_victim_segmap(struct f2fs_sb_info *sbi)
1590{
1591	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1592	unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1593
1594	dirty_i->victim_segmap[FG_GC] = kzalloc(bitmap_size, GFP_KERNEL);
1595	dirty_i->victim_segmap[BG_GC] = kzalloc(bitmap_size, GFP_KERNEL);
1596	if (!dirty_i->victim_segmap[FG_GC] || !dirty_i->victim_segmap[BG_GC])
1597		return -ENOMEM;
1598	return 0;
1599}
1600
1601static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1602{
1603	struct dirty_seglist_info *dirty_i;
1604	unsigned int bitmap_size, i;
1605
1606	/* allocate memory for dirty segments list information */
1607	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1608	if (!dirty_i)
1609		return -ENOMEM;
1610
1611	SM_I(sbi)->dirty_info = dirty_i;
1612	mutex_init(&dirty_i->seglist_lock);
1613
1614	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1615
1616	for (i = 0; i < NR_DIRTY_TYPE; i++) {
1617		dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1618		dirty_i->nr_dirty[i] = 0;
1619		if (!dirty_i->dirty_segmap[i])
1620			return -ENOMEM;
1621	}
1622
1623	init_dirty_segmap(sbi);
1624	return init_victim_segmap(sbi);
1625}
1626
1627/*
1628 * Update min, max modified time for cost-benefit GC algorithm
1629 */
1630static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1631{
1632	struct sit_info *sit_i = SIT_I(sbi);
1633	unsigned int segno;
1634
1635	mutex_lock(&sit_i->sentry_lock);
1636
1637	sit_i->min_mtime = LLONG_MAX;
1638
1639	for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1640		unsigned int i;
1641		unsigned long long mtime = 0;
1642
1643		for (i = 0; i < sbi->segs_per_sec; i++)
1644			mtime += get_seg_entry(sbi, segno + i)->mtime;
1645
1646		mtime = div_u64(mtime, sbi->segs_per_sec);
1647
1648		if (sit_i->min_mtime > mtime)
1649			sit_i->min_mtime = mtime;
1650	}
1651	sit_i->max_mtime = get_mtime(sbi);
1652	mutex_unlock(&sit_i->sentry_lock);
1653}
1654
1655int build_segment_manager(struct f2fs_sb_info *sbi)
1656{
1657	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1658	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1659	struct f2fs_sm_info *sm_info;
1660	int err;
1661
1662	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1663	if (!sm_info)
1664		return -ENOMEM;
1665
1666	/* init sm info */
1667	sbi->sm_info = sm_info;
1668	INIT_LIST_HEAD(&sm_info->wblist_head);
1669	spin_lock_init(&sm_info->wblist_lock);
1670	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1671	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1672	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1673	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1674	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1675	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1676	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1677
1678	err = build_sit_info(sbi);
1679	if (err)
1680		return err;
1681	err = build_free_segmap(sbi);
1682	if (err)
1683		return err;
1684	err = build_curseg(sbi);
1685	if (err)
1686		return err;
1687
1688	/* reinit free segmap based on SIT */
1689	build_sit_entries(sbi);
1690
1691	init_free_segmap(sbi);
1692	err = build_dirty_segmap(sbi);
1693	if (err)
1694		return err;
1695
1696	init_min_max_mtime(sbi);
1697	return 0;
1698}
1699
1700static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1701		enum dirty_type dirty_type)
1702{
1703	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1704
1705	mutex_lock(&dirty_i->seglist_lock);
1706	kfree(dirty_i->dirty_segmap[dirty_type]);
1707	dirty_i->nr_dirty[dirty_type] = 0;
1708	mutex_unlock(&dirty_i->seglist_lock);
1709}
1710
1711void reset_victim_segmap(struct f2fs_sb_info *sbi)
1712{
1713	unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1714	memset(DIRTY_I(sbi)->victim_segmap[FG_GC], 0, bitmap_size);
1715}
1716
1717static void destroy_victim_segmap(struct f2fs_sb_info *sbi)
1718{
1719	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1720
1721	kfree(dirty_i->victim_segmap[FG_GC]);
1722	kfree(dirty_i->victim_segmap[BG_GC]);
1723}
1724
1725static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1726{
1727	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1728	int i;
1729
1730	if (!dirty_i)
1731		return;
1732
1733	/* discard pre-free/dirty segments list */
1734	for (i = 0; i < NR_DIRTY_TYPE; i++)
1735		discard_dirty_segmap(sbi, i);
1736
1737	destroy_victim_segmap(sbi);
1738	SM_I(sbi)->dirty_info = NULL;
1739	kfree(dirty_i);
1740}
1741
1742static void destroy_curseg(struct f2fs_sb_info *sbi)
1743{
1744	struct curseg_info *array = SM_I(sbi)->curseg_array;
1745	int i;
1746
1747	if (!array)
1748		return;
1749	SM_I(sbi)->curseg_array = NULL;
1750	for (i = 0; i < NR_CURSEG_TYPE; i++)
1751		kfree(array[i].sum_blk);
1752	kfree(array);
1753}
1754
1755static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1756{
1757	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1758	if (!free_i)
1759		return;
1760	SM_I(sbi)->free_info = NULL;
1761	kfree(free_i->free_segmap);
1762	kfree(free_i->free_secmap);
1763	kfree(free_i);
1764}
1765
1766static void destroy_sit_info(struct f2fs_sb_info *sbi)
1767{
1768	struct sit_info *sit_i = SIT_I(sbi);
1769	unsigned int start;
1770
1771	if (!sit_i)
1772		return;
1773
1774	if (sit_i->sentries) {
1775		for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1776			kfree(sit_i->sentries[start].cur_valid_map);
1777			kfree(sit_i->sentries[start].ckpt_valid_map);
1778		}
1779	}
1780	vfree(sit_i->sentries);
1781	vfree(sit_i->sec_entries);
1782	kfree(sit_i->dirty_sentries_bitmap);
1783
1784	SM_I(sbi)->sit_info = NULL;
1785	kfree(sit_i->sit_bitmap);
1786	kfree(sit_i);
1787}
1788
1789void destroy_segment_manager(struct f2fs_sb_info *sbi)
1790{
1791	struct f2fs_sm_info *sm_info = SM_I(sbi);
1792	destroy_dirty_segmap(sbi);
1793	destroy_curseg(sbi);
1794	destroy_free_segmap(sbi);
1795	destroy_sit_info(sbi);
1796	sbi->sm_info = NULL;
1797	kfree(sm_info);
1798}
1799