file.c revision dcfadfa4ec5a12404a99ad6426871a6b03a62b37
1/*
2 *  linux/fs/file.c
3 *
4 *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
5 *
6 *  Manage the dynamic fd arrays in the process files_struct.
7 */
8
9#include <linux/export.h>
10#include <linux/fs.h>
11#include <linux/mm.h>
12#include <linux/mmzone.h>
13#include <linux/time.h>
14#include <linux/sched.h>
15#include <linux/slab.h>
16#include <linux/vmalloc.h>
17#include <linux/file.h>
18#include <linux/fdtable.h>
19#include <linux/bitops.h>
20#include <linux/interrupt.h>
21#include <linux/spinlock.h>
22#include <linux/rcupdate.h>
23#include <linux/workqueue.h>
24
25struct fdtable_defer {
26	spinlock_t lock;
27	struct work_struct wq;
28	struct fdtable *next;
29};
30
31int sysctl_nr_open __read_mostly = 1024*1024;
32int sysctl_nr_open_min = BITS_PER_LONG;
33int sysctl_nr_open_max = 1024 * 1024; /* raised later */
34
35/*
36 * We use this list to defer free fdtables that have vmalloced
37 * sets/arrays. By keeping a per-cpu list, we avoid having to embed
38 * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
39 * this per-task structure.
40 */
41static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list);
42
43static void *alloc_fdmem(size_t size)
44{
45	/*
46	 * Very large allocations can stress page reclaim, so fall back to
47	 * vmalloc() if the allocation size will be considered "large" by the VM.
48	 */
49	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) {
50		void *data = kmalloc(size, GFP_KERNEL|__GFP_NOWARN);
51		if (data != NULL)
52			return data;
53	}
54	return vmalloc(size);
55}
56
57static void free_fdmem(void *ptr)
58{
59	is_vmalloc_addr(ptr) ? vfree(ptr) : kfree(ptr);
60}
61
62static void __free_fdtable(struct fdtable *fdt)
63{
64	free_fdmem(fdt->fd);
65	free_fdmem(fdt->open_fds);
66	kfree(fdt);
67}
68
69static void free_fdtable_work(struct work_struct *work)
70{
71	struct fdtable_defer *f =
72		container_of(work, struct fdtable_defer, wq);
73	struct fdtable *fdt;
74
75	spin_lock_bh(&f->lock);
76	fdt = f->next;
77	f->next = NULL;
78	spin_unlock_bh(&f->lock);
79	while(fdt) {
80		struct fdtable *next = fdt->next;
81
82		__free_fdtable(fdt);
83		fdt = next;
84	}
85}
86
87void free_fdtable_rcu(struct rcu_head *rcu)
88{
89	struct fdtable *fdt = container_of(rcu, struct fdtable, rcu);
90	struct fdtable_defer *fddef;
91
92	BUG_ON(!fdt);
93
94	if (fdt->max_fds <= NR_OPEN_DEFAULT) {
95		/*
96		 * This fdtable is embedded in the files structure and that
97		 * structure itself is getting destroyed.
98		 */
99		kmem_cache_free(files_cachep,
100				container_of(fdt, struct files_struct, fdtab));
101		return;
102	}
103	if (!is_vmalloc_addr(fdt->fd) && !is_vmalloc_addr(fdt->open_fds)) {
104		kfree(fdt->fd);
105		kfree(fdt->open_fds);
106		kfree(fdt);
107	} else {
108		fddef = &get_cpu_var(fdtable_defer_list);
109		spin_lock(&fddef->lock);
110		fdt->next = fddef->next;
111		fddef->next = fdt;
112		/* vmallocs are handled from the workqueue context */
113		schedule_work(&fddef->wq);
114		spin_unlock(&fddef->lock);
115		put_cpu_var(fdtable_defer_list);
116	}
117}
118
119/*
120 * Expand the fdset in the files_struct.  Called with the files spinlock
121 * held for write.
122 */
123static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
124{
125	unsigned int cpy, set;
126
127	BUG_ON(nfdt->max_fds < ofdt->max_fds);
128
129	cpy = ofdt->max_fds * sizeof(struct file *);
130	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
131	memcpy(nfdt->fd, ofdt->fd, cpy);
132	memset((char *)(nfdt->fd) + cpy, 0, set);
133
134	cpy = ofdt->max_fds / BITS_PER_BYTE;
135	set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE;
136	memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
137	memset((char *)(nfdt->open_fds) + cpy, 0, set);
138	memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
139	memset((char *)(nfdt->close_on_exec) + cpy, 0, set);
140}
141
142static struct fdtable * alloc_fdtable(unsigned int nr)
143{
144	struct fdtable *fdt;
145	void *data;
146
147	/*
148	 * Figure out how many fds we actually want to support in this fdtable.
149	 * Allocation steps are keyed to the size of the fdarray, since it
150	 * grows far faster than any of the other dynamic data. We try to fit
151	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
152	 * and growing in powers of two from there on.
153	 */
154	nr /= (1024 / sizeof(struct file *));
155	nr = roundup_pow_of_two(nr + 1);
156	nr *= (1024 / sizeof(struct file *));
157	/*
158	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
159	 * had been set lower between the check in expand_files() and here.  Deal
160	 * with that in caller, it's cheaper that way.
161	 *
162	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
163	 * bitmaps handling below becomes unpleasant, to put it mildly...
164	 */
165	if (unlikely(nr > sysctl_nr_open))
166		nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
167
168	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL);
169	if (!fdt)
170		goto out;
171	fdt->max_fds = nr;
172	data = alloc_fdmem(nr * sizeof(struct file *));
173	if (!data)
174		goto out_fdt;
175	fdt->fd = data;
176
177	data = alloc_fdmem(max_t(size_t,
178				 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES));
179	if (!data)
180		goto out_arr;
181	fdt->open_fds = data;
182	data += nr / BITS_PER_BYTE;
183	fdt->close_on_exec = data;
184	fdt->next = NULL;
185
186	return fdt;
187
188out_arr:
189	free_fdmem(fdt->fd);
190out_fdt:
191	kfree(fdt);
192out:
193	return NULL;
194}
195
196/*
197 * Expand the file descriptor table.
198 * This function will allocate a new fdtable and both fd array and fdset, of
199 * the given size.
200 * Return <0 error code on error; 1 on successful completion.
201 * The files->file_lock should be held on entry, and will be held on exit.
202 */
203static int expand_fdtable(struct files_struct *files, int nr)
204	__releases(files->file_lock)
205	__acquires(files->file_lock)
206{
207	struct fdtable *new_fdt, *cur_fdt;
208
209	spin_unlock(&files->file_lock);
210	new_fdt = alloc_fdtable(nr);
211	spin_lock(&files->file_lock);
212	if (!new_fdt)
213		return -ENOMEM;
214	/*
215	 * extremely unlikely race - sysctl_nr_open decreased between the check in
216	 * caller and alloc_fdtable().  Cheaper to catch it here...
217	 */
218	if (unlikely(new_fdt->max_fds <= nr)) {
219		__free_fdtable(new_fdt);
220		return -EMFILE;
221	}
222	/*
223	 * Check again since another task may have expanded the fd table while
224	 * we dropped the lock
225	 */
226	cur_fdt = files_fdtable(files);
227	if (nr >= cur_fdt->max_fds) {
228		/* Continue as planned */
229		copy_fdtable(new_fdt, cur_fdt);
230		rcu_assign_pointer(files->fdt, new_fdt);
231		if (cur_fdt->max_fds > NR_OPEN_DEFAULT)
232			free_fdtable(cur_fdt);
233	} else {
234		/* Somebody else expanded, so undo our attempt */
235		__free_fdtable(new_fdt);
236	}
237	return 1;
238}
239
240/*
241 * Expand files.
242 * This function will expand the file structures, if the requested size exceeds
243 * the current capacity and there is room for expansion.
244 * Return <0 error code on error; 0 when nothing done; 1 when files were
245 * expanded and execution may have blocked.
246 * The files->file_lock should be held on entry, and will be held on exit.
247 */
248int expand_files(struct files_struct *files, int nr)
249{
250	struct fdtable *fdt;
251
252	fdt = files_fdtable(files);
253
254	/* Do we need to expand? */
255	if (nr < fdt->max_fds)
256		return 0;
257
258	/* Can we expand? */
259	if (nr >= sysctl_nr_open)
260		return -EMFILE;
261
262	/* All good, so we try */
263	return expand_fdtable(files, nr);
264}
265
266static int count_open_files(struct fdtable *fdt)
267{
268	int size = fdt->max_fds;
269	int i;
270
271	/* Find the last open fd */
272	for (i = size / BITS_PER_LONG; i > 0; ) {
273		if (fdt->open_fds[--i])
274			break;
275	}
276	i = (i + 1) * BITS_PER_LONG;
277	return i;
278}
279
280/*
281 * Allocate a new files structure and copy contents from the
282 * passed in files structure.
283 * errorp will be valid only when the returned files_struct is NULL.
284 */
285struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
286{
287	struct files_struct *newf;
288	struct file **old_fds, **new_fds;
289	int open_files, size, i;
290	struct fdtable *old_fdt, *new_fdt;
291
292	*errorp = -ENOMEM;
293	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
294	if (!newf)
295		goto out;
296
297	atomic_set(&newf->count, 1);
298
299	spin_lock_init(&newf->file_lock);
300	newf->next_fd = 0;
301	new_fdt = &newf->fdtab;
302	new_fdt->max_fds = NR_OPEN_DEFAULT;
303	new_fdt->close_on_exec = newf->close_on_exec_init;
304	new_fdt->open_fds = newf->open_fds_init;
305	new_fdt->fd = &newf->fd_array[0];
306	new_fdt->next = NULL;
307
308	spin_lock(&oldf->file_lock);
309	old_fdt = files_fdtable(oldf);
310	open_files = count_open_files(old_fdt);
311
312	/*
313	 * Check whether we need to allocate a larger fd array and fd set.
314	 */
315	while (unlikely(open_files > new_fdt->max_fds)) {
316		spin_unlock(&oldf->file_lock);
317
318		if (new_fdt != &newf->fdtab)
319			__free_fdtable(new_fdt);
320
321		new_fdt = alloc_fdtable(open_files - 1);
322		if (!new_fdt) {
323			*errorp = -ENOMEM;
324			goto out_release;
325		}
326
327		/* beyond sysctl_nr_open; nothing to do */
328		if (unlikely(new_fdt->max_fds < open_files)) {
329			__free_fdtable(new_fdt);
330			*errorp = -EMFILE;
331			goto out_release;
332		}
333
334		/*
335		 * Reacquire the oldf lock and a pointer to its fd table
336		 * who knows it may have a new bigger fd table. We need
337		 * the latest pointer.
338		 */
339		spin_lock(&oldf->file_lock);
340		old_fdt = files_fdtable(oldf);
341		open_files = count_open_files(old_fdt);
342	}
343
344	old_fds = old_fdt->fd;
345	new_fds = new_fdt->fd;
346
347	memcpy(new_fdt->open_fds, old_fdt->open_fds, open_files / 8);
348	memcpy(new_fdt->close_on_exec, old_fdt->close_on_exec, open_files / 8);
349
350	for (i = open_files; i != 0; i--) {
351		struct file *f = *old_fds++;
352		if (f) {
353			get_file(f);
354		} else {
355			/*
356			 * The fd may be claimed in the fd bitmap but not yet
357			 * instantiated in the files array if a sibling thread
358			 * is partway through open().  So make sure that this
359			 * fd is available to the new process.
360			 */
361			__clear_open_fd(open_files - i, new_fdt);
362		}
363		rcu_assign_pointer(*new_fds++, f);
364	}
365	spin_unlock(&oldf->file_lock);
366
367	/* compute the remainder to be cleared */
368	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
369
370	/* This is long word aligned thus could use a optimized version */
371	memset(new_fds, 0, size);
372
373	if (new_fdt->max_fds > open_files) {
374		int left = (new_fdt->max_fds - open_files) / 8;
375		int start = open_files / BITS_PER_LONG;
376
377		memset(&new_fdt->open_fds[start], 0, left);
378		memset(&new_fdt->close_on_exec[start], 0, left);
379	}
380
381	rcu_assign_pointer(newf->fdt, new_fdt);
382
383	return newf;
384
385out_release:
386	kmem_cache_free(files_cachep, newf);
387out:
388	return NULL;
389}
390
391static void __devinit fdtable_defer_list_init(int cpu)
392{
393	struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu);
394	spin_lock_init(&fddef->lock);
395	INIT_WORK(&fddef->wq, free_fdtable_work);
396	fddef->next = NULL;
397}
398
399void __init files_defer_init(void)
400{
401	int i;
402	for_each_possible_cpu(i)
403		fdtable_defer_list_init(i);
404	sysctl_nr_open_max = min((size_t)INT_MAX, ~(size_t)0/sizeof(void *)) &
405			     -BITS_PER_LONG;
406}
407
408struct files_struct init_files = {
409	.count		= ATOMIC_INIT(1),
410	.fdt		= &init_files.fdtab,
411	.fdtab		= {
412		.max_fds	= NR_OPEN_DEFAULT,
413		.fd		= &init_files.fd_array[0],
414		.close_on_exec	= init_files.close_on_exec_init,
415		.open_fds	= init_files.open_fds_init,
416	},
417	.file_lock	= __SPIN_LOCK_UNLOCKED(init_task.file_lock),
418};
419
420/*
421 * allocate a file descriptor, mark it busy.
422 */
423int __alloc_fd(struct files_struct *files,
424	       unsigned start, unsigned end, unsigned flags)
425{
426	unsigned int fd;
427	int error;
428	struct fdtable *fdt;
429
430	spin_lock(&files->file_lock);
431repeat:
432	fdt = files_fdtable(files);
433	fd = start;
434	if (fd < files->next_fd)
435		fd = files->next_fd;
436
437	if (fd < fdt->max_fds)
438		fd = find_next_zero_bit(fdt->open_fds, fdt->max_fds, fd);
439
440	/*
441	 * N.B. For clone tasks sharing a files structure, this test
442	 * will limit the total number of files that can be opened.
443	 */
444	error = -EMFILE;
445	if (fd >= end)
446		goto out;
447
448	error = expand_files(files, fd);
449	if (error < 0)
450		goto out;
451
452	/*
453	 * If we needed to expand the fs array we
454	 * might have blocked - try again.
455	 */
456	if (error)
457		goto repeat;
458
459	if (start <= files->next_fd)
460		files->next_fd = fd + 1;
461
462	__set_open_fd(fd, fdt);
463	if (flags & O_CLOEXEC)
464		__set_close_on_exec(fd, fdt);
465	else
466		__clear_close_on_exec(fd, fdt);
467	error = fd;
468#if 1
469	/* Sanity check */
470	if (rcu_dereference_raw(fdt->fd[fd]) != NULL) {
471		printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
472		rcu_assign_pointer(fdt->fd[fd], NULL);
473	}
474#endif
475
476out:
477	spin_unlock(&files->file_lock);
478	return error;
479}
480
481int alloc_fd(unsigned start, unsigned flags)
482{
483	return __alloc_fd(current->files, start, rlimit(RLIMIT_NOFILE), flags);
484}
485
486int get_unused_fd_flags(unsigned flags)
487{
488	return __alloc_fd(current->files, 0, rlimit(RLIMIT_NOFILE), flags);
489}
490EXPORT_SYMBOL(get_unused_fd_flags);
491