segment.c revision c1ce1b02bb25640567dc484dc94d3a195d21e705
1/*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 *             http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/bio.h>
14#include <linux/blkdev.h>
15#include <linux/prefetch.h>
16#include <linux/kthread.h>
17#include <linux/vmalloc.h>
18#include <linux/swap.h>
19
20#include "f2fs.h"
21#include "segment.h"
22#include "node.h"
23#include <trace/events/f2fs.h>
24
25#define __reverse_ffz(x) __reverse_ffs(~(x))
26
27static struct kmem_cache *discard_entry_slab;
28static struct kmem_cache *sit_entry_set_slab;
29
30/*
31 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
32 * MSB and LSB are reversed in a byte by f2fs_set_bit.
33 */
34static inline unsigned long __reverse_ffs(unsigned long word)
35{
36	int num = 0;
37
38#if BITS_PER_LONG == 64
39	if ((word & 0xffffffff) == 0) {
40		num += 32;
41		word >>= 32;
42	}
43#endif
44	if ((word & 0xffff) == 0) {
45		num += 16;
46		word >>= 16;
47	}
48	if ((word & 0xff) == 0) {
49		num += 8;
50		word >>= 8;
51	}
52	if ((word & 0xf0) == 0)
53		num += 4;
54	else
55		word >>= 4;
56	if ((word & 0xc) == 0)
57		num += 2;
58	else
59		word >>= 2;
60	if ((word & 0x2) == 0)
61		num += 1;
62	return num;
63}
64
65/*
66 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
67 * f2fs_set_bit makes MSB and LSB reversed in a byte.
68 * Example:
69 *                             LSB <--> MSB
70 *   f2fs_set_bit(0, bitmap) => 0000 0001
71 *   f2fs_set_bit(7, bitmap) => 1000 0000
72 */
73static unsigned long __find_rev_next_bit(const unsigned long *addr,
74			unsigned long size, unsigned long offset)
75{
76	const unsigned long *p = addr + BIT_WORD(offset);
77	unsigned long result = offset & ~(BITS_PER_LONG - 1);
78	unsigned long tmp;
79	unsigned long mask, submask;
80	unsigned long quot, rest;
81
82	if (offset >= size)
83		return size;
84
85	size -= result;
86	offset %= BITS_PER_LONG;
87	if (!offset)
88		goto aligned;
89
90	tmp = *(p++);
91	quot = (offset >> 3) << 3;
92	rest = offset & 0x7;
93	mask = ~0UL << quot;
94	submask = (unsigned char)(0xff << rest) >> rest;
95	submask <<= quot;
96	mask &= submask;
97	tmp &= mask;
98	if (size < BITS_PER_LONG)
99		goto found_first;
100	if (tmp)
101		goto found_middle;
102
103	size -= BITS_PER_LONG;
104	result += BITS_PER_LONG;
105aligned:
106	while (size & ~(BITS_PER_LONG-1)) {
107		tmp = *(p++);
108		if (tmp)
109			goto found_middle;
110		result += BITS_PER_LONG;
111		size -= BITS_PER_LONG;
112	}
113	if (!size)
114		return result;
115	tmp = *p;
116found_first:
117	tmp &= (~0UL >> (BITS_PER_LONG - size));
118	if (tmp == 0UL)		/* Are any bits set? */
119		return result + size;   /* Nope. */
120found_middle:
121	return result + __reverse_ffs(tmp);
122}
123
124static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
125			unsigned long size, unsigned long offset)
126{
127	const unsigned long *p = addr + BIT_WORD(offset);
128	unsigned long result = offset & ~(BITS_PER_LONG - 1);
129	unsigned long tmp;
130	unsigned long mask, submask;
131	unsigned long quot, rest;
132
133	if (offset >= size)
134		return size;
135
136	size -= result;
137	offset %= BITS_PER_LONG;
138	if (!offset)
139		goto aligned;
140
141	tmp = *(p++);
142	quot = (offset >> 3) << 3;
143	rest = offset & 0x7;
144	mask = ~(~0UL << quot);
145	submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
146	submask <<= quot;
147	mask += submask;
148	tmp |= mask;
149	if (size < BITS_PER_LONG)
150		goto found_first;
151	if (~tmp)
152		goto found_middle;
153
154	size -= BITS_PER_LONG;
155	result += BITS_PER_LONG;
156aligned:
157	while (size & ~(BITS_PER_LONG - 1)) {
158		tmp = *(p++);
159		if (~tmp)
160			goto found_middle;
161		result += BITS_PER_LONG;
162		size -= BITS_PER_LONG;
163	}
164	if (!size)
165		return result;
166	tmp = *p;
167
168found_first:
169	tmp |= ~0UL << size;
170	if (tmp == ~0UL)        /* Are any bits zero? */
171		return result + size;   /* Nope. */
172found_middle:
173	return result + __reverse_ffz(tmp);
174}
175
176/*
177 * This function balances dirty node and dentry pages.
178 * In addition, it controls garbage collection.
179 */
180void f2fs_balance_fs(struct f2fs_sb_info *sbi)
181{
182	/*
183	 * We should do GC or end up with checkpoint, if there are so many dirty
184	 * dir/node pages without enough free segments.
185	 */
186	if (has_not_enough_free_secs(sbi, 0)) {
187		mutex_lock(&sbi->gc_mutex);
188		f2fs_gc(sbi);
189	}
190}
191
192void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
193{
194	/* check the # of cached NAT entries and prefree segments */
195	if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
196				excess_prefree_segs(sbi))
197		f2fs_sync_fs(sbi->sb, true);
198}
199
200static int issue_flush_thread(void *data)
201{
202	struct f2fs_sb_info *sbi = data;
203	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
204	wait_queue_head_t *q = &fcc->flush_wait_queue;
205repeat:
206	if (kthread_should_stop())
207		return 0;
208
209	if (!llist_empty(&fcc->issue_list)) {
210		struct bio *bio = bio_alloc(GFP_NOIO, 0);
211		struct flush_cmd *cmd, *next;
212		int ret;
213
214		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
215		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
216
217		bio->bi_bdev = sbi->sb->s_bdev;
218		ret = submit_bio_wait(WRITE_FLUSH, bio);
219
220		llist_for_each_entry_safe(cmd, next,
221					  fcc->dispatch_list, llnode) {
222			cmd->ret = ret;
223			complete(&cmd->wait);
224		}
225		bio_put(bio);
226		fcc->dispatch_list = NULL;
227	}
228
229	wait_event_interruptible(*q,
230		kthread_should_stop() || !llist_empty(&fcc->issue_list));
231	goto repeat;
232}
233
234int f2fs_issue_flush(struct f2fs_sb_info *sbi)
235{
236	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
237	struct flush_cmd cmd;
238
239	trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
240					test_opt(sbi, FLUSH_MERGE));
241
242	if (test_opt(sbi, NOBARRIER))
243		return 0;
244
245	if (!test_opt(sbi, FLUSH_MERGE))
246		return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL);
247
248	init_completion(&cmd.wait);
249
250	llist_add(&cmd.llnode, &fcc->issue_list);
251
252	if (!fcc->dispatch_list)
253		wake_up(&fcc->flush_wait_queue);
254
255	wait_for_completion(&cmd.wait);
256
257	return cmd.ret;
258}
259
260int create_flush_cmd_control(struct f2fs_sb_info *sbi)
261{
262	dev_t dev = sbi->sb->s_bdev->bd_dev;
263	struct flush_cmd_control *fcc;
264	int err = 0;
265
266	fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
267	if (!fcc)
268		return -ENOMEM;
269	init_waitqueue_head(&fcc->flush_wait_queue);
270	init_llist_head(&fcc->issue_list);
271	SM_I(sbi)->cmd_control_info = fcc;
272	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
273				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
274	if (IS_ERR(fcc->f2fs_issue_flush)) {
275		err = PTR_ERR(fcc->f2fs_issue_flush);
276		kfree(fcc);
277		SM_I(sbi)->cmd_control_info = NULL;
278		return err;
279	}
280
281	return err;
282}
283
284void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
285{
286	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
287
288	if (fcc && fcc->f2fs_issue_flush)
289		kthread_stop(fcc->f2fs_issue_flush);
290	kfree(fcc);
291	SM_I(sbi)->cmd_control_info = NULL;
292}
293
294static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
295		enum dirty_type dirty_type)
296{
297	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
298
299	/* need not be added */
300	if (IS_CURSEG(sbi, segno))
301		return;
302
303	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
304		dirty_i->nr_dirty[dirty_type]++;
305
306	if (dirty_type == DIRTY) {
307		struct seg_entry *sentry = get_seg_entry(sbi, segno);
308		enum dirty_type t = sentry->type;
309
310		if (unlikely(t >= DIRTY)) {
311			f2fs_bug_on(sbi, 1);
312			return;
313		}
314		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
315			dirty_i->nr_dirty[t]++;
316	}
317}
318
319static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
320		enum dirty_type dirty_type)
321{
322	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
323
324	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
325		dirty_i->nr_dirty[dirty_type]--;
326
327	if (dirty_type == DIRTY) {
328		struct seg_entry *sentry = get_seg_entry(sbi, segno);
329		enum dirty_type t = sentry->type;
330
331		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
332			dirty_i->nr_dirty[t]--;
333
334		if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
335			clear_bit(GET_SECNO(sbi, segno),
336						dirty_i->victim_secmap);
337	}
338}
339
340/*
341 * Should not occur error such as -ENOMEM.
342 * Adding dirty entry into seglist is not critical operation.
343 * If a given segment is one of current working segments, it won't be added.
344 */
345static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
346{
347	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
348	unsigned short valid_blocks;
349
350	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
351		return;
352
353	mutex_lock(&dirty_i->seglist_lock);
354
355	valid_blocks = get_valid_blocks(sbi, segno, 0);
356
357	if (valid_blocks == 0) {
358		__locate_dirty_segment(sbi, segno, PRE);
359		__remove_dirty_segment(sbi, segno, DIRTY);
360	} else if (valid_blocks < sbi->blocks_per_seg) {
361		__locate_dirty_segment(sbi, segno, DIRTY);
362	} else {
363		/* Recovery routine with SSR needs this */
364		__remove_dirty_segment(sbi, segno, DIRTY);
365	}
366
367	mutex_unlock(&dirty_i->seglist_lock);
368}
369
370static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
371				block_t blkstart, block_t blklen)
372{
373	sector_t start = SECTOR_FROM_BLOCK(sbi, blkstart);
374	sector_t len = SECTOR_FROM_BLOCK(sbi, blklen);
375	trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
376	return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
377}
378
379void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
380{
381	if (f2fs_issue_discard(sbi, blkaddr, 1)) {
382		struct page *page = grab_meta_page(sbi, blkaddr);
383		/* zero-filled page */
384		set_page_dirty(page);
385		f2fs_put_page(page, 1);
386	}
387}
388
389static void add_discard_addrs(struct f2fs_sb_info *sbi,
390			unsigned int segno, struct seg_entry *se)
391{
392	struct list_head *head = &SM_I(sbi)->discard_list;
393	struct discard_entry *new;
394	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
395	int max_blocks = sbi->blocks_per_seg;
396	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
397	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
398	unsigned long dmap[entries];
399	unsigned int start = 0, end = -1;
400	int i;
401
402	if (!test_opt(sbi, DISCARD))
403		return;
404
405	/* zero block will be discarded through the prefree list */
406	if (!se->valid_blocks || se->valid_blocks == max_blocks)
407		return;
408
409	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
410	for (i = 0; i < entries; i++)
411		dmap[i] = (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
412
413	while (SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
414		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
415		if (start >= max_blocks)
416			break;
417
418		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
419
420		new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
421		INIT_LIST_HEAD(&new->list);
422		new->blkaddr = START_BLOCK(sbi, segno) + start;
423		new->len = end - start;
424
425		list_add_tail(&new->list, head);
426		SM_I(sbi)->nr_discards += end - start;
427	}
428}
429
430/*
431 * Should call clear_prefree_segments after checkpoint is done.
432 */
433static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
434{
435	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
436	unsigned int segno;
437	unsigned int total_segs = TOTAL_SEGS(sbi);
438
439	mutex_lock(&dirty_i->seglist_lock);
440	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], total_segs)
441		__set_test_and_free(sbi, segno);
442	mutex_unlock(&dirty_i->seglist_lock);
443}
444
445void clear_prefree_segments(struct f2fs_sb_info *sbi)
446{
447	struct list_head *head = &(SM_I(sbi)->discard_list);
448	struct discard_entry *entry, *this;
449	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
450	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
451	unsigned int total_segs = TOTAL_SEGS(sbi);
452	unsigned int start = 0, end = -1;
453
454	mutex_lock(&dirty_i->seglist_lock);
455
456	while (1) {
457		int i;
458		start = find_next_bit(prefree_map, total_segs, end + 1);
459		if (start >= total_segs)
460			break;
461		end = find_next_zero_bit(prefree_map, total_segs, start + 1);
462
463		for (i = start; i < end; i++)
464			clear_bit(i, prefree_map);
465
466		dirty_i->nr_dirty[PRE] -= end - start;
467
468		if (!test_opt(sbi, DISCARD))
469			continue;
470
471		f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
472				(end - start) << sbi->log_blocks_per_seg);
473	}
474	mutex_unlock(&dirty_i->seglist_lock);
475
476	/* send small discards */
477	list_for_each_entry_safe(entry, this, head, list) {
478		f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
479		list_del(&entry->list);
480		SM_I(sbi)->nr_discards -= entry->len;
481		kmem_cache_free(discard_entry_slab, entry);
482	}
483}
484
485static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
486{
487	struct sit_info *sit_i = SIT_I(sbi);
488
489	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
490		sit_i->dirty_sentries++;
491		return false;
492	}
493
494	return true;
495}
496
497static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
498					unsigned int segno, int modified)
499{
500	struct seg_entry *se = get_seg_entry(sbi, segno);
501	se->type = type;
502	if (modified)
503		__mark_sit_entry_dirty(sbi, segno);
504}
505
506static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
507{
508	struct seg_entry *se;
509	unsigned int segno, offset;
510	long int new_vblocks;
511
512	segno = GET_SEGNO(sbi, blkaddr);
513
514	se = get_seg_entry(sbi, segno);
515	new_vblocks = se->valid_blocks + del;
516	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
517
518	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
519				(new_vblocks > sbi->blocks_per_seg)));
520
521	se->valid_blocks = new_vblocks;
522	se->mtime = get_mtime(sbi);
523	SIT_I(sbi)->max_mtime = se->mtime;
524
525	/* Update valid block bitmap */
526	if (del > 0) {
527		if (f2fs_set_bit(offset, se->cur_valid_map))
528			f2fs_bug_on(sbi, 1);
529	} else {
530		if (!f2fs_clear_bit(offset, se->cur_valid_map))
531			f2fs_bug_on(sbi, 1);
532	}
533	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
534		se->ckpt_valid_blocks += del;
535
536	__mark_sit_entry_dirty(sbi, segno);
537
538	/* update total number of valid blocks to be written in ckpt area */
539	SIT_I(sbi)->written_valid_blocks += del;
540
541	if (sbi->segs_per_sec > 1)
542		get_sec_entry(sbi, segno)->valid_blocks += del;
543}
544
545void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
546{
547	update_sit_entry(sbi, new, 1);
548	if (GET_SEGNO(sbi, old) != NULL_SEGNO)
549		update_sit_entry(sbi, old, -1);
550
551	locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
552	locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
553}
554
555void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
556{
557	unsigned int segno = GET_SEGNO(sbi, addr);
558	struct sit_info *sit_i = SIT_I(sbi);
559
560	f2fs_bug_on(sbi, addr == NULL_ADDR);
561	if (addr == NEW_ADDR)
562		return;
563
564	/* add it into sit main buffer */
565	mutex_lock(&sit_i->sentry_lock);
566
567	update_sit_entry(sbi, addr, -1);
568
569	/* add it into dirty seglist */
570	locate_dirty_segment(sbi, segno);
571
572	mutex_unlock(&sit_i->sentry_lock);
573}
574
575/*
576 * This function should be resided under the curseg_mutex lock
577 */
578static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
579					struct f2fs_summary *sum)
580{
581	struct curseg_info *curseg = CURSEG_I(sbi, type);
582	void *addr = curseg->sum_blk;
583	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
584	memcpy(addr, sum, sizeof(struct f2fs_summary));
585}
586
587/*
588 * Calculate the number of current summary pages for writing
589 */
590int npages_for_summary_flush(struct f2fs_sb_info *sbi)
591{
592	int valid_sum_count = 0;
593	int i, sum_in_page;
594
595	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
596		if (sbi->ckpt->alloc_type[i] == SSR)
597			valid_sum_count += sbi->blocks_per_seg;
598		else
599			valid_sum_count += curseg_blkoff(sbi, i);
600	}
601
602	sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
603			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
604	if (valid_sum_count <= sum_in_page)
605		return 1;
606	else if ((valid_sum_count - sum_in_page) <=
607		(PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
608		return 2;
609	return 3;
610}
611
612/*
613 * Caller should put this summary page
614 */
615struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
616{
617	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
618}
619
620static void write_sum_page(struct f2fs_sb_info *sbi,
621			struct f2fs_summary_block *sum_blk, block_t blk_addr)
622{
623	struct page *page = grab_meta_page(sbi, blk_addr);
624	void *kaddr = page_address(page);
625	memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
626	set_page_dirty(page);
627	f2fs_put_page(page, 1);
628}
629
630static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
631{
632	struct curseg_info *curseg = CURSEG_I(sbi, type);
633	unsigned int segno = curseg->segno + 1;
634	struct free_segmap_info *free_i = FREE_I(sbi);
635
636	if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
637		return !test_bit(segno, free_i->free_segmap);
638	return 0;
639}
640
641/*
642 * Find a new segment from the free segments bitmap to right order
643 * This function should be returned with success, otherwise BUG
644 */
645static void get_new_segment(struct f2fs_sb_info *sbi,
646			unsigned int *newseg, bool new_sec, int dir)
647{
648	struct free_segmap_info *free_i = FREE_I(sbi);
649	unsigned int segno, secno, zoneno;
650	unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
651	unsigned int hint = *newseg / sbi->segs_per_sec;
652	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
653	unsigned int left_start = hint;
654	bool init = true;
655	int go_left = 0;
656	int i;
657
658	write_lock(&free_i->segmap_lock);
659
660	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
661		segno = find_next_zero_bit(free_i->free_segmap,
662					TOTAL_SEGS(sbi), *newseg + 1);
663		if (segno - *newseg < sbi->segs_per_sec -
664					(*newseg % sbi->segs_per_sec))
665			goto got_it;
666	}
667find_other_zone:
668	secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
669	if (secno >= TOTAL_SECS(sbi)) {
670		if (dir == ALLOC_RIGHT) {
671			secno = find_next_zero_bit(free_i->free_secmap,
672							TOTAL_SECS(sbi), 0);
673			f2fs_bug_on(sbi, secno >= TOTAL_SECS(sbi));
674		} else {
675			go_left = 1;
676			left_start = hint - 1;
677		}
678	}
679	if (go_left == 0)
680		goto skip_left;
681
682	while (test_bit(left_start, free_i->free_secmap)) {
683		if (left_start > 0) {
684			left_start--;
685			continue;
686		}
687		left_start = find_next_zero_bit(free_i->free_secmap,
688							TOTAL_SECS(sbi), 0);
689		f2fs_bug_on(sbi, left_start >= TOTAL_SECS(sbi));
690		break;
691	}
692	secno = left_start;
693skip_left:
694	hint = secno;
695	segno = secno * sbi->segs_per_sec;
696	zoneno = secno / sbi->secs_per_zone;
697
698	/* give up on finding another zone */
699	if (!init)
700		goto got_it;
701	if (sbi->secs_per_zone == 1)
702		goto got_it;
703	if (zoneno == old_zoneno)
704		goto got_it;
705	if (dir == ALLOC_LEFT) {
706		if (!go_left && zoneno + 1 >= total_zones)
707			goto got_it;
708		if (go_left && zoneno == 0)
709			goto got_it;
710	}
711	for (i = 0; i < NR_CURSEG_TYPE; i++)
712		if (CURSEG_I(sbi, i)->zone == zoneno)
713			break;
714
715	if (i < NR_CURSEG_TYPE) {
716		/* zone is in user, try another */
717		if (go_left)
718			hint = zoneno * sbi->secs_per_zone - 1;
719		else if (zoneno + 1 >= total_zones)
720			hint = 0;
721		else
722			hint = (zoneno + 1) * sbi->secs_per_zone;
723		init = false;
724		goto find_other_zone;
725	}
726got_it:
727	/* set it as dirty segment in free segmap */
728	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
729	__set_inuse(sbi, segno);
730	*newseg = segno;
731	write_unlock(&free_i->segmap_lock);
732}
733
734static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
735{
736	struct curseg_info *curseg = CURSEG_I(sbi, type);
737	struct summary_footer *sum_footer;
738
739	curseg->segno = curseg->next_segno;
740	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
741	curseg->next_blkoff = 0;
742	curseg->next_segno = NULL_SEGNO;
743
744	sum_footer = &(curseg->sum_blk->footer);
745	memset(sum_footer, 0, sizeof(struct summary_footer));
746	if (IS_DATASEG(type))
747		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
748	if (IS_NODESEG(type))
749		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
750	__set_sit_entry_type(sbi, type, curseg->segno, modified);
751}
752
753/*
754 * Allocate a current working segment.
755 * This function always allocates a free segment in LFS manner.
756 */
757static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
758{
759	struct curseg_info *curseg = CURSEG_I(sbi, type);
760	unsigned int segno = curseg->segno;
761	int dir = ALLOC_LEFT;
762
763	write_sum_page(sbi, curseg->sum_blk,
764				GET_SUM_BLOCK(sbi, segno));
765	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
766		dir = ALLOC_RIGHT;
767
768	if (test_opt(sbi, NOHEAP))
769		dir = ALLOC_RIGHT;
770
771	get_new_segment(sbi, &segno, new_sec, dir);
772	curseg->next_segno = segno;
773	reset_curseg(sbi, type, 1);
774	curseg->alloc_type = LFS;
775}
776
777static void __next_free_blkoff(struct f2fs_sb_info *sbi,
778			struct curseg_info *seg, block_t start)
779{
780	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
781	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
782	unsigned long target_map[entries];
783	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
784	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
785	int i, pos;
786
787	for (i = 0; i < entries; i++)
788		target_map[i] = ckpt_map[i] | cur_map[i];
789
790	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
791
792	seg->next_blkoff = pos;
793}
794
795/*
796 * If a segment is written by LFS manner, next block offset is just obtained
797 * by increasing the current block offset. However, if a segment is written by
798 * SSR manner, next block offset obtained by calling __next_free_blkoff
799 */
800static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
801				struct curseg_info *seg)
802{
803	if (seg->alloc_type == SSR)
804		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
805	else
806		seg->next_blkoff++;
807}
808
809/*
810 * This function always allocates a used segment(from dirty seglist) by SSR
811 * manner, so it should recover the existing segment information of valid blocks
812 */
813static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
814{
815	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
816	struct curseg_info *curseg = CURSEG_I(sbi, type);
817	unsigned int new_segno = curseg->next_segno;
818	struct f2fs_summary_block *sum_node;
819	struct page *sum_page;
820
821	write_sum_page(sbi, curseg->sum_blk,
822				GET_SUM_BLOCK(sbi, curseg->segno));
823	__set_test_and_inuse(sbi, new_segno);
824
825	mutex_lock(&dirty_i->seglist_lock);
826	__remove_dirty_segment(sbi, new_segno, PRE);
827	__remove_dirty_segment(sbi, new_segno, DIRTY);
828	mutex_unlock(&dirty_i->seglist_lock);
829
830	reset_curseg(sbi, type, 1);
831	curseg->alloc_type = SSR;
832	__next_free_blkoff(sbi, curseg, 0);
833
834	if (reuse) {
835		sum_page = get_sum_page(sbi, new_segno);
836		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
837		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
838		f2fs_put_page(sum_page, 1);
839	}
840}
841
842static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
843{
844	struct curseg_info *curseg = CURSEG_I(sbi, type);
845	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
846
847	if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
848		return v_ops->get_victim(sbi,
849				&(curseg)->next_segno, BG_GC, type, SSR);
850
851	/* For data segments, let's do SSR more intensively */
852	for (; type >= CURSEG_HOT_DATA; type--)
853		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
854						BG_GC, type, SSR))
855			return 1;
856	return 0;
857}
858
859/*
860 * flush out current segment and replace it with new segment
861 * This function should be returned with success, otherwise BUG
862 */
863static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
864						int type, bool force)
865{
866	struct curseg_info *curseg = CURSEG_I(sbi, type);
867
868	if (force)
869		new_curseg(sbi, type, true);
870	else if (type == CURSEG_WARM_NODE)
871		new_curseg(sbi, type, false);
872	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
873		new_curseg(sbi, type, false);
874	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
875		change_curseg(sbi, type, true);
876	else
877		new_curseg(sbi, type, false);
878
879	stat_inc_seg_type(sbi, curseg);
880}
881
882void allocate_new_segments(struct f2fs_sb_info *sbi)
883{
884	struct curseg_info *curseg;
885	unsigned int old_curseg;
886	int i;
887
888	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
889		curseg = CURSEG_I(sbi, i);
890		old_curseg = curseg->segno;
891		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
892		locate_dirty_segment(sbi, old_curseg);
893	}
894}
895
896static const struct segment_allocation default_salloc_ops = {
897	.allocate_segment = allocate_segment_by_default,
898};
899
900static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
901{
902	struct curseg_info *curseg = CURSEG_I(sbi, type);
903	if (curseg->next_blkoff < sbi->blocks_per_seg)
904		return true;
905	return false;
906}
907
908static int __get_segment_type_2(struct page *page, enum page_type p_type)
909{
910	if (p_type == DATA)
911		return CURSEG_HOT_DATA;
912	else
913		return CURSEG_HOT_NODE;
914}
915
916static int __get_segment_type_4(struct page *page, enum page_type p_type)
917{
918	if (p_type == DATA) {
919		struct inode *inode = page->mapping->host;
920
921		if (S_ISDIR(inode->i_mode))
922			return CURSEG_HOT_DATA;
923		else
924			return CURSEG_COLD_DATA;
925	} else {
926		if (IS_DNODE(page) && !is_cold_node(page))
927			return CURSEG_HOT_NODE;
928		else
929			return CURSEG_COLD_NODE;
930	}
931}
932
933static int __get_segment_type_6(struct page *page, enum page_type p_type)
934{
935	if (p_type == DATA) {
936		struct inode *inode = page->mapping->host;
937
938		if (S_ISDIR(inode->i_mode))
939			return CURSEG_HOT_DATA;
940		else if (is_cold_data(page) || file_is_cold(inode))
941			return CURSEG_COLD_DATA;
942		else
943			return CURSEG_WARM_DATA;
944	} else {
945		if (IS_DNODE(page))
946			return is_cold_node(page) ? CURSEG_WARM_NODE :
947						CURSEG_HOT_NODE;
948		else
949			return CURSEG_COLD_NODE;
950	}
951}
952
953static int __get_segment_type(struct page *page, enum page_type p_type)
954{
955	switch (F2FS_P_SB(page)->active_logs) {
956	case 2:
957		return __get_segment_type_2(page, p_type);
958	case 4:
959		return __get_segment_type_4(page, p_type);
960	}
961	/* NR_CURSEG_TYPE(6) logs by default */
962	f2fs_bug_on(F2FS_P_SB(page),
963		F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
964	return __get_segment_type_6(page, p_type);
965}
966
967void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
968		block_t old_blkaddr, block_t *new_blkaddr,
969		struct f2fs_summary *sum, int type)
970{
971	struct sit_info *sit_i = SIT_I(sbi);
972	struct curseg_info *curseg;
973
974	curseg = CURSEG_I(sbi, type);
975
976	mutex_lock(&curseg->curseg_mutex);
977
978	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
979
980	/*
981	 * __add_sum_entry should be resided under the curseg_mutex
982	 * because, this function updates a summary entry in the
983	 * current summary block.
984	 */
985	__add_sum_entry(sbi, type, sum);
986
987	mutex_lock(&sit_i->sentry_lock);
988	__refresh_next_blkoff(sbi, curseg);
989
990	stat_inc_block_count(sbi, curseg);
991
992	if (!__has_curseg_space(sbi, type))
993		sit_i->s_ops->allocate_segment(sbi, type, false);
994	/*
995	 * SIT information should be updated before segment allocation,
996	 * since SSR needs latest valid block information.
997	 */
998	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
999
1000	mutex_unlock(&sit_i->sentry_lock);
1001
1002	if (page && IS_NODESEG(type))
1003		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1004
1005	mutex_unlock(&curseg->curseg_mutex);
1006}
1007
1008static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
1009			block_t old_blkaddr, block_t *new_blkaddr,
1010			struct f2fs_summary *sum, struct f2fs_io_info *fio)
1011{
1012	int type = __get_segment_type(page, fio->type);
1013
1014	allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type);
1015
1016	/* writeout dirty page into bdev */
1017	f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio);
1018}
1019
1020void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1021{
1022	struct f2fs_io_info fio = {
1023		.type = META,
1024		.rw = WRITE_SYNC | REQ_META | REQ_PRIO
1025	};
1026
1027	set_page_writeback(page);
1028	f2fs_submit_page_mbio(sbi, page, page->index, &fio);
1029}
1030
1031void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
1032		struct f2fs_io_info *fio,
1033		unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
1034{
1035	struct f2fs_summary sum;
1036	set_summary(&sum, nid, 0, 0);
1037	do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio);
1038}
1039
1040void write_data_page(struct page *page, struct dnode_of_data *dn,
1041		block_t *new_blkaddr, struct f2fs_io_info *fio)
1042{
1043	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1044	struct f2fs_summary sum;
1045	struct node_info ni;
1046
1047	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1048	get_node_info(sbi, dn->nid, &ni);
1049	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1050
1051	do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio);
1052}
1053
1054void rewrite_data_page(struct page *page, block_t old_blkaddr,
1055					struct f2fs_io_info *fio)
1056{
1057	f2fs_submit_page_mbio(F2FS_P_SB(page), page, old_blkaddr, fio);
1058}
1059
1060void recover_data_page(struct f2fs_sb_info *sbi,
1061			struct page *page, struct f2fs_summary *sum,
1062			block_t old_blkaddr, block_t new_blkaddr)
1063{
1064	struct sit_info *sit_i = SIT_I(sbi);
1065	struct curseg_info *curseg;
1066	unsigned int segno, old_cursegno;
1067	struct seg_entry *se;
1068	int type;
1069
1070	segno = GET_SEGNO(sbi, new_blkaddr);
1071	se = get_seg_entry(sbi, segno);
1072	type = se->type;
1073
1074	if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1075		if (old_blkaddr == NULL_ADDR)
1076			type = CURSEG_COLD_DATA;
1077		else
1078			type = CURSEG_WARM_DATA;
1079	}
1080	curseg = CURSEG_I(sbi, type);
1081
1082	mutex_lock(&curseg->curseg_mutex);
1083	mutex_lock(&sit_i->sentry_lock);
1084
1085	old_cursegno = curseg->segno;
1086
1087	/* change the current segment */
1088	if (segno != curseg->segno) {
1089		curseg->next_segno = segno;
1090		change_curseg(sbi, type, true);
1091	}
1092
1093	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1094	__add_sum_entry(sbi, type, sum);
1095
1096	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1097	locate_dirty_segment(sbi, old_cursegno);
1098
1099	mutex_unlock(&sit_i->sentry_lock);
1100	mutex_unlock(&curseg->curseg_mutex);
1101}
1102
1103static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1104					struct page *page, enum page_type type)
1105{
1106	enum page_type btype = PAGE_TYPE_OF_BIO(type);
1107	struct f2fs_bio_info *io = &sbi->write_io[btype];
1108	struct bio_vec *bvec;
1109	int i;
1110
1111	down_read(&io->io_rwsem);
1112	if (!io->bio)
1113		goto out;
1114
1115	bio_for_each_segment_all(bvec, io->bio, i) {
1116		if (page == bvec->bv_page) {
1117			up_read(&io->io_rwsem);
1118			return true;
1119		}
1120	}
1121
1122out:
1123	up_read(&io->io_rwsem);
1124	return false;
1125}
1126
1127void f2fs_wait_on_page_writeback(struct page *page,
1128				enum page_type type)
1129{
1130	if (PageWriteback(page)) {
1131		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1132
1133		if (is_merged_page(sbi, page, type))
1134			f2fs_submit_merged_bio(sbi, type, WRITE);
1135		wait_on_page_writeback(page);
1136	}
1137}
1138
1139static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1140{
1141	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1142	struct curseg_info *seg_i;
1143	unsigned char *kaddr;
1144	struct page *page;
1145	block_t start;
1146	int i, j, offset;
1147
1148	start = start_sum_block(sbi);
1149
1150	page = get_meta_page(sbi, start++);
1151	kaddr = (unsigned char *)page_address(page);
1152
1153	/* Step 1: restore nat cache */
1154	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1155	memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1156
1157	/* Step 2: restore sit cache */
1158	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1159	memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1160						SUM_JOURNAL_SIZE);
1161	offset = 2 * SUM_JOURNAL_SIZE;
1162
1163	/* Step 3: restore summary entries */
1164	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1165		unsigned short blk_off;
1166		unsigned int segno;
1167
1168		seg_i = CURSEG_I(sbi, i);
1169		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1170		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1171		seg_i->next_segno = segno;
1172		reset_curseg(sbi, i, 0);
1173		seg_i->alloc_type = ckpt->alloc_type[i];
1174		seg_i->next_blkoff = blk_off;
1175
1176		if (seg_i->alloc_type == SSR)
1177			blk_off = sbi->blocks_per_seg;
1178
1179		for (j = 0; j < blk_off; j++) {
1180			struct f2fs_summary *s;
1181			s = (struct f2fs_summary *)(kaddr + offset);
1182			seg_i->sum_blk->entries[j] = *s;
1183			offset += SUMMARY_SIZE;
1184			if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1185						SUM_FOOTER_SIZE)
1186				continue;
1187
1188			f2fs_put_page(page, 1);
1189			page = NULL;
1190
1191			page = get_meta_page(sbi, start++);
1192			kaddr = (unsigned char *)page_address(page);
1193			offset = 0;
1194		}
1195	}
1196	f2fs_put_page(page, 1);
1197	return 0;
1198}
1199
1200static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1201{
1202	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1203	struct f2fs_summary_block *sum;
1204	struct curseg_info *curseg;
1205	struct page *new;
1206	unsigned short blk_off;
1207	unsigned int segno = 0;
1208	block_t blk_addr = 0;
1209
1210	/* get segment number and block addr */
1211	if (IS_DATASEG(type)) {
1212		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1213		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1214							CURSEG_HOT_DATA]);
1215		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1216			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1217		else
1218			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1219	} else {
1220		segno = le32_to_cpu(ckpt->cur_node_segno[type -
1221							CURSEG_HOT_NODE]);
1222		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1223							CURSEG_HOT_NODE]);
1224		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1225			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1226							type - CURSEG_HOT_NODE);
1227		else
1228			blk_addr = GET_SUM_BLOCK(sbi, segno);
1229	}
1230
1231	new = get_meta_page(sbi, blk_addr);
1232	sum = (struct f2fs_summary_block *)page_address(new);
1233
1234	if (IS_NODESEG(type)) {
1235		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1236			struct f2fs_summary *ns = &sum->entries[0];
1237			int i;
1238			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1239				ns->version = 0;
1240				ns->ofs_in_node = 0;
1241			}
1242		} else {
1243			int err;
1244
1245			err = restore_node_summary(sbi, segno, sum);
1246			if (err) {
1247				f2fs_put_page(new, 1);
1248				return err;
1249			}
1250		}
1251	}
1252
1253	/* set uncompleted segment to curseg */
1254	curseg = CURSEG_I(sbi, type);
1255	mutex_lock(&curseg->curseg_mutex);
1256	memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1257	curseg->next_segno = segno;
1258	reset_curseg(sbi, type, 0);
1259	curseg->alloc_type = ckpt->alloc_type[type];
1260	curseg->next_blkoff = blk_off;
1261	mutex_unlock(&curseg->curseg_mutex);
1262	f2fs_put_page(new, 1);
1263	return 0;
1264}
1265
1266static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1267{
1268	int type = CURSEG_HOT_DATA;
1269	int err;
1270
1271	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1272		/* restore for compacted data summary */
1273		if (read_compacted_summaries(sbi))
1274			return -EINVAL;
1275		type = CURSEG_HOT_NODE;
1276	}
1277
1278	for (; type <= CURSEG_COLD_NODE; type++) {
1279		err = read_normal_summaries(sbi, type);
1280		if (err)
1281			return err;
1282	}
1283
1284	return 0;
1285}
1286
1287static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1288{
1289	struct page *page;
1290	unsigned char *kaddr;
1291	struct f2fs_summary *summary;
1292	struct curseg_info *seg_i;
1293	int written_size = 0;
1294	int i, j;
1295
1296	page = grab_meta_page(sbi, blkaddr++);
1297	kaddr = (unsigned char *)page_address(page);
1298
1299	/* Step 1: write nat cache */
1300	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1301	memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1302	written_size += SUM_JOURNAL_SIZE;
1303
1304	/* Step 2: write sit cache */
1305	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1306	memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1307						SUM_JOURNAL_SIZE);
1308	written_size += SUM_JOURNAL_SIZE;
1309
1310	/* Step 3: write summary entries */
1311	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1312		unsigned short blkoff;
1313		seg_i = CURSEG_I(sbi, i);
1314		if (sbi->ckpt->alloc_type[i] == SSR)
1315			blkoff = sbi->blocks_per_seg;
1316		else
1317			blkoff = curseg_blkoff(sbi, i);
1318
1319		for (j = 0; j < blkoff; j++) {
1320			if (!page) {
1321				page = grab_meta_page(sbi, blkaddr++);
1322				kaddr = (unsigned char *)page_address(page);
1323				written_size = 0;
1324			}
1325			summary = (struct f2fs_summary *)(kaddr + written_size);
1326			*summary = seg_i->sum_blk->entries[j];
1327			written_size += SUMMARY_SIZE;
1328
1329			if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1330							SUM_FOOTER_SIZE)
1331				continue;
1332
1333			set_page_dirty(page);
1334			f2fs_put_page(page, 1);
1335			page = NULL;
1336		}
1337	}
1338	if (page) {
1339		set_page_dirty(page);
1340		f2fs_put_page(page, 1);
1341	}
1342}
1343
1344static void write_normal_summaries(struct f2fs_sb_info *sbi,
1345					block_t blkaddr, int type)
1346{
1347	int i, end;
1348	if (IS_DATASEG(type))
1349		end = type + NR_CURSEG_DATA_TYPE;
1350	else
1351		end = type + NR_CURSEG_NODE_TYPE;
1352
1353	for (i = type; i < end; i++) {
1354		struct curseg_info *sum = CURSEG_I(sbi, i);
1355		mutex_lock(&sum->curseg_mutex);
1356		write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1357		mutex_unlock(&sum->curseg_mutex);
1358	}
1359}
1360
1361void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1362{
1363	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1364		write_compacted_summaries(sbi, start_blk);
1365	else
1366		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1367}
1368
1369void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1370{
1371	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1372		write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1373}
1374
1375int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1376					unsigned int val, int alloc)
1377{
1378	int i;
1379
1380	if (type == NAT_JOURNAL) {
1381		for (i = 0; i < nats_in_cursum(sum); i++) {
1382			if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1383				return i;
1384		}
1385		if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1386			return update_nats_in_cursum(sum, 1);
1387	} else if (type == SIT_JOURNAL) {
1388		for (i = 0; i < sits_in_cursum(sum); i++)
1389			if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1390				return i;
1391		if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1392			return update_sits_in_cursum(sum, 1);
1393	}
1394	return -1;
1395}
1396
1397static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1398					unsigned int segno)
1399{
1400	struct sit_info *sit_i = SIT_I(sbi);
1401	unsigned int offset = SIT_BLOCK_OFFSET(segno);
1402	block_t blk_addr = sit_i->sit_base_addr + offset;
1403
1404	check_seg_range(sbi, segno);
1405
1406	/* calculate sit block address */
1407	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1408		blk_addr += sit_i->sit_blocks;
1409
1410	return get_meta_page(sbi, blk_addr);
1411}
1412
1413static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1414					unsigned int start)
1415{
1416	struct sit_info *sit_i = SIT_I(sbi);
1417	struct page *src_page, *dst_page;
1418	pgoff_t src_off, dst_off;
1419	void *src_addr, *dst_addr;
1420
1421	src_off = current_sit_addr(sbi, start);
1422	dst_off = next_sit_addr(sbi, src_off);
1423
1424	/* get current sit block page without lock */
1425	src_page = get_meta_page(sbi, src_off);
1426	dst_page = grab_meta_page(sbi, dst_off);
1427	f2fs_bug_on(sbi, PageDirty(src_page));
1428
1429	src_addr = page_address(src_page);
1430	dst_addr = page_address(dst_page);
1431	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1432
1433	set_page_dirty(dst_page);
1434	f2fs_put_page(src_page, 1);
1435
1436	set_to_next_sit(sit_i, start);
1437
1438	return dst_page;
1439}
1440
1441static struct sit_entry_set *grab_sit_entry_set(void)
1442{
1443	struct sit_entry_set *ses =
1444			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_ATOMIC);
1445
1446	ses->entry_cnt = 0;
1447	INIT_LIST_HEAD(&ses->set_list);
1448	return ses;
1449}
1450
1451static void release_sit_entry_set(struct sit_entry_set *ses)
1452{
1453	list_del(&ses->set_list);
1454	kmem_cache_free(sit_entry_set_slab, ses);
1455}
1456
1457static void adjust_sit_entry_set(struct sit_entry_set *ses,
1458						struct list_head *head)
1459{
1460	struct sit_entry_set *next = ses;
1461
1462	if (list_is_last(&ses->set_list, head))
1463		return;
1464
1465	list_for_each_entry_continue(next, head, set_list)
1466		if (ses->entry_cnt <= next->entry_cnt)
1467			break;
1468
1469	list_move_tail(&ses->set_list, &next->set_list);
1470}
1471
1472static void add_sit_entry(unsigned int segno, struct list_head *head)
1473{
1474	struct sit_entry_set *ses;
1475	unsigned int start_segno = START_SEGNO(segno);
1476
1477	list_for_each_entry(ses, head, set_list) {
1478		if (ses->start_segno == start_segno) {
1479			ses->entry_cnt++;
1480			adjust_sit_entry_set(ses, head);
1481			return;
1482		}
1483	}
1484
1485	ses = grab_sit_entry_set();
1486
1487	ses->start_segno = start_segno;
1488	ses->entry_cnt++;
1489	list_add(&ses->set_list, head);
1490}
1491
1492static void add_sits_in_set(struct f2fs_sb_info *sbi)
1493{
1494	struct f2fs_sm_info *sm_info = SM_I(sbi);
1495	struct list_head *set_list = &sm_info->sit_entry_set;
1496	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1497	unsigned long nsegs = TOTAL_SEGS(sbi);
1498	unsigned int segno;
1499
1500	for_each_set_bit(segno, bitmap, nsegs)
1501		add_sit_entry(segno, set_list);
1502}
1503
1504static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1505{
1506	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1507	struct f2fs_summary_block *sum = curseg->sum_blk;
1508	int i;
1509
1510	for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1511		unsigned int segno;
1512		bool dirtied;
1513
1514		segno = le32_to_cpu(segno_in_journal(sum, i));
1515		dirtied = __mark_sit_entry_dirty(sbi, segno);
1516
1517		if (!dirtied)
1518			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1519	}
1520	update_sits_in_cursum(sum, -sits_in_cursum(sum));
1521}
1522
1523/*
1524 * CP calls this function, which flushes SIT entries including sit_journal,
1525 * and moves prefree segs to free segs.
1526 */
1527void flush_sit_entries(struct f2fs_sb_info *sbi)
1528{
1529	struct sit_info *sit_i = SIT_I(sbi);
1530	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1531	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1532	struct f2fs_summary_block *sum = curseg->sum_blk;
1533	struct sit_entry_set *ses, *tmp;
1534	struct list_head *head = &SM_I(sbi)->sit_entry_set;
1535	unsigned long nsegs = TOTAL_SEGS(sbi);
1536	bool to_journal = true;
1537
1538	mutex_lock(&curseg->curseg_mutex);
1539	mutex_lock(&sit_i->sentry_lock);
1540
1541	/*
1542	 * add and account sit entries of dirty bitmap in sit entry
1543	 * set temporarily
1544	 */
1545	add_sits_in_set(sbi);
1546
1547	/*
1548	 * if there are no enough space in journal to store dirty sit
1549	 * entries, remove all entries from journal and add and account
1550	 * them in sit entry set.
1551	 */
1552	if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL))
1553		remove_sits_in_journal(sbi);
1554
1555	if (!sit_i->dirty_sentries)
1556		goto out;
1557
1558	/*
1559	 * there are two steps to flush sit entries:
1560	 * #1, flush sit entries to journal in current cold data summary block.
1561	 * #2, flush sit entries to sit page.
1562	 */
1563	list_for_each_entry_safe(ses, tmp, head, set_list) {
1564		struct page *page;
1565		struct f2fs_sit_block *raw_sit = NULL;
1566		unsigned int start_segno = ses->start_segno;
1567		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
1568								nsegs);
1569		unsigned int segno = start_segno;
1570
1571		if (to_journal &&
1572			!__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL))
1573			to_journal = false;
1574
1575		if (!to_journal) {
1576			page = get_next_sit_page(sbi, start_segno);
1577			raw_sit = page_address(page);
1578		}
1579
1580		/* flush dirty sit entries in region of current sit set */
1581		for_each_set_bit_from(segno, bitmap, end) {
1582			int offset, sit_offset;
1583			struct seg_entry *se = get_seg_entry(sbi, segno);
1584
1585			/* add discard candidates */
1586			if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards)
1587				add_discard_addrs(sbi, segno, se);
1588
1589			if (to_journal) {
1590				offset = lookup_journal_in_cursum(sum,
1591							SIT_JOURNAL, segno, 1);
1592				f2fs_bug_on(sbi, offset < 0);
1593				segno_in_journal(sum, offset) =
1594							cpu_to_le32(segno);
1595				seg_info_to_raw_sit(se,
1596						&sit_in_journal(sum, offset));
1597			} else {
1598				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1599				seg_info_to_raw_sit(se,
1600						&raw_sit->entries[sit_offset]);
1601			}
1602
1603			__clear_bit(segno, bitmap);
1604			sit_i->dirty_sentries--;
1605			ses->entry_cnt--;
1606		}
1607
1608		if (!to_journal)
1609			f2fs_put_page(page, 1);
1610
1611		f2fs_bug_on(sbi, ses->entry_cnt);
1612		release_sit_entry_set(ses);
1613	}
1614
1615	f2fs_bug_on(sbi, !list_empty(head));
1616	f2fs_bug_on(sbi, sit_i->dirty_sentries);
1617
1618out:
1619	mutex_unlock(&sit_i->sentry_lock);
1620	mutex_unlock(&curseg->curseg_mutex);
1621
1622	set_prefree_as_free_segments(sbi);
1623}
1624
1625static int build_sit_info(struct f2fs_sb_info *sbi)
1626{
1627	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1628	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1629	struct sit_info *sit_i;
1630	unsigned int sit_segs, start;
1631	char *src_bitmap, *dst_bitmap;
1632	unsigned int bitmap_size;
1633
1634	/* allocate memory for SIT information */
1635	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1636	if (!sit_i)
1637		return -ENOMEM;
1638
1639	SM_I(sbi)->sit_info = sit_i;
1640
1641	sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1642	if (!sit_i->sentries)
1643		return -ENOMEM;
1644
1645	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1646	sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1647	if (!sit_i->dirty_sentries_bitmap)
1648		return -ENOMEM;
1649
1650	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1651		sit_i->sentries[start].cur_valid_map
1652			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1653		sit_i->sentries[start].ckpt_valid_map
1654			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1655		if (!sit_i->sentries[start].cur_valid_map
1656				|| !sit_i->sentries[start].ckpt_valid_map)
1657			return -ENOMEM;
1658	}
1659
1660	if (sbi->segs_per_sec > 1) {
1661		sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1662					sizeof(struct sec_entry));
1663		if (!sit_i->sec_entries)
1664			return -ENOMEM;
1665	}
1666
1667	/* get information related with SIT */
1668	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1669
1670	/* setup SIT bitmap from ckeckpoint pack */
1671	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1672	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1673
1674	dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1675	if (!dst_bitmap)
1676		return -ENOMEM;
1677
1678	/* init SIT information */
1679	sit_i->s_ops = &default_salloc_ops;
1680
1681	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1682	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1683	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1684	sit_i->sit_bitmap = dst_bitmap;
1685	sit_i->bitmap_size = bitmap_size;
1686	sit_i->dirty_sentries = 0;
1687	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1688	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1689	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1690	mutex_init(&sit_i->sentry_lock);
1691	return 0;
1692}
1693
1694static int build_free_segmap(struct f2fs_sb_info *sbi)
1695{
1696	struct f2fs_sm_info *sm_info = SM_I(sbi);
1697	struct free_segmap_info *free_i;
1698	unsigned int bitmap_size, sec_bitmap_size;
1699
1700	/* allocate memory for free segmap information */
1701	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1702	if (!free_i)
1703		return -ENOMEM;
1704
1705	SM_I(sbi)->free_info = free_i;
1706
1707	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1708	free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1709	if (!free_i->free_segmap)
1710		return -ENOMEM;
1711
1712	sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1713	free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1714	if (!free_i->free_secmap)
1715		return -ENOMEM;
1716
1717	/* set all segments as dirty temporarily */
1718	memset(free_i->free_segmap, 0xff, bitmap_size);
1719	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1720
1721	/* init free segmap information */
1722	free_i->start_segno =
1723		(unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1724	free_i->free_segments = 0;
1725	free_i->free_sections = 0;
1726	rwlock_init(&free_i->segmap_lock);
1727	return 0;
1728}
1729
1730static int build_curseg(struct f2fs_sb_info *sbi)
1731{
1732	struct curseg_info *array;
1733	int i;
1734
1735	array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
1736	if (!array)
1737		return -ENOMEM;
1738
1739	SM_I(sbi)->curseg_array = array;
1740
1741	for (i = 0; i < NR_CURSEG_TYPE; i++) {
1742		mutex_init(&array[i].curseg_mutex);
1743		array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1744		if (!array[i].sum_blk)
1745			return -ENOMEM;
1746		array[i].segno = NULL_SEGNO;
1747		array[i].next_blkoff = 0;
1748	}
1749	return restore_curseg_summaries(sbi);
1750}
1751
1752static void build_sit_entries(struct f2fs_sb_info *sbi)
1753{
1754	struct sit_info *sit_i = SIT_I(sbi);
1755	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1756	struct f2fs_summary_block *sum = curseg->sum_blk;
1757	int sit_blk_cnt = SIT_BLK_CNT(sbi);
1758	unsigned int i, start, end;
1759	unsigned int readed, start_blk = 0;
1760	int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1761
1762	do {
1763		readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
1764
1765		start = start_blk * sit_i->sents_per_block;
1766		end = (start_blk + readed) * sit_i->sents_per_block;
1767
1768		for (; start < end && start < TOTAL_SEGS(sbi); start++) {
1769			struct seg_entry *se = &sit_i->sentries[start];
1770			struct f2fs_sit_block *sit_blk;
1771			struct f2fs_sit_entry sit;
1772			struct page *page;
1773
1774			mutex_lock(&curseg->curseg_mutex);
1775			for (i = 0; i < sits_in_cursum(sum); i++) {
1776				if (le32_to_cpu(segno_in_journal(sum, i))
1777								== start) {
1778					sit = sit_in_journal(sum, i);
1779					mutex_unlock(&curseg->curseg_mutex);
1780					goto got_it;
1781				}
1782			}
1783			mutex_unlock(&curseg->curseg_mutex);
1784
1785			page = get_current_sit_page(sbi, start);
1786			sit_blk = (struct f2fs_sit_block *)page_address(page);
1787			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1788			f2fs_put_page(page, 1);
1789got_it:
1790			check_block_count(sbi, start, &sit);
1791			seg_info_from_raw_sit(se, &sit);
1792			if (sbi->segs_per_sec > 1) {
1793				struct sec_entry *e = get_sec_entry(sbi, start);
1794				e->valid_blocks += se->valid_blocks;
1795			}
1796		}
1797		start_blk += readed;
1798	} while (start_blk < sit_blk_cnt);
1799}
1800
1801static void init_free_segmap(struct f2fs_sb_info *sbi)
1802{
1803	unsigned int start;
1804	int type;
1805
1806	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1807		struct seg_entry *sentry = get_seg_entry(sbi, start);
1808		if (!sentry->valid_blocks)
1809			__set_free(sbi, start);
1810	}
1811
1812	/* set use the current segments */
1813	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1814		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1815		__set_test_and_inuse(sbi, curseg_t->segno);
1816	}
1817}
1818
1819static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1820{
1821	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1822	struct free_segmap_info *free_i = FREE_I(sbi);
1823	unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1824	unsigned short valid_blocks;
1825
1826	while (1) {
1827		/* find dirty segment based on free segmap */
1828		segno = find_next_inuse(free_i, total_segs, offset);
1829		if (segno >= total_segs)
1830			break;
1831		offset = segno + 1;
1832		valid_blocks = get_valid_blocks(sbi, segno, 0);
1833		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
1834			continue;
1835		if (valid_blocks > sbi->blocks_per_seg) {
1836			f2fs_bug_on(sbi, 1);
1837			continue;
1838		}
1839		mutex_lock(&dirty_i->seglist_lock);
1840		__locate_dirty_segment(sbi, segno, DIRTY);
1841		mutex_unlock(&dirty_i->seglist_lock);
1842	}
1843}
1844
1845static int init_victim_secmap(struct f2fs_sb_info *sbi)
1846{
1847	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1848	unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1849
1850	dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1851	if (!dirty_i->victim_secmap)
1852		return -ENOMEM;
1853	return 0;
1854}
1855
1856static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1857{
1858	struct dirty_seglist_info *dirty_i;
1859	unsigned int bitmap_size, i;
1860
1861	/* allocate memory for dirty segments list information */
1862	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1863	if (!dirty_i)
1864		return -ENOMEM;
1865
1866	SM_I(sbi)->dirty_info = dirty_i;
1867	mutex_init(&dirty_i->seglist_lock);
1868
1869	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1870
1871	for (i = 0; i < NR_DIRTY_TYPE; i++) {
1872		dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1873		if (!dirty_i->dirty_segmap[i])
1874			return -ENOMEM;
1875	}
1876
1877	init_dirty_segmap(sbi);
1878	return init_victim_secmap(sbi);
1879}
1880
1881/*
1882 * Update min, max modified time for cost-benefit GC algorithm
1883 */
1884static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1885{
1886	struct sit_info *sit_i = SIT_I(sbi);
1887	unsigned int segno;
1888
1889	mutex_lock(&sit_i->sentry_lock);
1890
1891	sit_i->min_mtime = LLONG_MAX;
1892
1893	for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1894		unsigned int i;
1895		unsigned long long mtime = 0;
1896
1897		for (i = 0; i < sbi->segs_per_sec; i++)
1898			mtime += get_seg_entry(sbi, segno + i)->mtime;
1899
1900		mtime = div_u64(mtime, sbi->segs_per_sec);
1901
1902		if (sit_i->min_mtime > mtime)
1903			sit_i->min_mtime = mtime;
1904	}
1905	sit_i->max_mtime = get_mtime(sbi);
1906	mutex_unlock(&sit_i->sentry_lock);
1907}
1908
1909int build_segment_manager(struct f2fs_sb_info *sbi)
1910{
1911	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1912	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1913	struct f2fs_sm_info *sm_info;
1914	int err;
1915
1916	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1917	if (!sm_info)
1918		return -ENOMEM;
1919
1920	/* init sm info */
1921	sbi->sm_info = sm_info;
1922	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1923	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1924	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1925	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1926	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1927	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1928	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1929	sm_info->rec_prefree_segments = sm_info->main_segments *
1930					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
1931	sm_info->ipu_policy = F2FS_IPU_FSYNC;
1932	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
1933	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
1934
1935	INIT_LIST_HEAD(&sm_info->discard_list);
1936	sm_info->nr_discards = 0;
1937	sm_info->max_discards = 0;
1938
1939	INIT_LIST_HEAD(&sm_info->sit_entry_set);
1940
1941	if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
1942		err = create_flush_cmd_control(sbi);
1943		if (err)
1944			return err;
1945	}
1946
1947	err = build_sit_info(sbi);
1948	if (err)
1949		return err;
1950	err = build_free_segmap(sbi);
1951	if (err)
1952		return err;
1953	err = build_curseg(sbi);
1954	if (err)
1955		return err;
1956
1957	/* reinit free segmap based on SIT */
1958	build_sit_entries(sbi);
1959
1960	init_free_segmap(sbi);
1961	err = build_dirty_segmap(sbi);
1962	if (err)
1963		return err;
1964
1965	init_min_max_mtime(sbi);
1966	return 0;
1967}
1968
1969static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1970		enum dirty_type dirty_type)
1971{
1972	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1973
1974	mutex_lock(&dirty_i->seglist_lock);
1975	kfree(dirty_i->dirty_segmap[dirty_type]);
1976	dirty_i->nr_dirty[dirty_type] = 0;
1977	mutex_unlock(&dirty_i->seglist_lock);
1978}
1979
1980static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1981{
1982	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1983	kfree(dirty_i->victim_secmap);
1984}
1985
1986static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1987{
1988	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1989	int i;
1990
1991	if (!dirty_i)
1992		return;
1993
1994	/* discard pre-free/dirty segments list */
1995	for (i = 0; i < NR_DIRTY_TYPE; i++)
1996		discard_dirty_segmap(sbi, i);
1997
1998	destroy_victim_secmap(sbi);
1999	SM_I(sbi)->dirty_info = NULL;
2000	kfree(dirty_i);
2001}
2002
2003static void destroy_curseg(struct f2fs_sb_info *sbi)
2004{
2005	struct curseg_info *array = SM_I(sbi)->curseg_array;
2006	int i;
2007
2008	if (!array)
2009		return;
2010	SM_I(sbi)->curseg_array = NULL;
2011	for (i = 0; i < NR_CURSEG_TYPE; i++)
2012		kfree(array[i].sum_blk);
2013	kfree(array);
2014}
2015
2016static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2017{
2018	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2019	if (!free_i)
2020		return;
2021	SM_I(sbi)->free_info = NULL;
2022	kfree(free_i->free_segmap);
2023	kfree(free_i->free_secmap);
2024	kfree(free_i);
2025}
2026
2027static void destroy_sit_info(struct f2fs_sb_info *sbi)
2028{
2029	struct sit_info *sit_i = SIT_I(sbi);
2030	unsigned int start;
2031
2032	if (!sit_i)
2033		return;
2034
2035	if (sit_i->sentries) {
2036		for (start = 0; start < TOTAL_SEGS(sbi); start++) {
2037			kfree(sit_i->sentries[start].cur_valid_map);
2038			kfree(sit_i->sentries[start].ckpt_valid_map);
2039		}
2040	}
2041	vfree(sit_i->sentries);
2042	vfree(sit_i->sec_entries);
2043	kfree(sit_i->dirty_sentries_bitmap);
2044
2045	SM_I(sbi)->sit_info = NULL;
2046	kfree(sit_i->sit_bitmap);
2047	kfree(sit_i);
2048}
2049
2050void destroy_segment_manager(struct f2fs_sb_info *sbi)
2051{
2052	struct f2fs_sm_info *sm_info = SM_I(sbi);
2053
2054	if (!sm_info)
2055		return;
2056	destroy_flush_cmd_control(sbi);
2057	destroy_dirty_segmap(sbi);
2058	destroy_curseg(sbi);
2059	destroy_free_segmap(sbi);
2060	destroy_sit_info(sbi);
2061	sbi->sm_info = NULL;
2062	kfree(sm_info);
2063}
2064
2065int __init create_segment_manager_caches(void)
2066{
2067	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2068			sizeof(struct discard_entry));
2069	if (!discard_entry_slab)
2070		goto fail;
2071
2072	sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2073			sizeof(struct nat_entry_set));
2074	if (!sit_entry_set_slab)
2075		goto destory_discard_entry;
2076	return 0;
2077
2078destory_discard_entry:
2079	kmem_cache_destroy(discard_entry_slab);
2080fail:
2081	return -ENOMEM;
2082}
2083
2084void destroy_segment_manager_caches(void)
2085{
2086	kmem_cache_destroy(sit_entry_set_slab);
2087	kmem_cache_destroy(discard_entry_slab);
2088}
2089