aops.c revision 53ef99cad9878f02f27bb30bc304fc42af8bdd6e
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
27#include <linux/swap.h>
28#include <linux/pipe_fs_i.h>
29#include <linux/mpage.h>
30
31#define MLOG_MASK_PREFIX ML_FILE_IO
32#include <cluster/masklog.h>
33
34#include "ocfs2.h"
35
36#include "alloc.h"
37#include "aops.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "file.h"
41#include "inode.h"
42#include "journal.h"
43#include "suballoc.h"
44#include "super.h"
45#include "symlink.h"
46
47#include "buffer_head_io.h"
48
49static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
50				   struct buffer_head *bh_result, int create)
51{
52	int err = -EIO;
53	int status;
54	struct ocfs2_dinode *fe = NULL;
55	struct buffer_head *bh = NULL;
56	struct buffer_head *buffer_cache_bh = NULL;
57	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58	void *kaddr;
59
60	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
61		   (unsigned long long)iblock, bh_result, create);
62
63	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
64
65	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
66		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
67		     (unsigned long long)iblock);
68		goto bail;
69	}
70
71	status = ocfs2_read_inode_block(inode, &bh);
72	if (status < 0) {
73		mlog_errno(status);
74		goto bail;
75	}
76	fe = (struct ocfs2_dinode *) bh->b_data;
77
78	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
79						    le32_to_cpu(fe->i_clusters))) {
80		mlog(ML_ERROR, "block offset is outside the allocated size: "
81		     "%llu\n", (unsigned long long)iblock);
82		goto bail;
83	}
84
85	/* We don't use the page cache to create symlink data, so if
86	 * need be, copy it over from the buffer cache. */
87	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
88		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
89			    iblock;
90		buffer_cache_bh = sb_getblk(osb->sb, blkno);
91		if (!buffer_cache_bh) {
92			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
93			goto bail;
94		}
95
96		/* we haven't locked out transactions, so a commit
97		 * could've happened. Since we've got a reference on
98		 * the bh, even if it commits while we're doing the
99		 * copy, the data is still good. */
100		if (buffer_jbd(buffer_cache_bh)
101		    && ocfs2_inode_is_new(inode)) {
102			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
103			if (!kaddr) {
104				mlog(ML_ERROR, "couldn't kmap!\n");
105				goto bail;
106			}
107			memcpy(kaddr + (bh_result->b_size * iblock),
108			       buffer_cache_bh->b_data,
109			       bh_result->b_size);
110			kunmap_atomic(kaddr, KM_USER0);
111			set_buffer_uptodate(bh_result);
112		}
113		brelse(buffer_cache_bh);
114	}
115
116	map_bh(bh_result, inode->i_sb,
117	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
118
119	err = 0;
120
121bail:
122	brelse(bh);
123
124	mlog_exit(err);
125	return err;
126}
127
128static int ocfs2_get_block(struct inode *inode, sector_t iblock,
129			   struct buffer_head *bh_result, int create)
130{
131	int err = 0;
132	unsigned int ext_flags;
133	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
134	u64 p_blkno, count, past_eof;
135	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
136
137	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
138		   (unsigned long long)iblock, bh_result, create);
139
140	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
141		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
142		     inode, inode->i_ino);
143
144	if (S_ISLNK(inode->i_mode)) {
145		/* this always does I/O for some reason. */
146		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
147		goto bail;
148	}
149
150	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
151					  &ext_flags);
152	if (err) {
153		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
154		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
155		     (unsigned long long)p_blkno);
156		goto bail;
157	}
158
159	if (max_blocks < count)
160		count = max_blocks;
161
162	/*
163	 * ocfs2 never allocates in this function - the only time we
164	 * need to use BH_New is when we're extending i_size on a file
165	 * system which doesn't support holes, in which case BH_New
166	 * allows block_prepare_write() to zero.
167	 *
168	 * If we see this on a sparse file system, then a truncate has
169	 * raced us and removed the cluster. In this case, we clear
170	 * the buffers dirty and uptodate bits and let the buffer code
171	 * ignore it as a hole.
172	 */
173	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
174		clear_buffer_dirty(bh_result);
175		clear_buffer_uptodate(bh_result);
176		goto bail;
177	}
178
179	/* Treat the unwritten extent as a hole for zeroing purposes. */
180	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
181		map_bh(bh_result, inode->i_sb, p_blkno);
182
183	bh_result->b_size = count << inode->i_blkbits;
184
185	if (!ocfs2_sparse_alloc(osb)) {
186		if (p_blkno == 0) {
187			err = -EIO;
188			mlog(ML_ERROR,
189			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
190			     (unsigned long long)iblock,
191			     (unsigned long long)p_blkno,
192			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
193			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
194			dump_stack();
195		}
196
197		past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
198		mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
199		     (unsigned long long)past_eof);
200
201		if (create && (iblock >= past_eof))
202			set_buffer_new(bh_result);
203	}
204
205bail:
206	if (err < 0)
207		err = -EIO;
208
209	mlog_exit(err);
210	return err;
211}
212
213int ocfs2_read_inline_data(struct inode *inode, struct page *page,
214			   struct buffer_head *di_bh)
215{
216	void *kaddr;
217	loff_t size;
218	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
219
220	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
221		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
222			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
223		return -EROFS;
224	}
225
226	size = i_size_read(inode);
227
228	if (size > PAGE_CACHE_SIZE ||
229	    size > ocfs2_max_inline_data(inode->i_sb)) {
230		ocfs2_error(inode->i_sb,
231			    "Inode %llu has with inline data has bad size: %Lu",
232			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
233			    (unsigned long long)size);
234		return -EROFS;
235	}
236
237	kaddr = kmap_atomic(page, KM_USER0);
238	if (size)
239		memcpy(kaddr, di->id2.i_data.id_data, size);
240	/* Clear the remaining part of the page */
241	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
242	flush_dcache_page(page);
243	kunmap_atomic(kaddr, KM_USER0);
244
245	SetPageUptodate(page);
246
247	return 0;
248}
249
250static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
251{
252	int ret;
253	struct buffer_head *di_bh = NULL;
254
255	BUG_ON(!PageLocked(page));
256	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
257
258	ret = ocfs2_read_inode_block(inode, &di_bh);
259	if (ret) {
260		mlog_errno(ret);
261		goto out;
262	}
263
264	ret = ocfs2_read_inline_data(inode, page, di_bh);
265out:
266	unlock_page(page);
267
268	brelse(di_bh);
269	return ret;
270}
271
272static int ocfs2_readpage(struct file *file, struct page *page)
273{
274	struct inode *inode = page->mapping->host;
275	struct ocfs2_inode_info *oi = OCFS2_I(inode);
276	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
277	int ret, unlock = 1;
278
279	mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
280
281	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
282	if (ret != 0) {
283		if (ret == AOP_TRUNCATED_PAGE)
284			unlock = 0;
285		mlog_errno(ret);
286		goto out;
287	}
288
289	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
290		ret = AOP_TRUNCATED_PAGE;
291		goto out_inode_unlock;
292	}
293
294	/*
295	 * i_size might have just been updated as we grabed the meta lock.  We
296	 * might now be discovering a truncate that hit on another node.
297	 * block_read_full_page->get_block freaks out if it is asked to read
298	 * beyond the end of a file, so we check here.  Callers
299	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
300	 * and notice that the page they just read isn't needed.
301	 *
302	 * XXX sys_readahead() seems to get that wrong?
303	 */
304	if (start >= i_size_read(inode)) {
305		zero_user(page, 0, PAGE_SIZE);
306		SetPageUptodate(page);
307		ret = 0;
308		goto out_alloc;
309	}
310
311	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
312		ret = ocfs2_readpage_inline(inode, page);
313	else
314		ret = block_read_full_page(page, ocfs2_get_block);
315	unlock = 0;
316
317out_alloc:
318	up_read(&OCFS2_I(inode)->ip_alloc_sem);
319out_inode_unlock:
320	ocfs2_inode_unlock(inode, 0);
321out:
322	if (unlock)
323		unlock_page(page);
324	mlog_exit(ret);
325	return ret;
326}
327
328/*
329 * This is used only for read-ahead. Failures or difficult to handle
330 * situations are safe to ignore.
331 *
332 * Right now, we don't bother with BH_Boundary - in-inode extent lists
333 * are quite large (243 extents on 4k blocks), so most inodes don't
334 * grow out to a tree. If need be, detecting boundary extents could
335 * trivially be added in a future version of ocfs2_get_block().
336 */
337static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
338			   struct list_head *pages, unsigned nr_pages)
339{
340	int ret, err = -EIO;
341	struct inode *inode = mapping->host;
342	struct ocfs2_inode_info *oi = OCFS2_I(inode);
343	loff_t start;
344	struct page *last;
345
346	/*
347	 * Use the nonblocking flag for the dlm code to avoid page
348	 * lock inversion, but don't bother with retrying.
349	 */
350	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
351	if (ret)
352		return err;
353
354	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
355		ocfs2_inode_unlock(inode, 0);
356		return err;
357	}
358
359	/*
360	 * Don't bother with inline-data. There isn't anything
361	 * to read-ahead in that case anyway...
362	 */
363	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
364		goto out_unlock;
365
366	/*
367	 * Check whether a remote node truncated this file - we just
368	 * drop out in that case as it's not worth handling here.
369	 */
370	last = list_entry(pages->prev, struct page, lru);
371	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
372	if (start >= i_size_read(inode))
373		goto out_unlock;
374
375	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
376
377out_unlock:
378	up_read(&oi->ip_alloc_sem);
379	ocfs2_inode_unlock(inode, 0);
380
381	return err;
382}
383
384/* Note: Because we don't support holes, our allocation has
385 * already happened (allocation writes zeros to the file data)
386 * so we don't have to worry about ordered writes in
387 * ocfs2_writepage.
388 *
389 * ->writepage is called during the process of invalidating the page cache
390 * during blocked lock processing.  It can't block on any cluster locks
391 * to during block mapping.  It's relying on the fact that the block
392 * mapping can't have disappeared under the dirty pages that it is
393 * being asked to write back.
394 */
395static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
396{
397	int ret;
398
399	mlog_entry("(0x%p)\n", page);
400
401	ret = block_write_full_page(page, ocfs2_get_block, wbc);
402
403	mlog_exit(ret);
404
405	return ret;
406}
407
408/*
409 * This is called from ocfs2_write_zero_page() which has handled it's
410 * own cluster locking and has ensured allocation exists for those
411 * blocks to be written.
412 */
413int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
414			       unsigned from, unsigned to)
415{
416	int ret;
417
418	ret = block_prepare_write(page, from, to, ocfs2_get_block);
419
420	return ret;
421}
422
423/* Taken from ext3. We don't necessarily need the full blown
424 * functionality yet, but IMHO it's better to cut and paste the whole
425 * thing so we can avoid introducing our own bugs (and easily pick up
426 * their fixes when they happen) --Mark */
427int walk_page_buffers(	handle_t *handle,
428			struct buffer_head *head,
429			unsigned from,
430			unsigned to,
431			int *partial,
432			int (*fn)(	handle_t *handle,
433					struct buffer_head *bh))
434{
435	struct buffer_head *bh;
436	unsigned block_start, block_end;
437	unsigned blocksize = head->b_size;
438	int err, ret = 0;
439	struct buffer_head *next;
440
441	for (	bh = head, block_start = 0;
442		ret == 0 && (bh != head || !block_start);
443	    	block_start = block_end, bh = next)
444	{
445		next = bh->b_this_page;
446		block_end = block_start + blocksize;
447		if (block_end <= from || block_start >= to) {
448			if (partial && !buffer_uptodate(bh))
449				*partial = 1;
450			continue;
451		}
452		err = (*fn)(handle, bh);
453		if (!ret)
454			ret = err;
455	}
456	return ret;
457}
458
459handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
460							 struct page *page,
461							 unsigned from,
462							 unsigned to)
463{
464	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
465	handle_t *handle;
466	int ret = 0;
467
468	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
469	if (IS_ERR(handle)) {
470		ret = -ENOMEM;
471		mlog_errno(ret);
472		goto out;
473	}
474
475	if (ocfs2_should_order_data(inode)) {
476		ret = ocfs2_jbd2_file_inode(handle, inode);
477		if (ret < 0)
478			mlog_errno(ret);
479	}
480out:
481	if (ret) {
482		if (!IS_ERR(handle))
483			ocfs2_commit_trans(osb, handle);
484		handle = ERR_PTR(ret);
485	}
486	return handle;
487}
488
489static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
490{
491	sector_t status;
492	u64 p_blkno = 0;
493	int err = 0;
494	struct inode *inode = mapping->host;
495
496	mlog_entry("(block = %llu)\n", (unsigned long long)block);
497
498	/* We don't need to lock journal system files, since they aren't
499	 * accessed concurrently from multiple nodes.
500	 */
501	if (!INODE_JOURNAL(inode)) {
502		err = ocfs2_inode_lock(inode, NULL, 0);
503		if (err) {
504			if (err != -ENOENT)
505				mlog_errno(err);
506			goto bail;
507		}
508		down_read(&OCFS2_I(inode)->ip_alloc_sem);
509	}
510
511	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
512		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
513						  NULL);
514
515	if (!INODE_JOURNAL(inode)) {
516		up_read(&OCFS2_I(inode)->ip_alloc_sem);
517		ocfs2_inode_unlock(inode, 0);
518	}
519
520	if (err) {
521		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
522		     (unsigned long long)block);
523		mlog_errno(err);
524		goto bail;
525	}
526
527bail:
528	status = err ? 0 : p_blkno;
529
530	mlog_exit((int)status);
531
532	return status;
533}
534
535/*
536 * TODO: Make this into a generic get_blocks function.
537 *
538 * From do_direct_io in direct-io.c:
539 *  "So what we do is to permit the ->get_blocks function to populate
540 *   bh.b_size with the size of IO which is permitted at this offset and
541 *   this i_blkbits."
542 *
543 * This function is called directly from get_more_blocks in direct-io.c.
544 *
545 * called like this: dio->get_blocks(dio->inode, fs_startblk,
546 * 					fs_count, map_bh, dio->rw == WRITE);
547 */
548static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
549				     struct buffer_head *bh_result, int create)
550{
551	int ret;
552	u64 p_blkno, inode_blocks, contig_blocks;
553	unsigned int ext_flags;
554	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
555	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
556
557	/* This function won't even be called if the request isn't all
558	 * nicely aligned and of the right size, so there's no need
559	 * for us to check any of that. */
560
561	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
562
563	/*
564	 * Any write past EOF is not allowed because we'd be extending.
565	 */
566	if (create && (iblock + max_blocks) > inode_blocks) {
567		ret = -EIO;
568		goto bail;
569	}
570
571	/* This figures out the size of the next contiguous block, and
572	 * our logical offset */
573	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
574					  &contig_blocks, &ext_flags);
575	if (ret) {
576		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
577		     (unsigned long long)iblock);
578		ret = -EIO;
579		goto bail;
580	}
581
582	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
583		ocfs2_error(inode->i_sb,
584			    "Inode %llu has a hole at block %llu\n",
585			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
586			    (unsigned long long)iblock);
587		ret = -EROFS;
588		goto bail;
589	}
590
591	/*
592	 * get_more_blocks() expects us to describe a hole by clearing
593	 * the mapped bit on bh_result().
594	 *
595	 * Consider an unwritten extent as a hole.
596	 */
597	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
598		map_bh(bh_result, inode->i_sb, p_blkno);
599	else {
600		/*
601		 * ocfs2_prepare_inode_for_write() should have caught
602		 * the case where we'd be filling a hole and triggered
603		 * a buffered write instead.
604		 */
605		if (create) {
606			ret = -EIO;
607			mlog_errno(ret);
608			goto bail;
609		}
610
611		clear_buffer_mapped(bh_result);
612	}
613
614	/* make sure we don't map more than max_blocks blocks here as
615	   that's all the kernel will handle at this point. */
616	if (max_blocks < contig_blocks)
617		contig_blocks = max_blocks;
618	bh_result->b_size = contig_blocks << blocksize_bits;
619bail:
620	return ret;
621}
622
623/*
624 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
625 * particularly interested in the aio/dio case.  Like the core uses
626 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
627 * truncation on another.
628 */
629static void ocfs2_dio_end_io(struct kiocb *iocb,
630			     loff_t offset,
631			     ssize_t bytes,
632			     void *private)
633{
634	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
635	int level;
636
637	/* this io's submitter should not have unlocked this before we could */
638	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
639
640	ocfs2_iocb_clear_rw_locked(iocb);
641
642	level = ocfs2_iocb_rw_locked_level(iocb);
643	if (!level)
644		up_read(&inode->i_alloc_sem);
645	ocfs2_rw_unlock(inode, level);
646}
647
648/*
649 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
650 * from ext3.  PageChecked() bits have been removed as OCFS2 does not
651 * do journalled data.
652 */
653static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
654{
655	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
656
657	jbd2_journal_invalidatepage(journal, page, offset);
658}
659
660static int ocfs2_releasepage(struct page *page, gfp_t wait)
661{
662	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
663
664	if (!page_has_buffers(page))
665		return 0;
666	return jbd2_journal_try_to_free_buffers(journal, page, wait);
667}
668
669static ssize_t ocfs2_direct_IO(int rw,
670			       struct kiocb *iocb,
671			       const struct iovec *iov,
672			       loff_t offset,
673			       unsigned long nr_segs)
674{
675	struct file *file = iocb->ki_filp;
676	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
677	int ret;
678
679	mlog_entry_void();
680
681	/*
682	 * Fallback to buffered I/O if we see an inode without
683	 * extents.
684	 */
685	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
686		return 0;
687
688	ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
689					    inode->i_sb->s_bdev, iov, offset,
690					    nr_segs,
691					    ocfs2_direct_IO_get_blocks,
692					    ocfs2_dio_end_io);
693
694	mlog_exit(ret);
695	return ret;
696}
697
698static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
699					    u32 cpos,
700					    unsigned int *start,
701					    unsigned int *end)
702{
703	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
704
705	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
706		unsigned int cpp;
707
708		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
709
710		cluster_start = cpos % cpp;
711		cluster_start = cluster_start << osb->s_clustersize_bits;
712
713		cluster_end = cluster_start + osb->s_clustersize;
714	}
715
716	BUG_ON(cluster_start > PAGE_SIZE);
717	BUG_ON(cluster_end > PAGE_SIZE);
718
719	if (start)
720		*start = cluster_start;
721	if (end)
722		*end = cluster_end;
723}
724
725/*
726 * 'from' and 'to' are the region in the page to avoid zeroing.
727 *
728 * If pagesize > clustersize, this function will avoid zeroing outside
729 * of the cluster boundary.
730 *
731 * from == to == 0 is code for "zero the entire cluster region"
732 */
733static void ocfs2_clear_page_regions(struct page *page,
734				     struct ocfs2_super *osb, u32 cpos,
735				     unsigned from, unsigned to)
736{
737	void *kaddr;
738	unsigned int cluster_start, cluster_end;
739
740	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
741
742	kaddr = kmap_atomic(page, KM_USER0);
743
744	if (from || to) {
745		if (from > cluster_start)
746			memset(kaddr + cluster_start, 0, from - cluster_start);
747		if (to < cluster_end)
748			memset(kaddr + to, 0, cluster_end - to);
749	} else {
750		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
751	}
752
753	kunmap_atomic(kaddr, KM_USER0);
754}
755
756/*
757 * Nonsparse file systems fully allocate before we get to the write
758 * code. This prevents ocfs2_write() from tagging the write as an
759 * allocating one, which means ocfs2_map_page_blocks() might try to
760 * read-in the blocks at the tail of our file. Avoid reading them by
761 * testing i_size against each block offset.
762 */
763static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
764				 unsigned int block_start)
765{
766	u64 offset = page_offset(page) + block_start;
767
768	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
769		return 1;
770
771	if (i_size_read(inode) > offset)
772		return 1;
773
774	return 0;
775}
776
777/*
778 * Some of this taken from block_prepare_write(). We already have our
779 * mapping by now though, and the entire write will be allocating or
780 * it won't, so not much need to use BH_New.
781 *
782 * This will also skip zeroing, which is handled externally.
783 */
784int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
785			  struct inode *inode, unsigned int from,
786			  unsigned int to, int new)
787{
788	int ret = 0;
789	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
790	unsigned int block_end, block_start;
791	unsigned int bsize = 1 << inode->i_blkbits;
792
793	if (!page_has_buffers(page))
794		create_empty_buffers(page, bsize, 0);
795
796	head = page_buffers(page);
797	for (bh = head, block_start = 0; bh != head || !block_start;
798	     bh = bh->b_this_page, block_start += bsize) {
799		block_end = block_start + bsize;
800
801		clear_buffer_new(bh);
802
803		/*
804		 * Ignore blocks outside of our i/o range -
805		 * they may belong to unallocated clusters.
806		 */
807		if (block_start >= to || block_end <= from) {
808			if (PageUptodate(page))
809				set_buffer_uptodate(bh);
810			continue;
811		}
812
813		/*
814		 * For an allocating write with cluster size >= page
815		 * size, we always write the entire page.
816		 */
817		if (new)
818			set_buffer_new(bh);
819
820		if (!buffer_mapped(bh)) {
821			map_bh(bh, inode->i_sb, *p_blkno);
822			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
823		}
824
825		if (PageUptodate(page)) {
826			if (!buffer_uptodate(bh))
827				set_buffer_uptodate(bh);
828		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
829			   !buffer_new(bh) &&
830			   ocfs2_should_read_blk(inode, page, block_start) &&
831			   (block_start < from || block_end > to)) {
832			ll_rw_block(READ, 1, &bh);
833			*wait_bh++=bh;
834		}
835
836		*p_blkno = *p_blkno + 1;
837	}
838
839	/*
840	 * If we issued read requests - let them complete.
841	 */
842	while(wait_bh > wait) {
843		wait_on_buffer(*--wait_bh);
844		if (!buffer_uptodate(*wait_bh))
845			ret = -EIO;
846	}
847
848	if (ret == 0 || !new)
849		return ret;
850
851	/*
852	 * If we get -EIO above, zero out any newly allocated blocks
853	 * to avoid exposing stale data.
854	 */
855	bh = head;
856	block_start = 0;
857	do {
858		block_end = block_start + bsize;
859		if (block_end <= from)
860			goto next_bh;
861		if (block_start >= to)
862			break;
863
864		zero_user(page, block_start, bh->b_size);
865		set_buffer_uptodate(bh);
866		mark_buffer_dirty(bh);
867
868next_bh:
869		block_start = block_end;
870		bh = bh->b_this_page;
871	} while (bh != head);
872
873	return ret;
874}
875
876#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
877#define OCFS2_MAX_CTXT_PAGES	1
878#else
879#define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
880#endif
881
882#define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
883
884/*
885 * Describe the state of a single cluster to be written to.
886 */
887struct ocfs2_write_cluster_desc {
888	u32		c_cpos;
889	u32		c_phys;
890	/*
891	 * Give this a unique field because c_phys eventually gets
892	 * filled.
893	 */
894	unsigned	c_new;
895	unsigned	c_unwritten;
896};
897
898static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
899{
900	return d->c_new || d->c_unwritten;
901}
902
903struct ocfs2_write_ctxt {
904	/* Logical cluster position / len of write */
905	u32				w_cpos;
906	u32				w_clen;
907
908	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
909
910	/*
911	 * This is true if page_size > cluster_size.
912	 *
913	 * It triggers a set of special cases during write which might
914	 * have to deal with allocating writes to partial pages.
915	 */
916	unsigned int			w_large_pages;
917
918	/*
919	 * Pages involved in this write.
920	 *
921	 * w_target_page is the page being written to by the user.
922	 *
923	 * w_pages is an array of pages which always contains
924	 * w_target_page, and in the case of an allocating write with
925	 * page_size < cluster size, it will contain zero'd and mapped
926	 * pages adjacent to w_target_page which need to be written
927	 * out in so that future reads from that region will get
928	 * zero's.
929	 */
930	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
931	unsigned int			w_num_pages;
932	struct page			*w_target_page;
933
934	/*
935	 * ocfs2_write_end() uses this to know what the real range to
936	 * write in the target should be.
937	 */
938	unsigned int			w_target_from;
939	unsigned int			w_target_to;
940
941	/*
942	 * We could use journal_current_handle() but this is cleaner,
943	 * IMHO -Mark
944	 */
945	handle_t			*w_handle;
946
947	struct buffer_head		*w_di_bh;
948
949	struct ocfs2_cached_dealloc_ctxt w_dealloc;
950};
951
952void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
953{
954	int i;
955
956	for(i = 0; i < num_pages; i++) {
957		if (pages[i]) {
958			unlock_page(pages[i]);
959			mark_page_accessed(pages[i]);
960			page_cache_release(pages[i]);
961		}
962	}
963}
964
965static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
966{
967	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
968
969	brelse(wc->w_di_bh);
970	kfree(wc);
971}
972
973static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
974				  struct ocfs2_super *osb, loff_t pos,
975				  unsigned len, struct buffer_head *di_bh)
976{
977	u32 cend;
978	struct ocfs2_write_ctxt *wc;
979
980	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
981	if (!wc)
982		return -ENOMEM;
983
984	wc->w_cpos = pos >> osb->s_clustersize_bits;
985	cend = (pos + len - 1) >> osb->s_clustersize_bits;
986	wc->w_clen = cend - wc->w_cpos + 1;
987	get_bh(di_bh);
988	wc->w_di_bh = di_bh;
989
990	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
991		wc->w_large_pages = 1;
992	else
993		wc->w_large_pages = 0;
994
995	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
996
997	*wcp = wc;
998
999	return 0;
1000}
1001
1002/*
1003 * If a page has any new buffers, zero them out here, and mark them uptodate
1004 * and dirty so they'll be written out (in order to prevent uninitialised
1005 * block data from leaking). And clear the new bit.
1006 */
1007static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1008{
1009	unsigned int block_start, block_end;
1010	struct buffer_head *head, *bh;
1011
1012	BUG_ON(!PageLocked(page));
1013	if (!page_has_buffers(page))
1014		return;
1015
1016	bh = head = page_buffers(page);
1017	block_start = 0;
1018	do {
1019		block_end = block_start + bh->b_size;
1020
1021		if (buffer_new(bh)) {
1022			if (block_end > from && block_start < to) {
1023				if (!PageUptodate(page)) {
1024					unsigned start, end;
1025
1026					start = max(from, block_start);
1027					end = min(to, block_end);
1028
1029					zero_user_segment(page, start, end);
1030					set_buffer_uptodate(bh);
1031				}
1032
1033				clear_buffer_new(bh);
1034				mark_buffer_dirty(bh);
1035			}
1036		}
1037
1038		block_start = block_end;
1039		bh = bh->b_this_page;
1040	} while (bh != head);
1041}
1042
1043/*
1044 * Only called when we have a failure during allocating write to write
1045 * zero's to the newly allocated region.
1046 */
1047static void ocfs2_write_failure(struct inode *inode,
1048				struct ocfs2_write_ctxt *wc,
1049				loff_t user_pos, unsigned user_len)
1050{
1051	int i;
1052	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1053		to = user_pos + user_len;
1054	struct page *tmppage;
1055
1056	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1057
1058	for(i = 0; i < wc->w_num_pages; i++) {
1059		tmppage = wc->w_pages[i];
1060
1061		if (page_has_buffers(tmppage)) {
1062			if (ocfs2_should_order_data(inode))
1063				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1064
1065			block_commit_write(tmppage, from, to);
1066		}
1067	}
1068}
1069
1070static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1071					struct ocfs2_write_ctxt *wc,
1072					struct page *page, u32 cpos,
1073					loff_t user_pos, unsigned user_len,
1074					int new)
1075{
1076	int ret;
1077	unsigned int map_from = 0, map_to = 0;
1078	unsigned int cluster_start, cluster_end;
1079	unsigned int user_data_from = 0, user_data_to = 0;
1080
1081	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1082					&cluster_start, &cluster_end);
1083
1084	if (page == wc->w_target_page) {
1085		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1086		map_to = map_from + user_len;
1087
1088		if (new)
1089			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1090						    cluster_start, cluster_end,
1091						    new);
1092		else
1093			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1094						    map_from, map_to, new);
1095		if (ret) {
1096			mlog_errno(ret);
1097			goto out;
1098		}
1099
1100		user_data_from = map_from;
1101		user_data_to = map_to;
1102		if (new) {
1103			map_from = cluster_start;
1104			map_to = cluster_end;
1105		}
1106	} else {
1107		/*
1108		 * If we haven't allocated the new page yet, we
1109		 * shouldn't be writing it out without copying user
1110		 * data. This is likely a math error from the caller.
1111		 */
1112		BUG_ON(!new);
1113
1114		map_from = cluster_start;
1115		map_to = cluster_end;
1116
1117		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1118					    cluster_start, cluster_end, new);
1119		if (ret) {
1120			mlog_errno(ret);
1121			goto out;
1122		}
1123	}
1124
1125	/*
1126	 * Parts of newly allocated pages need to be zero'd.
1127	 *
1128	 * Above, we have also rewritten 'to' and 'from' - as far as
1129	 * the rest of the function is concerned, the entire cluster
1130	 * range inside of a page needs to be written.
1131	 *
1132	 * We can skip this if the page is up to date - it's already
1133	 * been zero'd from being read in as a hole.
1134	 */
1135	if (new && !PageUptodate(page))
1136		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1137					 cpos, user_data_from, user_data_to);
1138
1139	flush_dcache_page(page);
1140
1141out:
1142	return ret;
1143}
1144
1145/*
1146 * This function will only grab one clusters worth of pages.
1147 */
1148static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1149				      struct ocfs2_write_ctxt *wc,
1150				      u32 cpos, loff_t user_pos, int new,
1151				      struct page *mmap_page)
1152{
1153	int ret = 0, i;
1154	unsigned long start, target_index, index;
1155	struct inode *inode = mapping->host;
1156
1157	target_index = user_pos >> PAGE_CACHE_SHIFT;
1158
1159	/*
1160	 * Figure out how many pages we'll be manipulating here. For
1161	 * non allocating write, we just change the one
1162	 * page. Otherwise, we'll need a whole clusters worth.
1163	 */
1164	if (new) {
1165		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1166		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1167	} else {
1168		wc->w_num_pages = 1;
1169		start = target_index;
1170	}
1171
1172	for(i = 0; i < wc->w_num_pages; i++) {
1173		index = start + i;
1174
1175		if (index == target_index && mmap_page) {
1176			/*
1177			 * ocfs2_pagemkwrite() is a little different
1178			 * and wants us to directly use the page
1179			 * passed in.
1180			 */
1181			lock_page(mmap_page);
1182
1183			if (mmap_page->mapping != mapping) {
1184				unlock_page(mmap_page);
1185				/*
1186				 * Sanity check - the locking in
1187				 * ocfs2_pagemkwrite() should ensure
1188				 * that this code doesn't trigger.
1189				 */
1190				ret = -EINVAL;
1191				mlog_errno(ret);
1192				goto out;
1193			}
1194
1195			page_cache_get(mmap_page);
1196			wc->w_pages[i] = mmap_page;
1197		} else {
1198			wc->w_pages[i] = find_or_create_page(mapping, index,
1199							     GFP_NOFS);
1200			if (!wc->w_pages[i]) {
1201				ret = -ENOMEM;
1202				mlog_errno(ret);
1203				goto out;
1204			}
1205		}
1206
1207		if (index == target_index)
1208			wc->w_target_page = wc->w_pages[i];
1209	}
1210out:
1211	return ret;
1212}
1213
1214/*
1215 * Prepare a single cluster for write one cluster into the file.
1216 */
1217static int ocfs2_write_cluster(struct address_space *mapping,
1218			       u32 phys, unsigned int unwritten,
1219			       struct ocfs2_alloc_context *data_ac,
1220			       struct ocfs2_alloc_context *meta_ac,
1221			       struct ocfs2_write_ctxt *wc, u32 cpos,
1222			       loff_t user_pos, unsigned user_len)
1223{
1224	int ret, i, new, should_zero = 0;
1225	u64 v_blkno, p_blkno;
1226	struct inode *inode = mapping->host;
1227	struct ocfs2_extent_tree et;
1228
1229	new = phys == 0 ? 1 : 0;
1230	if (new || unwritten)
1231		should_zero = 1;
1232
1233	if (new) {
1234		u32 tmp_pos;
1235
1236		/*
1237		 * This is safe to call with the page locks - it won't take
1238		 * any additional semaphores or cluster locks.
1239		 */
1240		tmp_pos = cpos;
1241		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1242					   &tmp_pos, 1, 0, wc->w_di_bh,
1243					   wc->w_handle, data_ac,
1244					   meta_ac, NULL);
1245		/*
1246		 * This shouldn't happen because we must have already
1247		 * calculated the correct meta data allocation required. The
1248		 * internal tree allocation code should know how to increase
1249		 * transaction credits itself.
1250		 *
1251		 * If need be, we could handle -EAGAIN for a
1252		 * RESTART_TRANS here.
1253		 */
1254		mlog_bug_on_msg(ret == -EAGAIN,
1255				"Inode %llu: EAGAIN return during allocation.\n",
1256				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1257		if (ret < 0) {
1258			mlog_errno(ret);
1259			goto out;
1260		}
1261	} else if (unwritten) {
1262		ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1263		ret = ocfs2_mark_extent_written(inode, &et,
1264						wc->w_handle, cpos, 1, phys,
1265						meta_ac, &wc->w_dealloc);
1266		if (ret < 0) {
1267			mlog_errno(ret);
1268			goto out;
1269		}
1270	}
1271
1272	if (should_zero)
1273		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1274	else
1275		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1276
1277	/*
1278	 * The only reason this should fail is due to an inability to
1279	 * find the extent added.
1280	 */
1281	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1282					  NULL);
1283	if (ret < 0) {
1284		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1285			    "at logical block %llu",
1286			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1287			    (unsigned long long)v_blkno);
1288		goto out;
1289	}
1290
1291	BUG_ON(p_blkno == 0);
1292
1293	for(i = 0; i < wc->w_num_pages; i++) {
1294		int tmpret;
1295
1296		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1297						      wc->w_pages[i], cpos,
1298						      user_pos, user_len,
1299						      should_zero);
1300		if (tmpret) {
1301			mlog_errno(tmpret);
1302			if (ret == 0)
1303				tmpret = ret;
1304		}
1305	}
1306
1307	/*
1308	 * We only have cleanup to do in case of allocating write.
1309	 */
1310	if (ret && new)
1311		ocfs2_write_failure(inode, wc, user_pos, user_len);
1312
1313out:
1314
1315	return ret;
1316}
1317
1318static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1319				       struct ocfs2_alloc_context *data_ac,
1320				       struct ocfs2_alloc_context *meta_ac,
1321				       struct ocfs2_write_ctxt *wc,
1322				       loff_t pos, unsigned len)
1323{
1324	int ret, i;
1325	loff_t cluster_off;
1326	unsigned int local_len = len;
1327	struct ocfs2_write_cluster_desc *desc;
1328	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1329
1330	for (i = 0; i < wc->w_clen; i++) {
1331		desc = &wc->w_desc[i];
1332
1333		/*
1334		 * We have to make sure that the total write passed in
1335		 * doesn't extend past a single cluster.
1336		 */
1337		local_len = len;
1338		cluster_off = pos & (osb->s_clustersize - 1);
1339		if ((cluster_off + local_len) > osb->s_clustersize)
1340			local_len = osb->s_clustersize - cluster_off;
1341
1342		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1343					  desc->c_unwritten, data_ac, meta_ac,
1344					  wc, desc->c_cpos, pos, local_len);
1345		if (ret) {
1346			mlog_errno(ret);
1347			goto out;
1348		}
1349
1350		len -= local_len;
1351		pos += local_len;
1352	}
1353
1354	ret = 0;
1355out:
1356	return ret;
1357}
1358
1359/*
1360 * ocfs2_write_end() wants to know which parts of the target page it
1361 * should complete the write on. It's easiest to compute them ahead of
1362 * time when a more complete view of the write is available.
1363 */
1364static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1365					struct ocfs2_write_ctxt *wc,
1366					loff_t pos, unsigned len, int alloc)
1367{
1368	struct ocfs2_write_cluster_desc *desc;
1369
1370	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1371	wc->w_target_to = wc->w_target_from + len;
1372
1373	if (alloc == 0)
1374		return;
1375
1376	/*
1377	 * Allocating write - we may have different boundaries based
1378	 * on page size and cluster size.
1379	 *
1380	 * NOTE: We can no longer compute one value from the other as
1381	 * the actual write length and user provided length may be
1382	 * different.
1383	 */
1384
1385	if (wc->w_large_pages) {
1386		/*
1387		 * We only care about the 1st and last cluster within
1388		 * our range and whether they should be zero'd or not. Either
1389		 * value may be extended out to the start/end of a
1390		 * newly allocated cluster.
1391		 */
1392		desc = &wc->w_desc[0];
1393		if (ocfs2_should_zero_cluster(desc))
1394			ocfs2_figure_cluster_boundaries(osb,
1395							desc->c_cpos,
1396							&wc->w_target_from,
1397							NULL);
1398
1399		desc = &wc->w_desc[wc->w_clen - 1];
1400		if (ocfs2_should_zero_cluster(desc))
1401			ocfs2_figure_cluster_boundaries(osb,
1402							desc->c_cpos,
1403							NULL,
1404							&wc->w_target_to);
1405	} else {
1406		wc->w_target_from = 0;
1407		wc->w_target_to = PAGE_CACHE_SIZE;
1408	}
1409}
1410
1411/*
1412 * Populate each single-cluster write descriptor in the write context
1413 * with information about the i/o to be done.
1414 *
1415 * Returns the number of clusters that will have to be allocated, as
1416 * well as a worst case estimate of the number of extent records that
1417 * would have to be created during a write to an unwritten region.
1418 */
1419static int ocfs2_populate_write_desc(struct inode *inode,
1420				     struct ocfs2_write_ctxt *wc,
1421				     unsigned int *clusters_to_alloc,
1422				     unsigned int *extents_to_split)
1423{
1424	int ret;
1425	struct ocfs2_write_cluster_desc *desc;
1426	unsigned int num_clusters = 0;
1427	unsigned int ext_flags = 0;
1428	u32 phys = 0;
1429	int i;
1430
1431	*clusters_to_alloc = 0;
1432	*extents_to_split = 0;
1433
1434	for (i = 0; i < wc->w_clen; i++) {
1435		desc = &wc->w_desc[i];
1436		desc->c_cpos = wc->w_cpos + i;
1437
1438		if (num_clusters == 0) {
1439			/*
1440			 * Need to look up the next extent record.
1441			 */
1442			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1443						 &num_clusters, &ext_flags);
1444			if (ret) {
1445				mlog_errno(ret);
1446				goto out;
1447			}
1448
1449			/*
1450			 * Assume worst case - that we're writing in
1451			 * the middle of the extent.
1452			 *
1453			 * We can assume that the write proceeds from
1454			 * left to right, in which case the extent
1455			 * insert code is smart enough to coalesce the
1456			 * next splits into the previous records created.
1457			 */
1458			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1459				*extents_to_split = *extents_to_split + 2;
1460		} else if (phys) {
1461			/*
1462			 * Only increment phys if it doesn't describe
1463			 * a hole.
1464			 */
1465			phys++;
1466		}
1467
1468		desc->c_phys = phys;
1469		if (phys == 0) {
1470			desc->c_new = 1;
1471			*clusters_to_alloc = *clusters_to_alloc + 1;
1472		}
1473		if (ext_flags & OCFS2_EXT_UNWRITTEN)
1474			desc->c_unwritten = 1;
1475
1476		num_clusters--;
1477	}
1478
1479	ret = 0;
1480out:
1481	return ret;
1482}
1483
1484static int ocfs2_write_begin_inline(struct address_space *mapping,
1485				    struct inode *inode,
1486				    struct ocfs2_write_ctxt *wc)
1487{
1488	int ret;
1489	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1490	struct page *page;
1491	handle_t *handle;
1492	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1493
1494	page = find_or_create_page(mapping, 0, GFP_NOFS);
1495	if (!page) {
1496		ret = -ENOMEM;
1497		mlog_errno(ret);
1498		goto out;
1499	}
1500	/*
1501	 * If we don't set w_num_pages then this page won't get unlocked
1502	 * and freed on cleanup of the write context.
1503	 */
1504	wc->w_pages[0] = wc->w_target_page = page;
1505	wc->w_num_pages = 1;
1506
1507	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1508	if (IS_ERR(handle)) {
1509		ret = PTR_ERR(handle);
1510		mlog_errno(ret);
1511		goto out;
1512	}
1513
1514	ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1515				   OCFS2_JOURNAL_ACCESS_WRITE);
1516	if (ret) {
1517		ocfs2_commit_trans(osb, handle);
1518
1519		mlog_errno(ret);
1520		goto out;
1521	}
1522
1523	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1524		ocfs2_set_inode_data_inline(inode, di);
1525
1526	if (!PageUptodate(page)) {
1527		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1528		if (ret) {
1529			ocfs2_commit_trans(osb, handle);
1530
1531			goto out;
1532		}
1533	}
1534
1535	wc->w_handle = handle;
1536out:
1537	return ret;
1538}
1539
1540int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1541{
1542	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1543
1544	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1545		return 1;
1546	return 0;
1547}
1548
1549static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1550					  struct inode *inode, loff_t pos,
1551					  unsigned len, struct page *mmap_page,
1552					  struct ocfs2_write_ctxt *wc)
1553{
1554	int ret, written = 0;
1555	loff_t end = pos + len;
1556	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1557
1558	mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1559	     (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1560	     oi->ip_dyn_features);
1561
1562	/*
1563	 * Handle inodes which already have inline data 1st.
1564	 */
1565	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1566		if (mmap_page == NULL &&
1567		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1568			goto do_inline_write;
1569
1570		/*
1571		 * The write won't fit - we have to give this inode an
1572		 * inline extent list now.
1573		 */
1574		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1575		if (ret)
1576			mlog_errno(ret);
1577		goto out;
1578	}
1579
1580	/*
1581	 * Check whether the inode can accept inline data.
1582	 */
1583	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1584		return 0;
1585
1586	/*
1587	 * Check whether the write can fit.
1588	 */
1589	if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
1590		return 0;
1591
1592do_inline_write:
1593	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1594	if (ret) {
1595		mlog_errno(ret);
1596		goto out;
1597	}
1598
1599	/*
1600	 * This signals to the caller that the data can be written
1601	 * inline.
1602	 */
1603	written = 1;
1604out:
1605	return written ? written : ret;
1606}
1607
1608/*
1609 * This function only does anything for file systems which can't
1610 * handle sparse files.
1611 *
1612 * What we want to do here is fill in any hole between the current end
1613 * of allocation and the end of our write. That way the rest of the
1614 * write path can treat it as an non-allocating write, which has no
1615 * special case code for sparse/nonsparse files.
1616 */
1617static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1618					unsigned len,
1619					struct ocfs2_write_ctxt *wc)
1620{
1621	int ret;
1622	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1623	loff_t newsize = pos + len;
1624
1625	if (ocfs2_sparse_alloc(osb))
1626		return 0;
1627
1628	if (newsize <= i_size_read(inode))
1629		return 0;
1630
1631	ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1632	if (ret)
1633		mlog_errno(ret);
1634
1635	return ret;
1636}
1637
1638int ocfs2_write_begin_nolock(struct address_space *mapping,
1639			     loff_t pos, unsigned len, unsigned flags,
1640			     struct page **pagep, void **fsdata,
1641			     struct buffer_head *di_bh, struct page *mmap_page)
1642{
1643	int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1644	unsigned int clusters_to_alloc, extents_to_split;
1645	struct ocfs2_write_ctxt *wc;
1646	struct inode *inode = mapping->host;
1647	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1648	struct ocfs2_dinode *di;
1649	struct ocfs2_alloc_context *data_ac = NULL;
1650	struct ocfs2_alloc_context *meta_ac = NULL;
1651	handle_t *handle;
1652	struct ocfs2_extent_tree et;
1653
1654	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1655	if (ret) {
1656		mlog_errno(ret);
1657		return ret;
1658	}
1659
1660	if (ocfs2_supports_inline_data(osb)) {
1661		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1662						     mmap_page, wc);
1663		if (ret == 1) {
1664			ret = 0;
1665			goto success;
1666		}
1667		if (ret < 0) {
1668			mlog_errno(ret);
1669			goto out;
1670		}
1671	}
1672
1673	ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1674	if (ret) {
1675		mlog_errno(ret);
1676		goto out;
1677	}
1678
1679	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1680					&extents_to_split);
1681	if (ret) {
1682		mlog_errno(ret);
1683		goto out;
1684	}
1685
1686	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1687
1688	/*
1689	 * We set w_target_from, w_target_to here so that
1690	 * ocfs2_write_end() knows which range in the target page to
1691	 * write out. An allocation requires that we write the entire
1692	 * cluster range.
1693	 */
1694	if (clusters_to_alloc || extents_to_split) {
1695		/*
1696		 * XXX: We are stretching the limits of
1697		 * ocfs2_lock_allocators(). It greatly over-estimates
1698		 * the work to be done.
1699		 */
1700		mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1701		     " clusters_to_add = %u, extents_to_split = %u\n",
1702		     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1703		     (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1704		     clusters_to_alloc, extents_to_split);
1705
1706		ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1707		ret = ocfs2_lock_allocators(inode, &et,
1708					    clusters_to_alloc, extents_to_split,
1709					    &data_ac, &meta_ac);
1710		if (ret) {
1711			mlog_errno(ret);
1712			goto out;
1713		}
1714
1715		credits = ocfs2_calc_extend_credits(inode->i_sb,
1716						    &di->id2.i_list,
1717						    clusters_to_alloc);
1718
1719	}
1720
1721	ocfs2_set_target_boundaries(osb, wc, pos, len,
1722				    clusters_to_alloc + extents_to_split);
1723
1724	handle = ocfs2_start_trans(osb, credits);
1725	if (IS_ERR(handle)) {
1726		ret = PTR_ERR(handle);
1727		mlog_errno(ret);
1728		goto out;
1729	}
1730
1731	wc->w_handle = handle;
1732
1733	/*
1734	 * We don't want this to fail in ocfs2_write_end(), so do it
1735	 * here.
1736	 */
1737	ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1738				   OCFS2_JOURNAL_ACCESS_WRITE);
1739	if (ret) {
1740		mlog_errno(ret);
1741		goto out_commit;
1742	}
1743
1744	/*
1745	 * Fill our page array first. That way we've grabbed enough so
1746	 * that we can zero and flush if we error after adding the
1747	 * extent.
1748	 */
1749	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1750					 clusters_to_alloc + extents_to_split,
1751					 mmap_page);
1752	if (ret) {
1753		mlog_errno(ret);
1754		goto out_commit;
1755	}
1756
1757	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1758					  len);
1759	if (ret) {
1760		mlog_errno(ret);
1761		goto out_commit;
1762	}
1763
1764	if (data_ac)
1765		ocfs2_free_alloc_context(data_ac);
1766	if (meta_ac)
1767		ocfs2_free_alloc_context(meta_ac);
1768
1769success:
1770	*pagep = wc->w_target_page;
1771	*fsdata = wc;
1772	return 0;
1773out_commit:
1774	ocfs2_commit_trans(osb, handle);
1775
1776out:
1777	ocfs2_free_write_ctxt(wc);
1778
1779	if (data_ac)
1780		ocfs2_free_alloc_context(data_ac);
1781	if (meta_ac)
1782		ocfs2_free_alloc_context(meta_ac);
1783	return ret;
1784}
1785
1786static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1787			     loff_t pos, unsigned len, unsigned flags,
1788			     struct page **pagep, void **fsdata)
1789{
1790	int ret;
1791	struct buffer_head *di_bh = NULL;
1792	struct inode *inode = mapping->host;
1793
1794	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1795	if (ret) {
1796		mlog_errno(ret);
1797		return ret;
1798	}
1799
1800	/*
1801	 * Take alloc sem here to prevent concurrent lookups. That way
1802	 * the mapping, zeroing and tree manipulation within
1803	 * ocfs2_write() will be safe against ->readpage(). This
1804	 * should also serve to lock out allocation from a shared
1805	 * writeable region.
1806	 */
1807	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1808
1809	ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1810				       fsdata, di_bh, NULL);
1811	if (ret) {
1812		mlog_errno(ret);
1813		goto out_fail;
1814	}
1815
1816	brelse(di_bh);
1817
1818	return 0;
1819
1820out_fail:
1821	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1822
1823	brelse(di_bh);
1824	ocfs2_inode_unlock(inode, 1);
1825
1826	return ret;
1827}
1828
1829static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1830				   unsigned len, unsigned *copied,
1831				   struct ocfs2_dinode *di,
1832				   struct ocfs2_write_ctxt *wc)
1833{
1834	void *kaddr;
1835
1836	if (unlikely(*copied < len)) {
1837		if (!PageUptodate(wc->w_target_page)) {
1838			*copied = 0;
1839			return;
1840		}
1841	}
1842
1843	kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1844	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1845	kunmap_atomic(kaddr, KM_USER0);
1846
1847	mlog(0, "Data written to inode at offset %llu. "
1848	     "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1849	     (unsigned long long)pos, *copied,
1850	     le16_to_cpu(di->id2.i_data.id_count),
1851	     le16_to_cpu(di->i_dyn_features));
1852}
1853
1854int ocfs2_write_end_nolock(struct address_space *mapping,
1855			   loff_t pos, unsigned len, unsigned copied,
1856			   struct page *page, void *fsdata)
1857{
1858	int i;
1859	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1860	struct inode *inode = mapping->host;
1861	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1862	struct ocfs2_write_ctxt *wc = fsdata;
1863	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1864	handle_t *handle = wc->w_handle;
1865	struct page *tmppage;
1866
1867	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1868		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1869		goto out_write_size;
1870	}
1871
1872	if (unlikely(copied < len)) {
1873		if (!PageUptodate(wc->w_target_page))
1874			copied = 0;
1875
1876		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1877				       start+len);
1878	}
1879	flush_dcache_page(wc->w_target_page);
1880
1881	for(i = 0; i < wc->w_num_pages; i++) {
1882		tmppage = wc->w_pages[i];
1883
1884		if (tmppage == wc->w_target_page) {
1885			from = wc->w_target_from;
1886			to = wc->w_target_to;
1887
1888			BUG_ON(from > PAGE_CACHE_SIZE ||
1889			       to > PAGE_CACHE_SIZE ||
1890			       to < from);
1891		} else {
1892			/*
1893			 * Pages adjacent to the target (if any) imply
1894			 * a hole-filling write in which case we want
1895			 * to flush their entire range.
1896			 */
1897			from = 0;
1898			to = PAGE_CACHE_SIZE;
1899		}
1900
1901		if (page_has_buffers(tmppage)) {
1902			if (ocfs2_should_order_data(inode))
1903				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1904			block_commit_write(tmppage, from, to);
1905		}
1906	}
1907
1908out_write_size:
1909	pos += copied;
1910	if (pos > inode->i_size) {
1911		i_size_write(inode, pos);
1912		mark_inode_dirty(inode);
1913	}
1914	inode->i_blocks = ocfs2_inode_sector_count(inode);
1915	di->i_size = cpu_to_le64((u64)i_size_read(inode));
1916	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1917	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1918	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1919	ocfs2_journal_dirty(handle, wc->w_di_bh);
1920
1921	ocfs2_commit_trans(osb, handle);
1922
1923	ocfs2_run_deallocs(osb, &wc->w_dealloc);
1924
1925	ocfs2_free_write_ctxt(wc);
1926
1927	return copied;
1928}
1929
1930static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1931			   loff_t pos, unsigned len, unsigned copied,
1932			   struct page *page, void *fsdata)
1933{
1934	int ret;
1935	struct inode *inode = mapping->host;
1936
1937	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1938
1939	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1940	ocfs2_inode_unlock(inode, 1);
1941
1942	return ret;
1943}
1944
1945const struct address_space_operations ocfs2_aops = {
1946	.readpage	= ocfs2_readpage,
1947	.readpages	= ocfs2_readpages,
1948	.writepage	= ocfs2_writepage,
1949	.write_begin	= ocfs2_write_begin,
1950	.write_end	= ocfs2_write_end,
1951	.bmap		= ocfs2_bmap,
1952	.sync_page	= block_sync_page,
1953	.direct_IO	= ocfs2_direct_IO,
1954	.invalidatepage	= ocfs2_invalidatepage,
1955	.releasepage	= ocfs2_releasepage,
1956	.migratepage	= buffer_migrate_page,
1957};
1958