segment.c revision 4f024f3797c43cb4b73cd2c50cec728842d0e49e
1/*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 *             http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/bio.h>
14#include <linux/blkdev.h>
15#include <linux/prefetch.h>
16#include <linux/vmalloc.h>
17
18#include "f2fs.h"
19#include "segment.h"
20#include "node.h"
21#include <trace/events/f2fs.h>
22
23/*
24 * This function balances dirty node and dentry pages.
25 * In addition, it controls garbage collection.
26 */
27void f2fs_balance_fs(struct f2fs_sb_info *sbi)
28{
29	/*
30	 * We should do GC or end up with checkpoint, if there are so many dirty
31	 * dir/node pages without enough free segments.
32	 */
33	if (has_not_enough_free_secs(sbi, 0)) {
34		mutex_lock(&sbi->gc_mutex);
35		f2fs_gc(sbi);
36	}
37}
38
39void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
40{
41	/* check the # of cached NAT entries and prefree segments */
42	if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
43				excess_prefree_segs(sbi))
44		f2fs_sync_fs(sbi->sb, true);
45}
46
47static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
48		enum dirty_type dirty_type)
49{
50	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
51
52	/* need not be added */
53	if (IS_CURSEG(sbi, segno))
54		return;
55
56	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
57		dirty_i->nr_dirty[dirty_type]++;
58
59	if (dirty_type == DIRTY) {
60		struct seg_entry *sentry = get_seg_entry(sbi, segno);
61		enum dirty_type t = sentry->type;
62
63		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
64			dirty_i->nr_dirty[t]++;
65	}
66}
67
68static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
69		enum dirty_type dirty_type)
70{
71	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
72
73	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
74		dirty_i->nr_dirty[dirty_type]--;
75
76	if (dirty_type == DIRTY) {
77		struct seg_entry *sentry = get_seg_entry(sbi, segno);
78		enum dirty_type t = sentry->type;
79
80		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
81			dirty_i->nr_dirty[t]--;
82
83		if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
84			clear_bit(GET_SECNO(sbi, segno),
85						dirty_i->victim_secmap);
86	}
87}
88
89/*
90 * Should not occur error such as -ENOMEM.
91 * Adding dirty entry into seglist is not critical operation.
92 * If a given segment is one of current working segments, it won't be added.
93 */
94static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
95{
96	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
97	unsigned short valid_blocks;
98
99	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
100		return;
101
102	mutex_lock(&dirty_i->seglist_lock);
103
104	valid_blocks = get_valid_blocks(sbi, segno, 0);
105
106	if (valid_blocks == 0) {
107		__locate_dirty_segment(sbi, segno, PRE);
108		__remove_dirty_segment(sbi, segno, DIRTY);
109	} else if (valid_blocks < sbi->blocks_per_seg) {
110		__locate_dirty_segment(sbi, segno, DIRTY);
111	} else {
112		/* Recovery routine with SSR needs this */
113		__remove_dirty_segment(sbi, segno, DIRTY);
114	}
115
116	mutex_unlock(&dirty_i->seglist_lock);
117}
118
119/*
120 * Should call clear_prefree_segments after checkpoint is done.
121 */
122static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
123{
124	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
125	unsigned int segno = -1;
126	unsigned int total_segs = TOTAL_SEGS(sbi);
127
128	mutex_lock(&dirty_i->seglist_lock);
129	while (1) {
130		segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
131				segno + 1);
132		if (segno >= total_segs)
133			break;
134		__set_test_and_free(sbi, segno);
135	}
136	mutex_unlock(&dirty_i->seglist_lock);
137}
138
139void clear_prefree_segments(struct f2fs_sb_info *sbi)
140{
141	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
142	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
143	unsigned int total_segs = TOTAL_SEGS(sbi);
144	unsigned int start = 0, end = -1;
145
146	mutex_lock(&dirty_i->seglist_lock);
147
148	while (1) {
149		int i;
150		start = find_next_bit(prefree_map, total_segs, end + 1);
151		if (start >= total_segs)
152			break;
153		end = find_next_zero_bit(prefree_map, total_segs, start + 1);
154
155		for (i = start; i < end; i++)
156			clear_bit(i, prefree_map);
157
158		dirty_i->nr_dirty[PRE] -= end - start;
159
160		if (!test_opt(sbi, DISCARD))
161			continue;
162
163		blkdev_issue_discard(sbi->sb->s_bdev,
164				START_BLOCK(sbi, start) <<
165				sbi->log_sectors_per_block,
166				(1 << (sbi->log_sectors_per_block +
167				sbi->log_blocks_per_seg)) * (end - start),
168				GFP_NOFS, 0);
169	}
170	mutex_unlock(&dirty_i->seglist_lock);
171}
172
173static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
174{
175	struct sit_info *sit_i = SIT_I(sbi);
176	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
177		sit_i->dirty_sentries++;
178}
179
180static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
181					unsigned int segno, int modified)
182{
183	struct seg_entry *se = get_seg_entry(sbi, segno);
184	se->type = type;
185	if (modified)
186		__mark_sit_entry_dirty(sbi, segno);
187}
188
189static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
190{
191	struct seg_entry *se;
192	unsigned int segno, offset;
193	long int new_vblocks;
194
195	segno = GET_SEGNO(sbi, blkaddr);
196
197	se = get_seg_entry(sbi, segno);
198	new_vblocks = se->valid_blocks + del;
199	offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
200
201	f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) ||
202				(new_vblocks > sbi->blocks_per_seg)));
203
204	se->valid_blocks = new_vblocks;
205	se->mtime = get_mtime(sbi);
206	SIT_I(sbi)->max_mtime = se->mtime;
207
208	/* Update valid block bitmap */
209	if (del > 0) {
210		if (f2fs_set_bit(offset, se->cur_valid_map))
211			BUG();
212	} else {
213		if (!f2fs_clear_bit(offset, se->cur_valid_map))
214			BUG();
215	}
216	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
217		se->ckpt_valid_blocks += del;
218
219	__mark_sit_entry_dirty(sbi, segno);
220
221	/* update total number of valid blocks to be written in ckpt area */
222	SIT_I(sbi)->written_valid_blocks += del;
223
224	if (sbi->segs_per_sec > 1)
225		get_sec_entry(sbi, segno)->valid_blocks += del;
226}
227
228static void refresh_sit_entry(struct f2fs_sb_info *sbi,
229			block_t old_blkaddr, block_t new_blkaddr)
230{
231	update_sit_entry(sbi, new_blkaddr, 1);
232	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
233		update_sit_entry(sbi, old_blkaddr, -1);
234}
235
236void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
237{
238	unsigned int segno = GET_SEGNO(sbi, addr);
239	struct sit_info *sit_i = SIT_I(sbi);
240
241	f2fs_bug_on(addr == NULL_ADDR);
242	if (addr == NEW_ADDR)
243		return;
244
245	/* add it into sit main buffer */
246	mutex_lock(&sit_i->sentry_lock);
247
248	update_sit_entry(sbi, addr, -1);
249
250	/* add it into dirty seglist */
251	locate_dirty_segment(sbi, segno);
252
253	mutex_unlock(&sit_i->sentry_lock);
254}
255
256/*
257 * This function should be resided under the curseg_mutex lock
258 */
259static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
260					struct f2fs_summary *sum)
261{
262	struct curseg_info *curseg = CURSEG_I(sbi, type);
263	void *addr = curseg->sum_blk;
264	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
265	memcpy(addr, sum, sizeof(struct f2fs_summary));
266}
267
268/*
269 * Calculate the number of current summary pages for writing
270 */
271int npages_for_summary_flush(struct f2fs_sb_info *sbi)
272{
273	int valid_sum_count = 0;
274	int i, sum_in_page;
275
276	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
277		if (sbi->ckpt->alloc_type[i] == SSR)
278			valid_sum_count += sbi->blocks_per_seg;
279		else
280			valid_sum_count += curseg_blkoff(sbi, i);
281	}
282
283	sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
284			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
285	if (valid_sum_count <= sum_in_page)
286		return 1;
287	else if ((valid_sum_count - sum_in_page) <=
288		(PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
289		return 2;
290	return 3;
291}
292
293/*
294 * Caller should put this summary page
295 */
296struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
297{
298	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
299}
300
301static void write_sum_page(struct f2fs_sb_info *sbi,
302			struct f2fs_summary_block *sum_blk, block_t blk_addr)
303{
304	struct page *page = grab_meta_page(sbi, blk_addr);
305	void *kaddr = page_address(page);
306	memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
307	set_page_dirty(page);
308	f2fs_put_page(page, 1);
309}
310
311static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
312{
313	struct curseg_info *curseg = CURSEG_I(sbi, type);
314	unsigned int segno = curseg->segno + 1;
315	struct free_segmap_info *free_i = FREE_I(sbi);
316
317	if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
318		return !test_bit(segno, free_i->free_segmap);
319	return 0;
320}
321
322/*
323 * Find a new segment from the free segments bitmap to right order
324 * This function should be returned with success, otherwise BUG
325 */
326static void get_new_segment(struct f2fs_sb_info *sbi,
327			unsigned int *newseg, bool new_sec, int dir)
328{
329	struct free_segmap_info *free_i = FREE_I(sbi);
330	unsigned int segno, secno, zoneno;
331	unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
332	unsigned int hint = *newseg / sbi->segs_per_sec;
333	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
334	unsigned int left_start = hint;
335	bool init = true;
336	int go_left = 0;
337	int i;
338
339	write_lock(&free_i->segmap_lock);
340
341	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
342		segno = find_next_zero_bit(free_i->free_segmap,
343					TOTAL_SEGS(sbi), *newseg + 1);
344		if (segno - *newseg < sbi->segs_per_sec -
345					(*newseg % sbi->segs_per_sec))
346			goto got_it;
347	}
348find_other_zone:
349	secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
350	if (secno >= TOTAL_SECS(sbi)) {
351		if (dir == ALLOC_RIGHT) {
352			secno = find_next_zero_bit(free_i->free_secmap,
353							TOTAL_SECS(sbi), 0);
354			f2fs_bug_on(secno >= TOTAL_SECS(sbi));
355		} else {
356			go_left = 1;
357			left_start = hint - 1;
358		}
359	}
360	if (go_left == 0)
361		goto skip_left;
362
363	while (test_bit(left_start, free_i->free_secmap)) {
364		if (left_start > 0) {
365			left_start--;
366			continue;
367		}
368		left_start = find_next_zero_bit(free_i->free_secmap,
369							TOTAL_SECS(sbi), 0);
370		f2fs_bug_on(left_start >= TOTAL_SECS(sbi));
371		break;
372	}
373	secno = left_start;
374skip_left:
375	hint = secno;
376	segno = secno * sbi->segs_per_sec;
377	zoneno = secno / sbi->secs_per_zone;
378
379	/* give up on finding another zone */
380	if (!init)
381		goto got_it;
382	if (sbi->secs_per_zone == 1)
383		goto got_it;
384	if (zoneno == old_zoneno)
385		goto got_it;
386	if (dir == ALLOC_LEFT) {
387		if (!go_left && zoneno + 1 >= total_zones)
388			goto got_it;
389		if (go_left && zoneno == 0)
390			goto got_it;
391	}
392	for (i = 0; i < NR_CURSEG_TYPE; i++)
393		if (CURSEG_I(sbi, i)->zone == zoneno)
394			break;
395
396	if (i < NR_CURSEG_TYPE) {
397		/* zone is in user, try another */
398		if (go_left)
399			hint = zoneno * sbi->secs_per_zone - 1;
400		else if (zoneno + 1 >= total_zones)
401			hint = 0;
402		else
403			hint = (zoneno + 1) * sbi->secs_per_zone;
404		init = false;
405		goto find_other_zone;
406	}
407got_it:
408	/* set it as dirty segment in free segmap */
409	f2fs_bug_on(test_bit(segno, free_i->free_segmap));
410	__set_inuse(sbi, segno);
411	*newseg = segno;
412	write_unlock(&free_i->segmap_lock);
413}
414
415static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
416{
417	struct curseg_info *curseg = CURSEG_I(sbi, type);
418	struct summary_footer *sum_footer;
419
420	curseg->segno = curseg->next_segno;
421	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
422	curseg->next_blkoff = 0;
423	curseg->next_segno = NULL_SEGNO;
424
425	sum_footer = &(curseg->sum_blk->footer);
426	memset(sum_footer, 0, sizeof(struct summary_footer));
427	if (IS_DATASEG(type))
428		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
429	if (IS_NODESEG(type))
430		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
431	__set_sit_entry_type(sbi, type, curseg->segno, modified);
432}
433
434/*
435 * Allocate a current working segment.
436 * This function always allocates a free segment in LFS manner.
437 */
438static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
439{
440	struct curseg_info *curseg = CURSEG_I(sbi, type);
441	unsigned int segno = curseg->segno;
442	int dir = ALLOC_LEFT;
443
444	write_sum_page(sbi, curseg->sum_blk,
445				GET_SUM_BLOCK(sbi, segno));
446	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
447		dir = ALLOC_RIGHT;
448
449	if (test_opt(sbi, NOHEAP))
450		dir = ALLOC_RIGHT;
451
452	get_new_segment(sbi, &segno, new_sec, dir);
453	curseg->next_segno = segno;
454	reset_curseg(sbi, type, 1);
455	curseg->alloc_type = LFS;
456}
457
458static void __next_free_blkoff(struct f2fs_sb_info *sbi,
459			struct curseg_info *seg, block_t start)
460{
461	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
462	block_t ofs;
463	for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) {
464		if (!f2fs_test_bit(ofs, se->ckpt_valid_map)
465			&& !f2fs_test_bit(ofs, se->cur_valid_map))
466			break;
467	}
468	seg->next_blkoff = ofs;
469}
470
471/*
472 * If a segment is written by LFS manner, next block offset is just obtained
473 * by increasing the current block offset. However, if a segment is written by
474 * SSR manner, next block offset obtained by calling __next_free_blkoff
475 */
476static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
477				struct curseg_info *seg)
478{
479	if (seg->alloc_type == SSR)
480		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
481	else
482		seg->next_blkoff++;
483}
484
485/*
486 * This function always allocates a used segment (from dirty seglist) by SSR
487 * manner, so it should recover the existing segment information of valid blocks
488 */
489static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
490{
491	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
492	struct curseg_info *curseg = CURSEG_I(sbi, type);
493	unsigned int new_segno = curseg->next_segno;
494	struct f2fs_summary_block *sum_node;
495	struct page *sum_page;
496
497	write_sum_page(sbi, curseg->sum_blk,
498				GET_SUM_BLOCK(sbi, curseg->segno));
499	__set_test_and_inuse(sbi, new_segno);
500
501	mutex_lock(&dirty_i->seglist_lock);
502	__remove_dirty_segment(sbi, new_segno, PRE);
503	__remove_dirty_segment(sbi, new_segno, DIRTY);
504	mutex_unlock(&dirty_i->seglist_lock);
505
506	reset_curseg(sbi, type, 1);
507	curseg->alloc_type = SSR;
508	__next_free_blkoff(sbi, curseg, 0);
509
510	if (reuse) {
511		sum_page = get_sum_page(sbi, new_segno);
512		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
513		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
514		f2fs_put_page(sum_page, 1);
515	}
516}
517
518static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
519{
520	struct curseg_info *curseg = CURSEG_I(sbi, type);
521	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
522
523	if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
524		return v_ops->get_victim(sbi,
525				&(curseg)->next_segno, BG_GC, type, SSR);
526
527	/* For data segments, let's do SSR more intensively */
528	for (; type >= CURSEG_HOT_DATA; type--)
529		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
530						BG_GC, type, SSR))
531			return 1;
532	return 0;
533}
534
535/*
536 * flush out current segment and replace it with new segment
537 * This function should be returned with success, otherwise BUG
538 */
539static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
540						int type, bool force)
541{
542	struct curseg_info *curseg = CURSEG_I(sbi, type);
543
544	if (force)
545		new_curseg(sbi, type, true);
546	else if (type == CURSEG_WARM_NODE)
547		new_curseg(sbi, type, false);
548	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
549		new_curseg(sbi, type, false);
550	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
551		change_curseg(sbi, type, true);
552	else
553		new_curseg(sbi, type, false);
554
555	stat_inc_seg_type(sbi, curseg);
556}
557
558void allocate_new_segments(struct f2fs_sb_info *sbi)
559{
560	struct curseg_info *curseg;
561	unsigned int old_curseg;
562	int i;
563
564	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
565		curseg = CURSEG_I(sbi, i);
566		old_curseg = curseg->segno;
567		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
568		locate_dirty_segment(sbi, old_curseg);
569	}
570}
571
572static const struct segment_allocation default_salloc_ops = {
573	.allocate_segment = allocate_segment_by_default,
574};
575
576static void f2fs_end_io_write(struct bio *bio, int err)
577{
578	struct bio_private *p = bio->bi_private;
579	struct bio_vec *bvec;
580	int i;
581
582	bio_for_each_segment_all(bvec, bio, i) {
583		struct page *page = bvec->bv_page;
584
585		if (err) {
586			SetPageError(page);
587			if (page->mapping)
588				set_bit(AS_EIO, &page->mapping->flags);
589			set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
590			p->sbi->sb->s_flags |= MS_RDONLY;
591		}
592		end_page_writeback(page);
593		dec_page_count(p->sbi, F2FS_WRITEBACK);
594	}
595
596	if (p->is_sync)
597		complete(p->wait);
598
599	if (!get_pages(p->sbi, F2FS_WRITEBACK) &&
600			!list_empty(&p->sbi->cp_wait.task_list))
601		wake_up(&p->sbi->cp_wait);
602
603	kfree(p);
604	bio_put(bio);
605}
606
607struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
608{
609	struct bio *bio;
610
611	/* No failure on bio allocation */
612	bio = bio_alloc(GFP_NOIO, npages);
613	bio->bi_bdev = bdev;
614	bio->bi_private = NULL;
615
616	return bio;
617}
618
619static void do_submit_bio(struct f2fs_sb_info *sbi,
620				enum page_type type, bool sync)
621{
622	int rw = sync ? WRITE_SYNC : WRITE;
623	enum page_type btype = type > META ? META : type;
624
625	if (type >= META_FLUSH)
626		rw = WRITE_FLUSH_FUA;
627
628	if (btype == META)
629		rw |= REQ_META;
630
631	if (sbi->bio[btype]) {
632		struct bio_private *p = sbi->bio[btype]->bi_private;
633		p->sbi = sbi;
634		sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
635
636		trace_f2fs_do_submit_bio(sbi->sb, btype, sync, sbi->bio[btype]);
637
638		if (type == META_FLUSH) {
639			DECLARE_COMPLETION_ONSTACK(wait);
640			p->is_sync = true;
641			p->wait = &wait;
642			submit_bio(rw, sbi->bio[btype]);
643			wait_for_completion(&wait);
644		} else {
645			p->is_sync = false;
646			submit_bio(rw, sbi->bio[btype]);
647		}
648		sbi->bio[btype] = NULL;
649	}
650}
651
652void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
653{
654	down_write(&sbi->bio_sem);
655	do_submit_bio(sbi, type, sync);
656	up_write(&sbi->bio_sem);
657}
658
659static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
660				block_t blk_addr, enum page_type type)
661{
662	struct block_device *bdev = sbi->sb->s_bdev;
663	int bio_blocks;
664
665	verify_block_addr(sbi, blk_addr);
666
667	down_write(&sbi->bio_sem);
668
669	inc_page_count(sbi, F2FS_WRITEBACK);
670
671	if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
672		do_submit_bio(sbi, type, false);
673alloc_new:
674	if (sbi->bio[type] == NULL) {
675		struct bio_private *priv;
676retry:
677		priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
678		if (!priv) {
679			cond_resched();
680			goto retry;
681		}
682
683		bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
684		sbi->bio[type] = f2fs_bio_alloc(bdev, bio_blocks);
685		sbi->bio[type]->bi_iter.bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
686		sbi->bio[type]->bi_private = priv;
687		/*
688		 * The end_io will be assigned at the sumbission phase.
689		 * Until then, let bio_add_page() merge consecutive IOs as much
690		 * as possible.
691		 */
692	}
693
694	if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
695							PAGE_CACHE_SIZE) {
696		do_submit_bio(sbi, type, false);
697		goto alloc_new;
698	}
699
700	sbi->last_block_in_bio[type] = blk_addr;
701
702	up_write(&sbi->bio_sem);
703	trace_f2fs_submit_write_page(page, blk_addr, type);
704}
705
706void f2fs_wait_on_page_writeback(struct page *page,
707				enum page_type type, bool sync)
708{
709	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
710	if (PageWriteback(page)) {
711		f2fs_submit_bio(sbi, type, sync);
712		wait_on_page_writeback(page);
713	}
714}
715
716static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
717{
718	struct curseg_info *curseg = CURSEG_I(sbi, type);
719	if (curseg->next_blkoff < sbi->blocks_per_seg)
720		return true;
721	return false;
722}
723
724static int __get_segment_type_2(struct page *page, enum page_type p_type)
725{
726	if (p_type == DATA)
727		return CURSEG_HOT_DATA;
728	else
729		return CURSEG_HOT_NODE;
730}
731
732static int __get_segment_type_4(struct page *page, enum page_type p_type)
733{
734	if (p_type == DATA) {
735		struct inode *inode = page->mapping->host;
736
737		if (S_ISDIR(inode->i_mode))
738			return CURSEG_HOT_DATA;
739		else
740			return CURSEG_COLD_DATA;
741	} else {
742		if (IS_DNODE(page) && !is_cold_node(page))
743			return CURSEG_HOT_NODE;
744		else
745			return CURSEG_COLD_NODE;
746	}
747}
748
749static int __get_segment_type_6(struct page *page, enum page_type p_type)
750{
751	if (p_type == DATA) {
752		struct inode *inode = page->mapping->host;
753
754		if (S_ISDIR(inode->i_mode))
755			return CURSEG_HOT_DATA;
756		else if (is_cold_data(page) || file_is_cold(inode))
757			return CURSEG_COLD_DATA;
758		else
759			return CURSEG_WARM_DATA;
760	} else {
761		if (IS_DNODE(page))
762			return is_cold_node(page) ? CURSEG_WARM_NODE :
763						CURSEG_HOT_NODE;
764		else
765			return CURSEG_COLD_NODE;
766	}
767}
768
769static int __get_segment_type(struct page *page, enum page_type p_type)
770{
771	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
772	switch (sbi->active_logs) {
773	case 2:
774		return __get_segment_type_2(page, p_type);
775	case 4:
776		return __get_segment_type_4(page, p_type);
777	}
778	/* NR_CURSEG_TYPE(6) logs by default */
779	f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE);
780	return __get_segment_type_6(page, p_type);
781}
782
783static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
784			block_t old_blkaddr, block_t *new_blkaddr,
785			struct f2fs_summary *sum, enum page_type p_type)
786{
787	struct sit_info *sit_i = SIT_I(sbi);
788	struct curseg_info *curseg;
789	unsigned int old_cursegno;
790	int type;
791
792	type = __get_segment_type(page, p_type);
793	curseg = CURSEG_I(sbi, type);
794
795	mutex_lock(&curseg->curseg_mutex);
796
797	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
798	old_cursegno = curseg->segno;
799
800	/*
801	 * __add_sum_entry should be resided under the curseg_mutex
802	 * because, this function updates a summary entry in the
803	 * current summary block.
804	 */
805	__add_sum_entry(sbi, type, sum);
806
807	mutex_lock(&sit_i->sentry_lock);
808	__refresh_next_blkoff(sbi, curseg);
809
810	stat_inc_block_count(sbi, curseg);
811
812	/*
813	 * SIT information should be updated before segment allocation,
814	 * since SSR needs latest valid block information.
815	 */
816	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
817
818	if (!__has_curseg_space(sbi, type))
819		sit_i->s_ops->allocate_segment(sbi, type, false);
820
821	locate_dirty_segment(sbi, old_cursegno);
822	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
823	mutex_unlock(&sit_i->sentry_lock);
824
825	if (p_type == NODE)
826		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
827
828	/* writeout dirty page into bdev */
829	submit_write_page(sbi, page, *new_blkaddr, p_type);
830
831	mutex_unlock(&curseg->curseg_mutex);
832}
833
834void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
835{
836	set_page_writeback(page);
837	submit_write_page(sbi, page, page->index, META);
838}
839
840void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
841		unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
842{
843	struct f2fs_summary sum;
844	set_summary(&sum, nid, 0, 0);
845	do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
846}
847
848void write_data_page(struct inode *inode, struct page *page,
849		struct dnode_of_data *dn, block_t old_blkaddr,
850		block_t *new_blkaddr)
851{
852	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
853	struct f2fs_summary sum;
854	struct node_info ni;
855
856	f2fs_bug_on(old_blkaddr == NULL_ADDR);
857	get_node_info(sbi, dn->nid, &ni);
858	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
859
860	do_write_page(sbi, page, old_blkaddr,
861			new_blkaddr, &sum, DATA);
862}
863
864void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
865					block_t old_blk_addr)
866{
867	submit_write_page(sbi, page, old_blk_addr, DATA);
868}
869
870void recover_data_page(struct f2fs_sb_info *sbi,
871			struct page *page, struct f2fs_summary *sum,
872			block_t old_blkaddr, block_t new_blkaddr)
873{
874	struct sit_info *sit_i = SIT_I(sbi);
875	struct curseg_info *curseg;
876	unsigned int segno, old_cursegno;
877	struct seg_entry *se;
878	int type;
879
880	segno = GET_SEGNO(sbi, new_blkaddr);
881	se = get_seg_entry(sbi, segno);
882	type = se->type;
883
884	if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
885		if (old_blkaddr == NULL_ADDR)
886			type = CURSEG_COLD_DATA;
887		else
888			type = CURSEG_WARM_DATA;
889	}
890	curseg = CURSEG_I(sbi, type);
891
892	mutex_lock(&curseg->curseg_mutex);
893	mutex_lock(&sit_i->sentry_lock);
894
895	old_cursegno = curseg->segno;
896
897	/* change the current segment */
898	if (segno != curseg->segno) {
899		curseg->next_segno = segno;
900		change_curseg(sbi, type, true);
901	}
902
903	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
904					(sbi->blocks_per_seg - 1);
905	__add_sum_entry(sbi, type, sum);
906
907	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
908
909	locate_dirty_segment(sbi, old_cursegno);
910	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
911
912	mutex_unlock(&sit_i->sentry_lock);
913	mutex_unlock(&curseg->curseg_mutex);
914}
915
916void rewrite_node_page(struct f2fs_sb_info *sbi,
917			struct page *page, struct f2fs_summary *sum,
918			block_t old_blkaddr, block_t new_blkaddr)
919{
920	struct sit_info *sit_i = SIT_I(sbi);
921	int type = CURSEG_WARM_NODE;
922	struct curseg_info *curseg;
923	unsigned int segno, old_cursegno;
924	block_t next_blkaddr = next_blkaddr_of_node(page);
925	unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
926
927	curseg = CURSEG_I(sbi, type);
928
929	mutex_lock(&curseg->curseg_mutex);
930	mutex_lock(&sit_i->sentry_lock);
931
932	segno = GET_SEGNO(sbi, new_blkaddr);
933	old_cursegno = curseg->segno;
934
935	/* change the current segment */
936	if (segno != curseg->segno) {
937		curseg->next_segno = segno;
938		change_curseg(sbi, type, true);
939	}
940	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
941					(sbi->blocks_per_seg - 1);
942	__add_sum_entry(sbi, type, sum);
943
944	/* change the current log to the next block addr in advance */
945	if (next_segno != segno) {
946		curseg->next_segno = next_segno;
947		change_curseg(sbi, type, true);
948	}
949	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
950					(sbi->blocks_per_seg - 1);
951
952	/* rewrite node page */
953	set_page_writeback(page);
954	submit_write_page(sbi, page, new_blkaddr, NODE);
955	f2fs_submit_bio(sbi, NODE, true);
956	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
957
958	locate_dirty_segment(sbi, old_cursegno);
959	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
960
961	mutex_unlock(&sit_i->sentry_lock);
962	mutex_unlock(&curseg->curseg_mutex);
963}
964
965static int read_compacted_summaries(struct f2fs_sb_info *sbi)
966{
967	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
968	struct curseg_info *seg_i;
969	unsigned char *kaddr;
970	struct page *page;
971	block_t start;
972	int i, j, offset;
973
974	start = start_sum_block(sbi);
975
976	page = get_meta_page(sbi, start++);
977	kaddr = (unsigned char *)page_address(page);
978
979	/* Step 1: restore nat cache */
980	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
981	memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
982
983	/* Step 2: restore sit cache */
984	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
985	memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
986						SUM_JOURNAL_SIZE);
987	offset = 2 * SUM_JOURNAL_SIZE;
988
989	/* Step 3: restore summary entries */
990	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
991		unsigned short blk_off;
992		unsigned int segno;
993
994		seg_i = CURSEG_I(sbi, i);
995		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
996		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
997		seg_i->next_segno = segno;
998		reset_curseg(sbi, i, 0);
999		seg_i->alloc_type = ckpt->alloc_type[i];
1000		seg_i->next_blkoff = blk_off;
1001
1002		if (seg_i->alloc_type == SSR)
1003			blk_off = sbi->blocks_per_seg;
1004
1005		for (j = 0; j < blk_off; j++) {
1006			struct f2fs_summary *s;
1007			s = (struct f2fs_summary *)(kaddr + offset);
1008			seg_i->sum_blk->entries[j] = *s;
1009			offset += SUMMARY_SIZE;
1010			if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1011						SUM_FOOTER_SIZE)
1012				continue;
1013
1014			f2fs_put_page(page, 1);
1015			page = NULL;
1016
1017			page = get_meta_page(sbi, start++);
1018			kaddr = (unsigned char *)page_address(page);
1019			offset = 0;
1020		}
1021	}
1022	f2fs_put_page(page, 1);
1023	return 0;
1024}
1025
1026static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1027{
1028	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1029	struct f2fs_summary_block *sum;
1030	struct curseg_info *curseg;
1031	struct page *new;
1032	unsigned short blk_off;
1033	unsigned int segno = 0;
1034	block_t blk_addr = 0;
1035
1036	/* get segment number and block addr */
1037	if (IS_DATASEG(type)) {
1038		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1039		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1040							CURSEG_HOT_DATA]);
1041		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1042			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1043		else
1044			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1045	} else {
1046		segno = le32_to_cpu(ckpt->cur_node_segno[type -
1047							CURSEG_HOT_NODE]);
1048		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1049							CURSEG_HOT_NODE]);
1050		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1051			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1052							type - CURSEG_HOT_NODE);
1053		else
1054			blk_addr = GET_SUM_BLOCK(sbi, segno);
1055	}
1056
1057	new = get_meta_page(sbi, blk_addr);
1058	sum = (struct f2fs_summary_block *)page_address(new);
1059
1060	if (IS_NODESEG(type)) {
1061		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1062			struct f2fs_summary *ns = &sum->entries[0];
1063			int i;
1064			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1065				ns->version = 0;
1066				ns->ofs_in_node = 0;
1067			}
1068		} else {
1069			if (restore_node_summary(sbi, segno, sum)) {
1070				f2fs_put_page(new, 1);
1071				return -EINVAL;
1072			}
1073		}
1074	}
1075
1076	/* set uncompleted segment to curseg */
1077	curseg = CURSEG_I(sbi, type);
1078	mutex_lock(&curseg->curseg_mutex);
1079	memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1080	curseg->next_segno = segno;
1081	reset_curseg(sbi, type, 0);
1082	curseg->alloc_type = ckpt->alloc_type[type];
1083	curseg->next_blkoff = blk_off;
1084	mutex_unlock(&curseg->curseg_mutex);
1085	f2fs_put_page(new, 1);
1086	return 0;
1087}
1088
1089static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1090{
1091	int type = CURSEG_HOT_DATA;
1092
1093	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1094		/* restore for compacted data summary */
1095		if (read_compacted_summaries(sbi))
1096			return -EINVAL;
1097		type = CURSEG_HOT_NODE;
1098	}
1099
1100	for (; type <= CURSEG_COLD_NODE; type++)
1101		if (read_normal_summaries(sbi, type))
1102			return -EINVAL;
1103	return 0;
1104}
1105
1106static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1107{
1108	struct page *page;
1109	unsigned char *kaddr;
1110	struct f2fs_summary *summary;
1111	struct curseg_info *seg_i;
1112	int written_size = 0;
1113	int i, j;
1114
1115	page = grab_meta_page(sbi, blkaddr++);
1116	kaddr = (unsigned char *)page_address(page);
1117
1118	/* Step 1: write nat cache */
1119	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1120	memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1121	written_size += SUM_JOURNAL_SIZE;
1122
1123	/* Step 2: write sit cache */
1124	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1125	memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1126						SUM_JOURNAL_SIZE);
1127	written_size += SUM_JOURNAL_SIZE;
1128
1129	/* Step 3: write summary entries */
1130	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1131		unsigned short blkoff;
1132		seg_i = CURSEG_I(sbi, i);
1133		if (sbi->ckpt->alloc_type[i] == SSR)
1134			blkoff = sbi->blocks_per_seg;
1135		else
1136			blkoff = curseg_blkoff(sbi, i);
1137
1138		for (j = 0; j < blkoff; j++) {
1139			if (!page) {
1140				page = grab_meta_page(sbi, blkaddr++);
1141				kaddr = (unsigned char *)page_address(page);
1142				written_size = 0;
1143			}
1144			summary = (struct f2fs_summary *)(kaddr + written_size);
1145			*summary = seg_i->sum_blk->entries[j];
1146			written_size += SUMMARY_SIZE;
1147
1148			if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1149							SUM_FOOTER_SIZE)
1150				continue;
1151
1152			set_page_dirty(page);
1153			f2fs_put_page(page, 1);
1154			page = NULL;
1155		}
1156	}
1157	if (page) {
1158		set_page_dirty(page);
1159		f2fs_put_page(page, 1);
1160	}
1161}
1162
1163static void write_normal_summaries(struct f2fs_sb_info *sbi,
1164					block_t blkaddr, int type)
1165{
1166	int i, end;
1167	if (IS_DATASEG(type))
1168		end = type + NR_CURSEG_DATA_TYPE;
1169	else
1170		end = type + NR_CURSEG_NODE_TYPE;
1171
1172	for (i = type; i < end; i++) {
1173		struct curseg_info *sum = CURSEG_I(sbi, i);
1174		mutex_lock(&sum->curseg_mutex);
1175		write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1176		mutex_unlock(&sum->curseg_mutex);
1177	}
1178}
1179
1180void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1181{
1182	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1183		write_compacted_summaries(sbi, start_blk);
1184	else
1185		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1186}
1187
1188void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1189{
1190	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1191		write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1192}
1193
1194int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1195					unsigned int val, int alloc)
1196{
1197	int i;
1198
1199	if (type == NAT_JOURNAL) {
1200		for (i = 0; i < nats_in_cursum(sum); i++) {
1201			if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1202				return i;
1203		}
1204		if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1205			return update_nats_in_cursum(sum, 1);
1206	} else if (type == SIT_JOURNAL) {
1207		for (i = 0; i < sits_in_cursum(sum); i++)
1208			if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1209				return i;
1210		if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1211			return update_sits_in_cursum(sum, 1);
1212	}
1213	return -1;
1214}
1215
1216static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1217					unsigned int segno)
1218{
1219	struct sit_info *sit_i = SIT_I(sbi);
1220	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1221	block_t blk_addr = sit_i->sit_base_addr + offset;
1222
1223	check_seg_range(sbi, segno);
1224
1225	/* calculate sit block address */
1226	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1227		blk_addr += sit_i->sit_blocks;
1228
1229	return get_meta_page(sbi, blk_addr);
1230}
1231
1232static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1233					unsigned int start)
1234{
1235	struct sit_info *sit_i = SIT_I(sbi);
1236	struct page *src_page, *dst_page;
1237	pgoff_t src_off, dst_off;
1238	void *src_addr, *dst_addr;
1239
1240	src_off = current_sit_addr(sbi, start);
1241	dst_off = next_sit_addr(sbi, src_off);
1242
1243	/* get current sit block page without lock */
1244	src_page = get_meta_page(sbi, src_off);
1245	dst_page = grab_meta_page(sbi, dst_off);
1246	f2fs_bug_on(PageDirty(src_page));
1247
1248	src_addr = page_address(src_page);
1249	dst_addr = page_address(dst_page);
1250	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1251
1252	set_page_dirty(dst_page);
1253	f2fs_put_page(src_page, 1);
1254
1255	set_to_next_sit(sit_i, start);
1256
1257	return dst_page;
1258}
1259
1260static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1261{
1262	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1263	struct f2fs_summary_block *sum = curseg->sum_blk;
1264	int i;
1265
1266	/*
1267	 * If the journal area in the current summary is full of sit entries,
1268	 * all the sit entries will be flushed. Otherwise the sit entries
1269	 * are not able to replace with newly hot sit entries.
1270	 */
1271	if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1272		for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1273			unsigned int segno;
1274			segno = le32_to_cpu(segno_in_journal(sum, i));
1275			__mark_sit_entry_dirty(sbi, segno);
1276		}
1277		update_sits_in_cursum(sum, -sits_in_cursum(sum));
1278		return true;
1279	}
1280	return false;
1281}
1282
1283/*
1284 * CP calls this function, which flushes SIT entries including sit_journal,
1285 * and moves prefree segs to free segs.
1286 */
1287void flush_sit_entries(struct f2fs_sb_info *sbi)
1288{
1289	struct sit_info *sit_i = SIT_I(sbi);
1290	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1291	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1292	struct f2fs_summary_block *sum = curseg->sum_blk;
1293	unsigned long nsegs = TOTAL_SEGS(sbi);
1294	struct page *page = NULL;
1295	struct f2fs_sit_block *raw_sit = NULL;
1296	unsigned int start = 0, end = 0;
1297	unsigned int segno = -1;
1298	bool flushed;
1299
1300	mutex_lock(&curseg->curseg_mutex);
1301	mutex_lock(&sit_i->sentry_lock);
1302
1303	/*
1304	 * "flushed" indicates whether sit entries in journal are flushed
1305	 * to the SIT area or not.
1306	 */
1307	flushed = flush_sits_in_journal(sbi);
1308
1309	while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1310		struct seg_entry *se = get_seg_entry(sbi, segno);
1311		int sit_offset, offset;
1312
1313		sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1314
1315		if (flushed)
1316			goto to_sit_page;
1317
1318		offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1319		if (offset >= 0) {
1320			segno_in_journal(sum, offset) = cpu_to_le32(segno);
1321			seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1322			goto flush_done;
1323		}
1324to_sit_page:
1325		if (!page || (start > segno) || (segno > end)) {
1326			if (page) {
1327				f2fs_put_page(page, 1);
1328				page = NULL;
1329			}
1330
1331			start = START_SEGNO(sit_i, segno);
1332			end = start + SIT_ENTRY_PER_BLOCK - 1;
1333
1334			/* read sit block that will be updated */
1335			page = get_next_sit_page(sbi, start);
1336			raw_sit = page_address(page);
1337		}
1338
1339		/* udpate entry in SIT block */
1340		seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1341flush_done:
1342		__clear_bit(segno, bitmap);
1343		sit_i->dirty_sentries--;
1344	}
1345	mutex_unlock(&sit_i->sentry_lock);
1346	mutex_unlock(&curseg->curseg_mutex);
1347
1348	/* writeout last modified SIT block */
1349	f2fs_put_page(page, 1);
1350
1351	set_prefree_as_free_segments(sbi);
1352}
1353
1354static int build_sit_info(struct f2fs_sb_info *sbi)
1355{
1356	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1357	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1358	struct sit_info *sit_i;
1359	unsigned int sit_segs, start;
1360	char *src_bitmap, *dst_bitmap;
1361	unsigned int bitmap_size;
1362
1363	/* allocate memory for SIT information */
1364	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1365	if (!sit_i)
1366		return -ENOMEM;
1367
1368	SM_I(sbi)->sit_info = sit_i;
1369
1370	sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1371	if (!sit_i->sentries)
1372		return -ENOMEM;
1373
1374	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1375	sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1376	if (!sit_i->dirty_sentries_bitmap)
1377		return -ENOMEM;
1378
1379	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1380		sit_i->sentries[start].cur_valid_map
1381			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1382		sit_i->sentries[start].ckpt_valid_map
1383			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1384		if (!sit_i->sentries[start].cur_valid_map
1385				|| !sit_i->sentries[start].ckpt_valid_map)
1386			return -ENOMEM;
1387	}
1388
1389	if (sbi->segs_per_sec > 1) {
1390		sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1391					sizeof(struct sec_entry));
1392		if (!sit_i->sec_entries)
1393			return -ENOMEM;
1394	}
1395
1396	/* get information related with SIT */
1397	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1398
1399	/* setup SIT bitmap from ckeckpoint pack */
1400	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1401	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1402
1403	dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1404	if (!dst_bitmap)
1405		return -ENOMEM;
1406
1407	/* init SIT information */
1408	sit_i->s_ops = &default_salloc_ops;
1409
1410	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1411	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1412	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1413	sit_i->sit_bitmap = dst_bitmap;
1414	sit_i->bitmap_size = bitmap_size;
1415	sit_i->dirty_sentries = 0;
1416	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1417	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1418	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1419	mutex_init(&sit_i->sentry_lock);
1420	return 0;
1421}
1422
1423static int build_free_segmap(struct f2fs_sb_info *sbi)
1424{
1425	struct f2fs_sm_info *sm_info = SM_I(sbi);
1426	struct free_segmap_info *free_i;
1427	unsigned int bitmap_size, sec_bitmap_size;
1428
1429	/* allocate memory for free segmap information */
1430	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1431	if (!free_i)
1432		return -ENOMEM;
1433
1434	SM_I(sbi)->free_info = free_i;
1435
1436	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1437	free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1438	if (!free_i->free_segmap)
1439		return -ENOMEM;
1440
1441	sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1442	free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1443	if (!free_i->free_secmap)
1444		return -ENOMEM;
1445
1446	/* set all segments as dirty temporarily */
1447	memset(free_i->free_segmap, 0xff, bitmap_size);
1448	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1449
1450	/* init free segmap information */
1451	free_i->start_segno =
1452		(unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1453	free_i->free_segments = 0;
1454	free_i->free_sections = 0;
1455	rwlock_init(&free_i->segmap_lock);
1456	return 0;
1457}
1458
1459static int build_curseg(struct f2fs_sb_info *sbi)
1460{
1461	struct curseg_info *array;
1462	int i;
1463
1464	array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1465	if (!array)
1466		return -ENOMEM;
1467
1468	SM_I(sbi)->curseg_array = array;
1469
1470	for (i = 0; i < NR_CURSEG_TYPE; i++) {
1471		mutex_init(&array[i].curseg_mutex);
1472		array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1473		if (!array[i].sum_blk)
1474			return -ENOMEM;
1475		array[i].segno = NULL_SEGNO;
1476		array[i].next_blkoff = 0;
1477	}
1478	return restore_curseg_summaries(sbi);
1479}
1480
1481static void build_sit_entries(struct f2fs_sb_info *sbi)
1482{
1483	struct sit_info *sit_i = SIT_I(sbi);
1484	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1485	struct f2fs_summary_block *sum = curseg->sum_blk;
1486	unsigned int start;
1487
1488	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1489		struct seg_entry *se = &sit_i->sentries[start];
1490		struct f2fs_sit_block *sit_blk;
1491		struct f2fs_sit_entry sit;
1492		struct page *page;
1493		int i;
1494
1495		mutex_lock(&curseg->curseg_mutex);
1496		for (i = 0; i < sits_in_cursum(sum); i++) {
1497			if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1498				sit = sit_in_journal(sum, i);
1499				mutex_unlock(&curseg->curseg_mutex);
1500				goto got_it;
1501			}
1502		}
1503		mutex_unlock(&curseg->curseg_mutex);
1504		page = get_current_sit_page(sbi, start);
1505		sit_blk = (struct f2fs_sit_block *)page_address(page);
1506		sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1507		f2fs_put_page(page, 1);
1508got_it:
1509		check_block_count(sbi, start, &sit);
1510		seg_info_from_raw_sit(se, &sit);
1511		if (sbi->segs_per_sec > 1) {
1512			struct sec_entry *e = get_sec_entry(sbi, start);
1513			e->valid_blocks += se->valid_blocks;
1514		}
1515	}
1516}
1517
1518static void init_free_segmap(struct f2fs_sb_info *sbi)
1519{
1520	unsigned int start;
1521	int type;
1522
1523	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1524		struct seg_entry *sentry = get_seg_entry(sbi, start);
1525		if (!sentry->valid_blocks)
1526			__set_free(sbi, start);
1527	}
1528
1529	/* set use the current segments */
1530	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1531		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1532		__set_test_and_inuse(sbi, curseg_t->segno);
1533	}
1534}
1535
1536static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1537{
1538	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1539	struct free_segmap_info *free_i = FREE_I(sbi);
1540	unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1541	unsigned short valid_blocks;
1542
1543	while (1) {
1544		/* find dirty segment based on free segmap */
1545		segno = find_next_inuse(free_i, total_segs, offset);
1546		if (segno >= total_segs)
1547			break;
1548		offset = segno + 1;
1549		valid_blocks = get_valid_blocks(sbi, segno, 0);
1550		if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1551			continue;
1552		mutex_lock(&dirty_i->seglist_lock);
1553		__locate_dirty_segment(sbi, segno, DIRTY);
1554		mutex_unlock(&dirty_i->seglist_lock);
1555	}
1556}
1557
1558static int init_victim_secmap(struct f2fs_sb_info *sbi)
1559{
1560	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1561	unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1562
1563	dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1564	if (!dirty_i->victim_secmap)
1565		return -ENOMEM;
1566	return 0;
1567}
1568
1569static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1570{
1571	struct dirty_seglist_info *dirty_i;
1572	unsigned int bitmap_size, i;
1573
1574	/* allocate memory for dirty segments list information */
1575	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1576	if (!dirty_i)
1577		return -ENOMEM;
1578
1579	SM_I(sbi)->dirty_info = dirty_i;
1580	mutex_init(&dirty_i->seglist_lock);
1581
1582	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1583
1584	for (i = 0; i < NR_DIRTY_TYPE; i++) {
1585		dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1586		if (!dirty_i->dirty_segmap[i])
1587			return -ENOMEM;
1588	}
1589
1590	init_dirty_segmap(sbi);
1591	return init_victim_secmap(sbi);
1592}
1593
1594/*
1595 * Update min, max modified time for cost-benefit GC algorithm
1596 */
1597static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1598{
1599	struct sit_info *sit_i = SIT_I(sbi);
1600	unsigned int segno;
1601
1602	mutex_lock(&sit_i->sentry_lock);
1603
1604	sit_i->min_mtime = LLONG_MAX;
1605
1606	for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1607		unsigned int i;
1608		unsigned long long mtime = 0;
1609
1610		for (i = 0; i < sbi->segs_per_sec; i++)
1611			mtime += get_seg_entry(sbi, segno + i)->mtime;
1612
1613		mtime = div_u64(mtime, sbi->segs_per_sec);
1614
1615		if (sit_i->min_mtime > mtime)
1616			sit_i->min_mtime = mtime;
1617	}
1618	sit_i->max_mtime = get_mtime(sbi);
1619	mutex_unlock(&sit_i->sentry_lock);
1620}
1621
1622int build_segment_manager(struct f2fs_sb_info *sbi)
1623{
1624	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1625	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1626	struct f2fs_sm_info *sm_info;
1627	int err;
1628
1629	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1630	if (!sm_info)
1631		return -ENOMEM;
1632
1633	/* init sm info */
1634	sbi->sm_info = sm_info;
1635	INIT_LIST_HEAD(&sm_info->wblist_head);
1636	spin_lock_init(&sm_info->wblist_lock);
1637	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1638	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1639	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1640	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1641	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1642	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1643	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1644	sm_info->rec_prefree_segments = DEF_RECLAIM_PREFREE_SEGMENTS;
1645
1646	err = build_sit_info(sbi);
1647	if (err)
1648		return err;
1649	err = build_free_segmap(sbi);
1650	if (err)
1651		return err;
1652	err = build_curseg(sbi);
1653	if (err)
1654		return err;
1655
1656	/* reinit free segmap based on SIT */
1657	build_sit_entries(sbi);
1658
1659	init_free_segmap(sbi);
1660	err = build_dirty_segmap(sbi);
1661	if (err)
1662		return err;
1663
1664	init_min_max_mtime(sbi);
1665	return 0;
1666}
1667
1668static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1669		enum dirty_type dirty_type)
1670{
1671	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1672
1673	mutex_lock(&dirty_i->seglist_lock);
1674	kfree(dirty_i->dirty_segmap[dirty_type]);
1675	dirty_i->nr_dirty[dirty_type] = 0;
1676	mutex_unlock(&dirty_i->seglist_lock);
1677}
1678
1679static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1680{
1681	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1682	kfree(dirty_i->victim_secmap);
1683}
1684
1685static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1686{
1687	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1688	int i;
1689
1690	if (!dirty_i)
1691		return;
1692
1693	/* discard pre-free/dirty segments list */
1694	for (i = 0; i < NR_DIRTY_TYPE; i++)
1695		discard_dirty_segmap(sbi, i);
1696
1697	destroy_victim_secmap(sbi);
1698	SM_I(sbi)->dirty_info = NULL;
1699	kfree(dirty_i);
1700}
1701
1702static void destroy_curseg(struct f2fs_sb_info *sbi)
1703{
1704	struct curseg_info *array = SM_I(sbi)->curseg_array;
1705	int i;
1706
1707	if (!array)
1708		return;
1709	SM_I(sbi)->curseg_array = NULL;
1710	for (i = 0; i < NR_CURSEG_TYPE; i++)
1711		kfree(array[i].sum_blk);
1712	kfree(array);
1713}
1714
1715static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1716{
1717	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1718	if (!free_i)
1719		return;
1720	SM_I(sbi)->free_info = NULL;
1721	kfree(free_i->free_segmap);
1722	kfree(free_i->free_secmap);
1723	kfree(free_i);
1724}
1725
1726static void destroy_sit_info(struct f2fs_sb_info *sbi)
1727{
1728	struct sit_info *sit_i = SIT_I(sbi);
1729	unsigned int start;
1730
1731	if (!sit_i)
1732		return;
1733
1734	if (sit_i->sentries) {
1735		for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1736			kfree(sit_i->sentries[start].cur_valid_map);
1737			kfree(sit_i->sentries[start].ckpt_valid_map);
1738		}
1739	}
1740	vfree(sit_i->sentries);
1741	vfree(sit_i->sec_entries);
1742	kfree(sit_i->dirty_sentries_bitmap);
1743
1744	SM_I(sbi)->sit_info = NULL;
1745	kfree(sit_i->sit_bitmap);
1746	kfree(sit_i);
1747}
1748
1749void destroy_segment_manager(struct f2fs_sb_info *sbi)
1750{
1751	struct f2fs_sm_info *sm_info = SM_I(sbi);
1752	if (!sm_info)
1753		return;
1754	destroy_dirty_segmap(sbi);
1755	destroy_curseg(sbi);
1756	destroy_free_segmap(sbi);
1757	destroy_sit_info(sbi);
1758	sbi->sm_info = NULL;
1759	kfree(sm_info);
1760}
1761