aops.c revision 49cb8d2d496ce06869ccca2ab368ed6b0b5b979d
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
27#include <linux/swap.h>
28#include <linux/pipe_fs_i.h>
29
30#define MLOG_MASK_PREFIX ML_FILE_IO
31#include <cluster/masklog.h>
32
33#include "ocfs2.h"
34
35#include "alloc.h"
36#include "aops.h"
37#include "dlmglue.h"
38#include "extent_map.h"
39#include "file.h"
40#include "inode.h"
41#include "journal.h"
42#include "suballoc.h"
43#include "super.h"
44#include "symlink.h"
45
46#include "buffer_head_io.h"
47
48static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
49				   struct buffer_head *bh_result, int create)
50{
51	int err = -EIO;
52	int status;
53	struct ocfs2_dinode *fe = NULL;
54	struct buffer_head *bh = NULL;
55	struct buffer_head *buffer_cache_bh = NULL;
56	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
57	void *kaddr;
58
59	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
60		   (unsigned long long)iblock, bh_result, create);
61
62	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
63
64	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
65		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
66		     (unsigned long long)iblock);
67		goto bail;
68	}
69
70	status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
71				  OCFS2_I(inode)->ip_blkno,
72				  &bh, OCFS2_BH_CACHED, inode);
73	if (status < 0) {
74		mlog_errno(status);
75		goto bail;
76	}
77	fe = (struct ocfs2_dinode *) bh->b_data;
78
79	if (!OCFS2_IS_VALID_DINODE(fe)) {
80		mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
81		     (unsigned long long)fe->i_blkno, 7, fe->i_signature);
82		goto bail;
83	}
84
85	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
86						    le32_to_cpu(fe->i_clusters))) {
87		mlog(ML_ERROR, "block offset is outside the allocated size: "
88		     "%llu\n", (unsigned long long)iblock);
89		goto bail;
90	}
91
92	/* We don't use the page cache to create symlink data, so if
93	 * need be, copy it over from the buffer cache. */
94	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
95		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
96			    iblock;
97		buffer_cache_bh = sb_getblk(osb->sb, blkno);
98		if (!buffer_cache_bh) {
99			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
100			goto bail;
101		}
102
103		/* we haven't locked out transactions, so a commit
104		 * could've happened. Since we've got a reference on
105		 * the bh, even if it commits while we're doing the
106		 * copy, the data is still good. */
107		if (buffer_jbd(buffer_cache_bh)
108		    && ocfs2_inode_is_new(inode)) {
109			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
110			if (!kaddr) {
111				mlog(ML_ERROR, "couldn't kmap!\n");
112				goto bail;
113			}
114			memcpy(kaddr + (bh_result->b_size * iblock),
115			       buffer_cache_bh->b_data,
116			       bh_result->b_size);
117			kunmap_atomic(kaddr, KM_USER0);
118			set_buffer_uptodate(bh_result);
119		}
120		brelse(buffer_cache_bh);
121	}
122
123	map_bh(bh_result, inode->i_sb,
124	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
125
126	err = 0;
127
128bail:
129	if (bh)
130		brelse(bh);
131
132	mlog_exit(err);
133	return err;
134}
135
136static int ocfs2_get_block(struct inode *inode, sector_t iblock,
137			   struct buffer_head *bh_result, int create)
138{
139	int err = 0;
140	unsigned int ext_flags;
141	u64 p_blkno, past_eof;
142	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
143
144	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
145		   (unsigned long long)iblock, bh_result, create);
146
147	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
148		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
149		     inode, inode->i_ino);
150
151	if (S_ISLNK(inode->i_mode)) {
152		/* this always does I/O for some reason. */
153		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
154		goto bail;
155	}
156
157	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL,
158					  &ext_flags);
159	if (err) {
160		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
161		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
162		     (unsigned long long)p_blkno);
163		goto bail;
164	}
165
166	/*
167	 * ocfs2 never allocates in this function - the only time we
168	 * need to use BH_New is when we're extending i_size on a file
169	 * system which doesn't support holes, in which case BH_New
170	 * allows block_prepare_write() to zero.
171	 */
172	mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
173			"ino %lu, iblock %llu\n", inode->i_ino,
174			(unsigned long long)iblock);
175
176	/* Treat the unwritten extent as a hole for zeroing purposes. */
177	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
178		map_bh(bh_result, inode->i_sb, p_blkno);
179
180	if (!ocfs2_sparse_alloc(osb)) {
181		if (p_blkno == 0) {
182			err = -EIO;
183			mlog(ML_ERROR,
184			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
185			     (unsigned long long)iblock,
186			     (unsigned long long)p_blkno,
187			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
188			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
189			dump_stack();
190		}
191
192		past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
193		mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
194		     (unsigned long long)past_eof);
195
196		if (create && (iblock >= past_eof))
197			set_buffer_new(bh_result);
198	}
199
200bail:
201	if (err < 0)
202		err = -EIO;
203
204	mlog_exit(err);
205	return err;
206}
207
208static int ocfs2_readpage(struct file *file, struct page *page)
209{
210	struct inode *inode = page->mapping->host;
211	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
212	int ret, unlock = 1;
213
214	mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
215
216	ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
217	if (ret != 0) {
218		if (ret == AOP_TRUNCATED_PAGE)
219			unlock = 0;
220		mlog_errno(ret);
221		goto out;
222	}
223
224	down_read(&OCFS2_I(inode)->ip_alloc_sem);
225
226	/*
227	 * i_size might have just been updated as we grabed the meta lock.  We
228	 * might now be discovering a truncate that hit on another node.
229	 * block_read_full_page->get_block freaks out if it is asked to read
230	 * beyond the end of a file, so we check here.  Callers
231	 * (generic_file_read, fault->nopage) are clever enough to check i_size
232	 * and notice that the page they just read isn't needed.
233	 *
234	 * XXX sys_readahead() seems to get that wrong?
235	 */
236	if (start >= i_size_read(inode)) {
237		char *addr = kmap(page);
238		memset(addr, 0, PAGE_SIZE);
239		flush_dcache_page(page);
240		kunmap(page);
241		SetPageUptodate(page);
242		ret = 0;
243		goto out_alloc;
244	}
245
246	ret = ocfs2_data_lock_with_page(inode, 0, page);
247	if (ret != 0) {
248		if (ret == AOP_TRUNCATED_PAGE)
249			unlock = 0;
250		mlog_errno(ret);
251		goto out_alloc;
252	}
253
254	ret = block_read_full_page(page, ocfs2_get_block);
255	unlock = 0;
256
257	ocfs2_data_unlock(inode, 0);
258out_alloc:
259	up_read(&OCFS2_I(inode)->ip_alloc_sem);
260	ocfs2_meta_unlock(inode, 0);
261out:
262	if (unlock)
263		unlock_page(page);
264	mlog_exit(ret);
265	return ret;
266}
267
268/* Note: Because we don't support holes, our allocation has
269 * already happened (allocation writes zeros to the file data)
270 * so we don't have to worry about ordered writes in
271 * ocfs2_writepage.
272 *
273 * ->writepage is called during the process of invalidating the page cache
274 * during blocked lock processing.  It can't block on any cluster locks
275 * to during block mapping.  It's relying on the fact that the block
276 * mapping can't have disappeared under the dirty pages that it is
277 * being asked to write back.
278 */
279static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
280{
281	int ret;
282
283	mlog_entry("(0x%p)\n", page);
284
285	ret = block_write_full_page(page, ocfs2_get_block, wbc);
286
287	mlog_exit(ret);
288
289	return ret;
290}
291
292/*
293 * This is called from ocfs2_write_zero_page() which has handled it's
294 * own cluster locking and has ensured allocation exists for those
295 * blocks to be written.
296 */
297int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
298			       unsigned from, unsigned to)
299{
300	int ret;
301
302	down_read(&OCFS2_I(inode)->ip_alloc_sem);
303
304	ret = block_prepare_write(page, from, to, ocfs2_get_block);
305
306	up_read(&OCFS2_I(inode)->ip_alloc_sem);
307
308	return ret;
309}
310
311/* Taken from ext3. We don't necessarily need the full blown
312 * functionality yet, but IMHO it's better to cut and paste the whole
313 * thing so we can avoid introducing our own bugs (and easily pick up
314 * their fixes when they happen) --Mark */
315int walk_page_buffers(	handle_t *handle,
316			struct buffer_head *head,
317			unsigned from,
318			unsigned to,
319			int *partial,
320			int (*fn)(	handle_t *handle,
321					struct buffer_head *bh))
322{
323	struct buffer_head *bh;
324	unsigned block_start, block_end;
325	unsigned blocksize = head->b_size;
326	int err, ret = 0;
327	struct buffer_head *next;
328
329	for (	bh = head, block_start = 0;
330		ret == 0 && (bh != head || !block_start);
331	    	block_start = block_end, bh = next)
332	{
333		next = bh->b_this_page;
334		block_end = block_start + blocksize;
335		if (block_end <= from || block_start >= to) {
336			if (partial && !buffer_uptodate(bh))
337				*partial = 1;
338			continue;
339		}
340		err = (*fn)(handle, bh);
341		if (!ret)
342			ret = err;
343	}
344	return ret;
345}
346
347handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
348							 struct page *page,
349							 unsigned from,
350							 unsigned to)
351{
352	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
353	handle_t *handle = NULL;
354	int ret = 0;
355
356	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
357	if (!handle) {
358		ret = -ENOMEM;
359		mlog_errno(ret);
360		goto out;
361	}
362
363	if (ocfs2_should_order_data(inode)) {
364		ret = walk_page_buffers(handle,
365					page_buffers(page),
366					from, to, NULL,
367					ocfs2_journal_dirty_data);
368		if (ret < 0)
369			mlog_errno(ret);
370	}
371out:
372	if (ret) {
373		if (handle)
374			ocfs2_commit_trans(osb, handle);
375		handle = ERR_PTR(ret);
376	}
377	return handle;
378}
379
380static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
381{
382	sector_t status;
383	u64 p_blkno = 0;
384	int err = 0;
385	struct inode *inode = mapping->host;
386
387	mlog_entry("(block = %llu)\n", (unsigned long long)block);
388
389	/* We don't need to lock journal system files, since they aren't
390	 * accessed concurrently from multiple nodes.
391	 */
392	if (!INODE_JOURNAL(inode)) {
393		err = ocfs2_meta_lock(inode, NULL, 0);
394		if (err) {
395			if (err != -ENOENT)
396				mlog_errno(err);
397			goto bail;
398		}
399		down_read(&OCFS2_I(inode)->ip_alloc_sem);
400	}
401
402	err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, NULL);
403
404	if (!INODE_JOURNAL(inode)) {
405		up_read(&OCFS2_I(inode)->ip_alloc_sem);
406		ocfs2_meta_unlock(inode, 0);
407	}
408
409	if (err) {
410		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
411		     (unsigned long long)block);
412		mlog_errno(err);
413		goto bail;
414	}
415
416
417bail:
418	status = err ? 0 : p_blkno;
419
420	mlog_exit((int)status);
421
422	return status;
423}
424
425/*
426 * TODO: Make this into a generic get_blocks function.
427 *
428 * From do_direct_io in direct-io.c:
429 *  "So what we do is to permit the ->get_blocks function to populate
430 *   bh.b_size with the size of IO which is permitted at this offset and
431 *   this i_blkbits."
432 *
433 * This function is called directly from get_more_blocks in direct-io.c.
434 *
435 * called like this: dio->get_blocks(dio->inode, fs_startblk,
436 * 					fs_count, map_bh, dio->rw == WRITE);
437 */
438static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
439				     struct buffer_head *bh_result, int create)
440{
441	int ret;
442	u64 p_blkno, inode_blocks;
443	int contig_blocks;
444	unsigned int ext_flags;
445	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
446	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
447
448	/* This function won't even be called if the request isn't all
449	 * nicely aligned and of the right size, so there's no need
450	 * for us to check any of that. */
451
452	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
453
454	/*
455	 * Any write past EOF is not allowed because we'd be extending.
456	 */
457	if (create && (iblock + max_blocks) > inode_blocks) {
458		ret = -EIO;
459		goto bail;
460	}
461
462	/* This figures out the size of the next contiguous block, and
463	 * our logical offset */
464	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
465					  &contig_blocks, &ext_flags);
466	if (ret) {
467		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
468		     (unsigned long long)iblock);
469		ret = -EIO;
470		goto bail;
471	}
472
473	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
474		ocfs2_error(inode->i_sb,
475			    "Inode %llu has a hole at block %llu\n",
476			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
477			    (unsigned long long)iblock);
478		ret = -EROFS;
479		goto bail;
480	}
481
482	/*
483	 * get_more_blocks() expects us to describe a hole by clearing
484	 * the mapped bit on bh_result().
485	 *
486	 * Consider an unwritten extent as a hole.
487	 */
488	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
489		map_bh(bh_result, inode->i_sb, p_blkno);
490	else {
491		/*
492		 * ocfs2_prepare_inode_for_write() should have caught
493		 * the case where we'd be filling a hole and triggered
494		 * a buffered write instead.
495		 */
496		if (create) {
497			ret = -EIO;
498			mlog_errno(ret);
499			goto bail;
500		}
501
502		clear_buffer_mapped(bh_result);
503	}
504
505	/* make sure we don't map more than max_blocks blocks here as
506	   that's all the kernel will handle at this point. */
507	if (max_blocks < contig_blocks)
508		contig_blocks = max_blocks;
509	bh_result->b_size = contig_blocks << blocksize_bits;
510bail:
511	return ret;
512}
513
514/*
515 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
516 * particularly interested in the aio/dio case.  Like the core uses
517 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
518 * truncation on another.
519 */
520static void ocfs2_dio_end_io(struct kiocb *iocb,
521			     loff_t offset,
522			     ssize_t bytes,
523			     void *private)
524{
525	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
526
527	/* this io's submitter should not have unlocked this before we could */
528	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
529	ocfs2_iocb_clear_rw_locked(iocb);
530	up_read(&inode->i_alloc_sem);
531	ocfs2_rw_unlock(inode, 0);
532}
533
534/*
535 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
536 * from ext3.  PageChecked() bits have been removed as OCFS2 does not
537 * do journalled data.
538 */
539static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
540{
541	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
542
543	journal_invalidatepage(journal, page, offset);
544}
545
546static int ocfs2_releasepage(struct page *page, gfp_t wait)
547{
548	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
549
550	if (!page_has_buffers(page))
551		return 0;
552	return journal_try_to_free_buffers(journal, page, wait);
553}
554
555static ssize_t ocfs2_direct_IO(int rw,
556			       struct kiocb *iocb,
557			       const struct iovec *iov,
558			       loff_t offset,
559			       unsigned long nr_segs)
560{
561	struct file *file = iocb->ki_filp;
562	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
563	int ret;
564
565	mlog_entry_void();
566
567	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
568		/*
569		 * We get PR data locks even for O_DIRECT.  This
570		 * allows concurrent O_DIRECT I/O but doesn't let
571		 * O_DIRECT with extending and buffered zeroing writes
572		 * race.  If they did race then the buffered zeroing
573		 * could be written back after the O_DIRECT I/O.  It's
574		 * one thing to tell people not to mix buffered and
575		 * O_DIRECT writes, but expecting them to understand
576		 * that file extension is also an implicit buffered
577		 * write is too much.  By getting the PR we force
578		 * writeback of the buffered zeroing before
579		 * proceeding.
580		 */
581		ret = ocfs2_data_lock(inode, 0);
582		if (ret < 0) {
583			mlog_errno(ret);
584			goto out;
585		}
586		ocfs2_data_unlock(inode, 0);
587	}
588
589	ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
590					    inode->i_sb->s_bdev, iov, offset,
591					    nr_segs,
592					    ocfs2_direct_IO_get_blocks,
593					    ocfs2_dio_end_io);
594out:
595	mlog_exit(ret);
596	return ret;
597}
598
599static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
600					    u32 cpos,
601					    unsigned int *start,
602					    unsigned int *end)
603{
604	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
605
606	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
607		unsigned int cpp;
608
609		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
610
611		cluster_start = cpos % cpp;
612		cluster_start = cluster_start << osb->s_clustersize_bits;
613
614		cluster_end = cluster_start + osb->s_clustersize;
615	}
616
617	BUG_ON(cluster_start > PAGE_SIZE);
618	BUG_ON(cluster_end > PAGE_SIZE);
619
620	if (start)
621		*start = cluster_start;
622	if (end)
623		*end = cluster_end;
624}
625
626/*
627 * 'from' and 'to' are the region in the page to avoid zeroing.
628 *
629 * If pagesize > clustersize, this function will avoid zeroing outside
630 * of the cluster boundary.
631 *
632 * from == to == 0 is code for "zero the entire cluster region"
633 */
634static void ocfs2_clear_page_regions(struct page *page,
635				     struct ocfs2_super *osb, u32 cpos,
636				     unsigned from, unsigned to)
637{
638	void *kaddr;
639	unsigned int cluster_start, cluster_end;
640
641	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
642
643	kaddr = kmap_atomic(page, KM_USER0);
644
645	if (from || to) {
646		if (from > cluster_start)
647			memset(kaddr + cluster_start, 0, from - cluster_start);
648		if (to < cluster_end)
649			memset(kaddr + to, 0, cluster_end - to);
650	} else {
651		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
652	}
653
654	kunmap_atomic(kaddr, KM_USER0);
655}
656
657/*
658 * Some of this taken from block_prepare_write(). We already have our
659 * mapping by now though, and the entire write will be allocating or
660 * it won't, so not much need to use BH_New.
661 *
662 * This will also skip zeroing, which is handled externally.
663 */
664int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
665			  struct inode *inode, unsigned int from,
666			  unsigned int to, int new)
667{
668	int ret = 0;
669	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
670	unsigned int block_end, block_start;
671	unsigned int bsize = 1 << inode->i_blkbits;
672
673	if (!page_has_buffers(page))
674		create_empty_buffers(page, bsize, 0);
675
676	head = page_buffers(page);
677	for (bh = head, block_start = 0; bh != head || !block_start;
678	     bh = bh->b_this_page, block_start += bsize) {
679		block_end = block_start + bsize;
680
681		/*
682		 * Ignore blocks outside of our i/o range -
683		 * they may belong to unallocated clusters.
684		 */
685		if (block_start >= to || block_end <= from) {
686			if (PageUptodate(page))
687				set_buffer_uptodate(bh);
688			continue;
689		}
690
691		/*
692		 * For an allocating write with cluster size >= page
693		 * size, we always write the entire page.
694		 */
695
696		if (buffer_new(bh))
697			clear_buffer_new(bh);
698
699		if (!buffer_mapped(bh)) {
700			map_bh(bh, inode->i_sb, *p_blkno);
701			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
702		}
703
704		if (PageUptodate(page)) {
705			if (!buffer_uptodate(bh))
706				set_buffer_uptodate(bh);
707		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
708		     (block_start < from || block_end > to)) {
709			ll_rw_block(READ, 1, &bh);
710			*wait_bh++=bh;
711		}
712
713		*p_blkno = *p_blkno + 1;
714	}
715
716	/*
717	 * If we issued read requests - let them complete.
718	 */
719	while(wait_bh > wait) {
720		wait_on_buffer(*--wait_bh);
721		if (!buffer_uptodate(*wait_bh))
722			ret = -EIO;
723	}
724
725	if (ret == 0 || !new)
726		return ret;
727
728	/*
729	 * If we get -EIO above, zero out any newly allocated blocks
730	 * to avoid exposing stale data.
731	 */
732	bh = head;
733	block_start = 0;
734	do {
735		void *kaddr;
736
737		block_end = block_start + bsize;
738		if (block_end <= from)
739			goto next_bh;
740		if (block_start >= to)
741			break;
742
743		kaddr = kmap_atomic(page, KM_USER0);
744		memset(kaddr+block_start, 0, bh->b_size);
745		flush_dcache_page(page);
746		kunmap_atomic(kaddr, KM_USER0);
747		set_buffer_uptodate(bh);
748		mark_buffer_dirty(bh);
749
750next_bh:
751		block_start = block_end;
752		bh = bh->b_this_page;
753	} while (bh != head);
754
755	return ret;
756}
757
758/*
759 * This will copy user data from the buffer page in the splice
760 * context.
761 *
762 * For now, we ignore SPLICE_F_MOVE as that would require some extra
763 * communication out all the way to ocfs2_write().
764 */
765int ocfs2_map_and_write_splice_data(struct inode *inode,
766				  struct ocfs2_write_ctxt *wc, u64 *p_blkno,
767				  unsigned int *ret_from, unsigned int *ret_to)
768{
769	int ret;
770	unsigned int to, from, cluster_start, cluster_end;
771	char *src, *dst;
772	struct ocfs2_splice_write_priv *sp = wc->w_private;
773	struct pipe_buffer *buf = sp->s_buf;
774	unsigned long bytes, src_from;
775	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
776
777	ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
778					&cluster_end);
779
780	from = sp->s_offset;
781	src_from = sp->s_buf_offset;
782	bytes = wc->w_count;
783
784	if (wc->w_large_pages) {
785		/*
786		 * For cluster size < page size, we have to
787		 * calculate pos within the cluster and obey
788		 * the rightmost boundary.
789		 */
790		bytes = min(bytes, (unsigned long)(osb->s_clustersize
791				   - (wc->w_pos & (osb->s_clustersize - 1))));
792	}
793	to = from + bytes;
794
795	if (wc->w_this_page_new)
796		ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
797					    cluster_start, cluster_end, 1);
798	else
799		ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
800					    from, to, 0);
801	if (ret) {
802		mlog_errno(ret);
803		goto out;
804	}
805
806	BUG_ON(from > PAGE_CACHE_SIZE);
807	BUG_ON(to > PAGE_CACHE_SIZE);
808	BUG_ON(from > osb->s_clustersize);
809	BUG_ON(to > osb->s_clustersize);
810
811	src = buf->ops->map(sp->s_pipe, buf, 1);
812	dst = kmap_atomic(wc->w_this_page, KM_USER1);
813	memcpy(dst + from, src + src_from, bytes);
814	kunmap_atomic(wc->w_this_page, KM_USER1);
815	buf->ops->unmap(sp->s_pipe, buf, src);
816
817	wc->w_finished_copy = 1;
818
819	*ret_from = from;
820	*ret_to = to;
821out:
822
823	return bytes ? (unsigned int)bytes : ret;
824}
825
826/*
827 * This will copy user data from the iovec in the buffered write
828 * context.
829 */
830int ocfs2_map_and_write_user_data(struct inode *inode,
831				  struct ocfs2_write_ctxt *wc, u64 *p_blkno,
832				  unsigned int *ret_from, unsigned int *ret_to)
833{
834	int ret;
835	unsigned int to, from, cluster_start, cluster_end;
836	unsigned long bytes, src_from;
837	char *dst;
838	struct ocfs2_buffered_write_priv *bp = wc->w_private;
839	const struct iovec *cur_iov = bp->b_cur_iov;
840	char __user *buf;
841	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
842
843	ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
844					&cluster_end);
845
846	buf = cur_iov->iov_base + bp->b_cur_off;
847	src_from = (unsigned long)buf & ~PAGE_CACHE_MASK;
848
849	from = wc->w_pos & (PAGE_CACHE_SIZE - 1);
850
851	/*
852	 * This is a lot of comparisons, but it reads quite
853	 * easily, which is important here.
854	 */
855	/* Stay within the src page */
856	bytes = PAGE_SIZE - src_from;
857	/* Stay within the vector */
858	bytes = min(bytes,
859		    (unsigned long)(cur_iov->iov_len - bp->b_cur_off));
860	/* Stay within count */
861	bytes = min(bytes, (unsigned long)wc->w_count);
862	/*
863	 * For clustersize > page size, just stay within
864	 * target page, otherwise we have to calculate pos
865	 * within the cluster and obey the rightmost
866	 * boundary.
867	 */
868	if (wc->w_large_pages) {
869		/*
870		 * For cluster size < page size, we have to
871		 * calculate pos within the cluster and obey
872		 * the rightmost boundary.
873		 */
874		bytes = min(bytes, (unsigned long)(osb->s_clustersize
875				   - (wc->w_pos & (osb->s_clustersize - 1))));
876	} else {
877		/*
878		 * cluster size > page size is the most common
879		 * case - we just stay within the target page
880		 * boundary.
881		 */
882		bytes = min(bytes, PAGE_CACHE_SIZE - from);
883	}
884
885	to = from + bytes;
886
887	if (wc->w_this_page_new)
888		ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
889					    cluster_start, cluster_end, 1);
890	else
891		ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
892					    from, to, 0);
893	if (ret) {
894		mlog_errno(ret);
895		goto out;
896	}
897
898	BUG_ON(from > PAGE_CACHE_SIZE);
899	BUG_ON(to > PAGE_CACHE_SIZE);
900	BUG_ON(from > osb->s_clustersize);
901	BUG_ON(to > osb->s_clustersize);
902
903	dst = kmap(wc->w_this_page);
904	memcpy(dst + from, bp->b_src_buf + src_from, bytes);
905	kunmap(wc->w_this_page);
906
907	/*
908	 * XXX: This is slow, but simple. The caller of
909	 * ocfs2_buffered_write_cluster() is responsible for
910	 * passing through the iovecs, so it's difficult to
911	 * predict what our next step is in here after our
912	 * initial write. A future version should be pushing
913	 * that iovec manipulation further down.
914	 *
915	 * By setting this, we indicate that a copy from user
916	 * data was done, and subsequent calls for this
917	 * cluster will skip copying more data.
918	 */
919	wc->w_finished_copy = 1;
920
921	*ret_from = from;
922	*ret_to = to;
923out:
924
925	return bytes ? (unsigned int)bytes : ret;
926}
927
928/*
929 * Map, fill and write a page to disk.
930 *
931 * The work of copying data is done via callback.  Newly allocated
932 * pages which don't take user data will be zero'd (set 'new' to
933 * indicate an allocating write)
934 *
935 * Returns a negative error code or the number of bytes copied into
936 * the page.
937 */
938int ocfs2_write_data_page(struct inode *inode, handle_t *handle,
939			  u64 *p_blkno, struct page *page,
940			  struct ocfs2_write_ctxt *wc, int new)
941{
942	int ret, copied = 0;
943	unsigned int from = 0, to = 0;
944	unsigned int cluster_start, cluster_end;
945	unsigned int zero_from = 0, zero_to = 0;
946
947	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), wc->w_cpos,
948					&cluster_start, &cluster_end);
949
950	if ((wc->w_pos >> PAGE_CACHE_SHIFT) == page->index
951	    && !wc->w_finished_copy) {
952
953		wc->w_this_page = page;
954		wc->w_this_page_new = new;
955		ret = wc->w_write_data_page(inode, wc, p_blkno, &from, &to);
956		if (ret < 0) {
957			mlog_errno(ret);
958			goto out;
959		}
960
961		copied = ret;
962
963		zero_from = from;
964		zero_to = to;
965		if (new) {
966			from = cluster_start;
967			to = cluster_end;
968		}
969	} else {
970		/*
971		 * If we haven't allocated the new page yet, we
972		 * shouldn't be writing it out without copying user
973		 * data. This is likely a math error from the caller.
974		 */
975		BUG_ON(!new);
976
977		from = cluster_start;
978		to = cluster_end;
979
980		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
981					    cluster_start, cluster_end, 1);
982		if (ret) {
983			mlog_errno(ret);
984			goto out;
985		}
986	}
987
988	/*
989	 * Parts of newly allocated pages need to be zero'd.
990	 *
991	 * Above, we have also rewritten 'to' and 'from' - as far as
992	 * the rest of the function is concerned, the entire cluster
993	 * range inside of a page needs to be written.
994	 *
995	 * We can skip this if the page is up to date - it's already
996	 * been zero'd from being read in as a hole.
997	 */
998	if (new && !PageUptodate(page))
999		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1000					 wc->w_cpos, zero_from, zero_to);
1001
1002	flush_dcache_page(page);
1003
1004	if (ocfs2_should_order_data(inode)) {
1005		ret = walk_page_buffers(handle,
1006					page_buffers(page),
1007					from, to, NULL,
1008					ocfs2_journal_dirty_data);
1009		if (ret < 0)
1010			mlog_errno(ret);
1011	}
1012
1013	/*
1014	 * We don't use generic_commit_write() because we need to
1015	 * handle our own i_size update.
1016	 */
1017	ret = block_commit_write(page, from, to);
1018	if (ret)
1019		mlog_errno(ret);
1020out:
1021
1022	return copied ? copied : ret;
1023}
1024
1025/*
1026 * Do the actual write of some data into an inode. Optionally allocate
1027 * in order to fulfill the write.
1028 *
1029 * cpos is the logical cluster offset within the file to write at
1030 *
1031 * 'phys' is the physical mapping of that offset. a 'phys' value of
1032 * zero indicates that allocation is required. In this case, data_ac
1033 * and meta_ac should be valid (meta_ac can be null if metadata
1034 * allocation isn't required).
1035 */
1036static ssize_t ocfs2_write(struct file *file, u32 phys, handle_t *handle,
1037			   struct buffer_head *di_bh,
1038			   struct ocfs2_alloc_context *data_ac,
1039			   struct ocfs2_alloc_context *meta_ac,
1040			   struct ocfs2_write_ctxt *wc)
1041{
1042	int ret, i, numpages = 1, new;
1043	unsigned int copied = 0;
1044	u32 tmp_pos;
1045	u64 v_blkno, p_blkno;
1046	struct address_space *mapping = file->f_mapping;
1047	struct inode *inode = mapping->host;
1048	unsigned long index, start;
1049	struct page **cpages;
1050
1051	new = phys == 0 ? 1 : 0;
1052
1053	/*
1054	 * Figure out how many pages we'll be manipulating here. For
1055	 * non allocating write, we just change the one
1056	 * page. Otherwise, we'll need a whole clusters worth.
1057	 */
1058	if (new)
1059		numpages = ocfs2_pages_per_cluster(inode->i_sb);
1060
1061	cpages = kzalloc(sizeof(*cpages) * numpages, GFP_NOFS);
1062	if (!cpages) {
1063		ret = -ENOMEM;
1064		mlog_errno(ret);
1065		return ret;
1066	}
1067
1068	/*
1069	 * Fill our page array first. That way we've grabbed enough so
1070	 * that we can zero and flush if we error after adding the
1071	 * extent.
1072	 */
1073	if (new) {
1074		start = ocfs2_align_clusters_to_page_index(inode->i_sb,
1075							   wc->w_cpos);
1076		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, wc->w_cpos);
1077	} else {
1078		start = wc->w_pos >> PAGE_CACHE_SHIFT;
1079		v_blkno = wc->w_pos >> inode->i_sb->s_blocksize_bits;
1080	}
1081
1082	for(i = 0; i < numpages; i++) {
1083		index = start + i;
1084
1085		cpages[i] = grab_cache_page(mapping, index);
1086		if (!cpages[i]) {
1087			ret = -ENOMEM;
1088			mlog_errno(ret);
1089			goto out;
1090		}
1091	}
1092
1093	if (new) {
1094		/*
1095		 * This is safe to call with the page locks - it won't take
1096		 * any additional semaphores or cluster locks.
1097		 */
1098		tmp_pos = wc->w_cpos;
1099		ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1100						 &tmp_pos, 1, di_bh, handle,
1101						 data_ac, meta_ac, NULL);
1102		/*
1103		 * This shouldn't happen because we must have already
1104		 * calculated the correct meta data allocation required. The
1105		 * internal tree allocation code should know how to increase
1106		 * transaction credits itself.
1107		 *
1108		 * If need be, we could handle -EAGAIN for a
1109		 * RESTART_TRANS here.
1110		 */
1111		mlog_bug_on_msg(ret == -EAGAIN,
1112				"Inode %llu: EAGAIN return during allocation.\n",
1113				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1114		if (ret < 0) {
1115			mlog_errno(ret);
1116			goto out;
1117		}
1118	}
1119
1120	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1121					  NULL);
1122	if (ret < 0) {
1123
1124		/*
1125		 * XXX: Should we go readonly here?
1126		 */
1127
1128		mlog_errno(ret);
1129		goto out;
1130	}
1131
1132	BUG_ON(p_blkno == 0);
1133
1134	for(i = 0; i < numpages; i++) {
1135		ret = ocfs2_write_data_page(inode, handle, &p_blkno, cpages[i],
1136					    wc, new);
1137		if (ret < 0) {
1138			mlog_errno(ret);
1139			goto out;
1140		}
1141
1142		copied += ret;
1143	}
1144
1145out:
1146	for(i = 0; i < numpages; i++) {
1147		unlock_page(cpages[i]);
1148		mark_page_accessed(cpages[i]);
1149		page_cache_release(cpages[i]);
1150	}
1151	kfree(cpages);
1152
1153	return copied ? copied : ret;
1154}
1155
1156static void ocfs2_write_ctxt_init(struct ocfs2_write_ctxt *wc,
1157				  struct ocfs2_super *osb, loff_t pos,
1158				  size_t count, ocfs2_page_writer *cb,
1159				  void *cb_priv)
1160{
1161	wc->w_count = count;
1162	wc->w_pos = pos;
1163	wc->w_cpos = wc->w_pos >> osb->s_clustersize_bits;
1164	wc->w_finished_copy = 0;
1165
1166	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1167		wc->w_large_pages = 1;
1168	else
1169		wc->w_large_pages = 0;
1170
1171	wc->w_write_data_page = cb;
1172	wc->w_private = cb_priv;
1173}
1174
1175/*
1176 * Write a cluster to an inode. The cluster may not be allocated yet,
1177 * in which case it will be. This only exists for buffered writes -
1178 * O_DIRECT takes a more "traditional" path through the kernel.
1179 *
1180 * The caller is responsible for incrementing pos, written counts, etc
1181 *
1182 * For file systems that don't support sparse files, pre-allocation
1183 * and page zeroing up until cpos should be done prior to this
1184 * function call.
1185 *
1186 * Callers should be holding i_sem, and the rw cluster lock.
1187 *
1188 * Returns the number of user bytes written, or less than zero for
1189 * error.
1190 */
1191ssize_t ocfs2_buffered_write_cluster(struct file *file, loff_t pos,
1192				     size_t count, ocfs2_page_writer *actor,
1193				     void *priv)
1194{
1195	int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1196	ssize_t written = 0;
1197	u32 phys;
1198	struct inode *inode = file->f_mapping->host;
1199	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1200	struct buffer_head *di_bh = NULL;
1201	struct ocfs2_dinode *di;
1202	struct ocfs2_alloc_context *data_ac = NULL;
1203	struct ocfs2_alloc_context *meta_ac = NULL;
1204	handle_t *handle;
1205	struct ocfs2_write_ctxt wc;
1206
1207	ocfs2_write_ctxt_init(&wc, osb, pos, count, actor, priv);
1208
1209	ret = ocfs2_meta_lock(inode, &di_bh, 1);
1210	if (ret) {
1211		mlog_errno(ret);
1212		goto out;
1213	}
1214	di = (struct ocfs2_dinode *)di_bh->b_data;
1215
1216	/*
1217	 * Take alloc sem here to prevent concurrent lookups. That way
1218	 * the mapping, zeroing and tree manipulation within
1219	 * ocfs2_write() will be safe against ->readpage(). This
1220	 * should also serve to lock out allocation from a shared
1221	 * writeable region.
1222	 */
1223	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1224
1225	ret = ocfs2_get_clusters(inode, wc.w_cpos, &phys, NULL, NULL);
1226	if (ret) {
1227		mlog_errno(ret);
1228		goto out_meta;
1229	}
1230
1231	/* phys == 0 means that allocation is required. */
1232	if (phys == 0) {
1233		ret = ocfs2_lock_allocators(inode, di, 1, &data_ac, &meta_ac);
1234		if (ret) {
1235			mlog_errno(ret);
1236			goto out_meta;
1237		}
1238
1239		credits = ocfs2_calc_extend_credits(inode->i_sb, di, 1);
1240	}
1241
1242	ret = ocfs2_data_lock(inode, 1);
1243	if (ret) {
1244		mlog_errno(ret);
1245		goto out_meta;
1246	}
1247
1248	handle = ocfs2_start_trans(osb, credits);
1249	if (IS_ERR(handle)) {
1250		ret = PTR_ERR(handle);
1251		mlog_errno(ret);
1252		goto out_data;
1253	}
1254
1255	written = ocfs2_write(file, phys, handle, di_bh, data_ac,
1256			      meta_ac, &wc);
1257	if (written < 0) {
1258		ret = written;
1259		mlog_errno(ret);
1260		goto out_commit;
1261	}
1262
1263	ret = ocfs2_journal_access(handle, inode, di_bh,
1264				   OCFS2_JOURNAL_ACCESS_WRITE);
1265	if (ret) {
1266		mlog_errno(ret);
1267		goto out_commit;
1268	}
1269
1270	pos += written;
1271	if (pos > inode->i_size) {
1272		i_size_write(inode, pos);
1273		mark_inode_dirty(inode);
1274	}
1275	inode->i_blocks = ocfs2_align_bytes_to_sectors((u64)(i_size_read(inode)));
1276	di->i_size = cpu_to_le64((u64)i_size_read(inode));
1277	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1278	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1279	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1280
1281	ret = ocfs2_journal_dirty(handle, di_bh);
1282	if (ret)
1283		mlog_errno(ret);
1284
1285out_commit:
1286	ocfs2_commit_trans(osb, handle);
1287
1288out_data:
1289	ocfs2_data_unlock(inode, 1);
1290
1291out_meta:
1292	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1293	ocfs2_meta_unlock(inode, 1);
1294
1295out:
1296	brelse(di_bh);
1297	if (data_ac)
1298		ocfs2_free_alloc_context(data_ac);
1299	if (meta_ac)
1300		ocfs2_free_alloc_context(meta_ac);
1301
1302	return written ? written : ret;
1303}
1304
1305const struct address_space_operations ocfs2_aops = {
1306	.readpage	= ocfs2_readpage,
1307	.writepage	= ocfs2_writepage,
1308	.bmap		= ocfs2_bmap,
1309	.sync_page	= block_sync_page,
1310	.direct_IO	= ocfs2_direct_IO,
1311	.invalidatepage	= ocfs2_invalidatepage,
1312	.releasepage	= ocfs2_releasepage,
1313	.migratepage	= buffer_migrate_page,
1314};
1315