segment.c revision 8680441caa5465a2cd87b6be857be4378df46700
1/*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 *             http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/bio.h>
14#include <linux/blkdev.h>
15#include <linux/prefetch.h>
16#include <linux/vmalloc.h>
17
18#include "f2fs.h"
19#include "segment.h"
20#include "node.h"
21#include <trace/events/f2fs.h>
22
23/*
24 * This function balances dirty node and dentry pages.
25 * In addition, it controls garbage collection.
26 */
27void f2fs_balance_fs(struct f2fs_sb_info *sbi)
28{
29	/*
30	 * We should do GC or end up with checkpoint, if there are so many dirty
31	 * dir/node pages without enough free segments.
32	 */
33	if (has_not_enough_free_secs(sbi, 0)) {
34		mutex_lock(&sbi->gc_mutex);
35		f2fs_gc(sbi);
36	}
37}
38
39static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
40		enum dirty_type dirty_type)
41{
42	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
43
44	/* need not be added */
45	if (IS_CURSEG(sbi, segno))
46		return;
47
48	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
49		dirty_i->nr_dirty[dirty_type]++;
50
51	if (dirty_type == DIRTY) {
52		struct seg_entry *sentry = get_seg_entry(sbi, segno);
53		enum dirty_type t = DIRTY_HOT_DATA;
54
55		dirty_type = sentry->type;
56
57		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
58			dirty_i->nr_dirty[dirty_type]++;
59
60		/* Only one bitmap should be set */
61		for (; t <= DIRTY_COLD_NODE; t++) {
62			if (t == dirty_type)
63				continue;
64			if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
65				dirty_i->nr_dirty[t]--;
66		}
67	}
68}
69
70static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
71		enum dirty_type dirty_type)
72{
73	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
74
75	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
76		dirty_i->nr_dirty[dirty_type]--;
77
78	if (dirty_type == DIRTY) {
79		enum dirty_type t = DIRTY_HOT_DATA;
80
81		/* clear all the bitmaps */
82		for (; t <= DIRTY_COLD_NODE; t++)
83			if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
84				dirty_i->nr_dirty[t]--;
85
86		if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
87			clear_bit(GET_SECNO(sbi, segno),
88						dirty_i->victim_secmap);
89	}
90}
91
92/*
93 * Should not occur error such as -ENOMEM.
94 * Adding dirty entry into seglist is not critical operation.
95 * If a given segment is one of current working segments, it won't be added.
96 */
97void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
98{
99	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
100	unsigned short valid_blocks;
101
102	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
103		return;
104
105	mutex_lock(&dirty_i->seglist_lock);
106
107	valid_blocks = get_valid_blocks(sbi, segno, 0);
108
109	if (valid_blocks == 0) {
110		__locate_dirty_segment(sbi, segno, PRE);
111		__remove_dirty_segment(sbi, segno, DIRTY);
112	} else if (valid_blocks < sbi->blocks_per_seg) {
113		__locate_dirty_segment(sbi, segno, DIRTY);
114	} else {
115		/* Recovery routine with SSR needs this */
116		__remove_dirty_segment(sbi, segno, DIRTY);
117	}
118
119	mutex_unlock(&dirty_i->seglist_lock);
120	return;
121}
122
123/*
124 * Should call clear_prefree_segments after checkpoint is done.
125 */
126static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
127{
128	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
129	unsigned int segno, offset = 0;
130	unsigned int total_segs = TOTAL_SEGS(sbi);
131
132	mutex_lock(&dirty_i->seglist_lock);
133	while (1) {
134		segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
135				offset);
136		if (segno >= total_segs)
137			break;
138		__set_test_and_free(sbi, segno);
139		offset = segno + 1;
140	}
141	mutex_unlock(&dirty_i->seglist_lock);
142}
143
144void clear_prefree_segments(struct f2fs_sb_info *sbi)
145{
146	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
147	unsigned int segno, offset = 0;
148	unsigned int total_segs = TOTAL_SEGS(sbi);
149
150	mutex_lock(&dirty_i->seglist_lock);
151	while (1) {
152		segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
153				offset);
154		if (segno >= total_segs)
155			break;
156
157		offset = segno + 1;
158		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[PRE]))
159			dirty_i->nr_dirty[PRE]--;
160
161		/* Let's use trim */
162		if (test_opt(sbi, DISCARD))
163			blkdev_issue_discard(sbi->sb->s_bdev,
164					START_BLOCK(sbi, segno) <<
165					sbi->log_sectors_per_block,
166					1 << (sbi->log_sectors_per_block +
167						sbi->log_blocks_per_seg),
168					GFP_NOFS, 0);
169	}
170	mutex_unlock(&dirty_i->seglist_lock);
171}
172
173static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
174{
175	struct sit_info *sit_i = SIT_I(sbi);
176	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
177		sit_i->dirty_sentries++;
178}
179
180static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
181					unsigned int segno, int modified)
182{
183	struct seg_entry *se = get_seg_entry(sbi, segno);
184	se->type = type;
185	if (modified)
186		__mark_sit_entry_dirty(sbi, segno);
187}
188
189static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
190{
191	struct seg_entry *se;
192	unsigned int segno, offset;
193	long int new_vblocks;
194
195	segno = GET_SEGNO(sbi, blkaddr);
196
197	se = get_seg_entry(sbi, segno);
198	new_vblocks = se->valid_blocks + del;
199	offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
200
201	BUG_ON((new_vblocks >> (sizeof(unsigned short) << 3) ||
202				(new_vblocks > sbi->blocks_per_seg)));
203
204	se->valid_blocks = new_vblocks;
205	se->mtime = get_mtime(sbi);
206	SIT_I(sbi)->max_mtime = se->mtime;
207
208	/* Update valid block bitmap */
209	if (del > 0) {
210		if (f2fs_set_bit(offset, se->cur_valid_map))
211			BUG();
212	} else {
213		if (!f2fs_clear_bit(offset, se->cur_valid_map))
214			BUG();
215	}
216	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
217		se->ckpt_valid_blocks += del;
218
219	__mark_sit_entry_dirty(sbi, segno);
220
221	/* update total number of valid blocks to be written in ckpt area */
222	SIT_I(sbi)->written_valid_blocks += del;
223
224	if (sbi->segs_per_sec > 1)
225		get_sec_entry(sbi, segno)->valid_blocks += del;
226}
227
228static void refresh_sit_entry(struct f2fs_sb_info *sbi,
229			block_t old_blkaddr, block_t new_blkaddr)
230{
231	update_sit_entry(sbi, new_blkaddr, 1);
232	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
233		update_sit_entry(sbi, old_blkaddr, -1);
234}
235
236void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
237{
238	unsigned int segno = GET_SEGNO(sbi, addr);
239	struct sit_info *sit_i = SIT_I(sbi);
240
241	BUG_ON(addr == NULL_ADDR);
242	if (addr == NEW_ADDR)
243		return;
244
245	/* add it into sit main buffer */
246	mutex_lock(&sit_i->sentry_lock);
247
248	update_sit_entry(sbi, addr, -1);
249
250	/* add it into dirty seglist */
251	locate_dirty_segment(sbi, segno);
252
253	mutex_unlock(&sit_i->sentry_lock);
254}
255
256/*
257 * This function should be resided under the curseg_mutex lock
258 */
259static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
260		struct f2fs_summary *sum, unsigned short offset)
261{
262	struct curseg_info *curseg = CURSEG_I(sbi, type);
263	void *addr = curseg->sum_blk;
264	addr += offset * sizeof(struct f2fs_summary);
265	memcpy(addr, sum, sizeof(struct f2fs_summary));
266	return;
267}
268
269/*
270 * Calculate the number of current summary pages for writing
271 */
272int npages_for_summary_flush(struct f2fs_sb_info *sbi)
273{
274	int total_size_bytes = 0;
275	int valid_sum_count = 0;
276	int i, sum_space;
277
278	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
279		if (sbi->ckpt->alloc_type[i] == SSR)
280			valid_sum_count += sbi->blocks_per_seg;
281		else
282			valid_sum_count += curseg_blkoff(sbi, i);
283	}
284
285	total_size_bytes = valid_sum_count * (SUMMARY_SIZE + 1)
286			+ sizeof(struct nat_journal) + 2
287			+ sizeof(struct sit_journal) + 2;
288	sum_space = PAGE_CACHE_SIZE - SUM_FOOTER_SIZE;
289	if (total_size_bytes < sum_space)
290		return 1;
291	else if (total_size_bytes < 2 * sum_space)
292		return 2;
293	return 3;
294}
295
296/*
297 * Caller should put this summary page
298 */
299struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
300{
301	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
302}
303
304static void write_sum_page(struct f2fs_sb_info *sbi,
305			struct f2fs_summary_block *sum_blk, block_t blk_addr)
306{
307	struct page *page = grab_meta_page(sbi, blk_addr);
308	void *kaddr = page_address(page);
309	memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
310	set_page_dirty(page);
311	f2fs_put_page(page, 1);
312}
313
314static unsigned int check_prefree_segments(struct f2fs_sb_info *sbi, int type)
315{
316	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
317	unsigned long *prefree_segmap = dirty_i->dirty_segmap[PRE];
318	unsigned int segno;
319	unsigned int ofs = 0;
320
321	/*
322	 * If there is not enough reserved sections,
323	 * we should not reuse prefree segments.
324	 */
325	if (has_not_enough_free_secs(sbi, 0))
326		return NULL_SEGNO;
327
328	/*
329	 * NODE page should not reuse prefree segment,
330	 * since those information is used for SPOR.
331	 */
332	if (IS_NODESEG(type))
333		return NULL_SEGNO;
334next:
335	segno = find_next_bit(prefree_segmap, TOTAL_SEGS(sbi), ofs);
336	ofs += sbi->segs_per_sec;
337
338	if (segno < TOTAL_SEGS(sbi)) {
339		int i;
340
341		/* skip intermediate segments in a section */
342		if (segno % sbi->segs_per_sec)
343			goto next;
344
345		/* skip if the section is currently used */
346		if (sec_usage_check(sbi, GET_SECNO(sbi, segno)))
347			goto next;
348
349		/* skip if whole section is not prefree */
350		for (i = 1; i < sbi->segs_per_sec; i++)
351			if (!test_bit(segno + i, prefree_segmap))
352				goto next;
353
354		/* skip if whole section was not free at the last checkpoint */
355		for (i = 0; i < sbi->segs_per_sec; i++)
356			if (get_seg_entry(sbi, segno + i)->ckpt_valid_blocks)
357				goto next;
358
359		return segno;
360	}
361	return NULL_SEGNO;
362}
363
364static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
365{
366	struct curseg_info *curseg = CURSEG_I(sbi, type);
367	unsigned int segno = curseg->segno;
368	struct free_segmap_info *free_i = FREE_I(sbi);
369
370	if (segno + 1 < TOTAL_SEGS(sbi) && (segno + 1) % sbi->segs_per_sec)
371		return !test_bit(segno + 1, free_i->free_segmap);
372	return 0;
373}
374
375/*
376 * Find a new segment from the free segments bitmap to right order
377 * This function should be returned with success, otherwise BUG
378 */
379static void get_new_segment(struct f2fs_sb_info *sbi,
380			unsigned int *newseg, bool new_sec, int dir)
381{
382	struct free_segmap_info *free_i = FREE_I(sbi);
383	unsigned int segno, secno, zoneno;
384	unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
385	unsigned int hint = *newseg / sbi->segs_per_sec;
386	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
387	unsigned int left_start = hint;
388	bool init = true;
389	int go_left = 0;
390	int i;
391
392	write_lock(&free_i->segmap_lock);
393
394	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
395		segno = find_next_zero_bit(free_i->free_segmap,
396					TOTAL_SEGS(sbi), *newseg + 1);
397		if (segno - *newseg < sbi->segs_per_sec -
398					(*newseg % sbi->segs_per_sec))
399			goto got_it;
400	}
401find_other_zone:
402	secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
403	if (secno >= TOTAL_SECS(sbi)) {
404		if (dir == ALLOC_RIGHT) {
405			secno = find_next_zero_bit(free_i->free_secmap,
406							TOTAL_SECS(sbi), 0);
407			BUG_ON(secno >= TOTAL_SECS(sbi));
408		} else {
409			go_left = 1;
410			left_start = hint - 1;
411		}
412	}
413	if (go_left == 0)
414		goto skip_left;
415
416	while (test_bit(left_start, free_i->free_secmap)) {
417		if (left_start > 0) {
418			left_start--;
419			continue;
420		}
421		left_start = find_next_zero_bit(free_i->free_secmap,
422							TOTAL_SECS(sbi), 0);
423		BUG_ON(left_start >= TOTAL_SECS(sbi));
424		break;
425	}
426	secno = left_start;
427skip_left:
428	hint = secno;
429	segno = secno * sbi->segs_per_sec;
430	zoneno = secno / sbi->secs_per_zone;
431
432	/* give up on finding another zone */
433	if (!init)
434		goto got_it;
435	if (sbi->secs_per_zone == 1)
436		goto got_it;
437	if (zoneno == old_zoneno)
438		goto got_it;
439	if (dir == ALLOC_LEFT) {
440		if (!go_left && zoneno + 1 >= total_zones)
441			goto got_it;
442		if (go_left && zoneno == 0)
443			goto got_it;
444	}
445	for (i = 0; i < NR_CURSEG_TYPE; i++)
446		if (CURSEG_I(sbi, i)->zone == zoneno)
447			break;
448
449	if (i < NR_CURSEG_TYPE) {
450		/* zone is in user, try another */
451		if (go_left)
452			hint = zoneno * sbi->secs_per_zone - 1;
453		else if (zoneno + 1 >= total_zones)
454			hint = 0;
455		else
456			hint = (zoneno + 1) * sbi->secs_per_zone;
457		init = false;
458		goto find_other_zone;
459	}
460got_it:
461	/* set it as dirty segment in free segmap */
462	BUG_ON(test_bit(segno, free_i->free_segmap));
463	__set_inuse(sbi, segno);
464	*newseg = segno;
465	write_unlock(&free_i->segmap_lock);
466}
467
468static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
469{
470	struct curseg_info *curseg = CURSEG_I(sbi, type);
471	struct summary_footer *sum_footer;
472
473	curseg->segno = curseg->next_segno;
474	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
475	curseg->next_blkoff = 0;
476	curseg->next_segno = NULL_SEGNO;
477
478	sum_footer = &(curseg->sum_blk->footer);
479	memset(sum_footer, 0, sizeof(struct summary_footer));
480	if (IS_DATASEG(type))
481		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
482	if (IS_NODESEG(type))
483		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
484	__set_sit_entry_type(sbi, type, curseg->segno, modified);
485}
486
487/*
488 * Allocate a current working segment.
489 * This function always allocates a free segment in LFS manner.
490 */
491static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
492{
493	struct curseg_info *curseg = CURSEG_I(sbi, type);
494	unsigned int segno = curseg->segno;
495	int dir = ALLOC_LEFT;
496
497	write_sum_page(sbi, curseg->sum_blk,
498				GET_SUM_BLOCK(sbi, curseg->segno));
499	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
500		dir = ALLOC_RIGHT;
501
502	if (test_opt(sbi, NOHEAP))
503		dir = ALLOC_RIGHT;
504
505	get_new_segment(sbi, &segno, new_sec, dir);
506	curseg->next_segno = segno;
507	reset_curseg(sbi, type, 1);
508	curseg->alloc_type = LFS;
509}
510
511static void __next_free_blkoff(struct f2fs_sb_info *sbi,
512			struct curseg_info *seg, block_t start)
513{
514	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
515	block_t ofs;
516	for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) {
517		if (!f2fs_test_bit(ofs, se->ckpt_valid_map)
518			&& !f2fs_test_bit(ofs, se->cur_valid_map))
519			break;
520	}
521	seg->next_blkoff = ofs;
522}
523
524/*
525 * If a segment is written by LFS manner, next block offset is just obtained
526 * by increasing the current block offset. However, if a segment is written by
527 * SSR manner, next block offset obtained by calling __next_free_blkoff
528 */
529static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
530				struct curseg_info *seg)
531{
532	if (seg->alloc_type == SSR)
533		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
534	else
535		seg->next_blkoff++;
536}
537
538/*
539 * This function always allocates a used segment (from dirty seglist) by SSR
540 * manner, so it should recover the existing segment information of valid blocks
541 */
542static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
543{
544	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
545	struct curseg_info *curseg = CURSEG_I(sbi, type);
546	unsigned int new_segno = curseg->next_segno;
547	struct f2fs_summary_block *sum_node;
548	struct page *sum_page;
549
550	write_sum_page(sbi, curseg->sum_blk,
551				GET_SUM_BLOCK(sbi, curseg->segno));
552	__set_test_and_inuse(sbi, new_segno);
553
554	mutex_lock(&dirty_i->seglist_lock);
555	__remove_dirty_segment(sbi, new_segno, PRE);
556	__remove_dirty_segment(sbi, new_segno, DIRTY);
557	mutex_unlock(&dirty_i->seglist_lock);
558
559	reset_curseg(sbi, type, 1);
560	curseg->alloc_type = SSR;
561	__next_free_blkoff(sbi, curseg, 0);
562
563	if (reuse) {
564		sum_page = get_sum_page(sbi, new_segno);
565		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
566		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
567		f2fs_put_page(sum_page, 1);
568	}
569}
570
571static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
572{
573	struct curseg_info *curseg = CURSEG_I(sbi, type);
574	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
575
576	if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
577		return v_ops->get_victim(sbi,
578				&(curseg)->next_segno, BG_GC, type, SSR);
579
580	/* For data segments, let's do SSR more intensively */
581	for (; type >= CURSEG_HOT_DATA; type--)
582		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
583						BG_GC, type, SSR))
584			return 1;
585	return 0;
586}
587
588/*
589 * flush out current segment and replace it with new segment
590 * This function should be returned with success, otherwise BUG
591 */
592static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
593						int type, bool force)
594{
595	struct curseg_info *curseg = CURSEG_I(sbi, type);
596
597	if (force) {
598		new_curseg(sbi, type, true);
599		goto out;
600	}
601
602	curseg->next_segno = check_prefree_segments(sbi, type);
603
604	if (curseg->next_segno != NULL_SEGNO)
605		change_curseg(sbi, type, false);
606	else if (type == CURSEG_WARM_NODE)
607		new_curseg(sbi, type, false);
608	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
609		new_curseg(sbi, type, false);
610	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
611		change_curseg(sbi, type, true);
612	else
613		new_curseg(sbi, type, false);
614out:
615	sbi->segment_count[curseg->alloc_type]++;
616}
617
618void allocate_new_segments(struct f2fs_sb_info *sbi)
619{
620	struct curseg_info *curseg;
621	unsigned int old_curseg;
622	int i;
623
624	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
625		curseg = CURSEG_I(sbi, i);
626		old_curseg = curseg->segno;
627		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
628		locate_dirty_segment(sbi, old_curseg);
629	}
630}
631
632static const struct segment_allocation default_salloc_ops = {
633	.allocate_segment = allocate_segment_by_default,
634};
635
636static void f2fs_end_io_write(struct bio *bio, int err)
637{
638	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
639	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
640	struct bio_private *p = bio->bi_private;
641
642	do {
643		struct page *page = bvec->bv_page;
644
645		if (--bvec >= bio->bi_io_vec)
646			prefetchw(&bvec->bv_page->flags);
647		if (!uptodate) {
648			SetPageError(page);
649			if (page->mapping)
650				set_bit(AS_EIO, &page->mapping->flags);
651			set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
652			p->sbi->sb->s_flags |= MS_RDONLY;
653		}
654		end_page_writeback(page);
655		dec_page_count(p->sbi, F2FS_WRITEBACK);
656	} while (bvec >= bio->bi_io_vec);
657
658	if (p->is_sync)
659		complete(p->wait);
660	kfree(p);
661	bio_put(bio);
662}
663
664struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
665{
666	struct bio *bio;
667	struct bio_private *priv;
668retry:
669	priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
670	if (!priv) {
671		cond_resched();
672		goto retry;
673	}
674
675	/* No failure on bio allocation */
676	bio = bio_alloc(GFP_NOIO, npages);
677	bio->bi_bdev = bdev;
678	bio->bi_private = priv;
679	return bio;
680}
681
682static void do_submit_bio(struct f2fs_sb_info *sbi,
683				enum page_type type, bool sync)
684{
685	int rw = sync ? WRITE_SYNC : WRITE;
686	enum page_type btype = type > META ? META : type;
687
688	if (type >= META_FLUSH)
689		rw = WRITE_FLUSH_FUA;
690
691	if (btype == META)
692		rw |= REQ_META;
693
694	if (sbi->bio[btype]) {
695		struct bio_private *p = sbi->bio[btype]->bi_private;
696		p->sbi = sbi;
697		sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
698
699		trace_f2fs_do_submit_bio(sbi->sb, btype, sync, sbi->bio[btype]);
700
701		if (type == META_FLUSH) {
702			DECLARE_COMPLETION_ONSTACK(wait);
703			p->is_sync = true;
704			p->wait = &wait;
705			submit_bio(rw, sbi->bio[btype]);
706			wait_for_completion(&wait);
707		} else {
708			p->is_sync = false;
709			submit_bio(rw, sbi->bio[btype]);
710		}
711		sbi->bio[btype] = NULL;
712	}
713}
714
715void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
716{
717	down_write(&sbi->bio_sem);
718	do_submit_bio(sbi, type, sync);
719	up_write(&sbi->bio_sem);
720}
721
722static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
723				block_t blk_addr, enum page_type type)
724{
725	struct block_device *bdev = sbi->sb->s_bdev;
726
727	verify_block_addr(sbi, blk_addr);
728
729	down_write(&sbi->bio_sem);
730
731	inc_page_count(sbi, F2FS_WRITEBACK);
732
733	if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
734		do_submit_bio(sbi, type, false);
735alloc_new:
736	if (sbi->bio[type] == NULL) {
737		sbi->bio[type] = f2fs_bio_alloc(bdev, bio_get_nr_vecs(bdev));
738		sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
739		/*
740		 * The end_io will be assigned at the sumbission phase.
741		 * Until then, let bio_add_page() merge consecutive IOs as much
742		 * as possible.
743		 */
744	}
745
746	if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
747							PAGE_CACHE_SIZE) {
748		do_submit_bio(sbi, type, false);
749		goto alloc_new;
750	}
751
752	sbi->last_block_in_bio[type] = blk_addr;
753
754	up_write(&sbi->bio_sem);
755	trace_f2fs_submit_write_page(page, blk_addr, type);
756}
757
758static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
759{
760	struct curseg_info *curseg = CURSEG_I(sbi, type);
761	if (curseg->next_blkoff < sbi->blocks_per_seg)
762		return true;
763	return false;
764}
765
766static int __get_segment_type_2(struct page *page, enum page_type p_type)
767{
768	if (p_type == DATA)
769		return CURSEG_HOT_DATA;
770	else
771		return CURSEG_HOT_NODE;
772}
773
774static int __get_segment_type_4(struct page *page, enum page_type p_type)
775{
776	if (p_type == DATA) {
777		struct inode *inode = page->mapping->host;
778
779		if (S_ISDIR(inode->i_mode))
780			return CURSEG_HOT_DATA;
781		else
782			return CURSEG_COLD_DATA;
783	} else {
784		if (IS_DNODE(page) && !is_cold_node(page))
785			return CURSEG_HOT_NODE;
786		else
787			return CURSEG_COLD_NODE;
788	}
789}
790
791static int __get_segment_type_6(struct page *page, enum page_type p_type)
792{
793	if (p_type == DATA) {
794		struct inode *inode = page->mapping->host;
795
796		if (S_ISDIR(inode->i_mode))
797			return CURSEG_HOT_DATA;
798		else if (is_cold_data(page) || is_cold_file(inode))
799			return CURSEG_COLD_DATA;
800		else
801			return CURSEG_WARM_DATA;
802	} else {
803		if (IS_DNODE(page))
804			return is_cold_node(page) ? CURSEG_WARM_NODE :
805						CURSEG_HOT_NODE;
806		else
807			return CURSEG_COLD_NODE;
808	}
809}
810
811static int __get_segment_type(struct page *page, enum page_type p_type)
812{
813	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
814	switch (sbi->active_logs) {
815	case 2:
816		return __get_segment_type_2(page, p_type);
817	case 4:
818		return __get_segment_type_4(page, p_type);
819	}
820	/* NR_CURSEG_TYPE(6) logs by default */
821	BUG_ON(sbi->active_logs != NR_CURSEG_TYPE);
822	return __get_segment_type_6(page, p_type);
823}
824
825static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
826			block_t old_blkaddr, block_t *new_blkaddr,
827			struct f2fs_summary *sum, enum page_type p_type)
828{
829	struct sit_info *sit_i = SIT_I(sbi);
830	struct curseg_info *curseg;
831	unsigned int old_cursegno;
832	int type;
833
834	type = __get_segment_type(page, p_type);
835	curseg = CURSEG_I(sbi, type);
836
837	mutex_lock(&curseg->curseg_mutex);
838
839	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
840	old_cursegno = curseg->segno;
841
842	/*
843	 * __add_sum_entry should be resided under the curseg_mutex
844	 * because, this function updates a summary entry in the
845	 * current summary block.
846	 */
847	__add_sum_entry(sbi, type, sum, curseg->next_blkoff);
848
849	mutex_lock(&sit_i->sentry_lock);
850	__refresh_next_blkoff(sbi, curseg);
851	sbi->block_count[curseg->alloc_type]++;
852
853	/*
854	 * SIT information should be updated before segment allocation,
855	 * since SSR needs latest valid block information.
856	 */
857	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
858
859	if (!__has_curseg_space(sbi, type))
860		sit_i->s_ops->allocate_segment(sbi, type, false);
861
862	locate_dirty_segment(sbi, old_cursegno);
863	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
864	mutex_unlock(&sit_i->sentry_lock);
865
866	if (p_type == NODE)
867		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
868
869	/* writeout dirty page into bdev */
870	submit_write_page(sbi, page, *new_blkaddr, p_type);
871
872	mutex_unlock(&curseg->curseg_mutex);
873}
874
875void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
876{
877	set_page_writeback(page);
878	submit_write_page(sbi, page, page->index, META);
879}
880
881void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
882		unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
883{
884	struct f2fs_summary sum;
885	set_summary(&sum, nid, 0, 0);
886	do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
887}
888
889void write_data_page(struct inode *inode, struct page *page,
890		struct dnode_of_data *dn, block_t old_blkaddr,
891		block_t *new_blkaddr)
892{
893	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
894	struct f2fs_summary sum;
895	struct node_info ni;
896
897	BUG_ON(old_blkaddr == NULL_ADDR);
898	get_node_info(sbi, dn->nid, &ni);
899	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
900
901	do_write_page(sbi, page, old_blkaddr,
902			new_blkaddr, &sum, DATA);
903}
904
905void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
906					block_t old_blk_addr)
907{
908	submit_write_page(sbi, page, old_blk_addr, DATA);
909}
910
911void recover_data_page(struct f2fs_sb_info *sbi,
912			struct page *page, struct f2fs_summary *sum,
913			block_t old_blkaddr, block_t new_blkaddr)
914{
915	struct sit_info *sit_i = SIT_I(sbi);
916	struct curseg_info *curseg;
917	unsigned int segno, old_cursegno;
918	struct seg_entry *se;
919	int type;
920
921	segno = GET_SEGNO(sbi, new_blkaddr);
922	se = get_seg_entry(sbi, segno);
923	type = se->type;
924
925	if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
926		if (old_blkaddr == NULL_ADDR)
927			type = CURSEG_COLD_DATA;
928		else
929			type = CURSEG_WARM_DATA;
930	}
931	curseg = CURSEG_I(sbi, type);
932
933	mutex_lock(&curseg->curseg_mutex);
934	mutex_lock(&sit_i->sentry_lock);
935
936	old_cursegno = curseg->segno;
937
938	/* change the current segment */
939	if (segno != curseg->segno) {
940		curseg->next_segno = segno;
941		change_curseg(sbi, type, true);
942	}
943
944	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
945					(sbi->blocks_per_seg - 1);
946	__add_sum_entry(sbi, type, sum, curseg->next_blkoff);
947
948	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
949
950	locate_dirty_segment(sbi, old_cursegno);
951	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
952
953	mutex_unlock(&sit_i->sentry_lock);
954	mutex_unlock(&curseg->curseg_mutex);
955}
956
957void rewrite_node_page(struct f2fs_sb_info *sbi,
958			struct page *page, struct f2fs_summary *sum,
959			block_t old_blkaddr, block_t new_blkaddr)
960{
961	struct sit_info *sit_i = SIT_I(sbi);
962	int type = CURSEG_WARM_NODE;
963	struct curseg_info *curseg;
964	unsigned int segno, old_cursegno;
965	block_t next_blkaddr = next_blkaddr_of_node(page);
966	unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
967
968	curseg = CURSEG_I(sbi, type);
969
970	mutex_lock(&curseg->curseg_mutex);
971	mutex_lock(&sit_i->sentry_lock);
972
973	segno = GET_SEGNO(sbi, new_blkaddr);
974	old_cursegno = curseg->segno;
975
976	/* change the current segment */
977	if (segno != curseg->segno) {
978		curseg->next_segno = segno;
979		change_curseg(sbi, type, true);
980	}
981	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
982					(sbi->blocks_per_seg - 1);
983	__add_sum_entry(sbi, type, sum, curseg->next_blkoff);
984
985	/* change the current log to the next block addr in advance */
986	if (next_segno != segno) {
987		curseg->next_segno = next_segno;
988		change_curseg(sbi, type, true);
989	}
990	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
991					(sbi->blocks_per_seg - 1);
992
993	/* rewrite node page */
994	set_page_writeback(page);
995	submit_write_page(sbi, page, new_blkaddr, NODE);
996	f2fs_submit_bio(sbi, NODE, true);
997	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
998
999	locate_dirty_segment(sbi, old_cursegno);
1000	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1001
1002	mutex_unlock(&sit_i->sentry_lock);
1003	mutex_unlock(&curseg->curseg_mutex);
1004}
1005
1006static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1007{
1008	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1009	struct curseg_info *seg_i;
1010	unsigned char *kaddr;
1011	struct page *page;
1012	block_t start;
1013	int i, j, offset;
1014
1015	start = start_sum_block(sbi);
1016
1017	page = get_meta_page(sbi, start++);
1018	kaddr = (unsigned char *)page_address(page);
1019
1020	/* Step 1: restore nat cache */
1021	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1022	memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1023
1024	/* Step 2: restore sit cache */
1025	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1026	memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1027						SUM_JOURNAL_SIZE);
1028	offset = 2 * SUM_JOURNAL_SIZE;
1029
1030	/* Step 3: restore summary entries */
1031	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1032		unsigned short blk_off;
1033		unsigned int segno;
1034
1035		seg_i = CURSEG_I(sbi, i);
1036		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1037		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1038		seg_i->next_segno = segno;
1039		reset_curseg(sbi, i, 0);
1040		seg_i->alloc_type = ckpt->alloc_type[i];
1041		seg_i->next_blkoff = blk_off;
1042
1043		if (seg_i->alloc_type == SSR)
1044			blk_off = sbi->blocks_per_seg;
1045
1046		for (j = 0; j < blk_off; j++) {
1047			struct f2fs_summary *s;
1048			s = (struct f2fs_summary *)(kaddr + offset);
1049			seg_i->sum_blk->entries[j] = *s;
1050			offset += SUMMARY_SIZE;
1051			if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1052						SUM_FOOTER_SIZE)
1053				continue;
1054
1055			f2fs_put_page(page, 1);
1056			page = NULL;
1057
1058			page = get_meta_page(sbi, start++);
1059			kaddr = (unsigned char *)page_address(page);
1060			offset = 0;
1061		}
1062	}
1063	f2fs_put_page(page, 1);
1064	return 0;
1065}
1066
1067static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1068{
1069	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1070	struct f2fs_summary_block *sum;
1071	struct curseg_info *curseg;
1072	struct page *new;
1073	unsigned short blk_off;
1074	unsigned int segno = 0;
1075	block_t blk_addr = 0;
1076
1077	/* get segment number and block addr */
1078	if (IS_DATASEG(type)) {
1079		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1080		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1081							CURSEG_HOT_DATA]);
1082		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1083			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1084		else
1085			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1086	} else {
1087		segno = le32_to_cpu(ckpt->cur_node_segno[type -
1088							CURSEG_HOT_NODE]);
1089		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1090							CURSEG_HOT_NODE]);
1091		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1092			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1093							type - CURSEG_HOT_NODE);
1094		else
1095			blk_addr = GET_SUM_BLOCK(sbi, segno);
1096	}
1097
1098	new = get_meta_page(sbi, blk_addr);
1099	sum = (struct f2fs_summary_block *)page_address(new);
1100
1101	if (IS_NODESEG(type)) {
1102		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1103			struct f2fs_summary *ns = &sum->entries[0];
1104			int i;
1105			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1106				ns->version = 0;
1107				ns->ofs_in_node = 0;
1108			}
1109		} else {
1110			if (restore_node_summary(sbi, segno, sum)) {
1111				f2fs_put_page(new, 1);
1112				return -EINVAL;
1113			}
1114		}
1115	}
1116
1117	/* set uncompleted segment to curseg */
1118	curseg = CURSEG_I(sbi, type);
1119	mutex_lock(&curseg->curseg_mutex);
1120	memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1121	curseg->next_segno = segno;
1122	reset_curseg(sbi, type, 0);
1123	curseg->alloc_type = ckpt->alloc_type[type];
1124	curseg->next_blkoff = blk_off;
1125	mutex_unlock(&curseg->curseg_mutex);
1126	f2fs_put_page(new, 1);
1127	return 0;
1128}
1129
1130static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1131{
1132	int type = CURSEG_HOT_DATA;
1133
1134	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1135		/* restore for compacted data summary */
1136		if (read_compacted_summaries(sbi))
1137			return -EINVAL;
1138		type = CURSEG_HOT_NODE;
1139	}
1140
1141	for (; type <= CURSEG_COLD_NODE; type++)
1142		if (read_normal_summaries(sbi, type))
1143			return -EINVAL;
1144	return 0;
1145}
1146
1147static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1148{
1149	struct page *page;
1150	unsigned char *kaddr;
1151	struct f2fs_summary *summary;
1152	struct curseg_info *seg_i;
1153	int written_size = 0;
1154	int i, j;
1155
1156	page = grab_meta_page(sbi, blkaddr++);
1157	kaddr = (unsigned char *)page_address(page);
1158
1159	/* Step 1: write nat cache */
1160	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1161	memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1162	written_size += SUM_JOURNAL_SIZE;
1163
1164	/* Step 2: write sit cache */
1165	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1166	memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1167						SUM_JOURNAL_SIZE);
1168	written_size += SUM_JOURNAL_SIZE;
1169
1170	set_page_dirty(page);
1171
1172	/* Step 3: write summary entries */
1173	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1174		unsigned short blkoff;
1175		seg_i = CURSEG_I(sbi, i);
1176		if (sbi->ckpt->alloc_type[i] == SSR)
1177			blkoff = sbi->blocks_per_seg;
1178		else
1179			blkoff = curseg_blkoff(sbi, i);
1180
1181		for (j = 0; j < blkoff; j++) {
1182			if (!page) {
1183				page = grab_meta_page(sbi, blkaddr++);
1184				kaddr = (unsigned char *)page_address(page);
1185				written_size = 0;
1186			}
1187			summary = (struct f2fs_summary *)(kaddr + written_size);
1188			*summary = seg_i->sum_blk->entries[j];
1189			written_size += SUMMARY_SIZE;
1190			set_page_dirty(page);
1191
1192			if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1193							SUM_FOOTER_SIZE)
1194				continue;
1195
1196			f2fs_put_page(page, 1);
1197			page = NULL;
1198		}
1199	}
1200	if (page)
1201		f2fs_put_page(page, 1);
1202}
1203
1204static void write_normal_summaries(struct f2fs_sb_info *sbi,
1205					block_t blkaddr, int type)
1206{
1207	int i, end;
1208	if (IS_DATASEG(type))
1209		end = type + NR_CURSEG_DATA_TYPE;
1210	else
1211		end = type + NR_CURSEG_NODE_TYPE;
1212
1213	for (i = type; i < end; i++) {
1214		struct curseg_info *sum = CURSEG_I(sbi, i);
1215		mutex_lock(&sum->curseg_mutex);
1216		write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1217		mutex_unlock(&sum->curseg_mutex);
1218	}
1219}
1220
1221void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1222{
1223	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1224		write_compacted_summaries(sbi, start_blk);
1225	else
1226		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1227}
1228
1229void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1230{
1231	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1232		write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1233	return;
1234}
1235
1236int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1237					unsigned int val, int alloc)
1238{
1239	int i;
1240
1241	if (type == NAT_JOURNAL) {
1242		for (i = 0; i < nats_in_cursum(sum); i++) {
1243			if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1244				return i;
1245		}
1246		if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1247			return update_nats_in_cursum(sum, 1);
1248	} else if (type == SIT_JOURNAL) {
1249		for (i = 0; i < sits_in_cursum(sum); i++)
1250			if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1251				return i;
1252		if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1253			return update_sits_in_cursum(sum, 1);
1254	}
1255	return -1;
1256}
1257
1258static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1259					unsigned int segno)
1260{
1261	struct sit_info *sit_i = SIT_I(sbi);
1262	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1263	block_t blk_addr = sit_i->sit_base_addr + offset;
1264
1265	check_seg_range(sbi, segno);
1266
1267	/* calculate sit block address */
1268	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1269		blk_addr += sit_i->sit_blocks;
1270
1271	return get_meta_page(sbi, blk_addr);
1272}
1273
1274static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1275					unsigned int start)
1276{
1277	struct sit_info *sit_i = SIT_I(sbi);
1278	struct page *src_page, *dst_page;
1279	pgoff_t src_off, dst_off;
1280	void *src_addr, *dst_addr;
1281
1282	src_off = current_sit_addr(sbi, start);
1283	dst_off = next_sit_addr(sbi, src_off);
1284
1285	/* get current sit block page without lock */
1286	src_page = get_meta_page(sbi, src_off);
1287	dst_page = grab_meta_page(sbi, dst_off);
1288	BUG_ON(PageDirty(src_page));
1289
1290	src_addr = page_address(src_page);
1291	dst_addr = page_address(dst_page);
1292	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1293
1294	set_page_dirty(dst_page);
1295	f2fs_put_page(src_page, 1);
1296
1297	set_to_next_sit(sit_i, start);
1298
1299	return dst_page;
1300}
1301
1302static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1303{
1304	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1305	struct f2fs_summary_block *sum = curseg->sum_blk;
1306	int i;
1307
1308	/*
1309	 * If the journal area in the current summary is full of sit entries,
1310	 * all the sit entries will be flushed. Otherwise the sit entries
1311	 * are not able to replace with newly hot sit entries.
1312	 */
1313	if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1314		for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1315			unsigned int segno;
1316			segno = le32_to_cpu(segno_in_journal(sum, i));
1317			__mark_sit_entry_dirty(sbi, segno);
1318		}
1319		update_sits_in_cursum(sum, -sits_in_cursum(sum));
1320		return 1;
1321	}
1322	return 0;
1323}
1324
1325/*
1326 * CP calls this function, which flushes SIT entries including sit_journal,
1327 * and moves prefree segs to free segs.
1328 */
1329void flush_sit_entries(struct f2fs_sb_info *sbi)
1330{
1331	struct sit_info *sit_i = SIT_I(sbi);
1332	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1333	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1334	struct f2fs_summary_block *sum = curseg->sum_blk;
1335	unsigned long nsegs = TOTAL_SEGS(sbi);
1336	struct page *page = NULL;
1337	struct f2fs_sit_block *raw_sit = NULL;
1338	unsigned int start = 0, end = 0;
1339	unsigned int segno = -1;
1340	bool flushed;
1341
1342	mutex_lock(&curseg->curseg_mutex);
1343	mutex_lock(&sit_i->sentry_lock);
1344
1345	/*
1346	 * "flushed" indicates whether sit entries in journal are flushed
1347	 * to the SIT area or not.
1348	 */
1349	flushed = flush_sits_in_journal(sbi);
1350
1351	while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1352		struct seg_entry *se = get_seg_entry(sbi, segno);
1353		int sit_offset, offset;
1354
1355		sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1356
1357		if (flushed)
1358			goto to_sit_page;
1359
1360		offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1361		if (offset >= 0) {
1362			segno_in_journal(sum, offset) = cpu_to_le32(segno);
1363			seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1364			goto flush_done;
1365		}
1366to_sit_page:
1367		if (!page || (start > segno) || (segno > end)) {
1368			if (page) {
1369				f2fs_put_page(page, 1);
1370				page = NULL;
1371			}
1372
1373			start = START_SEGNO(sit_i, segno);
1374			end = start + SIT_ENTRY_PER_BLOCK - 1;
1375
1376			/* read sit block that will be updated */
1377			page = get_next_sit_page(sbi, start);
1378			raw_sit = page_address(page);
1379		}
1380
1381		/* udpate entry in SIT block */
1382		seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1383flush_done:
1384		__clear_bit(segno, bitmap);
1385		sit_i->dirty_sentries--;
1386	}
1387	mutex_unlock(&sit_i->sentry_lock);
1388	mutex_unlock(&curseg->curseg_mutex);
1389
1390	/* writeout last modified SIT block */
1391	f2fs_put_page(page, 1);
1392
1393	set_prefree_as_free_segments(sbi);
1394}
1395
1396static int build_sit_info(struct f2fs_sb_info *sbi)
1397{
1398	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1399	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1400	struct sit_info *sit_i;
1401	unsigned int sit_segs, start;
1402	char *src_bitmap, *dst_bitmap;
1403	unsigned int bitmap_size;
1404
1405	/* allocate memory for SIT information */
1406	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1407	if (!sit_i)
1408		return -ENOMEM;
1409
1410	SM_I(sbi)->sit_info = sit_i;
1411
1412	sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1413	if (!sit_i->sentries)
1414		return -ENOMEM;
1415
1416	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1417	sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1418	if (!sit_i->dirty_sentries_bitmap)
1419		return -ENOMEM;
1420
1421	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1422		sit_i->sentries[start].cur_valid_map
1423			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1424		sit_i->sentries[start].ckpt_valid_map
1425			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1426		if (!sit_i->sentries[start].cur_valid_map
1427				|| !sit_i->sentries[start].ckpt_valid_map)
1428			return -ENOMEM;
1429	}
1430
1431	if (sbi->segs_per_sec > 1) {
1432		sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1433					sizeof(struct sec_entry));
1434		if (!sit_i->sec_entries)
1435			return -ENOMEM;
1436	}
1437
1438	/* get information related with SIT */
1439	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1440
1441	/* setup SIT bitmap from ckeckpoint pack */
1442	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1443	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1444
1445	dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1446	if (!dst_bitmap)
1447		return -ENOMEM;
1448
1449	/* init SIT information */
1450	sit_i->s_ops = &default_salloc_ops;
1451
1452	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1453	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1454	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1455	sit_i->sit_bitmap = dst_bitmap;
1456	sit_i->bitmap_size = bitmap_size;
1457	sit_i->dirty_sentries = 0;
1458	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1459	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1460	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1461	mutex_init(&sit_i->sentry_lock);
1462	return 0;
1463}
1464
1465static int build_free_segmap(struct f2fs_sb_info *sbi)
1466{
1467	struct f2fs_sm_info *sm_info = SM_I(sbi);
1468	struct free_segmap_info *free_i;
1469	unsigned int bitmap_size, sec_bitmap_size;
1470
1471	/* allocate memory for free segmap information */
1472	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1473	if (!free_i)
1474		return -ENOMEM;
1475
1476	SM_I(sbi)->free_info = free_i;
1477
1478	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1479	free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1480	if (!free_i->free_segmap)
1481		return -ENOMEM;
1482
1483	sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1484	free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1485	if (!free_i->free_secmap)
1486		return -ENOMEM;
1487
1488	/* set all segments as dirty temporarily */
1489	memset(free_i->free_segmap, 0xff, bitmap_size);
1490	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1491
1492	/* init free segmap information */
1493	free_i->start_segno =
1494		(unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1495	free_i->free_segments = 0;
1496	free_i->free_sections = 0;
1497	rwlock_init(&free_i->segmap_lock);
1498	return 0;
1499}
1500
1501static int build_curseg(struct f2fs_sb_info *sbi)
1502{
1503	struct curseg_info *array;
1504	int i;
1505
1506	array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1507	if (!array)
1508		return -ENOMEM;
1509
1510	SM_I(sbi)->curseg_array = array;
1511
1512	for (i = 0; i < NR_CURSEG_TYPE; i++) {
1513		mutex_init(&array[i].curseg_mutex);
1514		array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1515		if (!array[i].sum_blk)
1516			return -ENOMEM;
1517		array[i].segno = NULL_SEGNO;
1518		array[i].next_blkoff = 0;
1519	}
1520	return restore_curseg_summaries(sbi);
1521}
1522
1523static void build_sit_entries(struct f2fs_sb_info *sbi)
1524{
1525	struct sit_info *sit_i = SIT_I(sbi);
1526	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1527	struct f2fs_summary_block *sum = curseg->sum_blk;
1528	unsigned int start;
1529
1530	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1531		struct seg_entry *se = &sit_i->sentries[start];
1532		struct f2fs_sit_block *sit_blk;
1533		struct f2fs_sit_entry sit;
1534		struct page *page;
1535		int i;
1536
1537		mutex_lock(&curseg->curseg_mutex);
1538		for (i = 0; i < sits_in_cursum(sum); i++) {
1539			if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1540				sit = sit_in_journal(sum, i);
1541				mutex_unlock(&curseg->curseg_mutex);
1542				goto got_it;
1543			}
1544		}
1545		mutex_unlock(&curseg->curseg_mutex);
1546		page = get_current_sit_page(sbi, start);
1547		sit_blk = (struct f2fs_sit_block *)page_address(page);
1548		sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1549		f2fs_put_page(page, 1);
1550got_it:
1551		check_block_count(sbi, start, &sit);
1552		seg_info_from_raw_sit(se, &sit);
1553		if (sbi->segs_per_sec > 1) {
1554			struct sec_entry *e = get_sec_entry(sbi, start);
1555			e->valid_blocks += se->valid_blocks;
1556		}
1557	}
1558}
1559
1560static void init_free_segmap(struct f2fs_sb_info *sbi)
1561{
1562	unsigned int start;
1563	int type;
1564
1565	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1566		struct seg_entry *sentry = get_seg_entry(sbi, start);
1567		if (!sentry->valid_blocks)
1568			__set_free(sbi, start);
1569	}
1570
1571	/* set use the current segments */
1572	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1573		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1574		__set_test_and_inuse(sbi, curseg_t->segno);
1575	}
1576}
1577
1578static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1579{
1580	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1581	struct free_segmap_info *free_i = FREE_I(sbi);
1582	unsigned int segno = 0, offset = 0;
1583	unsigned short valid_blocks;
1584
1585	while (segno < TOTAL_SEGS(sbi)) {
1586		/* find dirty segment based on free segmap */
1587		segno = find_next_inuse(free_i, TOTAL_SEGS(sbi), offset);
1588		if (segno >= TOTAL_SEGS(sbi))
1589			break;
1590		offset = segno + 1;
1591		valid_blocks = get_valid_blocks(sbi, segno, 0);
1592		if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1593			continue;
1594		mutex_lock(&dirty_i->seglist_lock);
1595		__locate_dirty_segment(sbi, segno, DIRTY);
1596		mutex_unlock(&dirty_i->seglist_lock);
1597	}
1598}
1599
1600static int init_victim_secmap(struct f2fs_sb_info *sbi)
1601{
1602	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1603	unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1604
1605	dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1606	if (!dirty_i->victim_secmap)
1607		return -ENOMEM;
1608	return 0;
1609}
1610
1611static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1612{
1613	struct dirty_seglist_info *dirty_i;
1614	unsigned int bitmap_size, i;
1615
1616	/* allocate memory for dirty segments list information */
1617	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1618	if (!dirty_i)
1619		return -ENOMEM;
1620
1621	SM_I(sbi)->dirty_info = dirty_i;
1622	mutex_init(&dirty_i->seglist_lock);
1623
1624	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1625
1626	for (i = 0; i < NR_DIRTY_TYPE; i++) {
1627		dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1628		if (!dirty_i->dirty_segmap[i])
1629			return -ENOMEM;
1630	}
1631
1632	init_dirty_segmap(sbi);
1633	return init_victim_secmap(sbi);
1634}
1635
1636/*
1637 * Update min, max modified time for cost-benefit GC algorithm
1638 */
1639static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1640{
1641	struct sit_info *sit_i = SIT_I(sbi);
1642	unsigned int segno;
1643
1644	mutex_lock(&sit_i->sentry_lock);
1645
1646	sit_i->min_mtime = LLONG_MAX;
1647
1648	for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1649		unsigned int i;
1650		unsigned long long mtime = 0;
1651
1652		for (i = 0; i < sbi->segs_per_sec; i++)
1653			mtime += get_seg_entry(sbi, segno + i)->mtime;
1654
1655		mtime = div_u64(mtime, sbi->segs_per_sec);
1656
1657		if (sit_i->min_mtime > mtime)
1658			sit_i->min_mtime = mtime;
1659	}
1660	sit_i->max_mtime = get_mtime(sbi);
1661	mutex_unlock(&sit_i->sentry_lock);
1662}
1663
1664int build_segment_manager(struct f2fs_sb_info *sbi)
1665{
1666	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1667	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1668	struct f2fs_sm_info *sm_info;
1669	int err;
1670
1671	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1672	if (!sm_info)
1673		return -ENOMEM;
1674
1675	/* init sm info */
1676	sbi->sm_info = sm_info;
1677	INIT_LIST_HEAD(&sm_info->wblist_head);
1678	spin_lock_init(&sm_info->wblist_lock);
1679	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1680	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1681	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1682	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1683	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1684	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1685	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1686
1687	err = build_sit_info(sbi);
1688	if (err)
1689		return err;
1690	err = build_free_segmap(sbi);
1691	if (err)
1692		return err;
1693	err = build_curseg(sbi);
1694	if (err)
1695		return err;
1696
1697	/* reinit free segmap based on SIT */
1698	build_sit_entries(sbi);
1699
1700	init_free_segmap(sbi);
1701	err = build_dirty_segmap(sbi);
1702	if (err)
1703		return err;
1704
1705	init_min_max_mtime(sbi);
1706	return 0;
1707}
1708
1709static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1710		enum dirty_type dirty_type)
1711{
1712	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1713
1714	mutex_lock(&dirty_i->seglist_lock);
1715	kfree(dirty_i->dirty_segmap[dirty_type]);
1716	dirty_i->nr_dirty[dirty_type] = 0;
1717	mutex_unlock(&dirty_i->seglist_lock);
1718}
1719
1720static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1721{
1722	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1723	kfree(dirty_i->victim_secmap);
1724}
1725
1726static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1727{
1728	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1729	int i;
1730
1731	if (!dirty_i)
1732		return;
1733
1734	/* discard pre-free/dirty segments list */
1735	for (i = 0; i < NR_DIRTY_TYPE; i++)
1736		discard_dirty_segmap(sbi, i);
1737
1738	destroy_victim_secmap(sbi);
1739	SM_I(sbi)->dirty_info = NULL;
1740	kfree(dirty_i);
1741}
1742
1743static void destroy_curseg(struct f2fs_sb_info *sbi)
1744{
1745	struct curseg_info *array = SM_I(sbi)->curseg_array;
1746	int i;
1747
1748	if (!array)
1749		return;
1750	SM_I(sbi)->curseg_array = NULL;
1751	for (i = 0; i < NR_CURSEG_TYPE; i++)
1752		kfree(array[i].sum_blk);
1753	kfree(array);
1754}
1755
1756static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1757{
1758	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1759	if (!free_i)
1760		return;
1761	SM_I(sbi)->free_info = NULL;
1762	kfree(free_i->free_segmap);
1763	kfree(free_i->free_secmap);
1764	kfree(free_i);
1765}
1766
1767static void destroy_sit_info(struct f2fs_sb_info *sbi)
1768{
1769	struct sit_info *sit_i = SIT_I(sbi);
1770	unsigned int start;
1771
1772	if (!sit_i)
1773		return;
1774
1775	if (sit_i->sentries) {
1776		for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1777			kfree(sit_i->sentries[start].cur_valid_map);
1778			kfree(sit_i->sentries[start].ckpt_valid_map);
1779		}
1780	}
1781	vfree(sit_i->sentries);
1782	vfree(sit_i->sec_entries);
1783	kfree(sit_i->dirty_sentries_bitmap);
1784
1785	SM_I(sbi)->sit_info = NULL;
1786	kfree(sit_i->sit_bitmap);
1787	kfree(sit_i);
1788}
1789
1790void destroy_segment_manager(struct f2fs_sb_info *sbi)
1791{
1792	struct f2fs_sm_info *sm_info = SM_I(sbi);
1793	destroy_dirty_segmap(sbi);
1794	destroy_curseg(sbi);
1795	destroy_free_segmap(sbi);
1796	destroy_sit_info(sbi);
1797	sbi->sm_info = NULL;
1798	kfree(sm_info);
1799}
1800