aops.c revision 4fe370afaae49c57619bb0bedb75de7e7c168308
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
27#include <linux/swap.h>
28#include <linux/pipe_fs_i.h>
29#include <linux/mpage.h>
30#include <linux/quotaops.h>
31
32#define MLOG_MASK_PREFIX ML_FILE_IO
33#include <cluster/masklog.h>
34
35#include "ocfs2.h"
36
37#include "alloc.h"
38#include "aops.h"
39#include "dlmglue.h"
40#include "extent_map.h"
41#include "file.h"
42#include "inode.h"
43#include "journal.h"
44#include "suballoc.h"
45#include "super.h"
46#include "symlink.h"
47#include "refcounttree.h"
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52				   struct buffer_head *bh_result, int create)
53{
54	int err = -EIO;
55	int status;
56	struct ocfs2_dinode *fe = NULL;
57	struct buffer_head *bh = NULL;
58	struct buffer_head *buffer_cache_bh = NULL;
59	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60	void *kaddr;
61
62	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
63		   (unsigned long long)iblock, bh_result, create);
64
65	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
66
67	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
68		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
69		     (unsigned long long)iblock);
70		goto bail;
71	}
72
73	status = ocfs2_read_inode_block(inode, &bh);
74	if (status < 0) {
75		mlog_errno(status);
76		goto bail;
77	}
78	fe = (struct ocfs2_dinode *) bh->b_data;
79
80	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
81						    le32_to_cpu(fe->i_clusters))) {
82		mlog(ML_ERROR, "block offset is outside the allocated size: "
83		     "%llu\n", (unsigned long long)iblock);
84		goto bail;
85	}
86
87	/* We don't use the page cache to create symlink data, so if
88	 * need be, copy it over from the buffer cache. */
89	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
90		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
91			    iblock;
92		buffer_cache_bh = sb_getblk(osb->sb, blkno);
93		if (!buffer_cache_bh) {
94			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
95			goto bail;
96		}
97
98		/* we haven't locked out transactions, so a commit
99		 * could've happened. Since we've got a reference on
100		 * the bh, even if it commits while we're doing the
101		 * copy, the data is still good. */
102		if (buffer_jbd(buffer_cache_bh)
103		    && ocfs2_inode_is_new(inode)) {
104			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
105			if (!kaddr) {
106				mlog(ML_ERROR, "couldn't kmap!\n");
107				goto bail;
108			}
109			memcpy(kaddr + (bh_result->b_size * iblock),
110			       buffer_cache_bh->b_data,
111			       bh_result->b_size);
112			kunmap_atomic(kaddr, KM_USER0);
113			set_buffer_uptodate(bh_result);
114		}
115		brelse(buffer_cache_bh);
116	}
117
118	map_bh(bh_result, inode->i_sb,
119	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
120
121	err = 0;
122
123bail:
124	brelse(bh);
125
126	mlog_exit(err);
127	return err;
128}
129
130int ocfs2_get_block(struct inode *inode, sector_t iblock,
131		    struct buffer_head *bh_result, int create)
132{
133	int err = 0;
134	unsigned int ext_flags;
135	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136	u64 p_blkno, count, past_eof;
137	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138
139	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
140		   (unsigned long long)iblock, bh_result, create);
141
142	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144		     inode, inode->i_ino);
145
146	if (S_ISLNK(inode->i_mode)) {
147		/* this always does I/O for some reason. */
148		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149		goto bail;
150	}
151
152	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153					  &ext_flags);
154	if (err) {
155		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157		     (unsigned long long)p_blkno);
158		goto bail;
159	}
160
161	if (max_blocks < count)
162		count = max_blocks;
163
164	/*
165	 * ocfs2 never allocates in this function - the only time we
166	 * need to use BH_New is when we're extending i_size on a file
167	 * system which doesn't support holes, in which case BH_New
168	 * allows block_prepare_write() to zero.
169	 *
170	 * If we see this on a sparse file system, then a truncate has
171	 * raced us and removed the cluster. In this case, we clear
172	 * the buffers dirty and uptodate bits and let the buffer code
173	 * ignore it as a hole.
174	 */
175	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176		clear_buffer_dirty(bh_result);
177		clear_buffer_uptodate(bh_result);
178		goto bail;
179	}
180
181	/* Treat the unwritten extent as a hole for zeroing purposes. */
182	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183		map_bh(bh_result, inode->i_sb, p_blkno);
184
185	bh_result->b_size = count << inode->i_blkbits;
186
187	if (!ocfs2_sparse_alloc(osb)) {
188		if (p_blkno == 0) {
189			err = -EIO;
190			mlog(ML_ERROR,
191			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192			     (unsigned long long)iblock,
193			     (unsigned long long)p_blkno,
194			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
195			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196			dump_stack();
197			goto bail;
198		}
199
200		past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
201		mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
202		     (unsigned long long)past_eof);
203
204		if (create && (iblock >= past_eof))
205			set_buffer_new(bh_result);
206	}
207
208bail:
209	if (err < 0)
210		err = -EIO;
211
212	mlog_exit(err);
213	return err;
214}
215
216int ocfs2_read_inline_data(struct inode *inode, struct page *page,
217			   struct buffer_head *di_bh)
218{
219	void *kaddr;
220	loff_t size;
221	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
222
223	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
224		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
225			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
226		return -EROFS;
227	}
228
229	size = i_size_read(inode);
230
231	if (size > PAGE_CACHE_SIZE ||
232	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
233		ocfs2_error(inode->i_sb,
234			    "Inode %llu has with inline data has bad size: %Lu",
235			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
236			    (unsigned long long)size);
237		return -EROFS;
238	}
239
240	kaddr = kmap_atomic(page, KM_USER0);
241	if (size)
242		memcpy(kaddr, di->id2.i_data.id_data, size);
243	/* Clear the remaining part of the page */
244	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
245	flush_dcache_page(page);
246	kunmap_atomic(kaddr, KM_USER0);
247
248	SetPageUptodate(page);
249
250	return 0;
251}
252
253static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
254{
255	int ret;
256	struct buffer_head *di_bh = NULL;
257
258	BUG_ON(!PageLocked(page));
259	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
260
261	ret = ocfs2_read_inode_block(inode, &di_bh);
262	if (ret) {
263		mlog_errno(ret);
264		goto out;
265	}
266
267	ret = ocfs2_read_inline_data(inode, page, di_bh);
268out:
269	unlock_page(page);
270
271	brelse(di_bh);
272	return ret;
273}
274
275static int ocfs2_readpage(struct file *file, struct page *page)
276{
277	struct inode *inode = page->mapping->host;
278	struct ocfs2_inode_info *oi = OCFS2_I(inode);
279	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
280	int ret, unlock = 1;
281
282	mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
283
284	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285	if (ret != 0) {
286		if (ret == AOP_TRUNCATED_PAGE)
287			unlock = 0;
288		mlog_errno(ret);
289		goto out;
290	}
291
292	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293		ret = AOP_TRUNCATED_PAGE;
294		goto out_inode_unlock;
295	}
296
297	/*
298	 * i_size might have just been updated as we grabed the meta lock.  We
299	 * might now be discovering a truncate that hit on another node.
300	 * block_read_full_page->get_block freaks out if it is asked to read
301	 * beyond the end of a file, so we check here.  Callers
302	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
303	 * and notice that the page they just read isn't needed.
304	 *
305	 * XXX sys_readahead() seems to get that wrong?
306	 */
307	if (start >= i_size_read(inode)) {
308		zero_user(page, 0, PAGE_SIZE);
309		SetPageUptodate(page);
310		ret = 0;
311		goto out_alloc;
312	}
313
314	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
315		ret = ocfs2_readpage_inline(inode, page);
316	else
317		ret = block_read_full_page(page, ocfs2_get_block);
318	unlock = 0;
319
320out_alloc:
321	up_read(&OCFS2_I(inode)->ip_alloc_sem);
322out_inode_unlock:
323	ocfs2_inode_unlock(inode, 0);
324out:
325	if (unlock)
326		unlock_page(page);
327	mlog_exit(ret);
328	return ret;
329}
330
331/*
332 * This is used only for read-ahead. Failures or difficult to handle
333 * situations are safe to ignore.
334 *
335 * Right now, we don't bother with BH_Boundary - in-inode extent lists
336 * are quite large (243 extents on 4k blocks), so most inodes don't
337 * grow out to a tree. If need be, detecting boundary extents could
338 * trivially be added in a future version of ocfs2_get_block().
339 */
340static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
341			   struct list_head *pages, unsigned nr_pages)
342{
343	int ret, err = -EIO;
344	struct inode *inode = mapping->host;
345	struct ocfs2_inode_info *oi = OCFS2_I(inode);
346	loff_t start;
347	struct page *last;
348
349	/*
350	 * Use the nonblocking flag for the dlm code to avoid page
351	 * lock inversion, but don't bother with retrying.
352	 */
353	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
354	if (ret)
355		return err;
356
357	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
358		ocfs2_inode_unlock(inode, 0);
359		return err;
360	}
361
362	/*
363	 * Don't bother with inline-data. There isn't anything
364	 * to read-ahead in that case anyway...
365	 */
366	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
367		goto out_unlock;
368
369	/*
370	 * Check whether a remote node truncated this file - we just
371	 * drop out in that case as it's not worth handling here.
372	 */
373	last = list_entry(pages->prev, struct page, lru);
374	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
375	if (start >= i_size_read(inode))
376		goto out_unlock;
377
378	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
379
380out_unlock:
381	up_read(&oi->ip_alloc_sem);
382	ocfs2_inode_unlock(inode, 0);
383
384	return err;
385}
386
387/* Note: Because we don't support holes, our allocation has
388 * already happened (allocation writes zeros to the file data)
389 * so we don't have to worry about ordered writes in
390 * ocfs2_writepage.
391 *
392 * ->writepage is called during the process of invalidating the page cache
393 * during blocked lock processing.  It can't block on any cluster locks
394 * to during block mapping.  It's relying on the fact that the block
395 * mapping can't have disappeared under the dirty pages that it is
396 * being asked to write back.
397 */
398static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
399{
400	int ret;
401
402	mlog_entry("(0x%p)\n", page);
403
404	ret = block_write_full_page(page, ocfs2_get_block, wbc);
405
406	mlog_exit(ret);
407
408	return ret;
409}
410
411/*
412 * This is called from ocfs2_write_zero_page() which has handled it's
413 * own cluster locking and has ensured allocation exists for those
414 * blocks to be written.
415 */
416int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
417			       unsigned from, unsigned to)
418{
419	int ret;
420
421	ret = block_prepare_write(page, from, to, ocfs2_get_block);
422
423	return ret;
424}
425
426/* Taken from ext3. We don't necessarily need the full blown
427 * functionality yet, but IMHO it's better to cut and paste the whole
428 * thing so we can avoid introducing our own bugs (and easily pick up
429 * their fixes when they happen) --Mark */
430int walk_page_buffers(	handle_t *handle,
431			struct buffer_head *head,
432			unsigned from,
433			unsigned to,
434			int *partial,
435			int (*fn)(	handle_t *handle,
436					struct buffer_head *bh))
437{
438	struct buffer_head *bh;
439	unsigned block_start, block_end;
440	unsigned blocksize = head->b_size;
441	int err, ret = 0;
442	struct buffer_head *next;
443
444	for (	bh = head, block_start = 0;
445		ret == 0 && (bh != head || !block_start);
446	    	block_start = block_end, bh = next)
447	{
448		next = bh->b_this_page;
449		block_end = block_start + blocksize;
450		if (block_end <= from || block_start >= to) {
451			if (partial && !buffer_uptodate(bh))
452				*partial = 1;
453			continue;
454		}
455		err = (*fn)(handle, bh);
456		if (!ret)
457			ret = err;
458	}
459	return ret;
460}
461
462handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
463							 struct page *page,
464							 unsigned from,
465							 unsigned to)
466{
467	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
468	handle_t *handle;
469	int ret = 0;
470
471	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
472	if (IS_ERR(handle)) {
473		ret = -ENOMEM;
474		mlog_errno(ret);
475		goto out;
476	}
477
478	if (ocfs2_should_order_data(inode)) {
479		ret = ocfs2_jbd2_file_inode(handle, inode);
480		if (ret < 0)
481			mlog_errno(ret);
482	}
483out:
484	if (ret) {
485		if (!IS_ERR(handle))
486			ocfs2_commit_trans(osb, handle);
487		handle = ERR_PTR(ret);
488	}
489	return handle;
490}
491
492static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
493{
494	sector_t status;
495	u64 p_blkno = 0;
496	int err = 0;
497	struct inode *inode = mapping->host;
498
499	mlog_entry("(block = %llu)\n", (unsigned long long)block);
500
501	/* We don't need to lock journal system files, since they aren't
502	 * accessed concurrently from multiple nodes.
503	 */
504	if (!INODE_JOURNAL(inode)) {
505		err = ocfs2_inode_lock(inode, NULL, 0);
506		if (err) {
507			if (err != -ENOENT)
508				mlog_errno(err);
509			goto bail;
510		}
511		down_read(&OCFS2_I(inode)->ip_alloc_sem);
512	}
513
514	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
515		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
516						  NULL);
517
518	if (!INODE_JOURNAL(inode)) {
519		up_read(&OCFS2_I(inode)->ip_alloc_sem);
520		ocfs2_inode_unlock(inode, 0);
521	}
522
523	if (err) {
524		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
525		     (unsigned long long)block);
526		mlog_errno(err);
527		goto bail;
528	}
529
530bail:
531	status = err ? 0 : p_blkno;
532
533	mlog_exit((int)status);
534
535	return status;
536}
537
538/*
539 * TODO: Make this into a generic get_blocks function.
540 *
541 * From do_direct_io in direct-io.c:
542 *  "So what we do is to permit the ->get_blocks function to populate
543 *   bh.b_size with the size of IO which is permitted at this offset and
544 *   this i_blkbits."
545 *
546 * This function is called directly from get_more_blocks in direct-io.c.
547 *
548 * called like this: dio->get_blocks(dio->inode, fs_startblk,
549 * 					fs_count, map_bh, dio->rw == WRITE);
550 *
551 * Note that we never bother to allocate blocks here, and thus ignore the
552 * create argument.
553 */
554static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
555				     struct buffer_head *bh_result, int create)
556{
557	int ret;
558	u64 p_blkno, inode_blocks, contig_blocks;
559	unsigned int ext_flags;
560	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
561	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
562
563	/* This function won't even be called if the request isn't all
564	 * nicely aligned and of the right size, so there's no need
565	 * for us to check any of that. */
566
567	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
568
569	/* This figures out the size of the next contiguous block, and
570	 * our logical offset */
571	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
572					  &contig_blocks, &ext_flags);
573	if (ret) {
574		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
575		     (unsigned long long)iblock);
576		ret = -EIO;
577		goto bail;
578	}
579
580	/* We should already CoW the refcounted extent in case of create. */
581	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
582
583	/*
584	 * get_more_blocks() expects us to describe a hole by clearing
585	 * the mapped bit on bh_result().
586	 *
587	 * Consider an unwritten extent as a hole.
588	 */
589	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
590		map_bh(bh_result, inode->i_sb, p_blkno);
591	else
592		clear_buffer_mapped(bh_result);
593
594	/* make sure we don't map more than max_blocks blocks here as
595	   that's all the kernel will handle at this point. */
596	if (max_blocks < contig_blocks)
597		contig_blocks = max_blocks;
598	bh_result->b_size = contig_blocks << blocksize_bits;
599bail:
600	return ret;
601}
602
603/*
604 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
605 * particularly interested in the aio/dio case.  Like the core uses
606 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
607 * truncation on another.
608 */
609static void ocfs2_dio_end_io(struct kiocb *iocb,
610			     loff_t offset,
611			     ssize_t bytes,
612			     void *private)
613{
614	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
615	int level;
616
617	/* this io's submitter should not have unlocked this before we could */
618	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
619
620	ocfs2_iocb_clear_rw_locked(iocb);
621
622	level = ocfs2_iocb_rw_locked_level(iocb);
623	if (!level)
624		up_read(&inode->i_alloc_sem);
625	ocfs2_rw_unlock(inode, level);
626}
627
628/*
629 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
630 * from ext3.  PageChecked() bits have been removed as OCFS2 does not
631 * do journalled data.
632 */
633static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
634{
635	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
636
637	jbd2_journal_invalidatepage(journal, page, offset);
638}
639
640static int ocfs2_releasepage(struct page *page, gfp_t wait)
641{
642	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
643
644	if (!page_has_buffers(page))
645		return 0;
646	return jbd2_journal_try_to_free_buffers(journal, page, wait);
647}
648
649static ssize_t ocfs2_direct_IO(int rw,
650			       struct kiocb *iocb,
651			       const struct iovec *iov,
652			       loff_t offset,
653			       unsigned long nr_segs)
654{
655	struct file *file = iocb->ki_filp;
656	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
657	int ret;
658
659	mlog_entry_void();
660
661	/*
662	 * Fallback to buffered I/O if we see an inode without
663	 * extents.
664	 */
665	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
666		return 0;
667
668	/* Fallback to buffered I/O if we are appending. */
669	if (i_size_read(inode) <= offset)
670		return 0;
671
672	ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
673					    inode->i_sb->s_bdev, iov, offset,
674					    nr_segs,
675					    ocfs2_direct_IO_get_blocks,
676					    ocfs2_dio_end_io);
677
678	mlog_exit(ret);
679	return ret;
680}
681
682static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
683					    u32 cpos,
684					    unsigned int *start,
685					    unsigned int *end)
686{
687	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
688
689	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
690		unsigned int cpp;
691
692		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
693
694		cluster_start = cpos % cpp;
695		cluster_start = cluster_start << osb->s_clustersize_bits;
696
697		cluster_end = cluster_start + osb->s_clustersize;
698	}
699
700	BUG_ON(cluster_start > PAGE_SIZE);
701	BUG_ON(cluster_end > PAGE_SIZE);
702
703	if (start)
704		*start = cluster_start;
705	if (end)
706		*end = cluster_end;
707}
708
709/*
710 * 'from' and 'to' are the region in the page to avoid zeroing.
711 *
712 * If pagesize > clustersize, this function will avoid zeroing outside
713 * of the cluster boundary.
714 *
715 * from == to == 0 is code for "zero the entire cluster region"
716 */
717static void ocfs2_clear_page_regions(struct page *page,
718				     struct ocfs2_super *osb, u32 cpos,
719				     unsigned from, unsigned to)
720{
721	void *kaddr;
722	unsigned int cluster_start, cluster_end;
723
724	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
725
726	kaddr = kmap_atomic(page, KM_USER0);
727
728	if (from || to) {
729		if (from > cluster_start)
730			memset(kaddr + cluster_start, 0, from - cluster_start);
731		if (to < cluster_end)
732			memset(kaddr + to, 0, cluster_end - to);
733	} else {
734		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
735	}
736
737	kunmap_atomic(kaddr, KM_USER0);
738}
739
740/*
741 * Nonsparse file systems fully allocate before we get to the write
742 * code. This prevents ocfs2_write() from tagging the write as an
743 * allocating one, which means ocfs2_map_page_blocks() might try to
744 * read-in the blocks at the tail of our file. Avoid reading them by
745 * testing i_size against each block offset.
746 */
747static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
748				 unsigned int block_start)
749{
750	u64 offset = page_offset(page) + block_start;
751
752	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
753		return 1;
754
755	if (i_size_read(inode) > offset)
756		return 1;
757
758	return 0;
759}
760
761/*
762 * Some of this taken from block_prepare_write(). We already have our
763 * mapping by now though, and the entire write will be allocating or
764 * it won't, so not much need to use BH_New.
765 *
766 * This will also skip zeroing, which is handled externally.
767 */
768int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
769			  struct inode *inode, unsigned int from,
770			  unsigned int to, int new)
771{
772	int ret = 0;
773	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
774	unsigned int block_end, block_start;
775	unsigned int bsize = 1 << inode->i_blkbits;
776
777	if (!page_has_buffers(page))
778		create_empty_buffers(page, bsize, 0);
779
780	head = page_buffers(page);
781	for (bh = head, block_start = 0; bh != head || !block_start;
782	     bh = bh->b_this_page, block_start += bsize) {
783		block_end = block_start + bsize;
784
785		clear_buffer_new(bh);
786
787		/*
788		 * Ignore blocks outside of our i/o range -
789		 * they may belong to unallocated clusters.
790		 */
791		if (block_start >= to || block_end <= from) {
792			if (PageUptodate(page))
793				set_buffer_uptodate(bh);
794			continue;
795		}
796
797		/*
798		 * For an allocating write with cluster size >= page
799		 * size, we always write the entire page.
800		 */
801		if (new)
802			set_buffer_new(bh);
803
804		if (!buffer_mapped(bh)) {
805			map_bh(bh, inode->i_sb, *p_blkno);
806			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
807		}
808
809		if (PageUptodate(page)) {
810			if (!buffer_uptodate(bh))
811				set_buffer_uptodate(bh);
812		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
813			   !buffer_new(bh) &&
814			   ocfs2_should_read_blk(inode, page, block_start) &&
815			   (block_start < from || block_end > to)) {
816			ll_rw_block(READ, 1, &bh);
817			*wait_bh++=bh;
818		}
819
820		*p_blkno = *p_blkno + 1;
821	}
822
823	/*
824	 * If we issued read requests - let them complete.
825	 */
826	while(wait_bh > wait) {
827		wait_on_buffer(*--wait_bh);
828		if (!buffer_uptodate(*wait_bh))
829			ret = -EIO;
830	}
831
832	if (ret == 0 || !new)
833		return ret;
834
835	/*
836	 * If we get -EIO above, zero out any newly allocated blocks
837	 * to avoid exposing stale data.
838	 */
839	bh = head;
840	block_start = 0;
841	do {
842		block_end = block_start + bsize;
843		if (block_end <= from)
844			goto next_bh;
845		if (block_start >= to)
846			break;
847
848		zero_user(page, block_start, bh->b_size);
849		set_buffer_uptodate(bh);
850		mark_buffer_dirty(bh);
851
852next_bh:
853		block_start = block_end;
854		bh = bh->b_this_page;
855	} while (bh != head);
856
857	return ret;
858}
859
860#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
861#define OCFS2_MAX_CTXT_PAGES	1
862#else
863#define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
864#endif
865
866#define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
867
868/*
869 * Describe the state of a single cluster to be written to.
870 */
871struct ocfs2_write_cluster_desc {
872	u32		c_cpos;
873	u32		c_phys;
874	/*
875	 * Give this a unique field because c_phys eventually gets
876	 * filled.
877	 */
878	unsigned	c_new;
879	unsigned	c_unwritten;
880	unsigned	c_needs_zero;
881};
882
883struct ocfs2_write_ctxt {
884	/* Logical cluster position / len of write */
885	u32				w_cpos;
886	u32				w_clen;
887
888	/* First cluster allocated in a nonsparse extend */
889	u32				w_first_new_cpos;
890
891	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
892
893	/*
894	 * This is true if page_size > cluster_size.
895	 *
896	 * It triggers a set of special cases during write which might
897	 * have to deal with allocating writes to partial pages.
898	 */
899	unsigned int			w_large_pages;
900
901	/*
902	 * Pages involved in this write.
903	 *
904	 * w_target_page is the page being written to by the user.
905	 *
906	 * w_pages is an array of pages which always contains
907	 * w_target_page, and in the case of an allocating write with
908	 * page_size < cluster size, it will contain zero'd and mapped
909	 * pages adjacent to w_target_page which need to be written
910	 * out in so that future reads from that region will get
911	 * zero's.
912	 */
913	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
914	unsigned int			w_num_pages;
915	struct page			*w_target_page;
916
917	/*
918	 * ocfs2_write_end() uses this to know what the real range to
919	 * write in the target should be.
920	 */
921	unsigned int			w_target_from;
922	unsigned int			w_target_to;
923
924	/*
925	 * We could use journal_current_handle() but this is cleaner,
926	 * IMHO -Mark
927	 */
928	handle_t			*w_handle;
929
930	struct buffer_head		*w_di_bh;
931
932	struct ocfs2_cached_dealloc_ctxt w_dealloc;
933};
934
935void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
936{
937	int i;
938
939	for(i = 0; i < num_pages; i++) {
940		if (pages[i]) {
941			unlock_page(pages[i]);
942			mark_page_accessed(pages[i]);
943			page_cache_release(pages[i]);
944		}
945	}
946}
947
948static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
949{
950	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
951
952	brelse(wc->w_di_bh);
953	kfree(wc);
954}
955
956static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
957				  struct ocfs2_super *osb, loff_t pos,
958				  unsigned len, struct buffer_head *di_bh)
959{
960	u32 cend;
961	struct ocfs2_write_ctxt *wc;
962
963	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
964	if (!wc)
965		return -ENOMEM;
966
967	wc->w_cpos = pos >> osb->s_clustersize_bits;
968	wc->w_first_new_cpos = UINT_MAX;
969	cend = (pos + len - 1) >> osb->s_clustersize_bits;
970	wc->w_clen = cend - wc->w_cpos + 1;
971	get_bh(di_bh);
972	wc->w_di_bh = di_bh;
973
974	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
975		wc->w_large_pages = 1;
976	else
977		wc->w_large_pages = 0;
978
979	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
980
981	*wcp = wc;
982
983	return 0;
984}
985
986/*
987 * If a page has any new buffers, zero them out here, and mark them uptodate
988 * and dirty so they'll be written out (in order to prevent uninitialised
989 * block data from leaking). And clear the new bit.
990 */
991static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
992{
993	unsigned int block_start, block_end;
994	struct buffer_head *head, *bh;
995
996	BUG_ON(!PageLocked(page));
997	if (!page_has_buffers(page))
998		return;
999
1000	bh = head = page_buffers(page);
1001	block_start = 0;
1002	do {
1003		block_end = block_start + bh->b_size;
1004
1005		if (buffer_new(bh)) {
1006			if (block_end > from && block_start < to) {
1007				if (!PageUptodate(page)) {
1008					unsigned start, end;
1009
1010					start = max(from, block_start);
1011					end = min(to, block_end);
1012
1013					zero_user_segment(page, start, end);
1014					set_buffer_uptodate(bh);
1015				}
1016
1017				clear_buffer_new(bh);
1018				mark_buffer_dirty(bh);
1019			}
1020		}
1021
1022		block_start = block_end;
1023		bh = bh->b_this_page;
1024	} while (bh != head);
1025}
1026
1027/*
1028 * Only called when we have a failure during allocating write to write
1029 * zero's to the newly allocated region.
1030 */
1031static void ocfs2_write_failure(struct inode *inode,
1032				struct ocfs2_write_ctxt *wc,
1033				loff_t user_pos, unsigned user_len)
1034{
1035	int i;
1036	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1037		to = user_pos + user_len;
1038	struct page *tmppage;
1039
1040	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1041
1042	for(i = 0; i < wc->w_num_pages; i++) {
1043		tmppage = wc->w_pages[i];
1044
1045		if (page_has_buffers(tmppage)) {
1046			if (ocfs2_should_order_data(inode))
1047				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1048
1049			block_commit_write(tmppage, from, to);
1050		}
1051	}
1052}
1053
1054static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1055					struct ocfs2_write_ctxt *wc,
1056					struct page *page, u32 cpos,
1057					loff_t user_pos, unsigned user_len,
1058					int new)
1059{
1060	int ret;
1061	unsigned int map_from = 0, map_to = 0;
1062	unsigned int cluster_start, cluster_end;
1063	unsigned int user_data_from = 0, user_data_to = 0;
1064
1065	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1066					&cluster_start, &cluster_end);
1067
1068	if (page == wc->w_target_page) {
1069		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1070		map_to = map_from + user_len;
1071
1072		if (new)
1073			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1074						    cluster_start, cluster_end,
1075						    new);
1076		else
1077			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1078						    map_from, map_to, new);
1079		if (ret) {
1080			mlog_errno(ret);
1081			goto out;
1082		}
1083
1084		user_data_from = map_from;
1085		user_data_to = map_to;
1086		if (new) {
1087			map_from = cluster_start;
1088			map_to = cluster_end;
1089		}
1090	} else {
1091		/*
1092		 * If we haven't allocated the new page yet, we
1093		 * shouldn't be writing it out without copying user
1094		 * data. This is likely a math error from the caller.
1095		 */
1096		BUG_ON(!new);
1097
1098		map_from = cluster_start;
1099		map_to = cluster_end;
1100
1101		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1102					    cluster_start, cluster_end, new);
1103		if (ret) {
1104			mlog_errno(ret);
1105			goto out;
1106		}
1107	}
1108
1109	/*
1110	 * Parts of newly allocated pages need to be zero'd.
1111	 *
1112	 * Above, we have also rewritten 'to' and 'from' - as far as
1113	 * the rest of the function is concerned, the entire cluster
1114	 * range inside of a page needs to be written.
1115	 *
1116	 * We can skip this if the page is up to date - it's already
1117	 * been zero'd from being read in as a hole.
1118	 */
1119	if (new && !PageUptodate(page))
1120		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1121					 cpos, user_data_from, user_data_to);
1122
1123	flush_dcache_page(page);
1124
1125out:
1126	return ret;
1127}
1128
1129/*
1130 * This function will only grab one clusters worth of pages.
1131 */
1132static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1133				      struct ocfs2_write_ctxt *wc,
1134				      u32 cpos, loff_t user_pos, int new,
1135				      struct page *mmap_page)
1136{
1137	int ret = 0, i;
1138	unsigned long start, target_index, index;
1139	struct inode *inode = mapping->host;
1140
1141	target_index = user_pos >> PAGE_CACHE_SHIFT;
1142
1143	/*
1144	 * Figure out how many pages we'll be manipulating here. For
1145	 * non allocating write, we just change the one
1146	 * page. Otherwise, we'll need a whole clusters worth.
1147	 */
1148	if (new) {
1149		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1150		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1151	} else {
1152		wc->w_num_pages = 1;
1153		start = target_index;
1154	}
1155
1156	for(i = 0; i < wc->w_num_pages; i++) {
1157		index = start + i;
1158
1159		if (index == target_index && mmap_page) {
1160			/*
1161			 * ocfs2_pagemkwrite() is a little different
1162			 * and wants us to directly use the page
1163			 * passed in.
1164			 */
1165			lock_page(mmap_page);
1166
1167			if (mmap_page->mapping != mapping) {
1168				unlock_page(mmap_page);
1169				/*
1170				 * Sanity check - the locking in
1171				 * ocfs2_pagemkwrite() should ensure
1172				 * that this code doesn't trigger.
1173				 */
1174				ret = -EINVAL;
1175				mlog_errno(ret);
1176				goto out;
1177			}
1178
1179			page_cache_get(mmap_page);
1180			wc->w_pages[i] = mmap_page;
1181		} else {
1182			wc->w_pages[i] = find_or_create_page(mapping, index,
1183							     GFP_NOFS);
1184			if (!wc->w_pages[i]) {
1185				ret = -ENOMEM;
1186				mlog_errno(ret);
1187				goto out;
1188			}
1189		}
1190
1191		if (index == target_index)
1192			wc->w_target_page = wc->w_pages[i];
1193	}
1194out:
1195	return ret;
1196}
1197
1198/*
1199 * Prepare a single cluster for write one cluster into the file.
1200 */
1201static int ocfs2_write_cluster(struct address_space *mapping,
1202			       u32 phys, unsigned int unwritten,
1203			       unsigned int should_zero,
1204			       struct ocfs2_alloc_context *data_ac,
1205			       struct ocfs2_alloc_context *meta_ac,
1206			       struct ocfs2_write_ctxt *wc, u32 cpos,
1207			       loff_t user_pos, unsigned user_len)
1208{
1209	int ret, i, new;
1210	u64 v_blkno, p_blkno;
1211	struct inode *inode = mapping->host;
1212	struct ocfs2_extent_tree et;
1213
1214	new = phys == 0 ? 1 : 0;
1215	if (new) {
1216		u32 tmp_pos;
1217
1218		/*
1219		 * This is safe to call with the page locks - it won't take
1220		 * any additional semaphores or cluster locks.
1221		 */
1222		tmp_pos = cpos;
1223		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1224					   &tmp_pos, 1, 0, wc->w_di_bh,
1225					   wc->w_handle, data_ac,
1226					   meta_ac, NULL);
1227		/*
1228		 * This shouldn't happen because we must have already
1229		 * calculated the correct meta data allocation required. The
1230		 * internal tree allocation code should know how to increase
1231		 * transaction credits itself.
1232		 *
1233		 * If need be, we could handle -EAGAIN for a
1234		 * RESTART_TRANS here.
1235		 */
1236		mlog_bug_on_msg(ret == -EAGAIN,
1237				"Inode %llu: EAGAIN return during allocation.\n",
1238				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1239		if (ret < 0) {
1240			mlog_errno(ret);
1241			goto out;
1242		}
1243	} else if (unwritten) {
1244		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1245					      wc->w_di_bh);
1246		ret = ocfs2_mark_extent_written(inode, &et,
1247						wc->w_handle, cpos, 1, phys,
1248						meta_ac, &wc->w_dealloc);
1249		if (ret < 0) {
1250			mlog_errno(ret);
1251			goto out;
1252		}
1253	}
1254
1255	if (should_zero)
1256		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1257	else
1258		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1259
1260	/*
1261	 * The only reason this should fail is due to an inability to
1262	 * find the extent added.
1263	 */
1264	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1265					  NULL);
1266	if (ret < 0) {
1267		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1268			    "at logical block %llu",
1269			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1270			    (unsigned long long)v_blkno);
1271		goto out;
1272	}
1273
1274	BUG_ON(p_blkno == 0);
1275
1276	for(i = 0; i < wc->w_num_pages; i++) {
1277		int tmpret;
1278
1279		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1280						      wc->w_pages[i], cpos,
1281						      user_pos, user_len,
1282						      should_zero);
1283		if (tmpret) {
1284			mlog_errno(tmpret);
1285			if (ret == 0)
1286				ret = tmpret;
1287		}
1288	}
1289
1290	/*
1291	 * We only have cleanup to do in case of allocating write.
1292	 */
1293	if (ret && new)
1294		ocfs2_write_failure(inode, wc, user_pos, user_len);
1295
1296out:
1297
1298	return ret;
1299}
1300
1301static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1302				       struct ocfs2_alloc_context *data_ac,
1303				       struct ocfs2_alloc_context *meta_ac,
1304				       struct ocfs2_write_ctxt *wc,
1305				       loff_t pos, unsigned len)
1306{
1307	int ret, i;
1308	loff_t cluster_off;
1309	unsigned int local_len = len;
1310	struct ocfs2_write_cluster_desc *desc;
1311	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1312
1313	for (i = 0; i < wc->w_clen; i++) {
1314		desc = &wc->w_desc[i];
1315
1316		/*
1317		 * We have to make sure that the total write passed in
1318		 * doesn't extend past a single cluster.
1319		 */
1320		local_len = len;
1321		cluster_off = pos & (osb->s_clustersize - 1);
1322		if ((cluster_off + local_len) > osb->s_clustersize)
1323			local_len = osb->s_clustersize - cluster_off;
1324
1325		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1326					  desc->c_unwritten,
1327					  desc->c_needs_zero,
1328					  data_ac, meta_ac,
1329					  wc, desc->c_cpos, pos, local_len);
1330		if (ret) {
1331			mlog_errno(ret);
1332			goto out;
1333		}
1334
1335		len -= local_len;
1336		pos += local_len;
1337	}
1338
1339	ret = 0;
1340out:
1341	return ret;
1342}
1343
1344/*
1345 * ocfs2_write_end() wants to know which parts of the target page it
1346 * should complete the write on. It's easiest to compute them ahead of
1347 * time when a more complete view of the write is available.
1348 */
1349static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1350					struct ocfs2_write_ctxt *wc,
1351					loff_t pos, unsigned len, int alloc)
1352{
1353	struct ocfs2_write_cluster_desc *desc;
1354
1355	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1356	wc->w_target_to = wc->w_target_from + len;
1357
1358	if (alloc == 0)
1359		return;
1360
1361	/*
1362	 * Allocating write - we may have different boundaries based
1363	 * on page size and cluster size.
1364	 *
1365	 * NOTE: We can no longer compute one value from the other as
1366	 * the actual write length and user provided length may be
1367	 * different.
1368	 */
1369
1370	if (wc->w_large_pages) {
1371		/*
1372		 * We only care about the 1st and last cluster within
1373		 * our range and whether they should be zero'd or not. Either
1374		 * value may be extended out to the start/end of a
1375		 * newly allocated cluster.
1376		 */
1377		desc = &wc->w_desc[0];
1378		if (desc->c_needs_zero)
1379			ocfs2_figure_cluster_boundaries(osb,
1380							desc->c_cpos,
1381							&wc->w_target_from,
1382							NULL);
1383
1384		desc = &wc->w_desc[wc->w_clen - 1];
1385		if (desc->c_needs_zero)
1386			ocfs2_figure_cluster_boundaries(osb,
1387							desc->c_cpos,
1388							NULL,
1389							&wc->w_target_to);
1390	} else {
1391		wc->w_target_from = 0;
1392		wc->w_target_to = PAGE_CACHE_SIZE;
1393	}
1394}
1395
1396/*
1397 * Populate each single-cluster write descriptor in the write context
1398 * with information about the i/o to be done.
1399 *
1400 * Returns the number of clusters that will have to be allocated, as
1401 * well as a worst case estimate of the number of extent records that
1402 * would have to be created during a write to an unwritten region.
1403 */
1404static int ocfs2_populate_write_desc(struct inode *inode,
1405				     struct ocfs2_write_ctxt *wc,
1406				     unsigned int *clusters_to_alloc,
1407				     unsigned int *extents_to_split)
1408{
1409	int ret;
1410	struct ocfs2_write_cluster_desc *desc;
1411	unsigned int num_clusters = 0;
1412	unsigned int ext_flags = 0;
1413	u32 phys = 0;
1414	int i;
1415
1416	*clusters_to_alloc = 0;
1417	*extents_to_split = 0;
1418
1419	for (i = 0; i < wc->w_clen; i++) {
1420		desc = &wc->w_desc[i];
1421		desc->c_cpos = wc->w_cpos + i;
1422
1423		if (num_clusters == 0) {
1424			/*
1425			 * Need to look up the next extent record.
1426			 */
1427			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1428						 &num_clusters, &ext_flags);
1429			if (ret) {
1430				mlog_errno(ret);
1431				goto out;
1432			}
1433
1434			/* We should already CoW the refcountd extent. */
1435			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1436
1437			/*
1438			 * Assume worst case - that we're writing in
1439			 * the middle of the extent.
1440			 *
1441			 * We can assume that the write proceeds from
1442			 * left to right, in which case the extent
1443			 * insert code is smart enough to coalesce the
1444			 * next splits into the previous records created.
1445			 */
1446			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1447				*extents_to_split = *extents_to_split + 2;
1448		} else if (phys) {
1449			/*
1450			 * Only increment phys if it doesn't describe
1451			 * a hole.
1452			 */
1453			phys++;
1454		}
1455
1456		/*
1457		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1458		 * file that got extended.  w_first_new_cpos tells us
1459		 * where the newly allocated clusters are so we can
1460		 * zero them.
1461		 */
1462		if (desc->c_cpos >= wc->w_first_new_cpos) {
1463			BUG_ON(phys == 0);
1464			desc->c_needs_zero = 1;
1465		}
1466
1467		desc->c_phys = phys;
1468		if (phys == 0) {
1469			desc->c_new = 1;
1470			desc->c_needs_zero = 1;
1471			*clusters_to_alloc = *clusters_to_alloc + 1;
1472		}
1473
1474		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1475			desc->c_unwritten = 1;
1476			desc->c_needs_zero = 1;
1477		}
1478
1479		num_clusters--;
1480	}
1481
1482	ret = 0;
1483out:
1484	return ret;
1485}
1486
1487static int ocfs2_write_begin_inline(struct address_space *mapping,
1488				    struct inode *inode,
1489				    struct ocfs2_write_ctxt *wc)
1490{
1491	int ret;
1492	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1493	struct page *page;
1494	handle_t *handle;
1495	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1496
1497	page = find_or_create_page(mapping, 0, GFP_NOFS);
1498	if (!page) {
1499		ret = -ENOMEM;
1500		mlog_errno(ret);
1501		goto out;
1502	}
1503	/*
1504	 * If we don't set w_num_pages then this page won't get unlocked
1505	 * and freed on cleanup of the write context.
1506	 */
1507	wc->w_pages[0] = wc->w_target_page = page;
1508	wc->w_num_pages = 1;
1509
1510	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1511	if (IS_ERR(handle)) {
1512		ret = PTR_ERR(handle);
1513		mlog_errno(ret);
1514		goto out;
1515	}
1516
1517	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1518				      OCFS2_JOURNAL_ACCESS_WRITE);
1519	if (ret) {
1520		ocfs2_commit_trans(osb, handle);
1521
1522		mlog_errno(ret);
1523		goto out;
1524	}
1525
1526	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1527		ocfs2_set_inode_data_inline(inode, di);
1528
1529	if (!PageUptodate(page)) {
1530		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1531		if (ret) {
1532			ocfs2_commit_trans(osb, handle);
1533
1534			goto out;
1535		}
1536	}
1537
1538	wc->w_handle = handle;
1539out:
1540	return ret;
1541}
1542
1543int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1544{
1545	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1546
1547	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1548		return 1;
1549	return 0;
1550}
1551
1552static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1553					  struct inode *inode, loff_t pos,
1554					  unsigned len, struct page *mmap_page,
1555					  struct ocfs2_write_ctxt *wc)
1556{
1557	int ret, written = 0;
1558	loff_t end = pos + len;
1559	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1560	struct ocfs2_dinode *di = NULL;
1561
1562	mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1563	     (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1564	     oi->ip_dyn_features);
1565
1566	/*
1567	 * Handle inodes which already have inline data 1st.
1568	 */
1569	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1570		if (mmap_page == NULL &&
1571		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1572			goto do_inline_write;
1573
1574		/*
1575		 * The write won't fit - we have to give this inode an
1576		 * inline extent list now.
1577		 */
1578		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1579		if (ret)
1580			mlog_errno(ret);
1581		goto out;
1582	}
1583
1584	/*
1585	 * Check whether the inode can accept inline data.
1586	 */
1587	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1588		return 0;
1589
1590	/*
1591	 * Check whether the write can fit.
1592	 */
1593	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1594	if (mmap_page ||
1595	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1596		return 0;
1597
1598do_inline_write:
1599	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1600	if (ret) {
1601		mlog_errno(ret);
1602		goto out;
1603	}
1604
1605	/*
1606	 * This signals to the caller that the data can be written
1607	 * inline.
1608	 */
1609	written = 1;
1610out:
1611	return written ? written : ret;
1612}
1613
1614/*
1615 * This function only does anything for file systems which can't
1616 * handle sparse files.
1617 *
1618 * What we want to do here is fill in any hole between the current end
1619 * of allocation and the end of our write. That way the rest of the
1620 * write path can treat it as an non-allocating write, which has no
1621 * special case code for sparse/nonsparse files.
1622 */
1623static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1624					unsigned len,
1625					struct ocfs2_write_ctxt *wc)
1626{
1627	int ret;
1628	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1629	loff_t newsize = pos + len;
1630
1631	if (ocfs2_sparse_alloc(osb))
1632		return 0;
1633
1634	if (newsize <= i_size_read(inode))
1635		return 0;
1636
1637	ret = ocfs2_extend_no_holes(inode, newsize, pos);
1638	if (ret)
1639		mlog_errno(ret);
1640
1641	wc->w_first_new_cpos =
1642		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1643
1644	return ret;
1645}
1646
1647int ocfs2_write_begin_nolock(struct address_space *mapping,
1648			     loff_t pos, unsigned len, unsigned flags,
1649			     struct page **pagep, void **fsdata,
1650			     struct buffer_head *di_bh, struct page *mmap_page)
1651{
1652	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1653	unsigned int clusters_to_alloc, extents_to_split;
1654	struct ocfs2_write_ctxt *wc;
1655	struct inode *inode = mapping->host;
1656	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1657	struct ocfs2_dinode *di;
1658	struct ocfs2_alloc_context *data_ac = NULL;
1659	struct ocfs2_alloc_context *meta_ac = NULL;
1660	handle_t *handle;
1661	struct ocfs2_extent_tree et;
1662
1663	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1664	if (ret) {
1665		mlog_errno(ret);
1666		return ret;
1667	}
1668
1669	if (ocfs2_supports_inline_data(osb)) {
1670		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1671						     mmap_page, wc);
1672		if (ret == 1) {
1673			ret = 0;
1674			goto success;
1675		}
1676		if (ret < 0) {
1677			mlog_errno(ret);
1678			goto out;
1679		}
1680	}
1681
1682	ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1683	if (ret) {
1684		mlog_errno(ret);
1685		goto out;
1686	}
1687
1688	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1689	if (ret < 0) {
1690		mlog_errno(ret);
1691		goto out;
1692	} else if (ret == 1) {
1693		ret = ocfs2_refcount_cow(inode, di_bh,
1694					 wc->w_cpos, wc->w_clen, UINT_MAX);
1695		if (ret) {
1696			mlog_errno(ret);
1697			goto out;
1698		}
1699	}
1700
1701	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1702					&extents_to_split);
1703	if (ret) {
1704		mlog_errno(ret);
1705		goto out;
1706	}
1707
1708	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1709
1710	/*
1711	 * We set w_target_from, w_target_to here so that
1712	 * ocfs2_write_end() knows which range in the target page to
1713	 * write out. An allocation requires that we write the entire
1714	 * cluster range.
1715	 */
1716	if (clusters_to_alloc || extents_to_split) {
1717		/*
1718		 * XXX: We are stretching the limits of
1719		 * ocfs2_lock_allocators(). It greatly over-estimates
1720		 * the work to be done.
1721		 */
1722		mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1723		     " clusters_to_add = %u, extents_to_split = %u\n",
1724		     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1725		     (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1726		     clusters_to_alloc, extents_to_split);
1727
1728		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1729					      wc->w_di_bh);
1730		ret = ocfs2_lock_allocators(inode, &et,
1731					    clusters_to_alloc, extents_to_split,
1732					    &data_ac, &meta_ac);
1733		if (ret) {
1734			mlog_errno(ret);
1735			goto out;
1736		}
1737
1738		if (data_ac)
1739			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1740
1741		credits = ocfs2_calc_extend_credits(inode->i_sb,
1742						    &di->id2.i_list,
1743						    clusters_to_alloc);
1744
1745	}
1746
1747	/*
1748	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1749	 * and non-sparse clusters we just extended.  For non-sparse writes,
1750	 * we know zeros will only be needed in the first and/or last cluster.
1751	 */
1752	if (clusters_to_alloc || extents_to_split ||
1753	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1754			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1755		cluster_of_pages = 1;
1756	else
1757		cluster_of_pages = 0;
1758
1759	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1760
1761	handle = ocfs2_start_trans(osb, credits);
1762	if (IS_ERR(handle)) {
1763		ret = PTR_ERR(handle);
1764		mlog_errno(ret);
1765		goto out;
1766	}
1767
1768	wc->w_handle = handle;
1769
1770	if (clusters_to_alloc) {
1771		ret = dquot_alloc_space_nodirty(inode,
1772			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1773		if (ret)
1774			goto out_commit;
1775	}
1776	/*
1777	 * We don't want this to fail in ocfs2_write_end(), so do it
1778	 * here.
1779	 */
1780	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1781				      OCFS2_JOURNAL_ACCESS_WRITE);
1782	if (ret) {
1783		mlog_errno(ret);
1784		goto out_quota;
1785	}
1786
1787	/*
1788	 * Fill our page array first. That way we've grabbed enough so
1789	 * that we can zero and flush if we error after adding the
1790	 * extent.
1791	 */
1792	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1793					 cluster_of_pages, mmap_page);
1794	if (ret) {
1795		mlog_errno(ret);
1796		goto out_quota;
1797	}
1798
1799	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1800					  len);
1801	if (ret) {
1802		mlog_errno(ret);
1803		goto out_quota;
1804	}
1805
1806	if (data_ac)
1807		ocfs2_free_alloc_context(data_ac);
1808	if (meta_ac)
1809		ocfs2_free_alloc_context(meta_ac);
1810
1811success:
1812	*pagep = wc->w_target_page;
1813	*fsdata = wc;
1814	return 0;
1815out_quota:
1816	if (clusters_to_alloc)
1817		dquot_free_space(inode,
1818			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1819out_commit:
1820	ocfs2_commit_trans(osb, handle);
1821
1822out:
1823	ocfs2_free_write_ctxt(wc);
1824
1825	if (data_ac)
1826		ocfs2_free_alloc_context(data_ac);
1827	if (meta_ac)
1828		ocfs2_free_alloc_context(meta_ac);
1829	return ret;
1830}
1831
1832static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1833			     loff_t pos, unsigned len, unsigned flags,
1834			     struct page **pagep, void **fsdata)
1835{
1836	int ret;
1837	struct buffer_head *di_bh = NULL;
1838	struct inode *inode = mapping->host;
1839
1840	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1841	if (ret) {
1842		mlog_errno(ret);
1843		return ret;
1844	}
1845
1846	/*
1847	 * Take alloc sem here to prevent concurrent lookups. That way
1848	 * the mapping, zeroing and tree manipulation within
1849	 * ocfs2_write() will be safe against ->readpage(). This
1850	 * should also serve to lock out allocation from a shared
1851	 * writeable region.
1852	 */
1853	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1854
1855	ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1856				       fsdata, di_bh, NULL);
1857	if (ret) {
1858		mlog_errno(ret);
1859		goto out_fail;
1860	}
1861
1862	brelse(di_bh);
1863
1864	return 0;
1865
1866out_fail:
1867	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1868
1869	brelse(di_bh);
1870	ocfs2_inode_unlock(inode, 1);
1871
1872	return ret;
1873}
1874
1875static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1876				   unsigned len, unsigned *copied,
1877				   struct ocfs2_dinode *di,
1878				   struct ocfs2_write_ctxt *wc)
1879{
1880	void *kaddr;
1881
1882	if (unlikely(*copied < len)) {
1883		if (!PageUptodate(wc->w_target_page)) {
1884			*copied = 0;
1885			return;
1886		}
1887	}
1888
1889	kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1890	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1891	kunmap_atomic(kaddr, KM_USER0);
1892
1893	mlog(0, "Data written to inode at offset %llu. "
1894	     "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1895	     (unsigned long long)pos, *copied,
1896	     le16_to_cpu(di->id2.i_data.id_count),
1897	     le16_to_cpu(di->i_dyn_features));
1898}
1899
1900int ocfs2_write_end_nolock(struct address_space *mapping,
1901			   loff_t pos, unsigned len, unsigned copied,
1902			   struct page *page, void *fsdata)
1903{
1904	int i;
1905	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1906	struct inode *inode = mapping->host;
1907	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1908	struct ocfs2_write_ctxt *wc = fsdata;
1909	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1910	handle_t *handle = wc->w_handle;
1911	struct page *tmppage;
1912
1913	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1914		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1915		goto out_write_size;
1916	}
1917
1918	if (unlikely(copied < len)) {
1919		if (!PageUptodate(wc->w_target_page))
1920			copied = 0;
1921
1922		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1923				       start+len);
1924	}
1925	flush_dcache_page(wc->w_target_page);
1926
1927	for(i = 0; i < wc->w_num_pages; i++) {
1928		tmppage = wc->w_pages[i];
1929
1930		if (tmppage == wc->w_target_page) {
1931			from = wc->w_target_from;
1932			to = wc->w_target_to;
1933
1934			BUG_ON(from > PAGE_CACHE_SIZE ||
1935			       to > PAGE_CACHE_SIZE ||
1936			       to < from);
1937		} else {
1938			/*
1939			 * Pages adjacent to the target (if any) imply
1940			 * a hole-filling write in which case we want
1941			 * to flush their entire range.
1942			 */
1943			from = 0;
1944			to = PAGE_CACHE_SIZE;
1945		}
1946
1947		if (page_has_buffers(tmppage)) {
1948			if (ocfs2_should_order_data(inode))
1949				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1950			block_commit_write(tmppage, from, to);
1951		}
1952	}
1953
1954out_write_size:
1955	pos += copied;
1956	if (pos > inode->i_size) {
1957		i_size_write(inode, pos);
1958		mark_inode_dirty(inode);
1959	}
1960	inode->i_blocks = ocfs2_inode_sector_count(inode);
1961	di->i_size = cpu_to_le64((u64)i_size_read(inode));
1962	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1963	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1964	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1965	ocfs2_journal_dirty(handle, wc->w_di_bh);
1966
1967	ocfs2_commit_trans(osb, handle);
1968
1969	ocfs2_run_deallocs(osb, &wc->w_dealloc);
1970
1971	ocfs2_free_write_ctxt(wc);
1972
1973	return copied;
1974}
1975
1976static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1977			   loff_t pos, unsigned len, unsigned copied,
1978			   struct page *page, void *fsdata)
1979{
1980	int ret;
1981	struct inode *inode = mapping->host;
1982
1983	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1984
1985	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1986	ocfs2_inode_unlock(inode, 1);
1987
1988	return ret;
1989}
1990
1991const struct address_space_operations ocfs2_aops = {
1992	.readpage		= ocfs2_readpage,
1993	.readpages		= ocfs2_readpages,
1994	.writepage		= ocfs2_writepage,
1995	.write_begin		= ocfs2_write_begin,
1996	.write_end		= ocfs2_write_end,
1997	.bmap			= ocfs2_bmap,
1998	.sync_page		= block_sync_page,
1999	.direct_IO		= ocfs2_direct_IO,
2000	.invalidatepage		= ocfs2_invalidatepage,
2001	.releasepage		= ocfs2_releasepage,
2002	.migratepage		= buffer_migrate_page,
2003	.is_partially_uptodate	= block_is_partially_uptodate,
2004	.error_remove_page	= generic_error_remove_page,
2005};
2006