dir.c revision 1ae06819c77cff1ea2833c94f8c093fe8a5c79db
1/*
2 * fs/kernfs/dir.c - kernfs directory implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
10
11#include <linux/sched.h>
12#include <linux/fs.h>
13#include <linux/namei.h>
14#include <linux/idr.h>
15#include <linux/slab.h>
16#include <linux/security.h>
17#include <linux/hash.h>
18
19#include "kernfs-internal.h"
20
21DEFINE_MUTEX(kernfs_mutex);
22
23#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
24
25static bool kernfs_lockdep(struct kernfs_node *kn)
26{
27#ifdef CONFIG_DEBUG_LOCK_ALLOC
28	return kn->flags & KERNFS_LOCKDEP;
29#else
30	return false;
31#endif
32}
33
34/**
35 *	kernfs_name_hash
36 *	@name: Null terminated string to hash
37 *	@ns:   Namespace tag to hash
38 *
39 *	Returns 31 bit hash of ns + name (so it fits in an off_t )
40 */
41static unsigned int kernfs_name_hash(const char *name, const void *ns)
42{
43	unsigned long hash = init_name_hash();
44	unsigned int len = strlen(name);
45	while (len--)
46		hash = partial_name_hash(*name++, hash);
47	hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
48	hash &= 0x7fffffffU;
49	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
50	if (hash < 1)
51		hash += 2;
52	if (hash >= INT_MAX)
53		hash = INT_MAX - 1;
54	return hash;
55}
56
57static int kernfs_name_compare(unsigned int hash, const char *name,
58			       const void *ns, const struct kernfs_node *kn)
59{
60	if (hash != kn->hash)
61		return hash - kn->hash;
62	if (ns != kn->ns)
63		return ns - kn->ns;
64	return strcmp(name, kn->name);
65}
66
67static int kernfs_sd_compare(const struct kernfs_node *left,
68			     const struct kernfs_node *right)
69{
70	return kernfs_name_compare(left->hash, left->name, left->ns, right);
71}
72
73/**
74 *	kernfs_link_sibling - link kernfs_node into sibling rbtree
75 *	@kn: kernfs_node of interest
76 *
77 *	Link @kn into its sibling rbtree which starts from
78 *	@kn->parent->dir.children.
79 *
80 *	Locking:
81 *	mutex_lock(kernfs_mutex)
82 *
83 *	RETURNS:
84 *	0 on susccess -EEXIST on failure.
85 */
86static int kernfs_link_sibling(struct kernfs_node *kn)
87{
88	struct rb_node **node = &kn->parent->dir.children.rb_node;
89	struct rb_node *parent = NULL;
90
91	if (kernfs_type(kn) == KERNFS_DIR)
92		kn->parent->dir.subdirs++;
93
94	while (*node) {
95		struct kernfs_node *pos;
96		int result;
97
98		pos = rb_to_kn(*node);
99		parent = *node;
100		result = kernfs_sd_compare(kn, pos);
101		if (result < 0)
102			node = &pos->rb.rb_left;
103		else if (result > 0)
104			node = &pos->rb.rb_right;
105		else
106			return -EEXIST;
107	}
108	/* add new node and rebalance the tree */
109	rb_link_node(&kn->rb, parent, node);
110	rb_insert_color(&kn->rb, &kn->parent->dir.children);
111	return 0;
112}
113
114/**
115 *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
116 *	@kn: kernfs_node of interest
117 *
118 *	Unlink @kn from its sibling rbtree which starts from
119 *	kn->parent->dir.children.
120 *
121 *	Locking:
122 *	mutex_lock(kernfs_mutex)
123 */
124static bool kernfs_unlink_sibling(struct kernfs_node *kn)
125{
126	if (RB_EMPTY_NODE(&kn->rb))
127		return false;
128
129	if (kernfs_type(kn) == KERNFS_DIR)
130		kn->parent->dir.subdirs--;
131
132	rb_erase(&kn->rb, &kn->parent->dir.children);
133	RB_CLEAR_NODE(&kn->rb);
134	return true;
135}
136
137/**
138 *	kernfs_get_active - get an active reference to kernfs_node
139 *	@kn: kernfs_node to get an active reference to
140 *
141 *	Get an active reference of @kn.  This function is noop if @kn
142 *	is NULL.
143 *
144 *	RETURNS:
145 *	Pointer to @kn on success, NULL on failure.
146 */
147struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
148{
149	if (unlikely(!kn))
150		return NULL;
151
152	if (kernfs_lockdep(kn))
153		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
154
155	/*
156	 * Try to obtain an active ref.  If @kn is deactivated, we block
157	 * till either it's reactivated or killed.
158	 */
159	do {
160		if (atomic_inc_unless_negative(&kn->active))
161			return kn;
162
163		wait_event(kernfs_root(kn)->deactivate_waitq,
164			   atomic_read(&kn->active) >= 0 ||
165			   RB_EMPTY_NODE(&kn->rb));
166	} while (!RB_EMPTY_NODE(&kn->rb));
167
168	if (kernfs_lockdep(kn))
169		rwsem_release(&kn->dep_map, 1, _RET_IP_);
170	return NULL;
171}
172
173/**
174 *	kernfs_put_active - put an active reference to kernfs_node
175 *	@kn: kernfs_node to put an active reference to
176 *
177 *	Put an active reference to @kn.  This function is noop if @kn
178 *	is NULL.
179 */
180void kernfs_put_active(struct kernfs_node *kn)
181{
182	struct kernfs_root *root = kernfs_root(kn);
183	int v;
184
185	if (unlikely(!kn))
186		return;
187
188	if (kernfs_lockdep(kn))
189		rwsem_release(&kn->dep_map, 1, _RET_IP_);
190	v = atomic_dec_return(&kn->active);
191	if (likely(v != KN_DEACTIVATED_BIAS))
192		return;
193
194	wake_up_all(&root->deactivate_waitq);
195}
196
197/**
198 * kernfs_drain - drain kernfs_node
199 * @kn: kernfs_node to drain
200 *
201 * Drain existing usages of @kn.  Mutiple removers may invoke this function
202 * concurrently on @kn and all will return after draining is complete.
203 * Returns %true if drain is performed and kernfs_mutex was temporarily
204 * released.  %false if @kn was already drained and no operation was
205 * necessary.
206 *
207 * The caller is responsible for ensuring @kn stays pinned while this
208 * function is in progress even if it gets removed by someone else.
209 */
210static bool kernfs_drain(struct kernfs_node *kn)
211	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
212{
213	struct kernfs_root *root = kernfs_root(kn);
214
215	lockdep_assert_held(&kernfs_mutex);
216	WARN_ON_ONCE(atomic_read(&kn->active) >= 0);
217
218	/*
219	 * We want to go through the active ref lockdep annotation at least
220	 * once for all node removals, but the lockdep annotation can't be
221	 * nested inside kernfs_mutex and deactivation can't make forward
222	 * progress if we keep dropping the mutex.  Use JUST_ACTIVATED to
223	 * force the slow path once for each deactivation if lockdep is
224	 * enabled.
225	 */
226	if ((!kernfs_lockdep(kn) || !(kn->flags & KERNFS_JUST_DEACTIVATED)) &&
227	    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
228		return false;
229
230	kn->flags &= ~KERNFS_JUST_DEACTIVATED;
231	mutex_unlock(&kernfs_mutex);
232
233	if (kernfs_lockdep(kn)) {
234		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
235		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
236			lock_contended(&kn->dep_map, _RET_IP_);
237	}
238
239	wait_event(root->deactivate_waitq,
240		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
241
242	if (kernfs_lockdep(kn)) {
243		lock_acquired(&kn->dep_map, _RET_IP_);
244		rwsem_release(&kn->dep_map, 1, _RET_IP_);
245	}
246
247	mutex_lock(&kernfs_mutex);
248	return true;
249}
250
251/**
252 * kernfs_get - get a reference count on a kernfs_node
253 * @kn: the target kernfs_node
254 */
255void kernfs_get(struct kernfs_node *kn)
256{
257	if (kn) {
258		WARN_ON(!atomic_read(&kn->count));
259		atomic_inc(&kn->count);
260	}
261}
262EXPORT_SYMBOL_GPL(kernfs_get);
263
264/**
265 * kernfs_put - put a reference count on a kernfs_node
266 * @kn: the target kernfs_node
267 *
268 * Put a reference count of @kn and destroy it if it reached zero.
269 */
270void kernfs_put(struct kernfs_node *kn)
271{
272	struct kernfs_node *parent;
273	struct kernfs_root *root;
274
275	if (!kn || !atomic_dec_and_test(&kn->count))
276		return;
277	root = kernfs_root(kn);
278 repeat:
279	/*
280	 * Moving/renaming is always done while holding reference.
281	 * kn->parent won't change beneath us.
282	 */
283	parent = kn->parent;
284
285	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
286		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
287		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
288
289	if (kernfs_type(kn) == KERNFS_LINK)
290		kernfs_put(kn->symlink.target_kn);
291	if (!(kn->flags & KERNFS_STATIC_NAME))
292		kfree(kn->name);
293	if (kn->iattr) {
294		if (kn->iattr->ia_secdata)
295			security_release_secctx(kn->iattr->ia_secdata,
296						kn->iattr->ia_secdata_len);
297		simple_xattrs_free(&kn->iattr->xattrs);
298	}
299	kfree(kn->iattr);
300	ida_simple_remove(&root->ino_ida, kn->ino);
301	kmem_cache_free(kernfs_node_cache, kn);
302
303	kn = parent;
304	if (kn) {
305		if (atomic_dec_and_test(&kn->count))
306			goto repeat;
307	} else {
308		/* just released the root kn, free @root too */
309		ida_destroy(&root->ino_ida);
310		kfree(root);
311	}
312}
313EXPORT_SYMBOL_GPL(kernfs_put);
314
315static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
316{
317	struct kernfs_node *kn;
318
319	if (flags & LOOKUP_RCU)
320		return -ECHILD;
321
322	/* Always perform fresh lookup for negatives */
323	if (!dentry->d_inode)
324		goto out_bad_unlocked;
325
326	kn = dentry->d_fsdata;
327	mutex_lock(&kernfs_mutex);
328
329	/* Force fresh lookup if removed */
330	if (kn->parent && RB_EMPTY_NODE(&kn->rb))
331		goto out_bad;
332
333	/* The kernfs node has been moved? */
334	if (dentry->d_parent->d_fsdata != kn->parent)
335		goto out_bad;
336
337	/* The kernfs node has been renamed */
338	if (strcmp(dentry->d_name.name, kn->name) != 0)
339		goto out_bad;
340
341	/* The kernfs node has been moved to a different namespace */
342	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
343	    kernfs_info(dentry->d_sb)->ns != kn->ns)
344		goto out_bad;
345
346	mutex_unlock(&kernfs_mutex);
347out_valid:
348	return 1;
349out_bad:
350	mutex_unlock(&kernfs_mutex);
351out_bad_unlocked:
352	/*
353	 * @dentry doesn't match the underlying kernfs node, drop the
354	 * dentry and force lookup.  If we have submounts we must allow the
355	 * vfs caches to lie about the state of the filesystem to prevent
356	 * leaks and other nasty things, so use check_submounts_and_drop()
357	 * instead of d_drop().
358	 */
359	if (check_submounts_and_drop(dentry) != 0)
360		goto out_valid;
361
362	return 0;
363}
364
365static void kernfs_dop_release(struct dentry *dentry)
366{
367	kernfs_put(dentry->d_fsdata);
368}
369
370const struct dentry_operations kernfs_dops = {
371	.d_revalidate	= kernfs_dop_revalidate,
372	.d_release	= kernfs_dop_release,
373};
374
375struct kernfs_node *kernfs_new_node(struct kernfs_root *root, const char *name,
376				    umode_t mode, unsigned flags)
377{
378	char *dup_name = NULL;
379	struct kernfs_node *kn;
380	int ret;
381
382	if (!(flags & KERNFS_STATIC_NAME)) {
383		name = dup_name = kstrdup(name, GFP_KERNEL);
384		if (!name)
385			return NULL;
386	}
387
388	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
389	if (!kn)
390		goto err_out1;
391
392	ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
393	if (ret < 0)
394		goto err_out2;
395	kn->ino = ret;
396
397	atomic_set(&kn->count, 1);
398	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
399	kn->deact_depth = 1;
400	RB_CLEAR_NODE(&kn->rb);
401
402	kn->name = name;
403	kn->mode = mode;
404	kn->flags = flags;
405
406	return kn;
407
408 err_out2:
409	kmem_cache_free(kernfs_node_cache, kn);
410 err_out1:
411	kfree(dup_name);
412	return NULL;
413}
414
415/**
416 *	kernfs_add_one - add kernfs_node to parent without warning
417 *	@kn: kernfs_node to be added
418 *	@parent: the parent kernfs_node to add @kn to
419 *
420 *	Get @parent and set @kn->parent to it and increment nlink of the
421 *	parent inode if @kn is a directory and link into the children list
422 *	of the parent.
423 *
424 *	RETURNS:
425 *	0 on success, -EEXIST if entry with the given name already
426 *	exists.
427 */
428int kernfs_add_one(struct kernfs_node *kn, struct kernfs_node *parent)
429{
430	struct kernfs_iattrs *ps_iattr;
431	bool has_ns;
432	int ret;
433
434	if (!kernfs_get_active(parent))
435		return -ENOENT;
436
437	mutex_lock(&kernfs_mutex);
438
439	ret = -EINVAL;
440	has_ns = kernfs_ns_enabled(parent);
441	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
442		 has_ns ? "required" : "invalid", parent->name, kn->name))
443		goto out_unlock;
444
445	if (kernfs_type(parent) != KERNFS_DIR)
446		goto out_unlock;
447
448	kn->hash = kernfs_name_hash(kn->name, kn->ns);
449	kn->parent = parent;
450	kernfs_get(parent);
451
452	ret = kernfs_link_sibling(kn);
453	if (ret)
454		goto out_unlock;
455
456	/* Update timestamps on the parent */
457	ps_iattr = parent->iattr;
458	if (ps_iattr) {
459		struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
460		ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
461	}
462
463	/* Mark the entry added into directory tree */
464	atomic_sub(KN_DEACTIVATED_BIAS, &kn->active);
465	kn->deact_depth--;
466	ret = 0;
467out_unlock:
468	mutex_unlock(&kernfs_mutex);
469	kernfs_put_active(parent);
470	return ret;
471}
472
473/**
474 * kernfs_find_ns - find kernfs_node with the given name
475 * @parent: kernfs_node to search under
476 * @name: name to look for
477 * @ns: the namespace tag to use
478 *
479 * Look for kernfs_node with name @name under @parent.  Returns pointer to
480 * the found kernfs_node on success, %NULL on failure.
481 */
482static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
483					  const unsigned char *name,
484					  const void *ns)
485{
486	struct rb_node *node = parent->dir.children.rb_node;
487	bool has_ns = kernfs_ns_enabled(parent);
488	unsigned int hash;
489
490	lockdep_assert_held(&kernfs_mutex);
491
492	if (has_ns != (bool)ns) {
493		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
494		     has_ns ? "required" : "invalid", parent->name, name);
495		return NULL;
496	}
497
498	hash = kernfs_name_hash(name, ns);
499	while (node) {
500		struct kernfs_node *kn;
501		int result;
502
503		kn = rb_to_kn(node);
504		result = kernfs_name_compare(hash, name, ns, kn);
505		if (result < 0)
506			node = node->rb_left;
507		else if (result > 0)
508			node = node->rb_right;
509		else
510			return kn;
511	}
512	return NULL;
513}
514
515/**
516 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
517 * @parent: kernfs_node to search under
518 * @name: name to look for
519 * @ns: the namespace tag to use
520 *
521 * Look for kernfs_node with name @name under @parent and get a reference
522 * if found.  This function may sleep and returns pointer to the found
523 * kernfs_node on success, %NULL on failure.
524 */
525struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
526					   const char *name, const void *ns)
527{
528	struct kernfs_node *kn;
529
530	mutex_lock(&kernfs_mutex);
531	kn = kernfs_find_ns(parent, name, ns);
532	kernfs_get(kn);
533	mutex_unlock(&kernfs_mutex);
534
535	return kn;
536}
537EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
538
539/**
540 * kernfs_create_root - create a new kernfs hierarchy
541 * @kdops: optional directory syscall operations for the hierarchy
542 * @priv: opaque data associated with the new directory
543 *
544 * Returns the root of the new hierarchy on success, ERR_PTR() value on
545 * failure.
546 */
547struct kernfs_root *kernfs_create_root(struct kernfs_dir_ops *kdops, void *priv)
548{
549	struct kernfs_root *root;
550	struct kernfs_node *kn;
551
552	root = kzalloc(sizeof(*root), GFP_KERNEL);
553	if (!root)
554		return ERR_PTR(-ENOMEM);
555
556	ida_init(&root->ino_ida);
557
558	kn = kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO, KERNFS_DIR);
559	if (!kn) {
560		ida_destroy(&root->ino_ida);
561		kfree(root);
562		return ERR_PTR(-ENOMEM);
563	}
564
565	atomic_sub(KN_DEACTIVATED_BIAS, &kn->active);
566	kn->deact_depth--;
567	kn->priv = priv;
568	kn->dir.root = root;
569
570	root->dir_ops = kdops;
571	root->kn = kn;
572	init_waitqueue_head(&root->deactivate_waitq);
573
574	return root;
575}
576
577/**
578 * kernfs_destroy_root - destroy a kernfs hierarchy
579 * @root: root of the hierarchy to destroy
580 *
581 * Destroy the hierarchy anchored at @root by removing all existing
582 * directories and destroying @root.
583 */
584void kernfs_destroy_root(struct kernfs_root *root)
585{
586	kernfs_remove(root->kn);	/* will also free @root */
587}
588
589/**
590 * kernfs_create_dir_ns - create a directory
591 * @parent: parent in which to create a new directory
592 * @name: name of the new directory
593 * @mode: mode of the new directory
594 * @priv: opaque data associated with the new directory
595 * @ns: optional namespace tag of the directory
596 *
597 * Returns the created node on success, ERR_PTR() value on failure.
598 */
599struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
600					 const char *name, umode_t mode,
601					 void *priv, const void *ns)
602{
603	struct kernfs_node *kn;
604	int rc;
605
606	/* allocate */
607	kn = kernfs_new_node(kernfs_root(parent), name, mode | S_IFDIR,
608			     KERNFS_DIR);
609	if (!kn)
610		return ERR_PTR(-ENOMEM);
611
612	kn->dir.root = parent->dir.root;
613	kn->ns = ns;
614	kn->priv = priv;
615
616	/* link in */
617	rc = kernfs_add_one(kn, parent);
618	if (!rc)
619		return kn;
620
621	kernfs_put(kn);
622	return ERR_PTR(rc);
623}
624
625static struct dentry *kernfs_iop_lookup(struct inode *dir,
626					struct dentry *dentry,
627					unsigned int flags)
628{
629	struct dentry *ret;
630	struct kernfs_node *parent = dentry->d_parent->d_fsdata;
631	struct kernfs_node *kn;
632	struct inode *inode;
633	const void *ns = NULL;
634
635	mutex_lock(&kernfs_mutex);
636
637	if (kernfs_ns_enabled(parent))
638		ns = kernfs_info(dir->i_sb)->ns;
639
640	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
641
642	/* no such entry */
643	if (!kn) {
644		ret = NULL;
645		goto out_unlock;
646	}
647	kernfs_get(kn);
648	dentry->d_fsdata = kn;
649
650	/* attach dentry and inode */
651	inode = kernfs_get_inode(dir->i_sb, kn);
652	if (!inode) {
653		ret = ERR_PTR(-ENOMEM);
654		goto out_unlock;
655	}
656
657	/* instantiate and hash dentry */
658	ret = d_materialise_unique(dentry, inode);
659 out_unlock:
660	mutex_unlock(&kernfs_mutex);
661	return ret;
662}
663
664static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
665			    umode_t mode)
666{
667	struct kernfs_node *parent = dir->i_private;
668	struct kernfs_dir_ops *kdops = kernfs_root(parent)->dir_ops;
669
670	if (!kdops || !kdops->mkdir)
671		return -EPERM;
672
673	return kdops->mkdir(parent, dentry->d_name.name, mode);
674}
675
676static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
677{
678	struct kernfs_node *kn  = dentry->d_fsdata;
679	struct kernfs_dir_ops *kdops = kernfs_root(kn)->dir_ops;
680
681	if (!kdops || !kdops->rmdir)
682		return -EPERM;
683
684	return kdops->rmdir(kn);
685}
686
687static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
688			     struct inode *new_dir, struct dentry *new_dentry)
689{
690	struct kernfs_node *kn  = old_dentry->d_fsdata;
691	struct kernfs_node *new_parent = new_dir->i_private;
692	struct kernfs_dir_ops *kdops = kernfs_root(kn)->dir_ops;
693
694	if (!kdops || !kdops->rename)
695		return -EPERM;
696
697	return kdops->rename(kn, new_parent, new_dentry->d_name.name);
698}
699
700const struct inode_operations kernfs_dir_iops = {
701	.lookup		= kernfs_iop_lookup,
702	.permission	= kernfs_iop_permission,
703	.setattr	= kernfs_iop_setattr,
704	.getattr	= kernfs_iop_getattr,
705	.setxattr	= kernfs_iop_setxattr,
706	.removexattr	= kernfs_iop_removexattr,
707	.getxattr	= kernfs_iop_getxattr,
708	.listxattr	= kernfs_iop_listxattr,
709
710	.mkdir		= kernfs_iop_mkdir,
711	.rmdir		= kernfs_iop_rmdir,
712	.rename		= kernfs_iop_rename,
713};
714
715static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
716{
717	struct kernfs_node *last;
718
719	while (true) {
720		struct rb_node *rbn;
721
722		last = pos;
723
724		if (kernfs_type(pos) != KERNFS_DIR)
725			break;
726
727		rbn = rb_first(&pos->dir.children);
728		if (!rbn)
729			break;
730
731		pos = rb_to_kn(rbn);
732	}
733
734	return last;
735}
736
737/**
738 * kernfs_next_descendant_post - find the next descendant for post-order walk
739 * @pos: the current position (%NULL to initiate traversal)
740 * @root: kernfs_node whose descendants to walk
741 *
742 * Find the next descendant to visit for post-order traversal of @root's
743 * descendants.  @root is included in the iteration and the last node to be
744 * visited.
745 */
746static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
747						       struct kernfs_node *root)
748{
749	struct rb_node *rbn;
750
751	lockdep_assert_held(&kernfs_mutex);
752
753	/* if first iteration, visit leftmost descendant which may be root */
754	if (!pos)
755		return kernfs_leftmost_descendant(root);
756
757	/* if we visited @root, we're done */
758	if (pos == root)
759		return NULL;
760
761	/* if there's an unvisited sibling, visit its leftmost descendant */
762	rbn = rb_next(&pos->rb);
763	if (rbn)
764		return kernfs_leftmost_descendant(rb_to_kn(rbn));
765
766	/* no sibling left, visit parent */
767	return pos->parent;
768}
769
770static void __kernfs_deactivate(struct kernfs_node *kn)
771{
772	struct kernfs_node *pos;
773
774	lockdep_assert_held(&kernfs_mutex);
775
776	/* prevent any new usage under @kn by deactivating all nodes */
777	pos = NULL;
778	while ((pos = kernfs_next_descendant_post(pos, kn))) {
779		if (!pos->deact_depth++) {
780			WARN_ON_ONCE(atomic_read(&pos->active) < 0);
781			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
782			pos->flags |= KERNFS_JUST_DEACTIVATED;
783		}
784	}
785
786	/*
787	 * Drain the subtree.  If kernfs_drain() blocked to drain, which is
788	 * indicated by %true return, it temporarily released kernfs_mutex
789	 * and the rbtree might have been modified inbetween breaking our
790	 * future walk.  Restart the walk after each %true return.
791	 */
792	pos = NULL;
793	while ((pos = kernfs_next_descendant_post(pos, kn))) {
794		bool drained;
795
796		kernfs_get(pos);
797		drained = kernfs_drain(pos);
798		kernfs_put(pos);
799		if (drained)
800			pos = NULL;
801	}
802}
803
804static void __kernfs_reactivate(struct kernfs_node *kn)
805{
806	struct kernfs_node *pos;
807
808	lockdep_assert_held(&kernfs_mutex);
809
810	pos = NULL;
811	while ((pos = kernfs_next_descendant_post(pos, kn))) {
812		if (!--pos->deact_depth) {
813			WARN_ON_ONCE(atomic_read(&pos->active) >= 0);
814			atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
815		}
816		WARN_ON_ONCE(pos->deact_depth < 0);
817	}
818
819	/* some nodes reactivated, kick get_active waiters */
820	wake_up_all(&kernfs_root(kn)->deactivate_waitq);
821}
822
823static void __kernfs_deactivate_self(struct kernfs_node *kn)
824{
825	/*
826	 * Take out ourself out of the active ref dependency chain and
827	 * deactivate.  If we're called without an active ref, lockdep will
828	 * complain.
829	 */
830	kernfs_put_active(kn);
831	__kernfs_deactivate(kn);
832}
833
834static void __kernfs_reactivate_self(struct kernfs_node *kn)
835{
836	__kernfs_reactivate(kn);
837	/*
838	 * Restore active ref dropped by deactivate_self() so that it's
839	 * balanced on return.  put_active() will soon be called on @kn, so
840	 * this can't break anything regardless of @kn's state.
841	 */
842	atomic_inc(&kn->active);
843	if (kernfs_lockdep(kn))
844		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
845}
846
847/**
848 * kernfs_deactivate - deactivate subtree of a node
849 * @kn: kernfs_node to deactivate subtree of
850 *
851 * Deactivate the subtree of @kn.  On return, there's no active operation
852 * going on under @kn and creation or renaming of a node under @kn is
853 * blocked until @kn is reactivated or removed.  This function can be
854 * called multiple times and nests properly.  Each invocation should be
855 * paired with kernfs_reactivate().
856 *
857 * For a kernfs user which uses simple locking, the subsystem lock would
858 * nest inside active reference.  This becomes problematic if the user
859 * tries to remove nodes while holding the subystem lock as it would create
860 * a reverse locking dependency from the subsystem lock to active ref.
861 * This function can be used to break such reverse dependency.  The user
862 * can call this function outside the subsystem lock and then proceed to
863 * invoke kernfs_remove() while holding the subsystem lock without
864 * introducing such reverse dependency.
865 */
866void kernfs_deactivate(struct kernfs_node *kn)
867{
868	mutex_lock(&kernfs_mutex);
869	__kernfs_deactivate(kn);
870	mutex_unlock(&kernfs_mutex);
871}
872
873/**
874 * kernfs_reactivate - reactivate subtree of a node
875 * @kn: kernfs_node to reactivate subtree of
876 *
877 * Undo kernfs_deactivate().
878 */
879void kernfs_reactivate(struct kernfs_node *kn)
880{
881	mutex_lock(&kernfs_mutex);
882	__kernfs_reactivate(kn);
883	mutex_unlock(&kernfs_mutex);
884}
885
886/**
887 * kernfs_deactivate_self - deactivate subtree of a node from its own method
888 * @kn: the self kernfs_node to deactivate subtree of
889 *
890 * The caller must be running off of a kernfs operation which is invoked
891 * with an active reference - e.g. one of kernfs_ops.  Once this function
892 * is called, @kn may be removed by someone else while the enclosing method
893 * is in progress.  Other than that, this function is equivalent to
894 * kernfs_deactivate() and should be paired with kernfs_reactivate_self().
895 */
896void kernfs_deactivate_self(struct kernfs_node *kn)
897{
898	mutex_lock(&kernfs_mutex);
899	__kernfs_deactivate_self(kn);
900	mutex_unlock(&kernfs_mutex);
901}
902
903/**
904 * kernfs_reactivate_self - reactivate subtree of a node from its own method
905 * @kn: the self kernfs_node to reactivate subtree of
906 *
907 * Undo kernfs_deactivate_self().
908 */
909void kernfs_reactivate_self(struct kernfs_node *kn)
910{
911	mutex_lock(&kernfs_mutex);
912	__kernfs_reactivate_self(kn);
913	mutex_unlock(&kernfs_mutex);
914}
915
916static void __kernfs_remove(struct kernfs_node *kn)
917{
918	struct kernfs_root *root = kernfs_root(kn);
919	struct kernfs_node *pos;
920
921	lockdep_assert_held(&kernfs_mutex);
922
923	if (!kn)
924		return;
925
926	pr_debug("kernfs %s: removing\n", kn->name);
927
928	__kernfs_deactivate(kn);
929
930	/* unlink the subtree node-by-node */
931	do {
932		pos = kernfs_leftmost_descendant(kn);
933
934		/*
935		 * We're gonna release kernfs_mutex to unmap bin files,
936		 * Make sure @pos doesn't go away inbetween.
937		 */
938		kernfs_get(pos);
939
940		/*
941		 * This must be come before unlinking; otherwise, when
942		 * there are multiple removers, some may finish before
943		 * unmapping is complete.
944		 */
945		if (pos->flags & KERNFS_HAS_MMAP) {
946			mutex_unlock(&kernfs_mutex);
947			kernfs_unmap_file(pos);
948			mutex_lock(&kernfs_mutex);
949		}
950
951		/*
952		 * kernfs_unlink_sibling() succeeds once per node.  Use it
953		 * to decide who's responsible for cleanups.
954		 */
955		if (!pos->parent || kernfs_unlink_sibling(pos)) {
956			struct kernfs_iattrs *ps_iattr =
957				pos->parent ? pos->parent->iattr : NULL;
958
959			/* update timestamps on the parent */
960			if (ps_iattr) {
961				ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
962				ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
963			}
964
965			kernfs_put(pos);
966		}
967
968		kernfs_put(pos);
969	} while (pos != kn);
970
971	/* some nodes killed, kick get_active waiters */
972	wake_up_all(&root->deactivate_waitq);
973}
974
975/**
976 * kernfs_remove - remove a kernfs_node recursively
977 * @kn: the kernfs_node to remove
978 *
979 * Remove @kn along with all its subdirectories and files.
980 */
981void kernfs_remove(struct kernfs_node *kn)
982{
983	mutex_lock(&kernfs_mutex);
984	__kernfs_remove(kn);
985	mutex_unlock(&kernfs_mutex);
986}
987
988/**
989 * kernfs_remove_self - remove a kernfs_node from its own method
990 * @kn: the self kernfs_node to remove
991 *
992 * The caller must be running off of a kernfs operation which is invoked
993 * with an active reference - e.g. one of kernfs_ops.  This can be used to
994 * implement a file operation which deletes itself.
995 *
996 * For example, the "delete" file for a sysfs device directory can be
997 * implemented by invoking kernfs_remove_self() on the "delete" file
998 * itself.  This function breaks the circular dependency of trying to
999 * deactivate self while holding an active ref itself.  It isn't necessary
1000 * to modify the usual removal path to use kernfs_remove_self().  The
1001 * "delete" implementation can simply invoke kernfs_remove_self() on self
1002 * before proceeding with the usual removal path.  kernfs will ignore later
1003 * kernfs_remove() on self.
1004 *
1005 * kernfs_remove_self() can be called multiple times concurrently on the
1006 * same kernfs_node.  Only the first one actually performs removal and
1007 * returns %true.  All others will wait until the kernfs operation which
1008 * won self-removal finishes and return %false.  Note that the losers wait
1009 * for the completion of not only the winning kernfs_remove_self() but also
1010 * the whole kernfs_ops which won the arbitration.  This can be used to
1011 * guarantee, for example, all concurrent writes to a "delete" file to
1012 * finish only after the whole operation is complete.
1013 */
1014bool kernfs_remove_self(struct kernfs_node *kn)
1015{
1016	bool ret;
1017
1018	mutex_lock(&kernfs_mutex);
1019	__kernfs_deactivate_self(kn);
1020
1021	/*
1022	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1023	 * the first one will actually perform removal.  When the removal
1024	 * is complete, SUICIDED is set and the active ref is restored
1025	 * while holding kernfs_mutex.  The ones which lost arbitration
1026	 * waits for SUICDED && drained which can happen only after the
1027	 * enclosing kernfs operation which executed the winning instance
1028	 * of kernfs_remove_self() finished.
1029	 */
1030	if (!(kn->flags & KERNFS_SUICIDAL)) {
1031		kn->flags |= KERNFS_SUICIDAL;
1032		__kernfs_remove(kn);
1033		kn->flags |= KERNFS_SUICIDED;
1034		ret = true;
1035	} else {
1036		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1037		DEFINE_WAIT(wait);
1038
1039		while (true) {
1040			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1041
1042			if ((kn->flags & KERNFS_SUICIDED) &&
1043			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1044				break;
1045
1046			mutex_unlock(&kernfs_mutex);
1047			schedule();
1048			mutex_lock(&kernfs_mutex);
1049		}
1050		finish_wait(waitq, &wait);
1051		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1052		ret = false;
1053	}
1054
1055	__kernfs_reactivate_self(kn);
1056	mutex_unlock(&kernfs_mutex);
1057	return ret;
1058}
1059
1060/**
1061 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1062 * @parent: parent of the target
1063 * @name: name of the kernfs_node to remove
1064 * @ns: namespace tag of the kernfs_node to remove
1065 *
1066 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1067 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1068 */
1069int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1070			     const void *ns)
1071{
1072	struct kernfs_node *kn;
1073
1074	if (!parent) {
1075		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1076			name);
1077		return -ENOENT;
1078	}
1079
1080	mutex_lock(&kernfs_mutex);
1081
1082	kn = kernfs_find_ns(parent, name, ns);
1083	if (kn)
1084		__kernfs_remove(kn);
1085
1086	mutex_unlock(&kernfs_mutex);
1087
1088	if (kn)
1089		return 0;
1090	else
1091		return -ENOENT;
1092}
1093
1094/**
1095 * kernfs_rename_ns - move and rename a kernfs_node
1096 * @kn: target node
1097 * @new_parent: new parent to put @sd under
1098 * @new_name: new name
1099 * @new_ns: new namespace tag
1100 */
1101int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1102		     const char *new_name, const void *new_ns)
1103{
1104	int error;
1105
1106	error = -ENOENT;
1107	if (!kernfs_get_active(new_parent))
1108		goto out;
1109	if (!kernfs_get_active(kn))
1110		goto out_put_new_parent;
1111
1112	mutex_lock(&kernfs_mutex);
1113
1114	error = 0;
1115	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1116	    (strcmp(kn->name, new_name) == 0))
1117		goto out_unlock;	/* nothing to rename */
1118
1119	error = -EEXIST;
1120	if (kernfs_find_ns(new_parent, new_name, new_ns))
1121		goto out_unlock;
1122
1123	/* rename kernfs_node */
1124	if (strcmp(kn->name, new_name) != 0) {
1125		error = -ENOMEM;
1126		new_name = kstrdup(new_name, GFP_KERNEL);
1127		if (!new_name)
1128			goto out_unlock;
1129
1130		if (kn->flags & KERNFS_STATIC_NAME)
1131			kn->flags &= ~KERNFS_STATIC_NAME;
1132		else
1133			kfree(kn->name);
1134
1135		kn->name = new_name;
1136	}
1137
1138	/*
1139	 * Move to the appropriate place in the appropriate directories rbtree.
1140	 */
1141	kernfs_unlink_sibling(kn);
1142	kernfs_get(new_parent);
1143	kernfs_put(kn->parent);
1144	kn->ns = new_ns;
1145	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1146	kn->parent = new_parent;
1147	kernfs_link_sibling(kn);
1148
1149	error = 0;
1150out_unlock:
1151	mutex_unlock(&kernfs_mutex);
1152	kernfs_put_active(kn);
1153out_put_new_parent:
1154	kernfs_put_active(new_parent);
1155out:
1156	return error;
1157}
1158
1159/* Relationship between s_mode and the DT_xxx types */
1160static inline unsigned char dt_type(struct kernfs_node *kn)
1161{
1162	return (kn->mode >> 12) & 15;
1163}
1164
1165static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1166{
1167	kernfs_put(filp->private_data);
1168	return 0;
1169}
1170
1171static struct kernfs_node *kernfs_dir_pos(const void *ns,
1172	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1173{
1174	if (pos) {
1175		int valid = pos->parent == parent && hash == pos->hash;
1176		kernfs_put(pos);
1177		if (!valid)
1178			pos = NULL;
1179	}
1180	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1181		struct rb_node *node = parent->dir.children.rb_node;
1182		while (node) {
1183			pos = rb_to_kn(node);
1184
1185			if (hash < pos->hash)
1186				node = node->rb_left;
1187			else if (hash > pos->hash)
1188				node = node->rb_right;
1189			else
1190				break;
1191		}
1192	}
1193	/* Skip over entries in the wrong namespace */
1194	while (pos && pos->ns != ns) {
1195		struct rb_node *node = rb_next(&pos->rb);
1196		if (!node)
1197			pos = NULL;
1198		else
1199			pos = rb_to_kn(node);
1200	}
1201	return pos;
1202}
1203
1204static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1205	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1206{
1207	pos = kernfs_dir_pos(ns, parent, ino, pos);
1208	if (pos)
1209		do {
1210			struct rb_node *node = rb_next(&pos->rb);
1211			if (!node)
1212				pos = NULL;
1213			else
1214				pos = rb_to_kn(node);
1215		} while (pos && pos->ns != ns);
1216	return pos;
1217}
1218
1219static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1220{
1221	struct dentry *dentry = file->f_path.dentry;
1222	struct kernfs_node *parent = dentry->d_fsdata;
1223	struct kernfs_node *pos = file->private_data;
1224	const void *ns = NULL;
1225
1226	if (!dir_emit_dots(file, ctx))
1227		return 0;
1228	mutex_lock(&kernfs_mutex);
1229
1230	if (kernfs_ns_enabled(parent))
1231		ns = kernfs_info(dentry->d_sb)->ns;
1232
1233	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1234	     pos;
1235	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1236		const char *name = pos->name;
1237		unsigned int type = dt_type(pos);
1238		int len = strlen(name);
1239		ino_t ino = pos->ino;
1240
1241		ctx->pos = pos->hash;
1242		file->private_data = pos;
1243		kernfs_get(pos);
1244
1245		mutex_unlock(&kernfs_mutex);
1246		if (!dir_emit(ctx, name, len, ino, type))
1247			return 0;
1248		mutex_lock(&kernfs_mutex);
1249	}
1250	mutex_unlock(&kernfs_mutex);
1251	file->private_data = NULL;
1252	ctx->pos = INT_MAX;
1253	return 0;
1254}
1255
1256static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1257				    int whence)
1258{
1259	struct inode *inode = file_inode(file);
1260	loff_t ret;
1261
1262	mutex_lock(&inode->i_mutex);
1263	ret = generic_file_llseek(file, offset, whence);
1264	mutex_unlock(&inode->i_mutex);
1265
1266	return ret;
1267}
1268
1269const struct file_operations kernfs_dir_fops = {
1270	.read		= generic_read_dir,
1271	.iterate	= kernfs_fop_readdir,
1272	.release	= kernfs_dir_fop_release,
1273	.llseek		= kernfs_dir_fop_llseek,
1274};
1275