file.c revision 0ee8cdfe6af052deb56dccd54838a1eb32fb4ca2
1/*
2 *  linux/fs/file.c
3 *
4 *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
5 *
6 *  Manage the dynamic fd arrays in the process files_struct.
7 */
8
9#include <linux/export.h>
10#include <linux/fs.h>
11#include <linux/mm.h>
12#include <linux/mmzone.h>
13#include <linux/time.h>
14#include <linux/sched.h>
15#include <linux/slab.h>
16#include <linux/vmalloc.h>
17#include <linux/file.h>
18#include <linux/fdtable.h>
19#include <linux/bitops.h>
20#include <linux/interrupt.h>
21#include <linux/spinlock.h>
22#include <linux/rcupdate.h>
23#include <linux/workqueue.h>
24
25struct fdtable_defer {
26	spinlock_t lock;
27	struct work_struct wq;
28	struct fdtable *next;
29};
30
31int sysctl_nr_open __read_mostly = 1024*1024;
32int sysctl_nr_open_min = BITS_PER_LONG;
33int sysctl_nr_open_max = 1024 * 1024; /* raised later */
34
35/*
36 * We use this list to defer free fdtables that have vmalloced
37 * sets/arrays. By keeping a per-cpu list, we avoid having to embed
38 * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
39 * this per-task structure.
40 */
41static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list);
42
43static void *alloc_fdmem(size_t size)
44{
45	/*
46	 * Very large allocations can stress page reclaim, so fall back to
47	 * vmalloc() if the allocation size will be considered "large" by the VM.
48	 */
49	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) {
50		void *data = kmalloc(size, GFP_KERNEL|__GFP_NOWARN);
51		if (data != NULL)
52			return data;
53	}
54	return vmalloc(size);
55}
56
57static void free_fdmem(void *ptr)
58{
59	is_vmalloc_addr(ptr) ? vfree(ptr) : kfree(ptr);
60}
61
62static void __free_fdtable(struct fdtable *fdt)
63{
64	free_fdmem(fdt->fd);
65	free_fdmem(fdt->open_fds);
66	kfree(fdt);
67}
68
69static void free_fdtable_work(struct work_struct *work)
70{
71	struct fdtable_defer *f =
72		container_of(work, struct fdtable_defer, wq);
73	struct fdtable *fdt;
74
75	spin_lock_bh(&f->lock);
76	fdt = f->next;
77	f->next = NULL;
78	spin_unlock_bh(&f->lock);
79	while(fdt) {
80		struct fdtable *next = fdt->next;
81
82		__free_fdtable(fdt);
83		fdt = next;
84	}
85}
86
87static void free_fdtable_rcu(struct rcu_head *rcu)
88{
89	struct fdtable *fdt = container_of(rcu, struct fdtable, rcu);
90	struct fdtable_defer *fddef;
91
92	BUG_ON(!fdt);
93	BUG_ON(fdt->max_fds <= NR_OPEN_DEFAULT);
94
95	if (!is_vmalloc_addr(fdt->fd) && !is_vmalloc_addr(fdt->open_fds)) {
96		kfree(fdt->fd);
97		kfree(fdt->open_fds);
98		kfree(fdt);
99	} else {
100		fddef = &get_cpu_var(fdtable_defer_list);
101		spin_lock(&fddef->lock);
102		fdt->next = fddef->next;
103		fddef->next = fdt;
104		/* vmallocs are handled from the workqueue context */
105		schedule_work(&fddef->wq);
106		spin_unlock(&fddef->lock);
107		put_cpu_var(fdtable_defer_list);
108	}
109}
110
111/*
112 * Expand the fdset in the files_struct.  Called with the files spinlock
113 * held for write.
114 */
115static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
116{
117	unsigned int cpy, set;
118
119	BUG_ON(nfdt->max_fds < ofdt->max_fds);
120
121	cpy = ofdt->max_fds * sizeof(struct file *);
122	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
123	memcpy(nfdt->fd, ofdt->fd, cpy);
124	memset((char *)(nfdt->fd) + cpy, 0, set);
125
126	cpy = ofdt->max_fds / BITS_PER_BYTE;
127	set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE;
128	memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
129	memset((char *)(nfdt->open_fds) + cpy, 0, set);
130	memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
131	memset((char *)(nfdt->close_on_exec) + cpy, 0, set);
132}
133
134static struct fdtable * alloc_fdtable(unsigned int nr)
135{
136	struct fdtable *fdt;
137	void *data;
138
139	/*
140	 * Figure out how many fds we actually want to support in this fdtable.
141	 * Allocation steps are keyed to the size of the fdarray, since it
142	 * grows far faster than any of the other dynamic data. We try to fit
143	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
144	 * and growing in powers of two from there on.
145	 */
146	nr /= (1024 / sizeof(struct file *));
147	nr = roundup_pow_of_two(nr + 1);
148	nr *= (1024 / sizeof(struct file *));
149	/*
150	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
151	 * had been set lower between the check in expand_files() and here.  Deal
152	 * with that in caller, it's cheaper that way.
153	 *
154	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
155	 * bitmaps handling below becomes unpleasant, to put it mildly...
156	 */
157	if (unlikely(nr > sysctl_nr_open))
158		nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
159
160	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL);
161	if (!fdt)
162		goto out;
163	fdt->max_fds = nr;
164	data = alloc_fdmem(nr * sizeof(struct file *));
165	if (!data)
166		goto out_fdt;
167	fdt->fd = data;
168
169	data = alloc_fdmem(max_t(size_t,
170				 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES));
171	if (!data)
172		goto out_arr;
173	fdt->open_fds = data;
174	data += nr / BITS_PER_BYTE;
175	fdt->close_on_exec = data;
176	fdt->next = NULL;
177
178	return fdt;
179
180out_arr:
181	free_fdmem(fdt->fd);
182out_fdt:
183	kfree(fdt);
184out:
185	return NULL;
186}
187
188/*
189 * Expand the file descriptor table.
190 * This function will allocate a new fdtable and both fd array and fdset, of
191 * the given size.
192 * Return <0 error code on error; 1 on successful completion.
193 * The files->file_lock should be held on entry, and will be held on exit.
194 */
195static int expand_fdtable(struct files_struct *files, int nr)
196	__releases(files->file_lock)
197	__acquires(files->file_lock)
198{
199	struct fdtable *new_fdt, *cur_fdt;
200
201	spin_unlock(&files->file_lock);
202	new_fdt = alloc_fdtable(nr);
203	spin_lock(&files->file_lock);
204	if (!new_fdt)
205		return -ENOMEM;
206	/*
207	 * extremely unlikely race - sysctl_nr_open decreased between the check in
208	 * caller and alloc_fdtable().  Cheaper to catch it here...
209	 */
210	if (unlikely(new_fdt->max_fds <= nr)) {
211		__free_fdtable(new_fdt);
212		return -EMFILE;
213	}
214	/*
215	 * Check again since another task may have expanded the fd table while
216	 * we dropped the lock
217	 */
218	cur_fdt = files_fdtable(files);
219	if (nr >= cur_fdt->max_fds) {
220		/* Continue as planned */
221		copy_fdtable(new_fdt, cur_fdt);
222		rcu_assign_pointer(files->fdt, new_fdt);
223		if (cur_fdt->max_fds > NR_OPEN_DEFAULT)
224			call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
225	} else {
226		/* Somebody else expanded, so undo our attempt */
227		__free_fdtable(new_fdt);
228	}
229	return 1;
230}
231
232/*
233 * Expand files.
234 * This function will expand the file structures, if the requested size exceeds
235 * the current capacity and there is room for expansion.
236 * Return <0 error code on error; 0 when nothing done; 1 when files were
237 * expanded and execution may have blocked.
238 * The files->file_lock should be held on entry, and will be held on exit.
239 */
240int expand_files(struct files_struct *files, int nr)
241{
242	struct fdtable *fdt;
243
244	fdt = files_fdtable(files);
245
246	/* Do we need to expand? */
247	if (nr < fdt->max_fds)
248		return 0;
249
250	/* Can we expand? */
251	if (nr >= sysctl_nr_open)
252		return -EMFILE;
253
254	/* All good, so we try */
255	return expand_fdtable(files, nr);
256}
257
258static int count_open_files(struct fdtable *fdt)
259{
260	int size = fdt->max_fds;
261	int i;
262
263	/* Find the last open fd */
264	for (i = size / BITS_PER_LONG; i > 0; ) {
265		if (fdt->open_fds[--i])
266			break;
267	}
268	i = (i + 1) * BITS_PER_LONG;
269	return i;
270}
271
272/*
273 * Allocate a new files structure and copy contents from the
274 * passed in files structure.
275 * errorp will be valid only when the returned files_struct is NULL.
276 */
277struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
278{
279	struct files_struct *newf;
280	struct file **old_fds, **new_fds;
281	int open_files, size, i;
282	struct fdtable *old_fdt, *new_fdt;
283
284	*errorp = -ENOMEM;
285	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
286	if (!newf)
287		goto out;
288
289	atomic_set(&newf->count, 1);
290
291	spin_lock_init(&newf->file_lock);
292	newf->next_fd = 0;
293	new_fdt = &newf->fdtab;
294	new_fdt->max_fds = NR_OPEN_DEFAULT;
295	new_fdt->close_on_exec = newf->close_on_exec_init;
296	new_fdt->open_fds = newf->open_fds_init;
297	new_fdt->fd = &newf->fd_array[0];
298	new_fdt->next = NULL;
299
300	spin_lock(&oldf->file_lock);
301	old_fdt = files_fdtable(oldf);
302	open_files = count_open_files(old_fdt);
303
304	/*
305	 * Check whether we need to allocate a larger fd array and fd set.
306	 */
307	while (unlikely(open_files > new_fdt->max_fds)) {
308		spin_unlock(&oldf->file_lock);
309
310		if (new_fdt != &newf->fdtab)
311			__free_fdtable(new_fdt);
312
313		new_fdt = alloc_fdtable(open_files - 1);
314		if (!new_fdt) {
315			*errorp = -ENOMEM;
316			goto out_release;
317		}
318
319		/* beyond sysctl_nr_open; nothing to do */
320		if (unlikely(new_fdt->max_fds < open_files)) {
321			__free_fdtable(new_fdt);
322			*errorp = -EMFILE;
323			goto out_release;
324		}
325
326		/*
327		 * Reacquire the oldf lock and a pointer to its fd table
328		 * who knows it may have a new bigger fd table. We need
329		 * the latest pointer.
330		 */
331		spin_lock(&oldf->file_lock);
332		old_fdt = files_fdtable(oldf);
333		open_files = count_open_files(old_fdt);
334	}
335
336	old_fds = old_fdt->fd;
337	new_fds = new_fdt->fd;
338
339	memcpy(new_fdt->open_fds, old_fdt->open_fds, open_files / 8);
340	memcpy(new_fdt->close_on_exec, old_fdt->close_on_exec, open_files / 8);
341
342	for (i = open_files; i != 0; i--) {
343		struct file *f = *old_fds++;
344		if (f) {
345			get_file(f);
346		} else {
347			/*
348			 * The fd may be claimed in the fd bitmap but not yet
349			 * instantiated in the files array if a sibling thread
350			 * is partway through open().  So make sure that this
351			 * fd is available to the new process.
352			 */
353			__clear_open_fd(open_files - i, new_fdt);
354		}
355		rcu_assign_pointer(*new_fds++, f);
356	}
357	spin_unlock(&oldf->file_lock);
358
359	/* compute the remainder to be cleared */
360	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
361
362	/* This is long word aligned thus could use a optimized version */
363	memset(new_fds, 0, size);
364
365	if (new_fdt->max_fds > open_files) {
366		int left = (new_fdt->max_fds - open_files) / 8;
367		int start = open_files / BITS_PER_LONG;
368
369		memset(&new_fdt->open_fds[start], 0, left);
370		memset(&new_fdt->close_on_exec[start], 0, left);
371	}
372
373	rcu_assign_pointer(newf->fdt, new_fdt);
374
375	return newf;
376
377out_release:
378	kmem_cache_free(files_cachep, newf);
379out:
380	return NULL;
381}
382
383static void close_files(struct files_struct * files)
384{
385	int i, j;
386	struct fdtable *fdt;
387
388	j = 0;
389
390	/*
391	 * It is safe to dereference the fd table without RCU or
392	 * ->file_lock because this is the last reference to the
393	 * files structure.  But use RCU to shut RCU-lockdep up.
394	 */
395	rcu_read_lock();
396	fdt = files_fdtable(files);
397	rcu_read_unlock();
398	for (;;) {
399		unsigned long set;
400		i = j * BITS_PER_LONG;
401		if (i >= fdt->max_fds)
402			break;
403		set = fdt->open_fds[j++];
404		while (set) {
405			if (set & 1) {
406				struct file * file = xchg(&fdt->fd[i], NULL);
407				if (file) {
408					filp_close(file, files);
409					cond_resched();
410				}
411			}
412			i++;
413			set >>= 1;
414		}
415	}
416}
417
418struct files_struct *get_files_struct(struct task_struct *task)
419{
420	struct files_struct *files;
421
422	task_lock(task);
423	files = task->files;
424	if (files)
425		atomic_inc(&files->count);
426	task_unlock(task);
427
428	return files;
429}
430
431void put_files_struct(struct files_struct *files)
432{
433	struct fdtable *fdt;
434
435	if (atomic_dec_and_test(&files->count)) {
436		close_files(files);
437		/* not really needed, since nobody can see us */
438		rcu_read_lock();
439		fdt = files_fdtable(files);
440		rcu_read_unlock();
441		/* free the arrays if they are not embedded */
442		if (fdt != &files->fdtab)
443			__free_fdtable(fdt);
444		kmem_cache_free(files_cachep, files);
445	}
446}
447
448void reset_files_struct(struct files_struct *files)
449{
450	struct task_struct *tsk = current;
451	struct files_struct *old;
452
453	old = tsk->files;
454	task_lock(tsk);
455	tsk->files = files;
456	task_unlock(tsk);
457	put_files_struct(old);
458}
459
460void exit_files(struct task_struct *tsk)
461{
462	struct files_struct * files = tsk->files;
463
464	if (files) {
465		task_lock(tsk);
466		tsk->files = NULL;
467		task_unlock(tsk);
468		put_files_struct(files);
469	}
470}
471
472static void __devinit fdtable_defer_list_init(int cpu)
473{
474	struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu);
475	spin_lock_init(&fddef->lock);
476	INIT_WORK(&fddef->wq, free_fdtable_work);
477	fddef->next = NULL;
478}
479
480void __init files_defer_init(void)
481{
482	int i;
483	for_each_possible_cpu(i)
484		fdtable_defer_list_init(i);
485	sysctl_nr_open_max = min((size_t)INT_MAX, ~(size_t)0/sizeof(void *)) &
486			     -BITS_PER_LONG;
487}
488
489struct files_struct init_files = {
490	.count		= ATOMIC_INIT(1),
491	.fdt		= &init_files.fdtab,
492	.fdtab		= {
493		.max_fds	= NR_OPEN_DEFAULT,
494		.fd		= &init_files.fd_array[0],
495		.close_on_exec	= init_files.close_on_exec_init,
496		.open_fds	= init_files.open_fds_init,
497	},
498	.file_lock	= __SPIN_LOCK_UNLOCKED(init_task.file_lock),
499};
500
501/*
502 * allocate a file descriptor, mark it busy.
503 */
504int __alloc_fd(struct files_struct *files,
505	       unsigned start, unsigned end, unsigned flags)
506{
507	unsigned int fd;
508	int error;
509	struct fdtable *fdt;
510
511	spin_lock(&files->file_lock);
512repeat:
513	fdt = files_fdtable(files);
514	fd = start;
515	if (fd < files->next_fd)
516		fd = files->next_fd;
517
518	if (fd < fdt->max_fds)
519		fd = find_next_zero_bit(fdt->open_fds, fdt->max_fds, fd);
520
521	/*
522	 * N.B. For clone tasks sharing a files structure, this test
523	 * will limit the total number of files that can be opened.
524	 */
525	error = -EMFILE;
526	if (fd >= end)
527		goto out;
528
529	error = expand_files(files, fd);
530	if (error < 0)
531		goto out;
532
533	/*
534	 * If we needed to expand the fs array we
535	 * might have blocked - try again.
536	 */
537	if (error)
538		goto repeat;
539
540	if (start <= files->next_fd)
541		files->next_fd = fd + 1;
542
543	__set_open_fd(fd, fdt);
544	if (flags & O_CLOEXEC)
545		__set_close_on_exec(fd, fdt);
546	else
547		__clear_close_on_exec(fd, fdt);
548	error = fd;
549#if 1
550	/* Sanity check */
551	if (rcu_dereference_raw(fdt->fd[fd]) != NULL) {
552		printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
553		rcu_assign_pointer(fdt->fd[fd], NULL);
554	}
555#endif
556
557out:
558	spin_unlock(&files->file_lock);
559	return error;
560}
561
562int alloc_fd(unsigned start, unsigned flags)
563{
564	return __alloc_fd(current->files, start, rlimit(RLIMIT_NOFILE), flags);
565}
566
567int get_unused_fd_flags(unsigned flags)
568{
569	return __alloc_fd(current->files, 0, rlimit(RLIMIT_NOFILE), flags);
570}
571EXPORT_SYMBOL(get_unused_fd_flags);
572
573static void __put_unused_fd(struct files_struct *files, unsigned int fd)
574{
575	struct fdtable *fdt = files_fdtable(files);
576	__clear_open_fd(fd, fdt);
577	if (fd < files->next_fd)
578		files->next_fd = fd;
579}
580
581void put_unused_fd(unsigned int fd)
582{
583	struct files_struct *files = current->files;
584	spin_lock(&files->file_lock);
585	__put_unused_fd(files, fd);
586	spin_unlock(&files->file_lock);
587}
588
589EXPORT_SYMBOL(put_unused_fd);
590
591/*
592 * Install a file pointer in the fd array.
593 *
594 * The VFS is full of places where we drop the files lock between
595 * setting the open_fds bitmap and installing the file in the file
596 * array.  At any such point, we are vulnerable to a dup2() race
597 * installing a file in the array before us.  We need to detect this and
598 * fput() the struct file we are about to overwrite in this case.
599 *
600 * It should never happen - if we allow dup2() do it, _really_ bad things
601 * will follow.
602 *
603 * NOTE: __fd_install() variant is really, really low-level; don't
604 * use it unless you are forced to by truly lousy API shoved down
605 * your throat.  'files' *MUST* be either current->files or obtained
606 * by get_files_struct(current) done by whoever had given it to you,
607 * or really bad things will happen.  Normally you want to use
608 * fd_install() instead.
609 */
610
611void __fd_install(struct files_struct *files, unsigned int fd,
612		struct file *file)
613{
614	struct fdtable *fdt;
615	spin_lock(&files->file_lock);
616	fdt = files_fdtable(files);
617	BUG_ON(fdt->fd[fd] != NULL);
618	rcu_assign_pointer(fdt->fd[fd], file);
619	spin_unlock(&files->file_lock);
620}
621
622void fd_install(unsigned int fd, struct file *file)
623{
624	__fd_install(current->files, fd, file);
625}
626
627EXPORT_SYMBOL(fd_install);
628
629struct file *fget(unsigned int fd)
630{
631	struct file *file;
632	struct files_struct *files = current->files;
633
634	rcu_read_lock();
635	file = fcheck_files(files, fd);
636	if (file) {
637		/* File object ref couldn't be taken */
638		if (file->f_mode & FMODE_PATH ||
639		    !atomic_long_inc_not_zero(&file->f_count))
640			file = NULL;
641	}
642	rcu_read_unlock();
643
644	return file;
645}
646
647EXPORT_SYMBOL(fget);
648
649struct file *fget_raw(unsigned int fd)
650{
651	struct file *file;
652	struct files_struct *files = current->files;
653
654	rcu_read_lock();
655	file = fcheck_files(files, fd);
656	if (file) {
657		/* File object ref couldn't be taken */
658		if (!atomic_long_inc_not_zero(&file->f_count))
659			file = NULL;
660	}
661	rcu_read_unlock();
662
663	return file;
664}
665
666EXPORT_SYMBOL(fget_raw);
667
668/*
669 * Lightweight file lookup - no refcnt increment if fd table isn't shared.
670 *
671 * You can use this instead of fget if you satisfy all of the following
672 * conditions:
673 * 1) You must call fput_light before exiting the syscall and returning control
674 *    to userspace (i.e. you cannot remember the returned struct file * after
675 *    returning to userspace).
676 * 2) You must not call filp_close on the returned struct file * in between
677 *    calls to fget_light and fput_light.
678 * 3) You must not clone the current task in between the calls to fget_light
679 *    and fput_light.
680 *
681 * The fput_needed flag returned by fget_light should be passed to the
682 * corresponding fput_light.
683 */
684struct file *fget_light(unsigned int fd, int *fput_needed)
685{
686	struct file *file;
687	struct files_struct *files = current->files;
688
689	*fput_needed = 0;
690	if (atomic_read(&files->count) == 1) {
691		file = fcheck_files(files, fd);
692		if (file && (file->f_mode & FMODE_PATH))
693			file = NULL;
694	} else {
695		rcu_read_lock();
696		file = fcheck_files(files, fd);
697		if (file) {
698			if (!(file->f_mode & FMODE_PATH) &&
699			    atomic_long_inc_not_zero(&file->f_count))
700				*fput_needed = 1;
701			else
702				/* Didn't get the reference, someone's freed */
703				file = NULL;
704		}
705		rcu_read_unlock();
706	}
707
708	return file;
709}
710
711struct file *fget_raw_light(unsigned int fd, int *fput_needed)
712{
713	struct file *file;
714	struct files_struct *files = current->files;
715
716	*fput_needed = 0;
717	if (atomic_read(&files->count) == 1) {
718		file = fcheck_files(files, fd);
719	} else {
720		rcu_read_lock();
721		file = fcheck_files(files, fd);
722		if (file) {
723			if (atomic_long_inc_not_zero(&file->f_count))
724				*fput_needed = 1;
725			else
726				/* Didn't get the reference, someone's freed */
727				file = NULL;
728		}
729		rcu_read_unlock();
730	}
731
732	return file;
733}
734