aops.c revision 31b140398ce56ab41646eda7f02bcb78d6a4c916
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
27#include <linux/swap.h>
28#include <linux/pipe_fs_i.h>
29#include <linux/mpage.h>
30#include <linux/quotaops.h>
31
32#include <cluster/masklog.h>
33
34#include "ocfs2.h"
35
36#include "alloc.h"
37#include "aops.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "file.h"
41#include "inode.h"
42#include "journal.h"
43#include "suballoc.h"
44#include "super.h"
45#include "symlink.h"
46#include "refcounttree.h"
47#include "ocfs2_trace.h"
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52				   struct buffer_head *bh_result, int create)
53{
54	int err = -EIO;
55	int status;
56	struct ocfs2_dinode *fe = NULL;
57	struct buffer_head *bh = NULL;
58	struct buffer_head *buffer_cache_bh = NULL;
59	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60	void *kaddr;
61
62	trace_ocfs2_symlink_get_block(
63			(unsigned long long)OCFS2_I(inode)->ip_blkno,
64			(unsigned long long)iblock, bh_result, create);
65
66	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70		     (unsigned long long)iblock);
71		goto bail;
72	}
73
74	status = ocfs2_read_inode_block(inode, &bh);
75	if (status < 0) {
76		mlog_errno(status);
77		goto bail;
78	}
79	fe = (struct ocfs2_dinode *) bh->b_data;
80
81	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82						    le32_to_cpu(fe->i_clusters))) {
83		err = -ENOMEM;
84		mlog(ML_ERROR, "block offset is outside the allocated size: "
85		     "%llu\n", (unsigned long long)iblock);
86		goto bail;
87	}
88
89	/* We don't use the page cache to create symlink data, so if
90	 * need be, copy it over from the buffer cache. */
91	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
92		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
93			    iblock;
94		buffer_cache_bh = sb_getblk(osb->sb, blkno);
95		if (!buffer_cache_bh) {
96			err = -ENOMEM;
97			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
98			goto bail;
99		}
100
101		/* we haven't locked out transactions, so a commit
102		 * could've happened. Since we've got a reference on
103		 * the bh, even if it commits while we're doing the
104		 * copy, the data is still good. */
105		if (buffer_jbd(buffer_cache_bh)
106		    && ocfs2_inode_is_new(inode)) {
107			kaddr = kmap_atomic(bh_result->b_page);
108			if (!kaddr) {
109				mlog(ML_ERROR, "couldn't kmap!\n");
110				goto bail;
111			}
112			memcpy(kaddr + (bh_result->b_size * iblock),
113			       buffer_cache_bh->b_data,
114			       bh_result->b_size);
115			kunmap_atomic(kaddr);
116			set_buffer_uptodate(bh_result);
117		}
118		brelse(buffer_cache_bh);
119	}
120
121	map_bh(bh_result, inode->i_sb,
122	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
123
124	err = 0;
125
126bail:
127	brelse(bh);
128
129	return err;
130}
131
132int ocfs2_get_block(struct inode *inode, sector_t iblock,
133		    struct buffer_head *bh_result, int create)
134{
135	int err = 0;
136	unsigned int ext_flags;
137	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
138	u64 p_blkno, count, past_eof;
139	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
140
141	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
142			      (unsigned long long)iblock, bh_result, create);
143
144	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
145		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
146		     inode, inode->i_ino);
147
148	if (S_ISLNK(inode->i_mode)) {
149		/* this always does I/O for some reason. */
150		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
151		goto bail;
152	}
153
154	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
155					  &ext_flags);
156	if (err) {
157		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
158		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
159		     (unsigned long long)p_blkno);
160		goto bail;
161	}
162
163	if (max_blocks < count)
164		count = max_blocks;
165
166	/*
167	 * ocfs2 never allocates in this function - the only time we
168	 * need to use BH_New is when we're extending i_size on a file
169	 * system which doesn't support holes, in which case BH_New
170	 * allows __block_write_begin() to zero.
171	 *
172	 * If we see this on a sparse file system, then a truncate has
173	 * raced us and removed the cluster. In this case, we clear
174	 * the buffers dirty and uptodate bits and let the buffer code
175	 * ignore it as a hole.
176	 */
177	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
178		clear_buffer_dirty(bh_result);
179		clear_buffer_uptodate(bh_result);
180		goto bail;
181	}
182
183	/* Treat the unwritten extent as a hole for zeroing purposes. */
184	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
185		map_bh(bh_result, inode->i_sb, p_blkno);
186
187	bh_result->b_size = count << inode->i_blkbits;
188
189	if (!ocfs2_sparse_alloc(osb)) {
190		if (p_blkno == 0) {
191			err = -EIO;
192			mlog(ML_ERROR,
193			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
194			     (unsigned long long)iblock,
195			     (unsigned long long)p_blkno,
196			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
197			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
198			dump_stack();
199			goto bail;
200		}
201	}
202
203	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
204
205	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
206				  (unsigned long long)past_eof);
207	if (create && (iblock >= past_eof))
208		set_buffer_new(bh_result);
209
210bail:
211	if (err < 0)
212		err = -EIO;
213
214	return err;
215}
216
217int ocfs2_read_inline_data(struct inode *inode, struct page *page,
218			   struct buffer_head *di_bh)
219{
220	void *kaddr;
221	loff_t size;
222	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
223
224	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
225		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
226			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
227		return -EROFS;
228	}
229
230	size = i_size_read(inode);
231
232	if (size > PAGE_CACHE_SIZE ||
233	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
234		ocfs2_error(inode->i_sb,
235			    "Inode %llu has with inline data has bad size: %Lu",
236			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
237			    (unsigned long long)size);
238		return -EROFS;
239	}
240
241	kaddr = kmap_atomic(page);
242	if (size)
243		memcpy(kaddr, di->id2.i_data.id_data, size);
244	/* Clear the remaining part of the page */
245	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
246	flush_dcache_page(page);
247	kunmap_atomic(kaddr);
248
249	SetPageUptodate(page);
250
251	return 0;
252}
253
254static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
255{
256	int ret;
257	struct buffer_head *di_bh = NULL;
258
259	BUG_ON(!PageLocked(page));
260	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
261
262	ret = ocfs2_read_inode_block(inode, &di_bh);
263	if (ret) {
264		mlog_errno(ret);
265		goto out;
266	}
267
268	ret = ocfs2_read_inline_data(inode, page, di_bh);
269out:
270	unlock_page(page);
271
272	brelse(di_bh);
273	return ret;
274}
275
276static int ocfs2_readpage(struct file *file, struct page *page)
277{
278	struct inode *inode = page->mapping->host;
279	struct ocfs2_inode_info *oi = OCFS2_I(inode);
280	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
281	int ret, unlock = 1;
282
283	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
284			     (page ? page->index : 0));
285
286	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
287	if (ret != 0) {
288		if (ret == AOP_TRUNCATED_PAGE)
289			unlock = 0;
290		mlog_errno(ret);
291		goto out;
292	}
293
294	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
295		/*
296		 * Unlock the page and cycle ip_alloc_sem so that we don't
297		 * busyloop waiting for ip_alloc_sem to unlock
298		 */
299		ret = AOP_TRUNCATED_PAGE;
300		unlock_page(page);
301		unlock = 0;
302		down_read(&oi->ip_alloc_sem);
303		up_read(&oi->ip_alloc_sem);
304		goto out_inode_unlock;
305	}
306
307	/*
308	 * i_size might have just been updated as we grabed the meta lock.  We
309	 * might now be discovering a truncate that hit on another node.
310	 * block_read_full_page->get_block freaks out if it is asked to read
311	 * beyond the end of a file, so we check here.  Callers
312	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
313	 * and notice that the page they just read isn't needed.
314	 *
315	 * XXX sys_readahead() seems to get that wrong?
316	 */
317	if (start >= i_size_read(inode)) {
318		zero_user(page, 0, PAGE_SIZE);
319		SetPageUptodate(page);
320		ret = 0;
321		goto out_alloc;
322	}
323
324	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
325		ret = ocfs2_readpage_inline(inode, page);
326	else
327		ret = block_read_full_page(page, ocfs2_get_block);
328	unlock = 0;
329
330out_alloc:
331	up_read(&OCFS2_I(inode)->ip_alloc_sem);
332out_inode_unlock:
333	ocfs2_inode_unlock(inode, 0);
334out:
335	if (unlock)
336		unlock_page(page);
337	return ret;
338}
339
340/*
341 * This is used only for read-ahead. Failures or difficult to handle
342 * situations are safe to ignore.
343 *
344 * Right now, we don't bother with BH_Boundary - in-inode extent lists
345 * are quite large (243 extents on 4k blocks), so most inodes don't
346 * grow out to a tree. If need be, detecting boundary extents could
347 * trivially be added in a future version of ocfs2_get_block().
348 */
349static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
350			   struct list_head *pages, unsigned nr_pages)
351{
352	int ret, err = -EIO;
353	struct inode *inode = mapping->host;
354	struct ocfs2_inode_info *oi = OCFS2_I(inode);
355	loff_t start;
356	struct page *last;
357
358	/*
359	 * Use the nonblocking flag for the dlm code to avoid page
360	 * lock inversion, but don't bother with retrying.
361	 */
362	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
363	if (ret)
364		return err;
365
366	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
367		ocfs2_inode_unlock(inode, 0);
368		return err;
369	}
370
371	/*
372	 * Don't bother with inline-data. There isn't anything
373	 * to read-ahead in that case anyway...
374	 */
375	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
376		goto out_unlock;
377
378	/*
379	 * Check whether a remote node truncated this file - we just
380	 * drop out in that case as it's not worth handling here.
381	 */
382	last = list_entry(pages->prev, struct page, lru);
383	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
384	if (start >= i_size_read(inode))
385		goto out_unlock;
386
387	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
388
389out_unlock:
390	up_read(&oi->ip_alloc_sem);
391	ocfs2_inode_unlock(inode, 0);
392
393	return err;
394}
395
396/* Note: Because we don't support holes, our allocation has
397 * already happened (allocation writes zeros to the file data)
398 * so we don't have to worry about ordered writes in
399 * ocfs2_writepage.
400 *
401 * ->writepage is called during the process of invalidating the page cache
402 * during blocked lock processing.  It can't block on any cluster locks
403 * to during block mapping.  It's relying on the fact that the block
404 * mapping can't have disappeared under the dirty pages that it is
405 * being asked to write back.
406 */
407static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
408{
409	trace_ocfs2_writepage(
410		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
411		page->index);
412
413	return block_write_full_page(page, ocfs2_get_block, wbc);
414}
415
416/* Taken from ext3. We don't necessarily need the full blown
417 * functionality yet, but IMHO it's better to cut and paste the whole
418 * thing so we can avoid introducing our own bugs (and easily pick up
419 * their fixes when they happen) --Mark */
420int walk_page_buffers(	handle_t *handle,
421			struct buffer_head *head,
422			unsigned from,
423			unsigned to,
424			int *partial,
425			int (*fn)(	handle_t *handle,
426					struct buffer_head *bh))
427{
428	struct buffer_head *bh;
429	unsigned block_start, block_end;
430	unsigned blocksize = head->b_size;
431	int err, ret = 0;
432	struct buffer_head *next;
433
434	for (	bh = head, block_start = 0;
435		ret == 0 && (bh != head || !block_start);
436	    	block_start = block_end, bh = next)
437	{
438		next = bh->b_this_page;
439		block_end = block_start + blocksize;
440		if (block_end <= from || block_start >= to) {
441			if (partial && !buffer_uptodate(bh))
442				*partial = 1;
443			continue;
444		}
445		err = (*fn)(handle, bh);
446		if (!ret)
447			ret = err;
448	}
449	return ret;
450}
451
452static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
453{
454	sector_t status;
455	u64 p_blkno = 0;
456	int err = 0;
457	struct inode *inode = mapping->host;
458
459	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
460			 (unsigned long long)block);
461
462	/* We don't need to lock journal system files, since they aren't
463	 * accessed concurrently from multiple nodes.
464	 */
465	if (!INODE_JOURNAL(inode)) {
466		err = ocfs2_inode_lock(inode, NULL, 0);
467		if (err) {
468			if (err != -ENOENT)
469				mlog_errno(err);
470			goto bail;
471		}
472		down_read(&OCFS2_I(inode)->ip_alloc_sem);
473	}
474
475	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
476		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
477						  NULL);
478
479	if (!INODE_JOURNAL(inode)) {
480		up_read(&OCFS2_I(inode)->ip_alloc_sem);
481		ocfs2_inode_unlock(inode, 0);
482	}
483
484	if (err) {
485		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
486		     (unsigned long long)block);
487		mlog_errno(err);
488		goto bail;
489	}
490
491bail:
492	status = err ? 0 : p_blkno;
493
494	return status;
495}
496
497/*
498 * TODO: Make this into a generic get_blocks function.
499 *
500 * From do_direct_io in direct-io.c:
501 *  "So what we do is to permit the ->get_blocks function to populate
502 *   bh.b_size with the size of IO which is permitted at this offset and
503 *   this i_blkbits."
504 *
505 * This function is called directly from get_more_blocks in direct-io.c.
506 *
507 * called like this: dio->get_blocks(dio->inode, fs_startblk,
508 * 					fs_count, map_bh, dio->rw == WRITE);
509 *
510 * Note that we never bother to allocate blocks here, and thus ignore the
511 * create argument.
512 */
513static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
514				     struct buffer_head *bh_result, int create)
515{
516	int ret;
517	u64 p_blkno, inode_blocks, contig_blocks;
518	unsigned int ext_flags;
519	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
520	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
521
522	/* This function won't even be called if the request isn't all
523	 * nicely aligned and of the right size, so there's no need
524	 * for us to check any of that. */
525
526	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
527
528	/* This figures out the size of the next contiguous block, and
529	 * our logical offset */
530	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
531					  &contig_blocks, &ext_flags);
532	if (ret) {
533		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
534		     (unsigned long long)iblock);
535		ret = -EIO;
536		goto bail;
537	}
538
539	/* We should already CoW the refcounted extent in case of create. */
540	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
541
542	/*
543	 * get_more_blocks() expects us to describe a hole by clearing
544	 * the mapped bit on bh_result().
545	 *
546	 * Consider an unwritten extent as a hole.
547	 */
548	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
549		map_bh(bh_result, inode->i_sb, p_blkno);
550	else
551		clear_buffer_mapped(bh_result);
552
553	/* make sure we don't map more than max_blocks blocks here as
554	   that's all the kernel will handle at this point. */
555	if (max_blocks < contig_blocks)
556		contig_blocks = max_blocks;
557	bh_result->b_size = contig_blocks << blocksize_bits;
558bail:
559	return ret;
560}
561
562/*
563 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
564 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
565 * to protect io on one node from truncation on another.
566 */
567static void ocfs2_dio_end_io(struct kiocb *iocb,
568			     loff_t offset,
569			     ssize_t bytes,
570			     void *private)
571{
572	struct inode *inode = file_inode(iocb->ki_filp);
573	int level;
574
575	/* this io's submitter should not have unlocked this before we could */
576	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
577
578	if (ocfs2_iocb_is_sem_locked(iocb))
579		ocfs2_iocb_clear_sem_locked(iocb);
580
581	if (ocfs2_iocb_is_unaligned_aio(iocb)) {
582		ocfs2_iocb_clear_unaligned_aio(iocb);
583
584		mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
585	}
586
587	ocfs2_iocb_clear_rw_locked(iocb);
588
589	level = ocfs2_iocb_rw_locked_level(iocb);
590	ocfs2_rw_unlock(inode, level);
591}
592
593static int ocfs2_releasepage(struct page *page, gfp_t wait)
594{
595	if (!page_has_buffers(page))
596		return 0;
597	return try_to_free_buffers(page);
598}
599
600static ssize_t ocfs2_direct_IO(int rw,
601			       struct kiocb *iocb,
602			       struct iov_iter *iter,
603			       loff_t offset)
604{
605	struct file *file = iocb->ki_filp;
606	struct inode *inode = file_inode(file)->i_mapping->host;
607
608	/*
609	 * Fallback to buffered I/O if we see an inode without
610	 * extents.
611	 */
612	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
613		return 0;
614
615	/* Fallback to buffered I/O if we are appending. */
616	if (i_size_read(inode) <= offset)
617		return 0;
618
619	return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
620				    iter, offset,
621				    ocfs2_direct_IO_get_blocks,
622				    ocfs2_dio_end_io, NULL, 0);
623}
624
625static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
626					    u32 cpos,
627					    unsigned int *start,
628					    unsigned int *end)
629{
630	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
631
632	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
633		unsigned int cpp;
634
635		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
636
637		cluster_start = cpos % cpp;
638		cluster_start = cluster_start << osb->s_clustersize_bits;
639
640		cluster_end = cluster_start + osb->s_clustersize;
641	}
642
643	BUG_ON(cluster_start > PAGE_SIZE);
644	BUG_ON(cluster_end > PAGE_SIZE);
645
646	if (start)
647		*start = cluster_start;
648	if (end)
649		*end = cluster_end;
650}
651
652/*
653 * 'from' and 'to' are the region in the page to avoid zeroing.
654 *
655 * If pagesize > clustersize, this function will avoid zeroing outside
656 * of the cluster boundary.
657 *
658 * from == to == 0 is code for "zero the entire cluster region"
659 */
660static void ocfs2_clear_page_regions(struct page *page,
661				     struct ocfs2_super *osb, u32 cpos,
662				     unsigned from, unsigned to)
663{
664	void *kaddr;
665	unsigned int cluster_start, cluster_end;
666
667	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
668
669	kaddr = kmap_atomic(page);
670
671	if (from || to) {
672		if (from > cluster_start)
673			memset(kaddr + cluster_start, 0, from - cluster_start);
674		if (to < cluster_end)
675			memset(kaddr + to, 0, cluster_end - to);
676	} else {
677		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
678	}
679
680	kunmap_atomic(kaddr);
681}
682
683/*
684 * Nonsparse file systems fully allocate before we get to the write
685 * code. This prevents ocfs2_write() from tagging the write as an
686 * allocating one, which means ocfs2_map_page_blocks() might try to
687 * read-in the blocks at the tail of our file. Avoid reading them by
688 * testing i_size against each block offset.
689 */
690static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
691				 unsigned int block_start)
692{
693	u64 offset = page_offset(page) + block_start;
694
695	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
696		return 1;
697
698	if (i_size_read(inode) > offset)
699		return 1;
700
701	return 0;
702}
703
704/*
705 * Some of this taken from __block_write_begin(). We already have our
706 * mapping by now though, and the entire write will be allocating or
707 * it won't, so not much need to use BH_New.
708 *
709 * This will also skip zeroing, which is handled externally.
710 */
711int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
712			  struct inode *inode, unsigned int from,
713			  unsigned int to, int new)
714{
715	int ret = 0;
716	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
717	unsigned int block_end, block_start;
718	unsigned int bsize = 1 << inode->i_blkbits;
719
720	if (!page_has_buffers(page))
721		create_empty_buffers(page, bsize, 0);
722
723	head = page_buffers(page);
724	for (bh = head, block_start = 0; bh != head || !block_start;
725	     bh = bh->b_this_page, block_start += bsize) {
726		block_end = block_start + bsize;
727
728		clear_buffer_new(bh);
729
730		/*
731		 * Ignore blocks outside of our i/o range -
732		 * they may belong to unallocated clusters.
733		 */
734		if (block_start >= to || block_end <= from) {
735			if (PageUptodate(page))
736				set_buffer_uptodate(bh);
737			continue;
738		}
739
740		/*
741		 * For an allocating write with cluster size >= page
742		 * size, we always write the entire page.
743		 */
744		if (new)
745			set_buffer_new(bh);
746
747		if (!buffer_mapped(bh)) {
748			map_bh(bh, inode->i_sb, *p_blkno);
749			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
750		}
751
752		if (PageUptodate(page)) {
753			if (!buffer_uptodate(bh))
754				set_buffer_uptodate(bh);
755		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
756			   !buffer_new(bh) &&
757			   ocfs2_should_read_blk(inode, page, block_start) &&
758			   (block_start < from || block_end > to)) {
759			ll_rw_block(READ, 1, &bh);
760			*wait_bh++=bh;
761		}
762
763		*p_blkno = *p_blkno + 1;
764	}
765
766	/*
767	 * If we issued read requests - let them complete.
768	 */
769	while(wait_bh > wait) {
770		wait_on_buffer(*--wait_bh);
771		if (!buffer_uptodate(*wait_bh))
772			ret = -EIO;
773	}
774
775	if (ret == 0 || !new)
776		return ret;
777
778	/*
779	 * If we get -EIO above, zero out any newly allocated blocks
780	 * to avoid exposing stale data.
781	 */
782	bh = head;
783	block_start = 0;
784	do {
785		block_end = block_start + bsize;
786		if (block_end <= from)
787			goto next_bh;
788		if (block_start >= to)
789			break;
790
791		zero_user(page, block_start, bh->b_size);
792		set_buffer_uptodate(bh);
793		mark_buffer_dirty(bh);
794
795next_bh:
796		block_start = block_end;
797		bh = bh->b_this_page;
798	} while (bh != head);
799
800	return ret;
801}
802
803#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
804#define OCFS2_MAX_CTXT_PAGES	1
805#else
806#define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
807#endif
808
809#define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
810
811/*
812 * Describe the state of a single cluster to be written to.
813 */
814struct ocfs2_write_cluster_desc {
815	u32		c_cpos;
816	u32		c_phys;
817	/*
818	 * Give this a unique field because c_phys eventually gets
819	 * filled.
820	 */
821	unsigned	c_new;
822	unsigned	c_unwritten;
823	unsigned	c_needs_zero;
824};
825
826struct ocfs2_write_ctxt {
827	/* Logical cluster position / len of write */
828	u32				w_cpos;
829	u32				w_clen;
830
831	/* First cluster allocated in a nonsparse extend */
832	u32				w_first_new_cpos;
833
834	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
835
836	/*
837	 * This is true if page_size > cluster_size.
838	 *
839	 * It triggers a set of special cases during write which might
840	 * have to deal with allocating writes to partial pages.
841	 */
842	unsigned int			w_large_pages;
843
844	/*
845	 * Pages involved in this write.
846	 *
847	 * w_target_page is the page being written to by the user.
848	 *
849	 * w_pages is an array of pages which always contains
850	 * w_target_page, and in the case of an allocating write with
851	 * page_size < cluster size, it will contain zero'd and mapped
852	 * pages adjacent to w_target_page which need to be written
853	 * out in so that future reads from that region will get
854	 * zero's.
855	 */
856	unsigned int			w_num_pages;
857	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
858	struct page			*w_target_page;
859
860	/*
861	 * w_target_locked is used for page_mkwrite path indicating no unlocking
862	 * against w_target_page in ocfs2_write_end_nolock.
863	 */
864	unsigned int			w_target_locked:1;
865
866	/*
867	 * ocfs2_write_end() uses this to know what the real range to
868	 * write in the target should be.
869	 */
870	unsigned int			w_target_from;
871	unsigned int			w_target_to;
872
873	/*
874	 * We could use journal_current_handle() but this is cleaner,
875	 * IMHO -Mark
876	 */
877	handle_t			*w_handle;
878
879	struct buffer_head		*w_di_bh;
880
881	struct ocfs2_cached_dealloc_ctxt w_dealloc;
882};
883
884void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
885{
886	int i;
887
888	for(i = 0; i < num_pages; i++) {
889		if (pages[i]) {
890			unlock_page(pages[i]);
891			mark_page_accessed(pages[i]);
892			page_cache_release(pages[i]);
893		}
894	}
895}
896
897static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
898{
899	int i;
900
901	/*
902	 * w_target_locked is only set to true in the page_mkwrite() case.
903	 * The intent is to allow us to lock the target page from write_begin()
904	 * to write_end(). The caller must hold a ref on w_target_page.
905	 */
906	if (wc->w_target_locked) {
907		BUG_ON(!wc->w_target_page);
908		for (i = 0; i < wc->w_num_pages; i++) {
909			if (wc->w_target_page == wc->w_pages[i]) {
910				wc->w_pages[i] = NULL;
911				break;
912			}
913		}
914		mark_page_accessed(wc->w_target_page);
915		page_cache_release(wc->w_target_page);
916	}
917	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
918
919	brelse(wc->w_di_bh);
920	kfree(wc);
921}
922
923static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
924				  struct ocfs2_super *osb, loff_t pos,
925				  unsigned len, struct buffer_head *di_bh)
926{
927	u32 cend;
928	struct ocfs2_write_ctxt *wc;
929
930	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
931	if (!wc)
932		return -ENOMEM;
933
934	wc->w_cpos = pos >> osb->s_clustersize_bits;
935	wc->w_first_new_cpos = UINT_MAX;
936	cend = (pos + len - 1) >> osb->s_clustersize_bits;
937	wc->w_clen = cend - wc->w_cpos + 1;
938	get_bh(di_bh);
939	wc->w_di_bh = di_bh;
940
941	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
942		wc->w_large_pages = 1;
943	else
944		wc->w_large_pages = 0;
945
946	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
947
948	*wcp = wc;
949
950	return 0;
951}
952
953/*
954 * If a page has any new buffers, zero them out here, and mark them uptodate
955 * and dirty so they'll be written out (in order to prevent uninitialised
956 * block data from leaking). And clear the new bit.
957 */
958static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
959{
960	unsigned int block_start, block_end;
961	struct buffer_head *head, *bh;
962
963	BUG_ON(!PageLocked(page));
964	if (!page_has_buffers(page))
965		return;
966
967	bh = head = page_buffers(page);
968	block_start = 0;
969	do {
970		block_end = block_start + bh->b_size;
971
972		if (buffer_new(bh)) {
973			if (block_end > from && block_start < to) {
974				if (!PageUptodate(page)) {
975					unsigned start, end;
976
977					start = max(from, block_start);
978					end = min(to, block_end);
979
980					zero_user_segment(page, start, end);
981					set_buffer_uptodate(bh);
982				}
983
984				clear_buffer_new(bh);
985				mark_buffer_dirty(bh);
986			}
987		}
988
989		block_start = block_end;
990		bh = bh->b_this_page;
991	} while (bh != head);
992}
993
994/*
995 * Only called when we have a failure during allocating write to write
996 * zero's to the newly allocated region.
997 */
998static void ocfs2_write_failure(struct inode *inode,
999				struct ocfs2_write_ctxt *wc,
1000				loff_t user_pos, unsigned user_len)
1001{
1002	int i;
1003	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1004		to = user_pos + user_len;
1005	struct page *tmppage;
1006
1007	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1008
1009	for(i = 0; i < wc->w_num_pages; i++) {
1010		tmppage = wc->w_pages[i];
1011
1012		if (page_has_buffers(tmppage)) {
1013			if (ocfs2_should_order_data(inode))
1014				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1015
1016			block_commit_write(tmppage, from, to);
1017		}
1018	}
1019}
1020
1021static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1022					struct ocfs2_write_ctxt *wc,
1023					struct page *page, u32 cpos,
1024					loff_t user_pos, unsigned user_len,
1025					int new)
1026{
1027	int ret;
1028	unsigned int map_from = 0, map_to = 0;
1029	unsigned int cluster_start, cluster_end;
1030	unsigned int user_data_from = 0, user_data_to = 0;
1031
1032	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1033					&cluster_start, &cluster_end);
1034
1035	/* treat the write as new if the a hole/lseek spanned across
1036	 * the page boundary.
1037	 */
1038	new = new | ((i_size_read(inode) <= page_offset(page)) &&
1039			(page_offset(page) <= user_pos));
1040
1041	if (page == wc->w_target_page) {
1042		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1043		map_to = map_from + user_len;
1044
1045		if (new)
1046			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1047						    cluster_start, cluster_end,
1048						    new);
1049		else
1050			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1051						    map_from, map_to, new);
1052		if (ret) {
1053			mlog_errno(ret);
1054			goto out;
1055		}
1056
1057		user_data_from = map_from;
1058		user_data_to = map_to;
1059		if (new) {
1060			map_from = cluster_start;
1061			map_to = cluster_end;
1062		}
1063	} else {
1064		/*
1065		 * If we haven't allocated the new page yet, we
1066		 * shouldn't be writing it out without copying user
1067		 * data. This is likely a math error from the caller.
1068		 */
1069		BUG_ON(!new);
1070
1071		map_from = cluster_start;
1072		map_to = cluster_end;
1073
1074		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1075					    cluster_start, cluster_end, new);
1076		if (ret) {
1077			mlog_errno(ret);
1078			goto out;
1079		}
1080	}
1081
1082	/*
1083	 * Parts of newly allocated pages need to be zero'd.
1084	 *
1085	 * Above, we have also rewritten 'to' and 'from' - as far as
1086	 * the rest of the function is concerned, the entire cluster
1087	 * range inside of a page needs to be written.
1088	 *
1089	 * We can skip this if the page is up to date - it's already
1090	 * been zero'd from being read in as a hole.
1091	 */
1092	if (new && !PageUptodate(page))
1093		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1094					 cpos, user_data_from, user_data_to);
1095
1096	flush_dcache_page(page);
1097
1098out:
1099	return ret;
1100}
1101
1102/*
1103 * This function will only grab one clusters worth of pages.
1104 */
1105static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1106				      struct ocfs2_write_ctxt *wc,
1107				      u32 cpos, loff_t user_pos,
1108				      unsigned user_len, int new,
1109				      struct page *mmap_page)
1110{
1111	int ret = 0, i;
1112	unsigned long start, target_index, end_index, index;
1113	struct inode *inode = mapping->host;
1114	loff_t last_byte;
1115
1116	target_index = user_pos >> PAGE_CACHE_SHIFT;
1117
1118	/*
1119	 * Figure out how many pages we'll be manipulating here. For
1120	 * non allocating write, we just change the one
1121	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1122	 * writing past i_size, we only need enough pages to cover the
1123	 * last page of the write.
1124	 */
1125	if (new) {
1126		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1127		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1128		/*
1129		 * We need the index *past* the last page we could possibly
1130		 * touch.  This is the page past the end of the write or
1131		 * i_size, whichever is greater.
1132		 */
1133		last_byte = max(user_pos + user_len, i_size_read(inode));
1134		BUG_ON(last_byte < 1);
1135		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1136		if ((start + wc->w_num_pages) > end_index)
1137			wc->w_num_pages = end_index - start;
1138	} else {
1139		wc->w_num_pages = 1;
1140		start = target_index;
1141	}
1142
1143	for(i = 0; i < wc->w_num_pages; i++) {
1144		index = start + i;
1145
1146		if (index == target_index && mmap_page) {
1147			/*
1148			 * ocfs2_pagemkwrite() is a little different
1149			 * and wants us to directly use the page
1150			 * passed in.
1151			 */
1152			lock_page(mmap_page);
1153
1154			/* Exit and let the caller retry */
1155			if (mmap_page->mapping != mapping) {
1156				WARN_ON(mmap_page->mapping);
1157				unlock_page(mmap_page);
1158				ret = -EAGAIN;
1159				goto out;
1160			}
1161
1162			page_cache_get(mmap_page);
1163			wc->w_pages[i] = mmap_page;
1164			wc->w_target_locked = true;
1165		} else {
1166			wc->w_pages[i] = find_or_create_page(mapping, index,
1167							     GFP_NOFS);
1168			if (!wc->w_pages[i]) {
1169				ret = -ENOMEM;
1170				mlog_errno(ret);
1171				goto out;
1172			}
1173		}
1174		wait_for_stable_page(wc->w_pages[i]);
1175
1176		if (index == target_index)
1177			wc->w_target_page = wc->w_pages[i];
1178	}
1179out:
1180	if (ret)
1181		wc->w_target_locked = false;
1182	return ret;
1183}
1184
1185/*
1186 * Prepare a single cluster for write one cluster into the file.
1187 */
1188static int ocfs2_write_cluster(struct address_space *mapping,
1189			       u32 phys, unsigned int unwritten,
1190			       unsigned int should_zero,
1191			       struct ocfs2_alloc_context *data_ac,
1192			       struct ocfs2_alloc_context *meta_ac,
1193			       struct ocfs2_write_ctxt *wc, u32 cpos,
1194			       loff_t user_pos, unsigned user_len)
1195{
1196	int ret, i, new;
1197	u64 v_blkno, p_blkno;
1198	struct inode *inode = mapping->host;
1199	struct ocfs2_extent_tree et;
1200
1201	new = phys == 0 ? 1 : 0;
1202	if (new) {
1203		u32 tmp_pos;
1204
1205		/*
1206		 * This is safe to call with the page locks - it won't take
1207		 * any additional semaphores or cluster locks.
1208		 */
1209		tmp_pos = cpos;
1210		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1211					   &tmp_pos, 1, 0, wc->w_di_bh,
1212					   wc->w_handle, data_ac,
1213					   meta_ac, NULL);
1214		/*
1215		 * This shouldn't happen because we must have already
1216		 * calculated the correct meta data allocation required. The
1217		 * internal tree allocation code should know how to increase
1218		 * transaction credits itself.
1219		 *
1220		 * If need be, we could handle -EAGAIN for a
1221		 * RESTART_TRANS here.
1222		 */
1223		mlog_bug_on_msg(ret == -EAGAIN,
1224				"Inode %llu: EAGAIN return during allocation.\n",
1225				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1226		if (ret < 0) {
1227			mlog_errno(ret);
1228			goto out;
1229		}
1230	} else if (unwritten) {
1231		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1232					      wc->w_di_bh);
1233		ret = ocfs2_mark_extent_written(inode, &et,
1234						wc->w_handle, cpos, 1, phys,
1235						meta_ac, &wc->w_dealloc);
1236		if (ret < 0) {
1237			mlog_errno(ret);
1238			goto out;
1239		}
1240	}
1241
1242	if (should_zero)
1243		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1244	else
1245		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1246
1247	/*
1248	 * The only reason this should fail is due to an inability to
1249	 * find the extent added.
1250	 */
1251	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1252					  NULL);
1253	if (ret < 0) {
1254		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1255			    "at logical block %llu",
1256			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1257			    (unsigned long long)v_blkno);
1258		goto out;
1259	}
1260
1261	BUG_ON(p_blkno == 0);
1262
1263	for(i = 0; i < wc->w_num_pages; i++) {
1264		int tmpret;
1265
1266		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1267						      wc->w_pages[i], cpos,
1268						      user_pos, user_len,
1269						      should_zero);
1270		if (tmpret) {
1271			mlog_errno(tmpret);
1272			if (ret == 0)
1273				ret = tmpret;
1274		}
1275	}
1276
1277	/*
1278	 * We only have cleanup to do in case of allocating write.
1279	 */
1280	if (ret && new)
1281		ocfs2_write_failure(inode, wc, user_pos, user_len);
1282
1283out:
1284
1285	return ret;
1286}
1287
1288static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1289				       struct ocfs2_alloc_context *data_ac,
1290				       struct ocfs2_alloc_context *meta_ac,
1291				       struct ocfs2_write_ctxt *wc,
1292				       loff_t pos, unsigned len)
1293{
1294	int ret, i;
1295	loff_t cluster_off;
1296	unsigned int local_len = len;
1297	struct ocfs2_write_cluster_desc *desc;
1298	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1299
1300	for (i = 0; i < wc->w_clen; i++) {
1301		desc = &wc->w_desc[i];
1302
1303		/*
1304		 * We have to make sure that the total write passed in
1305		 * doesn't extend past a single cluster.
1306		 */
1307		local_len = len;
1308		cluster_off = pos & (osb->s_clustersize - 1);
1309		if ((cluster_off + local_len) > osb->s_clustersize)
1310			local_len = osb->s_clustersize - cluster_off;
1311
1312		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1313					  desc->c_unwritten,
1314					  desc->c_needs_zero,
1315					  data_ac, meta_ac,
1316					  wc, desc->c_cpos, pos, local_len);
1317		if (ret) {
1318			mlog_errno(ret);
1319			goto out;
1320		}
1321
1322		len -= local_len;
1323		pos += local_len;
1324	}
1325
1326	ret = 0;
1327out:
1328	return ret;
1329}
1330
1331/*
1332 * ocfs2_write_end() wants to know which parts of the target page it
1333 * should complete the write on. It's easiest to compute them ahead of
1334 * time when a more complete view of the write is available.
1335 */
1336static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1337					struct ocfs2_write_ctxt *wc,
1338					loff_t pos, unsigned len, int alloc)
1339{
1340	struct ocfs2_write_cluster_desc *desc;
1341
1342	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1343	wc->w_target_to = wc->w_target_from + len;
1344
1345	if (alloc == 0)
1346		return;
1347
1348	/*
1349	 * Allocating write - we may have different boundaries based
1350	 * on page size and cluster size.
1351	 *
1352	 * NOTE: We can no longer compute one value from the other as
1353	 * the actual write length and user provided length may be
1354	 * different.
1355	 */
1356
1357	if (wc->w_large_pages) {
1358		/*
1359		 * We only care about the 1st and last cluster within
1360		 * our range and whether they should be zero'd or not. Either
1361		 * value may be extended out to the start/end of a
1362		 * newly allocated cluster.
1363		 */
1364		desc = &wc->w_desc[0];
1365		if (desc->c_needs_zero)
1366			ocfs2_figure_cluster_boundaries(osb,
1367							desc->c_cpos,
1368							&wc->w_target_from,
1369							NULL);
1370
1371		desc = &wc->w_desc[wc->w_clen - 1];
1372		if (desc->c_needs_zero)
1373			ocfs2_figure_cluster_boundaries(osb,
1374							desc->c_cpos,
1375							NULL,
1376							&wc->w_target_to);
1377	} else {
1378		wc->w_target_from = 0;
1379		wc->w_target_to = PAGE_CACHE_SIZE;
1380	}
1381}
1382
1383/*
1384 * Populate each single-cluster write descriptor in the write context
1385 * with information about the i/o to be done.
1386 *
1387 * Returns the number of clusters that will have to be allocated, as
1388 * well as a worst case estimate of the number of extent records that
1389 * would have to be created during a write to an unwritten region.
1390 */
1391static int ocfs2_populate_write_desc(struct inode *inode,
1392				     struct ocfs2_write_ctxt *wc,
1393				     unsigned int *clusters_to_alloc,
1394				     unsigned int *extents_to_split)
1395{
1396	int ret;
1397	struct ocfs2_write_cluster_desc *desc;
1398	unsigned int num_clusters = 0;
1399	unsigned int ext_flags = 0;
1400	u32 phys = 0;
1401	int i;
1402
1403	*clusters_to_alloc = 0;
1404	*extents_to_split = 0;
1405
1406	for (i = 0; i < wc->w_clen; i++) {
1407		desc = &wc->w_desc[i];
1408		desc->c_cpos = wc->w_cpos + i;
1409
1410		if (num_clusters == 0) {
1411			/*
1412			 * Need to look up the next extent record.
1413			 */
1414			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1415						 &num_clusters, &ext_flags);
1416			if (ret) {
1417				mlog_errno(ret);
1418				goto out;
1419			}
1420
1421			/* We should already CoW the refcountd extent. */
1422			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1423
1424			/*
1425			 * Assume worst case - that we're writing in
1426			 * the middle of the extent.
1427			 *
1428			 * We can assume that the write proceeds from
1429			 * left to right, in which case the extent
1430			 * insert code is smart enough to coalesce the
1431			 * next splits into the previous records created.
1432			 */
1433			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1434				*extents_to_split = *extents_to_split + 2;
1435		} else if (phys) {
1436			/*
1437			 * Only increment phys if it doesn't describe
1438			 * a hole.
1439			 */
1440			phys++;
1441		}
1442
1443		/*
1444		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1445		 * file that got extended.  w_first_new_cpos tells us
1446		 * where the newly allocated clusters are so we can
1447		 * zero them.
1448		 */
1449		if (desc->c_cpos >= wc->w_first_new_cpos) {
1450			BUG_ON(phys == 0);
1451			desc->c_needs_zero = 1;
1452		}
1453
1454		desc->c_phys = phys;
1455		if (phys == 0) {
1456			desc->c_new = 1;
1457			desc->c_needs_zero = 1;
1458			*clusters_to_alloc = *clusters_to_alloc + 1;
1459		}
1460
1461		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1462			desc->c_unwritten = 1;
1463			desc->c_needs_zero = 1;
1464		}
1465
1466		num_clusters--;
1467	}
1468
1469	ret = 0;
1470out:
1471	return ret;
1472}
1473
1474static int ocfs2_write_begin_inline(struct address_space *mapping,
1475				    struct inode *inode,
1476				    struct ocfs2_write_ctxt *wc)
1477{
1478	int ret;
1479	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1480	struct page *page;
1481	handle_t *handle;
1482	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1483
1484	page = find_or_create_page(mapping, 0, GFP_NOFS);
1485	if (!page) {
1486		ret = -ENOMEM;
1487		mlog_errno(ret);
1488		goto out;
1489	}
1490	/*
1491	 * If we don't set w_num_pages then this page won't get unlocked
1492	 * and freed on cleanup of the write context.
1493	 */
1494	wc->w_pages[0] = wc->w_target_page = page;
1495	wc->w_num_pages = 1;
1496
1497	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1498	if (IS_ERR(handle)) {
1499		ret = PTR_ERR(handle);
1500		mlog_errno(ret);
1501		goto out;
1502	}
1503
1504	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1505				      OCFS2_JOURNAL_ACCESS_WRITE);
1506	if (ret) {
1507		ocfs2_commit_trans(osb, handle);
1508
1509		mlog_errno(ret);
1510		goto out;
1511	}
1512
1513	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1514		ocfs2_set_inode_data_inline(inode, di);
1515
1516	if (!PageUptodate(page)) {
1517		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1518		if (ret) {
1519			ocfs2_commit_trans(osb, handle);
1520
1521			goto out;
1522		}
1523	}
1524
1525	wc->w_handle = handle;
1526out:
1527	return ret;
1528}
1529
1530int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1531{
1532	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1533
1534	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1535		return 1;
1536	return 0;
1537}
1538
1539static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1540					  struct inode *inode, loff_t pos,
1541					  unsigned len, struct page *mmap_page,
1542					  struct ocfs2_write_ctxt *wc)
1543{
1544	int ret, written = 0;
1545	loff_t end = pos + len;
1546	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1547	struct ocfs2_dinode *di = NULL;
1548
1549	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1550					     len, (unsigned long long)pos,
1551					     oi->ip_dyn_features);
1552
1553	/*
1554	 * Handle inodes which already have inline data 1st.
1555	 */
1556	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1557		if (mmap_page == NULL &&
1558		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1559			goto do_inline_write;
1560
1561		/*
1562		 * The write won't fit - we have to give this inode an
1563		 * inline extent list now.
1564		 */
1565		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1566		if (ret)
1567			mlog_errno(ret);
1568		goto out;
1569	}
1570
1571	/*
1572	 * Check whether the inode can accept inline data.
1573	 */
1574	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1575		return 0;
1576
1577	/*
1578	 * Check whether the write can fit.
1579	 */
1580	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1581	if (mmap_page ||
1582	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1583		return 0;
1584
1585do_inline_write:
1586	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1587	if (ret) {
1588		mlog_errno(ret);
1589		goto out;
1590	}
1591
1592	/*
1593	 * This signals to the caller that the data can be written
1594	 * inline.
1595	 */
1596	written = 1;
1597out:
1598	return written ? written : ret;
1599}
1600
1601/*
1602 * This function only does anything for file systems which can't
1603 * handle sparse files.
1604 *
1605 * What we want to do here is fill in any hole between the current end
1606 * of allocation and the end of our write. That way the rest of the
1607 * write path can treat it as an non-allocating write, which has no
1608 * special case code for sparse/nonsparse files.
1609 */
1610static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1611					struct buffer_head *di_bh,
1612					loff_t pos, unsigned len,
1613					struct ocfs2_write_ctxt *wc)
1614{
1615	int ret;
1616	loff_t newsize = pos + len;
1617
1618	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1619
1620	if (newsize <= i_size_read(inode))
1621		return 0;
1622
1623	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1624	if (ret)
1625		mlog_errno(ret);
1626
1627	wc->w_first_new_cpos =
1628		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1629
1630	return ret;
1631}
1632
1633static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1634			   loff_t pos)
1635{
1636	int ret = 0;
1637
1638	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1639	if (pos > i_size_read(inode))
1640		ret = ocfs2_zero_extend(inode, di_bh, pos);
1641
1642	return ret;
1643}
1644
1645/*
1646 * Try to flush truncate logs if we can free enough clusters from it.
1647 * As for return value, "< 0" means error, "0" no space and "1" means
1648 * we have freed enough spaces and let the caller try to allocate again.
1649 */
1650static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1651					  unsigned int needed)
1652{
1653	tid_t target;
1654	int ret = 0;
1655	unsigned int truncated_clusters;
1656
1657	mutex_lock(&osb->osb_tl_inode->i_mutex);
1658	truncated_clusters = osb->truncated_clusters;
1659	mutex_unlock(&osb->osb_tl_inode->i_mutex);
1660
1661	/*
1662	 * Check whether we can succeed in allocating if we free
1663	 * the truncate log.
1664	 */
1665	if (truncated_clusters < needed)
1666		goto out;
1667
1668	ret = ocfs2_flush_truncate_log(osb);
1669	if (ret) {
1670		mlog_errno(ret);
1671		goto out;
1672	}
1673
1674	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1675		jbd2_log_wait_commit(osb->journal->j_journal, target);
1676		ret = 1;
1677	}
1678out:
1679	return ret;
1680}
1681
1682int ocfs2_write_begin_nolock(struct file *filp,
1683			     struct address_space *mapping,
1684			     loff_t pos, unsigned len, unsigned flags,
1685			     struct page **pagep, void **fsdata,
1686			     struct buffer_head *di_bh, struct page *mmap_page)
1687{
1688	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1689	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1690	struct ocfs2_write_ctxt *wc;
1691	struct inode *inode = mapping->host;
1692	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1693	struct ocfs2_dinode *di;
1694	struct ocfs2_alloc_context *data_ac = NULL;
1695	struct ocfs2_alloc_context *meta_ac = NULL;
1696	handle_t *handle;
1697	struct ocfs2_extent_tree et;
1698	int try_free = 1, ret1;
1699
1700try_again:
1701	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1702	if (ret) {
1703		mlog_errno(ret);
1704		return ret;
1705	}
1706
1707	if (ocfs2_supports_inline_data(osb)) {
1708		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1709						     mmap_page, wc);
1710		if (ret == 1) {
1711			ret = 0;
1712			goto success;
1713		}
1714		if (ret < 0) {
1715			mlog_errno(ret);
1716			goto out;
1717		}
1718	}
1719
1720	if (ocfs2_sparse_alloc(osb))
1721		ret = ocfs2_zero_tail(inode, di_bh, pos);
1722	else
1723		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1724						   wc);
1725	if (ret) {
1726		mlog_errno(ret);
1727		goto out;
1728	}
1729
1730	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1731	if (ret < 0) {
1732		mlog_errno(ret);
1733		goto out;
1734	} else if (ret == 1) {
1735		clusters_need = wc->w_clen;
1736		ret = ocfs2_refcount_cow(inode, di_bh,
1737					 wc->w_cpos, wc->w_clen, UINT_MAX);
1738		if (ret) {
1739			mlog_errno(ret);
1740			goto out;
1741		}
1742	}
1743
1744	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1745					&extents_to_split);
1746	if (ret) {
1747		mlog_errno(ret);
1748		goto out;
1749	}
1750	clusters_need += clusters_to_alloc;
1751
1752	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1753
1754	trace_ocfs2_write_begin_nolock(
1755			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1756			(long long)i_size_read(inode),
1757			le32_to_cpu(di->i_clusters),
1758			pos, len, flags, mmap_page,
1759			clusters_to_alloc, extents_to_split);
1760
1761	/*
1762	 * We set w_target_from, w_target_to here so that
1763	 * ocfs2_write_end() knows which range in the target page to
1764	 * write out. An allocation requires that we write the entire
1765	 * cluster range.
1766	 */
1767	if (clusters_to_alloc || extents_to_split) {
1768		/*
1769		 * XXX: We are stretching the limits of
1770		 * ocfs2_lock_allocators(). It greatly over-estimates
1771		 * the work to be done.
1772		 */
1773		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1774					      wc->w_di_bh);
1775		ret = ocfs2_lock_allocators(inode, &et,
1776					    clusters_to_alloc, extents_to_split,
1777					    &data_ac, &meta_ac);
1778		if (ret) {
1779			mlog_errno(ret);
1780			goto out;
1781		}
1782
1783		if (data_ac)
1784			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1785
1786		credits = ocfs2_calc_extend_credits(inode->i_sb,
1787						    &di->id2.i_list);
1788
1789	}
1790
1791	/*
1792	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1793	 * and non-sparse clusters we just extended.  For non-sparse writes,
1794	 * we know zeros will only be needed in the first and/or last cluster.
1795	 */
1796	if (clusters_to_alloc || extents_to_split ||
1797	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1798			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1799		cluster_of_pages = 1;
1800	else
1801		cluster_of_pages = 0;
1802
1803	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1804
1805	handle = ocfs2_start_trans(osb, credits);
1806	if (IS_ERR(handle)) {
1807		ret = PTR_ERR(handle);
1808		mlog_errno(ret);
1809		goto out;
1810	}
1811
1812	wc->w_handle = handle;
1813
1814	if (clusters_to_alloc) {
1815		ret = dquot_alloc_space_nodirty(inode,
1816			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1817		if (ret)
1818			goto out_commit;
1819	}
1820	/*
1821	 * We don't want this to fail in ocfs2_write_end(), so do it
1822	 * here.
1823	 */
1824	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1825				      OCFS2_JOURNAL_ACCESS_WRITE);
1826	if (ret) {
1827		mlog_errno(ret);
1828		goto out_quota;
1829	}
1830
1831	/*
1832	 * Fill our page array first. That way we've grabbed enough so
1833	 * that we can zero and flush if we error after adding the
1834	 * extent.
1835	 */
1836	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1837					 cluster_of_pages, mmap_page);
1838	if (ret && ret != -EAGAIN) {
1839		mlog_errno(ret);
1840		goto out_quota;
1841	}
1842
1843	/*
1844	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1845	 * the target page. In this case, we exit with no error and no target
1846	 * page. This will trigger the caller, page_mkwrite(), to re-try
1847	 * the operation.
1848	 */
1849	if (ret == -EAGAIN) {
1850		BUG_ON(wc->w_target_page);
1851		ret = 0;
1852		goto out_quota;
1853	}
1854
1855	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1856					  len);
1857	if (ret) {
1858		mlog_errno(ret);
1859		goto out_quota;
1860	}
1861
1862	if (data_ac)
1863		ocfs2_free_alloc_context(data_ac);
1864	if (meta_ac)
1865		ocfs2_free_alloc_context(meta_ac);
1866
1867success:
1868	*pagep = wc->w_target_page;
1869	*fsdata = wc;
1870	return 0;
1871out_quota:
1872	if (clusters_to_alloc)
1873		dquot_free_space(inode,
1874			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1875out_commit:
1876	ocfs2_commit_trans(osb, handle);
1877
1878out:
1879	ocfs2_free_write_ctxt(wc);
1880
1881	if (data_ac) {
1882		ocfs2_free_alloc_context(data_ac);
1883		data_ac = NULL;
1884	}
1885	if (meta_ac) {
1886		ocfs2_free_alloc_context(meta_ac);
1887		meta_ac = NULL;
1888	}
1889
1890	if (ret == -ENOSPC && try_free) {
1891		/*
1892		 * Try to free some truncate log so that we can have enough
1893		 * clusters to allocate.
1894		 */
1895		try_free = 0;
1896
1897		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1898		if (ret1 == 1)
1899			goto try_again;
1900
1901		if (ret1 < 0)
1902			mlog_errno(ret1);
1903	}
1904
1905	return ret;
1906}
1907
1908static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1909			     loff_t pos, unsigned len, unsigned flags,
1910			     struct page **pagep, void **fsdata)
1911{
1912	int ret;
1913	struct buffer_head *di_bh = NULL;
1914	struct inode *inode = mapping->host;
1915
1916	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1917	if (ret) {
1918		mlog_errno(ret);
1919		return ret;
1920	}
1921
1922	/*
1923	 * Take alloc sem here to prevent concurrent lookups. That way
1924	 * the mapping, zeroing and tree manipulation within
1925	 * ocfs2_write() will be safe against ->readpage(). This
1926	 * should also serve to lock out allocation from a shared
1927	 * writeable region.
1928	 */
1929	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1930
1931	ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1932				       fsdata, di_bh, NULL);
1933	if (ret) {
1934		mlog_errno(ret);
1935		goto out_fail;
1936	}
1937
1938	brelse(di_bh);
1939
1940	return 0;
1941
1942out_fail:
1943	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1944
1945	brelse(di_bh);
1946	ocfs2_inode_unlock(inode, 1);
1947
1948	return ret;
1949}
1950
1951static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1952				   unsigned len, unsigned *copied,
1953				   struct ocfs2_dinode *di,
1954				   struct ocfs2_write_ctxt *wc)
1955{
1956	void *kaddr;
1957
1958	if (unlikely(*copied < len)) {
1959		if (!PageUptodate(wc->w_target_page)) {
1960			*copied = 0;
1961			return;
1962		}
1963	}
1964
1965	kaddr = kmap_atomic(wc->w_target_page);
1966	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1967	kunmap_atomic(kaddr);
1968
1969	trace_ocfs2_write_end_inline(
1970	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1971	     (unsigned long long)pos, *copied,
1972	     le16_to_cpu(di->id2.i_data.id_count),
1973	     le16_to_cpu(di->i_dyn_features));
1974}
1975
1976int ocfs2_write_end_nolock(struct address_space *mapping,
1977			   loff_t pos, unsigned len, unsigned copied,
1978			   struct page *page, void *fsdata)
1979{
1980	int i;
1981	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1982	struct inode *inode = mapping->host;
1983	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1984	struct ocfs2_write_ctxt *wc = fsdata;
1985	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1986	handle_t *handle = wc->w_handle;
1987	struct page *tmppage;
1988
1989	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1990		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1991		goto out_write_size;
1992	}
1993
1994	if (unlikely(copied < len)) {
1995		if (!PageUptodate(wc->w_target_page))
1996			copied = 0;
1997
1998		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1999				       start+len);
2000	}
2001	flush_dcache_page(wc->w_target_page);
2002
2003	for(i = 0; i < wc->w_num_pages; i++) {
2004		tmppage = wc->w_pages[i];
2005
2006		if (tmppage == wc->w_target_page) {
2007			from = wc->w_target_from;
2008			to = wc->w_target_to;
2009
2010			BUG_ON(from > PAGE_CACHE_SIZE ||
2011			       to > PAGE_CACHE_SIZE ||
2012			       to < from);
2013		} else {
2014			/*
2015			 * Pages adjacent to the target (if any) imply
2016			 * a hole-filling write in which case we want
2017			 * to flush their entire range.
2018			 */
2019			from = 0;
2020			to = PAGE_CACHE_SIZE;
2021		}
2022
2023		if (page_has_buffers(tmppage)) {
2024			if (ocfs2_should_order_data(inode))
2025				ocfs2_jbd2_file_inode(wc->w_handle, inode);
2026			block_commit_write(tmppage, from, to);
2027		}
2028	}
2029
2030out_write_size:
2031	pos += copied;
2032	if (pos > i_size_read(inode)) {
2033		i_size_write(inode, pos);
2034		mark_inode_dirty(inode);
2035	}
2036	inode->i_blocks = ocfs2_inode_sector_count(inode);
2037	di->i_size = cpu_to_le64((u64)i_size_read(inode));
2038	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2039	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2040	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2041	ocfs2_update_inode_fsync_trans(handle, inode, 1);
2042	ocfs2_journal_dirty(handle, wc->w_di_bh);
2043
2044	ocfs2_commit_trans(osb, handle);
2045
2046	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2047
2048	ocfs2_free_write_ctxt(wc);
2049
2050	return copied;
2051}
2052
2053static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2054			   loff_t pos, unsigned len, unsigned copied,
2055			   struct page *page, void *fsdata)
2056{
2057	int ret;
2058	struct inode *inode = mapping->host;
2059
2060	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2061
2062	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2063	ocfs2_inode_unlock(inode, 1);
2064
2065	return ret;
2066}
2067
2068const struct address_space_operations ocfs2_aops = {
2069	.readpage		= ocfs2_readpage,
2070	.readpages		= ocfs2_readpages,
2071	.writepage		= ocfs2_writepage,
2072	.write_begin		= ocfs2_write_begin,
2073	.write_end		= ocfs2_write_end,
2074	.bmap			= ocfs2_bmap,
2075	.direct_IO		= ocfs2_direct_IO,
2076	.invalidatepage		= block_invalidatepage,
2077	.releasepage		= ocfs2_releasepage,
2078	.migratepage		= buffer_migrate_page,
2079	.is_partially_uptodate	= block_is_partially_uptodate,
2080	.error_remove_page	= generic_error_remove_page,
2081};
2082