segment.c revision cf2271e781cb16e1ca22be920010c2b64d90c338
1/*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 *             http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/bio.h>
14#include <linux/blkdev.h>
15#include <linux/prefetch.h>
16#include <linux/kthread.h>
17#include <linux/vmalloc.h>
18#include <linux/swap.h>
19
20#include "f2fs.h"
21#include "segment.h"
22#include "node.h"
23#include <trace/events/f2fs.h>
24
25#define __reverse_ffz(x) __reverse_ffs(~(x))
26
27static struct kmem_cache *discard_entry_slab;
28
29/*
30 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
31 * MSB and LSB are reversed in a byte by f2fs_set_bit.
32 */
33static inline unsigned long __reverse_ffs(unsigned long word)
34{
35	int num = 0;
36
37#if BITS_PER_LONG == 64
38	if ((word & 0xffffffff) == 0) {
39		num += 32;
40		word >>= 32;
41	}
42#endif
43	if ((word & 0xffff) == 0) {
44		num += 16;
45		word >>= 16;
46	}
47	if ((word & 0xff) == 0) {
48		num += 8;
49		word >>= 8;
50	}
51	if ((word & 0xf0) == 0)
52		num += 4;
53	else
54		word >>= 4;
55	if ((word & 0xc) == 0)
56		num += 2;
57	else
58		word >>= 2;
59	if ((word & 0x2) == 0)
60		num += 1;
61	return num;
62}
63
64/*
65 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c becasue
66 * f2fs_set_bit makes MSB and LSB reversed in a byte.
67 * Example:
68 *                             LSB <--> MSB
69 *   f2fs_set_bit(0, bitmap) => 0000 0001
70 *   f2fs_set_bit(7, bitmap) => 1000 0000
71 */
72static unsigned long __find_rev_next_bit(const unsigned long *addr,
73			unsigned long size, unsigned long offset)
74{
75	const unsigned long *p = addr + BIT_WORD(offset);
76	unsigned long result = offset & ~(BITS_PER_LONG - 1);
77	unsigned long tmp;
78	unsigned long mask, submask;
79	unsigned long quot, rest;
80
81	if (offset >= size)
82		return size;
83
84	size -= result;
85	offset %= BITS_PER_LONG;
86	if (!offset)
87		goto aligned;
88
89	tmp = *(p++);
90	quot = (offset >> 3) << 3;
91	rest = offset & 0x7;
92	mask = ~0UL << quot;
93	submask = (unsigned char)(0xff << rest) >> rest;
94	submask <<= quot;
95	mask &= submask;
96	tmp &= mask;
97	if (size < BITS_PER_LONG)
98		goto found_first;
99	if (tmp)
100		goto found_middle;
101
102	size -= BITS_PER_LONG;
103	result += BITS_PER_LONG;
104aligned:
105	while (size & ~(BITS_PER_LONG-1)) {
106		tmp = *(p++);
107		if (tmp)
108			goto found_middle;
109		result += BITS_PER_LONG;
110		size -= BITS_PER_LONG;
111	}
112	if (!size)
113		return result;
114	tmp = *p;
115found_first:
116	tmp &= (~0UL >> (BITS_PER_LONG - size));
117	if (tmp == 0UL)		/* Are any bits set? */
118		return result + size;   /* Nope. */
119found_middle:
120	return result + __reverse_ffs(tmp);
121}
122
123static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
124			unsigned long size, unsigned long offset)
125{
126	const unsigned long *p = addr + BIT_WORD(offset);
127	unsigned long result = offset & ~(BITS_PER_LONG - 1);
128	unsigned long tmp;
129	unsigned long mask, submask;
130	unsigned long quot, rest;
131
132	if (offset >= size)
133		return size;
134
135	size -= result;
136	offset %= BITS_PER_LONG;
137	if (!offset)
138		goto aligned;
139
140	tmp = *(p++);
141	quot = (offset >> 3) << 3;
142	rest = offset & 0x7;
143	mask = ~(~0UL << quot);
144	submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
145	submask <<= quot;
146	mask += submask;
147	tmp |= mask;
148	if (size < BITS_PER_LONG)
149		goto found_first;
150	if (~tmp)
151		goto found_middle;
152
153	size -= BITS_PER_LONG;
154	result += BITS_PER_LONG;
155aligned:
156	while (size & ~(BITS_PER_LONG - 1)) {
157		tmp = *(p++);
158		if (~tmp)
159			goto found_middle;
160		result += BITS_PER_LONG;
161		size -= BITS_PER_LONG;
162	}
163	if (!size)
164		return result;
165	tmp = *p;
166
167found_first:
168	tmp |= ~0UL << size;
169	if (tmp == ~0UL)        /* Are any bits zero? */
170		return result + size;   /* Nope. */
171found_middle:
172	return result + __reverse_ffz(tmp);
173}
174
175/*
176 * This function balances dirty node and dentry pages.
177 * In addition, it controls garbage collection.
178 */
179void f2fs_balance_fs(struct f2fs_sb_info *sbi)
180{
181	/*
182	 * We should do GC or end up with checkpoint, if there are so many dirty
183	 * dir/node pages without enough free segments.
184	 */
185	if (has_not_enough_free_secs(sbi, 0)) {
186		mutex_lock(&sbi->gc_mutex);
187		f2fs_gc(sbi);
188	}
189}
190
191void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
192{
193	/* check the # of cached NAT entries and prefree segments */
194	if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
195				excess_prefree_segs(sbi))
196		f2fs_sync_fs(sbi->sb, true);
197}
198
199static int issue_flush_thread(void *data)
200{
201	struct f2fs_sb_info *sbi = data;
202	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
203	wait_queue_head_t *q = &fcc->flush_wait_queue;
204repeat:
205	if (kthread_should_stop())
206		return 0;
207
208	spin_lock(&fcc->issue_lock);
209	if (fcc->issue_list) {
210		fcc->dispatch_list = fcc->issue_list;
211		fcc->issue_list = fcc->issue_tail = NULL;
212	}
213	spin_unlock(&fcc->issue_lock);
214
215	if (fcc->dispatch_list) {
216		struct bio *bio = bio_alloc(GFP_NOIO, 0);
217		struct flush_cmd *cmd, *next;
218		int ret;
219
220		bio->bi_bdev = sbi->sb->s_bdev;
221		ret = submit_bio_wait(WRITE_FLUSH, bio);
222
223		for (cmd = fcc->dispatch_list; cmd; cmd = next) {
224			cmd->ret = ret;
225			next = cmd->next;
226			complete(&cmd->wait);
227		}
228		bio_put(bio);
229		fcc->dispatch_list = NULL;
230	}
231
232	wait_event_interruptible(*q,
233			kthread_should_stop() || fcc->issue_list);
234	goto repeat;
235}
236
237int f2fs_issue_flush(struct f2fs_sb_info *sbi)
238{
239	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
240	struct flush_cmd cmd;
241
242	if (test_opt(sbi, NOBARRIER))
243		return 0;
244
245	if (!test_opt(sbi, FLUSH_MERGE))
246		return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL);
247
248	init_completion(&cmd.wait);
249	cmd.next = NULL;
250
251	spin_lock(&fcc->issue_lock);
252	if (fcc->issue_list)
253		fcc->issue_tail->next = &cmd;
254	else
255		fcc->issue_list = &cmd;
256	fcc->issue_tail = &cmd;
257	spin_unlock(&fcc->issue_lock);
258
259	if (!fcc->dispatch_list)
260		wake_up(&fcc->flush_wait_queue);
261
262	wait_for_completion(&cmd.wait);
263
264	return cmd.ret;
265}
266
267int create_flush_cmd_control(struct f2fs_sb_info *sbi)
268{
269	dev_t dev = sbi->sb->s_bdev->bd_dev;
270	struct flush_cmd_control *fcc;
271	int err = 0;
272
273	fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
274	if (!fcc)
275		return -ENOMEM;
276	spin_lock_init(&fcc->issue_lock);
277	init_waitqueue_head(&fcc->flush_wait_queue);
278	SM_I(sbi)->cmd_control_info = fcc;
279	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
280				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
281	if (IS_ERR(fcc->f2fs_issue_flush)) {
282		err = PTR_ERR(fcc->f2fs_issue_flush);
283		kfree(fcc);
284		SM_I(sbi)->cmd_control_info = NULL;
285		return err;
286	}
287
288	return err;
289}
290
291void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
292{
293	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
294
295	if (fcc && fcc->f2fs_issue_flush)
296		kthread_stop(fcc->f2fs_issue_flush);
297	kfree(fcc);
298	SM_I(sbi)->cmd_control_info = NULL;
299}
300
301static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
302		enum dirty_type dirty_type)
303{
304	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
305
306	/* need not be added */
307	if (IS_CURSEG(sbi, segno))
308		return;
309
310	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
311		dirty_i->nr_dirty[dirty_type]++;
312
313	if (dirty_type == DIRTY) {
314		struct seg_entry *sentry = get_seg_entry(sbi, segno);
315		enum dirty_type t = sentry->type;
316
317		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
318			dirty_i->nr_dirty[t]++;
319	}
320}
321
322static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
323		enum dirty_type dirty_type)
324{
325	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
326
327	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
328		dirty_i->nr_dirty[dirty_type]--;
329
330	if (dirty_type == DIRTY) {
331		struct seg_entry *sentry = get_seg_entry(sbi, segno);
332		enum dirty_type t = sentry->type;
333
334		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
335			dirty_i->nr_dirty[t]--;
336
337		if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
338			clear_bit(GET_SECNO(sbi, segno),
339						dirty_i->victim_secmap);
340	}
341}
342
343/*
344 * Should not occur error such as -ENOMEM.
345 * Adding dirty entry into seglist is not critical operation.
346 * If a given segment is one of current working segments, it won't be added.
347 */
348static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
349{
350	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
351	unsigned short valid_blocks;
352
353	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
354		return;
355
356	mutex_lock(&dirty_i->seglist_lock);
357
358	valid_blocks = get_valid_blocks(sbi, segno, 0);
359
360	if (valid_blocks == 0) {
361		__locate_dirty_segment(sbi, segno, PRE);
362		__remove_dirty_segment(sbi, segno, DIRTY);
363	} else if (valid_blocks < sbi->blocks_per_seg) {
364		__locate_dirty_segment(sbi, segno, DIRTY);
365	} else {
366		/* Recovery routine with SSR needs this */
367		__remove_dirty_segment(sbi, segno, DIRTY);
368	}
369
370	mutex_unlock(&dirty_i->seglist_lock);
371}
372
373static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
374				block_t blkstart, block_t blklen)
375{
376	sector_t start = SECTOR_FROM_BLOCK(sbi, blkstart);
377	sector_t len = SECTOR_FROM_BLOCK(sbi, blklen);
378	trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
379	return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
380}
381
382void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
383{
384	if (f2fs_issue_discard(sbi, blkaddr, 1)) {
385		struct page *page = grab_meta_page(sbi, blkaddr);
386		/* zero-filled page */
387		set_page_dirty(page);
388		f2fs_put_page(page, 1);
389	}
390}
391
392static void add_discard_addrs(struct f2fs_sb_info *sbi,
393			unsigned int segno, struct seg_entry *se)
394{
395	struct list_head *head = &SM_I(sbi)->discard_list;
396	struct discard_entry *new;
397	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
398	int max_blocks = sbi->blocks_per_seg;
399	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
400	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
401	unsigned long dmap[entries];
402	unsigned int start = 0, end = -1;
403	int i;
404
405	if (!test_opt(sbi, DISCARD))
406		return;
407
408	/* zero block will be discarded through the prefree list */
409	if (!se->valid_blocks || se->valid_blocks == max_blocks)
410		return;
411
412	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
413	for (i = 0; i < entries; i++)
414		dmap[i] = (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
415
416	while (SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
417		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
418		if (start >= max_blocks)
419			break;
420
421		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
422
423		new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
424		INIT_LIST_HEAD(&new->list);
425		new->blkaddr = START_BLOCK(sbi, segno) + start;
426		new->len = end - start;
427
428		list_add_tail(&new->list, head);
429		SM_I(sbi)->nr_discards += end - start;
430	}
431}
432
433/*
434 * Should call clear_prefree_segments after checkpoint is done.
435 */
436static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
437{
438	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
439	unsigned int segno = -1;
440	unsigned int total_segs = TOTAL_SEGS(sbi);
441
442	mutex_lock(&dirty_i->seglist_lock);
443	while (1) {
444		segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
445				segno + 1);
446		if (segno >= total_segs)
447			break;
448		__set_test_and_free(sbi, segno);
449	}
450	mutex_unlock(&dirty_i->seglist_lock);
451}
452
453void clear_prefree_segments(struct f2fs_sb_info *sbi)
454{
455	struct list_head *head = &(SM_I(sbi)->discard_list);
456	struct discard_entry *entry, *this;
457	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
458	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
459	unsigned int total_segs = TOTAL_SEGS(sbi);
460	unsigned int start = 0, end = -1;
461
462	mutex_lock(&dirty_i->seglist_lock);
463
464	while (1) {
465		int i;
466		start = find_next_bit(prefree_map, total_segs, end + 1);
467		if (start >= total_segs)
468			break;
469		end = find_next_zero_bit(prefree_map, total_segs, start + 1);
470
471		for (i = start; i < end; i++)
472			clear_bit(i, prefree_map);
473
474		dirty_i->nr_dirty[PRE] -= end - start;
475
476		if (!test_opt(sbi, DISCARD))
477			continue;
478
479		f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
480				(end - start) << sbi->log_blocks_per_seg);
481	}
482	mutex_unlock(&dirty_i->seglist_lock);
483
484	/* send small discards */
485	list_for_each_entry_safe(entry, this, head, list) {
486		f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
487		list_del(&entry->list);
488		SM_I(sbi)->nr_discards -= entry->len;
489		kmem_cache_free(discard_entry_slab, entry);
490	}
491}
492
493static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
494{
495	struct sit_info *sit_i = SIT_I(sbi);
496	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
497		sit_i->dirty_sentries++;
498}
499
500static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
501					unsigned int segno, int modified)
502{
503	struct seg_entry *se = get_seg_entry(sbi, segno);
504	se->type = type;
505	if (modified)
506		__mark_sit_entry_dirty(sbi, segno);
507}
508
509static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
510{
511	struct seg_entry *se;
512	unsigned int segno, offset;
513	long int new_vblocks;
514
515	segno = GET_SEGNO(sbi, blkaddr);
516
517	se = get_seg_entry(sbi, segno);
518	new_vblocks = se->valid_blocks + del;
519	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
520
521	f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) ||
522				(new_vblocks > sbi->blocks_per_seg)));
523
524	se->valid_blocks = new_vblocks;
525	se->mtime = get_mtime(sbi);
526	SIT_I(sbi)->max_mtime = se->mtime;
527
528	/* Update valid block bitmap */
529	if (del > 0) {
530		if (f2fs_set_bit(offset, se->cur_valid_map))
531			BUG();
532	} else {
533		if (!f2fs_clear_bit(offset, se->cur_valid_map))
534			BUG();
535	}
536	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
537		se->ckpt_valid_blocks += del;
538
539	__mark_sit_entry_dirty(sbi, segno);
540
541	/* update total number of valid blocks to be written in ckpt area */
542	SIT_I(sbi)->written_valid_blocks += del;
543
544	if (sbi->segs_per_sec > 1)
545		get_sec_entry(sbi, segno)->valid_blocks += del;
546}
547
548void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
549{
550	update_sit_entry(sbi, new, 1);
551	if (GET_SEGNO(sbi, old) != NULL_SEGNO)
552		update_sit_entry(sbi, old, -1);
553
554	locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
555	locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
556}
557
558void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
559{
560	unsigned int segno = GET_SEGNO(sbi, addr);
561	struct sit_info *sit_i = SIT_I(sbi);
562
563	f2fs_bug_on(addr == NULL_ADDR);
564	if (addr == NEW_ADDR)
565		return;
566
567	/* add it into sit main buffer */
568	mutex_lock(&sit_i->sentry_lock);
569
570	update_sit_entry(sbi, addr, -1);
571
572	/* add it into dirty seglist */
573	locate_dirty_segment(sbi, segno);
574
575	mutex_unlock(&sit_i->sentry_lock);
576}
577
578/*
579 * This function should be resided under the curseg_mutex lock
580 */
581static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
582					struct f2fs_summary *sum)
583{
584	struct curseg_info *curseg = CURSEG_I(sbi, type);
585	void *addr = curseg->sum_blk;
586	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
587	memcpy(addr, sum, sizeof(struct f2fs_summary));
588}
589
590/*
591 * Calculate the number of current summary pages for writing
592 */
593int npages_for_summary_flush(struct f2fs_sb_info *sbi)
594{
595	int valid_sum_count = 0;
596	int i, sum_in_page;
597
598	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
599		if (sbi->ckpt->alloc_type[i] == SSR)
600			valid_sum_count += sbi->blocks_per_seg;
601		else
602			valid_sum_count += curseg_blkoff(sbi, i);
603	}
604
605	sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
606			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
607	if (valid_sum_count <= sum_in_page)
608		return 1;
609	else if ((valid_sum_count - sum_in_page) <=
610		(PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
611		return 2;
612	return 3;
613}
614
615/*
616 * Caller should put this summary page
617 */
618struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
619{
620	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
621}
622
623static void write_sum_page(struct f2fs_sb_info *sbi,
624			struct f2fs_summary_block *sum_blk, block_t blk_addr)
625{
626	struct page *page = grab_meta_page(sbi, blk_addr);
627	void *kaddr = page_address(page);
628	memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
629	set_page_dirty(page);
630	f2fs_put_page(page, 1);
631}
632
633static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
634{
635	struct curseg_info *curseg = CURSEG_I(sbi, type);
636	unsigned int segno = curseg->segno + 1;
637	struct free_segmap_info *free_i = FREE_I(sbi);
638
639	if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
640		return !test_bit(segno, free_i->free_segmap);
641	return 0;
642}
643
644/*
645 * Find a new segment from the free segments bitmap to right order
646 * This function should be returned with success, otherwise BUG
647 */
648static void get_new_segment(struct f2fs_sb_info *sbi,
649			unsigned int *newseg, bool new_sec, int dir)
650{
651	struct free_segmap_info *free_i = FREE_I(sbi);
652	unsigned int segno, secno, zoneno;
653	unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
654	unsigned int hint = *newseg / sbi->segs_per_sec;
655	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
656	unsigned int left_start = hint;
657	bool init = true;
658	int go_left = 0;
659	int i;
660
661	write_lock(&free_i->segmap_lock);
662
663	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
664		segno = find_next_zero_bit(free_i->free_segmap,
665					TOTAL_SEGS(sbi), *newseg + 1);
666		if (segno - *newseg < sbi->segs_per_sec -
667					(*newseg % sbi->segs_per_sec))
668			goto got_it;
669	}
670find_other_zone:
671	secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
672	if (secno >= TOTAL_SECS(sbi)) {
673		if (dir == ALLOC_RIGHT) {
674			secno = find_next_zero_bit(free_i->free_secmap,
675							TOTAL_SECS(sbi), 0);
676			f2fs_bug_on(secno >= TOTAL_SECS(sbi));
677		} else {
678			go_left = 1;
679			left_start = hint - 1;
680		}
681	}
682	if (go_left == 0)
683		goto skip_left;
684
685	while (test_bit(left_start, free_i->free_secmap)) {
686		if (left_start > 0) {
687			left_start--;
688			continue;
689		}
690		left_start = find_next_zero_bit(free_i->free_secmap,
691							TOTAL_SECS(sbi), 0);
692		f2fs_bug_on(left_start >= TOTAL_SECS(sbi));
693		break;
694	}
695	secno = left_start;
696skip_left:
697	hint = secno;
698	segno = secno * sbi->segs_per_sec;
699	zoneno = secno / sbi->secs_per_zone;
700
701	/* give up on finding another zone */
702	if (!init)
703		goto got_it;
704	if (sbi->secs_per_zone == 1)
705		goto got_it;
706	if (zoneno == old_zoneno)
707		goto got_it;
708	if (dir == ALLOC_LEFT) {
709		if (!go_left && zoneno + 1 >= total_zones)
710			goto got_it;
711		if (go_left && zoneno == 0)
712			goto got_it;
713	}
714	for (i = 0; i < NR_CURSEG_TYPE; i++)
715		if (CURSEG_I(sbi, i)->zone == zoneno)
716			break;
717
718	if (i < NR_CURSEG_TYPE) {
719		/* zone is in user, try another */
720		if (go_left)
721			hint = zoneno * sbi->secs_per_zone - 1;
722		else if (zoneno + 1 >= total_zones)
723			hint = 0;
724		else
725			hint = (zoneno + 1) * sbi->secs_per_zone;
726		init = false;
727		goto find_other_zone;
728	}
729got_it:
730	/* set it as dirty segment in free segmap */
731	f2fs_bug_on(test_bit(segno, free_i->free_segmap));
732	__set_inuse(sbi, segno);
733	*newseg = segno;
734	write_unlock(&free_i->segmap_lock);
735}
736
737static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
738{
739	struct curseg_info *curseg = CURSEG_I(sbi, type);
740	struct summary_footer *sum_footer;
741
742	curseg->segno = curseg->next_segno;
743	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
744	curseg->next_blkoff = 0;
745	curseg->next_segno = NULL_SEGNO;
746
747	sum_footer = &(curseg->sum_blk->footer);
748	memset(sum_footer, 0, sizeof(struct summary_footer));
749	if (IS_DATASEG(type))
750		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
751	if (IS_NODESEG(type))
752		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
753	__set_sit_entry_type(sbi, type, curseg->segno, modified);
754}
755
756/*
757 * Allocate a current working segment.
758 * This function always allocates a free segment in LFS manner.
759 */
760static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
761{
762	struct curseg_info *curseg = CURSEG_I(sbi, type);
763	unsigned int segno = curseg->segno;
764	int dir = ALLOC_LEFT;
765
766	write_sum_page(sbi, curseg->sum_blk,
767				GET_SUM_BLOCK(sbi, segno));
768	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
769		dir = ALLOC_RIGHT;
770
771	if (test_opt(sbi, NOHEAP))
772		dir = ALLOC_RIGHT;
773
774	get_new_segment(sbi, &segno, new_sec, dir);
775	curseg->next_segno = segno;
776	reset_curseg(sbi, type, 1);
777	curseg->alloc_type = LFS;
778}
779
780static void __next_free_blkoff(struct f2fs_sb_info *sbi,
781			struct curseg_info *seg, block_t start)
782{
783	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
784	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
785	unsigned long target_map[entries];
786	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
787	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
788	int i, pos;
789
790	for (i = 0; i < entries; i++)
791		target_map[i] = ckpt_map[i] | cur_map[i];
792
793	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
794
795	seg->next_blkoff = pos;
796}
797
798/*
799 * If a segment is written by LFS manner, next block offset is just obtained
800 * by increasing the current block offset. However, if a segment is written by
801 * SSR manner, next block offset obtained by calling __next_free_blkoff
802 */
803static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
804				struct curseg_info *seg)
805{
806	if (seg->alloc_type == SSR)
807		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
808	else
809		seg->next_blkoff++;
810}
811
812/*
813 * This function always allocates a used segment (from dirty seglist) by SSR
814 * manner, so it should recover the existing segment information of valid blocks
815 */
816static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
817{
818	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
819	struct curseg_info *curseg = CURSEG_I(sbi, type);
820	unsigned int new_segno = curseg->next_segno;
821	struct f2fs_summary_block *sum_node;
822	struct page *sum_page;
823
824	write_sum_page(sbi, curseg->sum_blk,
825				GET_SUM_BLOCK(sbi, curseg->segno));
826	__set_test_and_inuse(sbi, new_segno);
827
828	mutex_lock(&dirty_i->seglist_lock);
829	__remove_dirty_segment(sbi, new_segno, PRE);
830	__remove_dirty_segment(sbi, new_segno, DIRTY);
831	mutex_unlock(&dirty_i->seglist_lock);
832
833	reset_curseg(sbi, type, 1);
834	curseg->alloc_type = SSR;
835	__next_free_blkoff(sbi, curseg, 0);
836
837	if (reuse) {
838		sum_page = get_sum_page(sbi, new_segno);
839		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
840		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
841		f2fs_put_page(sum_page, 1);
842	}
843}
844
845static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
846{
847	struct curseg_info *curseg = CURSEG_I(sbi, type);
848	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
849
850	if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
851		return v_ops->get_victim(sbi,
852				&(curseg)->next_segno, BG_GC, type, SSR);
853
854	/* For data segments, let's do SSR more intensively */
855	for (; type >= CURSEG_HOT_DATA; type--)
856		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
857						BG_GC, type, SSR))
858			return 1;
859	return 0;
860}
861
862/*
863 * flush out current segment and replace it with new segment
864 * This function should be returned with success, otherwise BUG
865 */
866static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
867						int type, bool force)
868{
869	struct curseg_info *curseg = CURSEG_I(sbi, type);
870
871	if (force)
872		new_curseg(sbi, type, true);
873	else if (type == CURSEG_WARM_NODE)
874		new_curseg(sbi, type, false);
875	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
876		new_curseg(sbi, type, false);
877	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
878		change_curseg(sbi, type, true);
879	else
880		new_curseg(sbi, type, false);
881
882	stat_inc_seg_type(sbi, curseg);
883}
884
885void allocate_new_segments(struct f2fs_sb_info *sbi)
886{
887	struct curseg_info *curseg;
888	unsigned int old_curseg;
889	int i;
890
891	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
892		curseg = CURSEG_I(sbi, i);
893		old_curseg = curseg->segno;
894		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
895		locate_dirty_segment(sbi, old_curseg);
896	}
897}
898
899static const struct segment_allocation default_salloc_ops = {
900	.allocate_segment = allocate_segment_by_default,
901};
902
903static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
904{
905	struct curseg_info *curseg = CURSEG_I(sbi, type);
906	if (curseg->next_blkoff < sbi->blocks_per_seg)
907		return true;
908	return false;
909}
910
911static int __get_segment_type_2(struct page *page, enum page_type p_type)
912{
913	if (p_type == DATA)
914		return CURSEG_HOT_DATA;
915	else
916		return CURSEG_HOT_NODE;
917}
918
919static int __get_segment_type_4(struct page *page, enum page_type p_type)
920{
921	if (p_type == DATA) {
922		struct inode *inode = page->mapping->host;
923
924		if (S_ISDIR(inode->i_mode))
925			return CURSEG_HOT_DATA;
926		else
927			return CURSEG_COLD_DATA;
928	} else {
929		if (IS_DNODE(page) && !is_cold_node(page))
930			return CURSEG_HOT_NODE;
931		else
932			return CURSEG_COLD_NODE;
933	}
934}
935
936static int __get_segment_type_6(struct page *page, enum page_type p_type)
937{
938	if (p_type == DATA) {
939		struct inode *inode = page->mapping->host;
940
941		if (S_ISDIR(inode->i_mode))
942			return CURSEG_HOT_DATA;
943		else if (is_cold_data(page) || file_is_cold(inode))
944			return CURSEG_COLD_DATA;
945		else
946			return CURSEG_WARM_DATA;
947	} else {
948		if (IS_DNODE(page))
949			return is_cold_node(page) ? CURSEG_WARM_NODE :
950						CURSEG_HOT_NODE;
951		else
952			return CURSEG_COLD_NODE;
953	}
954}
955
956static int __get_segment_type(struct page *page, enum page_type p_type)
957{
958	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
959	switch (sbi->active_logs) {
960	case 2:
961		return __get_segment_type_2(page, p_type);
962	case 4:
963		return __get_segment_type_4(page, p_type);
964	}
965	/* NR_CURSEG_TYPE(6) logs by default */
966	f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE);
967	return __get_segment_type_6(page, p_type);
968}
969
970void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
971		block_t old_blkaddr, block_t *new_blkaddr,
972		struct f2fs_summary *sum, int type)
973{
974	struct sit_info *sit_i = SIT_I(sbi);
975	struct curseg_info *curseg;
976	unsigned int old_cursegno;
977
978	curseg = CURSEG_I(sbi, type);
979
980	mutex_lock(&curseg->curseg_mutex);
981
982	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
983	old_cursegno = curseg->segno;
984
985	/*
986	 * __add_sum_entry should be resided under the curseg_mutex
987	 * because, this function updates a summary entry in the
988	 * current summary block.
989	 */
990	__add_sum_entry(sbi, type, sum);
991
992	mutex_lock(&sit_i->sentry_lock);
993	__refresh_next_blkoff(sbi, curseg);
994
995	stat_inc_block_count(sbi, curseg);
996
997	if (!__has_curseg_space(sbi, type))
998		sit_i->s_ops->allocate_segment(sbi, type, false);
999	/*
1000	 * SIT information should be updated before segment allocation,
1001	 * since SSR needs latest valid block information.
1002	 */
1003	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1004	locate_dirty_segment(sbi, old_cursegno);
1005
1006	mutex_unlock(&sit_i->sentry_lock);
1007
1008	if (page && IS_NODESEG(type))
1009		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1010
1011	mutex_unlock(&curseg->curseg_mutex);
1012}
1013
1014static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
1015			block_t old_blkaddr, block_t *new_blkaddr,
1016			struct f2fs_summary *sum, struct f2fs_io_info *fio)
1017{
1018	int type = __get_segment_type(page, fio->type);
1019
1020	allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type);
1021
1022	/* writeout dirty page into bdev */
1023	f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio);
1024}
1025
1026void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1027{
1028	struct f2fs_io_info fio = {
1029		.type = META,
1030		.rw = WRITE_SYNC | REQ_META | REQ_PRIO
1031	};
1032
1033	set_page_writeback(page);
1034	f2fs_submit_page_mbio(sbi, page, page->index, &fio);
1035}
1036
1037void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
1038		struct f2fs_io_info *fio,
1039		unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
1040{
1041	struct f2fs_summary sum;
1042	set_summary(&sum, nid, 0, 0);
1043	do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio);
1044}
1045
1046void write_data_page(struct page *page, struct dnode_of_data *dn,
1047		block_t *new_blkaddr, struct f2fs_io_info *fio)
1048{
1049	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
1050	struct f2fs_summary sum;
1051	struct node_info ni;
1052
1053	f2fs_bug_on(dn->data_blkaddr == NULL_ADDR);
1054	get_node_info(sbi, dn->nid, &ni);
1055	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1056
1057	do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio);
1058}
1059
1060void rewrite_data_page(struct page *page, block_t old_blkaddr,
1061					struct f2fs_io_info *fio)
1062{
1063	struct inode *inode = page->mapping->host;
1064	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1065	f2fs_submit_page_mbio(sbi, page, old_blkaddr, fio);
1066}
1067
1068void recover_data_page(struct f2fs_sb_info *sbi,
1069			struct page *page, struct f2fs_summary *sum,
1070			block_t old_blkaddr, block_t new_blkaddr)
1071{
1072	struct sit_info *sit_i = SIT_I(sbi);
1073	struct curseg_info *curseg;
1074	unsigned int segno, old_cursegno;
1075	struct seg_entry *se;
1076	int type;
1077
1078	segno = GET_SEGNO(sbi, new_blkaddr);
1079	se = get_seg_entry(sbi, segno);
1080	type = se->type;
1081
1082	if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1083		if (old_blkaddr == NULL_ADDR)
1084			type = CURSEG_COLD_DATA;
1085		else
1086			type = CURSEG_WARM_DATA;
1087	}
1088	curseg = CURSEG_I(sbi, type);
1089
1090	mutex_lock(&curseg->curseg_mutex);
1091	mutex_lock(&sit_i->sentry_lock);
1092
1093	old_cursegno = curseg->segno;
1094
1095	/* change the current segment */
1096	if (segno != curseg->segno) {
1097		curseg->next_segno = segno;
1098		change_curseg(sbi, type, true);
1099	}
1100
1101	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1102	__add_sum_entry(sbi, type, sum);
1103
1104	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1105	locate_dirty_segment(sbi, old_cursegno);
1106
1107	mutex_unlock(&sit_i->sentry_lock);
1108	mutex_unlock(&curseg->curseg_mutex);
1109}
1110
1111void rewrite_node_page(struct f2fs_sb_info *sbi,
1112			struct page *page, struct f2fs_summary *sum,
1113			block_t old_blkaddr, block_t new_blkaddr)
1114{
1115	struct sit_info *sit_i = SIT_I(sbi);
1116	int type = CURSEG_WARM_NODE;
1117	struct curseg_info *curseg;
1118	unsigned int segno, old_cursegno;
1119	block_t next_blkaddr = next_blkaddr_of_node(page);
1120	unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
1121	struct f2fs_io_info fio = {
1122		.type = NODE,
1123		.rw = WRITE_SYNC,
1124	};
1125
1126	curseg = CURSEG_I(sbi, type);
1127
1128	mutex_lock(&curseg->curseg_mutex);
1129	mutex_lock(&sit_i->sentry_lock);
1130
1131	segno = GET_SEGNO(sbi, new_blkaddr);
1132	old_cursegno = curseg->segno;
1133
1134	/* change the current segment */
1135	if (segno != curseg->segno) {
1136		curseg->next_segno = segno;
1137		change_curseg(sbi, type, true);
1138	}
1139	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1140	__add_sum_entry(sbi, type, sum);
1141
1142	/* change the current log to the next block addr in advance */
1143	if (next_segno != segno) {
1144		curseg->next_segno = next_segno;
1145		change_curseg(sbi, type, true);
1146	}
1147	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, next_blkaddr);
1148
1149	/* rewrite node page */
1150	set_page_writeback(page);
1151	f2fs_submit_page_mbio(sbi, page, new_blkaddr, &fio);
1152	f2fs_submit_merged_bio(sbi, NODE, WRITE);
1153	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1154	locate_dirty_segment(sbi, old_cursegno);
1155
1156	mutex_unlock(&sit_i->sentry_lock);
1157	mutex_unlock(&curseg->curseg_mutex);
1158}
1159
1160static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1161					struct page *page, enum page_type type)
1162{
1163	enum page_type btype = PAGE_TYPE_OF_BIO(type);
1164	struct f2fs_bio_info *io = &sbi->write_io[btype];
1165	struct bio_vec *bvec;
1166	int i;
1167
1168	down_read(&io->io_rwsem);
1169	if (!io->bio)
1170		goto out;
1171
1172	bio_for_each_segment_all(bvec, io->bio, i) {
1173		if (page == bvec->bv_page) {
1174			up_read(&io->io_rwsem);
1175			return true;
1176		}
1177	}
1178
1179out:
1180	up_read(&io->io_rwsem);
1181	return false;
1182}
1183
1184void f2fs_wait_on_page_writeback(struct page *page,
1185				enum page_type type)
1186{
1187	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1188	if (PageWriteback(page)) {
1189		if (is_merged_page(sbi, page, type))
1190			f2fs_submit_merged_bio(sbi, type, WRITE);
1191		wait_on_page_writeback(page);
1192	}
1193}
1194
1195static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1196{
1197	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1198	struct curseg_info *seg_i;
1199	unsigned char *kaddr;
1200	struct page *page;
1201	block_t start;
1202	int i, j, offset;
1203
1204	start = start_sum_block(sbi);
1205
1206	page = get_meta_page(sbi, start++);
1207	kaddr = (unsigned char *)page_address(page);
1208
1209	/* Step 1: restore nat cache */
1210	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1211	memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1212
1213	/* Step 2: restore sit cache */
1214	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1215	memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1216						SUM_JOURNAL_SIZE);
1217	offset = 2 * SUM_JOURNAL_SIZE;
1218
1219	/* Step 3: restore summary entries */
1220	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1221		unsigned short blk_off;
1222		unsigned int segno;
1223
1224		seg_i = CURSEG_I(sbi, i);
1225		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1226		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1227		seg_i->next_segno = segno;
1228		reset_curseg(sbi, i, 0);
1229		seg_i->alloc_type = ckpt->alloc_type[i];
1230		seg_i->next_blkoff = blk_off;
1231
1232		if (seg_i->alloc_type == SSR)
1233			blk_off = sbi->blocks_per_seg;
1234
1235		for (j = 0; j < blk_off; j++) {
1236			struct f2fs_summary *s;
1237			s = (struct f2fs_summary *)(kaddr + offset);
1238			seg_i->sum_blk->entries[j] = *s;
1239			offset += SUMMARY_SIZE;
1240			if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1241						SUM_FOOTER_SIZE)
1242				continue;
1243
1244			f2fs_put_page(page, 1);
1245			page = NULL;
1246
1247			page = get_meta_page(sbi, start++);
1248			kaddr = (unsigned char *)page_address(page);
1249			offset = 0;
1250		}
1251	}
1252	f2fs_put_page(page, 1);
1253	return 0;
1254}
1255
1256static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1257{
1258	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1259	struct f2fs_summary_block *sum;
1260	struct curseg_info *curseg;
1261	struct page *new;
1262	unsigned short blk_off;
1263	unsigned int segno = 0;
1264	block_t blk_addr = 0;
1265
1266	/* get segment number and block addr */
1267	if (IS_DATASEG(type)) {
1268		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1269		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1270							CURSEG_HOT_DATA]);
1271		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1272			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1273		else
1274			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1275	} else {
1276		segno = le32_to_cpu(ckpt->cur_node_segno[type -
1277							CURSEG_HOT_NODE]);
1278		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1279							CURSEG_HOT_NODE]);
1280		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1281			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1282							type - CURSEG_HOT_NODE);
1283		else
1284			blk_addr = GET_SUM_BLOCK(sbi, segno);
1285	}
1286
1287	new = get_meta_page(sbi, blk_addr);
1288	sum = (struct f2fs_summary_block *)page_address(new);
1289
1290	if (IS_NODESEG(type)) {
1291		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1292			struct f2fs_summary *ns = &sum->entries[0];
1293			int i;
1294			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1295				ns->version = 0;
1296				ns->ofs_in_node = 0;
1297			}
1298		} else {
1299			int err;
1300
1301			err = restore_node_summary(sbi, segno, sum);
1302			if (err) {
1303				f2fs_put_page(new, 1);
1304				return err;
1305			}
1306		}
1307	}
1308
1309	/* set uncompleted segment to curseg */
1310	curseg = CURSEG_I(sbi, type);
1311	mutex_lock(&curseg->curseg_mutex);
1312	memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1313	curseg->next_segno = segno;
1314	reset_curseg(sbi, type, 0);
1315	curseg->alloc_type = ckpt->alloc_type[type];
1316	curseg->next_blkoff = blk_off;
1317	mutex_unlock(&curseg->curseg_mutex);
1318	f2fs_put_page(new, 1);
1319	return 0;
1320}
1321
1322static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1323{
1324	int type = CURSEG_HOT_DATA;
1325	int err;
1326
1327	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1328		/* restore for compacted data summary */
1329		if (read_compacted_summaries(sbi))
1330			return -EINVAL;
1331		type = CURSEG_HOT_NODE;
1332	}
1333
1334	for (; type <= CURSEG_COLD_NODE; type++) {
1335		err = read_normal_summaries(sbi, type);
1336		if (err)
1337			return err;
1338	}
1339
1340	return 0;
1341}
1342
1343static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1344{
1345	struct page *page;
1346	unsigned char *kaddr;
1347	struct f2fs_summary *summary;
1348	struct curseg_info *seg_i;
1349	int written_size = 0;
1350	int i, j;
1351
1352	page = grab_meta_page(sbi, blkaddr++);
1353	kaddr = (unsigned char *)page_address(page);
1354
1355	/* Step 1: write nat cache */
1356	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1357	memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1358	written_size += SUM_JOURNAL_SIZE;
1359
1360	/* Step 2: write sit cache */
1361	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1362	memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1363						SUM_JOURNAL_SIZE);
1364	written_size += SUM_JOURNAL_SIZE;
1365
1366	/* Step 3: write summary entries */
1367	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1368		unsigned short blkoff;
1369		seg_i = CURSEG_I(sbi, i);
1370		if (sbi->ckpt->alloc_type[i] == SSR)
1371			blkoff = sbi->blocks_per_seg;
1372		else
1373			blkoff = curseg_blkoff(sbi, i);
1374
1375		for (j = 0; j < blkoff; j++) {
1376			if (!page) {
1377				page = grab_meta_page(sbi, blkaddr++);
1378				kaddr = (unsigned char *)page_address(page);
1379				written_size = 0;
1380			}
1381			summary = (struct f2fs_summary *)(kaddr + written_size);
1382			*summary = seg_i->sum_blk->entries[j];
1383			written_size += SUMMARY_SIZE;
1384
1385			if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1386							SUM_FOOTER_SIZE)
1387				continue;
1388
1389			set_page_dirty(page);
1390			f2fs_put_page(page, 1);
1391			page = NULL;
1392		}
1393	}
1394	if (page) {
1395		set_page_dirty(page);
1396		f2fs_put_page(page, 1);
1397	}
1398}
1399
1400static void write_normal_summaries(struct f2fs_sb_info *sbi,
1401					block_t blkaddr, int type)
1402{
1403	int i, end;
1404	if (IS_DATASEG(type))
1405		end = type + NR_CURSEG_DATA_TYPE;
1406	else
1407		end = type + NR_CURSEG_NODE_TYPE;
1408
1409	for (i = type; i < end; i++) {
1410		struct curseg_info *sum = CURSEG_I(sbi, i);
1411		mutex_lock(&sum->curseg_mutex);
1412		write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1413		mutex_unlock(&sum->curseg_mutex);
1414	}
1415}
1416
1417void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1418{
1419	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1420		write_compacted_summaries(sbi, start_blk);
1421	else
1422		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1423}
1424
1425void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1426{
1427	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1428		write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1429}
1430
1431int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1432					unsigned int val, int alloc)
1433{
1434	int i;
1435
1436	if (type == NAT_JOURNAL) {
1437		for (i = 0; i < nats_in_cursum(sum); i++) {
1438			if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1439				return i;
1440		}
1441		if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1442			return update_nats_in_cursum(sum, 1);
1443	} else if (type == SIT_JOURNAL) {
1444		for (i = 0; i < sits_in_cursum(sum); i++)
1445			if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1446				return i;
1447		if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1448			return update_sits_in_cursum(sum, 1);
1449	}
1450	return -1;
1451}
1452
1453static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1454					unsigned int segno)
1455{
1456	struct sit_info *sit_i = SIT_I(sbi);
1457	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1458	block_t blk_addr = sit_i->sit_base_addr + offset;
1459
1460	check_seg_range(sbi, segno);
1461
1462	/* calculate sit block address */
1463	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1464		blk_addr += sit_i->sit_blocks;
1465
1466	return get_meta_page(sbi, blk_addr);
1467}
1468
1469static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1470					unsigned int start)
1471{
1472	struct sit_info *sit_i = SIT_I(sbi);
1473	struct page *src_page, *dst_page;
1474	pgoff_t src_off, dst_off;
1475	void *src_addr, *dst_addr;
1476
1477	src_off = current_sit_addr(sbi, start);
1478	dst_off = next_sit_addr(sbi, src_off);
1479
1480	/* get current sit block page without lock */
1481	src_page = get_meta_page(sbi, src_off);
1482	dst_page = grab_meta_page(sbi, dst_off);
1483	f2fs_bug_on(PageDirty(src_page));
1484
1485	src_addr = page_address(src_page);
1486	dst_addr = page_address(dst_page);
1487	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1488
1489	set_page_dirty(dst_page);
1490	f2fs_put_page(src_page, 1);
1491
1492	set_to_next_sit(sit_i, start);
1493
1494	return dst_page;
1495}
1496
1497static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1498{
1499	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1500	struct f2fs_summary_block *sum = curseg->sum_blk;
1501	int i;
1502
1503	/*
1504	 * If the journal area in the current summary is full of sit entries,
1505	 * all the sit entries will be flushed. Otherwise the sit entries
1506	 * are not able to replace with newly hot sit entries.
1507	 */
1508	if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1509		for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1510			unsigned int segno;
1511			segno = le32_to_cpu(segno_in_journal(sum, i));
1512			__mark_sit_entry_dirty(sbi, segno);
1513		}
1514		update_sits_in_cursum(sum, -sits_in_cursum(sum));
1515		return true;
1516	}
1517	return false;
1518}
1519
1520/*
1521 * CP calls this function, which flushes SIT entries including sit_journal,
1522 * and moves prefree segs to free segs.
1523 */
1524void flush_sit_entries(struct f2fs_sb_info *sbi)
1525{
1526	struct sit_info *sit_i = SIT_I(sbi);
1527	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1528	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1529	struct f2fs_summary_block *sum = curseg->sum_blk;
1530	unsigned long nsegs = TOTAL_SEGS(sbi);
1531	struct page *page = NULL;
1532	struct f2fs_sit_block *raw_sit = NULL;
1533	unsigned int start = 0, end = 0;
1534	unsigned int segno = -1;
1535	bool flushed;
1536
1537	mutex_lock(&curseg->curseg_mutex);
1538	mutex_lock(&sit_i->sentry_lock);
1539
1540	/*
1541	 * "flushed" indicates whether sit entries in journal are flushed
1542	 * to the SIT area or not.
1543	 */
1544	flushed = flush_sits_in_journal(sbi);
1545
1546	while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1547		struct seg_entry *se = get_seg_entry(sbi, segno);
1548		int sit_offset, offset;
1549
1550		sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1551
1552		/* add discard candidates */
1553		if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards)
1554			add_discard_addrs(sbi, segno, se);
1555
1556		if (flushed)
1557			goto to_sit_page;
1558
1559		offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1560		if (offset >= 0) {
1561			segno_in_journal(sum, offset) = cpu_to_le32(segno);
1562			seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1563			goto flush_done;
1564		}
1565to_sit_page:
1566		if (!page || (start > segno) || (segno > end)) {
1567			if (page) {
1568				f2fs_put_page(page, 1);
1569				page = NULL;
1570			}
1571
1572			start = START_SEGNO(sit_i, segno);
1573			end = start + SIT_ENTRY_PER_BLOCK - 1;
1574
1575			/* read sit block that will be updated */
1576			page = get_next_sit_page(sbi, start);
1577			raw_sit = page_address(page);
1578		}
1579
1580		/* udpate entry in SIT block */
1581		seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1582flush_done:
1583		__clear_bit(segno, bitmap);
1584		sit_i->dirty_sentries--;
1585	}
1586	mutex_unlock(&sit_i->sentry_lock);
1587	mutex_unlock(&curseg->curseg_mutex);
1588
1589	/* writeout last modified SIT block */
1590	f2fs_put_page(page, 1);
1591
1592	set_prefree_as_free_segments(sbi);
1593}
1594
1595static int build_sit_info(struct f2fs_sb_info *sbi)
1596{
1597	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1598	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1599	struct sit_info *sit_i;
1600	unsigned int sit_segs, start;
1601	char *src_bitmap, *dst_bitmap;
1602	unsigned int bitmap_size;
1603
1604	/* allocate memory for SIT information */
1605	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1606	if (!sit_i)
1607		return -ENOMEM;
1608
1609	SM_I(sbi)->sit_info = sit_i;
1610
1611	sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1612	if (!sit_i->sentries)
1613		return -ENOMEM;
1614
1615	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1616	sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1617	if (!sit_i->dirty_sentries_bitmap)
1618		return -ENOMEM;
1619
1620	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1621		sit_i->sentries[start].cur_valid_map
1622			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1623		sit_i->sentries[start].ckpt_valid_map
1624			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1625		if (!sit_i->sentries[start].cur_valid_map
1626				|| !sit_i->sentries[start].ckpt_valid_map)
1627			return -ENOMEM;
1628	}
1629
1630	if (sbi->segs_per_sec > 1) {
1631		sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1632					sizeof(struct sec_entry));
1633		if (!sit_i->sec_entries)
1634			return -ENOMEM;
1635	}
1636
1637	/* get information related with SIT */
1638	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1639
1640	/* setup SIT bitmap from ckeckpoint pack */
1641	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1642	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1643
1644	dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1645	if (!dst_bitmap)
1646		return -ENOMEM;
1647
1648	/* init SIT information */
1649	sit_i->s_ops = &default_salloc_ops;
1650
1651	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1652	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1653	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1654	sit_i->sit_bitmap = dst_bitmap;
1655	sit_i->bitmap_size = bitmap_size;
1656	sit_i->dirty_sentries = 0;
1657	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1658	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1659	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1660	mutex_init(&sit_i->sentry_lock);
1661	return 0;
1662}
1663
1664static int build_free_segmap(struct f2fs_sb_info *sbi)
1665{
1666	struct f2fs_sm_info *sm_info = SM_I(sbi);
1667	struct free_segmap_info *free_i;
1668	unsigned int bitmap_size, sec_bitmap_size;
1669
1670	/* allocate memory for free segmap information */
1671	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1672	if (!free_i)
1673		return -ENOMEM;
1674
1675	SM_I(sbi)->free_info = free_i;
1676
1677	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1678	free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1679	if (!free_i->free_segmap)
1680		return -ENOMEM;
1681
1682	sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1683	free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1684	if (!free_i->free_secmap)
1685		return -ENOMEM;
1686
1687	/* set all segments as dirty temporarily */
1688	memset(free_i->free_segmap, 0xff, bitmap_size);
1689	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1690
1691	/* init free segmap information */
1692	free_i->start_segno =
1693		(unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1694	free_i->free_segments = 0;
1695	free_i->free_sections = 0;
1696	rwlock_init(&free_i->segmap_lock);
1697	return 0;
1698}
1699
1700static int build_curseg(struct f2fs_sb_info *sbi)
1701{
1702	struct curseg_info *array;
1703	int i;
1704
1705	array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
1706	if (!array)
1707		return -ENOMEM;
1708
1709	SM_I(sbi)->curseg_array = array;
1710
1711	for (i = 0; i < NR_CURSEG_TYPE; i++) {
1712		mutex_init(&array[i].curseg_mutex);
1713		array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1714		if (!array[i].sum_blk)
1715			return -ENOMEM;
1716		array[i].segno = NULL_SEGNO;
1717		array[i].next_blkoff = 0;
1718	}
1719	return restore_curseg_summaries(sbi);
1720}
1721
1722static void build_sit_entries(struct f2fs_sb_info *sbi)
1723{
1724	struct sit_info *sit_i = SIT_I(sbi);
1725	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1726	struct f2fs_summary_block *sum = curseg->sum_blk;
1727	int sit_blk_cnt = SIT_BLK_CNT(sbi);
1728	unsigned int i, start, end;
1729	unsigned int readed, start_blk = 0;
1730	int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1731
1732	do {
1733		readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
1734
1735		start = start_blk * sit_i->sents_per_block;
1736		end = (start_blk + readed) * sit_i->sents_per_block;
1737
1738		for (; start < end && start < TOTAL_SEGS(sbi); start++) {
1739			struct seg_entry *se = &sit_i->sentries[start];
1740			struct f2fs_sit_block *sit_blk;
1741			struct f2fs_sit_entry sit;
1742			struct page *page;
1743
1744			mutex_lock(&curseg->curseg_mutex);
1745			for (i = 0; i < sits_in_cursum(sum); i++) {
1746				if (le32_to_cpu(segno_in_journal(sum, i))
1747								== start) {
1748					sit = sit_in_journal(sum, i);
1749					mutex_unlock(&curseg->curseg_mutex);
1750					goto got_it;
1751				}
1752			}
1753			mutex_unlock(&curseg->curseg_mutex);
1754
1755			page = get_current_sit_page(sbi, start);
1756			sit_blk = (struct f2fs_sit_block *)page_address(page);
1757			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1758			f2fs_put_page(page, 1);
1759got_it:
1760			check_block_count(sbi, start, &sit);
1761			seg_info_from_raw_sit(se, &sit);
1762			if (sbi->segs_per_sec > 1) {
1763				struct sec_entry *e = get_sec_entry(sbi, start);
1764				e->valid_blocks += se->valid_blocks;
1765			}
1766		}
1767		start_blk += readed;
1768	} while (start_blk < sit_blk_cnt);
1769}
1770
1771static void init_free_segmap(struct f2fs_sb_info *sbi)
1772{
1773	unsigned int start;
1774	int type;
1775
1776	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1777		struct seg_entry *sentry = get_seg_entry(sbi, start);
1778		if (!sentry->valid_blocks)
1779			__set_free(sbi, start);
1780	}
1781
1782	/* set use the current segments */
1783	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1784		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1785		__set_test_and_inuse(sbi, curseg_t->segno);
1786	}
1787}
1788
1789static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1790{
1791	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1792	struct free_segmap_info *free_i = FREE_I(sbi);
1793	unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1794	unsigned short valid_blocks;
1795
1796	while (1) {
1797		/* find dirty segment based on free segmap */
1798		segno = find_next_inuse(free_i, total_segs, offset);
1799		if (segno >= total_segs)
1800			break;
1801		offset = segno + 1;
1802		valid_blocks = get_valid_blocks(sbi, segno, 0);
1803		if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1804			continue;
1805		mutex_lock(&dirty_i->seglist_lock);
1806		__locate_dirty_segment(sbi, segno, DIRTY);
1807		mutex_unlock(&dirty_i->seglist_lock);
1808	}
1809}
1810
1811static int init_victim_secmap(struct f2fs_sb_info *sbi)
1812{
1813	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1814	unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1815
1816	dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1817	if (!dirty_i->victim_secmap)
1818		return -ENOMEM;
1819	return 0;
1820}
1821
1822static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1823{
1824	struct dirty_seglist_info *dirty_i;
1825	unsigned int bitmap_size, i;
1826
1827	/* allocate memory for dirty segments list information */
1828	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1829	if (!dirty_i)
1830		return -ENOMEM;
1831
1832	SM_I(sbi)->dirty_info = dirty_i;
1833	mutex_init(&dirty_i->seglist_lock);
1834
1835	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1836
1837	for (i = 0; i < NR_DIRTY_TYPE; i++) {
1838		dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1839		if (!dirty_i->dirty_segmap[i])
1840			return -ENOMEM;
1841	}
1842
1843	init_dirty_segmap(sbi);
1844	return init_victim_secmap(sbi);
1845}
1846
1847/*
1848 * Update min, max modified time for cost-benefit GC algorithm
1849 */
1850static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1851{
1852	struct sit_info *sit_i = SIT_I(sbi);
1853	unsigned int segno;
1854
1855	mutex_lock(&sit_i->sentry_lock);
1856
1857	sit_i->min_mtime = LLONG_MAX;
1858
1859	for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1860		unsigned int i;
1861		unsigned long long mtime = 0;
1862
1863		for (i = 0; i < sbi->segs_per_sec; i++)
1864			mtime += get_seg_entry(sbi, segno + i)->mtime;
1865
1866		mtime = div_u64(mtime, sbi->segs_per_sec);
1867
1868		if (sit_i->min_mtime > mtime)
1869			sit_i->min_mtime = mtime;
1870	}
1871	sit_i->max_mtime = get_mtime(sbi);
1872	mutex_unlock(&sit_i->sentry_lock);
1873}
1874
1875int build_segment_manager(struct f2fs_sb_info *sbi)
1876{
1877	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1878	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1879	struct f2fs_sm_info *sm_info;
1880	int err;
1881
1882	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1883	if (!sm_info)
1884		return -ENOMEM;
1885
1886	/* init sm info */
1887	sbi->sm_info = sm_info;
1888	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1889	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1890	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1891	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1892	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1893	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1894	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1895	sm_info->rec_prefree_segments = sm_info->main_segments *
1896					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
1897	sm_info->ipu_policy = F2FS_IPU_DISABLE;
1898	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
1899
1900	INIT_LIST_HEAD(&sm_info->discard_list);
1901	sm_info->nr_discards = 0;
1902	sm_info->max_discards = 0;
1903
1904	if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
1905		err = create_flush_cmd_control(sbi);
1906		if (err)
1907			return err;
1908	}
1909
1910	err = build_sit_info(sbi);
1911	if (err)
1912		return err;
1913	err = build_free_segmap(sbi);
1914	if (err)
1915		return err;
1916	err = build_curseg(sbi);
1917	if (err)
1918		return err;
1919
1920	/* reinit free segmap based on SIT */
1921	build_sit_entries(sbi);
1922
1923	init_free_segmap(sbi);
1924	err = build_dirty_segmap(sbi);
1925	if (err)
1926		return err;
1927
1928	init_min_max_mtime(sbi);
1929	return 0;
1930}
1931
1932static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1933		enum dirty_type dirty_type)
1934{
1935	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1936
1937	mutex_lock(&dirty_i->seglist_lock);
1938	kfree(dirty_i->dirty_segmap[dirty_type]);
1939	dirty_i->nr_dirty[dirty_type] = 0;
1940	mutex_unlock(&dirty_i->seglist_lock);
1941}
1942
1943static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1944{
1945	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1946	kfree(dirty_i->victim_secmap);
1947}
1948
1949static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1950{
1951	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1952	int i;
1953
1954	if (!dirty_i)
1955		return;
1956
1957	/* discard pre-free/dirty segments list */
1958	for (i = 0; i < NR_DIRTY_TYPE; i++)
1959		discard_dirty_segmap(sbi, i);
1960
1961	destroy_victim_secmap(sbi);
1962	SM_I(sbi)->dirty_info = NULL;
1963	kfree(dirty_i);
1964}
1965
1966static void destroy_curseg(struct f2fs_sb_info *sbi)
1967{
1968	struct curseg_info *array = SM_I(sbi)->curseg_array;
1969	int i;
1970
1971	if (!array)
1972		return;
1973	SM_I(sbi)->curseg_array = NULL;
1974	for (i = 0; i < NR_CURSEG_TYPE; i++)
1975		kfree(array[i].sum_blk);
1976	kfree(array);
1977}
1978
1979static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1980{
1981	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1982	if (!free_i)
1983		return;
1984	SM_I(sbi)->free_info = NULL;
1985	kfree(free_i->free_segmap);
1986	kfree(free_i->free_secmap);
1987	kfree(free_i);
1988}
1989
1990static void destroy_sit_info(struct f2fs_sb_info *sbi)
1991{
1992	struct sit_info *sit_i = SIT_I(sbi);
1993	unsigned int start;
1994
1995	if (!sit_i)
1996		return;
1997
1998	if (sit_i->sentries) {
1999		for (start = 0; start < TOTAL_SEGS(sbi); start++) {
2000			kfree(sit_i->sentries[start].cur_valid_map);
2001			kfree(sit_i->sentries[start].ckpt_valid_map);
2002		}
2003	}
2004	vfree(sit_i->sentries);
2005	vfree(sit_i->sec_entries);
2006	kfree(sit_i->dirty_sentries_bitmap);
2007
2008	SM_I(sbi)->sit_info = NULL;
2009	kfree(sit_i->sit_bitmap);
2010	kfree(sit_i);
2011}
2012
2013void destroy_segment_manager(struct f2fs_sb_info *sbi)
2014{
2015	struct f2fs_sm_info *sm_info = SM_I(sbi);
2016
2017	if (!sm_info)
2018		return;
2019	destroy_flush_cmd_control(sbi);
2020	destroy_dirty_segmap(sbi);
2021	destroy_curseg(sbi);
2022	destroy_free_segmap(sbi);
2023	destroy_sit_info(sbi);
2024	sbi->sm_info = NULL;
2025	kfree(sm_info);
2026}
2027
2028int __init create_segment_manager_caches(void)
2029{
2030	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2031			sizeof(struct discard_entry));
2032	if (!discard_entry_slab)
2033		return -ENOMEM;
2034	return 0;
2035}
2036
2037void destroy_segment_manager_caches(void)
2038{
2039	kmem_cache_destroy(discard_entry_slab);
2040}
2041