aops.c revision 0cf2f7632b1789b811ab20b611c4156e6de2b055
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
27#include <linux/swap.h>
28#include <linux/pipe_fs_i.h>
29#include <linux/mpage.h>
30#include <linux/quotaops.h>
31
32#define MLOG_MASK_PREFIX ML_FILE_IO
33#include <cluster/masklog.h>
34
35#include "ocfs2.h"
36
37#include "alloc.h"
38#include "aops.h"
39#include "dlmglue.h"
40#include "extent_map.h"
41#include "file.h"
42#include "inode.h"
43#include "journal.h"
44#include "suballoc.h"
45#include "super.h"
46#include "symlink.h"
47
48#include "buffer_head_io.h"
49
50static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
51				   struct buffer_head *bh_result, int create)
52{
53	int err = -EIO;
54	int status;
55	struct ocfs2_dinode *fe = NULL;
56	struct buffer_head *bh = NULL;
57	struct buffer_head *buffer_cache_bh = NULL;
58	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
59	void *kaddr;
60
61	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
62		   (unsigned long long)iblock, bh_result, create);
63
64	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
65
66	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
67		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
68		     (unsigned long long)iblock);
69		goto bail;
70	}
71
72	status = ocfs2_read_inode_block(inode, &bh);
73	if (status < 0) {
74		mlog_errno(status);
75		goto bail;
76	}
77	fe = (struct ocfs2_dinode *) bh->b_data;
78
79	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
80						    le32_to_cpu(fe->i_clusters))) {
81		mlog(ML_ERROR, "block offset is outside the allocated size: "
82		     "%llu\n", (unsigned long long)iblock);
83		goto bail;
84	}
85
86	/* We don't use the page cache to create symlink data, so if
87	 * need be, copy it over from the buffer cache. */
88	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
89		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
90			    iblock;
91		buffer_cache_bh = sb_getblk(osb->sb, blkno);
92		if (!buffer_cache_bh) {
93			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
94			goto bail;
95		}
96
97		/* we haven't locked out transactions, so a commit
98		 * could've happened. Since we've got a reference on
99		 * the bh, even if it commits while we're doing the
100		 * copy, the data is still good. */
101		if (buffer_jbd(buffer_cache_bh)
102		    && ocfs2_inode_is_new(inode)) {
103			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
104			if (!kaddr) {
105				mlog(ML_ERROR, "couldn't kmap!\n");
106				goto bail;
107			}
108			memcpy(kaddr + (bh_result->b_size * iblock),
109			       buffer_cache_bh->b_data,
110			       bh_result->b_size);
111			kunmap_atomic(kaddr, KM_USER0);
112			set_buffer_uptodate(bh_result);
113		}
114		brelse(buffer_cache_bh);
115	}
116
117	map_bh(bh_result, inode->i_sb,
118	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
119
120	err = 0;
121
122bail:
123	brelse(bh);
124
125	mlog_exit(err);
126	return err;
127}
128
129static int ocfs2_get_block(struct inode *inode, sector_t iblock,
130			   struct buffer_head *bh_result, int create)
131{
132	int err = 0;
133	unsigned int ext_flags;
134	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
135	u64 p_blkno, count, past_eof;
136	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
137
138	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
139		   (unsigned long long)iblock, bh_result, create);
140
141	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
142		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
143		     inode, inode->i_ino);
144
145	if (S_ISLNK(inode->i_mode)) {
146		/* this always does I/O for some reason. */
147		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
148		goto bail;
149	}
150
151	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
152					  &ext_flags);
153	if (err) {
154		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
155		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
156		     (unsigned long long)p_blkno);
157		goto bail;
158	}
159
160	if (max_blocks < count)
161		count = max_blocks;
162
163	/*
164	 * ocfs2 never allocates in this function - the only time we
165	 * need to use BH_New is when we're extending i_size on a file
166	 * system which doesn't support holes, in which case BH_New
167	 * allows block_prepare_write() to zero.
168	 *
169	 * If we see this on a sparse file system, then a truncate has
170	 * raced us and removed the cluster. In this case, we clear
171	 * the buffers dirty and uptodate bits and let the buffer code
172	 * ignore it as a hole.
173	 */
174	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
175		clear_buffer_dirty(bh_result);
176		clear_buffer_uptodate(bh_result);
177		goto bail;
178	}
179
180	/* Treat the unwritten extent as a hole for zeroing purposes. */
181	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
182		map_bh(bh_result, inode->i_sb, p_blkno);
183
184	bh_result->b_size = count << inode->i_blkbits;
185
186	if (!ocfs2_sparse_alloc(osb)) {
187		if (p_blkno == 0) {
188			err = -EIO;
189			mlog(ML_ERROR,
190			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
191			     (unsigned long long)iblock,
192			     (unsigned long long)p_blkno,
193			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
194			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
195			dump_stack();
196			goto bail;
197		}
198
199		past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
200		mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
201		     (unsigned long long)past_eof);
202
203		if (create && (iblock >= past_eof))
204			set_buffer_new(bh_result);
205	}
206
207bail:
208	if (err < 0)
209		err = -EIO;
210
211	mlog_exit(err);
212	return err;
213}
214
215int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216			   struct buffer_head *di_bh)
217{
218	void *kaddr;
219	loff_t size;
220	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
225		return -EROFS;
226	}
227
228	size = i_size_read(inode);
229
230	if (size > PAGE_CACHE_SIZE ||
231	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232		ocfs2_error(inode->i_sb,
233			    "Inode %llu has with inline data has bad size: %Lu",
234			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
235			    (unsigned long long)size);
236		return -EROFS;
237	}
238
239	kaddr = kmap_atomic(page, KM_USER0);
240	if (size)
241		memcpy(kaddr, di->id2.i_data.id_data, size);
242	/* Clear the remaining part of the page */
243	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244	flush_dcache_page(page);
245	kunmap_atomic(kaddr, KM_USER0);
246
247	SetPageUptodate(page);
248
249	return 0;
250}
251
252static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253{
254	int ret;
255	struct buffer_head *di_bh = NULL;
256
257	BUG_ON(!PageLocked(page));
258	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259
260	ret = ocfs2_read_inode_block(inode, &di_bh);
261	if (ret) {
262		mlog_errno(ret);
263		goto out;
264	}
265
266	ret = ocfs2_read_inline_data(inode, page, di_bh);
267out:
268	unlock_page(page);
269
270	brelse(di_bh);
271	return ret;
272}
273
274static int ocfs2_readpage(struct file *file, struct page *page)
275{
276	struct inode *inode = page->mapping->host;
277	struct ocfs2_inode_info *oi = OCFS2_I(inode);
278	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279	int ret, unlock = 1;
280
281	mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
282
283	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
284	if (ret != 0) {
285		if (ret == AOP_TRUNCATED_PAGE)
286			unlock = 0;
287		mlog_errno(ret);
288		goto out;
289	}
290
291	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
292		ret = AOP_TRUNCATED_PAGE;
293		goto out_inode_unlock;
294	}
295
296	/*
297	 * i_size might have just been updated as we grabed the meta lock.  We
298	 * might now be discovering a truncate that hit on another node.
299	 * block_read_full_page->get_block freaks out if it is asked to read
300	 * beyond the end of a file, so we check here.  Callers
301	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
302	 * and notice that the page they just read isn't needed.
303	 *
304	 * XXX sys_readahead() seems to get that wrong?
305	 */
306	if (start >= i_size_read(inode)) {
307		zero_user(page, 0, PAGE_SIZE);
308		SetPageUptodate(page);
309		ret = 0;
310		goto out_alloc;
311	}
312
313	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
314		ret = ocfs2_readpage_inline(inode, page);
315	else
316		ret = block_read_full_page(page, ocfs2_get_block);
317	unlock = 0;
318
319out_alloc:
320	up_read(&OCFS2_I(inode)->ip_alloc_sem);
321out_inode_unlock:
322	ocfs2_inode_unlock(inode, 0);
323out:
324	if (unlock)
325		unlock_page(page);
326	mlog_exit(ret);
327	return ret;
328}
329
330/*
331 * This is used only for read-ahead. Failures or difficult to handle
332 * situations are safe to ignore.
333 *
334 * Right now, we don't bother with BH_Boundary - in-inode extent lists
335 * are quite large (243 extents on 4k blocks), so most inodes don't
336 * grow out to a tree. If need be, detecting boundary extents could
337 * trivially be added in a future version of ocfs2_get_block().
338 */
339static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340			   struct list_head *pages, unsigned nr_pages)
341{
342	int ret, err = -EIO;
343	struct inode *inode = mapping->host;
344	struct ocfs2_inode_info *oi = OCFS2_I(inode);
345	loff_t start;
346	struct page *last;
347
348	/*
349	 * Use the nonblocking flag for the dlm code to avoid page
350	 * lock inversion, but don't bother with retrying.
351	 */
352	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
353	if (ret)
354		return err;
355
356	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357		ocfs2_inode_unlock(inode, 0);
358		return err;
359	}
360
361	/*
362	 * Don't bother with inline-data. There isn't anything
363	 * to read-ahead in that case anyway...
364	 */
365	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
366		goto out_unlock;
367
368	/*
369	 * Check whether a remote node truncated this file - we just
370	 * drop out in that case as it's not worth handling here.
371	 */
372	last = list_entry(pages->prev, struct page, lru);
373	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374	if (start >= i_size_read(inode))
375		goto out_unlock;
376
377	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
378
379out_unlock:
380	up_read(&oi->ip_alloc_sem);
381	ocfs2_inode_unlock(inode, 0);
382
383	return err;
384}
385
386/* Note: Because we don't support holes, our allocation has
387 * already happened (allocation writes zeros to the file data)
388 * so we don't have to worry about ordered writes in
389 * ocfs2_writepage.
390 *
391 * ->writepage is called during the process of invalidating the page cache
392 * during blocked lock processing.  It can't block on any cluster locks
393 * to during block mapping.  It's relying on the fact that the block
394 * mapping can't have disappeared under the dirty pages that it is
395 * being asked to write back.
396 */
397static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
398{
399	int ret;
400
401	mlog_entry("(0x%p)\n", page);
402
403	ret = block_write_full_page(page, ocfs2_get_block, wbc);
404
405	mlog_exit(ret);
406
407	return ret;
408}
409
410/*
411 * This is called from ocfs2_write_zero_page() which has handled it's
412 * own cluster locking and has ensured allocation exists for those
413 * blocks to be written.
414 */
415int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
416			       unsigned from, unsigned to)
417{
418	int ret;
419
420	ret = block_prepare_write(page, from, to, ocfs2_get_block);
421
422	return ret;
423}
424
425/* Taken from ext3. We don't necessarily need the full blown
426 * functionality yet, but IMHO it's better to cut and paste the whole
427 * thing so we can avoid introducing our own bugs (and easily pick up
428 * their fixes when they happen) --Mark */
429int walk_page_buffers(	handle_t *handle,
430			struct buffer_head *head,
431			unsigned from,
432			unsigned to,
433			int *partial,
434			int (*fn)(	handle_t *handle,
435					struct buffer_head *bh))
436{
437	struct buffer_head *bh;
438	unsigned block_start, block_end;
439	unsigned blocksize = head->b_size;
440	int err, ret = 0;
441	struct buffer_head *next;
442
443	for (	bh = head, block_start = 0;
444		ret == 0 && (bh != head || !block_start);
445	    	block_start = block_end, bh = next)
446	{
447		next = bh->b_this_page;
448		block_end = block_start + blocksize;
449		if (block_end <= from || block_start >= to) {
450			if (partial && !buffer_uptodate(bh))
451				*partial = 1;
452			continue;
453		}
454		err = (*fn)(handle, bh);
455		if (!ret)
456			ret = err;
457	}
458	return ret;
459}
460
461handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
462							 struct page *page,
463							 unsigned from,
464							 unsigned to)
465{
466	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
467	handle_t *handle;
468	int ret = 0;
469
470	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
471	if (IS_ERR(handle)) {
472		ret = -ENOMEM;
473		mlog_errno(ret);
474		goto out;
475	}
476
477	if (ocfs2_should_order_data(inode)) {
478		ret = ocfs2_jbd2_file_inode(handle, inode);
479		if (ret < 0)
480			mlog_errno(ret);
481	}
482out:
483	if (ret) {
484		if (!IS_ERR(handle))
485			ocfs2_commit_trans(osb, handle);
486		handle = ERR_PTR(ret);
487	}
488	return handle;
489}
490
491static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
492{
493	sector_t status;
494	u64 p_blkno = 0;
495	int err = 0;
496	struct inode *inode = mapping->host;
497
498	mlog_entry("(block = %llu)\n", (unsigned long long)block);
499
500	/* We don't need to lock journal system files, since they aren't
501	 * accessed concurrently from multiple nodes.
502	 */
503	if (!INODE_JOURNAL(inode)) {
504		err = ocfs2_inode_lock(inode, NULL, 0);
505		if (err) {
506			if (err != -ENOENT)
507				mlog_errno(err);
508			goto bail;
509		}
510		down_read(&OCFS2_I(inode)->ip_alloc_sem);
511	}
512
513	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
514		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
515						  NULL);
516
517	if (!INODE_JOURNAL(inode)) {
518		up_read(&OCFS2_I(inode)->ip_alloc_sem);
519		ocfs2_inode_unlock(inode, 0);
520	}
521
522	if (err) {
523		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
524		     (unsigned long long)block);
525		mlog_errno(err);
526		goto bail;
527	}
528
529bail:
530	status = err ? 0 : p_blkno;
531
532	mlog_exit((int)status);
533
534	return status;
535}
536
537/*
538 * TODO: Make this into a generic get_blocks function.
539 *
540 * From do_direct_io in direct-io.c:
541 *  "So what we do is to permit the ->get_blocks function to populate
542 *   bh.b_size with the size of IO which is permitted at this offset and
543 *   this i_blkbits."
544 *
545 * This function is called directly from get_more_blocks in direct-io.c.
546 *
547 * called like this: dio->get_blocks(dio->inode, fs_startblk,
548 * 					fs_count, map_bh, dio->rw == WRITE);
549 */
550static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
551				     struct buffer_head *bh_result, int create)
552{
553	int ret;
554	u64 p_blkno, inode_blocks, contig_blocks;
555	unsigned int ext_flags;
556	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
557	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
558
559	/* This function won't even be called if the request isn't all
560	 * nicely aligned and of the right size, so there's no need
561	 * for us to check any of that. */
562
563	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564
565	/*
566	 * Any write past EOF is not allowed because we'd be extending.
567	 */
568	if (create && (iblock + max_blocks) > inode_blocks) {
569		ret = -EIO;
570		goto bail;
571	}
572
573	/* This figures out the size of the next contiguous block, and
574	 * our logical offset */
575	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
576					  &contig_blocks, &ext_flags);
577	if (ret) {
578		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
579		     (unsigned long long)iblock);
580		ret = -EIO;
581		goto bail;
582	}
583
584	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
585		ocfs2_error(inode->i_sb,
586			    "Inode %llu has a hole at block %llu\n",
587			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
588			    (unsigned long long)iblock);
589		ret = -EROFS;
590		goto bail;
591	}
592
593	/*
594	 * get_more_blocks() expects us to describe a hole by clearing
595	 * the mapped bit on bh_result().
596	 *
597	 * Consider an unwritten extent as a hole.
598	 */
599	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
600		map_bh(bh_result, inode->i_sb, p_blkno);
601	else {
602		/*
603		 * ocfs2_prepare_inode_for_write() should have caught
604		 * the case where we'd be filling a hole and triggered
605		 * a buffered write instead.
606		 */
607		if (create) {
608			ret = -EIO;
609			mlog_errno(ret);
610			goto bail;
611		}
612
613		clear_buffer_mapped(bh_result);
614	}
615
616	/* make sure we don't map more than max_blocks blocks here as
617	   that's all the kernel will handle at this point. */
618	if (max_blocks < contig_blocks)
619		contig_blocks = max_blocks;
620	bh_result->b_size = contig_blocks << blocksize_bits;
621bail:
622	return ret;
623}
624
625/*
626 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
627 * particularly interested in the aio/dio case.  Like the core uses
628 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
629 * truncation on another.
630 */
631static void ocfs2_dio_end_io(struct kiocb *iocb,
632			     loff_t offset,
633			     ssize_t bytes,
634			     void *private)
635{
636	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
637	int level;
638
639	/* this io's submitter should not have unlocked this before we could */
640	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
641
642	ocfs2_iocb_clear_rw_locked(iocb);
643
644	level = ocfs2_iocb_rw_locked_level(iocb);
645	if (!level)
646		up_read(&inode->i_alloc_sem);
647	ocfs2_rw_unlock(inode, level);
648}
649
650/*
651 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
652 * from ext3.  PageChecked() bits have been removed as OCFS2 does not
653 * do journalled data.
654 */
655static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
656{
657	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
658
659	jbd2_journal_invalidatepage(journal, page, offset);
660}
661
662static int ocfs2_releasepage(struct page *page, gfp_t wait)
663{
664	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
665
666	if (!page_has_buffers(page))
667		return 0;
668	return jbd2_journal_try_to_free_buffers(journal, page, wait);
669}
670
671static ssize_t ocfs2_direct_IO(int rw,
672			       struct kiocb *iocb,
673			       const struct iovec *iov,
674			       loff_t offset,
675			       unsigned long nr_segs)
676{
677	struct file *file = iocb->ki_filp;
678	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
679	int ret;
680
681	mlog_entry_void();
682
683	/*
684	 * Fallback to buffered I/O if we see an inode without
685	 * extents.
686	 */
687	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
688		return 0;
689
690	ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
691					    inode->i_sb->s_bdev, iov, offset,
692					    nr_segs,
693					    ocfs2_direct_IO_get_blocks,
694					    ocfs2_dio_end_io);
695
696	mlog_exit(ret);
697	return ret;
698}
699
700static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
701					    u32 cpos,
702					    unsigned int *start,
703					    unsigned int *end)
704{
705	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
706
707	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
708		unsigned int cpp;
709
710		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
711
712		cluster_start = cpos % cpp;
713		cluster_start = cluster_start << osb->s_clustersize_bits;
714
715		cluster_end = cluster_start + osb->s_clustersize;
716	}
717
718	BUG_ON(cluster_start > PAGE_SIZE);
719	BUG_ON(cluster_end > PAGE_SIZE);
720
721	if (start)
722		*start = cluster_start;
723	if (end)
724		*end = cluster_end;
725}
726
727/*
728 * 'from' and 'to' are the region in the page to avoid zeroing.
729 *
730 * If pagesize > clustersize, this function will avoid zeroing outside
731 * of the cluster boundary.
732 *
733 * from == to == 0 is code for "zero the entire cluster region"
734 */
735static void ocfs2_clear_page_regions(struct page *page,
736				     struct ocfs2_super *osb, u32 cpos,
737				     unsigned from, unsigned to)
738{
739	void *kaddr;
740	unsigned int cluster_start, cluster_end;
741
742	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
743
744	kaddr = kmap_atomic(page, KM_USER0);
745
746	if (from || to) {
747		if (from > cluster_start)
748			memset(kaddr + cluster_start, 0, from - cluster_start);
749		if (to < cluster_end)
750			memset(kaddr + to, 0, cluster_end - to);
751	} else {
752		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
753	}
754
755	kunmap_atomic(kaddr, KM_USER0);
756}
757
758/*
759 * Nonsparse file systems fully allocate before we get to the write
760 * code. This prevents ocfs2_write() from tagging the write as an
761 * allocating one, which means ocfs2_map_page_blocks() might try to
762 * read-in the blocks at the tail of our file. Avoid reading them by
763 * testing i_size against each block offset.
764 */
765static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
766				 unsigned int block_start)
767{
768	u64 offset = page_offset(page) + block_start;
769
770	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
771		return 1;
772
773	if (i_size_read(inode) > offset)
774		return 1;
775
776	return 0;
777}
778
779/*
780 * Some of this taken from block_prepare_write(). We already have our
781 * mapping by now though, and the entire write will be allocating or
782 * it won't, so not much need to use BH_New.
783 *
784 * This will also skip zeroing, which is handled externally.
785 */
786int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
787			  struct inode *inode, unsigned int from,
788			  unsigned int to, int new)
789{
790	int ret = 0;
791	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
792	unsigned int block_end, block_start;
793	unsigned int bsize = 1 << inode->i_blkbits;
794
795	if (!page_has_buffers(page))
796		create_empty_buffers(page, bsize, 0);
797
798	head = page_buffers(page);
799	for (bh = head, block_start = 0; bh != head || !block_start;
800	     bh = bh->b_this_page, block_start += bsize) {
801		block_end = block_start + bsize;
802
803		clear_buffer_new(bh);
804
805		/*
806		 * Ignore blocks outside of our i/o range -
807		 * they may belong to unallocated clusters.
808		 */
809		if (block_start >= to || block_end <= from) {
810			if (PageUptodate(page))
811				set_buffer_uptodate(bh);
812			continue;
813		}
814
815		/*
816		 * For an allocating write with cluster size >= page
817		 * size, we always write the entire page.
818		 */
819		if (new)
820			set_buffer_new(bh);
821
822		if (!buffer_mapped(bh)) {
823			map_bh(bh, inode->i_sb, *p_blkno);
824			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
825		}
826
827		if (PageUptodate(page)) {
828			if (!buffer_uptodate(bh))
829				set_buffer_uptodate(bh);
830		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
831			   !buffer_new(bh) &&
832			   ocfs2_should_read_blk(inode, page, block_start) &&
833			   (block_start < from || block_end > to)) {
834			ll_rw_block(READ, 1, &bh);
835			*wait_bh++=bh;
836		}
837
838		*p_blkno = *p_blkno + 1;
839	}
840
841	/*
842	 * If we issued read requests - let them complete.
843	 */
844	while(wait_bh > wait) {
845		wait_on_buffer(*--wait_bh);
846		if (!buffer_uptodate(*wait_bh))
847			ret = -EIO;
848	}
849
850	if (ret == 0 || !new)
851		return ret;
852
853	/*
854	 * If we get -EIO above, zero out any newly allocated blocks
855	 * to avoid exposing stale data.
856	 */
857	bh = head;
858	block_start = 0;
859	do {
860		block_end = block_start + bsize;
861		if (block_end <= from)
862			goto next_bh;
863		if (block_start >= to)
864			break;
865
866		zero_user(page, block_start, bh->b_size);
867		set_buffer_uptodate(bh);
868		mark_buffer_dirty(bh);
869
870next_bh:
871		block_start = block_end;
872		bh = bh->b_this_page;
873	} while (bh != head);
874
875	return ret;
876}
877
878#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
879#define OCFS2_MAX_CTXT_PAGES	1
880#else
881#define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
882#endif
883
884#define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
885
886/*
887 * Describe the state of a single cluster to be written to.
888 */
889struct ocfs2_write_cluster_desc {
890	u32		c_cpos;
891	u32		c_phys;
892	/*
893	 * Give this a unique field because c_phys eventually gets
894	 * filled.
895	 */
896	unsigned	c_new;
897	unsigned	c_unwritten;
898	unsigned	c_needs_zero;
899};
900
901struct ocfs2_write_ctxt {
902	/* Logical cluster position / len of write */
903	u32				w_cpos;
904	u32				w_clen;
905
906	/* First cluster allocated in a nonsparse extend */
907	u32				w_first_new_cpos;
908
909	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
910
911	/*
912	 * This is true if page_size > cluster_size.
913	 *
914	 * It triggers a set of special cases during write which might
915	 * have to deal with allocating writes to partial pages.
916	 */
917	unsigned int			w_large_pages;
918
919	/*
920	 * Pages involved in this write.
921	 *
922	 * w_target_page is the page being written to by the user.
923	 *
924	 * w_pages is an array of pages which always contains
925	 * w_target_page, and in the case of an allocating write with
926	 * page_size < cluster size, it will contain zero'd and mapped
927	 * pages adjacent to w_target_page which need to be written
928	 * out in so that future reads from that region will get
929	 * zero's.
930	 */
931	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
932	unsigned int			w_num_pages;
933	struct page			*w_target_page;
934
935	/*
936	 * ocfs2_write_end() uses this to know what the real range to
937	 * write in the target should be.
938	 */
939	unsigned int			w_target_from;
940	unsigned int			w_target_to;
941
942	/*
943	 * We could use journal_current_handle() but this is cleaner,
944	 * IMHO -Mark
945	 */
946	handle_t			*w_handle;
947
948	struct buffer_head		*w_di_bh;
949
950	struct ocfs2_cached_dealloc_ctxt w_dealloc;
951};
952
953void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
954{
955	int i;
956
957	for(i = 0; i < num_pages; i++) {
958		if (pages[i]) {
959			unlock_page(pages[i]);
960			mark_page_accessed(pages[i]);
961			page_cache_release(pages[i]);
962		}
963	}
964}
965
966static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
967{
968	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
969
970	brelse(wc->w_di_bh);
971	kfree(wc);
972}
973
974static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
975				  struct ocfs2_super *osb, loff_t pos,
976				  unsigned len, struct buffer_head *di_bh)
977{
978	u32 cend;
979	struct ocfs2_write_ctxt *wc;
980
981	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
982	if (!wc)
983		return -ENOMEM;
984
985	wc->w_cpos = pos >> osb->s_clustersize_bits;
986	wc->w_first_new_cpos = UINT_MAX;
987	cend = (pos + len - 1) >> osb->s_clustersize_bits;
988	wc->w_clen = cend - wc->w_cpos + 1;
989	get_bh(di_bh);
990	wc->w_di_bh = di_bh;
991
992	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
993		wc->w_large_pages = 1;
994	else
995		wc->w_large_pages = 0;
996
997	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
998
999	*wcp = wc;
1000
1001	return 0;
1002}
1003
1004/*
1005 * If a page has any new buffers, zero them out here, and mark them uptodate
1006 * and dirty so they'll be written out (in order to prevent uninitialised
1007 * block data from leaking). And clear the new bit.
1008 */
1009static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1010{
1011	unsigned int block_start, block_end;
1012	struct buffer_head *head, *bh;
1013
1014	BUG_ON(!PageLocked(page));
1015	if (!page_has_buffers(page))
1016		return;
1017
1018	bh = head = page_buffers(page);
1019	block_start = 0;
1020	do {
1021		block_end = block_start + bh->b_size;
1022
1023		if (buffer_new(bh)) {
1024			if (block_end > from && block_start < to) {
1025				if (!PageUptodate(page)) {
1026					unsigned start, end;
1027
1028					start = max(from, block_start);
1029					end = min(to, block_end);
1030
1031					zero_user_segment(page, start, end);
1032					set_buffer_uptodate(bh);
1033				}
1034
1035				clear_buffer_new(bh);
1036				mark_buffer_dirty(bh);
1037			}
1038		}
1039
1040		block_start = block_end;
1041		bh = bh->b_this_page;
1042	} while (bh != head);
1043}
1044
1045/*
1046 * Only called when we have a failure during allocating write to write
1047 * zero's to the newly allocated region.
1048 */
1049static void ocfs2_write_failure(struct inode *inode,
1050				struct ocfs2_write_ctxt *wc,
1051				loff_t user_pos, unsigned user_len)
1052{
1053	int i;
1054	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1055		to = user_pos + user_len;
1056	struct page *tmppage;
1057
1058	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1059
1060	for(i = 0; i < wc->w_num_pages; i++) {
1061		tmppage = wc->w_pages[i];
1062
1063		if (page_has_buffers(tmppage)) {
1064			if (ocfs2_should_order_data(inode))
1065				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1066
1067			block_commit_write(tmppage, from, to);
1068		}
1069	}
1070}
1071
1072static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1073					struct ocfs2_write_ctxt *wc,
1074					struct page *page, u32 cpos,
1075					loff_t user_pos, unsigned user_len,
1076					int new)
1077{
1078	int ret;
1079	unsigned int map_from = 0, map_to = 0;
1080	unsigned int cluster_start, cluster_end;
1081	unsigned int user_data_from = 0, user_data_to = 0;
1082
1083	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1084					&cluster_start, &cluster_end);
1085
1086	if (page == wc->w_target_page) {
1087		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1088		map_to = map_from + user_len;
1089
1090		if (new)
1091			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1092						    cluster_start, cluster_end,
1093						    new);
1094		else
1095			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1096						    map_from, map_to, new);
1097		if (ret) {
1098			mlog_errno(ret);
1099			goto out;
1100		}
1101
1102		user_data_from = map_from;
1103		user_data_to = map_to;
1104		if (new) {
1105			map_from = cluster_start;
1106			map_to = cluster_end;
1107		}
1108	} else {
1109		/*
1110		 * If we haven't allocated the new page yet, we
1111		 * shouldn't be writing it out without copying user
1112		 * data. This is likely a math error from the caller.
1113		 */
1114		BUG_ON(!new);
1115
1116		map_from = cluster_start;
1117		map_to = cluster_end;
1118
1119		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1120					    cluster_start, cluster_end, new);
1121		if (ret) {
1122			mlog_errno(ret);
1123			goto out;
1124		}
1125	}
1126
1127	/*
1128	 * Parts of newly allocated pages need to be zero'd.
1129	 *
1130	 * Above, we have also rewritten 'to' and 'from' - as far as
1131	 * the rest of the function is concerned, the entire cluster
1132	 * range inside of a page needs to be written.
1133	 *
1134	 * We can skip this if the page is up to date - it's already
1135	 * been zero'd from being read in as a hole.
1136	 */
1137	if (new && !PageUptodate(page))
1138		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1139					 cpos, user_data_from, user_data_to);
1140
1141	flush_dcache_page(page);
1142
1143out:
1144	return ret;
1145}
1146
1147/*
1148 * This function will only grab one clusters worth of pages.
1149 */
1150static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1151				      struct ocfs2_write_ctxt *wc,
1152				      u32 cpos, loff_t user_pos, int new,
1153				      struct page *mmap_page)
1154{
1155	int ret = 0, i;
1156	unsigned long start, target_index, index;
1157	struct inode *inode = mapping->host;
1158
1159	target_index = user_pos >> PAGE_CACHE_SHIFT;
1160
1161	/*
1162	 * Figure out how many pages we'll be manipulating here. For
1163	 * non allocating write, we just change the one
1164	 * page. Otherwise, we'll need a whole clusters worth.
1165	 */
1166	if (new) {
1167		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1168		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1169	} else {
1170		wc->w_num_pages = 1;
1171		start = target_index;
1172	}
1173
1174	for(i = 0; i < wc->w_num_pages; i++) {
1175		index = start + i;
1176
1177		if (index == target_index && mmap_page) {
1178			/*
1179			 * ocfs2_pagemkwrite() is a little different
1180			 * and wants us to directly use the page
1181			 * passed in.
1182			 */
1183			lock_page(mmap_page);
1184
1185			if (mmap_page->mapping != mapping) {
1186				unlock_page(mmap_page);
1187				/*
1188				 * Sanity check - the locking in
1189				 * ocfs2_pagemkwrite() should ensure
1190				 * that this code doesn't trigger.
1191				 */
1192				ret = -EINVAL;
1193				mlog_errno(ret);
1194				goto out;
1195			}
1196
1197			page_cache_get(mmap_page);
1198			wc->w_pages[i] = mmap_page;
1199		} else {
1200			wc->w_pages[i] = find_or_create_page(mapping, index,
1201							     GFP_NOFS);
1202			if (!wc->w_pages[i]) {
1203				ret = -ENOMEM;
1204				mlog_errno(ret);
1205				goto out;
1206			}
1207		}
1208
1209		if (index == target_index)
1210			wc->w_target_page = wc->w_pages[i];
1211	}
1212out:
1213	return ret;
1214}
1215
1216/*
1217 * Prepare a single cluster for write one cluster into the file.
1218 */
1219static int ocfs2_write_cluster(struct address_space *mapping,
1220			       u32 phys, unsigned int unwritten,
1221			       unsigned int should_zero,
1222			       struct ocfs2_alloc_context *data_ac,
1223			       struct ocfs2_alloc_context *meta_ac,
1224			       struct ocfs2_write_ctxt *wc, u32 cpos,
1225			       loff_t user_pos, unsigned user_len)
1226{
1227	int ret, i, new;
1228	u64 v_blkno, p_blkno;
1229	struct inode *inode = mapping->host;
1230	struct ocfs2_extent_tree et;
1231
1232	new = phys == 0 ? 1 : 0;
1233	if (new) {
1234		u32 tmp_pos;
1235
1236		/*
1237		 * This is safe to call with the page locks - it won't take
1238		 * any additional semaphores or cluster locks.
1239		 */
1240		tmp_pos = cpos;
1241		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1242					   &tmp_pos, 1, 0, wc->w_di_bh,
1243					   wc->w_handle, data_ac,
1244					   meta_ac, NULL);
1245		/*
1246		 * This shouldn't happen because we must have already
1247		 * calculated the correct meta data allocation required. The
1248		 * internal tree allocation code should know how to increase
1249		 * transaction credits itself.
1250		 *
1251		 * If need be, we could handle -EAGAIN for a
1252		 * RESTART_TRANS here.
1253		 */
1254		mlog_bug_on_msg(ret == -EAGAIN,
1255				"Inode %llu: EAGAIN return during allocation.\n",
1256				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1257		if (ret < 0) {
1258			mlog_errno(ret);
1259			goto out;
1260		}
1261	} else if (unwritten) {
1262		ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1263		ret = ocfs2_mark_extent_written(inode, &et,
1264						wc->w_handle, cpos, 1, phys,
1265						meta_ac, &wc->w_dealloc);
1266		if (ret < 0) {
1267			mlog_errno(ret);
1268			goto out;
1269		}
1270	}
1271
1272	if (should_zero)
1273		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1274	else
1275		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1276
1277	/*
1278	 * The only reason this should fail is due to an inability to
1279	 * find the extent added.
1280	 */
1281	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1282					  NULL);
1283	if (ret < 0) {
1284		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1285			    "at logical block %llu",
1286			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1287			    (unsigned long long)v_blkno);
1288		goto out;
1289	}
1290
1291	BUG_ON(p_blkno == 0);
1292
1293	for(i = 0; i < wc->w_num_pages; i++) {
1294		int tmpret;
1295
1296		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1297						      wc->w_pages[i], cpos,
1298						      user_pos, user_len,
1299						      should_zero);
1300		if (tmpret) {
1301			mlog_errno(tmpret);
1302			if (ret == 0)
1303				ret = tmpret;
1304		}
1305	}
1306
1307	/*
1308	 * We only have cleanup to do in case of allocating write.
1309	 */
1310	if (ret && new)
1311		ocfs2_write_failure(inode, wc, user_pos, user_len);
1312
1313out:
1314
1315	return ret;
1316}
1317
1318static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1319				       struct ocfs2_alloc_context *data_ac,
1320				       struct ocfs2_alloc_context *meta_ac,
1321				       struct ocfs2_write_ctxt *wc,
1322				       loff_t pos, unsigned len)
1323{
1324	int ret, i;
1325	loff_t cluster_off;
1326	unsigned int local_len = len;
1327	struct ocfs2_write_cluster_desc *desc;
1328	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1329
1330	for (i = 0; i < wc->w_clen; i++) {
1331		desc = &wc->w_desc[i];
1332
1333		/*
1334		 * We have to make sure that the total write passed in
1335		 * doesn't extend past a single cluster.
1336		 */
1337		local_len = len;
1338		cluster_off = pos & (osb->s_clustersize - 1);
1339		if ((cluster_off + local_len) > osb->s_clustersize)
1340			local_len = osb->s_clustersize - cluster_off;
1341
1342		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1343					  desc->c_unwritten,
1344					  desc->c_needs_zero,
1345					  data_ac, meta_ac,
1346					  wc, desc->c_cpos, pos, local_len);
1347		if (ret) {
1348			mlog_errno(ret);
1349			goto out;
1350		}
1351
1352		len -= local_len;
1353		pos += local_len;
1354	}
1355
1356	ret = 0;
1357out:
1358	return ret;
1359}
1360
1361/*
1362 * ocfs2_write_end() wants to know which parts of the target page it
1363 * should complete the write on. It's easiest to compute them ahead of
1364 * time when a more complete view of the write is available.
1365 */
1366static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1367					struct ocfs2_write_ctxt *wc,
1368					loff_t pos, unsigned len, int alloc)
1369{
1370	struct ocfs2_write_cluster_desc *desc;
1371
1372	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1373	wc->w_target_to = wc->w_target_from + len;
1374
1375	if (alloc == 0)
1376		return;
1377
1378	/*
1379	 * Allocating write - we may have different boundaries based
1380	 * on page size and cluster size.
1381	 *
1382	 * NOTE: We can no longer compute one value from the other as
1383	 * the actual write length and user provided length may be
1384	 * different.
1385	 */
1386
1387	if (wc->w_large_pages) {
1388		/*
1389		 * We only care about the 1st and last cluster within
1390		 * our range and whether they should be zero'd or not. Either
1391		 * value may be extended out to the start/end of a
1392		 * newly allocated cluster.
1393		 */
1394		desc = &wc->w_desc[0];
1395		if (desc->c_needs_zero)
1396			ocfs2_figure_cluster_boundaries(osb,
1397							desc->c_cpos,
1398							&wc->w_target_from,
1399							NULL);
1400
1401		desc = &wc->w_desc[wc->w_clen - 1];
1402		if (desc->c_needs_zero)
1403			ocfs2_figure_cluster_boundaries(osb,
1404							desc->c_cpos,
1405							NULL,
1406							&wc->w_target_to);
1407	} else {
1408		wc->w_target_from = 0;
1409		wc->w_target_to = PAGE_CACHE_SIZE;
1410	}
1411}
1412
1413/*
1414 * Populate each single-cluster write descriptor in the write context
1415 * with information about the i/o to be done.
1416 *
1417 * Returns the number of clusters that will have to be allocated, as
1418 * well as a worst case estimate of the number of extent records that
1419 * would have to be created during a write to an unwritten region.
1420 */
1421static int ocfs2_populate_write_desc(struct inode *inode,
1422				     struct ocfs2_write_ctxt *wc,
1423				     unsigned int *clusters_to_alloc,
1424				     unsigned int *extents_to_split)
1425{
1426	int ret;
1427	struct ocfs2_write_cluster_desc *desc;
1428	unsigned int num_clusters = 0;
1429	unsigned int ext_flags = 0;
1430	u32 phys = 0;
1431	int i;
1432
1433	*clusters_to_alloc = 0;
1434	*extents_to_split = 0;
1435
1436	for (i = 0; i < wc->w_clen; i++) {
1437		desc = &wc->w_desc[i];
1438		desc->c_cpos = wc->w_cpos + i;
1439
1440		if (num_clusters == 0) {
1441			/*
1442			 * Need to look up the next extent record.
1443			 */
1444			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1445						 &num_clusters, &ext_flags);
1446			if (ret) {
1447				mlog_errno(ret);
1448				goto out;
1449			}
1450
1451			/*
1452			 * Assume worst case - that we're writing in
1453			 * the middle of the extent.
1454			 *
1455			 * We can assume that the write proceeds from
1456			 * left to right, in which case the extent
1457			 * insert code is smart enough to coalesce the
1458			 * next splits into the previous records created.
1459			 */
1460			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1461				*extents_to_split = *extents_to_split + 2;
1462		} else if (phys) {
1463			/*
1464			 * Only increment phys if it doesn't describe
1465			 * a hole.
1466			 */
1467			phys++;
1468		}
1469
1470		/*
1471		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1472		 * file that got extended.  w_first_new_cpos tells us
1473		 * where the newly allocated clusters are so we can
1474		 * zero them.
1475		 */
1476		if (desc->c_cpos >= wc->w_first_new_cpos) {
1477			BUG_ON(phys == 0);
1478			desc->c_needs_zero = 1;
1479		}
1480
1481		desc->c_phys = phys;
1482		if (phys == 0) {
1483			desc->c_new = 1;
1484			desc->c_needs_zero = 1;
1485			*clusters_to_alloc = *clusters_to_alloc + 1;
1486		}
1487
1488		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1489			desc->c_unwritten = 1;
1490			desc->c_needs_zero = 1;
1491		}
1492
1493		num_clusters--;
1494	}
1495
1496	ret = 0;
1497out:
1498	return ret;
1499}
1500
1501static int ocfs2_write_begin_inline(struct address_space *mapping,
1502				    struct inode *inode,
1503				    struct ocfs2_write_ctxt *wc)
1504{
1505	int ret;
1506	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1507	struct page *page;
1508	handle_t *handle;
1509	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1510
1511	page = find_or_create_page(mapping, 0, GFP_NOFS);
1512	if (!page) {
1513		ret = -ENOMEM;
1514		mlog_errno(ret);
1515		goto out;
1516	}
1517	/*
1518	 * If we don't set w_num_pages then this page won't get unlocked
1519	 * and freed on cleanup of the write context.
1520	 */
1521	wc->w_pages[0] = wc->w_target_page = page;
1522	wc->w_num_pages = 1;
1523
1524	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1525	if (IS_ERR(handle)) {
1526		ret = PTR_ERR(handle);
1527		mlog_errno(ret);
1528		goto out;
1529	}
1530
1531	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1532				      OCFS2_JOURNAL_ACCESS_WRITE);
1533	if (ret) {
1534		ocfs2_commit_trans(osb, handle);
1535
1536		mlog_errno(ret);
1537		goto out;
1538	}
1539
1540	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1541		ocfs2_set_inode_data_inline(inode, di);
1542
1543	if (!PageUptodate(page)) {
1544		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1545		if (ret) {
1546			ocfs2_commit_trans(osb, handle);
1547
1548			goto out;
1549		}
1550	}
1551
1552	wc->w_handle = handle;
1553out:
1554	return ret;
1555}
1556
1557int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1558{
1559	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1560
1561	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1562		return 1;
1563	return 0;
1564}
1565
1566static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1567					  struct inode *inode, loff_t pos,
1568					  unsigned len, struct page *mmap_page,
1569					  struct ocfs2_write_ctxt *wc)
1570{
1571	int ret, written = 0;
1572	loff_t end = pos + len;
1573	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1574	struct ocfs2_dinode *di = NULL;
1575
1576	mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1577	     (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1578	     oi->ip_dyn_features);
1579
1580	/*
1581	 * Handle inodes which already have inline data 1st.
1582	 */
1583	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1584		if (mmap_page == NULL &&
1585		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1586			goto do_inline_write;
1587
1588		/*
1589		 * The write won't fit - we have to give this inode an
1590		 * inline extent list now.
1591		 */
1592		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1593		if (ret)
1594			mlog_errno(ret);
1595		goto out;
1596	}
1597
1598	/*
1599	 * Check whether the inode can accept inline data.
1600	 */
1601	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1602		return 0;
1603
1604	/*
1605	 * Check whether the write can fit.
1606	 */
1607	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1608	if (mmap_page ||
1609	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1610		return 0;
1611
1612do_inline_write:
1613	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1614	if (ret) {
1615		mlog_errno(ret);
1616		goto out;
1617	}
1618
1619	/*
1620	 * This signals to the caller that the data can be written
1621	 * inline.
1622	 */
1623	written = 1;
1624out:
1625	return written ? written : ret;
1626}
1627
1628/*
1629 * This function only does anything for file systems which can't
1630 * handle sparse files.
1631 *
1632 * What we want to do here is fill in any hole between the current end
1633 * of allocation and the end of our write. That way the rest of the
1634 * write path can treat it as an non-allocating write, which has no
1635 * special case code for sparse/nonsparse files.
1636 */
1637static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1638					unsigned len,
1639					struct ocfs2_write_ctxt *wc)
1640{
1641	int ret;
1642	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1643	loff_t newsize = pos + len;
1644
1645	if (ocfs2_sparse_alloc(osb))
1646		return 0;
1647
1648	if (newsize <= i_size_read(inode))
1649		return 0;
1650
1651	ret = ocfs2_extend_no_holes(inode, newsize, pos);
1652	if (ret)
1653		mlog_errno(ret);
1654
1655	wc->w_first_new_cpos =
1656		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1657
1658	return ret;
1659}
1660
1661int ocfs2_write_begin_nolock(struct address_space *mapping,
1662			     loff_t pos, unsigned len, unsigned flags,
1663			     struct page **pagep, void **fsdata,
1664			     struct buffer_head *di_bh, struct page *mmap_page)
1665{
1666	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1667	unsigned int clusters_to_alloc, extents_to_split;
1668	struct ocfs2_write_ctxt *wc;
1669	struct inode *inode = mapping->host;
1670	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1671	struct ocfs2_dinode *di;
1672	struct ocfs2_alloc_context *data_ac = NULL;
1673	struct ocfs2_alloc_context *meta_ac = NULL;
1674	handle_t *handle;
1675	struct ocfs2_extent_tree et;
1676
1677	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1678	if (ret) {
1679		mlog_errno(ret);
1680		return ret;
1681	}
1682
1683	if (ocfs2_supports_inline_data(osb)) {
1684		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1685						     mmap_page, wc);
1686		if (ret == 1) {
1687			ret = 0;
1688			goto success;
1689		}
1690		if (ret < 0) {
1691			mlog_errno(ret);
1692			goto out;
1693		}
1694	}
1695
1696	ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1697	if (ret) {
1698		mlog_errno(ret);
1699		goto out;
1700	}
1701
1702	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1703					&extents_to_split);
1704	if (ret) {
1705		mlog_errno(ret);
1706		goto out;
1707	}
1708
1709	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1710
1711	/*
1712	 * We set w_target_from, w_target_to here so that
1713	 * ocfs2_write_end() knows which range in the target page to
1714	 * write out. An allocation requires that we write the entire
1715	 * cluster range.
1716	 */
1717	if (clusters_to_alloc || extents_to_split) {
1718		/*
1719		 * XXX: We are stretching the limits of
1720		 * ocfs2_lock_allocators(). It greatly over-estimates
1721		 * the work to be done.
1722		 */
1723		mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1724		     " clusters_to_add = %u, extents_to_split = %u\n",
1725		     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1726		     (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1727		     clusters_to_alloc, extents_to_split);
1728
1729		ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1730		ret = ocfs2_lock_allocators(inode, &et,
1731					    clusters_to_alloc, extents_to_split,
1732					    &data_ac, &meta_ac);
1733		if (ret) {
1734			mlog_errno(ret);
1735			goto out;
1736		}
1737
1738		credits = ocfs2_calc_extend_credits(inode->i_sb,
1739						    &di->id2.i_list,
1740						    clusters_to_alloc);
1741
1742	}
1743
1744	/*
1745	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1746	 * and non-sparse clusters we just extended.  For non-sparse writes,
1747	 * we know zeros will only be needed in the first and/or last cluster.
1748	 */
1749	if (clusters_to_alloc || extents_to_split ||
1750	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1751			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1752		cluster_of_pages = 1;
1753	else
1754		cluster_of_pages = 0;
1755
1756	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1757
1758	handle = ocfs2_start_trans(osb, credits);
1759	if (IS_ERR(handle)) {
1760		ret = PTR_ERR(handle);
1761		mlog_errno(ret);
1762		goto out;
1763	}
1764
1765	wc->w_handle = handle;
1766
1767	if (clusters_to_alloc && vfs_dq_alloc_space_nodirty(inode,
1768			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc))) {
1769		ret = -EDQUOT;
1770		goto out_commit;
1771	}
1772	/*
1773	 * We don't want this to fail in ocfs2_write_end(), so do it
1774	 * here.
1775	 */
1776	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1777				      OCFS2_JOURNAL_ACCESS_WRITE);
1778	if (ret) {
1779		mlog_errno(ret);
1780		goto out_quota;
1781	}
1782
1783	/*
1784	 * Fill our page array first. That way we've grabbed enough so
1785	 * that we can zero and flush if we error after adding the
1786	 * extent.
1787	 */
1788	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1789					 cluster_of_pages, mmap_page);
1790	if (ret) {
1791		mlog_errno(ret);
1792		goto out_quota;
1793	}
1794
1795	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1796					  len);
1797	if (ret) {
1798		mlog_errno(ret);
1799		goto out_quota;
1800	}
1801
1802	if (data_ac)
1803		ocfs2_free_alloc_context(data_ac);
1804	if (meta_ac)
1805		ocfs2_free_alloc_context(meta_ac);
1806
1807success:
1808	*pagep = wc->w_target_page;
1809	*fsdata = wc;
1810	return 0;
1811out_quota:
1812	if (clusters_to_alloc)
1813		vfs_dq_free_space(inode,
1814			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1815out_commit:
1816	ocfs2_commit_trans(osb, handle);
1817
1818out:
1819	ocfs2_free_write_ctxt(wc);
1820
1821	if (data_ac)
1822		ocfs2_free_alloc_context(data_ac);
1823	if (meta_ac)
1824		ocfs2_free_alloc_context(meta_ac);
1825	return ret;
1826}
1827
1828static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1829			     loff_t pos, unsigned len, unsigned flags,
1830			     struct page **pagep, void **fsdata)
1831{
1832	int ret;
1833	struct buffer_head *di_bh = NULL;
1834	struct inode *inode = mapping->host;
1835
1836	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1837	if (ret) {
1838		mlog_errno(ret);
1839		return ret;
1840	}
1841
1842	/*
1843	 * Take alloc sem here to prevent concurrent lookups. That way
1844	 * the mapping, zeroing and tree manipulation within
1845	 * ocfs2_write() will be safe against ->readpage(). This
1846	 * should also serve to lock out allocation from a shared
1847	 * writeable region.
1848	 */
1849	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1850
1851	ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1852				       fsdata, di_bh, NULL);
1853	if (ret) {
1854		mlog_errno(ret);
1855		goto out_fail;
1856	}
1857
1858	brelse(di_bh);
1859
1860	return 0;
1861
1862out_fail:
1863	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1864
1865	brelse(di_bh);
1866	ocfs2_inode_unlock(inode, 1);
1867
1868	return ret;
1869}
1870
1871static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1872				   unsigned len, unsigned *copied,
1873				   struct ocfs2_dinode *di,
1874				   struct ocfs2_write_ctxt *wc)
1875{
1876	void *kaddr;
1877
1878	if (unlikely(*copied < len)) {
1879		if (!PageUptodate(wc->w_target_page)) {
1880			*copied = 0;
1881			return;
1882		}
1883	}
1884
1885	kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1886	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1887	kunmap_atomic(kaddr, KM_USER0);
1888
1889	mlog(0, "Data written to inode at offset %llu. "
1890	     "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1891	     (unsigned long long)pos, *copied,
1892	     le16_to_cpu(di->id2.i_data.id_count),
1893	     le16_to_cpu(di->i_dyn_features));
1894}
1895
1896int ocfs2_write_end_nolock(struct address_space *mapping,
1897			   loff_t pos, unsigned len, unsigned copied,
1898			   struct page *page, void *fsdata)
1899{
1900	int i;
1901	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1902	struct inode *inode = mapping->host;
1903	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1904	struct ocfs2_write_ctxt *wc = fsdata;
1905	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1906	handle_t *handle = wc->w_handle;
1907	struct page *tmppage;
1908
1909	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1910		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1911		goto out_write_size;
1912	}
1913
1914	if (unlikely(copied < len)) {
1915		if (!PageUptodate(wc->w_target_page))
1916			copied = 0;
1917
1918		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1919				       start+len);
1920	}
1921	flush_dcache_page(wc->w_target_page);
1922
1923	for(i = 0; i < wc->w_num_pages; i++) {
1924		tmppage = wc->w_pages[i];
1925
1926		if (tmppage == wc->w_target_page) {
1927			from = wc->w_target_from;
1928			to = wc->w_target_to;
1929
1930			BUG_ON(from > PAGE_CACHE_SIZE ||
1931			       to > PAGE_CACHE_SIZE ||
1932			       to < from);
1933		} else {
1934			/*
1935			 * Pages adjacent to the target (if any) imply
1936			 * a hole-filling write in which case we want
1937			 * to flush their entire range.
1938			 */
1939			from = 0;
1940			to = PAGE_CACHE_SIZE;
1941		}
1942
1943		if (page_has_buffers(tmppage)) {
1944			if (ocfs2_should_order_data(inode))
1945				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1946			block_commit_write(tmppage, from, to);
1947		}
1948	}
1949
1950out_write_size:
1951	pos += copied;
1952	if (pos > inode->i_size) {
1953		i_size_write(inode, pos);
1954		mark_inode_dirty(inode);
1955	}
1956	inode->i_blocks = ocfs2_inode_sector_count(inode);
1957	di->i_size = cpu_to_le64((u64)i_size_read(inode));
1958	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1959	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1960	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1961	ocfs2_journal_dirty(handle, wc->w_di_bh);
1962
1963	ocfs2_commit_trans(osb, handle);
1964
1965	ocfs2_run_deallocs(osb, &wc->w_dealloc);
1966
1967	ocfs2_free_write_ctxt(wc);
1968
1969	return copied;
1970}
1971
1972static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1973			   loff_t pos, unsigned len, unsigned copied,
1974			   struct page *page, void *fsdata)
1975{
1976	int ret;
1977	struct inode *inode = mapping->host;
1978
1979	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1980
1981	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1982	ocfs2_inode_unlock(inode, 1);
1983
1984	return ret;
1985}
1986
1987const struct address_space_operations ocfs2_aops = {
1988	.readpage		= ocfs2_readpage,
1989	.readpages		= ocfs2_readpages,
1990	.writepage		= ocfs2_writepage,
1991	.write_begin		= ocfs2_write_begin,
1992	.write_end		= ocfs2_write_end,
1993	.bmap			= ocfs2_bmap,
1994	.sync_page		= block_sync_page,
1995	.direct_IO		= ocfs2_direct_IO,
1996	.invalidatepage		= ocfs2_invalidatepage,
1997	.releasepage		= ocfs2_releasepage,
1998	.migratepage		= buffer_migrate_page,
1999	.is_partially_uptodate	= block_is_partially_uptodate,
2000};
2001