1/*
2 *  linux/fs/namei.c
3 *
4 *  Copyright (C) 1991, 1992  Linus Torvalds
5 */
6
7/*
8 * Some corrections by tytso.
9 */
10
11/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17#include <linux/init.h>
18#include <linux/export.h>
19#include <linux/kernel.h>
20#include <linux/slab.h>
21#include <linux/fs.h>
22#include <linux/namei.h>
23#include <linux/pagemap.h>
24#include <linux/fsnotify.h>
25#include <linux/personality.h>
26#include <linux/security.h>
27#include <linux/ima.h>
28#include <linux/syscalls.h>
29#include <linux/mount.h>
30#include <linux/audit.h>
31#include <linux/capability.h>
32#include <linux/file.h>
33#include <linux/fcntl.h>
34#include <linux/device_cgroup.h>
35#include <linux/fs_struct.h>
36#include <linux/posix_acl.h>
37#include <linux/hash.h>
38#include <asm/uaccess.h>
39
40#include "internal.h"
41#include "mount.h"
42
43/* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr.  The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains).  It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive.  As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm.  Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link().  Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent.  The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics.  See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 *	inside the path - always follow.
96 *	in the last component in creation/removal/renaming - never follow.
97 *	if LOOKUP_FOLLOW passed - follow.
98 *	if the pathname has trailing slashes - follow.
99 *	otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108/*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114/* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121void final_putname(struct filename *name)
122{
123	if (name->separate) {
124		__putname(name->name);
125		kfree(name);
126	} else {
127		__putname(name);
128	}
129}
130
131#define EMBEDDED_NAME_MAX	(PATH_MAX - sizeof(struct filename))
132
133static struct filename *
134getname_flags(const char __user *filename, int flags, int *empty)
135{
136	struct filename *result, *err;
137	int len;
138	long max;
139	char *kname;
140
141	result = audit_reusename(filename);
142	if (result)
143		return result;
144
145	result = __getname();
146	if (unlikely(!result))
147		return ERR_PTR(-ENOMEM);
148
149	/*
150	 * First, try to embed the struct filename inside the names_cache
151	 * allocation
152	 */
153	kname = (char *)result + sizeof(*result);
154	result->name = kname;
155	result->separate = false;
156	max = EMBEDDED_NAME_MAX;
157
158recopy:
159	len = strncpy_from_user(kname, filename, max);
160	if (unlikely(len < 0)) {
161		err = ERR_PTR(len);
162		goto error;
163	}
164
165	/*
166	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
167	 * separate struct filename so we can dedicate the entire
168	 * names_cache allocation for the pathname, and re-do the copy from
169	 * userland.
170	 */
171	if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
172		kname = (char *)result;
173
174		result = kzalloc(sizeof(*result), GFP_KERNEL);
175		if (!result) {
176			err = ERR_PTR(-ENOMEM);
177			result = (struct filename *)kname;
178			goto error;
179		}
180		result->name = kname;
181		result->separate = true;
182		max = PATH_MAX;
183		goto recopy;
184	}
185
186	/* The empty path is special. */
187	if (unlikely(!len)) {
188		if (empty)
189			*empty = 1;
190		err = ERR_PTR(-ENOENT);
191		if (!(flags & LOOKUP_EMPTY))
192			goto error;
193	}
194
195	err = ERR_PTR(-ENAMETOOLONG);
196	if (unlikely(len >= PATH_MAX))
197		goto error;
198
199	result->uptr = filename;
200	result->aname = NULL;
201	audit_getname(result);
202	return result;
203
204error:
205	final_putname(result);
206	return err;
207}
208
209struct filename *
210getname(const char __user * filename)
211{
212	return getname_flags(filename, 0, NULL);
213}
214
215/*
216 * The "getname_kernel()" interface doesn't do pathnames longer
217 * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user.
218 */
219struct filename *
220getname_kernel(const char * filename)
221{
222	struct filename *result;
223	char *kname;
224	int len;
225
226	len = strlen(filename);
227	if (len >= EMBEDDED_NAME_MAX)
228		return ERR_PTR(-ENAMETOOLONG);
229
230	result = __getname();
231	if (unlikely(!result))
232		return ERR_PTR(-ENOMEM);
233
234	kname = (char *)result + sizeof(*result);
235	result->name = kname;
236	result->uptr = NULL;
237	result->aname = NULL;
238	result->separate = false;
239
240	strlcpy(kname, filename, EMBEDDED_NAME_MAX);
241	return result;
242}
243
244#ifdef CONFIG_AUDITSYSCALL
245void putname(struct filename *name)
246{
247	if (unlikely(!audit_dummy_context()))
248		return audit_putname(name);
249	final_putname(name);
250}
251#endif
252
253static int check_acl(struct inode *inode, int mask)
254{
255#ifdef CONFIG_FS_POSIX_ACL
256	struct posix_acl *acl;
257
258	if (mask & MAY_NOT_BLOCK) {
259		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
260	        if (!acl)
261	                return -EAGAIN;
262		/* no ->get_acl() calls in RCU mode... */
263		if (acl == ACL_NOT_CACHED)
264			return -ECHILD;
265	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
266	}
267
268	acl = get_acl(inode, ACL_TYPE_ACCESS);
269	if (IS_ERR(acl))
270		return PTR_ERR(acl);
271	if (acl) {
272	        int error = posix_acl_permission(inode, acl, mask);
273	        posix_acl_release(acl);
274	        return error;
275	}
276#endif
277
278	return -EAGAIN;
279}
280
281/*
282 * This does the basic permission checking
283 */
284static int acl_permission_check(struct inode *inode, int mask)
285{
286	unsigned int mode = inode->i_mode;
287
288	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
289		mode >>= 6;
290	else {
291		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
292			int error = check_acl(inode, mask);
293			if (error != -EAGAIN)
294				return error;
295		}
296
297		if (in_group_p(inode->i_gid))
298			mode >>= 3;
299	}
300
301	/*
302	 * If the DACs are ok we don't need any capability check.
303	 */
304	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
305		return 0;
306	return -EACCES;
307}
308
309/**
310 * generic_permission -  check for access rights on a Posix-like filesystem
311 * @inode:	inode to check access rights for
312 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
313 *
314 * Used to check for read/write/execute permissions on a file.
315 * We use "fsuid" for this, letting us set arbitrary permissions
316 * for filesystem access without changing the "normal" uids which
317 * are used for other things.
318 *
319 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
320 * request cannot be satisfied (eg. requires blocking or too much complexity).
321 * It would then be called again in ref-walk mode.
322 */
323int generic_permission(struct inode *inode, int mask)
324{
325	int ret;
326
327	/*
328	 * Do the basic permission checks.
329	 */
330	ret = acl_permission_check(inode, mask);
331	if (ret != -EACCES)
332		return ret;
333
334	if (S_ISDIR(inode->i_mode)) {
335		/* DACs are overridable for directories */
336		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
337			return 0;
338		if (!(mask & MAY_WRITE))
339			if (capable_wrt_inode_uidgid(inode,
340						     CAP_DAC_READ_SEARCH))
341				return 0;
342		return -EACCES;
343	}
344	/*
345	 * Read/write DACs are always overridable.
346	 * Executable DACs are overridable when there is
347	 * at least one exec bit set.
348	 */
349	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
350		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
351			return 0;
352
353	/*
354	 * Searching includes executable on directories, else just read.
355	 */
356	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
357	if (mask == MAY_READ)
358		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
359			return 0;
360
361	return -EACCES;
362}
363EXPORT_SYMBOL(generic_permission);
364
365/*
366 * We _really_ want to just do "generic_permission()" without
367 * even looking at the inode->i_op values. So we keep a cache
368 * flag in inode->i_opflags, that says "this has not special
369 * permission function, use the fast case".
370 */
371static inline int do_inode_permission(struct inode *inode, int mask)
372{
373	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
374		if (likely(inode->i_op->permission))
375			return inode->i_op->permission(inode, mask);
376
377		/* This gets set once for the inode lifetime */
378		spin_lock(&inode->i_lock);
379		inode->i_opflags |= IOP_FASTPERM;
380		spin_unlock(&inode->i_lock);
381	}
382	return generic_permission(inode, mask);
383}
384
385/**
386 * __inode_permission - Check for access rights to a given inode
387 * @inode: Inode to check permission on
388 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
389 *
390 * Check for read/write/execute permissions on an inode.
391 *
392 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
393 *
394 * This does not check for a read-only file system.  You probably want
395 * inode_permission().
396 */
397int __inode_permission(struct inode *inode, int mask)
398{
399	int retval;
400
401	if (unlikely(mask & MAY_WRITE)) {
402		/*
403		 * Nobody gets write access to an immutable file.
404		 */
405		if (IS_IMMUTABLE(inode))
406			return -EACCES;
407	}
408
409	retval = do_inode_permission(inode, mask);
410	if (retval)
411		return retval;
412
413	retval = devcgroup_inode_permission(inode, mask);
414	if (retval)
415		return retval;
416
417	return security_inode_permission(inode, mask);
418}
419EXPORT_SYMBOL(__inode_permission);
420
421/**
422 * sb_permission - Check superblock-level permissions
423 * @sb: Superblock of inode to check permission on
424 * @inode: Inode to check permission on
425 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
426 *
427 * Separate out file-system wide checks from inode-specific permission checks.
428 */
429static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
430{
431	if (unlikely(mask & MAY_WRITE)) {
432		umode_t mode = inode->i_mode;
433
434		/* Nobody gets write access to a read-only fs. */
435		if ((sb->s_flags & MS_RDONLY) &&
436		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
437			return -EROFS;
438	}
439	return 0;
440}
441
442/**
443 * inode_permission - Check for access rights to a given inode
444 * @inode: Inode to check permission on
445 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
446 *
447 * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
448 * this, letting us set arbitrary permissions for filesystem access without
449 * changing the "normal" UIDs which are used for other things.
450 *
451 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
452 */
453int inode_permission(struct inode *inode, int mask)
454{
455	int retval;
456
457	retval = sb_permission(inode->i_sb, inode, mask);
458	if (retval)
459		return retval;
460	return __inode_permission(inode, mask);
461}
462EXPORT_SYMBOL(inode_permission);
463
464/**
465 * path_get - get a reference to a path
466 * @path: path to get the reference to
467 *
468 * Given a path increment the reference count to the dentry and the vfsmount.
469 */
470void path_get(const struct path *path)
471{
472	mntget(path->mnt);
473	dget(path->dentry);
474}
475EXPORT_SYMBOL(path_get);
476
477/**
478 * path_put - put a reference to a path
479 * @path: path to put the reference to
480 *
481 * Given a path decrement the reference count to the dentry and the vfsmount.
482 */
483void path_put(const struct path *path)
484{
485	dput(path->dentry);
486	mntput(path->mnt);
487}
488EXPORT_SYMBOL(path_put);
489
490/*
491 * Path walking has 2 modes, rcu-walk and ref-walk (see
492 * Documentation/filesystems/path-lookup.txt).  In situations when we can't
493 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
494 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
495 * mode.  Refcounts are grabbed at the last known good point before rcu-walk
496 * got stuck, so ref-walk may continue from there. If this is not successful
497 * (eg. a seqcount has changed), then failure is returned and it's up to caller
498 * to restart the path walk from the beginning in ref-walk mode.
499 */
500
501/**
502 * unlazy_walk - try to switch to ref-walk mode.
503 * @nd: nameidata pathwalk data
504 * @dentry: child of nd->path.dentry or NULL
505 * Returns: 0 on success, -ECHILD on failure
506 *
507 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
508 * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
509 * @nd or NULL.  Must be called from rcu-walk context.
510 */
511static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
512{
513	struct fs_struct *fs = current->fs;
514	struct dentry *parent = nd->path.dentry;
515
516	BUG_ON(!(nd->flags & LOOKUP_RCU));
517
518	/*
519	 * After legitimizing the bastards, terminate_walk()
520	 * will do the right thing for non-RCU mode, and all our
521	 * subsequent exit cases should rcu_read_unlock()
522	 * before returning.  Do vfsmount first; if dentry
523	 * can't be legitimized, just set nd->path.dentry to NULL
524	 * and rely on dput(NULL) being a no-op.
525	 */
526	if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
527		return -ECHILD;
528	nd->flags &= ~LOOKUP_RCU;
529
530	if (!lockref_get_not_dead(&parent->d_lockref)) {
531		nd->path.dentry = NULL;
532		goto out;
533	}
534
535	/*
536	 * For a negative lookup, the lookup sequence point is the parents
537	 * sequence point, and it only needs to revalidate the parent dentry.
538	 *
539	 * For a positive lookup, we need to move both the parent and the
540	 * dentry from the RCU domain to be properly refcounted. And the
541	 * sequence number in the dentry validates *both* dentry counters,
542	 * since we checked the sequence number of the parent after we got
543	 * the child sequence number. So we know the parent must still
544	 * be valid if the child sequence number is still valid.
545	 */
546	if (!dentry) {
547		if (read_seqcount_retry(&parent->d_seq, nd->seq))
548			goto out;
549		BUG_ON(nd->inode != parent->d_inode);
550	} else {
551		if (!lockref_get_not_dead(&dentry->d_lockref))
552			goto out;
553		if (read_seqcount_retry(&dentry->d_seq, nd->seq))
554			goto drop_dentry;
555	}
556
557	/*
558	 * Sequence counts matched. Now make sure that the root is
559	 * still valid and get it if required.
560	 */
561	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
562		spin_lock(&fs->lock);
563		if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
564			goto unlock_and_drop_dentry;
565		path_get(&nd->root);
566		spin_unlock(&fs->lock);
567	}
568
569	rcu_read_unlock();
570	return 0;
571
572unlock_and_drop_dentry:
573	spin_unlock(&fs->lock);
574drop_dentry:
575	rcu_read_unlock();
576	dput(dentry);
577	goto drop_root_mnt;
578out:
579	rcu_read_unlock();
580drop_root_mnt:
581	if (!(nd->flags & LOOKUP_ROOT))
582		nd->root.mnt = NULL;
583	return -ECHILD;
584}
585
586static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
587{
588	return dentry->d_op->d_revalidate(dentry, flags);
589}
590
591/**
592 * complete_walk - successful completion of path walk
593 * @nd:  pointer nameidata
594 *
595 * If we had been in RCU mode, drop out of it and legitimize nd->path.
596 * Revalidate the final result, unless we'd already done that during
597 * the path walk or the filesystem doesn't ask for it.  Return 0 on
598 * success, -error on failure.  In case of failure caller does not
599 * need to drop nd->path.
600 */
601static int complete_walk(struct nameidata *nd)
602{
603	struct dentry *dentry = nd->path.dentry;
604	int status;
605
606	if (nd->flags & LOOKUP_RCU) {
607		nd->flags &= ~LOOKUP_RCU;
608		if (!(nd->flags & LOOKUP_ROOT))
609			nd->root.mnt = NULL;
610
611		if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
612			rcu_read_unlock();
613			return -ECHILD;
614		}
615		if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
616			rcu_read_unlock();
617			mntput(nd->path.mnt);
618			return -ECHILD;
619		}
620		if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
621			rcu_read_unlock();
622			dput(dentry);
623			mntput(nd->path.mnt);
624			return -ECHILD;
625		}
626		rcu_read_unlock();
627	}
628
629	if (likely(!(nd->flags & LOOKUP_JUMPED)))
630		return 0;
631
632	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
633		return 0;
634
635	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
636	if (status > 0)
637		return 0;
638
639	if (!status)
640		status = -ESTALE;
641
642	path_put(&nd->path);
643	return status;
644}
645
646static __always_inline void set_root(struct nameidata *nd)
647{
648	get_fs_root(current->fs, &nd->root);
649}
650
651static int link_path_walk(const char *, struct nameidata *);
652
653static __always_inline unsigned set_root_rcu(struct nameidata *nd)
654{
655	struct fs_struct *fs = current->fs;
656	unsigned seq, res;
657
658	do {
659		seq = read_seqcount_begin(&fs->seq);
660		nd->root = fs->root;
661		res = __read_seqcount_begin(&nd->root.dentry->d_seq);
662	} while (read_seqcount_retry(&fs->seq, seq));
663	return res;
664}
665
666static void path_put_conditional(struct path *path, struct nameidata *nd)
667{
668	dput(path->dentry);
669	if (path->mnt != nd->path.mnt)
670		mntput(path->mnt);
671}
672
673static inline void path_to_nameidata(const struct path *path,
674					struct nameidata *nd)
675{
676	if (!(nd->flags & LOOKUP_RCU)) {
677		dput(nd->path.dentry);
678		if (nd->path.mnt != path->mnt)
679			mntput(nd->path.mnt);
680	}
681	nd->path.mnt = path->mnt;
682	nd->path.dentry = path->dentry;
683}
684
685/*
686 * Helper to directly jump to a known parsed path from ->follow_link,
687 * caller must have taken a reference to path beforehand.
688 */
689void nd_jump_link(struct nameidata *nd, struct path *path)
690{
691	path_put(&nd->path);
692
693	nd->path = *path;
694	nd->inode = nd->path.dentry->d_inode;
695	nd->flags |= LOOKUP_JUMPED;
696}
697
698static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
699{
700	struct inode *inode = link->dentry->d_inode;
701	if (inode->i_op->put_link)
702		inode->i_op->put_link(link->dentry, nd, cookie);
703	path_put(link);
704}
705
706int sysctl_protected_symlinks __read_mostly = 0;
707int sysctl_protected_hardlinks __read_mostly = 0;
708
709/**
710 * may_follow_link - Check symlink following for unsafe situations
711 * @link: The path of the symlink
712 * @nd: nameidata pathwalk data
713 *
714 * In the case of the sysctl_protected_symlinks sysctl being enabled,
715 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
716 * in a sticky world-writable directory. This is to protect privileged
717 * processes from failing races against path names that may change out
718 * from under them by way of other users creating malicious symlinks.
719 * It will permit symlinks to be followed only when outside a sticky
720 * world-writable directory, or when the uid of the symlink and follower
721 * match, or when the directory owner matches the symlink's owner.
722 *
723 * Returns 0 if following the symlink is allowed, -ve on error.
724 */
725static inline int may_follow_link(struct path *link, struct nameidata *nd)
726{
727	const struct inode *inode;
728	const struct inode *parent;
729
730	if (!sysctl_protected_symlinks)
731		return 0;
732
733	/* Allowed if owner and follower match. */
734	inode = link->dentry->d_inode;
735	if (uid_eq(current_cred()->fsuid, inode->i_uid))
736		return 0;
737
738	/* Allowed if parent directory not sticky and world-writable. */
739	parent = nd->path.dentry->d_inode;
740	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
741		return 0;
742
743	/* Allowed if parent directory and link owner match. */
744	if (uid_eq(parent->i_uid, inode->i_uid))
745		return 0;
746
747	audit_log_link_denied("follow_link", link);
748	path_put_conditional(link, nd);
749	path_put(&nd->path);
750	return -EACCES;
751}
752
753/**
754 * safe_hardlink_source - Check for safe hardlink conditions
755 * @inode: the source inode to hardlink from
756 *
757 * Return false if at least one of the following conditions:
758 *    - inode is not a regular file
759 *    - inode is setuid
760 *    - inode is setgid and group-exec
761 *    - access failure for read and write
762 *
763 * Otherwise returns true.
764 */
765static bool safe_hardlink_source(struct inode *inode)
766{
767	umode_t mode = inode->i_mode;
768
769	/* Special files should not get pinned to the filesystem. */
770	if (!S_ISREG(mode))
771		return false;
772
773	/* Setuid files should not get pinned to the filesystem. */
774	if (mode & S_ISUID)
775		return false;
776
777	/* Executable setgid files should not get pinned to the filesystem. */
778	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
779		return false;
780
781	/* Hardlinking to unreadable or unwritable sources is dangerous. */
782	if (inode_permission(inode, MAY_READ | MAY_WRITE))
783		return false;
784
785	return true;
786}
787
788/**
789 * may_linkat - Check permissions for creating a hardlink
790 * @link: the source to hardlink from
791 *
792 * Block hardlink when all of:
793 *  - sysctl_protected_hardlinks enabled
794 *  - fsuid does not match inode
795 *  - hardlink source is unsafe (see safe_hardlink_source() above)
796 *  - not CAP_FOWNER
797 *
798 * Returns 0 if successful, -ve on error.
799 */
800static int may_linkat(struct path *link)
801{
802	const struct cred *cred;
803	struct inode *inode;
804
805	if (!sysctl_protected_hardlinks)
806		return 0;
807
808	cred = current_cred();
809	inode = link->dentry->d_inode;
810
811	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
812	 * otherwise, it must be a safe source.
813	 */
814	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
815	    capable(CAP_FOWNER))
816		return 0;
817
818	audit_log_link_denied("linkat", link);
819	return -EPERM;
820}
821
822static __always_inline int
823follow_link(struct path *link, struct nameidata *nd, void **p)
824{
825	struct dentry *dentry = link->dentry;
826	int error;
827	char *s;
828
829	BUG_ON(nd->flags & LOOKUP_RCU);
830
831	if (link->mnt == nd->path.mnt)
832		mntget(link->mnt);
833
834	error = -ELOOP;
835	if (unlikely(current->total_link_count >= 40))
836		goto out_put_nd_path;
837
838	cond_resched();
839	current->total_link_count++;
840
841	touch_atime(link);
842	nd_set_link(nd, NULL);
843
844	error = security_inode_follow_link(link->dentry, nd);
845	if (error)
846		goto out_put_nd_path;
847
848	nd->last_type = LAST_BIND;
849	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
850	error = PTR_ERR(*p);
851	if (IS_ERR(*p))
852		goto out_put_nd_path;
853
854	error = 0;
855	s = nd_get_link(nd);
856	if (s) {
857		if (unlikely(IS_ERR(s))) {
858			path_put(&nd->path);
859			put_link(nd, link, *p);
860			return PTR_ERR(s);
861		}
862		if (*s == '/') {
863			if (!nd->root.mnt)
864				set_root(nd);
865			path_put(&nd->path);
866			nd->path = nd->root;
867			path_get(&nd->root);
868			nd->flags |= LOOKUP_JUMPED;
869		}
870		nd->inode = nd->path.dentry->d_inode;
871		error = link_path_walk(s, nd);
872		if (unlikely(error))
873			put_link(nd, link, *p);
874	}
875
876	return error;
877
878out_put_nd_path:
879	*p = NULL;
880	path_put(&nd->path);
881	path_put(link);
882	return error;
883}
884
885static int follow_up_rcu(struct path *path)
886{
887	struct mount *mnt = real_mount(path->mnt);
888	struct mount *parent;
889	struct dentry *mountpoint;
890
891	parent = mnt->mnt_parent;
892	if (&parent->mnt == path->mnt)
893		return 0;
894	mountpoint = mnt->mnt_mountpoint;
895	path->dentry = mountpoint;
896	path->mnt = &parent->mnt;
897	return 1;
898}
899
900/*
901 * follow_up - Find the mountpoint of path's vfsmount
902 *
903 * Given a path, find the mountpoint of its source file system.
904 * Replace @path with the path of the mountpoint in the parent mount.
905 * Up is towards /.
906 *
907 * Return 1 if we went up a level and 0 if we were already at the
908 * root.
909 */
910int follow_up(struct path *path)
911{
912	struct mount *mnt = real_mount(path->mnt);
913	struct mount *parent;
914	struct dentry *mountpoint;
915
916	read_seqlock_excl(&mount_lock);
917	parent = mnt->mnt_parent;
918	if (parent == mnt) {
919		read_sequnlock_excl(&mount_lock);
920		return 0;
921	}
922	mntget(&parent->mnt);
923	mountpoint = dget(mnt->mnt_mountpoint);
924	read_sequnlock_excl(&mount_lock);
925	dput(path->dentry);
926	path->dentry = mountpoint;
927	mntput(path->mnt);
928	path->mnt = &parent->mnt;
929	return 1;
930}
931EXPORT_SYMBOL(follow_up);
932
933/*
934 * Perform an automount
935 * - return -EISDIR to tell follow_managed() to stop and return the path we
936 *   were called with.
937 */
938static int follow_automount(struct path *path, unsigned flags,
939			    bool *need_mntput)
940{
941	struct vfsmount *mnt;
942	int err;
943
944	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
945		return -EREMOTE;
946
947	/* We don't want to mount if someone's just doing a stat -
948	 * unless they're stat'ing a directory and appended a '/' to
949	 * the name.
950	 *
951	 * We do, however, want to mount if someone wants to open or
952	 * create a file of any type under the mountpoint, wants to
953	 * traverse through the mountpoint or wants to open the
954	 * mounted directory.  Also, autofs may mark negative dentries
955	 * as being automount points.  These will need the attentions
956	 * of the daemon to instantiate them before they can be used.
957	 */
958	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
959		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
960	    path->dentry->d_inode)
961		return -EISDIR;
962
963	current->total_link_count++;
964	if (current->total_link_count >= 40)
965		return -ELOOP;
966
967	mnt = path->dentry->d_op->d_automount(path);
968	if (IS_ERR(mnt)) {
969		/*
970		 * The filesystem is allowed to return -EISDIR here to indicate
971		 * it doesn't want to automount.  For instance, autofs would do
972		 * this so that its userspace daemon can mount on this dentry.
973		 *
974		 * However, we can only permit this if it's a terminal point in
975		 * the path being looked up; if it wasn't then the remainder of
976		 * the path is inaccessible and we should say so.
977		 */
978		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
979			return -EREMOTE;
980		return PTR_ERR(mnt);
981	}
982
983	if (!mnt) /* mount collision */
984		return 0;
985
986	if (!*need_mntput) {
987		/* lock_mount() may release path->mnt on error */
988		mntget(path->mnt);
989		*need_mntput = true;
990	}
991	err = finish_automount(mnt, path);
992
993	switch (err) {
994	case -EBUSY:
995		/* Someone else made a mount here whilst we were busy */
996		return 0;
997	case 0:
998		path_put(path);
999		path->mnt = mnt;
1000		path->dentry = dget(mnt->mnt_root);
1001		return 0;
1002	default:
1003		return err;
1004	}
1005
1006}
1007
1008/*
1009 * Handle a dentry that is managed in some way.
1010 * - Flagged for transit management (autofs)
1011 * - Flagged as mountpoint
1012 * - Flagged as automount point
1013 *
1014 * This may only be called in refwalk mode.
1015 *
1016 * Serialization is taken care of in namespace.c
1017 */
1018static int follow_managed(struct path *path, unsigned flags)
1019{
1020	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1021	unsigned managed;
1022	bool need_mntput = false;
1023	int ret = 0;
1024
1025	/* Given that we're not holding a lock here, we retain the value in a
1026	 * local variable for each dentry as we look at it so that we don't see
1027	 * the components of that value change under us */
1028	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1029	       managed &= DCACHE_MANAGED_DENTRY,
1030	       unlikely(managed != 0)) {
1031		/* Allow the filesystem to manage the transit without i_mutex
1032		 * being held. */
1033		if (managed & DCACHE_MANAGE_TRANSIT) {
1034			BUG_ON(!path->dentry->d_op);
1035			BUG_ON(!path->dentry->d_op->d_manage);
1036			ret = path->dentry->d_op->d_manage(path->dentry, false);
1037			if (ret < 0)
1038				break;
1039		}
1040
1041		/* Transit to a mounted filesystem. */
1042		if (managed & DCACHE_MOUNTED) {
1043			struct vfsmount *mounted = lookup_mnt(path);
1044			if (mounted) {
1045				dput(path->dentry);
1046				if (need_mntput)
1047					mntput(path->mnt);
1048				path->mnt = mounted;
1049				path->dentry = dget(mounted->mnt_root);
1050				need_mntput = true;
1051				continue;
1052			}
1053
1054			/* Something is mounted on this dentry in another
1055			 * namespace and/or whatever was mounted there in this
1056			 * namespace got unmounted before lookup_mnt() could
1057			 * get it */
1058		}
1059
1060		/* Handle an automount point */
1061		if (managed & DCACHE_NEED_AUTOMOUNT) {
1062			ret = follow_automount(path, flags, &need_mntput);
1063			if (ret < 0)
1064				break;
1065			continue;
1066		}
1067
1068		/* We didn't change the current path point */
1069		break;
1070	}
1071
1072	if (need_mntput && path->mnt == mnt)
1073		mntput(path->mnt);
1074	if (ret == -EISDIR)
1075		ret = 0;
1076	return ret < 0 ? ret : need_mntput;
1077}
1078
1079int follow_down_one(struct path *path)
1080{
1081	struct vfsmount *mounted;
1082
1083	mounted = lookup_mnt(path);
1084	if (mounted) {
1085		dput(path->dentry);
1086		mntput(path->mnt);
1087		path->mnt = mounted;
1088		path->dentry = dget(mounted->mnt_root);
1089		return 1;
1090	}
1091	return 0;
1092}
1093EXPORT_SYMBOL(follow_down_one);
1094
1095static inline int managed_dentry_rcu(struct dentry *dentry)
1096{
1097	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1098		dentry->d_op->d_manage(dentry, true) : 0;
1099}
1100
1101/*
1102 * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1103 * we meet a managed dentry that would need blocking.
1104 */
1105static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1106			       struct inode **inode)
1107{
1108	for (;;) {
1109		struct mount *mounted;
1110		/*
1111		 * Don't forget we might have a non-mountpoint managed dentry
1112		 * that wants to block transit.
1113		 */
1114		switch (managed_dentry_rcu(path->dentry)) {
1115		case -ECHILD:
1116		default:
1117			return false;
1118		case -EISDIR:
1119			return true;
1120		case 0:
1121			break;
1122		}
1123
1124		if (!d_mountpoint(path->dentry))
1125			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1126
1127		mounted = __lookup_mnt(path->mnt, path->dentry);
1128		if (!mounted)
1129			break;
1130		path->mnt = &mounted->mnt;
1131		path->dentry = mounted->mnt.mnt_root;
1132		nd->flags |= LOOKUP_JUMPED;
1133		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1134		/*
1135		 * Update the inode too. We don't need to re-check the
1136		 * dentry sequence number here after this d_inode read,
1137		 * because a mount-point is always pinned.
1138		 */
1139		*inode = path->dentry->d_inode;
1140	}
1141	return !read_seqretry(&mount_lock, nd->m_seq) &&
1142		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1143}
1144
1145static int follow_dotdot_rcu(struct nameidata *nd)
1146{
1147	struct inode *inode = nd->inode;
1148	if (!nd->root.mnt)
1149		set_root_rcu(nd);
1150
1151	while (1) {
1152		if (nd->path.dentry == nd->root.dentry &&
1153		    nd->path.mnt == nd->root.mnt) {
1154			break;
1155		}
1156		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1157			struct dentry *old = nd->path.dentry;
1158			struct dentry *parent = old->d_parent;
1159			unsigned seq;
1160
1161			inode = parent->d_inode;
1162			seq = read_seqcount_begin(&parent->d_seq);
1163			if (read_seqcount_retry(&old->d_seq, nd->seq))
1164				goto failed;
1165			nd->path.dentry = parent;
1166			nd->seq = seq;
1167			break;
1168		}
1169		if (!follow_up_rcu(&nd->path))
1170			break;
1171		inode = nd->path.dentry->d_inode;
1172		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1173	}
1174	while (d_mountpoint(nd->path.dentry)) {
1175		struct mount *mounted;
1176		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1177		if (!mounted)
1178			break;
1179		nd->path.mnt = &mounted->mnt;
1180		nd->path.dentry = mounted->mnt.mnt_root;
1181		inode = nd->path.dentry->d_inode;
1182		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1183		if (read_seqretry(&mount_lock, nd->m_seq))
1184			goto failed;
1185	}
1186	nd->inode = inode;
1187	return 0;
1188
1189failed:
1190	nd->flags &= ~LOOKUP_RCU;
1191	if (!(nd->flags & LOOKUP_ROOT))
1192		nd->root.mnt = NULL;
1193	rcu_read_unlock();
1194	return -ECHILD;
1195}
1196
1197/*
1198 * Follow down to the covering mount currently visible to userspace.  At each
1199 * point, the filesystem owning that dentry may be queried as to whether the
1200 * caller is permitted to proceed or not.
1201 */
1202int follow_down(struct path *path)
1203{
1204	unsigned managed;
1205	int ret;
1206
1207	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1208	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1209		/* Allow the filesystem to manage the transit without i_mutex
1210		 * being held.
1211		 *
1212		 * We indicate to the filesystem if someone is trying to mount
1213		 * something here.  This gives autofs the chance to deny anyone
1214		 * other than its daemon the right to mount on its
1215		 * superstructure.
1216		 *
1217		 * The filesystem may sleep at this point.
1218		 */
1219		if (managed & DCACHE_MANAGE_TRANSIT) {
1220			BUG_ON(!path->dentry->d_op);
1221			BUG_ON(!path->dentry->d_op->d_manage);
1222			ret = path->dentry->d_op->d_manage(
1223				path->dentry, false);
1224			if (ret < 0)
1225				return ret == -EISDIR ? 0 : ret;
1226		}
1227
1228		/* Transit to a mounted filesystem. */
1229		if (managed & DCACHE_MOUNTED) {
1230			struct vfsmount *mounted = lookup_mnt(path);
1231			if (!mounted)
1232				break;
1233			dput(path->dentry);
1234			mntput(path->mnt);
1235			path->mnt = mounted;
1236			path->dentry = dget(mounted->mnt_root);
1237			continue;
1238		}
1239
1240		/* Don't handle automount points here */
1241		break;
1242	}
1243	return 0;
1244}
1245EXPORT_SYMBOL(follow_down);
1246
1247/*
1248 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1249 */
1250static void follow_mount(struct path *path)
1251{
1252	while (d_mountpoint(path->dentry)) {
1253		struct vfsmount *mounted = lookup_mnt(path);
1254		if (!mounted)
1255			break;
1256		dput(path->dentry);
1257		mntput(path->mnt);
1258		path->mnt = mounted;
1259		path->dentry = dget(mounted->mnt_root);
1260	}
1261}
1262
1263static void follow_dotdot(struct nameidata *nd)
1264{
1265	if (!nd->root.mnt)
1266		set_root(nd);
1267
1268	while(1) {
1269		struct dentry *old = nd->path.dentry;
1270
1271		if (nd->path.dentry == nd->root.dentry &&
1272		    nd->path.mnt == nd->root.mnt) {
1273			break;
1274		}
1275		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1276			/* rare case of legitimate dget_parent()... */
1277			nd->path.dentry = dget_parent(nd->path.dentry);
1278			dput(old);
1279			break;
1280		}
1281		if (!follow_up(&nd->path))
1282			break;
1283	}
1284	follow_mount(&nd->path);
1285	nd->inode = nd->path.dentry->d_inode;
1286}
1287
1288/*
1289 * This looks up the name in dcache, possibly revalidates the old dentry and
1290 * allocates a new one if not found or not valid.  In the need_lookup argument
1291 * returns whether i_op->lookup is necessary.
1292 *
1293 * dir->d_inode->i_mutex must be held
1294 */
1295static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1296				    unsigned int flags, bool *need_lookup)
1297{
1298	struct dentry *dentry;
1299	int error;
1300
1301	*need_lookup = false;
1302	dentry = d_lookup(dir, name);
1303	if (dentry) {
1304		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1305			error = d_revalidate(dentry, flags);
1306			if (unlikely(error <= 0)) {
1307				if (error < 0) {
1308					dput(dentry);
1309					return ERR_PTR(error);
1310				} else {
1311					d_invalidate(dentry);
1312					dput(dentry);
1313					dentry = NULL;
1314				}
1315			}
1316		}
1317	}
1318
1319	if (!dentry) {
1320		dentry = d_alloc(dir, name);
1321		if (unlikely(!dentry))
1322			return ERR_PTR(-ENOMEM);
1323
1324		*need_lookup = true;
1325	}
1326	return dentry;
1327}
1328
1329/*
1330 * Call i_op->lookup on the dentry.  The dentry must be negative and
1331 * unhashed.
1332 *
1333 * dir->d_inode->i_mutex must be held
1334 */
1335static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1336				  unsigned int flags)
1337{
1338	struct dentry *old;
1339
1340	/* Don't create child dentry for a dead directory. */
1341	if (unlikely(IS_DEADDIR(dir))) {
1342		dput(dentry);
1343		return ERR_PTR(-ENOENT);
1344	}
1345
1346	old = dir->i_op->lookup(dir, dentry, flags);
1347	if (unlikely(old)) {
1348		dput(dentry);
1349		dentry = old;
1350	}
1351	return dentry;
1352}
1353
1354static struct dentry *__lookup_hash(struct qstr *name,
1355		struct dentry *base, unsigned int flags)
1356{
1357	bool need_lookup;
1358	struct dentry *dentry;
1359
1360	dentry = lookup_dcache(name, base, flags, &need_lookup);
1361	if (!need_lookup)
1362		return dentry;
1363
1364	return lookup_real(base->d_inode, dentry, flags);
1365}
1366
1367/*
1368 *  It's more convoluted than I'd like it to be, but... it's still fairly
1369 *  small and for now I'd prefer to have fast path as straight as possible.
1370 *  It _is_ time-critical.
1371 */
1372static int lookup_fast(struct nameidata *nd,
1373		       struct path *path, struct inode **inode)
1374{
1375	struct vfsmount *mnt = nd->path.mnt;
1376	struct dentry *dentry, *parent = nd->path.dentry;
1377	int need_reval = 1;
1378	int status = 1;
1379	int err;
1380
1381	/*
1382	 * Rename seqlock is not required here because in the off chance
1383	 * of a false negative due to a concurrent rename, we're going to
1384	 * do the non-racy lookup, below.
1385	 */
1386	if (nd->flags & LOOKUP_RCU) {
1387		unsigned seq;
1388		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1389		if (!dentry)
1390			goto unlazy;
1391
1392		/*
1393		 * This sequence count validates that the inode matches
1394		 * the dentry name information from lookup.
1395		 */
1396		*inode = dentry->d_inode;
1397		if (read_seqcount_retry(&dentry->d_seq, seq))
1398			return -ECHILD;
1399
1400		/*
1401		 * This sequence count validates that the parent had no
1402		 * changes while we did the lookup of the dentry above.
1403		 *
1404		 * The memory barrier in read_seqcount_begin of child is
1405		 *  enough, we can use __read_seqcount_retry here.
1406		 */
1407		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1408			return -ECHILD;
1409		nd->seq = seq;
1410
1411		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1412			status = d_revalidate(dentry, nd->flags);
1413			if (unlikely(status <= 0)) {
1414				if (status != -ECHILD)
1415					need_reval = 0;
1416				goto unlazy;
1417			}
1418		}
1419		path->mnt = mnt;
1420		path->dentry = dentry;
1421		if (likely(__follow_mount_rcu(nd, path, inode)))
1422			return 0;
1423unlazy:
1424		if (unlazy_walk(nd, dentry))
1425			return -ECHILD;
1426	} else {
1427		dentry = __d_lookup(parent, &nd->last);
1428	}
1429
1430	if (unlikely(!dentry))
1431		goto need_lookup;
1432
1433	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1434		status = d_revalidate(dentry, nd->flags);
1435	if (unlikely(status <= 0)) {
1436		if (status < 0) {
1437			dput(dentry);
1438			return status;
1439		}
1440		d_invalidate(dentry);
1441		dput(dentry);
1442		goto need_lookup;
1443	}
1444
1445	path->mnt = mnt;
1446	path->dentry = dentry;
1447	err = follow_managed(path, nd->flags);
1448	if (unlikely(err < 0)) {
1449		path_put_conditional(path, nd);
1450		return err;
1451	}
1452	if (err)
1453		nd->flags |= LOOKUP_JUMPED;
1454	*inode = path->dentry->d_inode;
1455	return 0;
1456
1457need_lookup:
1458	return 1;
1459}
1460
1461/* Fast lookup failed, do it the slow way */
1462static int lookup_slow(struct nameidata *nd, struct path *path)
1463{
1464	struct dentry *dentry, *parent;
1465	int err;
1466
1467	parent = nd->path.dentry;
1468	BUG_ON(nd->inode != parent->d_inode);
1469
1470	mutex_lock(&parent->d_inode->i_mutex);
1471	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1472	mutex_unlock(&parent->d_inode->i_mutex);
1473	if (IS_ERR(dentry))
1474		return PTR_ERR(dentry);
1475	path->mnt = nd->path.mnt;
1476	path->dentry = dentry;
1477	err = follow_managed(path, nd->flags);
1478	if (unlikely(err < 0)) {
1479		path_put_conditional(path, nd);
1480		return err;
1481	}
1482	if (err)
1483		nd->flags |= LOOKUP_JUMPED;
1484	return 0;
1485}
1486
1487static inline int may_lookup(struct nameidata *nd)
1488{
1489	if (nd->flags & LOOKUP_RCU) {
1490		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1491		if (err != -ECHILD)
1492			return err;
1493		if (unlazy_walk(nd, NULL))
1494			return -ECHILD;
1495	}
1496	return inode_permission(nd->inode, MAY_EXEC);
1497}
1498
1499static inline int handle_dots(struct nameidata *nd, int type)
1500{
1501	if (type == LAST_DOTDOT) {
1502		if (nd->flags & LOOKUP_RCU) {
1503			if (follow_dotdot_rcu(nd))
1504				return -ECHILD;
1505		} else
1506			follow_dotdot(nd);
1507	}
1508	return 0;
1509}
1510
1511static void terminate_walk(struct nameidata *nd)
1512{
1513	if (!(nd->flags & LOOKUP_RCU)) {
1514		path_put(&nd->path);
1515	} else {
1516		nd->flags &= ~LOOKUP_RCU;
1517		if (!(nd->flags & LOOKUP_ROOT))
1518			nd->root.mnt = NULL;
1519		rcu_read_unlock();
1520	}
1521}
1522
1523/*
1524 * Do we need to follow links? We _really_ want to be able
1525 * to do this check without having to look at inode->i_op,
1526 * so we keep a cache of "no, this doesn't need follow_link"
1527 * for the common case.
1528 */
1529static inline int should_follow_link(struct dentry *dentry, int follow)
1530{
1531	return unlikely(d_is_symlink(dentry)) ? follow : 0;
1532}
1533
1534static inline int walk_component(struct nameidata *nd, struct path *path,
1535		int follow)
1536{
1537	struct inode *inode;
1538	int err;
1539	/*
1540	 * "." and ".." are special - ".." especially so because it has
1541	 * to be able to know about the current root directory and
1542	 * parent relationships.
1543	 */
1544	if (unlikely(nd->last_type != LAST_NORM))
1545		return handle_dots(nd, nd->last_type);
1546	err = lookup_fast(nd, path, &inode);
1547	if (unlikely(err)) {
1548		if (err < 0)
1549			goto out_err;
1550
1551		err = lookup_slow(nd, path);
1552		if (err < 0)
1553			goto out_err;
1554
1555		inode = path->dentry->d_inode;
1556	}
1557	err = -ENOENT;
1558	if (!inode || d_is_negative(path->dentry))
1559		goto out_path_put;
1560
1561	if (should_follow_link(path->dentry, follow)) {
1562		if (nd->flags & LOOKUP_RCU) {
1563			if (unlikely(unlazy_walk(nd, path->dentry))) {
1564				err = -ECHILD;
1565				goto out_err;
1566			}
1567		}
1568		BUG_ON(inode != path->dentry->d_inode);
1569		return 1;
1570	}
1571	path_to_nameidata(path, nd);
1572	nd->inode = inode;
1573	return 0;
1574
1575out_path_put:
1576	path_to_nameidata(path, nd);
1577out_err:
1578	terminate_walk(nd);
1579	return err;
1580}
1581
1582/*
1583 * This limits recursive symlink follows to 8, while
1584 * limiting consecutive symlinks to 40.
1585 *
1586 * Without that kind of total limit, nasty chains of consecutive
1587 * symlinks can cause almost arbitrarily long lookups.
1588 */
1589static inline int nested_symlink(struct path *path, struct nameidata *nd)
1590{
1591	int res;
1592
1593	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1594		path_put_conditional(path, nd);
1595		path_put(&nd->path);
1596		return -ELOOP;
1597	}
1598	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1599
1600	nd->depth++;
1601	current->link_count++;
1602
1603	do {
1604		struct path link = *path;
1605		void *cookie;
1606
1607		res = follow_link(&link, nd, &cookie);
1608		if (res)
1609			break;
1610		res = walk_component(nd, path, LOOKUP_FOLLOW);
1611		put_link(nd, &link, cookie);
1612	} while (res > 0);
1613
1614	current->link_count--;
1615	nd->depth--;
1616	return res;
1617}
1618
1619/*
1620 * We can do the critical dentry name comparison and hashing
1621 * operations one word at a time, but we are limited to:
1622 *
1623 * - Architectures with fast unaligned word accesses. We could
1624 *   do a "get_unaligned()" if this helps and is sufficiently
1625 *   fast.
1626 *
1627 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1628 *   do not trap on the (extremely unlikely) case of a page
1629 *   crossing operation.
1630 *
1631 * - Furthermore, we need an efficient 64-bit compile for the
1632 *   64-bit case in order to generate the "number of bytes in
1633 *   the final mask". Again, that could be replaced with a
1634 *   efficient population count instruction or similar.
1635 */
1636#ifdef CONFIG_DCACHE_WORD_ACCESS
1637
1638#include <asm/word-at-a-time.h>
1639
1640#ifdef CONFIG_64BIT
1641
1642static inline unsigned int fold_hash(unsigned long hash)
1643{
1644	return hash_64(hash, 32);
1645}
1646
1647#else	/* 32-bit case */
1648
1649#define fold_hash(x) (x)
1650
1651#endif
1652
1653unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1654{
1655	unsigned long a, mask;
1656	unsigned long hash = 0;
1657
1658	for (;;) {
1659		a = load_unaligned_zeropad(name);
1660		if (len < sizeof(unsigned long))
1661			break;
1662		hash += a;
1663		hash *= 9;
1664		name += sizeof(unsigned long);
1665		len -= sizeof(unsigned long);
1666		if (!len)
1667			goto done;
1668	}
1669	mask = bytemask_from_count(len);
1670	hash += mask & a;
1671done:
1672	return fold_hash(hash);
1673}
1674EXPORT_SYMBOL(full_name_hash);
1675
1676/*
1677 * Calculate the length and hash of the path component, and
1678 * return the "hash_len" as the result.
1679 */
1680static inline u64 hash_name(const char *name)
1681{
1682	unsigned long a, b, adata, bdata, mask, hash, len;
1683	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1684
1685	hash = a = 0;
1686	len = -sizeof(unsigned long);
1687	do {
1688		hash = (hash + a) * 9;
1689		len += sizeof(unsigned long);
1690		a = load_unaligned_zeropad(name+len);
1691		b = a ^ REPEAT_BYTE('/');
1692	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1693
1694	adata = prep_zero_mask(a, adata, &constants);
1695	bdata = prep_zero_mask(b, bdata, &constants);
1696
1697	mask = create_zero_mask(adata | bdata);
1698
1699	hash += a & zero_bytemask(mask);
1700	len += find_zero(mask);
1701	return hashlen_create(fold_hash(hash), len);
1702}
1703
1704#else
1705
1706unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1707{
1708	unsigned long hash = init_name_hash();
1709	while (len--)
1710		hash = partial_name_hash(*name++, hash);
1711	return end_name_hash(hash);
1712}
1713EXPORT_SYMBOL(full_name_hash);
1714
1715/*
1716 * We know there's a real path component here of at least
1717 * one character.
1718 */
1719static inline u64 hash_name(const char *name)
1720{
1721	unsigned long hash = init_name_hash();
1722	unsigned long len = 0, c;
1723
1724	c = (unsigned char)*name;
1725	do {
1726		len++;
1727		hash = partial_name_hash(c, hash);
1728		c = (unsigned char)name[len];
1729	} while (c && c != '/');
1730	return hashlen_create(end_name_hash(hash), len);
1731}
1732
1733#endif
1734
1735/*
1736 * Name resolution.
1737 * This is the basic name resolution function, turning a pathname into
1738 * the final dentry. We expect 'base' to be positive and a directory.
1739 *
1740 * Returns 0 and nd will have valid dentry and mnt on success.
1741 * Returns error and drops reference to input namei data on failure.
1742 */
1743static int link_path_walk(const char *name, struct nameidata *nd)
1744{
1745	struct path next;
1746	int err;
1747
1748	while (*name=='/')
1749		name++;
1750	if (!*name)
1751		return 0;
1752
1753	/* At this point we know we have a real path component. */
1754	for(;;) {
1755		u64 hash_len;
1756		int type;
1757
1758		err = may_lookup(nd);
1759 		if (err)
1760			break;
1761
1762		hash_len = hash_name(name);
1763
1764		type = LAST_NORM;
1765		if (name[0] == '.') switch (hashlen_len(hash_len)) {
1766			case 2:
1767				if (name[1] == '.') {
1768					type = LAST_DOTDOT;
1769					nd->flags |= LOOKUP_JUMPED;
1770				}
1771				break;
1772			case 1:
1773				type = LAST_DOT;
1774		}
1775		if (likely(type == LAST_NORM)) {
1776			struct dentry *parent = nd->path.dentry;
1777			nd->flags &= ~LOOKUP_JUMPED;
1778			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1779				struct qstr this = { { .hash_len = hash_len }, .name = name };
1780				err = parent->d_op->d_hash(parent, &this);
1781				if (err < 0)
1782					break;
1783				hash_len = this.hash_len;
1784				name = this.name;
1785			}
1786		}
1787
1788		nd->last.hash_len = hash_len;
1789		nd->last.name = name;
1790		nd->last_type = type;
1791
1792		name += hashlen_len(hash_len);
1793		if (!*name)
1794			return 0;
1795		/*
1796		 * If it wasn't NUL, we know it was '/'. Skip that
1797		 * slash, and continue until no more slashes.
1798		 */
1799		do {
1800			name++;
1801		} while (unlikely(*name == '/'));
1802		if (!*name)
1803			return 0;
1804
1805		err = walk_component(nd, &next, LOOKUP_FOLLOW);
1806		if (err < 0)
1807			return err;
1808
1809		if (err) {
1810			err = nested_symlink(&next, nd);
1811			if (err)
1812				return err;
1813		}
1814		if (!d_can_lookup(nd->path.dentry)) {
1815			err = -ENOTDIR;
1816			break;
1817		}
1818	}
1819	terminate_walk(nd);
1820	return err;
1821}
1822
1823static int path_init(int dfd, const char *name, unsigned int flags,
1824		     struct nameidata *nd, struct file **fp)
1825{
1826	int retval = 0;
1827
1828	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1829	nd->flags = flags | LOOKUP_JUMPED;
1830	nd->depth = 0;
1831	if (flags & LOOKUP_ROOT) {
1832		struct dentry *root = nd->root.dentry;
1833		struct inode *inode = root->d_inode;
1834		if (*name) {
1835			if (!d_can_lookup(root))
1836				return -ENOTDIR;
1837			retval = inode_permission(inode, MAY_EXEC);
1838			if (retval)
1839				return retval;
1840		}
1841		nd->path = nd->root;
1842		nd->inode = inode;
1843		if (flags & LOOKUP_RCU) {
1844			rcu_read_lock();
1845			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1846			nd->m_seq = read_seqbegin(&mount_lock);
1847		} else {
1848			path_get(&nd->path);
1849		}
1850		return 0;
1851	}
1852
1853	nd->root.mnt = NULL;
1854
1855	nd->m_seq = read_seqbegin(&mount_lock);
1856	if (*name=='/') {
1857		if (flags & LOOKUP_RCU) {
1858			rcu_read_lock();
1859			nd->seq = set_root_rcu(nd);
1860		} else {
1861			set_root(nd);
1862			path_get(&nd->root);
1863		}
1864		nd->path = nd->root;
1865	} else if (dfd == AT_FDCWD) {
1866		if (flags & LOOKUP_RCU) {
1867			struct fs_struct *fs = current->fs;
1868			unsigned seq;
1869
1870			rcu_read_lock();
1871
1872			do {
1873				seq = read_seqcount_begin(&fs->seq);
1874				nd->path = fs->pwd;
1875				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1876			} while (read_seqcount_retry(&fs->seq, seq));
1877		} else {
1878			get_fs_pwd(current->fs, &nd->path);
1879		}
1880	} else {
1881		/* Caller must check execute permissions on the starting path component */
1882		struct fd f = fdget_raw(dfd);
1883		struct dentry *dentry;
1884
1885		if (!f.file)
1886			return -EBADF;
1887
1888		dentry = f.file->f_path.dentry;
1889
1890		if (*name) {
1891			if (!d_can_lookup(dentry)) {
1892				fdput(f);
1893				return -ENOTDIR;
1894			}
1895		}
1896
1897		nd->path = f.file->f_path;
1898		if (flags & LOOKUP_RCU) {
1899			if (f.flags & FDPUT_FPUT)
1900				*fp = f.file;
1901			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1902			rcu_read_lock();
1903		} else {
1904			path_get(&nd->path);
1905			fdput(f);
1906		}
1907	}
1908
1909	nd->inode = nd->path.dentry->d_inode;
1910	if (!(flags & LOOKUP_RCU))
1911		return 0;
1912	if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1913		return 0;
1914	if (!(nd->flags & LOOKUP_ROOT))
1915		nd->root.mnt = NULL;
1916	rcu_read_unlock();
1917	return -ECHILD;
1918}
1919
1920static inline int lookup_last(struct nameidata *nd, struct path *path)
1921{
1922	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1923		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1924
1925	nd->flags &= ~LOOKUP_PARENT;
1926	return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1927}
1928
1929/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1930static int path_lookupat(int dfd, const char *name,
1931				unsigned int flags, struct nameidata *nd)
1932{
1933	struct file *base = NULL;
1934	struct path path;
1935	int err;
1936
1937	/*
1938	 * Path walking is largely split up into 2 different synchronisation
1939	 * schemes, rcu-walk and ref-walk (explained in
1940	 * Documentation/filesystems/path-lookup.txt). These share much of the
1941	 * path walk code, but some things particularly setup, cleanup, and
1942	 * following mounts are sufficiently divergent that functions are
1943	 * duplicated. Typically there is a function foo(), and its RCU
1944	 * analogue, foo_rcu().
1945	 *
1946	 * -ECHILD is the error number of choice (just to avoid clashes) that
1947	 * is returned if some aspect of an rcu-walk fails. Such an error must
1948	 * be handled by restarting a traditional ref-walk (which will always
1949	 * be able to complete).
1950	 */
1951	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1952
1953	if (unlikely(err))
1954		goto out;
1955
1956	current->total_link_count = 0;
1957	err = link_path_walk(name, nd);
1958
1959	if (!err && !(flags & LOOKUP_PARENT)) {
1960		err = lookup_last(nd, &path);
1961		while (err > 0) {
1962			void *cookie;
1963			struct path link = path;
1964			err = may_follow_link(&link, nd);
1965			if (unlikely(err))
1966				break;
1967			nd->flags |= LOOKUP_PARENT;
1968			err = follow_link(&link, nd, &cookie);
1969			if (err)
1970				break;
1971			err = lookup_last(nd, &path);
1972			put_link(nd, &link, cookie);
1973		}
1974	}
1975
1976	if (!err)
1977		err = complete_walk(nd);
1978
1979	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1980		if (!d_can_lookup(nd->path.dentry)) {
1981			path_put(&nd->path);
1982			err = -ENOTDIR;
1983		}
1984	}
1985
1986out:
1987	if (base)
1988		fput(base);
1989
1990	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1991		path_put(&nd->root);
1992		nd->root.mnt = NULL;
1993	}
1994	return err;
1995}
1996
1997static int filename_lookup(int dfd, struct filename *name,
1998				unsigned int flags, struct nameidata *nd)
1999{
2000	int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2001	if (unlikely(retval == -ECHILD))
2002		retval = path_lookupat(dfd, name->name, flags, nd);
2003	if (unlikely(retval == -ESTALE))
2004		retval = path_lookupat(dfd, name->name,
2005						flags | LOOKUP_REVAL, nd);
2006
2007	if (likely(!retval))
2008		audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2009	return retval;
2010}
2011
2012static int do_path_lookup(int dfd, const char *name,
2013				unsigned int flags, struct nameidata *nd)
2014{
2015	struct filename filename = { .name = name };
2016
2017	return filename_lookup(dfd, &filename, flags, nd);
2018}
2019
2020/* does lookup, returns the object with parent locked */
2021struct dentry *kern_path_locked(const char *name, struct path *path)
2022{
2023	struct nameidata nd;
2024	struct dentry *d;
2025	int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2026	if (err)
2027		return ERR_PTR(err);
2028	if (nd.last_type != LAST_NORM) {
2029		path_put(&nd.path);
2030		return ERR_PTR(-EINVAL);
2031	}
2032	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2033	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2034	if (IS_ERR(d)) {
2035		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2036		path_put(&nd.path);
2037		return d;
2038	}
2039	*path = nd.path;
2040	return d;
2041}
2042
2043int kern_path(const char *name, unsigned int flags, struct path *path)
2044{
2045	struct nameidata nd;
2046	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2047	if (!res)
2048		*path = nd.path;
2049	return res;
2050}
2051EXPORT_SYMBOL(kern_path);
2052
2053/**
2054 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2055 * @dentry:  pointer to dentry of the base directory
2056 * @mnt: pointer to vfs mount of the base directory
2057 * @name: pointer to file name
2058 * @flags: lookup flags
2059 * @path: pointer to struct path to fill
2060 */
2061int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2062		    const char *name, unsigned int flags,
2063		    struct path *path)
2064{
2065	struct nameidata nd;
2066	int err;
2067	nd.root.dentry = dentry;
2068	nd.root.mnt = mnt;
2069	BUG_ON(flags & LOOKUP_PARENT);
2070	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2071	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2072	if (!err)
2073		*path = nd.path;
2074	return err;
2075}
2076EXPORT_SYMBOL(vfs_path_lookup);
2077
2078/*
2079 * Restricted form of lookup. Doesn't follow links, single-component only,
2080 * needs parent already locked. Doesn't follow mounts.
2081 * SMP-safe.
2082 */
2083static struct dentry *lookup_hash(struct nameidata *nd)
2084{
2085	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2086}
2087
2088/**
2089 * lookup_one_len - filesystem helper to lookup single pathname component
2090 * @name:	pathname component to lookup
2091 * @base:	base directory to lookup from
2092 * @len:	maximum length @len should be interpreted to
2093 *
2094 * Note that this routine is purely a helper for filesystem usage and should
2095 * not be called by generic code.  Also note that by using this function the
2096 * nameidata argument is passed to the filesystem methods and a filesystem
2097 * using this helper needs to be prepared for that.
2098 */
2099struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2100{
2101	struct qstr this;
2102	unsigned int c;
2103	int err;
2104
2105	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2106
2107	this.name = name;
2108	this.len = len;
2109	this.hash = full_name_hash(name, len);
2110	if (!len)
2111		return ERR_PTR(-EACCES);
2112
2113	if (unlikely(name[0] == '.')) {
2114		if (len < 2 || (len == 2 && name[1] == '.'))
2115			return ERR_PTR(-EACCES);
2116	}
2117
2118	while (len--) {
2119		c = *(const unsigned char *)name++;
2120		if (c == '/' || c == '\0')
2121			return ERR_PTR(-EACCES);
2122	}
2123	/*
2124	 * See if the low-level filesystem might want
2125	 * to use its own hash..
2126	 */
2127	if (base->d_flags & DCACHE_OP_HASH) {
2128		int err = base->d_op->d_hash(base, &this);
2129		if (err < 0)
2130			return ERR_PTR(err);
2131	}
2132
2133	err = inode_permission(base->d_inode, MAY_EXEC);
2134	if (err)
2135		return ERR_PTR(err);
2136
2137	return __lookup_hash(&this, base, 0);
2138}
2139EXPORT_SYMBOL(lookup_one_len);
2140
2141int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2142		 struct path *path, int *empty)
2143{
2144	struct nameidata nd;
2145	struct filename *tmp = getname_flags(name, flags, empty);
2146	int err = PTR_ERR(tmp);
2147	if (!IS_ERR(tmp)) {
2148
2149		BUG_ON(flags & LOOKUP_PARENT);
2150
2151		err = filename_lookup(dfd, tmp, flags, &nd);
2152		putname(tmp);
2153		if (!err)
2154			*path = nd.path;
2155	}
2156	return err;
2157}
2158
2159int user_path_at(int dfd, const char __user *name, unsigned flags,
2160		 struct path *path)
2161{
2162	return user_path_at_empty(dfd, name, flags, path, NULL);
2163}
2164EXPORT_SYMBOL(user_path_at);
2165
2166/*
2167 * NB: most callers don't do anything directly with the reference to the
2168 *     to struct filename, but the nd->last pointer points into the name string
2169 *     allocated by getname. So we must hold the reference to it until all
2170 *     path-walking is complete.
2171 */
2172static struct filename *
2173user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2174		 unsigned int flags)
2175{
2176	struct filename *s = getname(path);
2177	int error;
2178
2179	/* only LOOKUP_REVAL is allowed in extra flags */
2180	flags &= LOOKUP_REVAL;
2181
2182	if (IS_ERR(s))
2183		return s;
2184
2185	error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2186	if (error) {
2187		putname(s);
2188		return ERR_PTR(error);
2189	}
2190
2191	return s;
2192}
2193
2194/**
2195 * mountpoint_last - look up last component for umount
2196 * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2197 * @path: pointer to container for result
2198 *
2199 * This is a special lookup_last function just for umount. In this case, we
2200 * need to resolve the path without doing any revalidation.
2201 *
2202 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2203 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2204 * in almost all cases, this lookup will be served out of the dcache. The only
2205 * cases where it won't are if nd->last refers to a symlink or the path is
2206 * bogus and it doesn't exist.
2207 *
2208 * Returns:
2209 * -error: if there was an error during lookup. This includes -ENOENT if the
2210 *         lookup found a negative dentry. The nd->path reference will also be
2211 *         put in this case.
2212 *
2213 * 0:      if we successfully resolved nd->path and found it to not to be a
2214 *         symlink that needs to be followed. "path" will also be populated.
2215 *         The nd->path reference will also be put.
2216 *
2217 * 1:      if we successfully resolved nd->last and found it to be a symlink
2218 *         that needs to be followed. "path" will be populated with the path
2219 *         to the link, and nd->path will *not* be put.
2220 */
2221static int
2222mountpoint_last(struct nameidata *nd, struct path *path)
2223{
2224	int error = 0;
2225	struct dentry *dentry;
2226	struct dentry *dir = nd->path.dentry;
2227
2228	/* If we're in rcuwalk, drop out of it to handle last component */
2229	if (nd->flags & LOOKUP_RCU) {
2230		if (unlazy_walk(nd, NULL)) {
2231			error = -ECHILD;
2232			goto out;
2233		}
2234	}
2235
2236	nd->flags &= ~LOOKUP_PARENT;
2237
2238	if (unlikely(nd->last_type != LAST_NORM)) {
2239		error = handle_dots(nd, nd->last_type);
2240		if (error)
2241			goto out;
2242		dentry = dget(nd->path.dentry);
2243		goto done;
2244	}
2245
2246	mutex_lock(&dir->d_inode->i_mutex);
2247	dentry = d_lookup(dir, &nd->last);
2248	if (!dentry) {
2249		/*
2250		 * No cached dentry. Mounted dentries are pinned in the cache,
2251		 * so that means that this dentry is probably a symlink or the
2252		 * path doesn't actually point to a mounted dentry.
2253		 */
2254		dentry = d_alloc(dir, &nd->last);
2255		if (!dentry) {
2256			error = -ENOMEM;
2257			mutex_unlock(&dir->d_inode->i_mutex);
2258			goto out;
2259		}
2260		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2261		error = PTR_ERR(dentry);
2262		if (IS_ERR(dentry)) {
2263			mutex_unlock(&dir->d_inode->i_mutex);
2264			goto out;
2265		}
2266	}
2267	mutex_unlock(&dir->d_inode->i_mutex);
2268
2269done:
2270	if (!dentry->d_inode || d_is_negative(dentry)) {
2271		error = -ENOENT;
2272		dput(dentry);
2273		goto out;
2274	}
2275	path->dentry = dentry;
2276	path->mnt = nd->path.mnt;
2277	if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2278		return 1;
2279	mntget(path->mnt);
2280	follow_mount(path);
2281	error = 0;
2282out:
2283	terminate_walk(nd);
2284	return error;
2285}
2286
2287/**
2288 * path_mountpoint - look up a path to be umounted
2289 * @dfd:	directory file descriptor to start walk from
2290 * @name:	full pathname to walk
2291 * @path:	pointer to container for result
2292 * @flags:	lookup flags
2293 *
2294 * Look up the given name, but don't attempt to revalidate the last component.
2295 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2296 */
2297static int
2298path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2299{
2300	struct file *base = NULL;
2301	struct nameidata nd;
2302	int err;
2303
2304	err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2305	if (unlikely(err))
2306		goto out;
2307
2308	current->total_link_count = 0;
2309	err = link_path_walk(name, &nd);
2310	if (err)
2311		goto out;
2312
2313	err = mountpoint_last(&nd, path);
2314	while (err > 0) {
2315		void *cookie;
2316		struct path link = *path;
2317		err = may_follow_link(&link, &nd);
2318		if (unlikely(err))
2319			break;
2320		nd.flags |= LOOKUP_PARENT;
2321		err = follow_link(&link, &nd, &cookie);
2322		if (err)
2323			break;
2324		err = mountpoint_last(&nd, path);
2325		put_link(&nd, &link, cookie);
2326	}
2327out:
2328	if (base)
2329		fput(base);
2330
2331	if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2332		path_put(&nd.root);
2333
2334	return err;
2335}
2336
2337static int
2338filename_mountpoint(int dfd, struct filename *s, struct path *path,
2339			unsigned int flags)
2340{
2341	int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2342	if (unlikely(error == -ECHILD))
2343		error = path_mountpoint(dfd, s->name, path, flags);
2344	if (unlikely(error == -ESTALE))
2345		error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2346	if (likely(!error))
2347		audit_inode(s, path->dentry, 0);
2348	return error;
2349}
2350
2351/**
2352 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2353 * @dfd:	directory file descriptor
2354 * @name:	pathname from userland
2355 * @flags:	lookup flags
2356 * @path:	pointer to container to hold result
2357 *
2358 * A umount is a special case for path walking. We're not actually interested
2359 * in the inode in this situation, and ESTALE errors can be a problem. We
2360 * simply want track down the dentry and vfsmount attached at the mountpoint
2361 * and avoid revalidating the last component.
2362 *
2363 * Returns 0 and populates "path" on success.
2364 */
2365int
2366user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2367			struct path *path)
2368{
2369	struct filename *s = getname(name);
2370	int error;
2371	if (IS_ERR(s))
2372		return PTR_ERR(s);
2373	error = filename_mountpoint(dfd, s, path, flags);
2374	putname(s);
2375	return error;
2376}
2377
2378int
2379kern_path_mountpoint(int dfd, const char *name, struct path *path,
2380			unsigned int flags)
2381{
2382	struct filename s = {.name = name};
2383	return filename_mountpoint(dfd, &s, path, flags);
2384}
2385EXPORT_SYMBOL(kern_path_mountpoint);
2386
2387int __check_sticky(struct inode *dir, struct inode *inode)
2388{
2389	kuid_t fsuid = current_fsuid();
2390
2391	if (uid_eq(inode->i_uid, fsuid))
2392		return 0;
2393	if (uid_eq(dir->i_uid, fsuid))
2394		return 0;
2395	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2396}
2397EXPORT_SYMBOL(__check_sticky);
2398
2399/*
2400 *	Check whether we can remove a link victim from directory dir, check
2401 *  whether the type of victim is right.
2402 *  1. We can't do it if dir is read-only (done in permission())
2403 *  2. We should have write and exec permissions on dir
2404 *  3. We can't remove anything from append-only dir
2405 *  4. We can't do anything with immutable dir (done in permission())
2406 *  5. If the sticky bit on dir is set we should either
2407 *	a. be owner of dir, or
2408 *	b. be owner of victim, or
2409 *	c. have CAP_FOWNER capability
2410 *  6. If the victim is append-only or immutable we can't do antyhing with
2411 *     links pointing to it.
2412 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2413 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2414 *  9. We can't remove a root or mountpoint.
2415 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2416 *     nfs_async_unlink().
2417 */
2418static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2419{
2420	struct inode *inode = victim->d_inode;
2421	int error;
2422
2423	if (d_is_negative(victim))
2424		return -ENOENT;
2425	BUG_ON(!inode);
2426
2427	BUG_ON(victim->d_parent->d_inode != dir);
2428	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2429
2430	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2431	if (error)
2432		return error;
2433	if (IS_APPEND(dir))
2434		return -EPERM;
2435
2436	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2437	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2438		return -EPERM;
2439	if (isdir) {
2440		if (!d_is_dir(victim))
2441			return -ENOTDIR;
2442		if (IS_ROOT(victim))
2443			return -EBUSY;
2444	} else if (d_is_dir(victim))
2445		return -EISDIR;
2446	if (IS_DEADDIR(dir))
2447		return -ENOENT;
2448	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2449		return -EBUSY;
2450	return 0;
2451}
2452
2453/*	Check whether we can create an object with dentry child in directory
2454 *  dir.
2455 *  1. We can't do it if child already exists (open has special treatment for
2456 *     this case, but since we are inlined it's OK)
2457 *  2. We can't do it if dir is read-only (done in permission())
2458 *  3. We should have write and exec permissions on dir
2459 *  4. We can't do it if dir is immutable (done in permission())
2460 */
2461static inline int may_create(struct inode *dir, struct dentry *child)
2462{
2463	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2464	if (child->d_inode)
2465		return -EEXIST;
2466	if (IS_DEADDIR(dir))
2467		return -ENOENT;
2468	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2469}
2470
2471/*
2472 * p1 and p2 should be directories on the same fs.
2473 */
2474struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2475{
2476	struct dentry *p;
2477
2478	if (p1 == p2) {
2479		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2480		return NULL;
2481	}
2482
2483	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2484
2485	p = d_ancestor(p2, p1);
2486	if (p) {
2487		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2488		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2489		return p;
2490	}
2491
2492	p = d_ancestor(p1, p2);
2493	if (p) {
2494		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2495		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2496		return p;
2497	}
2498
2499	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2500	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2501	return NULL;
2502}
2503EXPORT_SYMBOL(lock_rename);
2504
2505void unlock_rename(struct dentry *p1, struct dentry *p2)
2506{
2507	mutex_unlock(&p1->d_inode->i_mutex);
2508	if (p1 != p2) {
2509		mutex_unlock(&p2->d_inode->i_mutex);
2510		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2511	}
2512}
2513EXPORT_SYMBOL(unlock_rename);
2514
2515int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2516		bool want_excl)
2517{
2518	int error = may_create(dir, dentry);
2519	if (error)
2520		return error;
2521
2522	if (!dir->i_op->create)
2523		return -EACCES;	/* shouldn't it be ENOSYS? */
2524	mode &= S_IALLUGO;
2525	mode |= S_IFREG;
2526	error = security_inode_create(dir, dentry, mode);
2527	if (error)
2528		return error;
2529	error = dir->i_op->create(dir, dentry, mode, want_excl);
2530	if (!error)
2531		fsnotify_create(dir, dentry);
2532	return error;
2533}
2534EXPORT_SYMBOL(vfs_create);
2535
2536static int may_open(struct path *path, int acc_mode, int flag)
2537{
2538	struct dentry *dentry = path->dentry;
2539	struct inode *inode = dentry->d_inode;
2540	int error;
2541
2542	/* O_PATH? */
2543	if (!acc_mode)
2544		return 0;
2545
2546	if (!inode)
2547		return -ENOENT;
2548
2549	switch (inode->i_mode & S_IFMT) {
2550	case S_IFLNK:
2551		return -ELOOP;
2552	case S_IFDIR:
2553		if (acc_mode & MAY_WRITE)
2554			return -EISDIR;
2555		break;
2556	case S_IFBLK:
2557	case S_IFCHR:
2558		if (path->mnt->mnt_flags & MNT_NODEV)
2559			return -EACCES;
2560		/*FALLTHRU*/
2561	case S_IFIFO:
2562	case S_IFSOCK:
2563		flag &= ~O_TRUNC;
2564		break;
2565	}
2566
2567	error = inode_permission(inode, acc_mode);
2568	if (error)
2569		return error;
2570
2571	/*
2572	 * An append-only file must be opened in append mode for writing.
2573	 */
2574	if (IS_APPEND(inode)) {
2575		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2576			return -EPERM;
2577		if (flag & O_TRUNC)
2578			return -EPERM;
2579	}
2580
2581	/* O_NOATIME can only be set by the owner or superuser */
2582	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2583		return -EPERM;
2584
2585	return 0;
2586}
2587
2588static int handle_truncate(struct file *filp)
2589{
2590	struct path *path = &filp->f_path;
2591	struct inode *inode = path->dentry->d_inode;
2592	int error = get_write_access(inode);
2593	if (error)
2594		return error;
2595	/*
2596	 * Refuse to truncate files with mandatory locks held on them.
2597	 */
2598	error = locks_verify_locked(filp);
2599	if (!error)
2600		error = security_path_truncate(path);
2601	if (!error) {
2602		error = do_truncate(path->dentry, 0,
2603				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2604				    filp);
2605	}
2606	put_write_access(inode);
2607	return error;
2608}
2609
2610static inline int open_to_namei_flags(int flag)
2611{
2612	if ((flag & O_ACCMODE) == 3)
2613		flag--;
2614	return flag;
2615}
2616
2617static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2618{
2619	int error = security_path_mknod(dir, dentry, mode, 0);
2620	if (error)
2621		return error;
2622
2623	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2624	if (error)
2625		return error;
2626
2627	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2628}
2629
2630/*
2631 * Attempt to atomically look up, create and open a file from a negative
2632 * dentry.
2633 *
2634 * Returns 0 if successful.  The file will have been created and attached to
2635 * @file by the filesystem calling finish_open().
2636 *
2637 * Returns 1 if the file was looked up only or didn't need creating.  The
2638 * caller will need to perform the open themselves.  @path will have been
2639 * updated to point to the new dentry.  This may be negative.
2640 *
2641 * Returns an error code otherwise.
2642 */
2643static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2644			struct path *path, struct file *file,
2645			const struct open_flags *op,
2646			bool got_write, bool need_lookup,
2647			int *opened)
2648{
2649	struct inode *dir =  nd->path.dentry->d_inode;
2650	unsigned open_flag = open_to_namei_flags(op->open_flag);
2651	umode_t mode;
2652	int error;
2653	int acc_mode;
2654	int create_error = 0;
2655	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2656	bool excl;
2657
2658	BUG_ON(dentry->d_inode);
2659
2660	/* Don't create child dentry for a dead directory. */
2661	if (unlikely(IS_DEADDIR(dir))) {
2662		error = -ENOENT;
2663		goto out;
2664	}
2665
2666	mode = op->mode;
2667	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2668		mode &= ~current_umask();
2669
2670	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2671	if (excl)
2672		open_flag &= ~O_TRUNC;
2673
2674	/*
2675	 * Checking write permission is tricky, bacuse we don't know if we are
2676	 * going to actually need it: O_CREAT opens should work as long as the
2677	 * file exists.  But checking existence breaks atomicity.  The trick is
2678	 * to check access and if not granted clear O_CREAT from the flags.
2679	 *
2680	 * Another problem is returing the "right" error value (e.g. for an
2681	 * O_EXCL open we want to return EEXIST not EROFS).
2682	 */
2683	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2684	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2685		if (!(open_flag & O_CREAT)) {
2686			/*
2687			 * No O_CREATE -> atomicity not a requirement -> fall
2688			 * back to lookup + open
2689			 */
2690			goto no_open;
2691		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2692			/* Fall back and fail with the right error */
2693			create_error = -EROFS;
2694			goto no_open;
2695		} else {
2696			/* No side effects, safe to clear O_CREAT */
2697			create_error = -EROFS;
2698			open_flag &= ~O_CREAT;
2699		}
2700	}
2701
2702	if (open_flag & O_CREAT) {
2703		error = may_o_create(&nd->path, dentry, mode);
2704		if (error) {
2705			create_error = error;
2706			if (open_flag & O_EXCL)
2707				goto no_open;
2708			open_flag &= ~O_CREAT;
2709		}
2710	}
2711
2712	if (nd->flags & LOOKUP_DIRECTORY)
2713		open_flag |= O_DIRECTORY;
2714
2715	file->f_path.dentry = DENTRY_NOT_SET;
2716	file->f_path.mnt = nd->path.mnt;
2717	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2718				      opened);
2719	if (error < 0) {
2720		if (create_error && error == -ENOENT)
2721			error = create_error;
2722		goto out;
2723	}
2724
2725	if (error) {	/* returned 1, that is */
2726		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2727			error = -EIO;
2728			goto out;
2729		}
2730		if (file->f_path.dentry) {
2731			dput(dentry);
2732			dentry = file->f_path.dentry;
2733		}
2734		if (*opened & FILE_CREATED)
2735			fsnotify_create(dir, dentry);
2736		if (!dentry->d_inode) {
2737			WARN_ON(*opened & FILE_CREATED);
2738			if (create_error) {
2739				error = create_error;
2740				goto out;
2741			}
2742		} else {
2743			if (excl && !(*opened & FILE_CREATED)) {
2744				error = -EEXIST;
2745				goto out;
2746			}
2747		}
2748		goto looked_up;
2749	}
2750
2751	/*
2752	 * We didn't have the inode before the open, so check open permission
2753	 * here.
2754	 */
2755	acc_mode = op->acc_mode;
2756	if (*opened & FILE_CREATED) {
2757		WARN_ON(!(open_flag & O_CREAT));
2758		fsnotify_create(dir, dentry);
2759		acc_mode = MAY_OPEN;
2760	}
2761	error = may_open(&file->f_path, acc_mode, open_flag);
2762	if (error)
2763		fput(file);
2764
2765out:
2766	dput(dentry);
2767	return error;
2768
2769no_open:
2770	if (need_lookup) {
2771		dentry = lookup_real(dir, dentry, nd->flags);
2772		if (IS_ERR(dentry))
2773			return PTR_ERR(dentry);
2774
2775		if (create_error) {
2776			int open_flag = op->open_flag;
2777
2778			error = create_error;
2779			if ((open_flag & O_EXCL)) {
2780				if (!dentry->d_inode)
2781					goto out;
2782			} else if (!dentry->d_inode) {
2783				goto out;
2784			} else if ((open_flag & O_TRUNC) &&
2785				   S_ISREG(dentry->d_inode->i_mode)) {
2786				goto out;
2787			}
2788			/* will fail later, go on to get the right error */
2789		}
2790	}
2791looked_up:
2792	path->dentry = dentry;
2793	path->mnt = nd->path.mnt;
2794	return 1;
2795}
2796
2797/*
2798 * Look up and maybe create and open the last component.
2799 *
2800 * Must be called with i_mutex held on parent.
2801 *
2802 * Returns 0 if the file was successfully atomically created (if necessary) and
2803 * opened.  In this case the file will be returned attached to @file.
2804 *
2805 * Returns 1 if the file was not completely opened at this time, though lookups
2806 * and creations will have been performed and the dentry returned in @path will
2807 * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2808 * specified then a negative dentry may be returned.
2809 *
2810 * An error code is returned otherwise.
2811 *
2812 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2813 * cleared otherwise prior to returning.
2814 */
2815static int lookup_open(struct nameidata *nd, struct path *path,
2816			struct file *file,
2817			const struct open_flags *op,
2818			bool got_write, int *opened)
2819{
2820	struct dentry *dir = nd->path.dentry;
2821	struct inode *dir_inode = dir->d_inode;
2822	struct dentry *dentry;
2823	int error;
2824	bool need_lookup;
2825
2826	*opened &= ~FILE_CREATED;
2827	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2828	if (IS_ERR(dentry))
2829		return PTR_ERR(dentry);
2830
2831	/* Cached positive dentry: will open in f_op->open */
2832	if (!need_lookup && dentry->d_inode)
2833		goto out_no_open;
2834
2835	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2836		return atomic_open(nd, dentry, path, file, op, got_write,
2837				   need_lookup, opened);
2838	}
2839
2840	if (need_lookup) {
2841		BUG_ON(dentry->d_inode);
2842
2843		dentry = lookup_real(dir_inode, dentry, nd->flags);
2844		if (IS_ERR(dentry))
2845			return PTR_ERR(dentry);
2846	}
2847
2848	/* Negative dentry, just create the file */
2849	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2850		umode_t mode = op->mode;
2851		if (!IS_POSIXACL(dir->d_inode))
2852			mode &= ~current_umask();
2853		/*
2854		 * This write is needed to ensure that a
2855		 * rw->ro transition does not occur between
2856		 * the time when the file is created and when
2857		 * a permanent write count is taken through
2858		 * the 'struct file' in finish_open().
2859		 */
2860		if (!got_write) {
2861			error = -EROFS;
2862			goto out_dput;
2863		}
2864		*opened |= FILE_CREATED;
2865		error = security_path_mknod(&nd->path, dentry, mode, 0);
2866		if (error)
2867			goto out_dput;
2868		error = vfs_create(dir->d_inode, dentry, mode,
2869				   nd->flags & LOOKUP_EXCL);
2870		if (error)
2871			goto out_dput;
2872	}
2873out_no_open:
2874	path->dentry = dentry;
2875	path->mnt = nd->path.mnt;
2876	return 1;
2877
2878out_dput:
2879	dput(dentry);
2880	return error;
2881}
2882
2883/*
2884 * Handle the last step of open()
2885 */
2886static int do_last(struct nameidata *nd, struct path *path,
2887		   struct file *file, const struct open_flags *op,
2888		   int *opened, struct filename *name)
2889{
2890	struct dentry *dir = nd->path.dentry;
2891	int open_flag = op->open_flag;
2892	bool will_truncate = (open_flag & O_TRUNC) != 0;
2893	bool got_write = false;
2894	int acc_mode = op->acc_mode;
2895	struct inode *inode;
2896	bool symlink_ok = false;
2897	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2898	bool retried = false;
2899	int error;
2900
2901	nd->flags &= ~LOOKUP_PARENT;
2902	nd->flags |= op->intent;
2903
2904	if (nd->last_type != LAST_NORM) {
2905		error = handle_dots(nd, nd->last_type);
2906		if (error)
2907			return error;
2908		goto finish_open;
2909	}
2910
2911	if (!(open_flag & O_CREAT)) {
2912		if (nd->last.name[nd->last.len])
2913			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2914		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2915			symlink_ok = true;
2916		/* we _can_ be in RCU mode here */
2917		error = lookup_fast(nd, path, &inode);
2918		if (likely(!error))
2919			goto finish_lookup;
2920
2921		if (error < 0)
2922			goto out;
2923
2924		BUG_ON(nd->inode != dir->d_inode);
2925	} else {
2926		/* create side of things */
2927		/*
2928		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2929		 * has been cleared when we got to the last component we are
2930		 * about to look up
2931		 */
2932		error = complete_walk(nd);
2933		if (error)
2934			return error;
2935
2936		audit_inode(name, dir, LOOKUP_PARENT);
2937		error = -EISDIR;
2938		/* trailing slashes? */
2939		if (nd->last.name[nd->last.len])
2940			goto out;
2941	}
2942
2943retry_lookup:
2944	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2945		error = mnt_want_write(nd->path.mnt);
2946		if (!error)
2947			got_write = true;
2948		/*
2949		 * do _not_ fail yet - we might not need that or fail with
2950		 * a different error; let lookup_open() decide; we'll be
2951		 * dropping this one anyway.
2952		 */
2953	}
2954	mutex_lock(&dir->d_inode->i_mutex);
2955	error = lookup_open(nd, path, file, op, got_write, opened);
2956	mutex_unlock(&dir->d_inode->i_mutex);
2957
2958	if (error <= 0) {
2959		if (error)
2960			goto out;
2961
2962		if ((*opened & FILE_CREATED) ||
2963		    !S_ISREG(file_inode(file)->i_mode))
2964			will_truncate = false;
2965
2966		audit_inode(name, file->f_path.dentry, 0);
2967		goto opened;
2968	}
2969
2970	if (*opened & FILE_CREATED) {
2971		/* Don't check for write permission, don't truncate */
2972		open_flag &= ~O_TRUNC;
2973		will_truncate = false;
2974		acc_mode = MAY_OPEN;
2975		path_to_nameidata(path, nd);
2976		goto finish_open_created;
2977	}
2978
2979	/*
2980	 * create/update audit record if it already exists.
2981	 */
2982	if (d_is_positive(path->dentry))
2983		audit_inode(name, path->dentry, 0);
2984
2985	/*
2986	 * If atomic_open() acquired write access it is dropped now due to
2987	 * possible mount and symlink following (this might be optimized away if
2988	 * necessary...)
2989	 */
2990	if (got_write) {
2991		mnt_drop_write(nd->path.mnt);
2992		got_write = false;
2993	}
2994
2995	error = -EEXIST;
2996	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2997		goto exit_dput;
2998
2999	error = follow_managed(path, nd->flags);
3000	if (error < 0)
3001		goto exit_dput;
3002
3003	if (error)
3004		nd->flags |= LOOKUP_JUMPED;
3005
3006	BUG_ON(nd->flags & LOOKUP_RCU);
3007	inode = path->dentry->d_inode;
3008finish_lookup:
3009	/* we _can_ be in RCU mode here */
3010	error = -ENOENT;
3011	if (!inode || d_is_negative(path->dentry)) {
3012		path_to_nameidata(path, nd);
3013		goto out;
3014	}
3015
3016	if (should_follow_link(path->dentry, !symlink_ok)) {
3017		if (nd->flags & LOOKUP_RCU) {
3018			if (unlikely(unlazy_walk(nd, path->dentry))) {
3019				error = -ECHILD;
3020				goto out;
3021			}
3022		}
3023		BUG_ON(inode != path->dentry->d_inode);
3024		return 1;
3025	}
3026
3027	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3028		path_to_nameidata(path, nd);
3029	} else {
3030		save_parent.dentry = nd->path.dentry;
3031		save_parent.mnt = mntget(path->mnt);
3032		nd->path.dentry = path->dentry;
3033
3034	}
3035	nd->inode = inode;
3036	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3037finish_open:
3038	error = complete_walk(nd);
3039	if (error) {
3040		path_put(&save_parent);
3041		return error;
3042	}
3043	audit_inode(name, nd->path.dentry, 0);
3044	error = -EISDIR;
3045	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3046		goto out;
3047	error = -ENOTDIR;
3048	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3049		goto out;
3050	if (!S_ISREG(nd->inode->i_mode))
3051		will_truncate = false;
3052
3053	if (will_truncate) {
3054		error = mnt_want_write(nd->path.mnt);
3055		if (error)
3056			goto out;
3057		got_write = true;
3058	}
3059finish_open_created:
3060	error = may_open(&nd->path, acc_mode, open_flag);
3061	if (error)
3062		goto out;
3063
3064	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3065	error = vfs_open(&nd->path, file, current_cred());
3066	if (!error) {
3067		*opened |= FILE_OPENED;
3068	} else {
3069		if (error == -EOPENSTALE)
3070			goto stale_open;
3071		goto out;
3072	}
3073opened:
3074	error = open_check_o_direct(file);
3075	if (error)
3076		goto exit_fput;
3077	error = ima_file_check(file, op->acc_mode, *opened);
3078	if (error)
3079		goto exit_fput;
3080
3081	if (will_truncate) {
3082		error = handle_truncate(file);
3083		if (error)
3084			goto exit_fput;
3085	}
3086out:
3087	if (got_write)
3088		mnt_drop_write(nd->path.mnt);
3089	path_put(&save_parent);
3090	terminate_walk(nd);
3091	return error;
3092
3093exit_dput:
3094	path_put_conditional(path, nd);
3095	goto out;
3096exit_fput:
3097	fput(file);
3098	goto out;
3099
3100stale_open:
3101	/* If no saved parent or already retried then can't retry */
3102	if (!save_parent.dentry || retried)
3103		goto out;
3104
3105	BUG_ON(save_parent.dentry != dir);
3106	path_put(&nd->path);
3107	nd->path = save_parent;
3108	nd->inode = dir->d_inode;
3109	save_parent.mnt = NULL;
3110	save_parent.dentry = NULL;
3111	if (got_write) {
3112		mnt_drop_write(nd->path.mnt);
3113		got_write = false;
3114	}
3115	retried = true;
3116	goto retry_lookup;
3117}
3118
3119static int do_tmpfile(int dfd, struct filename *pathname,
3120		struct nameidata *nd, int flags,
3121		const struct open_flags *op,
3122		struct file *file, int *opened)
3123{
3124	static const struct qstr name = QSTR_INIT("/", 1);
3125	struct dentry *dentry, *child;
3126	struct inode *dir;
3127	int error = path_lookupat(dfd, pathname->name,
3128				  flags | LOOKUP_DIRECTORY, nd);
3129	if (unlikely(error))
3130		return error;
3131	error = mnt_want_write(nd->path.mnt);
3132	if (unlikely(error))
3133		goto out;
3134	/* we want directory to be writable */
3135	error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3136	if (error)
3137		goto out2;
3138	dentry = nd->path.dentry;
3139	dir = dentry->d_inode;
3140	if (!dir->i_op->tmpfile) {
3141		error = -EOPNOTSUPP;
3142		goto out2;
3143	}
3144	child = d_alloc(dentry, &name);
3145	if (unlikely(!child)) {
3146		error = -ENOMEM;
3147		goto out2;
3148	}
3149	nd->flags &= ~LOOKUP_DIRECTORY;
3150	nd->flags |= op->intent;
3151	dput(nd->path.dentry);
3152	nd->path.dentry = child;
3153	error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3154	if (error)
3155		goto out2;
3156	audit_inode(pathname, nd->path.dentry, 0);
3157	/* Don't check for other permissions, the inode was just created */
3158	error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3159	if (error)
3160		goto out2;
3161	file->f_path.mnt = nd->path.mnt;
3162	error = finish_open(file, nd->path.dentry, NULL, opened);
3163	if (error)
3164		goto out2;
3165	error = open_check_o_direct(file);
3166	if (error) {
3167		fput(file);
3168	} else if (!(op->open_flag & O_EXCL)) {
3169		struct inode *inode = file_inode(file);
3170		spin_lock(&inode->i_lock);
3171		inode->i_state |= I_LINKABLE;
3172		spin_unlock(&inode->i_lock);
3173	}
3174out2:
3175	mnt_drop_write(nd->path.mnt);
3176out:
3177	path_put(&nd->path);
3178	return error;
3179}
3180
3181static struct file *path_openat(int dfd, struct filename *pathname,
3182		struct nameidata *nd, const struct open_flags *op, int flags)
3183{
3184	struct file *base = NULL;
3185	struct file *file;
3186	struct path path;
3187	int opened = 0;
3188	int error;
3189
3190	file = get_empty_filp();
3191	if (IS_ERR(file))
3192		return file;
3193
3194	file->f_flags = op->open_flag;
3195
3196	if (unlikely(file->f_flags & __O_TMPFILE)) {
3197		error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3198		goto out;
3199	}
3200
3201	error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3202	if (unlikely(error))
3203		goto out;
3204
3205	current->total_link_count = 0;
3206	error = link_path_walk(pathname->name, nd);
3207	if (unlikely(error))
3208		goto out;
3209
3210	error = do_last(nd, &path, file, op, &opened, pathname);
3211	while (unlikely(error > 0)) { /* trailing symlink */
3212		struct path link = path;
3213		void *cookie;
3214		if (!(nd->flags & LOOKUP_FOLLOW)) {
3215			path_put_conditional(&path, nd);
3216			path_put(&nd->path);
3217			error = -ELOOP;
3218			break;
3219		}
3220		error = may_follow_link(&link, nd);
3221		if (unlikely(error))
3222			break;
3223		nd->flags |= LOOKUP_PARENT;
3224		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3225		error = follow_link(&link, nd, &cookie);
3226		if (unlikely(error))
3227			break;
3228		error = do_last(nd, &path, file, op, &opened, pathname);
3229		put_link(nd, &link, cookie);
3230	}
3231out:
3232	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3233		path_put(&nd->root);
3234	if (base)
3235		fput(base);
3236	if (!(opened & FILE_OPENED)) {
3237		BUG_ON(!error);
3238		put_filp(file);
3239	}
3240	if (unlikely(error)) {
3241		if (error == -EOPENSTALE) {
3242			if (flags & LOOKUP_RCU)
3243				error = -ECHILD;
3244			else
3245				error = -ESTALE;
3246		}
3247		file = ERR_PTR(error);
3248	}
3249	return file;
3250}
3251
3252struct file *do_filp_open(int dfd, struct filename *pathname,
3253		const struct open_flags *op)
3254{
3255	struct nameidata nd;
3256	int flags = op->lookup_flags;
3257	struct file *filp;
3258
3259	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3260	if (unlikely(filp == ERR_PTR(-ECHILD)))
3261		filp = path_openat(dfd, pathname, &nd, op, flags);
3262	if (unlikely(filp == ERR_PTR(-ESTALE)))
3263		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3264	return filp;
3265}
3266
3267struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3268		const char *name, const struct open_flags *op)
3269{
3270	struct nameidata nd;
3271	struct file *file;
3272	struct filename filename = { .name = name };
3273	int flags = op->lookup_flags | LOOKUP_ROOT;
3274
3275	nd.root.mnt = mnt;
3276	nd.root.dentry = dentry;
3277
3278	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3279		return ERR_PTR(-ELOOP);
3280
3281	file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3282	if (unlikely(file == ERR_PTR(-ECHILD)))
3283		file = path_openat(-1, &filename, &nd, op, flags);
3284	if (unlikely(file == ERR_PTR(-ESTALE)))
3285		file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3286	return file;
3287}
3288
3289struct dentry *kern_path_create(int dfd, const char *pathname,
3290				struct path *path, unsigned int lookup_flags)
3291{
3292	struct dentry *dentry = ERR_PTR(-EEXIST);
3293	struct nameidata nd;
3294	int err2;
3295	int error;
3296	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3297
3298	/*
3299	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3300	 * other flags passed in are ignored!
3301	 */
3302	lookup_flags &= LOOKUP_REVAL;
3303
3304	error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3305	if (error)
3306		return ERR_PTR(error);
3307
3308	/*
3309	 * Yucky last component or no last component at all?
3310	 * (foo/., foo/.., /////)
3311	 */
3312	if (nd.last_type != LAST_NORM)
3313		goto out;
3314	nd.flags &= ~LOOKUP_PARENT;
3315	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3316
3317	/* don't fail immediately if it's r/o, at least try to report other errors */
3318	err2 = mnt_want_write(nd.path.mnt);
3319	/*
3320	 * Do the final lookup.
3321	 */
3322	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3323	dentry = lookup_hash(&nd);
3324	if (IS_ERR(dentry))
3325		goto unlock;
3326
3327	error = -EEXIST;
3328	if (d_is_positive(dentry))
3329		goto fail;
3330
3331	/*
3332	 * Special case - lookup gave negative, but... we had foo/bar/
3333	 * From the vfs_mknod() POV we just have a negative dentry -
3334	 * all is fine. Let's be bastards - you had / on the end, you've
3335	 * been asking for (non-existent) directory. -ENOENT for you.
3336	 */
3337	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3338		error = -ENOENT;
3339		goto fail;
3340	}
3341	if (unlikely(err2)) {
3342		error = err2;
3343		goto fail;
3344	}
3345	*path = nd.path;
3346	return dentry;
3347fail:
3348	dput(dentry);
3349	dentry = ERR_PTR(error);
3350unlock:
3351	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3352	if (!err2)
3353		mnt_drop_write(nd.path.mnt);
3354out:
3355	path_put(&nd.path);
3356	return dentry;
3357}
3358EXPORT_SYMBOL(kern_path_create);
3359
3360void done_path_create(struct path *path, struct dentry *dentry)
3361{
3362	dput(dentry);
3363	mutex_unlock(&path->dentry->d_inode->i_mutex);
3364	mnt_drop_write(path->mnt);
3365	path_put(path);
3366}
3367EXPORT_SYMBOL(done_path_create);
3368
3369struct dentry *user_path_create(int dfd, const char __user *pathname,
3370				struct path *path, unsigned int lookup_flags)
3371{
3372	struct filename *tmp = getname(pathname);
3373	struct dentry *res;
3374	if (IS_ERR(tmp))
3375		return ERR_CAST(tmp);
3376	res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3377	putname(tmp);
3378	return res;
3379}
3380EXPORT_SYMBOL(user_path_create);
3381
3382int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3383{
3384	int error = may_create(dir, dentry);
3385
3386	if (error)
3387		return error;
3388
3389	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3390		return -EPERM;
3391
3392	if (!dir->i_op->mknod)
3393		return -EPERM;
3394
3395	error = devcgroup_inode_mknod(mode, dev);
3396	if (error)
3397		return error;
3398
3399	error = security_inode_mknod(dir, dentry, mode, dev);
3400	if (error)
3401		return error;
3402
3403	error = dir->i_op->mknod(dir, dentry, mode, dev);
3404	if (!error)
3405		fsnotify_create(dir, dentry);
3406	return error;
3407}
3408EXPORT_SYMBOL(vfs_mknod);
3409
3410static int may_mknod(umode_t mode)
3411{
3412	switch (mode & S_IFMT) {
3413	case S_IFREG:
3414	case S_IFCHR:
3415	case S_IFBLK:
3416	case S_IFIFO:
3417	case S_IFSOCK:
3418	case 0: /* zero mode translates to S_IFREG */
3419		return 0;
3420	case S_IFDIR:
3421		return -EPERM;
3422	default:
3423		return -EINVAL;
3424	}
3425}
3426
3427SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3428		unsigned, dev)
3429{
3430	struct dentry *dentry;
3431	struct path path;
3432	int error;
3433	unsigned int lookup_flags = 0;
3434
3435	error = may_mknod(mode);
3436	if (error)
3437		return error;
3438retry:
3439	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3440	if (IS_ERR(dentry))
3441		return PTR_ERR(dentry);
3442
3443	if (!IS_POSIXACL(path.dentry->d_inode))
3444		mode &= ~current_umask();
3445	error = security_path_mknod(&path, dentry, mode, dev);
3446	if (error)
3447		goto out;
3448	switch (mode & S_IFMT) {
3449		case 0: case S_IFREG:
3450			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3451			break;
3452		case S_IFCHR: case S_IFBLK:
3453			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3454					new_decode_dev(dev));
3455			break;
3456		case S_IFIFO: case S_IFSOCK:
3457			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3458			break;
3459	}
3460out:
3461	done_path_create(&path, dentry);
3462	if (retry_estale(error, lookup_flags)) {
3463		lookup_flags |= LOOKUP_REVAL;
3464		goto retry;
3465	}
3466	return error;
3467}
3468
3469SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3470{
3471	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3472}
3473
3474int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3475{
3476	int error = may_create(dir, dentry);
3477	unsigned max_links = dir->i_sb->s_max_links;
3478
3479	if (error)
3480		return error;
3481
3482	if (!dir->i_op->mkdir)
3483		return -EPERM;
3484
3485	mode &= (S_IRWXUGO|S_ISVTX);
3486	error = security_inode_mkdir(dir, dentry, mode);
3487	if (error)
3488		return error;
3489
3490	if (max_links && dir->i_nlink >= max_links)
3491		return -EMLINK;
3492
3493	error = dir->i_op->mkdir(dir, dentry, mode);
3494	if (!error)
3495		fsnotify_mkdir(dir, dentry);
3496	return error;
3497}
3498EXPORT_SYMBOL(vfs_mkdir);
3499
3500SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3501{
3502	struct dentry *dentry;
3503	struct path path;
3504	int error;
3505	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3506
3507retry:
3508	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3509	if (IS_ERR(dentry))
3510		return PTR_ERR(dentry);
3511
3512	if (!IS_POSIXACL(path.dentry->d_inode))
3513		mode &= ~current_umask();
3514	error = security_path_mkdir(&path, dentry, mode);
3515	if (!error)
3516		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3517	done_path_create(&path, dentry);
3518	if (retry_estale(error, lookup_flags)) {
3519		lookup_flags |= LOOKUP_REVAL;
3520		goto retry;
3521	}
3522	return error;
3523}
3524
3525SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3526{
3527	return sys_mkdirat(AT_FDCWD, pathname, mode);
3528}
3529
3530/*
3531 * The dentry_unhash() helper will try to drop the dentry early: we
3532 * should have a usage count of 1 if we're the only user of this
3533 * dentry, and if that is true (possibly after pruning the dcache),
3534 * then we drop the dentry now.
3535 *
3536 * A low-level filesystem can, if it choses, legally
3537 * do a
3538 *
3539 *	if (!d_unhashed(dentry))
3540 *		return -EBUSY;
3541 *
3542 * if it cannot handle the case of removing a directory
3543 * that is still in use by something else..
3544 */
3545void dentry_unhash(struct dentry *dentry)
3546{
3547	shrink_dcache_parent(dentry);
3548	spin_lock(&dentry->d_lock);
3549	if (dentry->d_lockref.count == 1)
3550		__d_drop(dentry);
3551	spin_unlock(&dentry->d_lock);
3552}
3553EXPORT_SYMBOL(dentry_unhash);
3554
3555int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3556{
3557	int error = may_delete(dir, dentry, 1);
3558
3559	if (error)
3560		return error;
3561
3562	if (!dir->i_op->rmdir)
3563		return -EPERM;
3564
3565	dget(dentry);
3566	mutex_lock(&dentry->d_inode->i_mutex);
3567
3568	error = -EBUSY;
3569	if (is_local_mountpoint(dentry))
3570		goto out;
3571
3572	error = security_inode_rmdir(dir, dentry);
3573	if (error)
3574		goto out;
3575
3576	shrink_dcache_parent(dentry);
3577	error = dir->i_op->rmdir(dir, dentry);
3578	if (error)
3579		goto out;
3580
3581	dentry->d_inode->i_flags |= S_DEAD;
3582	dont_mount(dentry);
3583	detach_mounts(dentry);
3584
3585out:
3586	mutex_unlock(&dentry->d_inode->i_mutex);
3587	dput(dentry);
3588	if (!error)
3589		d_delete(dentry);
3590	return error;
3591}
3592EXPORT_SYMBOL(vfs_rmdir);
3593
3594static long do_rmdir(int dfd, const char __user *pathname)
3595{
3596	int error = 0;
3597	struct filename *name;
3598	struct dentry *dentry;
3599	struct nameidata nd;
3600	unsigned int lookup_flags = 0;
3601retry:
3602	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3603	if (IS_ERR(name))
3604		return PTR_ERR(name);
3605
3606	switch(nd.last_type) {
3607	case LAST_DOTDOT:
3608		error = -ENOTEMPTY;
3609		goto exit1;
3610	case LAST_DOT:
3611		error = -EINVAL;
3612		goto exit1;
3613	case LAST_ROOT:
3614		error = -EBUSY;
3615		goto exit1;
3616	}
3617
3618	nd.flags &= ~LOOKUP_PARENT;
3619	error = mnt_want_write(nd.path.mnt);
3620	if (error)
3621		goto exit1;
3622
3623	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3624	dentry = lookup_hash(&nd);
3625	error = PTR_ERR(dentry);
3626	if (IS_ERR(dentry))
3627		goto exit2;
3628	if (!dentry->d_inode) {
3629		error = -ENOENT;
3630		goto exit3;
3631	}
3632	error = security_path_rmdir(&nd.path, dentry);
3633	if (error)
3634		goto exit3;
3635	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3636exit3:
3637	dput(dentry);
3638exit2:
3639	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3640	mnt_drop_write(nd.path.mnt);
3641exit1:
3642	path_put(&nd.path);
3643	putname(name);
3644	if (retry_estale(error, lookup_flags)) {
3645		lookup_flags |= LOOKUP_REVAL;
3646		goto retry;
3647	}
3648	return error;
3649}
3650
3651SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3652{
3653	return do_rmdir(AT_FDCWD, pathname);
3654}
3655
3656/**
3657 * vfs_unlink - unlink a filesystem object
3658 * @dir:	parent directory
3659 * @dentry:	victim
3660 * @delegated_inode: returns victim inode, if the inode is delegated.
3661 *
3662 * The caller must hold dir->i_mutex.
3663 *
3664 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3665 * return a reference to the inode in delegated_inode.  The caller
3666 * should then break the delegation on that inode and retry.  Because
3667 * breaking a delegation may take a long time, the caller should drop
3668 * dir->i_mutex before doing so.
3669 *
3670 * Alternatively, a caller may pass NULL for delegated_inode.  This may
3671 * be appropriate for callers that expect the underlying filesystem not
3672 * to be NFS exported.
3673 */
3674int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3675{
3676	struct inode *target = dentry->d_inode;
3677	int error = may_delete(dir, dentry, 0);
3678
3679	if (error)
3680		return error;
3681
3682	if (!dir->i_op->unlink)
3683		return -EPERM;
3684
3685	mutex_lock(&target->i_mutex);
3686	if (is_local_mountpoint(dentry))
3687		error = -EBUSY;
3688	else {
3689		error = security_inode_unlink(dir, dentry);
3690		if (!error) {
3691			error = try_break_deleg(target, delegated_inode);
3692			if (error)
3693				goto out;
3694			error = dir->i_op->unlink(dir, dentry);
3695			if (!error) {
3696				dont_mount(dentry);
3697				detach_mounts(dentry);
3698			}
3699		}
3700	}
3701out:
3702	mutex_unlock(&target->i_mutex);
3703
3704	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3705	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3706		fsnotify_link_count(target);
3707		d_delete(dentry);
3708	}
3709
3710	return error;
3711}
3712EXPORT_SYMBOL(vfs_unlink);
3713
3714/*
3715 * Make sure that the actual truncation of the file will occur outside its
3716 * directory's i_mutex.  Truncate can take a long time if there is a lot of
3717 * writeout happening, and we don't want to prevent access to the directory
3718 * while waiting on the I/O.
3719 */
3720static long do_unlinkat(int dfd, const char __user *pathname)
3721{
3722	int error;
3723	struct filename *name;
3724	struct dentry *dentry;
3725	struct nameidata nd;
3726	struct inode *inode = NULL;
3727	struct inode *delegated_inode = NULL;
3728	unsigned int lookup_flags = 0;
3729retry:
3730	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3731	if (IS_ERR(name))
3732		return PTR_ERR(name);
3733
3734	error = -EISDIR;
3735	if (nd.last_type != LAST_NORM)
3736		goto exit1;
3737
3738	nd.flags &= ~LOOKUP_PARENT;
3739	error = mnt_want_write(nd.path.mnt);
3740	if (error)
3741		goto exit1;
3742retry_deleg:
3743	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3744	dentry = lookup_hash(&nd);
3745	error = PTR_ERR(dentry);
3746	if (!IS_ERR(dentry)) {
3747		/* Why not before? Because we want correct error value */
3748		if (nd.last.name[nd.last.len])
3749			goto slashes;
3750		inode = dentry->d_inode;
3751		if (d_is_negative(dentry))
3752			goto slashes;
3753		ihold(inode);
3754		error = security_path_unlink(&nd.path, dentry);
3755		if (error)
3756			goto exit2;
3757		error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3758exit2:
3759		dput(dentry);
3760	}
3761	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3762	if (inode)
3763		iput(inode);	/* truncate the inode here */
3764	inode = NULL;
3765	if (delegated_inode) {
3766		error = break_deleg_wait(&delegated_inode);
3767		if (!error)
3768			goto retry_deleg;
3769	}
3770	mnt_drop_write(nd.path.mnt);
3771exit1:
3772	path_put(&nd.path);
3773	putname(name);
3774	if (retry_estale(error, lookup_flags)) {
3775		lookup_flags |= LOOKUP_REVAL;
3776		inode = NULL;
3777		goto retry;
3778	}
3779	return error;
3780
3781slashes:
3782	if (d_is_negative(dentry))
3783		error = -ENOENT;
3784	else if (d_is_dir(dentry))
3785		error = -EISDIR;
3786	else
3787		error = -ENOTDIR;
3788	goto exit2;
3789}
3790
3791SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3792{
3793	if ((flag & ~AT_REMOVEDIR) != 0)
3794		return -EINVAL;
3795
3796	if (flag & AT_REMOVEDIR)
3797		return do_rmdir(dfd, pathname);
3798
3799	return do_unlinkat(dfd, pathname);
3800}
3801
3802SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3803{
3804	return do_unlinkat(AT_FDCWD, pathname);
3805}
3806
3807int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3808{
3809	int error = may_create(dir, dentry);
3810
3811	if (error)
3812		return error;
3813
3814	if (!dir->i_op->symlink)
3815		return -EPERM;
3816
3817	error = security_inode_symlink(dir, dentry, oldname);
3818	if (error)
3819		return error;
3820
3821	error = dir->i_op->symlink(dir, dentry, oldname);
3822	if (!error)
3823		fsnotify_create(dir, dentry);
3824	return error;
3825}
3826EXPORT_SYMBOL(vfs_symlink);
3827
3828SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3829		int, newdfd, const char __user *, newname)
3830{
3831	int error;
3832	struct filename *from;
3833	struct dentry *dentry;
3834	struct path path;
3835	unsigned int lookup_flags = 0;
3836
3837	from = getname(oldname);
3838	if (IS_ERR(from))
3839		return PTR_ERR(from);
3840retry:
3841	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3842	error = PTR_ERR(dentry);
3843	if (IS_ERR(dentry))
3844		goto out_putname;
3845
3846	error = security_path_symlink(&path, dentry, from->name);
3847	if (!error)
3848		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3849	done_path_create(&path, dentry);
3850	if (retry_estale(error, lookup_flags)) {
3851		lookup_flags |= LOOKUP_REVAL;
3852		goto retry;
3853	}
3854out_putname:
3855	putname(from);
3856	return error;
3857}
3858
3859SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3860{
3861	return sys_symlinkat(oldname, AT_FDCWD, newname);
3862}
3863
3864/**
3865 * vfs_link - create a new link
3866 * @old_dentry:	object to be linked
3867 * @dir:	new parent
3868 * @new_dentry:	where to create the new link
3869 * @delegated_inode: returns inode needing a delegation break
3870 *
3871 * The caller must hold dir->i_mutex
3872 *
3873 * If vfs_link discovers a delegation on the to-be-linked file in need
3874 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3875 * inode in delegated_inode.  The caller should then break the delegation
3876 * and retry.  Because breaking a delegation may take a long time, the
3877 * caller should drop the i_mutex before doing so.
3878 *
3879 * Alternatively, a caller may pass NULL for delegated_inode.  This may
3880 * be appropriate for callers that expect the underlying filesystem not
3881 * to be NFS exported.
3882 */
3883int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3884{
3885	struct inode *inode = old_dentry->d_inode;
3886	unsigned max_links = dir->i_sb->s_max_links;
3887	int error;
3888
3889	if (!inode)
3890		return -ENOENT;
3891
3892	error = may_create(dir, new_dentry);
3893	if (error)
3894		return error;
3895
3896	if (dir->i_sb != inode->i_sb)
3897		return -EXDEV;
3898
3899	/*
3900	 * A link to an append-only or immutable file cannot be created.
3901	 */
3902	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3903		return -EPERM;
3904	if (!dir->i_op->link)
3905		return -EPERM;
3906	if (S_ISDIR(inode->i_mode))
3907		return -EPERM;
3908
3909	error = security_inode_link(old_dentry, dir, new_dentry);
3910	if (error)
3911		return error;
3912
3913	mutex_lock(&inode->i_mutex);
3914	/* Make sure we don't allow creating hardlink to an unlinked file */
3915	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3916		error =  -ENOENT;
3917	else if (max_links && inode->i_nlink >= max_links)
3918		error = -EMLINK;
3919	else {
3920		error = try_break_deleg(inode, delegated_inode);
3921		if (!error)
3922			error = dir->i_op->link(old_dentry, dir, new_dentry);
3923	}
3924
3925	if (!error && (inode->i_state & I_LINKABLE)) {
3926		spin_lock(&inode->i_lock);
3927		inode->i_state &= ~I_LINKABLE;
3928		spin_unlock(&inode->i_lock);
3929	}
3930	mutex_unlock(&inode->i_mutex);
3931	if (!error)
3932		fsnotify_link(dir, inode, new_dentry);
3933	return error;
3934}
3935EXPORT_SYMBOL(vfs_link);
3936
3937/*
3938 * Hardlinks are often used in delicate situations.  We avoid
3939 * security-related surprises by not following symlinks on the
3940 * newname.  --KAB
3941 *
3942 * We don't follow them on the oldname either to be compatible
3943 * with linux 2.0, and to avoid hard-linking to directories
3944 * and other special files.  --ADM
3945 */
3946SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3947		int, newdfd, const char __user *, newname, int, flags)
3948{
3949	struct dentry *new_dentry;
3950	struct path old_path, new_path;
3951	struct inode *delegated_inode = NULL;
3952	int how = 0;
3953	int error;
3954
3955	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3956		return -EINVAL;
3957	/*
3958	 * To use null names we require CAP_DAC_READ_SEARCH
3959	 * This ensures that not everyone will be able to create
3960	 * handlink using the passed filedescriptor.
3961	 */
3962	if (flags & AT_EMPTY_PATH) {
3963		if (!capable(CAP_DAC_READ_SEARCH))
3964			return -ENOENT;
3965		how = LOOKUP_EMPTY;
3966	}
3967
3968	if (flags & AT_SYMLINK_FOLLOW)
3969		how |= LOOKUP_FOLLOW;
3970retry:
3971	error = user_path_at(olddfd, oldname, how, &old_path);
3972	if (error)
3973		return error;
3974
3975	new_dentry = user_path_create(newdfd, newname, &new_path,
3976					(how & LOOKUP_REVAL));
3977	error = PTR_ERR(new_dentry);
3978	if (IS_ERR(new_dentry))
3979		goto out;
3980
3981	error = -EXDEV;
3982	if (old_path.mnt != new_path.mnt)
3983		goto out_dput;
3984	error = may_linkat(&old_path);
3985	if (unlikely(error))
3986		goto out_dput;
3987	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3988	if (error)
3989		goto out_dput;
3990	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3991out_dput:
3992	done_path_create(&new_path, new_dentry);
3993	if (delegated_inode) {
3994		error = break_deleg_wait(&delegated_inode);
3995		if (!error) {
3996			path_put(&old_path);
3997			goto retry;
3998		}
3999	}
4000	if (retry_estale(error, how)) {
4001		path_put(&old_path);
4002		how |= LOOKUP_REVAL;
4003		goto retry;
4004	}
4005out:
4006	path_put(&old_path);
4007
4008	return error;
4009}
4010
4011SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4012{
4013	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4014}
4015
4016/**
4017 * vfs_rename - rename a filesystem object
4018 * @old_dir:	parent of source
4019 * @old_dentry:	source
4020 * @new_dir:	parent of destination
4021 * @new_dentry:	destination
4022 * @delegated_inode: returns an inode needing a delegation break
4023 * @flags:	rename flags
4024 *
4025 * The caller must hold multiple mutexes--see lock_rename()).
4026 *
4027 * If vfs_rename discovers a delegation in need of breaking at either
4028 * the source or destination, it will return -EWOULDBLOCK and return a
4029 * reference to the inode in delegated_inode.  The caller should then
4030 * break the delegation and retry.  Because breaking a delegation may
4031 * take a long time, the caller should drop all locks before doing
4032 * so.
4033 *
4034 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4035 * be appropriate for callers that expect the underlying filesystem not
4036 * to be NFS exported.
4037 *
4038 * The worst of all namespace operations - renaming directory. "Perverted"
4039 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4040 * Problems:
4041 *	a) we can get into loop creation.
4042 *	b) race potential - two innocent renames can create a loop together.
4043 *	   That's where 4.4 screws up. Current fix: serialization on
4044 *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4045 *	   story.
4046 *	c) we have to lock _four_ objects - parents and victim (if it exists),
4047 *	   and source (if it is not a directory).
4048 *	   And that - after we got ->i_mutex on parents (until then we don't know
4049 *	   whether the target exists).  Solution: try to be smart with locking
4050 *	   order for inodes.  We rely on the fact that tree topology may change
4051 *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4052 *	   move will be locked.  Thus we can rank directories by the tree
4053 *	   (ancestors first) and rank all non-directories after them.
4054 *	   That works since everybody except rename does "lock parent, lookup,
4055 *	   lock child" and rename is under ->s_vfs_rename_mutex.
4056 *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4057 *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4058 *	   we'd better make sure that there's no link(2) for them.
4059 *	d) conversion from fhandle to dentry may come in the wrong moment - when
4060 *	   we are removing the target. Solution: we will have to grab ->i_mutex
4061 *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4062 *	   ->i_mutex on parents, which works but leads to some truly excessive
4063 *	   locking].
4064 */
4065int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4066	       struct inode *new_dir, struct dentry *new_dentry,
4067	       struct inode **delegated_inode, unsigned int flags)
4068{
4069	int error;
4070	bool is_dir = d_is_dir(old_dentry);
4071	const unsigned char *old_name;
4072	struct inode *source = old_dentry->d_inode;
4073	struct inode *target = new_dentry->d_inode;
4074	bool new_is_dir = false;
4075	unsigned max_links = new_dir->i_sb->s_max_links;
4076
4077	if (source == target)
4078		return 0;
4079
4080	error = may_delete(old_dir, old_dentry, is_dir);
4081	if (error)
4082		return error;
4083
4084	if (!target) {
4085		error = may_create(new_dir, new_dentry);
4086	} else {
4087		new_is_dir = d_is_dir(new_dentry);
4088
4089		if (!(flags & RENAME_EXCHANGE))
4090			error = may_delete(new_dir, new_dentry, is_dir);
4091		else
4092			error = may_delete(new_dir, new_dentry, new_is_dir);
4093	}
4094	if (error)
4095		return error;
4096
4097	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4098		return -EPERM;
4099
4100	if (flags && !old_dir->i_op->rename2)
4101		return -EINVAL;
4102
4103	/*
4104	 * If we are going to change the parent - check write permissions,
4105	 * we'll need to flip '..'.
4106	 */
4107	if (new_dir != old_dir) {
4108		if (is_dir) {
4109			error = inode_permission(source, MAY_WRITE);
4110			if (error)
4111				return error;
4112		}
4113		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4114			error = inode_permission(target, MAY_WRITE);
4115			if (error)
4116				return error;
4117		}
4118	}
4119
4120	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4121				      flags);
4122	if (error)
4123		return error;
4124
4125	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4126	dget(new_dentry);
4127	if (!is_dir || (flags & RENAME_EXCHANGE))
4128		lock_two_nondirectories(source, target);
4129	else if (target)
4130		mutex_lock(&target->i_mutex);
4131
4132	error = -EBUSY;
4133	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4134		goto out;
4135
4136	if (max_links && new_dir != old_dir) {
4137		error = -EMLINK;
4138		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4139			goto out;
4140		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4141		    old_dir->i_nlink >= max_links)
4142			goto out;
4143	}
4144	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4145		shrink_dcache_parent(new_dentry);
4146	if (!is_dir) {
4147		error = try_break_deleg(source, delegated_inode);
4148		if (error)
4149			goto out;
4150	}
4151	if (target && !new_is_dir) {
4152		error = try_break_deleg(target, delegated_inode);
4153		if (error)
4154			goto out;
4155	}
4156	if (!old_dir->i_op->rename2) {
4157		error = old_dir->i_op->rename(old_dir, old_dentry,
4158					      new_dir, new_dentry);
4159	} else {
4160		WARN_ON(old_dir->i_op->rename != NULL);
4161		error = old_dir->i_op->rename2(old_dir, old_dentry,
4162					       new_dir, new_dentry, flags);
4163	}
4164	if (error)
4165		goto out;
4166
4167	if (!(flags & RENAME_EXCHANGE) && target) {
4168		if (is_dir)
4169			target->i_flags |= S_DEAD;
4170		dont_mount(new_dentry);
4171		detach_mounts(new_dentry);
4172	}
4173	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4174		if (!(flags & RENAME_EXCHANGE))
4175			d_move(old_dentry, new_dentry);
4176		else
4177			d_exchange(old_dentry, new_dentry);
4178	}
4179out:
4180	if (!is_dir || (flags & RENAME_EXCHANGE))
4181		unlock_two_nondirectories(source, target);
4182	else if (target)
4183		mutex_unlock(&target->i_mutex);
4184	dput(new_dentry);
4185	if (!error) {
4186		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4187			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4188		if (flags & RENAME_EXCHANGE) {
4189			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4190				      new_is_dir, NULL, new_dentry);
4191		}
4192	}
4193	fsnotify_oldname_free(old_name);
4194
4195	return error;
4196}
4197EXPORT_SYMBOL(vfs_rename);
4198
4199SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4200		int, newdfd, const char __user *, newname, unsigned int, flags)
4201{
4202	struct dentry *old_dir, *new_dir;
4203	struct dentry *old_dentry, *new_dentry;
4204	struct dentry *trap;
4205	struct nameidata oldnd, newnd;
4206	struct inode *delegated_inode = NULL;
4207	struct filename *from;
4208	struct filename *to;
4209	unsigned int lookup_flags = 0;
4210	bool should_retry = false;
4211	int error;
4212
4213	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4214		return -EINVAL;
4215
4216	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4217	    (flags & RENAME_EXCHANGE))
4218		return -EINVAL;
4219
4220	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4221		return -EPERM;
4222
4223retry:
4224	from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4225	if (IS_ERR(from)) {
4226		error = PTR_ERR(from);
4227		goto exit;
4228	}
4229
4230	to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4231	if (IS_ERR(to)) {
4232		error = PTR_ERR(to);
4233		goto exit1;
4234	}
4235
4236	error = -EXDEV;
4237	if (oldnd.path.mnt != newnd.path.mnt)
4238		goto exit2;
4239
4240	old_dir = oldnd.path.dentry;
4241	error = -EBUSY;
4242	if (oldnd.last_type != LAST_NORM)
4243		goto exit2;
4244
4245	new_dir = newnd.path.dentry;
4246	if (flags & RENAME_NOREPLACE)
4247		error = -EEXIST;
4248	if (newnd.last_type != LAST_NORM)
4249		goto exit2;
4250
4251	error = mnt_want_write(oldnd.path.mnt);
4252	if (error)
4253		goto exit2;
4254
4255	oldnd.flags &= ~LOOKUP_PARENT;
4256	newnd.flags &= ~LOOKUP_PARENT;
4257	if (!(flags & RENAME_EXCHANGE))
4258		newnd.flags |= LOOKUP_RENAME_TARGET;
4259
4260retry_deleg:
4261	trap = lock_rename(new_dir, old_dir);
4262
4263	old_dentry = lookup_hash(&oldnd);
4264	error = PTR_ERR(old_dentry);
4265	if (IS_ERR(old_dentry))
4266		goto exit3;
4267	/* source must exist */
4268	error = -ENOENT;
4269	if (d_is_negative(old_dentry))
4270		goto exit4;
4271	new_dentry = lookup_hash(&newnd);
4272	error = PTR_ERR(new_dentry);
4273	if (IS_ERR(new_dentry))
4274		goto exit4;
4275	error = -EEXIST;
4276	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4277		goto exit5;
4278	if (flags & RENAME_EXCHANGE) {
4279		error = -ENOENT;
4280		if (d_is_negative(new_dentry))
4281			goto exit5;
4282
4283		if (!d_is_dir(new_dentry)) {
4284			error = -ENOTDIR;
4285			if (newnd.last.name[newnd.last.len])
4286				goto exit5;
4287		}
4288	}
4289	/* unless the source is a directory trailing slashes give -ENOTDIR */
4290	if (!d_is_dir(old_dentry)) {
4291		error = -ENOTDIR;
4292		if (oldnd.last.name[oldnd.last.len])
4293			goto exit5;
4294		if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4295			goto exit5;
4296	}
4297	/* source should not be ancestor of target */
4298	error = -EINVAL;
4299	if (old_dentry == trap)
4300		goto exit5;
4301	/* target should not be an ancestor of source */
4302	if (!(flags & RENAME_EXCHANGE))
4303		error = -ENOTEMPTY;
4304	if (new_dentry == trap)
4305		goto exit5;
4306
4307	error = security_path_rename(&oldnd.path, old_dentry,
4308				     &newnd.path, new_dentry, flags);
4309	if (error)
4310		goto exit5;
4311	error = vfs_rename(old_dir->d_inode, old_dentry,
4312			   new_dir->d_inode, new_dentry,
4313			   &delegated_inode, flags);
4314exit5:
4315	dput(new_dentry);
4316exit4:
4317	dput(old_dentry);
4318exit3:
4319	unlock_rename(new_dir, old_dir);
4320	if (delegated_inode) {
4321		error = break_deleg_wait(&delegated_inode);
4322		if (!error)
4323			goto retry_deleg;
4324	}
4325	mnt_drop_write(oldnd.path.mnt);
4326exit2:
4327	if (retry_estale(error, lookup_flags))
4328		should_retry = true;
4329	path_put(&newnd.path);
4330	putname(to);
4331exit1:
4332	path_put(&oldnd.path);
4333	putname(from);
4334	if (should_retry) {
4335		should_retry = false;
4336		lookup_flags |= LOOKUP_REVAL;
4337		goto retry;
4338	}
4339exit:
4340	return error;
4341}
4342
4343SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4344		int, newdfd, const char __user *, newname)
4345{
4346	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4347}
4348
4349SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4350{
4351	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4352}
4353
4354int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4355{
4356	int error = may_create(dir, dentry);
4357	if (error)
4358		return error;
4359
4360	if (!dir->i_op->mknod)
4361		return -EPERM;
4362
4363	return dir->i_op->mknod(dir, dentry,
4364				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4365}
4366EXPORT_SYMBOL(vfs_whiteout);
4367
4368int readlink_copy(char __user *buffer, int buflen, const char *link)
4369{
4370	int len = PTR_ERR(link);
4371	if (IS_ERR(link))
4372		goto out;
4373
4374	len = strlen(link);
4375	if (len > (unsigned) buflen)
4376		len = buflen;
4377	if (copy_to_user(buffer, link, len))
4378		len = -EFAULT;
4379out:
4380	return len;
4381}
4382EXPORT_SYMBOL(readlink_copy);
4383
4384/*
4385 * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4386 * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4387 * using) it for any given inode is up to filesystem.
4388 */
4389int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4390{
4391	struct nameidata nd;
4392	void *cookie;
4393	int res;
4394
4395	nd.depth = 0;
4396	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4397	if (IS_ERR(cookie))
4398		return PTR_ERR(cookie);
4399
4400	res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4401	if (dentry->d_inode->i_op->put_link)
4402		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4403	return res;
4404}
4405EXPORT_SYMBOL(generic_readlink);
4406
4407/* get the link contents into pagecache */
4408static char *page_getlink(struct dentry * dentry, struct page **ppage)
4409{
4410	char *kaddr;
4411	struct page *page;
4412	struct address_space *mapping = dentry->d_inode->i_mapping;
4413	page = read_mapping_page(mapping, 0, NULL);
4414	if (IS_ERR(page))
4415		return (char*)page;
4416	*ppage = page;
4417	kaddr = kmap(page);
4418	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4419	return kaddr;
4420}
4421
4422int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4423{
4424	struct page *page = NULL;
4425	int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4426	if (page) {
4427		kunmap(page);
4428		page_cache_release(page);
4429	}
4430	return res;
4431}
4432EXPORT_SYMBOL(page_readlink);
4433
4434void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4435{
4436	struct page *page = NULL;
4437	nd_set_link(nd, page_getlink(dentry, &page));
4438	return page;
4439}
4440EXPORT_SYMBOL(page_follow_link_light);
4441
4442void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4443{
4444	struct page *page = cookie;
4445
4446	if (page) {
4447		kunmap(page);
4448		page_cache_release(page);
4449	}
4450}
4451EXPORT_SYMBOL(page_put_link);
4452
4453/*
4454 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4455 */
4456int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4457{
4458	struct address_space *mapping = inode->i_mapping;
4459	struct page *page;
4460	void *fsdata;
4461	int err;
4462	char *kaddr;
4463	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4464	if (nofs)
4465		flags |= AOP_FLAG_NOFS;
4466
4467retry:
4468	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4469				flags, &page, &fsdata);
4470	if (err)
4471		goto fail;
4472
4473	kaddr = kmap_atomic(page);
4474	memcpy(kaddr, symname, len-1);
4475	kunmap_atomic(kaddr);
4476
4477	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4478							page, fsdata);
4479	if (err < 0)
4480		goto fail;
4481	if (err < len-1)
4482		goto retry;
4483
4484	mark_inode_dirty(inode);
4485	return 0;
4486fail:
4487	return err;
4488}
4489EXPORT_SYMBOL(__page_symlink);
4490
4491int page_symlink(struct inode *inode, const char *symname, int len)
4492{
4493	return __page_symlink(inode, symname, len,
4494			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4495}
4496EXPORT_SYMBOL(page_symlink);
4497
4498const struct inode_operations page_symlink_inode_operations = {
4499	.readlink	= generic_readlink,
4500	.follow_link	= page_follow_link_light,
4501	.put_link	= page_put_link,
4502};
4503EXPORT_SYMBOL(page_symlink_inode_operations);
4504