segment.c revision 6b4afdd794783fe515b50838aa36591e3feea990
1/*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 *             http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/bio.h>
14#include <linux/blkdev.h>
15#include <linux/prefetch.h>
16#include <linux/kthread.h>
17#include <linux/vmalloc.h>
18#include <linux/swap.h>
19
20#include "f2fs.h"
21#include "segment.h"
22#include "node.h"
23#include <trace/events/f2fs.h>
24
25#define __reverse_ffz(x) __reverse_ffs(~(x))
26
27static struct kmem_cache *discard_entry_slab;
28static struct kmem_cache *flush_cmd_slab;
29
30/*
31 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
32 * MSB and LSB are reversed in a byte by f2fs_set_bit.
33 */
34static inline unsigned long __reverse_ffs(unsigned long word)
35{
36	int num = 0;
37
38#if BITS_PER_LONG == 64
39	if ((word & 0xffffffff) == 0) {
40		num += 32;
41		word >>= 32;
42	}
43#endif
44	if ((word & 0xffff) == 0) {
45		num += 16;
46		word >>= 16;
47	}
48	if ((word & 0xff) == 0) {
49		num += 8;
50		word >>= 8;
51	}
52	if ((word & 0xf0) == 0)
53		num += 4;
54	else
55		word >>= 4;
56	if ((word & 0xc) == 0)
57		num += 2;
58	else
59		word >>= 2;
60	if ((word & 0x2) == 0)
61		num += 1;
62	return num;
63}
64
65/*
66 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c becasue
67 * f2fs_set_bit makes MSB and LSB reversed in a byte.
68 * Example:
69 *                             LSB <--> MSB
70 *   f2fs_set_bit(0, bitmap) => 0000 0001
71 *   f2fs_set_bit(7, bitmap) => 1000 0000
72 */
73static unsigned long __find_rev_next_bit(const unsigned long *addr,
74			unsigned long size, unsigned long offset)
75{
76	const unsigned long *p = addr + BIT_WORD(offset);
77	unsigned long result = offset & ~(BITS_PER_LONG - 1);
78	unsigned long tmp;
79	unsigned long mask, submask;
80	unsigned long quot, rest;
81
82	if (offset >= size)
83		return size;
84
85	size -= result;
86	offset %= BITS_PER_LONG;
87	if (!offset)
88		goto aligned;
89
90	tmp = *(p++);
91	quot = (offset >> 3) << 3;
92	rest = offset & 0x7;
93	mask = ~0UL << quot;
94	submask = (unsigned char)(0xff << rest) >> rest;
95	submask <<= quot;
96	mask &= submask;
97	tmp &= mask;
98	if (size < BITS_PER_LONG)
99		goto found_first;
100	if (tmp)
101		goto found_middle;
102
103	size -= BITS_PER_LONG;
104	result += BITS_PER_LONG;
105aligned:
106	while (size & ~(BITS_PER_LONG-1)) {
107		tmp = *(p++);
108		if (tmp)
109			goto found_middle;
110		result += BITS_PER_LONG;
111		size -= BITS_PER_LONG;
112	}
113	if (!size)
114		return result;
115	tmp = *p;
116found_first:
117	tmp &= (~0UL >> (BITS_PER_LONG - size));
118	if (tmp == 0UL)		/* Are any bits set? */
119		return result + size;   /* Nope. */
120found_middle:
121	return result + __reverse_ffs(tmp);
122}
123
124static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
125			unsigned long size, unsigned long offset)
126{
127	const unsigned long *p = addr + BIT_WORD(offset);
128	unsigned long result = offset & ~(BITS_PER_LONG - 1);
129	unsigned long tmp;
130	unsigned long mask, submask;
131	unsigned long quot, rest;
132
133	if (offset >= size)
134		return size;
135
136	size -= result;
137	offset %= BITS_PER_LONG;
138	if (!offset)
139		goto aligned;
140
141	tmp = *(p++);
142	quot = (offset >> 3) << 3;
143	rest = offset & 0x7;
144	mask = ~(~0UL << quot);
145	submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
146	submask <<= quot;
147	mask += submask;
148	tmp |= mask;
149	if (size < BITS_PER_LONG)
150		goto found_first;
151	if (~tmp)
152		goto found_middle;
153
154	size -= BITS_PER_LONG;
155	result += BITS_PER_LONG;
156aligned:
157	while (size & ~(BITS_PER_LONG - 1)) {
158		tmp = *(p++);
159		if (~tmp)
160			goto found_middle;
161		result += BITS_PER_LONG;
162		size -= BITS_PER_LONG;
163	}
164	if (!size)
165		return result;
166	tmp = *p;
167
168found_first:
169	tmp |= ~0UL << size;
170	if (tmp == ~0UL)        /* Are any bits zero? */
171		return result + size;   /* Nope. */
172found_middle:
173	return result + __reverse_ffz(tmp);
174}
175
176/*
177 * This function balances dirty node and dentry pages.
178 * In addition, it controls garbage collection.
179 */
180void f2fs_balance_fs(struct f2fs_sb_info *sbi)
181{
182	/*
183	 * We should do GC or end up with checkpoint, if there are so many dirty
184	 * dir/node pages without enough free segments.
185	 */
186	if (has_not_enough_free_secs(sbi, 0)) {
187		mutex_lock(&sbi->gc_mutex);
188		f2fs_gc(sbi);
189	}
190}
191
192void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
193{
194	/* check the # of cached NAT entries and prefree segments */
195	if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
196				excess_prefree_segs(sbi))
197		f2fs_sync_fs(sbi->sb, true);
198}
199
200static int issue_flush_thread(void *data)
201{
202	struct f2fs_sb_info *sbi = data;
203	struct f2fs_sm_info *sm_i = SM_I(sbi);
204	wait_queue_head_t *q = &sm_i->flush_wait_queue;
205repeat:
206	if (kthread_should_stop())
207		return 0;
208
209	spin_lock(&sm_i->issue_lock);
210	if (sm_i->issue_list) {
211		sm_i->dispatch_list = sm_i->issue_list;
212		sm_i->issue_list = sm_i->issue_tail = NULL;
213	}
214	spin_unlock(&sm_i->issue_lock);
215
216	if (sm_i->dispatch_list) {
217		struct bio *bio = bio_alloc(GFP_NOIO, 0);
218		struct flush_cmd *cmd, *next;
219		int ret;
220
221		bio->bi_bdev = sbi->sb->s_bdev;
222		ret = submit_bio_wait(WRITE_FLUSH, bio);
223
224		for (cmd = sm_i->dispatch_list; cmd; cmd = next) {
225			cmd->ret = ret;
226			next = cmd->next;
227			complete(&cmd->wait);
228		}
229		sm_i->dispatch_list = NULL;
230	}
231
232	wait_event_interruptible(*q, kthread_should_stop() || sm_i->issue_list);
233	goto repeat;
234}
235
236int f2fs_issue_flush(struct f2fs_sb_info *sbi)
237{
238	struct f2fs_sm_info *sm_i = SM_I(sbi);
239	struct flush_cmd *cmd;
240	int ret;
241
242	if (!test_opt(sbi, FLUSH_MERGE))
243		return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL);
244
245	cmd = f2fs_kmem_cache_alloc(flush_cmd_slab, GFP_ATOMIC);
246	cmd->next = NULL;
247	cmd->ret = 0;
248	init_completion(&cmd->wait);
249
250	spin_lock(&sm_i->issue_lock);
251	if (sm_i->issue_list)
252		sm_i->issue_tail->next = cmd;
253	else
254		sm_i->issue_list = cmd;
255	sm_i->issue_tail = cmd;
256	spin_unlock(&sm_i->issue_lock);
257
258	if (!sm_i->dispatch_list)
259		wake_up(&sm_i->flush_wait_queue);
260
261	wait_for_completion(&cmd->wait);
262	ret = cmd->ret;
263	kmem_cache_free(flush_cmd_slab, cmd);
264	return ret;
265}
266
267static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
268		enum dirty_type dirty_type)
269{
270	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
271
272	/* need not be added */
273	if (IS_CURSEG(sbi, segno))
274		return;
275
276	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
277		dirty_i->nr_dirty[dirty_type]++;
278
279	if (dirty_type == DIRTY) {
280		struct seg_entry *sentry = get_seg_entry(sbi, segno);
281		enum dirty_type t = sentry->type;
282
283		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
284			dirty_i->nr_dirty[t]++;
285	}
286}
287
288static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
289		enum dirty_type dirty_type)
290{
291	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
292
293	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
294		dirty_i->nr_dirty[dirty_type]--;
295
296	if (dirty_type == DIRTY) {
297		struct seg_entry *sentry = get_seg_entry(sbi, segno);
298		enum dirty_type t = sentry->type;
299
300		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
301			dirty_i->nr_dirty[t]--;
302
303		if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
304			clear_bit(GET_SECNO(sbi, segno),
305						dirty_i->victim_secmap);
306	}
307}
308
309/*
310 * Should not occur error such as -ENOMEM.
311 * Adding dirty entry into seglist is not critical operation.
312 * If a given segment is one of current working segments, it won't be added.
313 */
314static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
315{
316	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
317	unsigned short valid_blocks;
318
319	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
320		return;
321
322	mutex_lock(&dirty_i->seglist_lock);
323
324	valid_blocks = get_valid_blocks(sbi, segno, 0);
325
326	if (valid_blocks == 0) {
327		__locate_dirty_segment(sbi, segno, PRE);
328		__remove_dirty_segment(sbi, segno, DIRTY);
329	} else if (valid_blocks < sbi->blocks_per_seg) {
330		__locate_dirty_segment(sbi, segno, DIRTY);
331	} else {
332		/* Recovery routine with SSR needs this */
333		__remove_dirty_segment(sbi, segno, DIRTY);
334	}
335
336	mutex_unlock(&dirty_i->seglist_lock);
337}
338
339static void f2fs_issue_discard(struct f2fs_sb_info *sbi,
340				block_t blkstart, block_t blklen)
341{
342	sector_t start = SECTOR_FROM_BLOCK(sbi, blkstart);
343	sector_t len = SECTOR_FROM_BLOCK(sbi, blklen);
344	blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
345	trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
346}
347
348static void add_discard_addrs(struct f2fs_sb_info *sbi,
349			unsigned int segno, struct seg_entry *se)
350{
351	struct list_head *head = &SM_I(sbi)->discard_list;
352	struct discard_entry *new;
353	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
354	int max_blocks = sbi->blocks_per_seg;
355	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
356	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
357	unsigned long dmap[entries];
358	unsigned int start = 0, end = -1;
359	int i;
360
361	if (!test_opt(sbi, DISCARD))
362		return;
363
364	/* zero block will be discarded through the prefree list */
365	if (!se->valid_blocks || se->valid_blocks == max_blocks)
366		return;
367
368	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
369	for (i = 0; i < entries; i++)
370		dmap[i] = (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
371
372	while (SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
373		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
374		if (start >= max_blocks)
375			break;
376
377		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
378
379		new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
380		INIT_LIST_HEAD(&new->list);
381		new->blkaddr = START_BLOCK(sbi, segno) + start;
382		new->len = end - start;
383
384		list_add_tail(&new->list, head);
385		SM_I(sbi)->nr_discards += end - start;
386	}
387}
388
389/*
390 * Should call clear_prefree_segments after checkpoint is done.
391 */
392static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
393{
394	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
395	unsigned int segno = -1;
396	unsigned int total_segs = TOTAL_SEGS(sbi);
397
398	mutex_lock(&dirty_i->seglist_lock);
399	while (1) {
400		segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
401				segno + 1);
402		if (segno >= total_segs)
403			break;
404		__set_test_and_free(sbi, segno);
405	}
406	mutex_unlock(&dirty_i->seglist_lock);
407}
408
409void clear_prefree_segments(struct f2fs_sb_info *sbi)
410{
411	struct list_head *head = &(SM_I(sbi)->discard_list);
412	struct discard_entry *entry, *this;
413	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
414	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
415	unsigned int total_segs = TOTAL_SEGS(sbi);
416	unsigned int start = 0, end = -1;
417
418	mutex_lock(&dirty_i->seglist_lock);
419
420	while (1) {
421		int i;
422		start = find_next_bit(prefree_map, total_segs, end + 1);
423		if (start >= total_segs)
424			break;
425		end = find_next_zero_bit(prefree_map, total_segs, start + 1);
426
427		for (i = start; i < end; i++)
428			clear_bit(i, prefree_map);
429
430		dirty_i->nr_dirty[PRE] -= end - start;
431
432		if (!test_opt(sbi, DISCARD))
433			continue;
434
435		f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
436				(end - start) << sbi->log_blocks_per_seg);
437	}
438	mutex_unlock(&dirty_i->seglist_lock);
439
440	/* send small discards */
441	list_for_each_entry_safe(entry, this, head, list) {
442		f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
443		list_del(&entry->list);
444		SM_I(sbi)->nr_discards -= entry->len;
445		kmem_cache_free(discard_entry_slab, entry);
446	}
447}
448
449static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
450{
451	struct sit_info *sit_i = SIT_I(sbi);
452	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
453		sit_i->dirty_sentries++;
454}
455
456static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
457					unsigned int segno, int modified)
458{
459	struct seg_entry *se = get_seg_entry(sbi, segno);
460	se->type = type;
461	if (modified)
462		__mark_sit_entry_dirty(sbi, segno);
463}
464
465static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
466{
467	struct seg_entry *se;
468	unsigned int segno, offset;
469	long int new_vblocks;
470
471	segno = GET_SEGNO(sbi, blkaddr);
472
473	se = get_seg_entry(sbi, segno);
474	new_vblocks = se->valid_blocks + del;
475	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
476
477	f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) ||
478				(new_vblocks > sbi->blocks_per_seg)));
479
480	se->valid_blocks = new_vblocks;
481	se->mtime = get_mtime(sbi);
482	SIT_I(sbi)->max_mtime = se->mtime;
483
484	/* Update valid block bitmap */
485	if (del > 0) {
486		if (f2fs_set_bit(offset, se->cur_valid_map))
487			BUG();
488	} else {
489		if (!f2fs_clear_bit(offset, se->cur_valid_map))
490			BUG();
491	}
492	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
493		se->ckpt_valid_blocks += del;
494
495	__mark_sit_entry_dirty(sbi, segno);
496
497	/* update total number of valid blocks to be written in ckpt area */
498	SIT_I(sbi)->written_valid_blocks += del;
499
500	if (sbi->segs_per_sec > 1)
501		get_sec_entry(sbi, segno)->valid_blocks += del;
502}
503
504void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
505{
506	update_sit_entry(sbi, new, 1);
507	if (GET_SEGNO(sbi, old) != NULL_SEGNO)
508		update_sit_entry(sbi, old, -1);
509
510	locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
511	locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
512}
513
514void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
515{
516	unsigned int segno = GET_SEGNO(sbi, addr);
517	struct sit_info *sit_i = SIT_I(sbi);
518
519	f2fs_bug_on(addr == NULL_ADDR);
520	if (addr == NEW_ADDR)
521		return;
522
523	/* add it into sit main buffer */
524	mutex_lock(&sit_i->sentry_lock);
525
526	update_sit_entry(sbi, addr, -1);
527
528	/* add it into dirty seglist */
529	locate_dirty_segment(sbi, segno);
530
531	mutex_unlock(&sit_i->sentry_lock);
532}
533
534/*
535 * This function should be resided under the curseg_mutex lock
536 */
537static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
538					struct f2fs_summary *sum)
539{
540	struct curseg_info *curseg = CURSEG_I(sbi, type);
541	void *addr = curseg->sum_blk;
542	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
543	memcpy(addr, sum, sizeof(struct f2fs_summary));
544}
545
546/*
547 * Calculate the number of current summary pages for writing
548 */
549int npages_for_summary_flush(struct f2fs_sb_info *sbi)
550{
551	int valid_sum_count = 0;
552	int i, sum_in_page;
553
554	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
555		if (sbi->ckpt->alloc_type[i] == SSR)
556			valid_sum_count += sbi->blocks_per_seg;
557		else
558			valid_sum_count += curseg_blkoff(sbi, i);
559	}
560
561	sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
562			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
563	if (valid_sum_count <= sum_in_page)
564		return 1;
565	else if ((valid_sum_count - sum_in_page) <=
566		(PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
567		return 2;
568	return 3;
569}
570
571/*
572 * Caller should put this summary page
573 */
574struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
575{
576	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
577}
578
579static void write_sum_page(struct f2fs_sb_info *sbi,
580			struct f2fs_summary_block *sum_blk, block_t blk_addr)
581{
582	struct page *page = grab_meta_page(sbi, blk_addr);
583	void *kaddr = page_address(page);
584	memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
585	set_page_dirty(page);
586	f2fs_put_page(page, 1);
587}
588
589static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
590{
591	struct curseg_info *curseg = CURSEG_I(sbi, type);
592	unsigned int segno = curseg->segno + 1;
593	struct free_segmap_info *free_i = FREE_I(sbi);
594
595	if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
596		return !test_bit(segno, free_i->free_segmap);
597	return 0;
598}
599
600/*
601 * Find a new segment from the free segments bitmap to right order
602 * This function should be returned with success, otherwise BUG
603 */
604static void get_new_segment(struct f2fs_sb_info *sbi,
605			unsigned int *newseg, bool new_sec, int dir)
606{
607	struct free_segmap_info *free_i = FREE_I(sbi);
608	unsigned int segno, secno, zoneno;
609	unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
610	unsigned int hint = *newseg / sbi->segs_per_sec;
611	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
612	unsigned int left_start = hint;
613	bool init = true;
614	int go_left = 0;
615	int i;
616
617	write_lock(&free_i->segmap_lock);
618
619	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
620		segno = find_next_zero_bit(free_i->free_segmap,
621					TOTAL_SEGS(sbi), *newseg + 1);
622		if (segno - *newseg < sbi->segs_per_sec -
623					(*newseg % sbi->segs_per_sec))
624			goto got_it;
625	}
626find_other_zone:
627	secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
628	if (secno >= TOTAL_SECS(sbi)) {
629		if (dir == ALLOC_RIGHT) {
630			secno = find_next_zero_bit(free_i->free_secmap,
631							TOTAL_SECS(sbi), 0);
632			f2fs_bug_on(secno >= TOTAL_SECS(sbi));
633		} else {
634			go_left = 1;
635			left_start = hint - 1;
636		}
637	}
638	if (go_left == 0)
639		goto skip_left;
640
641	while (test_bit(left_start, free_i->free_secmap)) {
642		if (left_start > 0) {
643			left_start--;
644			continue;
645		}
646		left_start = find_next_zero_bit(free_i->free_secmap,
647							TOTAL_SECS(sbi), 0);
648		f2fs_bug_on(left_start >= TOTAL_SECS(sbi));
649		break;
650	}
651	secno = left_start;
652skip_left:
653	hint = secno;
654	segno = secno * sbi->segs_per_sec;
655	zoneno = secno / sbi->secs_per_zone;
656
657	/* give up on finding another zone */
658	if (!init)
659		goto got_it;
660	if (sbi->secs_per_zone == 1)
661		goto got_it;
662	if (zoneno == old_zoneno)
663		goto got_it;
664	if (dir == ALLOC_LEFT) {
665		if (!go_left && zoneno + 1 >= total_zones)
666			goto got_it;
667		if (go_left && zoneno == 0)
668			goto got_it;
669	}
670	for (i = 0; i < NR_CURSEG_TYPE; i++)
671		if (CURSEG_I(sbi, i)->zone == zoneno)
672			break;
673
674	if (i < NR_CURSEG_TYPE) {
675		/* zone is in user, try another */
676		if (go_left)
677			hint = zoneno * sbi->secs_per_zone - 1;
678		else if (zoneno + 1 >= total_zones)
679			hint = 0;
680		else
681			hint = (zoneno + 1) * sbi->secs_per_zone;
682		init = false;
683		goto find_other_zone;
684	}
685got_it:
686	/* set it as dirty segment in free segmap */
687	f2fs_bug_on(test_bit(segno, free_i->free_segmap));
688	__set_inuse(sbi, segno);
689	*newseg = segno;
690	write_unlock(&free_i->segmap_lock);
691}
692
693static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
694{
695	struct curseg_info *curseg = CURSEG_I(sbi, type);
696	struct summary_footer *sum_footer;
697
698	curseg->segno = curseg->next_segno;
699	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
700	curseg->next_blkoff = 0;
701	curseg->next_segno = NULL_SEGNO;
702
703	sum_footer = &(curseg->sum_blk->footer);
704	memset(sum_footer, 0, sizeof(struct summary_footer));
705	if (IS_DATASEG(type))
706		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
707	if (IS_NODESEG(type))
708		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
709	__set_sit_entry_type(sbi, type, curseg->segno, modified);
710}
711
712/*
713 * Allocate a current working segment.
714 * This function always allocates a free segment in LFS manner.
715 */
716static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
717{
718	struct curseg_info *curseg = CURSEG_I(sbi, type);
719	unsigned int segno = curseg->segno;
720	int dir = ALLOC_LEFT;
721
722	write_sum_page(sbi, curseg->sum_blk,
723				GET_SUM_BLOCK(sbi, segno));
724	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
725		dir = ALLOC_RIGHT;
726
727	if (test_opt(sbi, NOHEAP))
728		dir = ALLOC_RIGHT;
729
730	get_new_segment(sbi, &segno, new_sec, dir);
731	curseg->next_segno = segno;
732	reset_curseg(sbi, type, 1);
733	curseg->alloc_type = LFS;
734}
735
736static void __next_free_blkoff(struct f2fs_sb_info *sbi,
737			struct curseg_info *seg, block_t start)
738{
739	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
740	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
741	unsigned long target_map[entries];
742	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
743	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
744	int i, pos;
745
746	for (i = 0; i < entries; i++)
747		target_map[i] = ckpt_map[i] | cur_map[i];
748
749	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
750
751	seg->next_blkoff = pos;
752}
753
754/*
755 * If a segment is written by LFS manner, next block offset is just obtained
756 * by increasing the current block offset. However, if a segment is written by
757 * SSR manner, next block offset obtained by calling __next_free_blkoff
758 */
759static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
760				struct curseg_info *seg)
761{
762	if (seg->alloc_type == SSR)
763		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
764	else
765		seg->next_blkoff++;
766}
767
768/*
769 * This function always allocates a used segment (from dirty seglist) by SSR
770 * manner, so it should recover the existing segment information of valid blocks
771 */
772static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
773{
774	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
775	struct curseg_info *curseg = CURSEG_I(sbi, type);
776	unsigned int new_segno = curseg->next_segno;
777	struct f2fs_summary_block *sum_node;
778	struct page *sum_page;
779
780	write_sum_page(sbi, curseg->sum_blk,
781				GET_SUM_BLOCK(sbi, curseg->segno));
782	__set_test_and_inuse(sbi, new_segno);
783
784	mutex_lock(&dirty_i->seglist_lock);
785	__remove_dirty_segment(sbi, new_segno, PRE);
786	__remove_dirty_segment(sbi, new_segno, DIRTY);
787	mutex_unlock(&dirty_i->seglist_lock);
788
789	reset_curseg(sbi, type, 1);
790	curseg->alloc_type = SSR;
791	__next_free_blkoff(sbi, curseg, 0);
792
793	if (reuse) {
794		sum_page = get_sum_page(sbi, new_segno);
795		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
796		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
797		f2fs_put_page(sum_page, 1);
798	}
799}
800
801static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
802{
803	struct curseg_info *curseg = CURSEG_I(sbi, type);
804	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
805
806	if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
807		return v_ops->get_victim(sbi,
808				&(curseg)->next_segno, BG_GC, type, SSR);
809
810	/* For data segments, let's do SSR more intensively */
811	for (; type >= CURSEG_HOT_DATA; type--)
812		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
813						BG_GC, type, SSR))
814			return 1;
815	return 0;
816}
817
818/*
819 * flush out current segment and replace it with new segment
820 * This function should be returned with success, otherwise BUG
821 */
822static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
823						int type, bool force)
824{
825	struct curseg_info *curseg = CURSEG_I(sbi, type);
826
827	if (force)
828		new_curseg(sbi, type, true);
829	else if (type == CURSEG_WARM_NODE)
830		new_curseg(sbi, type, false);
831	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
832		new_curseg(sbi, type, false);
833	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
834		change_curseg(sbi, type, true);
835	else
836		new_curseg(sbi, type, false);
837
838	stat_inc_seg_type(sbi, curseg);
839}
840
841void allocate_new_segments(struct f2fs_sb_info *sbi)
842{
843	struct curseg_info *curseg;
844	unsigned int old_curseg;
845	int i;
846
847	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
848		curseg = CURSEG_I(sbi, i);
849		old_curseg = curseg->segno;
850		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
851		locate_dirty_segment(sbi, old_curseg);
852	}
853}
854
855static const struct segment_allocation default_salloc_ops = {
856	.allocate_segment = allocate_segment_by_default,
857};
858
859static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
860{
861	struct curseg_info *curseg = CURSEG_I(sbi, type);
862	if (curseg->next_blkoff < sbi->blocks_per_seg)
863		return true;
864	return false;
865}
866
867static int __get_segment_type_2(struct page *page, enum page_type p_type)
868{
869	if (p_type == DATA)
870		return CURSEG_HOT_DATA;
871	else
872		return CURSEG_HOT_NODE;
873}
874
875static int __get_segment_type_4(struct page *page, enum page_type p_type)
876{
877	if (p_type == DATA) {
878		struct inode *inode = page->mapping->host;
879
880		if (S_ISDIR(inode->i_mode))
881			return CURSEG_HOT_DATA;
882		else
883			return CURSEG_COLD_DATA;
884	} else {
885		if (IS_DNODE(page) && !is_cold_node(page))
886			return CURSEG_HOT_NODE;
887		else
888			return CURSEG_COLD_NODE;
889	}
890}
891
892static int __get_segment_type_6(struct page *page, enum page_type p_type)
893{
894	if (p_type == DATA) {
895		struct inode *inode = page->mapping->host;
896
897		if (S_ISDIR(inode->i_mode))
898			return CURSEG_HOT_DATA;
899		else if (is_cold_data(page) || file_is_cold(inode))
900			return CURSEG_COLD_DATA;
901		else
902			return CURSEG_WARM_DATA;
903	} else {
904		if (IS_DNODE(page))
905			return is_cold_node(page) ? CURSEG_WARM_NODE :
906						CURSEG_HOT_NODE;
907		else
908			return CURSEG_COLD_NODE;
909	}
910}
911
912static int __get_segment_type(struct page *page, enum page_type p_type)
913{
914	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
915	switch (sbi->active_logs) {
916	case 2:
917		return __get_segment_type_2(page, p_type);
918	case 4:
919		return __get_segment_type_4(page, p_type);
920	}
921	/* NR_CURSEG_TYPE(6) logs by default */
922	f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE);
923	return __get_segment_type_6(page, p_type);
924}
925
926void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
927		block_t old_blkaddr, block_t *new_blkaddr,
928		struct f2fs_summary *sum, int type)
929{
930	struct sit_info *sit_i = SIT_I(sbi);
931	struct curseg_info *curseg;
932	unsigned int old_cursegno;
933
934	curseg = CURSEG_I(sbi, type);
935
936	mutex_lock(&curseg->curseg_mutex);
937
938	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
939	old_cursegno = curseg->segno;
940
941	/*
942	 * __add_sum_entry should be resided under the curseg_mutex
943	 * because, this function updates a summary entry in the
944	 * current summary block.
945	 */
946	__add_sum_entry(sbi, type, sum);
947
948	mutex_lock(&sit_i->sentry_lock);
949	__refresh_next_blkoff(sbi, curseg);
950
951	stat_inc_block_count(sbi, curseg);
952
953	if (!__has_curseg_space(sbi, type))
954		sit_i->s_ops->allocate_segment(sbi, type, false);
955	/*
956	 * SIT information should be updated before segment allocation,
957	 * since SSR needs latest valid block information.
958	 */
959	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
960	locate_dirty_segment(sbi, old_cursegno);
961
962	mutex_unlock(&sit_i->sentry_lock);
963
964	if (page && IS_NODESEG(type))
965		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
966
967	mutex_unlock(&curseg->curseg_mutex);
968}
969
970static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
971			block_t old_blkaddr, block_t *new_blkaddr,
972			struct f2fs_summary *sum, struct f2fs_io_info *fio)
973{
974	int type = __get_segment_type(page, fio->type);
975
976	allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type);
977
978	/* writeout dirty page into bdev */
979	f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio);
980}
981
982void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
983{
984	struct f2fs_io_info fio = {
985		.type = META,
986		.rw = WRITE_SYNC | REQ_META | REQ_PRIO
987	};
988
989	set_page_writeback(page);
990	f2fs_submit_page_mbio(sbi, page, page->index, &fio);
991}
992
993void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
994		struct f2fs_io_info *fio,
995		unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
996{
997	struct f2fs_summary sum;
998	set_summary(&sum, nid, 0, 0);
999	do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio);
1000}
1001
1002void write_data_page(struct page *page, struct dnode_of_data *dn,
1003		block_t *new_blkaddr, struct f2fs_io_info *fio)
1004{
1005	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
1006	struct f2fs_summary sum;
1007	struct node_info ni;
1008
1009	f2fs_bug_on(dn->data_blkaddr == NULL_ADDR);
1010	get_node_info(sbi, dn->nid, &ni);
1011	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1012
1013	do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio);
1014}
1015
1016void rewrite_data_page(struct page *page, block_t old_blkaddr,
1017					struct f2fs_io_info *fio)
1018{
1019	struct inode *inode = page->mapping->host;
1020	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1021	f2fs_submit_page_mbio(sbi, page, old_blkaddr, fio);
1022}
1023
1024void recover_data_page(struct f2fs_sb_info *sbi,
1025			struct page *page, struct f2fs_summary *sum,
1026			block_t old_blkaddr, block_t new_blkaddr)
1027{
1028	struct sit_info *sit_i = SIT_I(sbi);
1029	struct curseg_info *curseg;
1030	unsigned int segno, old_cursegno;
1031	struct seg_entry *se;
1032	int type;
1033
1034	segno = GET_SEGNO(sbi, new_blkaddr);
1035	se = get_seg_entry(sbi, segno);
1036	type = se->type;
1037
1038	if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1039		if (old_blkaddr == NULL_ADDR)
1040			type = CURSEG_COLD_DATA;
1041		else
1042			type = CURSEG_WARM_DATA;
1043	}
1044	curseg = CURSEG_I(sbi, type);
1045
1046	mutex_lock(&curseg->curseg_mutex);
1047	mutex_lock(&sit_i->sentry_lock);
1048
1049	old_cursegno = curseg->segno;
1050
1051	/* change the current segment */
1052	if (segno != curseg->segno) {
1053		curseg->next_segno = segno;
1054		change_curseg(sbi, type, true);
1055	}
1056
1057	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1058	__add_sum_entry(sbi, type, sum);
1059
1060	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1061	locate_dirty_segment(sbi, old_cursegno);
1062
1063	mutex_unlock(&sit_i->sentry_lock);
1064	mutex_unlock(&curseg->curseg_mutex);
1065}
1066
1067void rewrite_node_page(struct f2fs_sb_info *sbi,
1068			struct page *page, struct f2fs_summary *sum,
1069			block_t old_blkaddr, block_t new_blkaddr)
1070{
1071	struct sit_info *sit_i = SIT_I(sbi);
1072	int type = CURSEG_WARM_NODE;
1073	struct curseg_info *curseg;
1074	unsigned int segno, old_cursegno;
1075	block_t next_blkaddr = next_blkaddr_of_node(page);
1076	unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
1077	struct f2fs_io_info fio = {
1078		.type = NODE,
1079		.rw = WRITE_SYNC,
1080	};
1081
1082	curseg = CURSEG_I(sbi, type);
1083
1084	mutex_lock(&curseg->curseg_mutex);
1085	mutex_lock(&sit_i->sentry_lock);
1086
1087	segno = GET_SEGNO(sbi, new_blkaddr);
1088	old_cursegno = curseg->segno;
1089
1090	/* change the current segment */
1091	if (segno != curseg->segno) {
1092		curseg->next_segno = segno;
1093		change_curseg(sbi, type, true);
1094	}
1095	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1096	__add_sum_entry(sbi, type, sum);
1097
1098	/* change the current log to the next block addr in advance */
1099	if (next_segno != segno) {
1100		curseg->next_segno = next_segno;
1101		change_curseg(sbi, type, true);
1102	}
1103	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, next_blkaddr);
1104
1105	/* rewrite node page */
1106	set_page_writeback(page);
1107	f2fs_submit_page_mbio(sbi, page, new_blkaddr, &fio);
1108	f2fs_submit_merged_bio(sbi, NODE, WRITE);
1109	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1110	locate_dirty_segment(sbi, old_cursegno);
1111
1112	mutex_unlock(&sit_i->sentry_lock);
1113	mutex_unlock(&curseg->curseg_mutex);
1114}
1115
1116static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1117					struct page *page, enum page_type type)
1118{
1119	enum page_type btype = PAGE_TYPE_OF_BIO(type);
1120	struct f2fs_bio_info *io = &sbi->write_io[btype];
1121	struct bio_vec *bvec;
1122	int i;
1123
1124	down_read(&io->io_rwsem);
1125	if (!io->bio)
1126		goto out;
1127
1128	bio_for_each_segment_all(bvec, io->bio, i) {
1129		if (page == bvec->bv_page) {
1130			up_read(&io->io_rwsem);
1131			return true;
1132		}
1133	}
1134
1135out:
1136	up_read(&io->io_rwsem);
1137	return false;
1138}
1139
1140void f2fs_wait_on_page_writeback(struct page *page,
1141				enum page_type type)
1142{
1143	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1144	if (PageWriteback(page)) {
1145		if (is_merged_page(sbi, page, type))
1146			f2fs_submit_merged_bio(sbi, type, WRITE);
1147		wait_on_page_writeback(page);
1148	}
1149}
1150
1151static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1152{
1153	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1154	struct curseg_info *seg_i;
1155	unsigned char *kaddr;
1156	struct page *page;
1157	block_t start;
1158	int i, j, offset;
1159
1160	start = start_sum_block(sbi);
1161
1162	page = get_meta_page(sbi, start++);
1163	kaddr = (unsigned char *)page_address(page);
1164
1165	/* Step 1: restore nat cache */
1166	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1167	memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1168
1169	/* Step 2: restore sit cache */
1170	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1171	memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1172						SUM_JOURNAL_SIZE);
1173	offset = 2 * SUM_JOURNAL_SIZE;
1174
1175	/* Step 3: restore summary entries */
1176	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1177		unsigned short blk_off;
1178		unsigned int segno;
1179
1180		seg_i = CURSEG_I(sbi, i);
1181		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1182		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1183		seg_i->next_segno = segno;
1184		reset_curseg(sbi, i, 0);
1185		seg_i->alloc_type = ckpt->alloc_type[i];
1186		seg_i->next_blkoff = blk_off;
1187
1188		if (seg_i->alloc_type == SSR)
1189			blk_off = sbi->blocks_per_seg;
1190
1191		for (j = 0; j < blk_off; j++) {
1192			struct f2fs_summary *s;
1193			s = (struct f2fs_summary *)(kaddr + offset);
1194			seg_i->sum_blk->entries[j] = *s;
1195			offset += SUMMARY_SIZE;
1196			if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1197						SUM_FOOTER_SIZE)
1198				continue;
1199
1200			f2fs_put_page(page, 1);
1201			page = NULL;
1202
1203			page = get_meta_page(sbi, start++);
1204			kaddr = (unsigned char *)page_address(page);
1205			offset = 0;
1206		}
1207	}
1208	f2fs_put_page(page, 1);
1209	return 0;
1210}
1211
1212static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1213{
1214	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1215	struct f2fs_summary_block *sum;
1216	struct curseg_info *curseg;
1217	struct page *new;
1218	unsigned short blk_off;
1219	unsigned int segno = 0;
1220	block_t blk_addr = 0;
1221
1222	/* get segment number and block addr */
1223	if (IS_DATASEG(type)) {
1224		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1225		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1226							CURSEG_HOT_DATA]);
1227		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1228			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1229		else
1230			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1231	} else {
1232		segno = le32_to_cpu(ckpt->cur_node_segno[type -
1233							CURSEG_HOT_NODE]);
1234		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1235							CURSEG_HOT_NODE]);
1236		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1237			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1238							type - CURSEG_HOT_NODE);
1239		else
1240			blk_addr = GET_SUM_BLOCK(sbi, segno);
1241	}
1242
1243	new = get_meta_page(sbi, blk_addr);
1244	sum = (struct f2fs_summary_block *)page_address(new);
1245
1246	if (IS_NODESEG(type)) {
1247		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1248			struct f2fs_summary *ns = &sum->entries[0];
1249			int i;
1250			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1251				ns->version = 0;
1252				ns->ofs_in_node = 0;
1253			}
1254		} else {
1255			int err;
1256
1257			err = restore_node_summary(sbi, segno, sum);
1258			if (err) {
1259				f2fs_put_page(new, 1);
1260				return err;
1261			}
1262		}
1263	}
1264
1265	/* set uncompleted segment to curseg */
1266	curseg = CURSEG_I(sbi, type);
1267	mutex_lock(&curseg->curseg_mutex);
1268	memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1269	curseg->next_segno = segno;
1270	reset_curseg(sbi, type, 0);
1271	curseg->alloc_type = ckpt->alloc_type[type];
1272	curseg->next_blkoff = blk_off;
1273	mutex_unlock(&curseg->curseg_mutex);
1274	f2fs_put_page(new, 1);
1275	return 0;
1276}
1277
1278static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1279{
1280	int type = CURSEG_HOT_DATA;
1281	int err;
1282
1283	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1284		/* restore for compacted data summary */
1285		if (read_compacted_summaries(sbi))
1286			return -EINVAL;
1287		type = CURSEG_HOT_NODE;
1288	}
1289
1290	for (; type <= CURSEG_COLD_NODE; type++) {
1291		err = read_normal_summaries(sbi, type);
1292		if (err)
1293			return err;
1294	}
1295
1296	return 0;
1297}
1298
1299static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1300{
1301	struct page *page;
1302	unsigned char *kaddr;
1303	struct f2fs_summary *summary;
1304	struct curseg_info *seg_i;
1305	int written_size = 0;
1306	int i, j;
1307
1308	page = grab_meta_page(sbi, blkaddr++);
1309	kaddr = (unsigned char *)page_address(page);
1310
1311	/* Step 1: write nat cache */
1312	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1313	memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1314	written_size += SUM_JOURNAL_SIZE;
1315
1316	/* Step 2: write sit cache */
1317	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1318	memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1319						SUM_JOURNAL_SIZE);
1320	written_size += SUM_JOURNAL_SIZE;
1321
1322	/* Step 3: write summary entries */
1323	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1324		unsigned short blkoff;
1325		seg_i = CURSEG_I(sbi, i);
1326		if (sbi->ckpt->alloc_type[i] == SSR)
1327			blkoff = sbi->blocks_per_seg;
1328		else
1329			blkoff = curseg_blkoff(sbi, i);
1330
1331		for (j = 0; j < blkoff; j++) {
1332			if (!page) {
1333				page = grab_meta_page(sbi, blkaddr++);
1334				kaddr = (unsigned char *)page_address(page);
1335				written_size = 0;
1336			}
1337			summary = (struct f2fs_summary *)(kaddr + written_size);
1338			*summary = seg_i->sum_blk->entries[j];
1339			written_size += SUMMARY_SIZE;
1340
1341			if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1342							SUM_FOOTER_SIZE)
1343				continue;
1344
1345			set_page_dirty(page);
1346			f2fs_put_page(page, 1);
1347			page = NULL;
1348		}
1349	}
1350	if (page) {
1351		set_page_dirty(page);
1352		f2fs_put_page(page, 1);
1353	}
1354}
1355
1356static void write_normal_summaries(struct f2fs_sb_info *sbi,
1357					block_t blkaddr, int type)
1358{
1359	int i, end;
1360	if (IS_DATASEG(type))
1361		end = type + NR_CURSEG_DATA_TYPE;
1362	else
1363		end = type + NR_CURSEG_NODE_TYPE;
1364
1365	for (i = type; i < end; i++) {
1366		struct curseg_info *sum = CURSEG_I(sbi, i);
1367		mutex_lock(&sum->curseg_mutex);
1368		write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1369		mutex_unlock(&sum->curseg_mutex);
1370	}
1371}
1372
1373void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1374{
1375	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1376		write_compacted_summaries(sbi, start_blk);
1377	else
1378		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1379}
1380
1381void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1382{
1383	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1384		write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1385}
1386
1387int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1388					unsigned int val, int alloc)
1389{
1390	int i;
1391
1392	if (type == NAT_JOURNAL) {
1393		for (i = 0; i < nats_in_cursum(sum); i++) {
1394			if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1395				return i;
1396		}
1397		if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1398			return update_nats_in_cursum(sum, 1);
1399	} else if (type == SIT_JOURNAL) {
1400		for (i = 0; i < sits_in_cursum(sum); i++)
1401			if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1402				return i;
1403		if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1404			return update_sits_in_cursum(sum, 1);
1405	}
1406	return -1;
1407}
1408
1409static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1410					unsigned int segno)
1411{
1412	struct sit_info *sit_i = SIT_I(sbi);
1413	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1414	block_t blk_addr = sit_i->sit_base_addr + offset;
1415
1416	check_seg_range(sbi, segno);
1417
1418	/* calculate sit block address */
1419	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1420		blk_addr += sit_i->sit_blocks;
1421
1422	return get_meta_page(sbi, blk_addr);
1423}
1424
1425static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1426					unsigned int start)
1427{
1428	struct sit_info *sit_i = SIT_I(sbi);
1429	struct page *src_page, *dst_page;
1430	pgoff_t src_off, dst_off;
1431	void *src_addr, *dst_addr;
1432
1433	src_off = current_sit_addr(sbi, start);
1434	dst_off = next_sit_addr(sbi, src_off);
1435
1436	/* get current sit block page without lock */
1437	src_page = get_meta_page(sbi, src_off);
1438	dst_page = grab_meta_page(sbi, dst_off);
1439	f2fs_bug_on(PageDirty(src_page));
1440
1441	src_addr = page_address(src_page);
1442	dst_addr = page_address(dst_page);
1443	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1444
1445	set_page_dirty(dst_page);
1446	f2fs_put_page(src_page, 1);
1447
1448	set_to_next_sit(sit_i, start);
1449
1450	return dst_page;
1451}
1452
1453static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1454{
1455	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1456	struct f2fs_summary_block *sum = curseg->sum_blk;
1457	int i;
1458
1459	/*
1460	 * If the journal area in the current summary is full of sit entries,
1461	 * all the sit entries will be flushed. Otherwise the sit entries
1462	 * are not able to replace with newly hot sit entries.
1463	 */
1464	if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1465		for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1466			unsigned int segno;
1467			segno = le32_to_cpu(segno_in_journal(sum, i));
1468			__mark_sit_entry_dirty(sbi, segno);
1469		}
1470		update_sits_in_cursum(sum, -sits_in_cursum(sum));
1471		return true;
1472	}
1473	return false;
1474}
1475
1476/*
1477 * CP calls this function, which flushes SIT entries including sit_journal,
1478 * and moves prefree segs to free segs.
1479 */
1480void flush_sit_entries(struct f2fs_sb_info *sbi)
1481{
1482	struct sit_info *sit_i = SIT_I(sbi);
1483	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1484	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1485	struct f2fs_summary_block *sum = curseg->sum_blk;
1486	unsigned long nsegs = TOTAL_SEGS(sbi);
1487	struct page *page = NULL;
1488	struct f2fs_sit_block *raw_sit = NULL;
1489	unsigned int start = 0, end = 0;
1490	unsigned int segno = -1;
1491	bool flushed;
1492
1493	mutex_lock(&curseg->curseg_mutex);
1494	mutex_lock(&sit_i->sentry_lock);
1495
1496	/*
1497	 * "flushed" indicates whether sit entries in journal are flushed
1498	 * to the SIT area or not.
1499	 */
1500	flushed = flush_sits_in_journal(sbi);
1501
1502	while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1503		struct seg_entry *se = get_seg_entry(sbi, segno);
1504		int sit_offset, offset;
1505
1506		sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1507
1508		/* add discard candidates */
1509		if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards)
1510			add_discard_addrs(sbi, segno, se);
1511
1512		if (flushed)
1513			goto to_sit_page;
1514
1515		offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1516		if (offset >= 0) {
1517			segno_in_journal(sum, offset) = cpu_to_le32(segno);
1518			seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1519			goto flush_done;
1520		}
1521to_sit_page:
1522		if (!page || (start > segno) || (segno > end)) {
1523			if (page) {
1524				f2fs_put_page(page, 1);
1525				page = NULL;
1526			}
1527
1528			start = START_SEGNO(sit_i, segno);
1529			end = start + SIT_ENTRY_PER_BLOCK - 1;
1530
1531			/* read sit block that will be updated */
1532			page = get_next_sit_page(sbi, start);
1533			raw_sit = page_address(page);
1534		}
1535
1536		/* udpate entry in SIT block */
1537		seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1538flush_done:
1539		__clear_bit(segno, bitmap);
1540		sit_i->dirty_sentries--;
1541	}
1542	mutex_unlock(&sit_i->sentry_lock);
1543	mutex_unlock(&curseg->curseg_mutex);
1544
1545	/* writeout last modified SIT block */
1546	f2fs_put_page(page, 1);
1547
1548	set_prefree_as_free_segments(sbi);
1549}
1550
1551static int build_sit_info(struct f2fs_sb_info *sbi)
1552{
1553	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1554	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1555	struct sit_info *sit_i;
1556	unsigned int sit_segs, start;
1557	char *src_bitmap, *dst_bitmap;
1558	unsigned int bitmap_size;
1559
1560	/* allocate memory for SIT information */
1561	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1562	if (!sit_i)
1563		return -ENOMEM;
1564
1565	SM_I(sbi)->sit_info = sit_i;
1566
1567	sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1568	if (!sit_i->sentries)
1569		return -ENOMEM;
1570
1571	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1572	sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1573	if (!sit_i->dirty_sentries_bitmap)
1574		return -ENOMEM;
1575
1576	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1577		sit_i->sentries[start].cur_valid_map
1578			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1579		sit_i->sentries[start].ckpt_valid_map
1580			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1581		if (!sit_i->sentries[start].cur_valid_map
1582				|| !sit_i->sentries[start].ckpt_valid_map)
1583			return -ENOMEM;
1584	}
1585
1586	if (sbi->segs_per_sec > 1) {
1587		sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1588					sizeof(struct sec_entry));
1589		if (!sit_i->sec_entries)
1590			return -ENOMEM;
1591	}
1592
1593	/* get information related with SIT */
1594	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1595
1596	/* setup SIT bitmap from ckeckpoint pack */
1597	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1598	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1599
1600	dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1601	if (!dst_bitmap)
1602		return -ENOMEM;
1603
1604	/* init SIT information */
1605	sit_i->s_ops = &default_salloc_ops;
1606
1607	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1608	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1609	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1610	sit_i->sit_bitmap = dst_bitmap;
1611	sit_i->bitmap_size = bitmap_size;
1612	sit_i->dirty_sentries = 0;
1613	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1614	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1615	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1616	mutex_init(&sit_i->sentry_lock);
1617	return 0;
1618}
1619
1620static int build_free_segmap(struct f2fs_sb_info *sbi)
1621{
1622	struct f2fs_sm_info *sm_info = SM_I(sbi);
1623	struct free_segmap_info *free_i;
1624	unsigned int bitmap_size, sec_bitmap_size;
1625
1626	/* allocate memory for free segmap information */
1627	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1628	if (!free_i)
1629		return -ENOMEM;
1630
1631	SM_I(sbi)->free_info = free_i;
1632
1633	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1634	free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1635	if (!free_i->free_segmap)
1636		return -ENOMEM;
1637
1638	sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1639	free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1640	if (!free_i->free_secmap)
1641		return -ENOMEM;
1642
1643	/* set all segments as dirty temporarily */
1644	memset(free_i->free_segmap, 0xff, bitmap_size);
1645	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1646
1647	/* init free segmap information */
1648	free_i->start_segno =
1649		(unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1650	free_i->free_segments = 0;
1651	free_i->free_sections = 0;
1652	rwlock_init(&free_i->segmap_lock);
1653	return 0;
1654}
1655
1656static int build_curseg(struct f2fs_sb_info *sbi)
1657{
1658	struct curseg_info *array;
1659	int i;
1660
1661	array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1662	if (!array)
1663		return -ENOMEM;
1664
1665	SM_I(sbi)->curseg_array = array;
1666
1667	for (i = 0; i < NR_CURSEG_TYPE; i++) {
1668		mutex_init(&array[i].curseg_mutex);
1669		array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1670		if (!array[i].sum_blk)
1671			return -ENOMEM;
1672		array[i].segno = NULL_SEGNO;
1673		array[i].next_blkoff = 0;
1674	}
1675	return restore_curseg_summaries(sbi);
1676}
1677
1678static void build_sit_entries(struct f2fs_sb_info *sbi)
1679{
1680	struct sit_info *sit_i = SIT_I(sbi);
1681	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1682	struct f2fs_summary_block *sum = curseg->sum_blk;
1683	int sit_blk_cnt = SIT_BLK_CNT(sbi);
1684	unsigned int i, start, end;
1685	unsigned int readed, start_blk = 0;
1686	int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1687
1688	do {
1689		readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
1690
1691		start = start_blk * sit_i->sents_per_block;
1692		end = (start_blk + readed) * sit_i->sents_per_block;
1693
1694		for (; start < end && start < TOTAL_SEGS(sbi); start++) {
1695			struct seg_entry *se = &sit_i->sentries[start];
1696			struct f2fs_sit_block *sit_blk;
1697			struct f2fs_sit_entry sit;
1698			struct page *page;
1699
1700			mutex_lock(&curseg->curseg_mutex);
1701			for (i = 0; i < sits_in_cursum(sum); i++) {
1702				if (le32_to_cpu(segno_in_journal(sum, i))
1703								== start) {
1704					sit = sit_in_journal(sum, i);
1705					mutex_unlock(&curseg->curseg_mutex);
1706					goto got_it;
1707				}
1708			}
1709			mutex_unlock(&curseg->curseg_mutex);
1710
1711			page = get_current_sit_page(sbi, start);
1712			sit_blk = (struct f2fs_sit_block *)page_address(page);
1713			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1714			f2fs_put_page(page, 1);
1715got_it:
1716			check_block_count(sbi, start, &sit);
1717			seg_info_from_raw_sit(se, &sit);
1718			if (sbi->segs_per_sec > 1) {
1719				struct sec_entry *e = get_sec_entry(sbi, start);
1720				e->valid_blocks += se->valid_blocks;
1721			}
1722		}
1723		start_blk += readed;
1724	} while (start_blk < sit_blk_cnt);
1725}
1726
1727static void init_free_segmap(struct f2fs_sb_info *sbi)
1728{
1729	unsigned int start;
1730	int type;
1731
1732	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1733		struct seg_entry *sentry = get_seg_entry(sbi, start);
1734		if (!sentry->valid_blocks)
1735			__set_free(sbi, start);
1736	}
1737
1738	/* set use the current segments */
1739	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1740		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1741		__set_test_and_inuse(sbi, curseg_t->segno);
1742	}
1743}
1744
1745static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1746{
1747	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1748	struct free_segmap_info *free_i = FREE_I(sbi);
1749	unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1750	unsigned short valid_blocks;
1751
1752	while (1) {
1753		/* find dirty segment based on free segmap */
1754		segno = find_next_inuse(free_i, total_segs, offset);
1755		if (segno >= total_segs)
1756			break;
1757		offset = segno + 1;
1758		valid_blocks = get_valid_blocks(sbi, segno, 0);
1759		if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1760			continue;
1761		mutex_lock(&dirty_i->seglist_lock);
1762		__locate_dirty_segment(sbi, segno, DIRTY);
1763		mutex_unlock(&dirty_i->seglist_lock);
1764	}
1765}
1766
1767static int init_victim_secmap(struct f2fs_sb_info *sbi)
1768{
1769	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1770	unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1771
1772	dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1773	if (!dirty_i->victim_secmap)
1774		return -ENOMEM;
1775	return 0;
1776}
1777
1778static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1779{
1780	struct dirty_seglist_info *dirty_i;
1781	unsigned int bitmap_size, i;
1782
1783	/* allocate memory for dirty segments list information */
1784	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1785	if (!dirty_i)
1786		return -ENOMEM;
1787
1788	SM_I(sbi)->dirty_info = dirty_i;
1789	mutex_init(&dirty_i->seglist_lock);
1790
1791	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1792
1793	for (i = 0; i < NR_DIRTY_TYPE; i++) {
1794		dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1795		if (!dirty_i->dirty_segmap[i])
1796			return -ENOMEM;
1797	}
1798
1799	init_dirty_segmap(sbi);
1800	return init_victim_secmap(sbi);
1801}
1802
1803/*
1804 * Update min, max modified time for cost-benefit GC algorithm
1805 */
1806static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1807{
1808	struct sit_info *sit_i = SIT_I(sbi);
1809	unsigned int segno;
1810
1811	mutex_lock(&sit_i->sentry_lock);
1812
1813	sit_i->min_mtime = LLONG_MAX;
1814
1815	for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1816		unsigned int i;
1817		unsigned long long mtime = 0;
1818
1819		for (i = 0; i < sbi->segs_per_sec; i++)
1820			mtime += get_seg_entry(sbi, segno + i)->mtime;
1821
1822		mtime = div_u64(mtime, sbi->segs_per_sec);
1823
1824		if (sit_i->min_mtime > mtime)
1825			sit_i->min_mtime = mtime;
1826	}
1827	sit_i->max_mtime = get_mtime(sbi);
1828	mutex_unlock(&sit_i->sentry_lock);
1829}
1830
1831int build_segment_manager(struct f2fs_sb_info *sbi)
1832{
1833	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1834	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1835	dev_t dev = sbi->sb->s_bdev->bd_dev;
1836	struct f2fs_sm_info *sm_info;
1837	int err;
1838
1839	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1840	if (!sm_info)
1841		return -ENOMEM;
1842
1843	/* init sm info */
1844	sbi->sm_info = sm_info;
1845	INIT_LIST_HEAD(&sm_info->wblist_head);
1846	spin_lock_init(&sm_info->wblist_lock);
1847	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1848	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1849	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1850	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1851	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1852	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1853	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1854	sm_info->rec_prefree_segments = sm_info->main_segments *
1855					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
1856	sm_info->ipu_policy = F2FS_IPU_DISABLE;
1857	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
1858
1859	INIT_LIST_HEAD(&sm_info->discard_list);
1860	sm_info->nr_discards = 0;
1861	sm_info->max_discards = 0;
1862
1863	if (test_opt(sbi, FLUSH_MERGE)) {
1864		spin_lock_init(&sm_info->issue_lock);
1865		init_waitqueue_head(&sm_info->flush_wait_queue);
1866
1867		sm_info->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
1868				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
1869		if (IS_ERR(sm_info->f2fs_issue_flush))
1870			return PTR_ERR(sm_info->f2fs_issue_flush);
1871	}
1872
1873	err = build_sit_info(sbi);
1874	if (err)
1875		return err;
1876	err = build_free_segmap(sbi);
1877	if (err)
1878		return err;
1879	err = build_curseg(sbi);
1880	if (err)
1881		return err;
1882
1883	/* reinit free segmap based on SIT */
1884	build_sit_entries(sbi);
1885
1886	init_free_segmap(sbi);
1887	err = build_dirty_segmap(sbi);
1888	if (err)
1889		return err;
1890
1891	init_min_max_mtime(sbi);
1892	return 0;
1893}
1894
1895static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1896		enum dirty_type dirty_type)
1897{
1898	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1899
1900	mutex_lock(&dirty_i->seglist_lock);
1901	kfree(dirty_i->dirty_segmap[dirty_type]);
1902	dirty_i->nr_dirty[dirty_type] = 0;
1903	mutex_unlock(&dirty_i->seglist_lock);
1904}
1905
1906static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1907{
1908	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1909	kfree(dirty_i->victim_secmap);
1910}
1911
1912static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1913{
1914	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1915	int i;
1916
1917	if (!dirty_i)
1918		return;
1919
1920	/* discard pre-free/dirty segments list */
1921	for (i = 0; i < NR_DIRTY_TYPE; i++)
1922		discard_dirty_segmap(sbi, i);
1923
1924	destroy_victim_secmap(sbi);
1925	SM_I(sbi)->dirty_info = NULL;
1926	kfree(dirty_i);
1927}
1928
1929static void destroy_curseg(struct f2fs_sb_info *sbi)
1930{
1931	struct curseg_info *array = SM_I(sbi)->curseg_array;
1932	int i;
1933
1934	if (!array)
1935		return;
1936	SM_I(sbi)->curseg_array = NULL;
1937	for (i = 0; i < NR_CURSEG_TYPE; i++)
1938		kfree(array[i].sum_blk);
1939	kfree(array);
1940}
1941
1942static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1943{
1944	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1945	if (!free_i)
1946		return;
1947	SM_I(sbi)->free_info = NULL;
1948	kfree(free_i->free_segmap);
1949	kfree(free_i->free_secmap);
1950	kfree(free_i);
1951}
1952
1953static void destroy_sit_info(struct f2fs_sb_info *sbi)
1954{
1955	struct sit_info *sit_i = SIT_I(sbi);
1956	unsigned int start;
1957
1958	if (!sit_i)
1959		return;
1960
1961	if (sit_i->sentries) {
1962		for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1963			kfree(sit_i->sentries[start].cur_valid_map);
1964			kfree(sit_i->sentries[start].ckpt_valid_map);
1965		}
1966	}
1967	vfree(sit_i->sentries);
1968	vfree(sit_i->sec_entries);
1969	kfree(sit_i->dirty_sentries_bitmap);
1970
1971	SM_I(sbi)->sit_info = NULL;
1972	kfree(sit_i->sit_bitmap);
1973	kfree(sit_i);
1974}
1975
1976void destroy_segment_manager(struct f2fs_sb_info *sbi)
1977{
1978	struct f2fs_sm_info *sm_info = SM_I(sbi);
1979	if (!sm_info)
1980		return;
1981	if (sm_info->f2fs_issue_flush)
1982		kthread_stop(sm_info->f2fs_issue_flush);
1983	destroy_dirty_segmap(sbi);
1984	destroy_curseg(sbi);
1985	destroy_free_segmap(sbi);
1986	destroy_sit_info(sbi);
1987	sbi->sm_info = NULL;
1988	kfree(sm_info);
1989}
1990
1991int __init create_segment_manager_caches(void)
1992{
1993	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
1994			sizeof(struct discard_entry));
1995	if (!discard_entry_slab)
1996		return -ENOMEM;
1997	flush_cmd_slab = f2fs_kmem_cache_create("flush_command",
1998			sizeof(struct flush_cmd));
1999	if (!flush_cmd_slab) {
2000		kmem_cache_destroy(discard_entry_slab);
2001		return -ENOMEM;
2002	}
2003	return 0;
2004}
2005
2006void destroy_segment_manager_caches(void)
2007{
2008	kmem_cache_destroy(discard_entry_slab);
2009	kmem_cache_destroy(flush_cmd_slab);
2010}
2011