aops.c revision 496ad9aa8ef448058e36ca7a787c61f2e63f0f54
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
27#include <linux/swap.h>
28#include <linux/pipe_fs_i.h>
29#include <linux/mpage.h>
30#include <linux/quotaops.h>
31
32#include <cluster/masklog.h>
33
34#include "ocfs2.h"
35
36#include "alloc.h"
37#include "aops.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "file.h"
41#include "inode.h"
42#include "journal.h"
43#include "suballoc.h"
44#include "super.h"
45#include "symlink.h"
46#include "refcounttree.h"
47#include "ocfs2_trace.h"
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52				   struct buffer_head *bh_result, int create)
53{
54	int err = -EIO;
55	int status;
56	struct ocfs2_dinode *fe = NULL;
57	struct buffer_head *bh = NULL;
58	struct buffer_head *buffer_cache_bh = NULL;
59	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60	void *kaddr;
61
62	trace_ocfs2_symlink_get_block(
63			(unsigned long long)OCFS2_I(inode)->ip_blkno,
64			(unsigned long long)iblock, bh_result, create);
65
66	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70		     (unsigned long long)iblock);
71		goto bail;
72	}
73
74	status = ocfs2_read_inode_block(inode, &bh);
75	if (status < 0) {
76		mlog_errno(status);
77		goto bail;
78	}
79	fe = (struct ocfs2_dinode *) bh->b_data;
80
81	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82						    le32_to_cpu(fe->i_clusters))) {
83		mlog(ML_ERROR, "block offset is outside the allocated size: "
84		     "%llu\n", (unsigned long long)iblock);
85		goto bail;
86	}
87
88	/* We don't use the page cache to create symlink data, so if
89	 * need be, copy it over from the buffer cache. */
90	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92			    iblock;
93		buffer_cache_bh = sb_getblk(osb->sb, blkno);
94		if (!buffer_cache_bh) {
95			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96			goto bail;
97		}
98
99		/* we haven't locked out transactions, so a commit
100		 * could've happened. Since we've got a reference on
101		 * the bh, even if it commits while we're doing the
102		 * copy, the data is still good. */
103		if (buffer_jbd(buffer_cache_bh)
104		    && ocfs2_inode_is_new(inode)) {
105			kaddr = kmap_atomic(bh_result->b_page);
106			if (!kaddr) {
107				mlog(ML_ERROR, "couldn't kmap!\n");
108				goto bail;
109			}
110			memcpy(kaddr + (bh_result->b_size * iblock),
111			       buffer_cache_bh->b_data,
112			       bh_result->b_size);
113			kunmap_atomic(kaddr);
114			set_buffer_uptodate(bh_result);
115		}
116		brelse(buffer_cache_bh);
117	}
118
119	map_bh(bh_result, inode->i_sb,
120	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121
122	err = 0;
123
124bail:
125	brelse(bh);
126
127	return err;
128}
129
130int ocfs2_get_block(struct inode *inode, sector_t iblock,
131		    struct buffer_head *bh_result, int create)
132{
133	int err = 0;
134	unsigned int ext_flags;
135	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136	u64 p_blkno, count, past_eof;
137	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138
139	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140			      (unsigned long long)iblock, bh_result, create);
141
142	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144		     inode, inode->i_ino);
145
146	if (S_ISLNK(inode->i_mode)) {
147		/* this always does I/O for some reason. */
148		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149		goto bail;
150	}
151
152	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153					  &ext_flags);
154	if (err) {
155		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157		     (unsigned long long)p_blkno);
158		goto bail;
159	}
160
161	if (max_blocks < count)
162		count = max_blocks;
163
164	/*
165	 * ocfs2 never allocates in this function - the only time we
166	 * need to use BH_New is when we're extending i_size on a file
167	 * system which doesn't support holes, in which case BH_New
168	 * allows __block_write_begin() to zero.
169	 *
170	 * If we see this on a sparse file system, then a truncate has
171	 * raced us and removed the cluster. In this case, we clear
172	 * the buffers dirty and uptodate bits and let the buffer code
173	 * ignore it as a hole.
174	 */
175	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176		clear_buffer_dirty(bh_result);
177		clear_buffer_uptodate(bh_result);
178		goto bail;
179	}
180
181	/* Treat the unwritten extent as a hole for zeroing purposes. */
182	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183		map_bh(bh_result, inode->i_sb, p_blkno);
184
185	bh_result->b_size = count << inode->i_blkbits;
186
187	if (!ocfs2_sparse_alloc(osb)) {
188		if (p_blkno == 0) {
189			err = -EIO;
190			mlog(ML_ERROR,
191			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192			     (unsigned long long)iblock,
193			     (unsigned long long)p_blkno,
194			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
195			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196			dump_stack();
197			goto bail;
198		}
199	}
200
201	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202
203	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204				  (unsigned long long)past_eof);
205	if (create && (iblock >= past_eof))
206		set_buffer_new(bh_result);
207
208bail:
209	if (err < 0)
210		err = -EIO;
211
212	return err;
213}
214
215int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216			   struct buffer_head *di_bh)
217{
218	void *kaddr;
219	loff_t size;
220	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
225		return -EROFS;
226	}
227
228	size = i_size_read(inode);
229
230	if (size > PAGE_CACHE_SIZE ||
231	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232		ocfs2_error(inode->i_sb,
233			    "Inode %llu has with inline data has bad size: %Lu",
234			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
235			    (unsigned long long)size);
236		return -EROFS;
237	}
238
239	kaddr = kmap_atomic(page);
240	if (size)
241		memcpy(kaddr, di->id2.i_data.id_data, size);
242	/* Clear the remaining part of the page */
243	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244	flush_dcache_page(page);
245	kunmap_atomic(kaddr);
246
247	SetPageUptodate(page);
248
249	return 0;
250}
251
252static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253{
254	int ret;
255	struct buffer_head *di_bh = NULL;
256
257	BUG_ON(!PageLocked(page));
258	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259
260	ret = ocfs2_read_inode_block(inode, &di_bh);
261	if (ret) {
262		mlog_errno(ret);
263		goto out;
264	}
265
266	ret = ocfs2_read_inline_data(inode, page, di_bh);
267out:
268	unlock_page(page);
269
270	brelse(di_bh);
271	return ret;
272}
273
274static int ocfs2_readpage(struct file *file, struct page *page)
275{
276	struct inode *inode = page->mapping->host;
277	struct ocfs2_inode_info *oi = OCFS2_I(inode);
278	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279	int ret, unlock = 1;
280
281	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282			     (page ? page->index : 0));
283
284	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285	if (ret != 0) {
286		if (ret == AOP_TRUNCATED_PAGE)
287			unlock = 0;
288		mlog_errno(ret);
289		goto out;
290	}
291
292	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293		/*
294		 * Unlock the page and cycle ip_alloc_sem so that we don't
295		 * busyloop waiting for ip_alloc_sem to unlock
296		 */
297		ret = AOP_TRUNCATED_PAGE;
298		unlock_page(page);
299		unlock = 0;
300		down_read(&oi->ip_alloc_sem);
301		up_read(&oi->ip_alloc_sem);
302		goto out_inode_unlock;
303	}
304
305	/*
306	 * i_size might have just been updated as we grabed the meta lock.  We
307	 * might now be discovering a truncate that hit on another node.
308	 * block_read_full_page->get_block freaks out if it is asked to read
309	 * beyond the end of a file, so we check here.  Callers
310	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
311	 * and notice that the page they just read isn't needed.
312	 *
313	 * XXX sys_readahead() seems to get that wrong?
314	 */
315	if (start >= i_size_read(inode)) {
316		zero_user(page, 0, PAGE_SIZE);
317		SetPageUptodate(page);
318		ret = 0;
319		goto out_alloc;
320	}
321
322	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
323		ret = ocfs2_readpage_inline(inode, page);
324	else
325		ret = block_read_full_page(page, ocfs2_get_block);
326	unlock = 0;
327
328out_alloc:
329	up_read(&OCFS2_I(inode)->ip_alloc_sem);
330out_inode_unlock:
331	ocfs2_inode_unlock(inode, 0);
332out:
333	if (unlock)
334		unlock_page(page);
335	return ret;
336}
337
338/*
339 * This is used only for read-ahead. Failures or difficult to handle
340 * situations are safe to ignore.
341 *
342 * Right now, we don't bother with BH_Boundary - in-inode extent lists
343 * are quite large (243 extents on 4k blocks), so most inodes don't
344 * grow out to a tree. If need be, detecting boundary extents could
345 * trivially be added in a future version of ocfs2_get_block().
346 */
347static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
348			   struct list_head *pages, unsigned nr_pages)
349{
350	int ret, err = -EIO;
351	struct inode *inode = mapping->host;
352	struct ocfs2_inode_info *oi = OCFS2_I(inode);
353	loff_t start;
354	struct page *last;
355
356	/*
357	 * Use the nonblocking flag for the dlm code to avoid page
358	 * lock inversion, but don't bother with retrying.
359	 */
360	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
361	if (ret)
362		return err;
363
364	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
365		ocfs2_inode_unlock(inode, 0);
366		return err;
367	}
368
369	/*
370	 * Don't bother with inline-data. There isn't anything
371	 * to read-ahead in that case anyway...
372	 */
373	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
374		goto out_unlock;
375
376	/*
377	 * Check whether a remote node truncated this file - we just
378	 * drop out in that case as it's not worth handling here.
379	 */
380	last = list_entry(pages->prev, struct page, lru);
381	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
382	if (start >= i_size_read(inode))
383		goto out_unlock;
384
385	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
386
387out_unlock:
388	up_read(&oi->ip_alloc_sem);
389	ocfs2_inode_unlock(inode, 0);
390
391	return err;
392}
393
394/* Note: Because we don't support holes, our allocation has
395 * already happened (allocation writes zeros to the file data)
396 * so we don't have to worry about ordered writes in
397 * ocfs2_writepage.
398 *
399 * ->writepage is called during the process of invalidating the page cache
400 * during blocked lock processing.  It can't block on any cluster locks
401 * to during block mapping.  It's relying on the fact that the block
402 * mapping can't have disappeared under the dirty pages that it is
403 * being asked to write back.
404 */
405static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
406{
407	trace_ocfs2_writepage(
408		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
409		page->index);
410
411	return block_write_full_page(page, ocfs2_get_block, wbc);
412}
413
414/* Taken from ext3. We don't necessarily need the full blown
415 * functionality yet, but IMHO it's better to cut and paste the whole
416 * thing so we can avoid introducing our own bugs (and easily pick up
417 * their fixes when they happen) --Mark */
418int walk_page_buffers(	handle_t *handle,
419			struct buffer_head *head,
420			unsigned from,
421			unsigned to,
422			int *partial,
423			int (*fn)(	handle_t *handle,
424					struct buffer_head *bh))
425{
426	struct buffer_head *bh;
427	unsigned block_start, block_end;
428	unsigned blocksize = head->b_size;
429	int err, ret = 0;
430	struct buffer_head *next;
431
432	for (	bh = head, block_start = 0;
433		ret == 0 && (bh != head || !block_start);
434	    	block_start = block_end, bh = next)
435	{
436		next = bh->b_this_page;
437		block_end = block_start + blocksize;
438		if (block_end <= from || block_start >= to) {
439			if (partial && !buffer_uptodate(bh))
440				*partial = 1;
441			continue;
442		}
443		err = (*fn)(handle, bh);
444		if (!ret)
445			ret = err;
446	}
447	return ret;
448}
449
450static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
451{
452	sector_t status;
453	u64 p_blkno = 0;
454	int err = 0;
455	struct inode *inode = mapping->host;
456
457	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
458			 (unsigned long long)block);
459
460	/* We don't need to lock journal system files, since they aren't
461	 * accessed concurrently from multiple nodes.
462	 */
463	if (!INODE_JOURNAL(inode)) {
464		err = ocfs2_inode_lock(inode, NULL, 0);
465		if (err) {
466			if (err != -ENOENT)
467				mlog_errno(err);
468			goto bail;
469		}
470		down_read(&OCFS2_I(inode)->ip_alloc_sem);
471	}
472
473	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
474		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
475						  NULL);
476
477	if (!INODE_JOURNAL(inode)) {
478		up_read(&OCFS2_I(inode)->ip_alloc_sem);
479		ocfs2_inode_unlock(inode, 0);
480	}
481
482	if (err) {
483		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
484		     (unsigned long long)block);
485		mlog_errno(err);
486		goto bail;
487	}
488
489bail:
490	status = err ? 0 : p_blkno;
491
492	return status;
493}
494
495/*
496 * TODO: Make this into a generic get_blocks function.
497 *
498 * From do_direct_io in direct-io.c:
499 *  "So what we do is to permit the ->get_blocks function to populate
500 *   bh.b_size with the size of IO which is permitted at this offset and
501 *   this i_blkbits."
502 *
503 * This function is called directly from get_more_blocks in direct-io.c.
504 *
505 * called like this: dio->get_blocks(dio->inode, fs_startblk,
506 * 					fs_count, map_bh, dio->rw == WRITE);
507 *
508 * Note that we never bother to allocate blocks here, and thus ignore the
509 * create argument.
510 */
511static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
512				     struct buffer_head *bh_result, int create)
513{
514	int ret;
515	u64 p_blkno, inode_blocks, contig_blocks;
516	unsigned int ext_flags;
517	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
518	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
519
520	/* This function won't even be called if the request isn't all
521	 * nicely aligned and of the right size, so there's no need
522	 * for us to check any of that. */
523
524	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
525
526	/* This figures out the size of the next contiguous block, and
527	 * our logical offset */
528	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
529					  &contig_blocks, &ext_flags);
530	if (ret) {
531		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
532		     (unsigned long long)iblock);
533		ret = -EIO;
534		goto bail;
535	}
536
537	/* We should already CoW the refcounted extent in case of create. */
538	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
539
540	/*
541	 * get_more_blocks() expects us to describe a hole by clearing
542	 * the mapped bit on bh_result().
543	 *
544	 * Consider an unwritten extent as a hole.
545	 */
546	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
547		map_bh(bh_result, inode->i_sb, p_blkno);
548	else
549		clear_buffer_mapped(bh_result);
550
551	/* make sure we don't map more than max_blocks blocks here as
552	   that's all the kernel will handle at this point. */
553	if (max_blocks < contig_blocks)
554		contig_blocks = max_blocks;
555	bh_result->b_size = contig_blocks << blocksize_bits;
556bail:
557	return ret;
558}
559
560/*
561 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
562 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
563 * to protect io on one node from truncation on another.
564 */
565static void ocfs2_dio_end_io(struct kiocb *iocb,
566			     loff_t offset,
567			     ssize_t bytes,
568			     void *private,
569			     int ret,
570			     bool is_async)
571{
572	struct inode *inode = file_inode(iocb->ki_filp);
573	int level;
574	wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
575
576	/* this io's submitter should not have unlocked this before we could */
577	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
578
579	if (ocfs2_iocb_is_sem_locked(iocb))
580		ocfs2_iocb_clear_sem_locked(iocb);
581
582	if (ocfs2_iocb_is_unaligned_aio(iocb)) {
583		ocfs2_iocb_clear_unaligned_aio(iocb);
584
585		if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
586		    waitqueue_active(wq)) {
587			wake_up_all(wq);
588		}
589	}
590
591	ocfs2_iocb_clear_rw_locked(iocb);
592
593	level = ocfs2_iocb_rw_locked_level(iocb);
594	ocfs2_rw_unlock(inode, level);
595
596	if (is_async)
597		aio_complete(iocb, ret, 0);
598	inode_dio_done(inode);
599}
600
601/*
602 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
603 * from ext3.  PageChecked() bits have been removed as OCFS2 does not
604 * do journalled data.
605 */
606static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
607{
608	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
609
610	jbd2_journal_invalidatepage(journal, page, offset);
611}
612
613static int ocfs2_releasepage(struct page *page, gfp_t wait)
614{
615	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
616
617	if (!page_has_buffers(page))
618		return 0;
619	return jbd2_journal_try_to_free_buffers(journal, page, wait);
620}
621
622static ssize_t ocfs2_direct_IO(int rw,
623			       struct kiocb *iocb,
624			       const struct iovec *iov,
625			       loff_t offset,
626			       unsigned long nr_segs)
627{
628	struct file *file = iocb->ki_filp;
629	struct inode *inode = file_inode(file)->i_mapping->host;
630
631	/*
632	 * Fallback to buffered I/O if we see an inode without
633	 * extents.
634	 */
635	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
636		return 0;
637
638	/* Fallback to buffered I/O if we are appending. */
639	if (i_size_read(inode) <= offset)
640		return 0;
641
642	return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
643				    iov, offset, nr_segs,
644				    ocfs2_direct_IO_get_blocks,
645				    ocfs2_dio_end_io, NULL, 0);
646}
647
648static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
649					    u32 cpos,
650					    unsigned int *start,
651					    unsigned int *end)
652{
653	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
654
655	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
656		unsigned int cpp;
657
658		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
659
660		cluster_start = cpos % cpp;
661		cluster_start = cluster_start << osb->s_clustersize_bits;
662
663		cluster_end = cluster_start + osb->s_clustersize;
664	}
665
666	BUG_ON(cluster_start > PAGE_SIZE);
667	BUG_ON(cluster_end > PAGE_SIZE);
668
669	if (start)
670		*start = cluster_start;
671	if (end)
672		*end = cluster_end;
673}
674
675/*
676 * 'from' and 'to' are the region in the page to avoid zeroing.
677 *
678 * If pagesize > clustersize, this function will avoid zeroing outside
679 * of the cluster boundary.
680 *
681 * from == to == 0 is code for "zero the entire cluster region"
682 */
683static void ocfs2_clear_page_regions(struct page *page,
684				     struct ocfs2_super *osb, u32 cpos,
685				     unsigned from, unsigned to)
686{
687	void *kaddr;
688	unsigned int cluster_start, cluster_end;
689
690	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
691
692	kaddr = kmap_atomic(page);
693
694	if (from || to) {
695		if (from > cluster_start)
696			memset(kaddr + cluster_start, 0, from - cluster_start);
697		if (to < cluster_end)
698			memset(kaddr + to, 0, cluster_end - to);
699	} else {
700		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
701	}
702
703	kunmap_atomic(kaddr);
704}
705
706/*
707 * Nonsparse file systems fully allocate before we get to the write
708 * code. This prevents ocfs2_write() from tagging the write as an
709 * allocating one, which means ocfs2_map_page_blocks() might try to
710 * read-in the blocks at the tail of our file. Avoid reading them by
711 * testing i_size against each block offset.
712 */
713static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
714				 unsigned int block_start)
715{
716	u64 offset = page_offset(page) + block_start;
717
718	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
719		return 1;
720
721	if (i_size_read(inode) > offset)
722		return 1;
723
724	return 0;
725}
726
727/*
728 * Some of this taken from __block_write_begin(). We already have our
729 * mapping by now though, and the entire write will be allocating or
730 * it won't, so not much need to use BH_New.
731 *
732 * This will also skip zeroing, which is handled externally.
733 */
734int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
735			  struct inode *inode, unsigned int from,
736			  unsigned int to, int new)
737{
738	int ret = 0;
739	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
740	unsigned int block_end, block_start;
741	unsigned int bsize = 1 << inode->i_blkbits;
742
743	if (!page_has_buffers(page))
744		create_empty_buffers(page, bsize, 0);
745
746	head = page_buffers(page);
747	for (bh = head, block_start = 0; bh != head || !block_start;
748	     bh = bh->b_this_page, block_start += bsize) {
749		block_end = block_start + bsize;
750
751		clear_buffer_new(bh);
752
753		/*
754		 * Ignore blocks outside of our i/o range -
755		 * they may belong to unallocated clusters.
756		 */
757		if (block_start >= to || block_end <= from) {
758			if (PageUptodate(page))
759				set_buffer_uptodate(bh);
760			continue;
761		}
762
763		/*
764		 * For an allocating write with cluster size >= page
765		 * size, we always write the entire page.
766		 */
767		if (new)
768			set_buffer_new(bh);
769
770		if (!buffer_mapped(bh)) {
771			map_bh(bh, inode->i_sb, *p_blkno);
772			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
773		}
774
775		if (PageUptodate(page)) {
776			if (!buffer_uptodate(bh))
777				set_buffer_uptodate(bh);
778		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
779			   !buffer_new(bh) &&
780			   ocfs2_should_read_blk(inode, page, block_start) &&
781			   (block_start < from || block_end > to)) {
782			ll_rw_block(READ, 1, &bh);
783			*wait_bh++=bh;
784		}
785
786		*p_blkno = *p_blkno + 1;
787	}
788
789	/*
790	 * If we issued read requests - let them complete.
791	 */
792	while(wait_bh > wait) {
793		wait_on_buffer(*--wait_bh);
794		if (!buffer_uptodate(*wait_bh))
795			ret = -EIO;
796	}
797
798	if (ret == 0 || !new)
799		return ret;
800
801	/*
802	 * If we get -EIO above, zero out any newly allocated blocks
803	 * to avoid exposing stale data.
804	 */
805	bh = head;
806	block_start = 0;
807	do {
808		block_end = block_start + bsize;
809		if (block_end <= from)
810			goto next_bh;
811		if (block_start >= to)
812			break;
813
814		zero_user(page, block_start, bh->b_size);
815		set_buffer_uptodate(bh);
816		mark_buffer_dirty(bh);
817
818next_bh:
819		block_start = block_end;
820		bh = bh->b_this_page;
821	} while (bh != head);
822
823	return ret;
824}
825
826#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
827#define OCFS2_MAX_CTXT_PAGES	1
828#else
829#define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
830#endif
831
832#define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
833
834/*
835 * Describe the state of a single cluster to be written to.
836 */
837struct ocfs2_write_cluster_desc {
838	u32		c_cpos;
839	u32		c_phys;
840	/*
841	 * Give this a unique field because c_phys eventually gets
842	 * filled.
843	 */
844	unsigned	c_new;
845	unsigned	c_unwritten;
846	unsigned	c_needs_zero;
847};
848
849struct ocfs2_write_ctxt {
850	/* Logical cluster position / len of write */
851	u32				w_cpos;
852	u32				w_clen;
853
854	/* First cluster allocated in a nonsparse extend */
855	u32				w_first_new_cpos;
856
857	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
858
859	/*
860	 * This is true if page_size > cluster_size.
861	 *
862	 * It triggers a set of special cases during write which might
863	 * have to deal with allocating writes to partial pages.
864	 */
865	unsigned int			w_large_pages;
866
867	/*
868	 * Pages involved in this write.
869	 *
870	 * w_target_page is the page being written to by the user.
871	 *
872	 * w_pages is an array of pages which always contains
873	 * w_target_page, and in the case of an allocating write with
874	 * page_size < cluster size, it will contain zero'd and mapped
875	 * pages adjacent to w_target_page which need to be written
876	 * out in so that future reads from that region will get
877	 * zero's.
878	 */
879	unsigned int			w_num_pages;
880	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
881	struct page			*w_target_page;
882
883	/*
884	 * w_target_locked is used for page_mkwrite path indicating no unlocking
885	 * against w_target_page in ocfs2_write_end_nolock.
886	 */
887	unsigned int			w_target_locked:1;
888
889	/*
890	 * ocfs2_write_end() uses this to know what the real range to
891	 * write in the target should be.
892	 */
893	unsigned int			w_target_from;
894	unsigned int			w_target_to;
895
896	/*
897	 * We could use journal_current_handle() but this is cleaner,
898	 * IMHO -Mark
899	 */
900	handle_t			*w_handle;
901
902	struct buffer_head		*w_di_bh;
903
904	struct ocfs2_cached_dealloc_ctxt w_dealloc;
905};
906
907void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
908{
909	int i;
910
911	for(i = 0; i < num_pages; i++) {
912		if (pages[i]) {
913			unlock_page(pages[i]);
914			mark_page_accessed(pages[i]);
915			page_cache_release(pages[i]);
916		}
917	}
918}
919
920static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
921{
922	int i;
923
924	/*
925	 * w_target_locked is only set to true in the page_mkwrite() case.
926	 * The intent is to allow us to lock the target page from write_begin()
927	 * to write_end(). The caller must hold a ref on w_target_page.
928	 */
929	if (wc->w_target_locked) {
930		BUG_ON(!wc->w_target_page);
931		for (i = 0; i < wc->w_num_pages; i++) {
932			if (wc->w_target_page == wc->w_pages[i]) {
933				wc->w_pages[i] = NULL;
934				break;
935			}
936		}
937		mark_page_accessed(wc->w_target_page);
938		page_cache_release(wc->w_target_page);
939	}
940	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
941
942	brelse(wc->w_di_bh);
943	kfree(wc);
944}
945
946static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
947				  struct ocfs2_super *osb, loff_t pos,
948				  unsigned len, struct buffer_head *di_bh)
949{
950	u32 cend;
951	struct ocfs2_write_ctxt *wc;
952
953	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
954	if (!wc)
955		return -ENOMEM;
956
957	wc->w_cpos = pos >> osb->s_clustersize_bits;
958	wc->w_first_new_cpos = UINT_MAX;
959	cend = (pos + len - 1) >> osb->s_clustersize_bits;
960	wc->w_clen = cend - wc->w_cpos + 1;
961	get_bh(di_bh);
962	wc->w_di_bh = di_bh;
963
964	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
965		wc->w_large_pages = 1;
966	else
967		wc->w_large_pages = 0;
968
969	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
970
971	*wcp = wc;
972
973	return 0;
974}
975
976/*
977 * If a page has any new buffers, zero them out here, and mark them uptodate
978 * and dirty so they'll be written out (in order to prevent uninitialised
979 * block data from leaking). And clear the new bit.
980 */
981static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
982{
983	unsigned int block_start, block_end;
984	struct buffer_head *head, *bh;
985
986	BUG_ON(!PageLocked(page));
987	if (!page_has_buffers(page))
988		return;
989
990	bh = head = page_buffers(page);
991	block_start = 0;
992	do {
993		block_end = block_start + bh->b_size;
994
995		if (buffer_new(bh)) {
996			if (block_end > from && block_start < to) {
997				if (!PageUptodate(page)) {
998					unsigned start, end;
999
1000					start = max(from, block_start);
1001					end = min(to, block_end);
1002
1003					zero_user_segment(page, start, end);
1004					set_buffer_uptodate(bh);
1005				}
1006
1007				clear_buffer_new(bh);
1008				mark_buffer_dirty(bh);
1009			}
1010		}
1011
1012		block_start = block_end;
1013		bh = bh->b_this_page;
1014	} while (bh != head);
1015}
1016
1017/*
1018 * Only called when we have a failure during allocating write to write
1019 * zero's to the newly allocated region.
1020 */
1021static void ocfs2_write_failure(struct inode *inode,
1022				struct ocfs2_write_ctxt *wc,
1023				loff_t user_pos, unsigned user_len)
1024{
1025	int i;
1026	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1027		to = user_pos + user_len;
1028	struct page *tmppage;
1029
1030	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1031
1032	for(i = 0; i < wc->w_num_pages; i++) {
1033		tmppage = wc->w_pages[i];
1034
1035		if (page_has_buffers(tmppage)) {
1036			if (ocfs2_should_order_data(inode))
1037				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1038
1039			block_commit_write(tmppage, from, to);
1040		}
1041	}
1042}
1043
1044static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1045					struct ocfs2_write_ctxt *wc,
1046					struct page *page, u32 cpos,
1047					loff_t user_pos, unsigned user_len,
1048					int new)
1049{
1050	int ret;
1051	unsigned int map_from = 0, map_to = 0;
1052	unsigned int cluster_start, cluster_end;
1053	unsigned int user_data_from = 0, user_data_to = 0;
1054
1055	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1056					&cluster_start, &cluster_end);
1057
1058	/* treat the write as new if the a hole/lseek spanned across
1059	 * the page boundary.
1060	 */
1061	new = new | ((i_size_read(inode) <= page_offset(page)) &&
1062			(page_offset(page) <= user_pos));
1063
1064	if (page == wc->w_target_page) {
1065		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1066		map_to = map_from + user_len;
1067
1068		if (new)
1069			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1070						    cluster_start, cluster_end,
1071						    new);
1072		else
1073			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1074						    map_from, map_to, new);
1075		if (ret) {
1076			mlog_errno(ret);
1077			goto out;
1078		}
1079
1080		user_data_from = map_from;
1081		user_data_to = map_to;
1082		if (new) {
1083			map_from = cluster_start;
1084			map_to = cluster_end;
1085		}
1086	} else {
1087		/*
1088		 * If we haven't allocated the new page yet, we
1089		 * shouldn't be writing it out without copying user
1090		 * data. This is likely a math error from the caller.
1091		 */
1092		BUG_ON(!new);
1093
1094		map_from = cluster_start;
1095		map_to = cluster_end;
1096
1097		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1098					    cluster_start, cluster_end, new);
1099		if (ret) {
1100			mlog_errno(ret);
1101			goto out;
1102		}
1103	}
1104
1105	/*
1106	 * Parts of newly allocated pages need to be zero'd.
1107	 *
1108	 * Above, we have also rewritten 'to' and 'from' - as far as
1109	 * the rest of the function is concerned, the entire cluster
1110	 * range inside of a page needs to be written.
1111	 *
1112	 * We can skip this if the page is up to date - it's already
1113	 * been zero'd from being read in as a hole.
1114	 */
1115	if (new && !PageUptodate(page))
1116		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1117					 cpos, user_data_from, user_data_to);
1118
1119	flush_dcache_page(page);
1120
1121out:
1122	return ret;
1123}
1124
1125/*
1126 * This function will only grab one clusters worth of pages.
1127 */
1128static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1129				      struct ocfs2_write_ctxt *wc,
1130				      u32 cpos, loff_t user_pos,
1131				      unsigned user_len, int new,
1132				      struct page *mmap_page)
1133{
1134	int ret = 0, i;
1135	unsigned long start, target_index, end_index, index;
1136	struct inode *inode = mapping->host;
1137	loff_t last_byte;
1138
1139	target_index = user_pos >> PAGE_CACHE_SHIFT;
1140
1141	/*
1142	 * Figure out how many pages we'll be manipulating here. For
1143	 * non allocating write, we just change the one
1144	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1145	 * writing past i_size, we only need enough pages to cover the
1146	 * last page of the write.
1147	 */
1148	if (new) {
1149		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1150		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1151		/*
1152		 * We need the index *past* the last page we could possibly
1153		 * touch.  This is the page past the end of the write or
1154		 * i_size, whichever is greater.
1155		 */
1156		last_byte = max(user_pos + user_len, i_size_read(inode));
1157		BUG_ON(last_byte < 1);
1158		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1159		if ((start + wc->w_num_pages) > end_index)
1160			wc->w_num_pages = end_index - start;
1161	} else {
1162		wc->w_num_pages = 1;
1163		start = target_index;
1164	}
1165
1166	for(i = 0; i < wc->w_num_pages; i++) {
1167		index = start + i;
1168
1169		if (index == target_index && mmap_page) {
1170			/*
1171			 * ocfs2_pagemkwrite() is a little different
1172			 * and wants us to directly use the page
1173			 * passed in.
1174			 */
1175			lock_page(mmap_page);
1176
1177			/* Exit and let the caller retry */
1178			if (mmap_page->mapping != mapping) {
1179				WARN_ON(mmap_page->mapping);
1180				unlock_page(mmap_page);
1181				ret = -EAGAIN;
1182				goto out;
1183			}
1184
1185			page_cache_get(mmap_page);
1186			wc->w_pages[i] = mmap_page;
1187			wc->w_target_locked = true;
1188		} else {
1189			wc->w_pages[i] = find_or_create_page(mapping, index,
1190							     GFP_NOFS);
1191			if (!wc->w_pages[i]) {
1192				ret = -ENOMEM;
1193				mlog_errno(ret);
1194				goto out;
1195			}
1196		}
1197
1198		if (index == target_index)
1199			wc->w_target_page = wc->w_pages[i];
1200	}
1201out:
1202	if (ret)
1203		wc->w_target_locked = false;
1204	return ret;
1205}
1206
1207/*
1208 * Prepare a single cluster for write one cluster into the file.
1209 */
1210static int ocfs2_write_cluster(struct address_space *mapping,
1211			       u32 phys, unsigned int unwritten,
1212			       unsigned int should_zero,
1213			       struct ocfs2_alloc_context *data_ac,
1214			       struct ocfs2_alloc_context *meta_ac,
1215			       struct ocfs2_write_ctxt *wc, u32 cpos,
1216			       loff_t user_pos, unsigned user_len)
1217{
1218	int ret, i, new;
1219	u64 v_blkno, p_blkno;
1220	struct inode *inode = mapping->host;
1221	struct ocfs2_extent_tree et;
1222
1223	new = phys == 0 ? 1 : 0;
1224	if (new) {
1225		u32 tmp_pos;
1226
1227		/*
1228		 * This is safe to call with the page locks - it won't take
1229		 * any additional semaphores or cluster locks.
1230		 */
1231		tmp_pos = cpos;
1232		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1233					   &tmp_pos, 1, 0, wc->w_di_bh,
1234					   wc->w_handle, data_ac,
1235					   meta_ac, NULL);
1236		/*
1237		 * This shouldn't happen because we must have already
1238		 * calculated the correct meta data allocation required. The
1239		 * internal tree allocation code should know how to increase
1240		 * transaction credits itself.
1241		 *
1242		 * If need be, we could handle -EAGAIN for a
1243		 * RESTART_TRANS here.
1244		 */
1245		mlog_bug_on_msg(ret == -EAGAIN,
1246				"Inode %llu: EAGAIN return during allocation.\n",
1247				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1248		if (ret < 0) {
1249			mlog_errno(ret);
1250			goto out;
1251		}
1252	} else if (unwritten) {
1253		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1254					      wc->w_di_bh);
1255		ret = ocfs2_mark_extent_written(inode, &et,
1256						wc->w_handle, cpos, 1, phys,
1257						meta_ac, &wc->w_dealloc);
1258		if (ret < 0) {
1259			mlog_errno(ret);
1260			goto out;
1261		}
1262	}
1263
1264	if (should_zero)
1265		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1266	else
1267		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1268
1269	/*
1270	 * The only reason this should fail is due to an inability to
1271	 * find the extent added.
1272	 */
1273	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1274					  NULL);
1275	if (ret < 0) {
1276		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1277			    "at logical block %llu",
1278			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1279			    (unsigned long long)v_blkno);
1280		goto out;
1281	}
1282
1283	BUG_ON(p_blkno == 0);
1284
1285	for(i = 0; i < wc->w_num_pages; i++) {
1286		int tmpret;
1287
1288		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1289						      wc->w_pages[i], cpos,
1290						      user_pos, user_len,
1291						      should_zero);
1292		if (tmpret) {
1293			mlog_errno(tmpret);
1294			if (ret == 0)
1295				ret = tmpret;
1296		}
1297	}
1298
1299	/*
1300	 * We only have cleanup to do in case of allocating write.
1301	 */
1302	if (ret && new)
1303		ocfs2_write_failure(inode, wc, user_pos, user_len);
1304
1305out:
1306
1307	return ret;
1308}
1309
1310static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1311				       struct ocfs2_alloc_context *data_ac,
1312				       struct ocfs2_alloc_context *meta_ac,
1313				       struct ocfs2_write_ctxt *wc,
1314				       loff_t pos, unsigned len)
1315{
1316	int ret, i;
1317	loff_t cluster_off;
1318	unsigned int local_len = len;
1319	struct ocfs2_write_cluster_desc *desc;
1320	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1321
1322	for (i = 0; i < wc->w_clen; i++) {
1323		desc = &wc->w_desc[i];
1324
1325		/*
1326		 * We have to make sure that the total write passed in
1327		 * doesn't extend past a single cluster.
1328		 */
1329		local_len = len;
1330		cluster_off = pos & (osb->s_clustersize - 1);
1331		if ((cluster_off + local_len) > osb->s_clustersize)
1332			local_len = osb->s_clustersize - cluster_off;
1333
1334		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1335					  desc->c_unwritten,
1336					  desc->c_needs_zero,
1337					  data_ac, meta_ac,
1338					  wc, desc->c_cpos, pos, local_len);
1339		if (ret) {
1340			mlog_errno(ret);
1341			goto out;
1342		}
1343
1344		len -= local_len;
1345		pos += local_len;
1346	}
1347
1348	ret = 0;
1349out:
1350	return ret;
1351}
1352
1353/*
1354 * ocfs2_write_end() wants to know which parts of the target page it
1355 * should complete the write on. It's easiest to compute them ahead of
1356 * time when a more complete view of the write is available.
1357 */
1358static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1359					struct ocfs2_write_ctxt *wc,
1360					loff_t pos, unsigned len, int alloc)
1361{
1362	struct ocfs2_write_cluster_desc *desc;
1363
1364	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1365	wc->w_target_to = wc->w_target_from + len;
1366
1367	if (alloc == 0)
1368		return;
1369
1370	/*
1371	 * Allocating write - we may have different boundaries based
1372	 * on page size and cluster size.
1373	 *
1374	 * NOTE: We can no longer compute one value from the other as
1375	 * the actual write length and user provided length may be
1376	 * different.
1377	 */
1378
1379	if (wc->w_large_pages) {
1380		/*
1381		 * We only care about the 1st and last cluster within
1382		 * our range and whether they should be zero'd or not. Either
1383		 * value may be extended out to the start/end of a
1384		 * newly allocated cluster.
1385		 */
1386		desc = &wc->w_desc[0];
1387		if (desc->c_needs_zero)
1388			ocfs2_figure_cluster_boundaries(osb,
1389							desc->c_cpos,
1390							&wc->w_target_from,
1391							NULL);
1392
1393		desc = &wc->w_desc[wc->w_clen - 1];
1394		if (desc->c_needs_zero)
1395			ocfs2_figure_cluster_boundaries(osb,
1396							desc->c_cpos,
1397							NULL,
1398							&wc->w_target_to);
1399	} else {
1400		wc->w_target_from = 0;
1401		wc->w_target_to = PAGE_CACHE_SIZE;
1402	}
1403}
1404
1405/*
1406 * Populate each single-cluster write descriptor in the write context
1407 * with information about the i/o to be done.
1408 *
1409 * Returns the number of clusters that will have to be allocated, as
1410 * well as a worst case estimate of the number of extent records that
1411 * would have to be created during a write to an unwritten region.
1412 */
1413static int ocfs2_populate_write_desc(struct inode *inode,
1414				     struct ocfs2_write_ctxt *wc,
1415				     unsigned int *clusters_to_alloc,
1416				     unsigned int *extents_to_split)
1417{
1418	int ret;
1419	struct ocfs2_write_cluster_desc *desc;
1420	unsigned int num_clusters = 0;
1421	unsigned int ext_flags = 0;
1422	u32 phys = 0;
1423	int i;
1424
1425	*clusters_to_alloc = 0;
1426	*extents_to_split = 0;
1427
1428	for (i = 0; i < wc->w_clen; i++) {
1429		desc = &wc->w_desc[i];
1430		desc->c_cpos = wc->w_cpos + i;
1431
1432		if (num_clusters == 0) {
1433			/*
1434			 * Need to look up the next extent record.
1435			 */
1436			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1437						 &num_clusters, &ext_flags);
1438			if (ret) {
1439				mlog_errno(ret);
1440				goto out;
1441			}
1442
1443			/* We should already CoW the refcountd extent. */
1444			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1445
1446			/*
1447			 * Assume worst case - that we're writing in
1448			 * the middle of the extent.
1449			 *
1450			 * We can assume that the write proceeds from
1451			 * left to right, in which case the extent
1452			 * insert code is smart enough to coalesce the
1453			 * next splits into the previous records created.
1454			 */
1455			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1456				*extents_to_split = *extents_to_split + 2;
1457		} else if (phys) {
1458			/*
1459			 * Only increment phys if it doesn't describe
1460			 * a hole.
1461			 */
1462			phys++;
1463		}
1464
1465		/*
1466		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1467		 * file that got extended.  w_first_new_cpos tells us
1468		 * where the newly allocated clusters are so we can
1469		 * zero them.
1470		 */
1471		if (desc->c_cpos >= wc->w_first_new_cpos) {
1472			BUG_ON(phys == 0);
1473			desc->c_needs_zero = 1;
1474		}
1475
1476		desc->c_phys = phys;
1477		if (phys == 0) {
1478			desc->c_new = 1;
1479			desc->c_needs_zero = 1;
1480			*clusters_to_alloc = *clusters_to_alloc + 1;
1481		}
1482
1483		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1484			desc->c_unwritten = 1;
1485			desc->c_needs_zero = 1;
1486		}
1487
1488		num_clusters--;
1489	}
1490
1491	ret = 0;
1492out:
1493	return ret;
1494}
1495
1496static int ocfs2_write_begin_inline(struct address_space *mapping,
1497				    struct inode *inode,
1498				    struct ocfs2_write_ctxt *wc)
1499{
1500	int ret;
1501	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1502	struct page *page;
1503	handle_t *handle;
1504	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1505
1506	page = find_or_create_page(mapping, 0, GFP_NOFS);
1507	if (!page) {
1508		ret = -ENOMEM;
1509		mlog_errno(ret);
1510		goto out;
1511	}
1512	/*
1513	 * If we don't set w_num_pages then this page won't get unlocked
1514	 * and freed on cleanup of the write context.
1515	 */
1516	wc->w_pages[0] = wc->w_target_page = page;
1517	wc->w_num_pages = 1;
1518
1519	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1520	if (IS_ERR(handle)) {
1521		ret = PTR_ERR(handle);
1522		mlog_errno(ret);
1523		goto out;
1524	}
1525
1526	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1527				      OCFS2_JOURNAL_ACCESS_WRITE);
1528	if (ret) {
1529		ocfs2_commit_trans(osb, handle);
1530
1531		mlog_errno(ret);
1532		goto out;
1533	}
1534
1535	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1536		ocfs2_set_inode_data_inline(inode, di);
1537
1538	if (!PageUptodate(page)) {
1539		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1540		if (ret) {
1541			ocfs2_commit_trans(osb, handle);
1542
1543			goto out;
1544		}
1545	}
1546
1547	wc->w_handle = handle;
1548out:
1549	return ret;
1550}
1551
1552int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1553{
1554	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1555
1556	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1557		return 1;
1558	return 0;
1559}
1560
1561static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1562					  struct inode *inode, loff_t pos,
1563					  unsigned len, struct page *mmap_page,
1564					  struct ocfs2_write_ctxt *wc)
1565{
1566	int ret, written = 0;
1567	loff_t end = pos + len;
1568	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1569	struct ocfs2_dinode *di = NULL;
1570
1571	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1572					     len, (unsigned long long)pos,
1573					     oi->ip_dyn_features);
1574
1575	/*
1576	 * Handle inodes which already have inline data 1st.
1577	 */
1578	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1579		if (mmap_page == NULL &&
1580		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1581			goto do_inline_write;
1582
1583		/*
1584		 * The write won't fit - we have to give this inode an
1585		 * inline extent list now.
1586		 */
1587		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1588		if (ret)
1589			mlog_errno(ret);
1590		goto out;
1591	}
1592
1593	/*
1594	 * Check whether the inode can accept inline data.
1595	 */
1596	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1597		return 0;
1598
1599	/*
1600	 * Check whether the write can fit.
1601	 */
1602	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1603	if (mmap_page ||
1604	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1605		return 0;
1606
1607do_inline_write:
1608	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1609	if (ret) {
1610		mlog_errno(ret);
1611		goto out;
1612	}
1613
1614	/*
1615	 * This signals to the caller that the data can be written
1616	 * inline.
1617	 */
1618	written = 1;
1619out:
1620	return written ? written : ret;
1621}
1622
1623/*
1624 * This function only does anything for file systems which can't
1625 * handle sparse files.
1626 *
1627 * What we want to do here is fill in any hole between the current end
1628 * of allocation and the end of our write. That way the rest of the
1629 * write path can treat it as an non-allocating write, which has no
1630 * special case code for sparse/nonsparse files.
1631 */
1632static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1633					struct buffer_head *di_bh,
1634					loff_t pos, unsigned len,
1635					struct ocfs2_write_ctxt *wc)
1636{
1637	int ret;
1638	loff_t newsize = pos + len;
1639
1640	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1641
1642	if (newsize <= i_size_read(inode))
1643		return 0;
1644
1645	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1646	if (ret)
1647		mlog_errno(ret);
1648
1649	wc->w_first_new_cpos =
1650		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1651
1652	return ret;
1653}
1654
1655static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1656			   loff_t pos)
1657{
1658	int ret = 0;
1659
1660	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1661	if (pos > i_size_read(inode))
1662		ret = ocfs2_zero_extend(inode, di_bh, pos);
1663
1664	return ret;
1665}
1666
1667/*
1668 * Try to flush truncate logs if we can free enough clusters from it.
1669 * As for return value, "< 0" means error, "0" no space and "1" means
1670 * we have freed enough spaces and let the caller try to allocate again.
1671 */
1672static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1673					  unsigned int needed)
1674{
1675	tid_t target;
1676	int ret = 0;
1677	unsigned int truncated_clusters;
1678
1679	mutex_lock(&osb->osb_tl_inode->i_mutex);
1680	truncated_clusters = osb->truncated_clusters;
1681	mutex_unlock(&osb->osb_tl_inode->i_mutex);
1682
1683	/*
1684	 * Check whether we can succeed in allocating if we free
1685	 * the truncate log.
1686	 */
1687	if (truncated_clusters < needed)
1688		goto out;
1689
1690	ret = ocfs2_flush_truncate_log(osb);
1691	if (ret) {
1692		mlog_errno(ret);
1693		goto out;
1694	}
1695
1696	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1697		jbd2_log_wait_commit(osb->journal->j_journal, target);
1698		ret = 1;
1699	}
1700out:
1701	return ret;
1702}
1703
1704int ocfs2_write_begin_nolock(struct file *filp,
1705			     struct address_space *mapping,
1706			     loff_t pos, unsigned len, unsigned flags,
1707			     struct page **pagep, void **fsdata,
1708			     struct buffer_head *di_bh, struct page *mmap_page)
1709{
1710	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1711	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1712	struct ocfs2_write_ctxt *wc;
1713	struct inode *inode = mapping->host;
1714	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1715	struct ocfs2_dinode *di;
1716	struct ocfs2_alloc_context *data_ac = NULL;
1717	struct ocfs2_alloc_context *meta_ac = NULL;
1718	handle_t *handle;
1719	struct ocfs2_extent_tree et;
1720	int try_free = 1, ret1;
1721
1722try_again:
1723	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1724	if (ret) {
1725		mlog_errno(ret);
1726		return ret;
1727	}
1728
1729	if (ocfs2_supports_inline_data(osb)) {
1730		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1731						     mmap_page, wc);
1732		if (ret == 1) {
1733			ret = 0;
1734			goto success;
1735		}
1736		if (ret < 0) {
1737			mlog_errno(ret);
1738			goto out;
1739		}
1740	}
1741
1742	if (ocfs2_sparse_alloc(osb))
1743		ret = ocfs2_zero_tail(inode, di_bh, pos);
1744	else
1745		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1746						   wc);
1747	if (ret) {
1748		mlog_errno(ret);
1749		goto out;
1750	}
1751
1752	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1753	if (ret < 0) {
1754		mlog_errno(ret);
1755		goto out;
1756	} else if (ret == 1) {
1757		clusters_need = wc->w_clen;
1758		ret = ocfs2_refcount_cow(inode, filp, di_bh,
1759					 wc->w_cpos, wc->w_clen, UINT_MAX);
1760		if (ret) {
1761			mlog_errno(ret);
1762			goto out;
1763		}
1764	}
1765
1766	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1767					&extents_to_split);
1768	if (ret) {
1769		mlog_errno(ret);
1770		goto out;
1771	}
1772	clusters_need += clusters_to_alloc;
1773
1774	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1775
1776	trace_ocfs2_write_begin_nolock(
1777			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1778			(long long)i_size_read(inode),
1779			le32_to_cpu(di->i_clusters),
1780			pos, len, flags, mmap_page,
1781			clusters_to_alloc, extents_to_split);
1782
1783	/*
1784	 * We set w_target_from, w_target_to here so that
1785	 * ocfs2_write_end() knows which range in the target page to
1786	 * write out. An allocation requires that we write the entire
1787	 * cluster range.
1788	 */
1789	if (clusters_to_alloc || extents_to_split) {
1790		/*
1791		 * XXX: We are stretching the limits of
1792		 * ocfs2_lock_allocators(). It greatly over-estimates
1793		 * the work to be done.
1794		 */
1795		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1796					      wc->w_di_bh);
1797		ret = ocfs2_lock_allocators(inode, &et,
1798					    clusters_to_alloc, extents_to_split,
1799					    &data_ac, &meta_ac);
1800		if (ret) {
1801			mlog_errno(ret);
1802			goto out;
1803		}
1804
1805		if (data_ac)
1806			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1807
1808		credits = ocfs2_calc_extend_credits(inode->i_sb,
1809						    &di->id2.i_list,
1810						    clusters_to_alloc);
1811
1812	}
1813
1814	/*
1815	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1816	 * and non-sparse clusters we just extended.  For non-sparse writes,
1817	 * we know zeros will only be needed in the first and/or last cluster.
1818	 */
1819	if (clusters_to_alloc || extents_to_split ||
1820	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1821			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1822		cluster_of_pages = 1;
1823	else
1824		cluster_of_pages = 0;
1825
1826	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1827
1828	handle = ocfs2_start_trans(osb, credits);
1829	if (IS_ERR(handle)) {
1830		ret = PTR_ERR(handle);
1831		mlog_errno(ret);
1832		goto out;
1833	}
1834
1835	wc->w_handle = handle;
1836
1837	if (clusters_to_alloc) {
1838		ret = dquot_alloc_space_nodirty(inode,
1839			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1840		if (ret)
1841			goto out_commit;
1842	}
1843	/*
1844	 * We don't want this to fail in ocfs2_write_end(), so do it
1845	 * here.
1846	 */
1847	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1848				      OCFS2_JOURNAL_ACCESS_WRITE);
1849	if (ret) {
1850		mlog_errno(ret);
1851		goto out_quota;
1852	}
1853
1854	/*
1855	 * Fill our page array first. That way we've grabbed enough so
1856	 * that we can zero and flush if we error after adding the
1857	 * extent.
1858	 */
1859	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1860					 cluster_of_pages, mmap_page);
1861	if (ret && ret != -EAGAIN) {
1862		mlog_errno(ret);
1863		goto out_quota;
1864	}
1865
1866	/*
1867	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1868	 * the target page. In this case, we exit with no error and no target
1869	 * page. This will trigger the caller, page_mkwrite(), to re-try
1870	 * the operation.
1871	 */
1872	if (ret == -EAGAIN) {
1873		BUG_ON(wc->w_target_page);
1874		ret = 0;
1875		goto out_quota;
1876	}
1877
1878	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1879					  len);
1880	if (ret) {
1881		mlog_errno(ret);
1882		goto out_quota;
1883	}
1884
1885	if (data_ac)
1886		ocfs2_free_alloc_context(data_ac);
1887	if (meta_ac)
1888		ocfs2_free_alloc_context(meta_ac);
1889
1890success:
1891	*pagep = wc->w_target_page;
1892	*fsdata = wc;
1893	return 0;
1894out_quota:
1895	if (clusters_to_alloc)
1896		dquot_free_space(inode,
1897			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1898out_commit:
1899	ocfs2_commit_trans(osb, handle);
1900
1901out:
1902	ocfs2_free_write_ctxt(wc);
1903
1904	if (data_ac)
1905		ocfs2_free_alloc_context(data_ac);
1906	if (meta_ac)
1907		ocfs2_free_alloc_context(meta_ac);
1908
1909	if (ret == -ENOSPC && try_free) {
1910		/*
1911		 * Try to free some truncate log so that we can have enough
1912		 * clusters to allocate.
1913		 */
1914		try_free = 0;
1915
1916		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1917		if (ret1 == 1)
1918			goto try_again;
1919
1920		if (ret1 < 0)
1921			mlog_errno(ret1);
1922	}
1923
1924	return ret;
1925}
1926
1927static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1928			     loff_t pos, unsigned len, unsigned flags,
1929			     struct page **pagep, void **fsdata)
1930{
1931	int ret;
1932	struct buffer_head *di_bh = NULL;
1933	struct inode *inode = mapping->host;
1934
1935	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1936	if (ret) {
1937		mlog_errno(ret);
1938		return ret;
1939	}
1940
1941	/*
1942	 * Take alloc sem here to prevent concurrent lookups. That way
1943	 * the mapping, zeroing and tree manipulation within
1944	 * ocfs2_write() will be safe against ->readpage(). This
1945	 * should also serve to lock out allocation from a shared
1946	 * writeable region.
1947	 */
1948	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1949
1950	ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1951				       fsdata, di_bh, NULL);
1952	if (ret) {
1953		mlog_errno(ret);
1954		goto out_fail;
1955	}
1956
1957	brelse(di_bh);
1958
1959	return 0;
1960
1961out_fail:
1962	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1963
1964	brelse(di_bh);
1965	ocfs2_inode_unlock(inode, 1);
1966
1967	return ret;
1968}
1969
1970static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1971				   unsigned len, unsigned *copied,
1972				   struct ocfs2_dinode *di,
1973				   struct ocfs2_write_ctxt *wc)
1974{
1975	void *kaddr;
1976
1977	if (unlikely(*copied < len)) {
1978		if (!PageUptodate(wc->w_target_page)) {
1979			*copied = 0;
1980			return;
1981		}
1982	}
1983
1984	kaddr = kmap_atomic(wc->w_target_page);
1985	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1986	kunmap_atomic(kaddr);
1987
1988	trace_ocfs2_write_end_inline(
1989	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1990	     (unsigned long long)pos, *copied,
1991	     le16_to_cpu(di->id2.i_data.id_count),
1992	     le16_to_cpu(di->i_dyn_features));
1993}
1994
1995int ocfs2_write_end_nolock(struct address_space *mapping,
1996			   loff_t pos, unsigned len, unsigned copied,
1997			   struct page *page, void *fsdata)
1998{
1999	int i;
2000	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2001	struct inode *inode = mapping->host;
2002	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2003	struct ocfs2_write_ctxt *wc = fsdata;
2004	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2005	handle_t *handle = wc->w_handle;
2006	struct page *tmppage;
2007
2008	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2009		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2010		goto out_write_size;
2011	}
2012
2013	if (unlikely(copied < len)) {
2014		if (!PageUptodate(wc->w_target_page))
2015			copied = 0;
2016
2017		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2018				       start+len);
2019	}
2020	flush_dcache_page(wc->w_target_page);
2021
2022	for(i = 0; i < wc->w_num_pages; i++) {
2023		tmppage = wc->w_pages[i];
2024
2025		if (tmppage == wc->w_target_page) {
2026			from = wc->w_target_from;
2027			to = wc->w_target_to;
2028
2029			BUG_ON(from > PAGE_CACHE_SIZE ||
2030			       to > PAGE_CACHE_SIZE ||
2031			       to < from);
2032		} else {
2033			/*
2034			 * Pages adjacent to the target (if any) imply
2035			 * a hole-filling write in which case we want
2036			 * to flush their entire range.
2037			 */
2038			from = 0;
2039			to = PAGE_CACHE_SIZE;
2040		}
2041
2042		if (page_has_buffers(tmppage)) {
2043			if (ocfs2_should_order_data(inode))
2044				ocfs2_jbd2_file_inode(wc->w_handle, inode);
2045			block_commit_write(tmppage, from, to);
2046		}
2047	}
2048
2049out_write_size:
2050	pos += copied;
2051	if (pos > inode->i_size) {
2052		i_size_write(inode, pos);
2053		mark_inode_dirty(inode);
2054	}
2055	inode->i_blocks = ocfs2_inode_sector_count(inode);
2056	di->i_size = cpu_to_le64((u64)i_size_read(inode));
2057	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2058	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2059	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2060	ocfs2_journal_dirty(handle, wc->w_di_bh);
2061
2062	ocfs2_commit_trans(osb, handle);
2063
2064	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2065
2066	ocfs2_free_write_ctxt(wc);
2067
2068	return copied;
2069}
2070
2071static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2072			   loff_t pos, unsigned len, unsigned copied,
2073			   struct page *page, void *fsdata)
2074{
2075	int ret;
2076	struct inode *inode = mapping->host;
2077
2078	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2079
2080	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2081	ocfs2_inode_unlock(inode, 1);
2082
2083	return ret;
2084}
2085
2086const struct address_space_operations ocfs2_aops = {
2087	.readpage		= ocfs2_readpage,
2088	.readpages		= ocfs2_readpages,
2089	.writepage		= ocfs2_writepage,
2090	.write_begin		= ocfs2_write_begin,
2091	.write_end		= ocfs2_write_end,
2092	.bmap			= ocfs2_bmap,
2093	.direct_IO		= ocfs2_direct_IO,
2094	.invalidatepage		= ocfs2_invalidatepage,
2095	.releasepage		= ocfs2_releasepage,
2096	.migratepage		= buffer_migrate_page,
2097	.is_partially_uptodate	= block_is_partially_uptodate,
2098	.error_remove_page	= generic_error_remove_page,
2099};
2100