aops.c revision 293b2f70b4a16a1ca91efd28ef3d6634262c6887
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
27#include <linux/swap.h>
28#include <linux/pipe_fs_i.h>
29#include <linux/mpage.h>
30#include <linux/quotaops.h>
31
32#define MLOG_MASK_PREFIX ML_FILE_IO
33#include <cluster/masklog.h>
34
35#include "ocfs2.h"
36
37#include "alloc.h"
38#include "aops.h"
39#include "dlmglue.h"
40#include "extent_map.h"
41#include "file.h"
42#include "inode.h"
43#include "journal.h"
44#include "suballoc.h"
45#include "super.h"
46#include "symlink.h"
47#include "refcounttree.h"
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52				   struct buffer_head *bh_result, int create)
53{
54	int err = -EIO;
55	int status;
56	struct ocfs2_dinode *fe = NULL;
57	struct buffer_head *bh = NULL;
58	struct buffer_head *buffer_cache_bh = NULL;
59	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60	void *kaddr;
61
62	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
63		   (unsigned long long)iblock, bh_result, create);
64
65	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
66
67	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
68		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
69		     (unsigned long long)iblock);
70		goto bail;
71	}
72
73	status = ocfs2_read_inode_block(inode, &bh);
74	if (status < 0) {
75		mlog_errno(status);
76		goto bail;
77	}
78	fe = (struct ocfs2_dinode *) bh->b_data;
79
80	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
81						    le32_to_cpu(fe->i_clusters))) {
82		mlog(ML_ERROR, "block offset is outside the allocated size: "
83		     "%llu\n", (unsigned long long)iblock);
84		goto bail;
85	}
86
87	/* We don't use the page cache to create symlink data, so if
88	 * need be, copy it over from the buffer cache. */
89	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
90		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
91			    iblock;
92		buffer_cache_bh = sb_getblk(osb->sb, blkno);
93		if (!buffer_cache_bh) {
94			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
95			goto bail;
96		}
97
98		/* we haven't locked out transactions, so a commit
99		 * could've happened. Since we've got a reference on
100		 * the bh, even if it commits while we're doing the
101		 * copy, the data is still good. */
102		if (buffer_jbd(buffer_cache_bh)
103		    && ocfs2_inode_is_new(inode)) {
104			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
105			if (!kaddr) {
106				mlog(ML_ERROR, "couldn't kmap!\n");
107				goto bail;
108			}
109			memcpy(kaddr + (bh_result->b_size * iblock),
110			       buffer_cache_bh->b_data,
111			       bh_result->b_size);
112			kunmap_atomic(kaddr, KM_USER0);
113			set_buffer_uptodate(bh_result);
114		}
115		brelse(buffer_cache_bh);
116	}
117
118	map_bh(bh_result, inode->i_sb,
119	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
120
121	err = 0;
122
123bail:
124	brelse(bh);
125
126	mlog_exit(err);
127	return err;
128}
129
130int ocfs2_get_block(struct inode *inode, sector_t iblock,
131		    struct buffer_head *bh_result, int create)
132{
133	int err = 0;
134	unsigned int ext_flags;
135	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136	u64 p_blkno, count, past_eof;
137	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138
139	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
140		   (unsigned long long)iblock, bh_result, create);
141
142	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144		     inode, inode->i_ino);
145
146	if (S_ISLNK(inode->i_mode)) {
147		/* this always does I/O for some reason. */
148		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149		goto bail;
150	}
151
152	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153					  &ext_flags);
154	if (err) {
155		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157		     (unsigned long long)p_blkno);
158		goto bail;
159	}
160
161	if (max_blocks < count)
162		count = max_blocks;
163
164	/*
165	 * ocfs2 never allocates in this function - the only time we
166	 * need to use BH_New is when we're extending i_size on a file
167	 * system which doesn't support holes, in which case BH_New
168	 * allows block_prepare_write() to zero.
169	 *
170	 * If we see this on a sparse file system, then a truncate has
171	 * raced us and removed the cluster. In this case, we clear
172	 * the buffers dirty and uptodate bits and let the buffer code
173	 * ignore it as a hole.
174	 */
175	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176		clear_buffer_dirty(bh_result);
177		clear_buffer_uptodate(bh_result);
178		goto bail;
179	}
180
181	/* Treat the unwritten extent as a hole for zeroing purposes. */
182	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183		map_bh(bh_result, inode->i_sb, p_blkno);
184
185	bh_result->b_size = count << inode->i_blkbits;
186
187	if (!ocfs2_sparse_alloc(osb)) {
188		if (p_blkno == 0) {
189			err = -EIO;
190			mlog(ML_ERROR,
191			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192			     (unsigned long long)iblock,
193			     (unsigned long long)p_blkno,
194			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
195			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196			dump_stack();
197			goto bail;
198		}
199
200		past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
201		mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
202		     (unsigned long long)past_eof);
203
204		if (create && (iblock >= past_eof))
205			set_buffer_new(bh_result);
206	}
207
208bail:
209	if (err < 0)
210		err = -EIO;
211
212	mlog_exit(err);
213	return err;
214}
215
216int ocfs2_read_inline_data(struct inode *inode, struct page *page,
217			   struct buffer_head *di_bh)
218{
219	void *kaddr;
220	loff_t size;
221	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
222
223	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
224		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
225			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
226		return -EROFS;
227	}
228
229	size = i_size_read(inode);
230
231	if (size > PAGE_CACHE_SIZE ||
232	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
233		ocfs2_error(inode->i_sb,
234			    "Inode %llu has with inline data has bad size: %Lu",
235			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
236			    (unsigned long long)size);
237		return -EROFS;
238	}
239
240	kaddr = kmap_atomic(page, KM_USER0);
241	if (size)
242		memcpy(kaddr, di->id2.i_data.id_data, size);
243	/* Clear the remaining part of the page */
244	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
245	flush_dcache_page(page);
246	kunmap_atomic(kaddr, KM_USER0);
247
248	SetPageUptodate(page);
249
250	return 0;
251}
252
253static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
254{
255	int ret;
256	struct buffer_head *di_bh = NULL;
257
258	BUG_ON(!PageLocked(page));
259	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
260
261	ret = ocfs2_read_inode_block(inode, &di_bh);
262	if (ret) {
263		mlog_errno(ret);
264		goto out;
265	}
266
267	ret = ocfs2_read_inline_data(inode, page, di_bh);
268out:
269	unlock_page(page);
270
271	brelse(di_bh);
272	return ret;
273}
274
275static int ocfs2_readpage(struct file *file, struct page *page)
276{
277	struct inode *inode = page->mapping->host;
278	struct ocfs2_inode_info *oi = OCFS2_I(inode);
279	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
280	int ret, unlock = 1;
281
282	mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
283
284	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285	if (ret != 0) {
286		if (ret == AOP_TRUNCATED_PAGE)
287			unlock = 0;
288		mlog_errno(ret);
289		goto out;
290	}
291
292	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293		ret = AOP_TRUNCATED_PAGE;
294		goto out_inode_unlock;
295	}
296
297	/*
298	 * i_size might have just been updated as we grabed the meta lock.  We
299	 * might now be discovering a truncate that hit on another node.
300	 * block_read_full_page->get_block freaks out if it is asked to read
301	 * beyond the end of a file, so we check here.  Callers
302	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
303	 * and notice that the page they just read isn't needed.
304	 *
305	 * XXX sys_readahead() seems to get that wrong?
306	 */
307	if (start >= i_size_read(inode)) {
308		zero_user(page, 0, PAGE_SIZE);
309		SetPageUptodate(page);
310		ret = 0;
311		goto out_alloc;
312	}
313
314	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
315		ret = ocfs2_readpage_inline(inode, page);
316	else
317		ret = block_read_full_page(page, ocfs2_get_block);
318	unlock = 0;
319
320out_alloc:
321	up_read(&OCFS2_I(inode)->ip_alloc_sem);
322out_inode_unlock:
323	ocfs2_inode_unlock(inode, 0);
324out:
325	if (unlock)
326		unlock_page(page);
327	mlog_exit(ret);
328	return ret;
329}
330
331/*
332 * This is used only for read-ahead. Failures or difficult to handle
333 * situations are safe to ignore.
334 *
335 * Right now, we don't bother with BH_Boundary - in-inode extent lists
336 * are quite large (243 extents on 4k blocks), so most inodes don't
337 * grow out to a tree. If need be, detecting boundary extents could
338 * trivially be added in a future version of ocfs2_get_block().
339 */
340static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
341			   struct list_head *pages, unsigned nr_pages)
342{
343	int ret, err = -EIO;
344	struct inode *inode = mapping->host;
345	struct ocfs2_inode_info *oi = OCFS2_I(inode);
346	loff_t start;
347	struct page *last;
348
349	/*
350	 * Use the nonblocking flag for the dlm code to avoid page
351	 * lock inversion, but don't bother with retrying.
352	 */
353	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
354	if (ret)
355		return err;
356
357	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
358		ocfs2_inode_unlock(inode, 0);
359		return err;
360	}
361
362	/*
363	 * Don't bother with inline-data. There isn't anything
364	 * to read-ahead in that case anyway...
365	 */
366	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
367		goto out_unlock;
368
369	/*
370	 * Check whether a remote node truncated this file - we just
371	 * drop out in that case as it's not worth handling here.
372	 */
373	last = list_entry(pages->prev, struct page, lru);
374	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
375	if (start >= i_size_read(inode))
376		goto out_unlock;
377
378	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
379
380out_unlock:
381	up_read(&oi->ip_alloc_sem);
382	ocfs2_inode_unlock(inode, 0);
383
384	return err;
385}
386
387/* Note: Because we don't support holes, our allocation has
388 * already happened (allocation writes zeros to the file data)
389 * so we don't have to worry about ordered writes in
390 * ocfs2_writepage.
391 *
392 * ->writepage is called during the process of invalidating the page cache
393 * during blocked lock processing.  It can't block on any cluster locks
394 * to during block mapping.  It's relying on the fact that the block
395 * mapping can't have disappeared under the dirty pages that it is
396 * being asked to write back.
397 */
398static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
399{
400	int ret;
401
402	mlog_entry("(0x%p)\n", page);
403
404	ret = block_write_full_page(page, ocfs2_get_block, wbc);
405
406	mlog_exit(ret);
407
408	return ret;
409}
410
411/*
412 * This is called from ocfs2_write_zero_page() which has handled it's
413 * own cluster locking and has ensured allocation exists for those
414 * blocks to be written.
415 */
416int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
417			       unsigned from, unsigned to)
418{
419	int ret;
420
421	ret = block_prepare_write(page, from, to, ocfs2_get_block);
422
423	return ret;
424}
425
426/* Taken from ext3. We don't necessarily need the full blown
427 * functionality yet, but IMHO it's better to cut and paste the whole
428 * thing so we can avoid introducing our own bugs (and easily pick up
429 * their fixes when they happen) --Mark */
430int walk_page_buffers(	handle_t *handle,
431			struct buffer_head *head,
432			unsigned from,
433			unsigned to,
434			int *partial,
435			int (*fn)(	handle_t *handle,
436					struct buffer_head *bh))
437{
438	struct buffer_head *bh;
439	unsigned block_start, block_end;
440	unsigned blocksize = head->b_size;
441	int err, ret = 0;
442	struct buffer_head *next;
443
444	for (	bh = head, block_start = 0;
445		ret == 0 && (bh != head || !block_start);
446	    	block_start = block_end, bh = next)
447	{
448		next = bh->b_this_page;
449		block_end = block_start + blocksize;
450		if (block_end <= from || block_start >= to) {
451			if (partial && !buffer_uptodate(bh))
452				*partial = 1;
453			continue;
454		}
455		err = (*fn)(handle, bh);
456		if (!ret)
457			ret = err;
458	}
459	return ret;
460}
461
462handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
463							 struct page *page,
464							 unsigned from,
465							 unsigned to)
466{
467	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
468	handle_t *handle;
469	int ret = 0;
470
471	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
472	if (IS_ERR(handle)) {
473		ret = -ENOMEM;
474		mlog_errno(ret);
475		goto out;
476	}
477
478	if (ocfs2_should_order_data(inode)) {
479		ret = ocfs2_jbd2_file_inode(handle, inode);
480		if (ret < 0)
481			mlog_errno(ret);
482	}
483out:
484	if (ret) {
485		if (!IS_ERR(handle))
486			ocfs2_commit_trans(osb, handle);
487		handle = ERR_PTR(ret);
488	}
489	return handle;
490}
491
492static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
493{
494	sector_t status;
495	u64 p_blkno = 0;
496	int err = 0;
497	struct inode *inode = mapping->host;
498
499	mlog_entry("(block = %llu)\n", (unsigned long long)block);
500
501	/* We don't need to lock journal system files, since they aren't
502	 * accessed concurrently from multiple nodes.
503	 */
504	if (!INODE_JOURNAL(inode)) {
505		err = ocfs2_inode_lock(inode, NULL, 0);
506		if (err) {
507			if (err != -ENOENT)
508				mlog_errno(err);
509			goto bail;
510		}
511		down_read(&OCFS2_I(inode)->ip_alloc_sem);
512	}
513
514	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
515		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
516						  NULL);
517
518	if (!INODE_JOURNAL(inode)) {
519		up_read(&OCFS2_I(inode)->ip_alloc_sem);
520		ocfs2_inode_unlock(inode, 0);
521	}
522
523	if (err) {
524		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
525		     (unsigned long long)block);
526		mlog_errno(err);
527		goto bail;
528	}
529
530bail:
531	status = err ? 0 : p_blkno;
532
533	mlog_exit((int)status);
534
535	return status;
536}
537
538/*
539 * TODO: Make this into a generic get_blocks function.
540 *
541 * From do_direct_io in direct-io.c:
542 *  "So what we do is to permit the ->get_blocks function to populate
543 *   bh.b_size with the size of IO which is permitted at this offset and
544 *   this i_blkbits."
545 *
546 * This function is called directly from get_more_blocks in direct-io.c.
547 *
548 * called like this: dio->get_blocks(dio->inode, fs_startblk,
549 * 					fs_count, map_bh, dio->rw == WRITE);
550 */
551static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
552				     struct buffer_head *bh_result, int create)
553{
554	int ret;
555	u64 p_blkno, inode_blocks, contig_blocks;
556	unsigned int ext_flags;
557	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
558	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
559
560	/* This function won't even be called if the request isn't all
561	 * nicely aligned and of the right size, so there's no need
562	 * for us to check any of that. */
563
564	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
565
566	/*
567	 * Any write past EOF is not allowed because we'd be extending.
568	 */
569	if (create && (iblock + max_blocks) > inode_blocks) {
570		ret = -EIO;
571		goto bail;
572	}
573
574	/* This figures out the size of the next contiguous block, and
575	 * our logical offset */
576	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
577					  &contig_blocks, &ext_flags);
578	if (ret) {
579		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
580		     (unsigned long long)iblock);
581		ret = -EIO;
582		goto bail;
583	}
584
585	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
586		ocfs2_error(inode->i_sb,
587			    "Inode %llu has a hole at block %llu\n",
588			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
589			    (unsigned long long)iblock);
590		ret = -EROFS;
591		goto bail;
592	}
593
594	/* We should already CoW the refcounted extent. */
595	BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
596	/*
597	 * get_more_blocks() expects us to describe a hole by clearing
598	 * the mapped bit on bh_result().
599	 *
600	 * Consider an unwritten extent as a hole.
601	 */
602	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
603		map_bh(bh_result, inode->i_sb, p_blkno);
604	else {
605		/*
606		 * ocfs2_prepare_inode_for_write() should have caught
607		 * the case where we'd be filling a hole and triggered
608		 * a buffered write instead.
609		 */
610		if (create) {
611			ret = -EIO;
612			mlog_errno(ret);
613			goto bail;
614		}
615
616		clear_buffer_mapped(bh_result);
617	}
618
619	/* make sure we don't map more than max_blocks blocks here as
620	   that's all the kernel will handle at this point. */
621	if (max_blocks < contig_blocks)
622		contig_blocks = max_blocks;
623	bh_result->b_size = contig_blocks << blocksize_bits;
624bail:
625	return ret;
626}
627
628/*
629 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
630 * particularly interested in the aio/dio case.  Like the core uses
631 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
632 * truncation on another.
633 */
634static void ocfs2_dio_end_io(struct kiocb *iocb,
635			     loff_t offset,
636			     ssize_t bytes,
637			     void *private)
638{
639	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
640	int level;
641
642	/* this io's submitter should not have unlocked this before we could */
643	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
644
645	ocfs2_iocb_clear_rw_locked(iocb);
646
647	level = ocfs2_iocb_rw_locked_level(iocb);
648	if (!level)
649		up_read(&inode->i_alloc_sem);
650	ocfs2_rw_unlock(inode, level);
651}
652
653/*
654 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
655 * from ext3.  PageChecked() bits have been removed as OCFS2 does not
656 * do journalled data.
657 */
658static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
659{
660	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
661
662	jbd2_journal_invalidatepage(journal, page, offset);
663}
664
665static int ocfs2_releasepage(struct page *page, gfp_t wait)
666{
667	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
668
669	if (!page_has_buffers(page))
670		return 0;
671	return jbd2_journal_try_to_free_buffers(journal, page, wait);
672}
673
674static ssize_t ocfs2_direct_IO(int rw,
675			       struct kiocb *iocb,
676			       const struct iovec *iov,
677			       loff_t offset,
678			       unsigned long nr_segs)
679{
680	struct file *file = iocb->ki_filp;
681	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
682	int ret;
683
684	mlog_entry_void();
685
686	/*
687	 * Fallback to buffered I/O if we see an inode without
688	 * extents.
689	 */
690	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
691		return 0;
692
693	ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
694					    inode->i_sb->s_bdev, iov, offset,
695					    nr_segs,
696					    ocfs2_direct_IO_get_blocks,
697					    ocfs2_dio_end_io);
698
699	mlog_exit(ret);
700	return ret;
701}
702
703static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
704					    u32 cpos,
705					    unsigned int *start,
706					    unsigned int *end)
707{
708	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
709
710	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
711		unsigned int cpp;
712
713		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
714
715		cluster_start = cpos % cpp;
716		cluster_start = cluster_start << osb->s_clustersize_bits;
717
718		cluster_end = cluster_start + osb->s_clustersize;
719	}
720
721	BUG_ON(cluster_start > PAGE_SIZE);
722	BUG_ON(cluster_end > PAGE_SIZE);
723
724	if (start)
725		*start = cluster_start;
726	if (end)
727		*end = cluster_end;
728}
729
730/*
731 * 'from' and 'to' are the region in the page to avoid zeroing.
732 *
733 * If pagesize > clustersize, this function will avoid zeroing outside
734 * of the cluster boundary.
735 *
736 * from == to == 0 is code for "zero the entire cluster region"
737 */
738static void ocfs2_clear_page_regions(struct page *page,
739				     struct ocfs2_super *osb, u32 cpos,
740				     unsigned from, unsigned to)
741{
742	void *kaddr;
743	unsigned int cluster_start, cluster_end;
744
745	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
746
747	kaddr = kmap_atomic(page, KM_USER0);
748
749	if (from || to) {
750		if (from > cluster_start)
751			memset(kaddr + cluster_start, 0, from - cluster_start);
752		if (to < cluster_end)
753			memset(kaddr + to, 0, cluster_end - to);
754	} else {
755		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
756	}
757
758	kunmap_atomic(kaddr, KM_USER0);
759}
760
761/*
762 * Nonsparse file systems fully allocate before we get to the write
763 * code. This prevents ocfs2_write() from tagging the write as an
764 * allocating one, which means ocfs2_map_page_blocks() might try to
765 * read-in the blocks at the tail of our file. Avoid reading them by
766 * testing i_size against each block offset.
767 */
768static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
769				 unsigned int block_start)
770{
771	u64 offset = page_offset(page) + block_start;
772
773	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
774		return 1;
775
776	if (i_size_read(inode) > offset)
777		return 1;
778
779	return 0;
780}
781
782/*
783 * Some of this taken from block_prepare_write(). We already have our
784 * mapping by now though, and the entire write will be allocating or
785 * it won't, so not much need to use BH_New.
786 *
787 * This will also skip zeroing, which is handled externally.
788 */
789int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
790			  struct inode *inode, unsigned int from,
791			  unsigned int to, int new)
792{
793	int ret = 0;
794	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
795	unsigned int block_end, block_start;
796	unsigned int bsize = 1 << inode->i_blkbits;
797
798	if (!page_has_buffers(page))
799		create_empty_buffers(page, bsize, 0);
800
801	head = page_buffers(page);
802	for (bh = head, block_start = 0; bh != head || !block_start;
803	     bh = bh->b_this_page, block_start += bsize) {
804		block_end = block_start + bsize;
805
806		clear_buffer_new(bh);
807
808		/*
809		 * Ignore blocks outside of our i/o range -
810		 * they may belong to unallocated clusters.
811		 */
812		if (block_start >= to || block_end <= from) {
813			if (PageUptodate(page))
814				set_buffer_uptodate(bh);
815			continue;
816		}
817
818		/*
819		 * For an allocating write with cluster size >= page
820		 * size, we always write the entire page.
821		 */
822		if (new)
823			set_buffer_new(bh);
824
825		if (!buffer_mapped(bh)) {
826			map_bh(bh, inode->i_sb, *p_blkno);
827			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
828		}
829
830		if (PageUptodate(page)) {
831			if (!buffer_uptodate(bh))
832				set_buffer_uptodate(bh);
833		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
834			   !buffer_new(bh) &&
835			   ocfs2_should_read_blk(inode, page, block_start) &&
836			   (block_start < from || block_end > to)) {
837			ll_rw_block(READ, 1, &bh);
838			*wait_bh++=bh;
839		}
840
841		*p_blkno = *p_blkno + 1;
842	}
843
844	/*
845	 * If we issued read requests - let them complete.
846	 */
847	while(wait_bh > wait) {
848		wait_on_buffer(*--wait_bh);
849		if (!buffer_uptodate(*wait_bh))
850			ret = -EIO;
851	}
852
853	if (ret == 0 || !new)
854		return ret;
855
856	/*
857	 * If we get -EIO above, zero out any newly allocated blocks
858	 * to avoid exposing stale data.
859	 */
860	bh = head;
861	block_start = 0;
862	do {
863		block_end = block_start + bsize;
864		if (block_end <= from)
865			goto next_bh;
866		if (block_start >= to)
867			break;
868
869		zero_user(page, block_start, bh->b_size);
870		set_buffer_uptodate(bh);
871		mark_buffer_dirty(bh);
872
873next_bh:
874		block_start = block_end;
875		bh = bh->b_this_page;
876	} while (bh != head);
877
878	return ret;
879}
880
881#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
882#define OCFS2_MAX_CTXT_PAGES	1
883#else
884#define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
885#endif
886
887#define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
888
889/*
890 * Describe the state of a single cluster to be written to.
891 */
892struct ocfs2_write_cluster_desc {
893	u32		c_cpos;
894	u32		c_phys;
895	/*
896	 * Give this a unique field because c_phys eventually gets
897	 * filled.
898	 */
899	unsigned	c_new;
900	unsigned	c_unwritten;
901	unsigned	c_needs_zero;
902};
903
904struct ocfs2_write_ctxt {
905	/* Logical cluster position / len of write */
906	u32				w_cpos;
907	u32				w_clen;
908
909	/* First cluster allocated in a nonsparse extend */
910	u32				w_first_new_cpos;
911
912	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
913
914	/*
915	 * This is true if page_size > cluster_size.
916	 *
917	 * It triggers a set of special cases during write which might
918	 * have to deal with allocating writes to partial pages.
919	 */
920	unsigned int			w_large_pages;
921
922	/*
923	 * Pages involved in this write.
924	 *
925	 * w_target_page is the page being written to by the user.
926	 *
927	 * w_pages is an array of pages which always contains
928	 * w_target_page, and in the case of an allocating write with
929	 * page_size < cluster size, it will contain zero'd and mapped
930	 * pages adjacent to w_target_page which need to be written
931	 * out in so that future reads from that region will get
932	 * zero's.
933	 */
934	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
935	unsigned int			w_num_pages;
936	struct page			*w_target_page;
937
938	/*
939	 * ocfs2_write_end() uses this to know what the real range to
940	 * write in the target should be.
941	 */
942	unsigned int			w_target_from;
943	unsigned int			w_target_to;
944
945	/*
946	 * We could use journal_current_handle() but this is cleaner,
947	 * IMHO -Mark
948	 */
949	handle_t			*w_handle;
950
951	struct buffer_head		*w_di_bh;
952
953	struct ocfs2_cached_dealloc_ctxt w_dealloc;
954};
955
956void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
957{
958	int i;
959
960	for(i = 0; i < num_pages; i++) {
961		if (pages[i]) {
962			unlock_page(pages[i]);
963			mark_page_accessed(pages[i]);
964			page_cache_release(pages[i]);
965		}
966	}
967}
968
969static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
970{
971	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
972
973	brelse(wc->w_di_bh);
974	kfree(wc);
975}
976
977static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
978				  struct ocfs2_super *osb, loff_t pos,
979				  unsigned len, struct buffer_head *di_bh)
980{
981	u32 cend;
982	struct ocfs2_write_ctxt *wc;
983
984	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
985	if (!wc)
986		return -ENOMEM;
987
988	wc->w_cpos = pos >> osb->s_clustersize_bits;
989	wc->w_first_new_cpos = UINT_MAX;
990	cend = (pos + len - 1) >> osb->s_clustersize_bits;
991	wc->w_clen = cend - wc->w_cpos + 1;
992	get_bh(di_bh);
993	wc->w_di_bh = di_bh;
994
995	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
996		wc->w_large_pages = 1;
997	else
998		wc->w_large_pages = 0;
999
1000	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1001
1002	*wcp = wc;
1003
1004	return 0;
1005}
1006
1007/*
1008 * If a page has any new buffers, zero them out here, and mark them uptodate
1009 * and dirty so they'll be written out (in order to prevent uninitialised
1010 * block data from leaking). And clear the new bit.
1011 */
1012static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1013{
1014	unsigned int block_start, block_end;
1015	struct buffer_head *head, *bh;
1016
1017	BUG_ON(!PageLocked(page));
1018	if (!page_has_buffers(page))
1019		return;
1020
1021	bh = head = page_buffers(page);
1022	block_start = 0;
1023	do {
1024		block_end = block_start + bh->b_size;
1025
1026		if (buffer_new(bh)) {
1027			if (block_end > from && block_start < to) {
1028				if (!PageUptodate(page)) {
1029					unsigned start, end;
1030
1031					start = max(from, block_start);
1032					end = min(to, block_end);
1033
1034					zero_user_segment(page, start, end);
1035					set_buffer_uptodate(bh);
1036				}
1037
1038				clear_buffer_new(bh);
1039				mark_buffer_dirty(bh);
1040			}
1041		}
1042
1043		block_start = block_end;
1044		bh = bh->b_this_page;
1045	} while (bh != head);
1046}
1047
1048/*
1049 * Only called when we have a failure during allocating write to write
1050 * zero's to the newly allocated region.
1051 */
1052static void ocfs2_write_failure(struct inode *inode,
1053				struct ocfs2_write_ctxt *wc,
1054				loff_t user_pos, unsigned user_len)
1055{
1056	int i;
1057	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1058		to = user_pos + user_len;
1059	struct page *tmppage;
1060
1061	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1062
1063	for(i = 0; i < wc->w_num_pages; i++) {
1064		tmppage = wc->w_pages[i];
1065
1066		if (page_has_buffers(tmppage)) {
1067			if (ocfs2_should_order_data(inode))
1068				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1069
1070			block_commit_write(tmppage, from, to);
1071		}
1072	}
1073}
1074
1075static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1076					struct ocfs2_write_ctxt *wc,
1077					struct page *page, u32 cpos,
1078					loff_t user_pos, unsigned user_len,
1079					int new)
1080{
1081	int ret;
1082	unsigned int map_from = 0, map_to = 0;
1083	unsigned int cluster_start, cluster_end;
1084	unsigned int user_data_from = 0, user_data_to = 0;
1085
1086	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1087					&cluster_start, &cluster_end);
1088
1089	if (page == wc->w_target_page) {
1090		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1091		map_to = map_from + user_len;
1092
1093		if (new)
1094			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1095						    cluster_start, cluster_end,
1096						    new);
1097		else
1098			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1099						    map_from, map_to, new);
1100		if (ret) {
1101			mlog_errno(ret);
1102			goto out;
1103		}
1104
1105		user_data_from = map_from;
1106		user_data_to = map_to;
1107		if (new) {
1108			map_from = cluster_start;
1109			map_to = cluster_end;
1110		}
1111	} else {
1112		/*
1113		 * If we haven't allocated the new page yet, we
1114		 * shouldn't be writing it out without copying user
1115		 * data. This is likely a math error from the caller.
1116		 */
1117		BUG_ON(!new);
1118
1119		map_from = cluster_start;
1120		map_to = cluster_end;
1121
1122		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1123					    cluster_start, cluster_end, new);
1124		if (ret) {
1125			mlog_errno(ret);
1126			goto out;
1127		}
1128	}
1129
1130	/*
1131	 * Parts of newly allocated pages need to be zero'd.
1132	 *
1133	 * Above, we have also rewritten 'to' and 'from' - as far as
1134	 * the rest of the function is concerned, the entire cluster
1135	 * range inside of a page needs to be written.
1136	 *
1137	 * We can skip this if the page is up to date - it's already
1138	 * been zero'd from being read in as a hole.
1139	 */
1140	if (new && !PageUptodate(page))
1141		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1142					 cpos, user_data_from, user_data_to);
1143
1144	flush_dcache_page(page);
1145
1146out:
1147	return ret;
1148}
1149
1150/*
1151 * This function will only grab one clusters worth of pages.
1152 */
1153static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1154				      struct ocfs2_write_ctxt *wc,
1155				      u32 cpos, loff_t user_pos, int new,
1156				      struct page *mmap_page)
1157{
1158	int ret = 0, i;
1159	unsigned long start, target_index, index;
1160	struct inode *inode = mapping->host;
1161
1162	target_index = user_pos >> PAGE_CACHE_SHIFT;
1163
1164	/*
1165	 * Figure out how many pages we'll be manipulating here. For
1166	 * non allocating write, we just change the one
1167	 * page. Otherwise, we'll need a whole clusters worth.
1168	 */
1169	if (new) {
1170		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1171		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1172	} else {
1173		wc->w_num_pages = 1;
1174		start = target_index;
1175	}
1176
1177	for(i = 0; i < wc->w_num_pages; i++) {
1178		index = start + i;
1179
1180		if (index == target_index && mmap_page) {
1181			/*
1182			 * ocfs2_pagemkwrite() is a little different
1183			 * and wants us to directly use the page
1184			 * passed in.
1185			 */
1186			lock_page(mmap_page);
1187
1188			if (mmap_page->mapping != mapping) {
1189				unlock_page(mmap_page);
1190				/*
1191				 * Sanity check - the locking in
1192				 * ocfs2_pagemkwrite() should ensure
1193				 * that this code doesn't trigger.
1194				 */
1195				ret = -EINVAL;
1196				mlog_errno(ret);
1197				goto out;
1198			}
1199
1200			page_cache_get(mmap_page);
1201			wc->w_pages[i] = mmap_page;
1202		} else {
1203			wc->w_pages[i] = find_or_create_page(mapping, index,
1204							     GFP_NOFS);
1205			if (!wc->w_pages[i]) {
1206				ret = -ENOMEM;
1207				mlog_errno(ret);
1208				goto out;
1209			}
1210		}
1211
1212		if (index == target_index)
1213			wc->w_target_page = wc->w_pages[i];
1214	}
1215out:
1216	return ret;
1217}
1218
1219/*
1220 * Prepare a single cluster for write one cluster into the file.
1221 */
1222static int ocfs2_write_cluster(struct address_space *mapping,
1223			       u32 phys, unsigned int unwritten,
1224			       unsigned int should_zero,
1225			       struct ocfs2_alloc_context *data_ac,
1226			       struct ocfs2_alloc_context *meta_ac,
1227			       struct ocfs2_write_ctxt *wc, u32 cpos,
1228			       loff_t user_pos, unsigned user_len)
1229{
1230	int ret, i, new;
1231	u64 v_blkno, p_blkno;
1232	struct inode *inode = mapping->host;
1233	struct ocfs2_extent_tree et;
1234
1235	new = phys == 0 ? 1 : 0;
1236	if (new) {
1237		u32 tmp_pos;
1238
1239		/*
1240		 * This is safe to call with the page locks - it won't take
1241		 * any additional semaphores or cluster locks.
1242		 */
1243		tmp_pos = cpos;
1244		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1245					   &tmp_pos, 1, 0, wc->w_di_bh,
1246					   wc->w_handle, data_ac,
1247					   meta_ac, NULL);
1248		/*
1249		 * This shouldn't happen because we must have already
1250		 * calculated the correct meta data allocation required. The
1251		 * internal tree allocation code should know how to increase
1252		 * transaction credits itself.
1253		 *
1254		 * If need be, we could handle -EAGAIN for a
1255		 * RESTART_TRANS here.
1256		 */
1257		mlog_bug_on_msg(ret == -EAGAIN,
1258				"Inode %llu: EAGAIN return during allocation.\n",
1259				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1260		if (ret < 0) {
1261			mlog_errno(ret);
1262			goto out;
1263		}
1264	} else if (unwritten) {
1265		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1266					      wc->w_di_bh);
1267		ret = ocfs2_mark_extent_written(inode, &et,
1268						wc->w_handle, cpos, 1, phys,
1269						meta_ac, &wc->w_dealloc);
1270		if (ret < 0) {
1271			mlog_errno(ret);
1272			goto out;
1273		}
1274	}
1275
1276	if (should_zero)
1277		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1278	else
1279		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1280
1281	/*
1282	 * The only reason this should fail is due to an inability to
1283	 * find the extent added.
1284	 */
1285	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1286					  NULL);
1287	if (ret < 0) {
1288		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1289			    "at logical block %llu",
1290			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1291			    (unsigned long long)v_blkno);
1292		goto out;
1293	}
1294
1295	BUG_ON(p_blkno == 0);
1296
1297	for(i = 0; i < wc->w_num_pages; i++) {
1298		int tmpret;
1299
1300		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1301						      wc->w_pages[i], cpos,
1302						      user_pos, user_len,
1303						      should_zero);
1304		if (tmpret) {
1305			mlog_errno(tmpret);
1306			if (ret == 0)
1307				ret = tmpret;
1308		}
1309	}
1310
1311	/*
1312	 * We only have cleanup to do in case of allocating write.
1313	 */
1314	if (ret && new)
1315		ocfs2_write_failure(inode, wc, user_pos, user_len);
1316
1317out:
1318
1319	return ret;
1320}
1321
1322static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1323				       struct ocfs2_alloc_context *data_ac,
1324				       struct ocfs2_alloc_context *meta_ac,
1325				       struct ocfs2_write_ctxt *wc,
1326				       loff_t pos, unsigned len)
1327{
1328	int ret, i;
1329	loff_t cluster_off;
1330	unsigned int local_len = len;
1331	struct ocfs2_write_cluster_desc *desc;
1332	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1333
1334	for (i = 0; i < wc->w_clen; i++) {
1335		desc = &wc->w_desc[i];
1336
1337		/*
1338		 * We have to make sure that the total write passed in
1339		 * doesn't extend past a single cluster.
1340		 */
1341		local_len = len;
1342		cluster_off = pos & (osb->s_clustersize - 1);
1343		if ((cluster_off + local_len) > osb->s_clustersize)
1344			local_len = osb->s_clustersize - cluster_off;
1345
1346		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1347					  desc->c_unwritten,
1348					  desc->c_needs_zero,
1349					  data_ac, meta_ac,
1350					  wc, desc->c_cpos, pos, local_len);
1351		if (ret) {
1352			mlog_errno(ret);
1353			goto out;
1354		}
1355
1356		len -= local_len;
1357		pos += local_len;
1358	}
1359
1360	ret = 0;
1361out:
1362	return ret;
1363}
1364
1365/*
1366 * ocfs2_write_end() wants to know which parts of the target page it
1367 * should complete the write on. It's easiest to compute them ahead of
1368 * time when a more complete view of the write is available.
1369 */
1370static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1371					struct ocfs2_write_ctxt *wc,
1372					loff_t pos, unsigned len, int alloc)
1373{
1374	struct ocfs2_write_cluster_desc *desc;
1375
1376	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1377	wc->w_target_to = wc->w_target_from + len;
1378
1379	if (alloc == 0)
1380		return;
1381
1382	/*
1383	 * Allocating write - we may have different boundaries based
1384	 * on page size and cluster size.
1385	 *
1386	 * NOTE: We can no longer compute one value from the other as
1387	 * the actual write length and user provided length may be
1388	 * different.
1389	 */
1390
1391	if (wc->w_large_pages) {
1392		/*
1393		 * We only care about the 1st and last cluster within
1394		 * our range and whether they should be zero'd or not. Either
1395		 * value may be extended out to the start/end of a
1396		 * newly allocated cluster.
1397		 */
1398		desc = &wc->w_desc[0];
1399		if (desc->c_needs_zero)
1400			ocfs2_figure_cluster_boundaries(osb,
1401							desc->c_cpos,
1402							&wc->w_target_from,
1403							NULL);
1404
1405		desc = &wc->w_desc[wc->w_clen - 1];
1406		if (desc->c_needs_zero)
1407			ocfs2_figure_cluster_boundaries(osb,
1408							desc->c_cpos,
1409							NULL,
1410							&wc->w_target_to);
1411	} else {
1412		wc->w_target_from = 0;
1413		wc->w_target_to = PAGE_CACHE_SIZE;
1414	}
1415}
1416
1417/*
1418 * Populate each single-cluster write descriptor in the write context
1419 * with information about the i/o to be done.
1420 *
1421 * Returns the number of clusters that will have to be allocated, as
1422 * well as a worst case estimate of the number of extent records that
1423 * would have to be created during a write to an unwritten region.
1424 */
1425static int ocfs2_populate_write_desc(struct inode *inode,
1426				     struct ocfs2_write_ctxt *wc,
1427				     unsigned int *clusters_to_alloc,
1428				     unsigned int *extents_to_split)
1429{
1430	int ret;
1431	struct ocfs2_write_cluster_desc *desc;
1432	unsigned int num_clusters = 0;
1433	unsigned int ext_flags = 0;
1434	u32 phys = 0;
1435	int i;
1436
1437	*clusters_to_alloc = 0;
1438	*extents_to_split = 0;
1439
1440	for (i = 0; i < wc->w_clen; i++) {
1441		desc = &wc->w_desc[i];
1442		desc->c_cpos = wc->w_cpos + i;
1443
1444		if (num_clusters == 0) {
1445			/*
1446			 * Need to look up the next extent record.
1447			 */
1448			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1449						 &num_clusters, &ext_flags);
1450			if (ret) {
1451				mlog_errno(ret);
1452				goto out;
1453			}
1454
1455			/* We should already CoW the refcountd extent. */
1456			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1457
1458			/*
1459			 * Assume worst case - that we're writing in
1460			 * the middle of the extent.
1461			 *
1462			 * We can assume that the write proceeds from
1463			 * left to right, in which case the extent
1464			 * insert code is smart enough to coalesce the
1465			 * next splits into the previous records created.
1466			 */
1467			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1468				*extents_to_split = *extents_to_split + 2;
1469		} else if (phys) {
1470			/*
1471			 * Only increment phys if it doesn't describe
1472			 * a hole.
1473			 */
1474			phys++;
1475		}
1476
1477		/*
1478		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1479		 * file that got extended.  w_first_new_cpos tells us
1480		 * where the newly allocated clusters are so we can
1481		 * zero them.
1482		 */
1483		if (desc->c_cpos >= wc->w_first_new_cpos) {
1484			BUG_ON(phys == 0);
1485			desc->c_needs_zero = 1;
1486		}
1487
1488		desc->c_phys = phys;
1489		if (phys == 0) {
1490			desc->c_new = 1;
1491			desc->c_needs_zero = 1;
1492			*clusters_to_alloc = *clusters_to_alloc + 1;
1493		}
1494
1495		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1496			desc->c_unwritten = 1;
1497			desc->c_needs_zero = 1;
1498		}
1499
1500		num_clusters--;
1501	}
1502
1503	ret = 0;
1504out:
1505	return ret;
1506}
1507
1508static int ocfs2_write_begin_inline(struct address_space *mapping,
1509				    struct inode *inode,
1510				    struct ocfs2_write_ctxt *wc)
1511{
1512	int ret;
1513	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1514	struct page *page;
1515	handle_t *handle;
1516	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1517
1518	page = find_or_create_page(mapping, 0, GFP_NOFS);
1519	if (!page) {
1520		ret = -ENOMEM;
1521		mlog_errno(ret);
1522		goto out;
1523	}
1524	/*
1525	 * If we don't set w_num_pages then this page won't get unlocked
1526	 * and freed on cleanup of the write context.
1527	 */
1528	wc->w_pages[0] = wc->w_target_page = page;
1529	wc->w_num_pages = 1;
1530
1531	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1532	if (IS_ERR(handle)) {
1533		ret = PTR_ERR(handle);
1534		mlog_errno(ret);
1535		goto out;
1536	}
1537
1538	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1539				      OCFS2_JOURNAL_ACCESS_WRITE);
1540	if (ret) {
1541		ocfs2_commit_trans(osb, handle);
1542
1543		mlog_errno(ret);
1544		goto out;
1545	}
1546
1547	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1548		ocfs2_set_inode_data_inline(inode, di);
1549
1550	if (!PageUptodate(page)) {
1551		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1552		if (ret) {
1553			ocfs2_commit_trans(osb, handle);
1554
1555			goto out;
1556		}
1557	}
1558
1559	wc->w_handle = handle;
1560out:
1561	return ret;
1562}
1563
1564int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1565{
1566	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1567
1568	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1569		return 1;
1570	return 0;
1571}
1572
1573static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1574					  struct inode *inode, loff_t pos,
1575					  unsigned len, struct page *mmap_page,
1576					  struct ocfs2_write_ctxt *wc)
1577{
1578	int ret, written = 0;
1579	loff_t end = pos + len;
1580	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1581	struct ocfs2_dinode *di = NULL;
1582
1583	mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1584	     (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1585	     oi->ip_dyn_features);
1586
1587	/*
1588	 * Handle inodes which already have inline data 1st.
1589	 */
1590	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1591		if (mmap_page == NULL &&
1592		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1593			goto do_inline_write;
1594
1595		/*
1596		 * The write won't fit - we have to give this inode an
1597		 * inline extent list now.
1598		 */
1599		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1600		if (ret)
1601			mlog_errno(ret);
1602		goto out;
1603	}
1604
1605	/*
1606	 * Check whether the inode can accept inline data.
1607	 */
1608	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1609		return 0;
1610
1611	/*
1612	 * Check whether the write can fit.
1613	 */
1614	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1615	if (mmap_page ||
1616	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1617		return 0;
1618
1619do_inline_write:
1620	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1621	if (ret) {
1622		mlog_errno(ret);
1623		goto out;
1624	}
1625
1626	/*
1627	 * This signals to the caller that the data can be written
1628	 * inline.
1629	 */
1630	written = 1;
1631out:
1632	return written ? written : ret;
1633}
1634
1635/*
1636 * This function only does anything for file systems which can't
1637 * handle sparse files.
1638 *
1639 * What we want to do here is fill in any hole between the current end
1640 * of allocation and the end of our write. That way the rest of the
1641 * write path can treat it as an non-allocating write, which has no
1642 * special case code for sparse/nonsparse files.
1643 */
1644static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1645					unsigned len,
1646					struct ocfs2_write_ctxt *wc)
1647{
1648	int ret;
1649	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1650	loff_t newsize = pos + len;
1651
1652	if (ocfs2_sparse_alloc(osb))
1653		return 0;
1654
1655	if (newsize <= i_size_read(inode))
1656		return 0;
1657
1658	ret = ocfs2_extend_no_holes(inode, newsize, pos);
1659	if (ret)
1660		mlog_errno(ret);
1661
1662	wc->w_first_new_cpos =
1663		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1664
1665	return ret;
1666}
1667
1668int ocfs2_write_begin_nolock(struct address_space *mapping,
1669			     loff_t pos, unsigned len, unsigned flags,
1670			     struct page **pagep, void **fsdata,
1671			     struct buffer_head *di_bh, struct page *mmap_page)
1672{
1673	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1674	unsigned int clusters_to_alloc, extents_to_split;
1675	struct ocfs2_write_ctxt *wc;
1676	struct inode *inode = mapping->host;
1677	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1678	struct ocfs2_dinode *di;
1679	struct ocfs2_alloc_context *data_ac = NULL;
1680	struct ocfs2_alloc_context *meta_ac = NULL;
1681	handle_t *handle;
1682	struct ocfs2_extent_tree et;
1683
1684	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1685	if (ret) {
1686		mlog_errno(ret);
1687		return ret;
1688	}
1689
1690	if (ocfs2_supports_inline_data(osb)) {
1691		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1692						     mmap_page, wc);
1693		if (ret == 1) {
1694			ret = 0;
1695			goto success;
1696		}
1697		if (ret < 0) {
1698			mlog_errno(ret);
1699			goto out;
1700		}
1701	}
1702
1703	ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1704	if (ret) {
1705		mlog_errno(ret);
1706		goto out;
1707	}
1708
1709	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1710	if (ret < 0) {
1711		mlog_errno(ret);
1712		goto out;
1713	} else if (ret == 1) {
1714		ret = ocfs2_refcount_cow(inode, di_bh,
1715					 wc->w_cpos, wc->w_clen);
1716		if (ret) {
1717			mlog_errno(ret);
1718			goto out;
1719		}
1720	}
1721
1722	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1723					&extents_to_split);
1724	if (ret) {
1725		mlog_errno(ret);
1726		goto out;
1727	}
1728
1729	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1730
1731	/*
1732	 * We set w_target_from, w_target_to here so that
1733	 * ocfs2_write_end() knows which range in the target page to
1734	 * write out. An allocation requires that we write the entire
1735	 * cluster range.
1736	 */
1737	if (clusters_to_alloc || extents_to_split) {
1738		/*
1739		 * XXX: We are stretching the limits of
1740		 * ocfs2_lock_allocators(). It greatly over-estimates
1741		 * the work to be done.
1742		 */
1743		mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1744		     " clusters_to_add = %u, extents_to_split = %u\n",
1745		     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1746		     (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1747		     clusters_to_alloc, extents_to_split);
1748
1749		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1750					      wc->w_di_bh);
1751		ret = ocfs2_lock_allocators(inode, &et,
1752					    clusters_to_alloc, extents_to_split,
1753					    &data_ac, &meta_ac);
1754		if (ret) {
1755			mlog_errno(ret);
1756			goto out;
1757		}
1758
1759		credits = ocfs2_calc_extend_credits(inode->i_sb,
1760						    &di->id2.i_list,
1761						    clusters_to_alloc);
1762
1763	}
1764
1765	/*
1766	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1767	 * and non-sparse clusters we just extended.  For non-sparse writes,
1768	 * we know zeros will only be needed in the first and/or last cluster.
1769	 */
1770	if (clusters_to_alloc || extents_to_split ||
1771	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1772			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1773		cluster_of_pages = 1;
1774	else
1775		cluster_of_pages = 0;
1776
1777	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1778
1779	handle = ocfs2_start_trans(osb, credits);
1780	if (IS_ERR(handle)) {
1781		ret = PTR_ERR(handle);
1782		mlog_errno(ret);
1783		goto out;
1784	}
1785
1786	wc->w_handle = handle;
1787
1788	if (clusters_to_alloc && vfs_dq_alloc_space_nodirty(inode,
1789			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc))) {
1790		ret = -EDQUOT;
1791		goto out_commit;
1792	}
1793	/*
1794	 * We don't want this to fail in ocfs2_write_end(), so do it
1795	 * here.
1796	 */
1797	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1798				      OCFS2_JOURNAL_ACCESS_WRITE);
1799	if (ret) {
1800		mlog_errno(ret);
1801		goto out_quota;
1802	}
1803
1804	/*
1805	 * Fill our page array first. That way we've grabbed enough so
1806	 * that we can zero and flush if we error after adding the
1807	 * extent.
1808	 */
1809	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1810					 cluster_of_pages, mmap_page);
1811	if (ret) {
1812		mlog_errno(ret);
1813		goto out_quota;
1814	}
1815
1816	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1817					  len);
1818	if (ret) {
1819		mlog_errno(ret);
1820		goto out_quota;
1821	}
1822
1823	if (data_ac)
1824		ocfs2_free_alloc_context(data_ac);
1825	if (meta_ac)
1826		ocfs2_free_alloc_context(meta_ac);
1827
1828success:
1829	*pagep = wc->w_target_page;
1830	*fsdata = wc;
1831	return 0;
1832out_quota:
1833	if (clusters_to_alloc)
1834		vfs_dq_free_space(inode,
1835			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1836out_commit:
1837	ocfs2_commit_trans(osb, handle);
1838
1839out:
1840	ocfs2_free_write_ctxt(wc);
1841
1842	if (data_ac)
1843		ocfs2_free_alloc_context(data_ac);
1844	if (meta_ac)
1845		ocfs2_free_alloc_context(meta_ac);
1846	return ret;
1847}
1848
1849static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1850			     loff_t pos, unsigned len, unsigned flags,
1851			     struct page **pagep, void **fsdata)
1852{
1853	int ret;
1854	struct buffer_head *di_bh = NULL;
1855	struct inode *inode = mapping->host;
1856
1857	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1858	if (ret) {
1859		mlog_errno(ret);
1860		return ret;
1861	}
1862
1863	/*
1864	 * Take alloc sem here to prevent concurrent lookups. That way
1865	 * the mapping, zeroing and tree manipulation within
1866	 * ocfs2_write() will be safe against ->readpage(). This
1867	 * should also serve to lock out allocation from a shared
1868	 * writeable region.
1869	 */
1870	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1871
1872	ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1873				       fsdata, di_bh, NULL);
1874	if (ret) {
1875		mlog_errno(ret);
1876		goto out_fail;
1877	}
1878
1879	brelse(di_bh);
1880
1881	return 0;
1882
1883out_fail:
1884	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1885
1886	brelse(di_bh);
1887	ocfs2_inode_unlock(inode, 1);
1888
1889	return ret;
1890}
1891
1892static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1893				   unsigned len, unsigned *copied,
1894				   struct ocfs2_dinode *di,
1895				   struct ocfs2_write_ctxt *wc)
1896{
1897	void *kaddr;
1898
1899	if (unlikely(*copied < len)) {
1900		if (!PageUptodate(wc->w_target_page)) {
1901			*copied = 0;
1902			return;
1903		}
1904	}
1905
1906	kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1907	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1908	kunmap_atomic(kaddr, KM_USER0);
1909
1910	mlog(0, "Data written to inode at offset %llu. "
1911	     "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1912	     (unsigned long long)pos, *copied,
1913	     le16_to_cpu(di->id2.i_data.id_count),
1914	     le16_to_cpu(di->i_dyn_features));
1915}
1916
1917int ocfs2_write_end_nolock(struct address_space *mapping,
1918			   loff_t pos, unsigned len, unsigned copied,
1919			   struct page *page, void *fsdata)
1920{
1921	int i;
1922	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1923	struct inode *inode = mapping->host;
1924	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1925	struct ocfs2_write_ctxt *wc = fsdata;
1926	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1927	handle_t *handle = wc->w_handle;
1928	struct page *tmppage;
1929
1930	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1931		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1932		goto out_write_size;
1933	}
1934
1935	if (unlikely(copied < len)) {
1936		if (!PageUptodate(wc->w_target_page))
1937			copied = 0;
1938
1939		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1940				       start+len);
1941	}
1942	flush_dcache_page(wc->w_target_page);
1943
1944	for(i = 0; i < wc->w_num_pages; i++) {
1945		tmppage = wc->w_pages[i];
1946
1947		if (tmppage == wc->w_target_page) {
1948			from = wc->w_target_from;
1949			to = wc->w_target_to;
1950
1951			BUG_ON(from > PAGE_CACHE_SIZE ||
1952			       to > PAGE_CACHE_SIZE ||
1953			       to < from);
1954		} else {
1955			/*
1956			 * Pages adjacent to the target (if any) imply
1957			 * a hole-filling write in which case we want
1958			 * to flush their entire range.
1959			 */
1960			from = 0;
1961			to = PAGE_CACHE_SIZE;
1962		}
1963
1964		if (page_has_buffers(tmppage)) {
1965			if (ocfs2_should_order_data(inode))
1966				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1967			block_commit_write(tmppage, from, to);
1968		}
1969	}
1970
1971out_write_size:
1972	pos += copied;
1973	if (pos > inode->i_size) {
1974		i_size_write(inode, pos);
1975		mark_inode_dirty(inode);
1976	}
1977	inode->i_blocks = ocfs2_inode_sector_count(inode);
1978	di->i_size = cpu_to_le64((u64)i_size_read(inode));
1979	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1980	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1981	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1982	ocfs2_journal_dirty(handle, wc->w_di_bh);
1983
1984	ocfs2_commit_trans(osb, handle);
1985
1986	ocfs2_run_deallocs(osb, &wc->w_dealloc);
1987
1988	ocfs2_free_write_ctxt(wc);
1989
1990	return copied;
1991}
1992
1993static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1994			   loff_t pos, unsigned len, unsigned copied,
1995			   struct page *page, void *fsdata)
1996{
1997	int ret;
1998	struct inode *inode = mapping->host;
1999
2000	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2001
2002	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2003	ocfs2_inode_unlock(inode, 1);
2004
2005	return ret;
2006}
2007
2008const struct address_space_operations ocfs2_aops = {
2009	.readpage		= ocfs2_readpage,
2010	.readpages		= ocfs2_readpages,
2011	.writepage		= ocfs2_writepage,
2012	.write_begin		= ocfs2_write_begin,
2013	.write_end		= ocfs2_write_end,
2014	.bmap			= ocfs2_bmap,
2015	.sync_page		= block_sync_page,
2016	.direct_IO		= ocfs2_direct_IO,
2017	.invalidatepage		= ocfs2_invalidatepage,
2018	.releasepage		= ocfs2_releasepage,
2019	.migratepage		= buffer_migrate_page,
2020	.is_partially_uptodate	= block_is_partially_uptodate,
2021};
2022