segment.c revision 187b5b8b3dfcfc73126f2743c89cc47df3bf07be
1/*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 *             http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/bio.h>
14#include <linux/blkdev.h>
15#include <linux/prefetch.h>
16#include <linux/vmalloc.h>
17#include <linux/swap.h>
18
19#include "f2fs.h"
20#include "segment.h"
21#include "node.h"
22#include <trace/events/f2fs.h>
23
24#define __reverse_ffz(x) __reverse_ffs(~(x))
25
26static struct kmem_cache *discard_entry_slab;
27
28/*
29 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
30 * MSB and LSB are reversed in a byte by f2fs_set_bit.
31 */
32static inline unsigned long __reverse_ffs(unsigned long word)
33{
34	int num = 0;
35
36#if BITS_PER_LONG == 64
37	if ((word & 0xffffffff) == 0) {
38		num += 32;
39		word >>= 32;
40	}
41#endif
42	if ((word & 0xffff) == 0) {
43		num += 16;
44		word >>= 16;
45	}
46	if ((word & 0xff) == 0) {
47		num += 8;
48		word >>= 8;
49	}
50	if ((word & 0xf0) == 0)
51		num += 4;
52	else
53		word >>= 4;
54	if ((word & 0xc) == 0)
55		num += 2;
56	else
57		word >>= 2;
58	if ((word & 0x2) == 0)
59		num += 1;
60	return num;
61}
62
63/*
64 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c becasue
65 * f2fs_set_bit makes MSB and LSB reversed in a byte.
66 * Example:
67 *                             LSB <--> MSB
68 *   f2fs_set_bit(0, bitmap) => 0000 0001
69 *   f2fs_set_bit(7, bitmap) => 1000 0000
70 */
71static unsigned long __find_rev_next_bit(const unsigned long *addr,
72			unsigned long size, unsigned long offset)
73{
74	const unsigned long *p = addr + BIT_WORD(offset);
75	unsigned long result = offset & ~(BITS_PER_LONG - 1);
76	unsigned long tmp;
77	unsigned long mask, submask;
78	unsigned long quot, rest;
79
80	if (offset >= size)
81		return size;
82
83	size -= result;
84	offset %= BITS_PER_LONG;
85	if (!offset)
86		goto aligned;
87
88	tmp = *(p++);
89	quot = (offset >> 3) << 3;
90	rest = offset & 0x7;
91	mask = ~0UL << quot;
92	submask = (unsigned char)(0xff << rest) >> rest;
93	submask <<= quot;
94	mask &= submask;
95	tmp &= mask;
96	if (size < BITS_PER_LONG)
97		goto found_first;
98	if (tmp)
99		goto found_middle;
100
101	size -= BITS_PER_LONG;
102	result += BITS_PER_LONG;
103aligned:
104	while (size & ~(BITS_PER_LONG-1)) {
105		tmp = *(p++);
106		if (tmp)
107			goto found_middle;
108		result += BITS_PER_LONG;
109		size -= BITS_PER_LONG;
110	}
111	if (!size)
112		return result;
113	tmp = *p;
114found_first:
115	tmp &= (~0UL >> (BITS_PER_LONG - size));
116	if (tmp == 0UL)		/* Are any bits set? */
117		return result + size;   /* Nope. */
118found_middle:
119	return result + __reverse_ffs(tmp);
120}
121
122static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
123			unsigned long size, unsigned long offset)
124{
125	const unsigned long *p = addr + BIT_WORD(offset);
126	unsigned long result = offset & ~(BITS_PER_LONG - 1);
127	unsigned long tmp;
128	unsigned long mask, submask;
129	unsigned long quot, rest;
130
131	if (offset >= size)
132		return size;
133
134	size -= result;
135	offset %= BITS_PER_LONG;
136	if (!offset)
137		goto aligned;
138
139	tmp = *(p++);
140	quot = (offset >> 3) << 3;
141	rest = offset & 0x7;
142	mask = ~(~0UL << quot);
143	submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
144	submask <<= quot;
145	mask += submask;
146	tmp |= mask;
147	if (size < BITS_PER_LONG)
148		goto found_first;
149	if (~tmp)
150		goto found_middle;
151
152	size -= BITS_PER_LONG;
153	result += BITS_PER_LONG;
154aligned:
155	while (size & ~(BITS_PER_LONG - 1)) {
156		tmp = *(p++);
157		if (~tmp)
158			goto found_middle;
159		result += BITS_PER_LONG;
160		size -= BITS_PER_LONG;
161	}
162	if (!size)
163		return result;
164	tmp = *p;
165
166found_first:
167	tmp |= ~0UL << size;
168	if (tmp == ~0UL)        /* Are any bits zero? */
169		return result + size;   /* Nope. */
170found_middle:
171	return result + __reverse_ffz(tmp);
172}
173
174/*
175 * This function balances dirty node and dentry pages.
176 * In addition, it controls garbage collection.
177 */
178void f2fs_balance_fs(struct f2fs_sb_info *sbi)
179{
180	/*
181	 * We should do GC or end up with checkpoint, if there are so many dirty
182	 * dir/node pages without enough free segments.
183	 */
184	if (has_not_enough_free_secs(sbi, 0)) {
185		mutex_lock(&sbi->gc_mutex);
186		f2fs_gc(sbi);
187	}
188}
189
190void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
191{
192	/* check the # of cached NAT entries and prefree segments */
193	if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
194				excess_prefree_segs(sbi))
195		f2fs_sync_fs(sbi->sb, true);
196}
197
198static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
199		enum dirty_type dirty_type)
200{
201	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
202
203	/* need not be added */
204	if (IS_CURSEG(sbi, segno))
205		return;
206
207	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
208		dirty_i->nr_dirty[dirty_type]++;
209
210	if (dirty_type == DIRTY) {
211		struct seg_entry *sentry = get_seg_entry(sbi, segno);
212		enum dirty_type t = sentry->type;
213
214		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
215			dirty_i->nr_dirty[t]++;
216	}
217}
218
219static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
220		enum dirty_type dirty_type)
221{
222	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
223
224	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
225		dirty_i->nr_dirty[dirty_type]--;
226
227	if (dirty_type == DIRTY) {
228		struct seg_entry *sentry = get_seg_entry(sbi, segno);
229		enum dirty_type t = sentry->type;
230
231		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
232			dirty_i->nr_dirty[t]--;
233
234		if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
235			clear_bit(GET_SECNO(sbi, segno),
236						dirty_i->victim_secmap);
237	}
238}
239
240/*
241 * Should not occur error such as -ENOMEM.
242 * Adding dirty entry into seglist is not critical operation.
243 * If a given segment is one of current working segments, it won't be added.
244 */
245static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
246{
247	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
248	unsigned short valid_blocks;
249
250	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
251		return;
252
253	mutex_lock(&dirty_i->seglist_lock);
254
255	valid_blocks = get_valid_blocks(sbi, segno, 0);
256
257	if (valid_blocks == 0) {
258		__locate_dirty_segment(sbi, segno, PRE);
259		__remove_dirty_segment(sbi, segno, DIRTY);
260	} else if (valid_blocks < sbi->blocks_per_seg) {
261		__locate_dirty_segment(sbi, segno, DIRTY);
262	} else {
263		/* Recovery routine with SSR needs this */
264		__remove_dirty_segment(sbi, segno, DIRTY);
265	}
266
267	mutex_unlock(&dirty_i->seglist_lock);
268}
269
270static void f2fs_issue_discard(struct f2fs_sb_info *sbi,
271				block_t blkstart, block_t blklen)
272{
273	sector_t start = SECTOR_FROM_BLOCK(sbi, blkstart);
274	sector_t len = SECTOR_FROM_BLOCK(sbi, blklen);
275	blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
276	trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
277}
278
279static void add_discard_addrs(struct f2fs_sb_info *sbi,
280			unsigned int segno, struct seg_entry *se)
281{
282	struct list_head *head = &SM_I(sbi)->discard_list;
283	struct discard_entry *new;
284	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
285	int max_blocks = sbi->blocks_per_seg;
286	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
287	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
288	unsigned long dmap[entries];
289	unsigned int start = 0, end = -1;
290	int i;
291
292	if (!test_opt(sbi, DISCARD))
293		return;
294
295	/* zero block will be discarded through the prefree list */
296	if (!se->valid_blocks || se->valid_blocks == max_blocks)
297		return;
298
299	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
300	for (i = 0; i < entries; i++)
301		dmap[i] = (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
302
303	while (SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
304		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
305		if (start >= max_blocks)
306			break;
307
308		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
309
310		new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
311		INIT_LIST_HEAD(&new->list);
312		new->blkaddr = START_BLOCK(sbi, segno) + start;
313		new->len = end - start;
314
315		list_add_tail(&new->list, head);
316		SM_I(sbi)->nr_discards += end - start;
317	}
318}
319
320/*
321 * Should call clear_prefree_segments after checkpoint is done.
322 */
323static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
324{
325	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
326	unsigned int segno = -1;
327	unsigned int total_segs = TOTAL_SEGS(sbi);
328
329	mutex_lock(&dirty_i->seglist_lock);
330	while (1) {
331		segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
332				segno + 1);
333		if (segno >= total_segs)
334			break;
335		__set_test_and_free(sbi, segno);
336	}
337	mutex_unlock(&dirty_i->seglist_lock);
338}
339
340void clear_prefree_segments(struct f2fs_sb_info *sbi)
341{
342	struct list_head *head = &(SM_I(sbi)->discard_list);
343	struct list_head *this, *next;
344	struct discard_entry *entry;
345	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
346	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
347	unsigned int total_segs = TOTAL_SEGS(sbi);
348	unsigned int start = 0, end = -1;
349
350	mutex_lock(&dirty_i->seglist_lock);
351
352	while (1) {
353		int i;
354		start = find_next_bit(prefree_map, total_segs, end + 1);
355		if (start >= total_segs)
356			break;
357		end = find_next_zero_bit(prefree_map, total_segs, start + 1);
358
359		for (i = start; i < end; i++)
360			clear_bit(i, prefree_map);
361
362		dirty_i->nr_dirty[PRE] -= end - start;
363
364		if (!test_opt(sbi, DISCARD))
365			continue;
366
367		f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
368				(end - start) << sbi->log_blocks_per_seg);
369	}
370	mutex_unlock(&dirty_i->seglist_lock);
371
372	/* send small discards */
373	list_for_each_safe(this, next, head) {
374		entry = list_entry(this, struct discard_entry, list);
375		f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
376		list_del(&entry->list);
377		SM_I(sbi)->nr_discards -= entry->len;
378		kmem_cache_free(discard_entry_slab, entry);
379	}
380}
381
382static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
383{
384	struct sit_info *sit_i = SIT_I(sbi);
385	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
386		sit_i->dirty_sentries++;
387}
388
389static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
390					unsigned int segno, int modified)
391{
392	struct seg_entry *se = get_seg_entry(sbi, segno);
393	se->type = type;
394	if (modified)
395		__mark_sit_entry_dirty(sbi, segno);
396}
397
398static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
399{
400	struct seg_entry *se;
401	unsigned int segno, offset;
402	long int new_vblocks;
403
404	segno = GET_SEGNO(sbi, blkaddr);
405
406	se = get_seg_entry(sbi, segno);
407	new_vblocks = se->valid_blocks + del;
408	offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
409
410	f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) ||
411				(new_vblocks > sbi->blocks_per_seg)));
412
413	se->valid_blocks = new_vblocks;
414	se->mtime = get_mtime(sbi);
415	SIT_I(sbi)->max_mtime = se->mtime;
416
417	/* Update valid block bitmap */
418	if (del > 0) {
419		if (f2fs_set_bit(offset, se->cur_valid_map))
420			BUG();
421	} else {
422		if (!f2fs_clear_bit(offset, se->cur_valid_map))
423			BUG();
424	}
425	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
426		se->ckpt_valid_blocks += del;
427
428	__mark_sit_entry_dirty(sbi, segno);
429
430	/* update total number of valid blocks to be written in ckpt area */
431	SIT_I(sbi)->written_valid_blocks += del;
432
433	if (sbi->segs_per_sec > 1)
434		get_sec_entry(sbi, segno)->valid_blocks += del;
435}
436
437static void refresh_sit_entry(struct f2fs_sb_info *sbi,
438			block_t old_blkaddr, block_t new_blkaddr)
439{
440	update_sit_entry(sbi, new_blkaddr, 1);
441	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
442		update_sit_entry(sbi, old_blkaddr, -1);
443}
444
445void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
446{
447	unsigned int segno = GET_SEGNO(sbi, addr);
448	struct sit_info *sit_i = SIT_I(sbi);
449
450	f2fs_bug_on(addr == NULL_ADDR);
451	if (addr == NEW_ADDR)
452		return;
453
454	/* add it into sit main buffer */
455	mutex_lock(&sit_i->sentry_lock);
456
457	update_sit_entry(sbi, addr, -1);
458
459	/* add it into dirty seglist */
460	locate_dirty_segment(sbi, segno);
461
462	mutex_unlock(&sit_i->sentry_lock);
463}
464
465/*
466 * This function should be resided under the curseg_mutex lock
467 */
468static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
469					struct f2fs_summary *sum)
470{
471	struct curseg_info *curseg = CURSEG_I(sbi, type);
472	void *addr = curseg->sum_blk;
473	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
474	memcpy(addr, sum, sizeof(struct f2fs_summary));
475}
476
477/*
478 * Calculate the number of current summary pages for writing
479 */
480int npages_for_summary_flush(struct f2fs_sb_info *sbi)
481{
482	int valid_sum_count = 0;
483	int i, sum_in_page;
484
485	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
486		if (sbi->ckpt->alloc_type[i] == SSR)
487			valid_sum_count += sbi->blocks_per_seg;
488		else
489			valid_sum_count += curseg_blkoff(sbi, i);
490	}
491
492	sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
493			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
494	if (valid_sum_count <= sum_in_page)
495		return 1;
496	else if ((valid_sum_count - sum_in_page) <=
497		(PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
498		return 2;
499	return 3;
500}
501
502/*
503 * Caller should put this summary page
504 */
505struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
506{
507	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
508}
509
510static void write_sum_page(struct f2fs_sb_info *sbi,
511			struct f2fs_summary_block *sum_blk, block_t blk_addr)
512{
513	struct page *page = grab_meta_page(sbi, blk_addr);
514	void *kaddr = page_address(page);
515	memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
516	set_page_dirty(page);
517	f2fs_put_page(page, 1);
518}
519
520static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
521{
522	struct curseg_info *curseg = CURSEG_I(sbi, type);
523	unsigned int segno = curseg->segno + 1;
524	struct free_segmap_info *free_i = FREE_I(sbi);
525
526	if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
527		return !test_bit(segno, free_i->free_segmap);
528	return 0;
529}
530
531/*
532 * Find a new segment from the free segments bitmap to right order
533 * This function should be returned with success, otherwise BUG
534 */
535static void get_new_segment(struct f2fs_sb_info *sbi,
536			unsigned int *newseg, bool new_sec, int dir)
537{
538	struct free_segmap_info *free_i = FREE_I(sbi);
539	unsigned int segno, secno, zoneno;
540	unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
541	unsigned int hint = *newseg / sbi->segs_per_sec;
542	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
543	unsigned int left_start = hint;
544	bool init = true;
545	int go_left = 0;
546	int i;
547
548	write_lock(&free_i->segmap_lock);
549
550	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
551		segno = find_next_zero_bit(free_i->free_segmap,
552					TOTAL_SEGS(sbi), *newseg + 1);
553		if (segno - *newseg < sbi->segs_per_sec -
554					(*newseg % sbi->segs_per_sec))
555			goto got_it;
556	}
557find_other_zone:
558	secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
559	if (secno >= TOTAL_SECS(sbi)) {
560		if (dir == ALLOC_RIGHT) {
561			secno = find_next_zero_bit(free_i->free_secmap,
562							TOTAL_SECS(sbi), 0);
563			f2fs_bug_on(secno >= TOTAL_SECS(sbi));
564		} else {
565			go_left = 1;
566			left_start = hint - 1;
567		}
568	}
569	if (go_left == 0)
570		goto skip_left;
571
572	while (test_bit(left_start, free_i->free_secmap)) {
573		if (left_start > 0) {
574			left_start--;
575			continue;
576		}
577		left_start = find_next_zero_bit(free_i->free_secmap,
578							TOTAL_SECS(sbi), 0);
579		f2fs_bug_on(left_start >= TOTAL_SECS(sbi));
580		break;
581	}
582	secno = left_start;
583skip_left:
584	hint = secno;
585	segno = secno * sbi->segs_per_sec;
586	zoneno = secno / sbi->secs_per_zone;
587
588	/* give up on finding another zone */
589	if (!init)
590		goto got_it;
591	if (sbi->secs_per_zone == 1)
592		goto got_it;
593	if (zoneno == old_zoneno)
594		goto got_it;
595	if (dir == ALLOC_LEFT) {
596		if (!go_left && zoneno + 1 >= total_zones)
597			goto got_it;
598		if (go_left && zoneno == 0)
599			goto got_it;
600	}
601	for (i = 0; i < NR_CURSEG_TYPE; i++)
602		if (CURSEG_I(sbi, i)->zone == zoneno)
603			break;
604
605	if (i < NR_CURSEG_TYPE) {
606		/* zone is in user, try another */
607		if (go_left)
608			hint = zoneno * sbi->secs_per_zone - 1;
609		else if (zoneno + 1 >= total_zones)
610			hint = 0;
611		else
612			hint = (zoneno + 1) * sbi->secs_per_zone;
613		init = false;
614		goto find_other_zone;
615	}
616got_it:
617	/* set it as dirty segment in free segmap */
618	f2fs_bug_on(test_bit(segno, free_i->free_segmap));
619	__set_inuse(sbi, segno);
620	*newseg = segno;
621	write_unlock(&free_i->segmap_lock);
622}
623
624static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
625{
626	struct curseg_info *curseg = CURSEG_I(sbi, type);
627	struct summary_footer *sum_footer;
628
629	curseg->segno = curseg->next_segno;
630	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
631	curseg->next_blkoff = 0;
632	curseg->next_segno = NULL_SEGNO;
633
634	sum_footer = &(curseg->sum_blk->footer);
635	memset(sum_footer, 0, sizeof(struct summary_footer));
636	if (IS_DATASEG(type))
637		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
638	if (IS_NODESEG(type))
639		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
640	__set_sit_entry_type(sbi, type, curseg->segno, modified);
641}
642
643/*
644 * Allocate a current working segment.
645 * This function always allocates a free segment in LFS manner.
646 */
647static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
648{
649	struct curseg_info *curseg = CURSEG_I(sbi, type);
650	unsigned int segno = curseg->segno;
651	int dir = ALLOC_LEFT;
652
653	write_sum_page(sbi, curseg->sum_blk,
654				GET_SUM_BLOCK(sbi, segno));
655	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
656		dir = ALLOC_RIGHT;
657
658	if (test_opt(sbi, NOHEAP))
659		dir = ALLOC_RIGHT;
660
661	get_new_segment(sbi, &segno, new_sec, dir);
662	curseg->next_segno = segno;
663	reset_curseg(sbi, type, 1);
664	curseg->alloc_type = LFS;
665}
666
667static void __next_free_blkoff(struct f2fs_sb_info *sbi,
668			struct curseg_info *seg, block_t start)
669{
670	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
671	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
672	unsigned long target_map[entries];
673	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
674	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
675	int i, pos;
676
677	for (i = 0; i < entries; i++)
678		target_map[i] = ckpt_map[i] | cur_map[i];
679
680	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
681
682	seg->next_blkoff = pos;
683}
684
685/*
686 * If a segment is written by LFS manner, next block offset is just obtained
687 * by increasing the current block offset. However, if a segment is written by
688 * SSR manner, next block offset obtained by calling __next_free_blkoff
689 */
690static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
691				struct curseg_info *seg)
692{
693	if (seg->alloc_type == SSR)
694		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
695	else
696		seg->next_blkoff++;
697}
698
699/*
700 * This function always allocates a used segment (from dirty seglist) by SSR
701 * manner, so it should recover the existing segment information of valid blocks
702 */
703static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
704{
705	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
706	struct curseg_info *curseg = CURSEG_I(sbi, type);
707	unsigned int new_segno = curseg->next_segno;
708	struct f2fs_summary_block *sum_node;
709	struct page *sum_page;
710
711	write_sum_page(sbi, curseg->sum_blk,
712				GET_SUM_BLOCK(sbi, curseg->segno));
713	__set_test_and_inuse(sbi, new_segno);
714
715	mutex_lock(&dirty_i->seglist_lock);
716	__remove_dirty_segment(sbi, new_segno, PRE);
717	__remove_dirty_segment(sbi, new_segno, DIRTY);
718	mutex_unlock(&dirty_i->seglist_lock);
719
720	reset_curseg(sbi, type, 1);
721	curseg->alloc_type = SSR;
722	__next_free_blkoff(sbi, curseg, 0);
723
724	if (reuse) {
725		sum_page = get_sum_page(sbi, new_segno);
726		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
727		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
728		f2fs_put_page(sum_page, 1);
729	}
730}
731
732static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
733{
734	struct curseg_info *curseg = CURSEG_I(sbi, type);
735	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
736
737	if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
738		return v_ops->get_victim(sbi,
739				&(curseg)->next_segno, BG_GC, type, SSR);
740
741	/* For data segments, let's do SSR more intensively */
742	for (; type >= CURSEG_HOT_DATA; type--)
743		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
744						BG_GC, type, SSR))
745			return 1;
746	return 0;
747}
748
749/*
750 * flush out current segment and replace it with new segment
751 * This function should be returned with success, otherwise BUG
752 */
753static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
754						int type, bool force)
755{
756	struct curseg_info *curseg = CURSEG_I(sbi, type);
757
758	if (force)
759		new_curseg(sbi, type, true);
760	else if (type == CURSEG_WARM_NODE)
761		new_curseg(sbi, type, false);
762	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
763		new_curseg(sbi, type, false);
764	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
765		change_curseg(sbi, type, true);
766	else
767		new_curseg(sbi, type, false);
768
769	stat_inc_seg_type(sbi, curseg);
770}
771
772void allocate_new_segments(struct f2fs_sb_info *sbi)
773{
774	struct curseg_info *curseg;
775	unsigned int old_curseg;
776	int i;
777
778	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
779		curseg = CURSEG_I(sbi, i);
780		old_curseg = curseg->segno;
781		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
782		locate_dirty_segment(sbi, old_curseg);
783	}
784}
785
786static const struct segment_allocation default_salloc_ops = {
787	.allocate_segment = allocate_segment_by_default,
788};
789
790static void f2fs_end_io_write(struct bio *bio, int err)
791{
792	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
793	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
794	struct f2fs_sb_info *sbi = F2FS_SB(bvec->bv_page->mapping->host->i_sb);
795
796	do {
797		struct page *page = bvec->bv_page;
798
799		if (--bvec >= bio->bi_io_vec)
800			prefetchw(&bvec->bv_page->flags);
801		if (!uptodate) {
802			SetPageError(page);
803			if (page->mapping)
804				set_bit(AS_EIO, &page->mapping->flags);
805
806			set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
807			sbi->sb->s_flags |= MS_RDONLY;
808		}
809		end_page_writeback(page);
810		dec_page_count(sbi, F2FS_WRITEBACK);
811	} while (bvec >= bio->bi_io_vec);
812
813	if (bio->bi_private)
814		complete(bio->bi_private);
815
816	if (!get_pages(sbi, F2FS_WRITEBACK) &&
817			!list_empty(&sbi->cp_wait.task_list))
818		wake_up(&sbi->cp_wait);
819
820	bio_put(bio);
821}
822
823struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
824{
825	struct bio *bio;
826
827	/* No failure on bio allocation */
828	bio = bio_alloc(GFP_NOIO, npages);
829	bio->bi_bdev = bdev;
830	bio->bi_private = NULL;
831
832	return bio;
833}
834
835static void do_submit_bio(struct f2fs_sb_info *sbi,
836				enum page_type type, bool sync)
837{
838	int rw = sync ? WRITE_SYNC : WRITE;
839	enum page_type btype = PAGE_TYPE_OF_BIO(type);
840	struct f2fs_bio_info *io = &sbi->write_io[btype];
841
842	if (!io->bio)
843		return;
844
845	if (type >= META_FLUSH)
846		rw = WRITE_FLUSH_FUA;
847
848	if (btype == META)
849		rw |= REQ_META;
850
851	trace_f2fs_submit_write_bio(sbi->sb, rw, btype, io->bio);
852
853	/*
854	 * META_FLUSH is only from the checkpoint procedure, and we should wait
855	 * this metadata bio for FS consistency.
856	 */
857	if (type == META_FLUSH) {
858		DECLARE_COMPLETION_ONSTACK(wait);
859		io->bio->bi_private = &wait;
860		submit_bio(rw, io->bio);
861		wait_for_completion(&wait);
862	} else {
863		submit_bio(rw, io->bio);
864	}
865	io->bio = NULL;
866}
867
868void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
869{
870	struct f2fs_bio_info *io = &sbi->write_io[PAGE_TYPE_OF_BIO(type)];
871
872	if (!io->bio)
873		return;
874
875	mutex_lock(&io->io_mutex);
876	do_submit_bio(sbi, type, sync);
877	mutex_unlock(&io->io_mutex);
878}
879
880static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
881				block_t blk_addr, enum page_type type)
882{
883	struct block_device *bdev = sbi->sb->s_bdev;
884	struct f2fs_bio_info *io = &sbi->write_io[type];
885	int bio_blocks;
886
887	verify_block_addr(sbi, blk_addr);
888
889	mutex_lock(&io->io_mutex);
890
891	inc_page_count(sbi, F2FS_WRITEBACK);
892
893	if (io->bio && io->last_block_in_bio != blk_addr - 1)
894		do_submit_bio(sbi, type, false);
895alloc_new:
896	if (io->bio == NULL) {
897		bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
898		io->bio = f2fs_bio_alloc(bdev, bio_blocks);
899		io->bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
900		io->bio->bi_end_io = f2fs_end_io_write;
901		/*
902		 * The end_io will be assigned at the sumbission phase.
903		 * Until then, let bio_add_page() merge consecutive IOs as much
904		 * as possible.
905		 */
906	}
907
908	if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
909							PAGE_CACHE_SIZE) {
910		do_submit_bio(sbi, type, false);
911		goto alloc_new;
912	}
913
914	io->last_block_in_bio = blk_addr;
915
916	mutex_unlock(&io->io_mutex);
917	trace_f2fs_submit_write_page(page, WRITE, type, blk_addr);
918}
919
920void f2fs_wait_on_page_writeback(struct page *page,
921				enum page_type type, bool sync)
922{
923	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
924	if (PageWriteback(page)) {
925		f2fs_submit_bio(sbi, type, sync);
926		wait_on_page_writeback(page);
927	}
928}
929
930static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
931{
932	struct curseg_info *curseg = CURSEG_I(sbi, type);
933	if (curseg->next_blkoff < sbi->blocks_per_seg)
934		return true;
935	return false;
936}
937
938static int __get_segment_type_2(struct page *page, enum page_type p_type)
939{
940	if (p_type == DATA)
941		return CURSEG_HOT_DATA;
942	else
943		return CURSEG_HOT_NODE;
944}
945
946static int __get_segment_type_4(struct page *page, enum page_type p_type)
947{
948	if (p_type == DATA) {
949		struct inode *inode = page->mapping->host;
950
951		if (S_ISDIR(inode->i_mode))
952			return CURSEG_HOT_DATA;
953		else
954			return CURSEG_COLD_DATA;
955	} else {
956		if (IS_DNODE(page) && !is_cold_node(page))
957			return CURSEG_HOT_NODE;
958		else
959			return CURSEG_COLD_NODE;
960	}
961}
962
963static int __get_segment_type_6(struct page *page, enum page_type p_type)
964{
965	if (p_type == DATA) {
966		struct inode *inode = page->mapping->host;
967
968		if (S_ISDIR(inode->i_mode))
969			return CURSEG_HOT_DATA;
970		else if (is_cold_data(page) || file_is_cold(inode))
971			return CURSEG_COLD_DATA;
972		else
973			return CURSEG_WARM_DATA;
974	} else {
975		if (IS_DNODE(page))
976			return is_cold_node(page) ? CURSEG_WARM_NODE :
977						CURSEG_HOT_NODE;
978		else
979			return CURSEG_COLD_NODE;
980	}
981}
982
983static int __get_segment_type(struct page *page, enum page_type p_type)
984{
985	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
986	switch (sbi->active_logs) {
987	case 2:
988		return __get_segment_type_2(page, p_type);
989	case 4:
990		return __get_segment_type_4(page, p_type);
991	}
992	/* NR_CURSEG_TYPE(6) logs by default */
993	f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE);
994	return __get_segment_type_6(page, p_type);
995}
996
997static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
998			block_t old_blkaddr, block_t *new_blkaddr,
999			struct f2fs_summary *sum, enum page_type p_type)
1000{
1001	struct sit_info *sit_i = SIT_I(sbi);
1002	struct curseg_info *curseg;
1003	unsigned int old_cursegno;
1004	int type;
1005
1006	type = __get_segment_type(page, p_type);
1007	curseg = CURSEG_I(sbi, type);
1008
1009	mutex_lock(&curseg->curseg_mutex);
1010
1011	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1012	old_cursegno = curseg->segno;
1013
1014	/*
1015	 * __add_sum_entry should be resided under the curseg_mutex
1016	 * because, this function updates a summary entry in the
1017	 * current summary block.
1018	 */
1019	__add_sum_entry(sbi, type, sum);
1020
1021	mutex_lock(&sit_i->sentry_lock);
1022	__refresh_next_blkoff(sbi, curseg);
1023
1024	stat_inc_block_count(sbi, curseg);
1025
1026	/*
1027	 * SIT information should be updated before segment allocation,
1028	 * since SSR needs latest valid block information.
1029	 */
1030	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1031
1032	if (!__has_curseg_space(sbi, type))
1033		sit_i->s_ops->allocate_segment(sbi, type, false);
1034
1035	locate_dirty_segment(sbi, old_cursegno);
1036	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1037	mutex_unlock(&sit_i->sentry_lock);
1038
1039	if (p_type == NODE)
1040		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1041
1042	/* writeout dirty page into bdev */
1043	submit_write_page(sbi, page, *new_blkaddr, p_type);
1044
1045	mutex_unlock(&curseg->curseg_mutex);
1046}
1047
1048void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1049{
1050	set_page_writeback(page);
1051	submit_write_page(sbi, page, page->index, META);
1052}
1053
1054void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
1055		unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
1056{
1057	struct f2fs_summary sum;
1058	set_summary(&sum, nid, 0, 0);
1059	do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
1060}
1061
1062void write_data_page(struct inode *inode, struct page *page,
1063		struct dnode_of_data *dn, block_t old_blkaddr,
1064		block_t *new_blkaddr)
1065{
1066	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1067	struct f2fs_summary sum;
1068	struct node_info ni;
1069
1070	f2fs_bug_on(old_blkaddr == NULL_ADDR);
1071	get_node_info(sbi, dn->nid, &ni);
1072	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1073
1074	do_write_page(sbi, page, old_blkaddr,
1075			new_blkaddr, &sum, DATA);
1076}
1077
1078void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
1079					block_t old_blk_addr)
1080{
1081	submit_write_page(sbi, page, old_blk_addr, DATA);
1082}
1083
1084void recover_data_page(struct f2fs_sb_info *sbi,
1085			struct page *page, struct f2fs_summary *sum,
1086			block_t old_blkaddr, block_t new_blkaddr)
1087{
1088	struct sit_info *sit_i = SIT_I(sbi);
1089	struct curseg_info *curseg;
1090	unsigned int segno, old_cursegno;
1091	struct seg_entry *se;
1092	int type;
1093
1094	segno = GET_SEGNO(sbi, new_blkaddr);
1095	se = get_seg_entry(sbi, segno);
1096	type = se->type;
1097
1098	if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1099		if (old_blkaddr == NULL_ADDR)
1100			type = CURSEG_COLD_DATA;
1101		else
1102			type = CURSEG_WARM_DATA;
1103	}
1104	curseg = CURSEG_I(sbi, type);
1105
1106	mutex_lock(&curseg->curseg_mutex);
1107	mutex_lock(&sit_i->sentry_lock);
1108
1109	old_cursegno = curseg->segno;
1110
1111	/* change the current segment */
1112	if (segno != curseg->segno) {
1113		curseg->next_segno = segno;
1114		change_curseg(sbi, type, true);
1115	}
1116
1117	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
1118					(sbi->blocks_per_seg - 1);
1119	__add_sum_entry(sbi, type, sum);
1120
1121	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1122
1123	locate_dirty_segment(sbi, old_cursegno);
1124	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1125
1126	mutex_unlock(&sit_i->sentry_lock);
1127	mutex_unlock(&curseg->curseg_mutex);
1128}
1129
1130void rewrite_node_page(struct f2fs_sb_info *sbi,
1131			struct page *page, struct f2fs_summary *sum,
1132			block_t old_blkaddr, block_t new_blkaddr)
1133{
1134	struct sit_info *sit_i = SIT_I(sbi);
1135	int type = CURSEG_WARM_NODE;
1136	struct curseg_info *curseg;
1137	unsigned int segno, old_cursegno;
1138	block_t next_blkaddr = next_blkaddr_of_node(page);
1139	unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
1140
1141	curseg = CURSEG_I(sbi, type);
1142
1143	mutex_lock(&curseg->curseg_mutex);
1144	mutex_lock(&sit_i->sentry_lock);
1145
1146	segno = GET_SEGNO(sbi, new_blkaddr);
1147	old_cursegno = curseg->segno;
1148
1149	/* change the current segment */
1150	if (segno != curseg->segno) {
1151		curseg->next_segno = segno;
1152		change_curseg(sbi, type, true);
1153	}
1154	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
1155					(sbi->blocks_per_seg - 1);
1156	__add_sum_entry(sbi, type, sum);
1157
1158	/* change the current log to the next block addr in advance */
1159	if (next_segno != segno) {
1160		curseg->next_segno = next_segno;
1161		change_curseg(sbi, type, true);
1162	}
1163	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
1164					(sbi->blocks_per_seg - 1);
1165
1166	/* rewrite node page */
1167	set_page_writeback(page);
1168	submit_write_page(sbi, page, new_blkaddr, NODE);
1169	f2fs_submit_bio(sbi, NODE, true);
1170	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1171
1172	locate_dirty_segment(sbi, old_cursegno);
1173	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1174
1175	mutex_unlock(&sit_i->sentry_lock);
1176	mutex_unlock(&curseg->curseg_mutex);
1177}
1178
1179static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1180{
1181	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1182	struct curseg_info *seg_i;
1183	unsigned char *kaddr;
1184	struct page *page;
1185	block_t start;
1186	int i, j, offset;
1187
1188	start = start_sum_block(sbi);
1189
1190	page = get_meta_page(sbi, start++);
1191	kaddr = (unsigned char *)page_address(page);
1192
1193	/* Step 1: restore nat cache */
1194	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1195	memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1196
1197	/* Step 2: restore sit cache */
1198	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1199	memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1200						SUM_JOURNAL_SIZE);
1201	offset = 2 * SUM_JOURNAL_SIZE;
1202
1203	/* Step 3: restore summary entries */
1204	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1205		unsigned short blk_off;
1206		unsigned int segno;
1207
1208		seg_i = CURSEG_I(sbi, i);
1209		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1210		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1211		seg_i->next_segno = segno;
1212		reset_curseg(sbi, i, 0);
1213		seg_i->alloc_type = ckpt->alloc_type[i];
1214		seg_i->next_blkoff = blk_off;
1215
1216		if (seg_i->alloc_type == SSR)
1217			blk_off = sbi->blocks_per_seg;
1218
1219		for (j = 0; j < blk_off; j++) {
1220			struct f2fs_summary *s;
1221			s = (struct f2fs_summary *)(kaddr + offset);
1222			seg_i->sum_blk->entries[j] = *s;
1223			offset += SUMMARY_SIZE;
1224			if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1225						SUM_FOOTER_SIZE)
1226				continue;
1227
1228			f2fs_put_page(page, 1);
1229			page = NULL;
1230
1231			page = get_meta_page(sbi, start++);
1232			kaddr = (unsigned char *)page_address(page);
1233			offset = 0;
1234		}
1235	}
1236	f2fs_put_page(page, 1);
1237	return 0;
1238}
1239
1240static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1241{
1242	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1243	struct f2fs_summary_block *sum;
1244	struct curseg_info *curseg;
1245	struct page *new;
1246	unsigned short blk_off;
1247	unsigned int segno = 0;
1248	block_t blk_addr = 0;
1249
1250	/* get segment number and block addr */
1251	if (IS_DATASEG(type)) {
1252		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1253		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1254							CURSEG_HOT_DATA]);
1255		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1256			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1257		else
1258			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1259	} else {
1260		segno = le32_to_cpu(ckpt->cur_node_segno[type -
1261							CURSEG_HOT_NODE]);
1262		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1263							CURSEG_HOT_NODE]);
1264		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1265			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1266							type - CURSEG_HOT_NODE);
1267		else
1268			blk_addr = GET_SUM_BLOCK(sbi, segno);
1269	}
1270
1271	new = get_meta_page(sbi, blk_addr);
1272	sum = (struct f2fs_summary_block *)page_address(new);
1273
1274	if (IS_NODESEG(type)) {
1275		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1276			struct f2fs_summary *ns = &sum->entries[0];
1277			int i;
1278			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1279				ns->version = 0;
1280				ns->ofs_in_node = 0;
1281			}
1282		} else {
1283			if (restore_node_summary(sbi, segno, sum)) {
1284				f2fs_put_page(new, 1);
1285				return -EINVAL;
1286			}
1287		}
1288	}
1289
1290	/* set uncompleted segment to curseg */
1291	curseg = CURSEG_I(sbi, type);
1292	mutex_lock(&curseg->curseg_mutex);
1293	memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1294	curseg->next_segno = segno;
1295	reset_curseg(sbi, type, 0);
1296	curseg->alloc_type = ckpt->alloc_type[type];
1297	curseg->next_blkoff = blk_off;
1298	mutex_unlock(&curseg->curseg_mutex);
1299	f2fs_put_page(new, 1);
1300	return 0;
1301}
1302
1303static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1304{
1305	int type = CURSEG_HOT_DATA;
1306
1307	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1308		/* restore for compacted data summary */
1309		if (read_compacted_summaries(sbi))
1310			return -EINVAL;
1311		type = CURSEG_HOT_NODE;
1312	}
1313
1314	for (; type <= CURSEG_COLD_NODE; type++)
1315		if (read_normal_summaries(sbi, type))
1316			return -EINVAL;
1317	return 0;
1318}
1319
1320static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1321{
1322	struct page *page;
1323	unsigned char *kaddr;
1324	struct f2fs_summary *summary;
1325	struct curseg_info *seg_i;
1326	int written_size = 0;
1327	int i, j;
1328
1329	page = grab_meta_page(sbi, blkaddr++);
1330	kaddr = (unsigned char *)page_address(page);
1331
1332	/* Step 1: write nat cache */
1333	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1334	memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1335	written_size += SUM_JOURNAL_SIZE;
1336
1337	/* Step 2: write sit cache */
1338	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1339	memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1340						SUM_JOURNAL_SIZE);
1341	written_size += SUM_JOURNAL_SIZE;
1342
1343	/* Step 3: write summary entries */
1344	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1345		unsigned short blkoff;
1346		seg_i = CURSEG_I(sbi, i);
1347		if (sbi->ckpt->alloc_type[i] == SSR)
1348			blkoff = sbi->blocks_per_seg;
1349		else
1350			blkoff = curseg_blkoff(sbi, i);
1351
1352		for (j = 0; j < blkoff; j++) {
1353			if (!page) {
1354				page = grab_meta_page(sbi, blkaddr++);
1355				kaddr = (unsigned char *)page_address(page);
1356				written_size = 0;
1357			}
1358			summary = (struct f2fs_summary *)(kaddr + written_size);
1359			*summary = seg_i->sum_blk->entries[j];
1360			written_size += SUMMARY_SIZE;
1361
1362			if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1363							SUM_FOOTER_SIZE)
1364				continue;
1365
1366			set_page_dirty(page);
1367			f2fs_put_page(page, 1);
1368			page = NULL;
1369		}
1370	}
1371	if (page) {
1372		set_page_dirty(page);
1373		f2fs_put_page(page, 1);
1374	}
1375}
1376
1377static void write_normal_summaries(struct f2fs_sb_info *sbi,
1378					block_t blkaddr, int type)
1379{
1380	int i, end;
1381	if (IS_DATASEG(type))
1382		end = type + NR_CURSEG_DATA_TYPE;
1383	else
1384		end = type + NR_CURSEG_NODE_TYPE;
1385
1386	for (i = type; i < end; i++) {
1387		struct curseg_info *sum = CURSEG_I(sbi, i);
1388		mutex_lock(&sum->curseg_mutex);
1389		write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1390		mutex_unlock(&sum->curseg_mutex);
1391	}
1392}
1393
1394void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1395{
1396	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1397		write_compacted_summaries(sbi, start_blk);
1398	else
1399		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1400}
1401
1402void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1403{
1404	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1405		write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1406}
1407
1408int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1409					unsigned int val, int alloc)
1410{
1411	int i;
1412
1413	if (type == NAT_JOURNAL) {
1414		for (i = 0; i < nats_in_cursum(sum); i++) {
1415			if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1416				return i;
1417		}
1418		if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1419			return update_nats_in_cursum(sum, 1);
1420	} else if (type == SIT_JOURNAL) {
1421		for (i = 0; i < sits_in_cursum(sum); i++)
1422			if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1423				return i;
1424		if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1425			return update_sits_in_cursum(sum, 1);
1426	}
1427	return -1;
1428}
1429
1430static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1431					unsigned int segno)
1432{
1433	struct sit_info *sit_i = SIT_I(sbi);
1434	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1435	block_t blk_addr = sit_i->sit_base_addr + offset;
1436
1437	check_seg_range(sbi, segno);
1438
1439	/* calculate sit block address */
1440	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1441		blk_addr += sit_i->sit_blocks;
1442
1443	return get_meta_page(sbi, blk_addr);
1444}
1445
1446static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1447					unsigned int start)
1448{
1449	struct sit_info *sit_i = SIT_I(sbi);
1450	struct page *src_page, *dst_page;
1451	pgoff_t src_off, dst_off;
1452	void *src_addr, *dst_addr;
1453
1454	src_off = current_sit_addr(sbi, start);
1455	dst_off = next_sit_addr(sbi, src_off);
1456
1457	/* get current sit block page without lock */
1458	src_page = get_meta_page(sbi, src_off);
1459	dst_page = grab_meta_page(sbi, dst_off);
1460	f2fs_bug_on(PageDirty(src_page));
1461
1462	src_addr = page_address(src_page);
1463	dst_addr = page_address(dst_page);
1464	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1465
1466	set_page_dirty(dst_page);
1467	f2fs_put_page(src_page, 1);
1468
1469	set_to_next_sit(sit_i, start);
1470
1471	return dst_page;
1472}
1473
1474static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1475{
1476	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1477	struct f2fs_summary_block *sum = curseg->sum_blk;
1478	int i;
1479
1480	/*
1481	 * If the journal area in the current summary is full of sit entries,
1482	 * all the sit entries will be flushed. Otherwise the sit entries
1483	 * are not able to replace with newly hot sit entries.
1484	 */
1485	if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1486		for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1487			unsigned int segno;
1488			segno = le32_to_cpu(segno_in_journal(sum, i));
1489			__mark_sit_entry_dirty(sbi, segno);
1490		}
1491		update_sits_in_cursum(sum, -sits_in_cursum(sum));
1492		return true;
1493	}
1494	return false;
1495}
1496
1497/*
1498 * CP calls this function, which flushes SIT entries including sit_journal,
1499 * and moves prefree segs to free segs.
1500 */
1501void flush_sit_entries(struct f2fs_sb_info *sbi)
1502{
1503	struct sit_info *sit_i = SIT_I(sbi);
1504	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1505	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1506	struct f2fs_summary_block *sum = curseg->sum_blk;
1507	unsigned long nsegs = TOTAL_SEGS(sbi);
1508	struct page *page = NULL;
1509	struct f2fs_sit_block *raw_sit = NULL;
1510	unsigned int start = 0, end = 0;
1511	unsigned int segno = -1;
1512	bool flushed;
1513
1514	mutex_lock(&curseg->curseg_mutex);
1515	mutex_lock(&sit_i->sentry_lock);
1516
1517	/*
1518	 * "flushed" indicates whether sit entries in journal are flushed
1519	 * to the SIT area or not.
1520	 */
1521	flushed = flush_sits_in_journal(sbi);
1522
1523	while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1524		struct seg_entry *se = get_seg_entry(sbi, segno);
1525		int sit_offset, offset;
1526
1527		sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1528
1529		/* add discard candidates */
1530		if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards)
1531			add_discard_addrs(sbi, segno, se);
1532
1533		if (flushed)
1534			goto to_sit_page;
1535
1536		offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1537		if (offset >= 0) {
1538			segno_in_journal(sum, offset) = cpu_to_le32(segno);
1539			seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1540			goto flush_done;
1541		}
1542to_sit_page:
1543		if (!page || (start > segno) || (segno > end)) {
1544			if (page) {
1545				f2fs_put_page(page, 1);
1546				page = NULL;
1547			}
1548
1549			start = START_SEGNO(sit_i, segno);
1550			end = start + SIT_ENTRY_PER_BLOCK - 1;
1551
1552			/* read sit block that will be updated */
1553			page = get_next_sit_page(sbi, start);
1554			raw_sit = page_address(page);
1555		}
1556
1557		/* udpate entry in SIT block */
1558		seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1559flush_done:
1560		__clear_bit(segno, bitmap);
1561		sit_i->dirty_sentries--;
1562	}
1563	mutex_unlock(&sit_i->sentry_lock);
1564	mutex_unlock(&curseg->curseg_mutex);
1565
1566	/* writeout last modified SIT block */
1567	f2fs_put_page(page, 1);
1568
1569	set_prefree_as_free_segments(sbi);
1570}
1571
1572static int build_sit_info(struct f2fs_sb_info *sbi)
1573{
1574	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1575	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1576	struct sit_info *sit_i;
1577	unsigned int sit_segs, start;
1578	char *src_bitmap, *dst_bitmap;
1579	unsigned int bitmap_size;
1580
1581	/* allocate memory for SIT information */
1582	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1583	if (!sit_i)
1584		return -ENOMEM;
1585
1586	SM_I(sbi)->sit_info = sit_i;
1587
1588	sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1589	if (!sit_i->sentries)
1590		return -ENOMEM;
1591
1592	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1593	sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1594	if (!sit_i->dirty_sentries_bitmap)
1595		return -ENOMEM;
1596
1597	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1598		sit_i->sentries[start].cur_valid_map
1599			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1600		sit_i->sentries[start].ckpt_valid_map
1601			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1602		if (!sit_i->sentries[start].cur_valid_map
1603				|| !sit_i->sentries[start].ckpt_valid_map)
1604			return -ENOMEM;
1605	}
1606
1607	if (sbi->segs_per_sec > 1) {
1608		sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1609					sizeof(struct sec_entry));
1610		if (!sit_i->sec_entries)
1611			return -ENOMEM;
1612	}
1613
1614	/* get information related with SIT */
1615	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1616
1617	/* setup SIT bitmap from ckeckpoint pack */
1618	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1619	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1620
1621	dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1622	if (!dst_bitmap)
1623		return -ENOMEM;
1624
1625	/* init SIT information */
1626	sit_i->s_ops = &default_salloc_ops;
1627
1628	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1629	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1630	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1631	sit_i->sit_bitmap = dst_bitmap;
1632	sit_i->bitmap_size = bitmap_size;
1633	sit_i->dirty_sentries = 0;
1634	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1635	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1636	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1637	mutex_init(&sit_i->sentry_lock);
1638	return 0;
1639}
1640
1641static int build_free_segmap(struct f2fs_sb_info *sbi)
1642{
1643	struct f2fs_sm_info *sm_info = SM_I(sbi);
1644	struct free_segmap_info *free_i;
1645	unsigned int bitmap_size, sec_bitmap_size;
1646
1647	/* allocate memory for free segmap information */
1648	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1649	if (!free_i)
1650		return -ENOMEM;
1651
1652	SM_I(sbi)->free_info = free_i;
1653
1654	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1655	free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1656	if (!free_i->free_segmap)
1657		return -ENOMEM;
1658
1659	sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1660	free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1661	if (!free_i->free_secmap)
1662		return -ENOMEM;
1663
1664	/* set all segments as dirty temporarily */
1665	memset(free_i->free_segmap, 0xff, bitmap_size);
1666	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1667
1668	/* init free segmap information */
1669	free_i->start_segno =
1670		(unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1671	free_i->free_segments = 0;
1672	free_i->free_sections = 0;
1673	rwlock_init(&free_i->segmap_lock);
1674	return 0;
1675}
1676
1677static int build_curseg(struct f2fs_sb_info *sbi)
1678{
1679	struct curseg_info *array;
1680	int i;
1681
1682	array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1683	if (!array)
1684		return -ENOMEM;
1685
1686	SM_I(sbi)->curseg_array = array;
1687
1688	for (i = 0; i < NR_CURSEG_TYPE; i++) {
1689		mutex_init(&array[i].curseg_mutex);
1690		array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1691		if (!array[i].sum_blk)
1692			return -ENOMEM;
1693		array[i].segno = NULL_SEGNO;
1694		array[i].next_blkoff = 0;
1695	}
1696	return restore_curseg_summaries(sbi);
1697}
1698
1699static int ra_sit_pages(struct f2fs_sb_info *sbi, int start, int nrpages)
1700{
1701	struct address_space *mapping = sbi->meta_inode->i_mapping;
1702	struct page *page;
1703	block_t blk_addr, prev_blk_addr = 0;
1704	int sit_blk_cnt = SIT_BLK_CNT(sbi);
1705	int blkno = start;
1706
1707	for (; blkno < start + nrpages && blkno < sit_blk_cnt; blkno++) {
1708
1709		blk_addr = current_sit_addr(sbi, blkno * SIT_ENTRY_PER_BLOCK);
1710
1711		if (blkno != start && prev_blk_addr + 1 != blk_addr)
1712			break;
1713		prev_blk_addr = blk_addr;
1714repeat:
1715		page = grab_cache_page(mapping, blk_addr);
1716		if (!page) {
1717			cond_resched();
1718			goto repeat;
1719		}
1720		if (PageUptodate(page)) {
1721			mark_page_accessed(page);
1722			f2fs_put_page(page, 1);
1723			continue;
1724		}
1725
1726		submit_read_page(sbi, page, blk_addr, READ_SYNC | REQ_META);
1727
1728		mark_page_accessed(page);
1729		f2fs_put_page(page, 0);
1730	}
1731
1732	f2fs_submit_read_bio(sbi, READ_SYNC | REQ_META);
1733	return blkno - start;
1734}
1735
1736static void build_sit_entries(struct f2fs_sb_info *sbi)
1737{
1738	struct sit_info *sit_i = SIT_I(sbi);
1739	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1740	struct f2fs_summary_block *sum = curseg->sum_blk;
1741	int sit_blk_cnt = SIT_BLK_CNT(sbi);
1742	unsigned int i, start, end;
1743	unsigned int readed, start_blk = 0;
1744	int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1745
1746	do {
1747		readed = ra_sit_pages(sbi, start_blk, nrpages);
1748
1749		start = start_blk * sit_i->sents_per_block;
1750		end = (start_blk + readed) * sit_i->sents_per_block;
1751
1752		for (; start < end && start < TOTAL_SEGS(sbi); start++) {
1753			struct seg_entry *se = &sit_i->sentries[start];
1754			struct f2fs_sit_block *sit_blk;
1755			struct f2fs_sit_entry sit;
1756			struct page *page;
1757
1758			mutex_lock(&curseg->curseg_mutex);
1759			for (i = 0; i < sits_in_cursum(sum); i++) {
1760				if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1761					sit = sit_in_journal(sum, i);
1762					mutex_unlock(&curseg->curseg_mutex);
1763					goto got_it;
1764				}
1765			}
1766			mutex_unlock(&curseg->curseg_mutex);
1767
1768			page = get_current_sit_page(sbi, start);
1769			sit_blk = (struct f2fs_sit_block *)page_address(page);
1770			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1771			f2fs_put_page(page, 1);
1772got_it:
1773			check_block_count(sbi, start, &sit);
1774			seg_info_from_raw_sit(se, &sit);
1775			if (sbi->segs_per_sec > 1) {
1776				struct sec_entry *e = get_sec_entry(sbi, start);
1777				e->valid_blocks += se->valid_blocks;
1778			}
1779		}
1780		start_blk += readed;
1781	} while (start_blk < sit_blk_cnt);
1782}
1783
1784static void init_free_segmap(struct f2fs_sb_info *sbi)
1785{
1786	unsigned int start;
1787	int type;
1788
1789	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1790		struct seg_entry *sentry = get_seg_entry(sbi, start);
1791		if (!sentry->valid_blocks)
1792			__set_free(sbi, start);
1793	}
1794
1795	/* set use the current segments */
1796	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1797		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1798		__set_test_and_inuse(sbi, curseg_t->segno);
1799	}
1800}
1801
1802static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1803{
1804	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1805	struct free_segmap_info *free_i = FREE_I(sbi);
1806	unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1807	unsigned short valid_blocks;
1808
1809	while (1) {
1810		/* find dirty segment based on free segmap */
1811		segno = find_next_inuse(free_i, total_segs, offset);
1812		if (segno >= total_segs)
1813			break;
1814		offset = segno + 1;
1815		valid_blocks = get_valid_blocks(sbi, segno, 0);
1816		if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1817			continue;
1818		mutex_lock(&dirty_i->seglist_lock);
1819		__locate_dirty_segment(sbi, segno, DIRTY);
1820		mutex_unlock(&dirty_i->seglist_lock);
1821	}
1822}
1823
1824static int init_victim_secmap(struct f2fs_sb_info *sbi)
1825{
1826	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1827	unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1828
1829	dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1830	if (!dirty_i->victim_secmap)
1831		return -ENOMEM;
1832	return 0;
1833}
1834
1835static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1836{
1837	struct dirty_seglist_info *dirty_i;
1838	unsigned int bitmap_size, i;
1839
1840	/* allocate memory for dirty segments list information */
1841	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1842	if (!dirty_i)
1843		return -ENOMEM;
1844
1845	SM_I(sbi)->dirty_info = dirty_i;
1846	mutex_init(&dirty_i->seglist_lock);
1847
1848	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1849
1850	for (i = 0; i < NR_DIRTY_TYPE; i++) {
1851		dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1852		if (!dirty_i->dirty_segmap[i])
1853			return -ENOMEM;
1854	}
1855
1856	init_dirty_segmap(sbi);
1857	return init_victim_secmap(sbi);
1858}
1859
1860/*
1861 * Update min, max modified time for cost-benefit GC algorithm
1862 */
1863static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1864{
1865	struct sit_info *sit_i = SIT_I(sbi);
1866	unsigned int segno;
1867
1868	mutex_lock(&sit_i->sentry_lock);
1869
1870	sit_i->min_mtime = LLONG_MAX;
1871
1872	for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1873		unsigned int i;
1874		unsigned long long mtime = 0;
1875
1876		for (i = 0; i < sbi->segs_per_sec; i++)
1877			mtime += get_seg_entry(sbi, segno + i)->mtime;
1878
1879		mtime = div_u64(mtime, sbi->segs_per_sec);
1880
1881		if (sit_i->min_mtime > mtime)
1882			sit_i->min_mtime = mtime;
1883	}
1884	sit_i->max_mtime = get_mtime(sbi);
1885	mutex_unlock(&sit_i->sentry_lock);
1886}
1887
1888int build_segment_manager(struct f2fs_sb_info *sbi)
1889{
1890	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1891	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1892	struct f2fs_sm_info *sm_info;
1893	int err;
1894
1895	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1896	if (!sm_info)
1897		return -ENOMEM;
1898
1899	/* init sm info */
1900	sbi->sm_info = sm_info;
1901	INIT_LIST_HEAD(&sm_info->wblist_head);
1902	spin_lock_init(&sm_info->wblist_lock);
1903	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1904	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1905	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1906	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1907	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1908	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1909	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1910	sm_info->rec_prefree_segments = DEF_RECLAIM_PREFREE_SEGMENTS;
1911
1912	INIT_LIST_HEAD(&sm_info->discard_list);
1913	sm_info->nr_discards = 0;
1914	sm_info->max_discards = 0;
1915
1916	err = build_sit_info(sbi);
1917	if (err)
1918		return err;
1919	err = build_free_segmap(sbi);
1920	if (err)
1921		return err;
1922	err = build_curseg(sbi);
1923	if (err)
1924		return err;
1925
1926	/* reinit free segmap based on SIT */
1927	build_sit_entries(sbi);
1928
1929	init_free_segmap(sbi);
1930	err = build_dirty_segmap(sbi);
1931	if (err)
1932		return err;
1933
1934	init_min_max_mtime(sbi);
1935	return 0;
1936}
1937
1938static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1939		enum dirty_type dirty_type)
1940{
1941	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1942
1943	mutex_lock(&dirty_i->seglist_lock);
1944	kfree(dirty_i->dirty_segmap[dirty_type]);
1945	dirty_i->nr_dirty[dirty_type] = 0;
1946	mutex_unlock(&dirty_i->seglist_lock);
1947}
1948
1949static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1950{
1951	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1952	kfree(dirty_i->victim_secmap);
1953}
1954
1955static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1956{
1957	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1958	int i;
1959
1960	if (!dirty_i)
1961		return;
1962
1963	/* discard pre-free/dirty segments list */
1964	for (i = 0; i < NR_DIRTY_TYPE; i++)
1965		discard_dirty_segmap(sbi, i);
1966
1967	destroy_victim_secmap(sbi);
1968	SM_I(sbi)->dirty_info = NULL;
1969	kfree(dirty_i);
1970}
1971
1972static void destroy_curseg(struct f2fs_sb_info *sbi)
1973{
1974	struct curseg_info *array = SM_I(sbi)->curseg_array;
1975	int i;
1976
1977	if (!array)
1978		return;
1979	SM_I(sbi)->curseg_array = NULL;
1980	for (i = 0; i < NR_CURSEG_TYPE; i++)
1981		kfree(array[i].sum_blk);
1982	kfree(array);
1983}
1984
1985static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1986{
1987	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1988	if (!free_i)
1989		return;
1990	SM_I(sbi)->free_info = NULL;
1991	kfree(free_i->free_segmap);
1992	kfree(free_i->free_secmap);
1993	kfree(free_i);
1994}
1995
1996static void destroy_sit_info(struct f2fs_sb_info *sbi)
1997{
1998	struct sit_info *sit_i = SIT_I(sbi);
1999	unsigned int start;
2000
2001	if (!sit_i)
2002		return;
2003
2004	if (sit_i->sentries) {
2005		for (start = 0; start < TOTAL_SEGS(sbi); start++) {
2006			kfree(sit_i->sentries[start].cur_valid_map);
2007			kfree(sit_i->sentries[start].ckpt_valid_map);
2008		}
2009	}
2010	vfree(sit_i->sentries);
2011	vfree(sit_i->sec_entries);
2012	kfree(sit_i->dirty_sentries_bitmap);
2013
2014	SM_I(sbi)->sit_info = NULL;
2015	kfree(sit_i->sit_bitmap);
2016	kfree(sit_i);
2017}
2018
2019void destroy_segment_manager(struct f2fs_sb_info *sbi)
2020{
2021	struct f2fs_sm_info *sm_info = SM_I(sbi);
2022	if (!sm_info)
2023		return;
2024	destroy_dirty_segmap(sbi);
2025	destroy_curseg(sbi);
2026	destroy_free_segmap(sbi);
2027	destroy_sit_info(sbi);
2028	sbi->sm_info = NULL;
2029	kfree(sm_info);
2030}
2031
2032int __init create_segment_manager_caches(void)
2033{
2034	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2035			sizeof(struct discard_entry), NULL);
2036	if (!discard_entry_slab)
2037		return -ENOMEM;
2038	return 0;
2039}
2040
2041void destroy_segment_manager_caches(void)
2042{
2043	kmem_cache_destroy(discard_entry_slab);
2044}
2045