aops.c revision b80474b432913f73cce8db001e9fa3104f9b79ee
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
27#include <linux/swap.h>
28#include <linux/pipe_fs_i.h>
29#include <linux/mpage.h>
30#include <linux/quotaops.h>
31
32#define MLOG_MASK_PREFIX ML_FILE_IO
33#include <cluster/masklog.h>
34
35#include "ocfs2.h"
36
37#include "alloc.h"
38#include "aops.h"
39#include "dlmglue.h"
40#include "extent_map.h"
41#include "file.h"
42#include "inode.h"
43#include "journal.h"
44#include "suballoc.h"
45#include "super.h"
46#include "symlink.h"
47#include "refcounttree.h"
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52				   struct buffer_head *bh_result, int create)
53{
54	int err = -EIO;
55	int status;
56	struct ocfs2_dinode *fe = NULL;
57	struct buffer_head *bh = NULL;
58	struct buffer_head *buffer_cache_bh = NULL;
59	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60	void *kaddr;
61
62	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
63		   (unsigned long long)iblock, bh_result, create);
64
65	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
66
67	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
68		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
69		     (unsigned long long)iblock);
70		goto bail;
71	}
72
73	status = ocfs2_read_inode_block(inode, &bh);
74	if (status < 0) {
75		mlog_errno(status);
76		goto bail;
77	}
78	fe = (struct ocfs2_dinode *) bh->b_data;
79
80	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
81						    le32_to_cpu(fe->i_clusters))) {
82		mlog(ML_ERROR, "block offset is outside the allocated size: "
83		     "%llu\n", (unsigned long long)iblock);
84		goto bail;
85	}
86
87	/* We don't use the page cache to create symlink data, so if
88	 * need be, copy it over from the buffer cache. */
89	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
90		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
91			    iblock;
92		buffer_cache_bh = sb_getblk(osb->sb, blkno);
93		if (!buffer_cache_bh) {
94			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
95			goto bail;
96		}
97
98		/* we haven't locked out transactions, so a commit
99		 * could've happened. Since we've got a reference on
100		 * the bh, even if it commits while we're doing the
101		 * copy, the data is still good. */
102		if (buffer_jbd(buffer_cache_bh)
103		    && ocfs2_inode_is_new(inode)) {
104			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
105			if (!kaddr) {
106				mlog(ML_ERROR, "couldn't kmap!\n");
107				goto bail;
108			}
109			memcpy(kaddr + (bh_result->b_size * iblock),
110			       buffer_cache_bh->b_data,
111			       bh_result->b_size);
112			kunmap_atomic(kaddr, KM_USER0);
113			set_buffer_uptodate(bh_result);
114		}
115		brelse(buffer_cache_bh);
116	}
117
118	map_bh(bh_result, inode->i_sb,
119	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
120
121	err = 0;
122
123bail:
124	brelse(bh);
125
126	mlog_exit(err);
127	return err;
128}
129
130int ocfs2_get_block(struct inode *inode, sector_t iblock,
131		    struct buffer_head *bh_result, int create)
132{
133	int err = 0;
134	unsigned int ext_flags;
135	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136	u64 p_blkno, count, past_eof;
137	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138
139	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
140		   (unsigned long long)iblock, bh_result, create);
141
142	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144		     inode, inode->i_ino);
145
146	if (S_ISLNK(inode->i_mode)) {
147		/* this always does I/O for some reason. */
148		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149		goto bail;
150	}
151
152	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153					  &ext_flags);
154	if (err) {
155		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157		     (unsigned long long)p_blkno);
158		goto bail;
159	}
160
161	if (max_blocks < count)
162		count = max_blocks;
163
164	/*
165	 * ocfs2 never allocates in this function - the only time we
166	 * need to use BH_New is when we're extending i_size on a file
167	 * system which doesn't support holes, in which case BH_New
168	 * allows block_prepare_write() to zero.
169	 *
170	 * If we see this on a sparse file system, then a truncate has
171	 * raced us and removed the cluster. In this case, we clear
172	 * the buffers dirty and uptodate bits and let the buffer code
173	 * ignore it as a hole.
174	 */
175	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176		clear_buffer_dirty(bh_result);
177		clear_buffer_uptodate(bh_result);
178		goto bail;
179	}
180
181	/* Treat the unwritten extent as a hole for zeroing purposes. */
182	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183		map_bh(bh_result, inode->i_sb, p_blkno);
184
185	bh_result->b_size = count << inode->i_blkbits;
186
187	if (!ocfs2_sparse_alloc(osb)) {
188		if (p_blkno == 0) {
189			err = -EIO;
190			mlog(ML_ERROR,
191			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192			     (unsigned long long)iblock,
193			     (unsigned long long)p_blkno,
194			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
195			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196			dump_stack();
197			goto bail;
198		}
199
200		past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
201		mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
202		     (unsigned long long)past_eof);
203
204		if (create && (iblock >= past_eof))
205			set_buffer_new(bh_result);
206	}
207
208bail:
209	if (err < 0)
210		err = -EIO;
211
212	mlog_exit(err);
213	return err;
214}
215
216int ocfs2_read_inline_data(struct inode *inode, struct page *page,
217			   struct buffer_head *di_bh)
218{
219	void *kaddr;
220	loff_t size;
221	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
222
223	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
224		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
225			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
226		return -EROFS;
227	}
228
229	size = i_size_read(inode);
230
231	if (size > PAGE_CACHE_SIZE ||
232	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
233		ocfs2_error(inode->i_sb,
234			    "Inode %llu has with inline data has bad size: %Lu",
235			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
236			    (unsigned long long)size);
237		return -EROFS;
238	}
239
240	kaddr = kmap_atomic(page, KM_USER0);
241	if (size)
242		memcpy(kaddr, di->id2.i_data.id_data, size);
243	/* Clear the remaining part of the page */
244	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
245	flush_dcache_page(page);
246	kunmap_atomic(kaddr, KM_USER0);
247
248	SetPageUptodate(page);
249
250	return 0;
251}
252
253static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
254{
255	int ret;
256	struct buffer_head *di_bh = NULL;
257
258	BUG_ON(!PageLocked(page));
259	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
260
261	ret = ocfs2_read_inode_block(inode, &di_bh);
262	if (ret) {
263		mlog_errno(ret);
264		goto out;
265	}
266
267	ret = ocfs2_read_inline_data(inode, page, di_bh);
268out:
269	unlock_page(page);
270
271	brelse(di_bh);
272	return ret;
273}
274
275static int ocfs2_readpage(struct file *file, struct page *page)
276{
277	struct inode *inode = page->mapping->host;
278	struct ocfs2_inode_info *oi = OCFS2_I(inode);
279	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
280	int ret, unlock = 1;
281
282	mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
283
284	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285	if (ret != 0) {
286		if (ret == AOP_TRUNCATED_PAGE)
287			unlock = 0;
288		mlog_errno(ret);
289		goto out;
290	}
291
292	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293		ret = AOP_TRUNCATED_PAGE;
294		goto out_inode_unlock;
295	}
296
297	/*
298	 * i_size might have just been updated as we grabed the meta lock.  We
299	 * might now be discovering a truncate that hit on another node.
300	 * block_read_full_page->get_block freaks out if it is asked to read
301	 * beyond the end of a file, so we check here.  Callers
302	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
303	 * and notice that the page they just read isn't needed.
304	 *
305	 * XXX sys_readahead() seems to get that wrong?
306	 */
307	if (start >= i_size_read(inode)) {
308		zero_user(page, 0, PAGE_SIZE);
309		SetPageUptodate(page);
310		ret = 0;
311		goto out_alloc;
312	}
313
314	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
315		ret = ocfs2_readpage_inline(inode, page);
316	else
317		ret = block_read_full_page(page, ocfs2_get_block);
318	unlock = 0;
319
320out_alloc:
321	up_read(&OCFS2_I(inode)->ip_alloc_sem);
322out_inode_unlock:
323	ocfs2_inode_unlock(inode, 0);
324out:
325	if (unlock)
326		unlock_page(page);
327	mlog_exit(ret);
328	return ret;
329}
330
331/*
332 * This is used only for read-ahead. Failures or difficult to handle
333 * situations are safe to ignore.
334 *
335 * Right now, we don't bother with BH_Boundary - in-inode extent lists
336 * are quite large (243 extents on 4k blocks), so most inodes don't
337 * grow out to a tree. If need be, detecting boundary extents could
338 * trivially be added in a future version of ocfs2_get_block().
339 */
340static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
341			   struct list_head *pages, unsigned nr_pages)
342{
343	int ret, err = -EIO;
344	struct inode *inode = mapping->host;
345	struct ocfs2_inode_info *oi = OCFS2_I(inode);
346	loff_t start;
347	struct page *last;
348
349	/*
350	 * Use the nonblocking flag for the dlm code to avoid page
351	 * lock inversion, but don't bother with retrying.
352	 */
353	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
354	if (ret)
355		return err;
356
357	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
358		ocfs2_inode_unlock(inode, 0);
359		return err;
360	}
361
362	/*
363	 * Don't bother with inline-data. There isn't anything
364	 * to read-ahead in that case anyway...
365	 */
366	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
367		goto out_unlock;
368
369	/*
370	 * Check whether a remote node truncated this file - we just
371	 * drop out in that case as it's not worth handling here.
372	 */
373	last = list_entry(pages->prev, struct page, lru);
374	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
375	if (start >= i_size_read(inode))
376		goto out_unlock;
377
378	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
379
380out_unlock:
381	up_read(&oi->ip_alloc_sem);
382	ocfs2_inode_unlock(inode, 0);
383
384	return err;
385}
386
387/* Note: Because we don't support holes, our allocation has
388 * already happened (allocation writes zeros to the file data)
389 * so we don't have to worry about ordered writes in
390 * ocfs2_writepage.
391 *
392 * ->writepage is called during the process of invalidating the page cache
393 * during blocked lock processing.  It can't block on any cluster locks
394 * to during block mapping.  It's relying on the fact that the block
395 * mapping can't have disappeared under the dirty pages that it is
396 * being asked to write back.
397 */
398static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
399{
400	int ret;
401
402	mlog_entry("(0x%p)\n", page);
403
404	ret = block_write_full_page(page, ocfs2_get_block, wbc);
405
406	mlog_exit(ret);
407
408	return ret;
409}
410
411/*
412 * This is called from ocfs2_write_zero_page() which has handled it's
413 * own cluster locking and has ensured allocation exists for those
414 * blocks to be written.
415 */
416int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
417			       unsigned from, unsigned to)
418{
419	int ret;
420
421	ret = block_prepare_write(page, from, to, ocfs2_get_block);
422
423	return ret;
424}
425
426/* Taken from ext3. We don't necessarily need the full blown
427 * functionality yet, but IMHO it's better to cut and paste the whole
428 * thing so we can avoid introducing our own bugs (and easily pick up
429 * their fixes when they happen) --Mark */
430int walk_page_buffers(	handle_t *handle,
431			struct buffer_head *head,
432			unsigned from,
433			unsigned to,
434			int *partial,
435			int (*fn)(	handle_t *handle,
436					struct buffer_head *bh))
437{
438	struct buffer_head *bh;
439	unsigned block_start, block_end;
440	unsigned blocksize = head->b_size;
441	int err, ret = 0;
442	struct buffer_head *next;
443
444	for (	bh = head, block_start = 0;
445		ret == 0 && (bh != head || !block_start);
446	    	block_start = block_end, bh = next)
447	{
448		next = bh->b_this_page;
449		block_end = block_start + blocksize;
450		if (block_end <= from || block_start >= to) {
451			if (partial && !buffer_uptodate(bh))
452				*partial = 1;
453			continue;
454		}
455		err = (*fn)(handle, bh);
456		if (!ret)
457			ret = err;
458	}
459	return ret;
460}
461
462handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
463							 struct page *page,
464							 unsigned from,
465							 unsigned to)
466{
467	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
468	handle_t *handle;
469	int ret = 0;
470
471	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
472	if (IS_ERR(handle)) {
473		ret = -ENOMEM;
474		mlog_errno(ret);
475		goto out;
476	}
477
478	if (ocfs2_should_order_data(inode)) {
479		ret = ocfs2_jbd2_file_inode(handle, inode);
480		if (ret < 0)
481			mlog_errno(ret);
482	}
483out:
484	if (ret) {
485		if (!IS_ERR(handle))
486			ocfs2_commit_trans(osb, handle);
487		handle = ERR_PTR(ret);
488	}
489	return handle;
490}
491
492static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
493{
494	sector_t status;
495	u64 p_blkno = 0;
496	int err = 0;
497	struct inode *inode = mapping->host;
498
499	mlog_entry("(block = %llu)\n", (unsigned long long)block);
500
501	/* We don't need to lock journal system files, since they aren't
502	 * accessed concurrently from multiple nodes.
503	 */
504	if (!INODE_JOURNAL(inode)) {
505		err = ocfs2_inode_lock(inode, NULL, 0);
506		if (err) {
507			if (err != -ENOENT)
508				mlog_errno(err);
509			goto bail;
510		}
511		down_read(&OCFS2_I(inode)->ip_alloc_sem);
512	}
513
514	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
515		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
516						  NULL);
517
518	if (!INODE_JOURNAL(inode)) {
519		up_read(&OCFS2_I(inode)->ip_alloc_sem);
520		ocfs2_inode_unlock(inode, 0);
521	}
522
523	if (err) {
524		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
525		     (unsigned long long)block);
526		mlog_errno(err);
527		goto bail;
528	}
529
530bail:
531	status = err ? 0 : p_blkno;
532
533	mlog_exit((int)status);
534
535	return status;
536}
537
538/*
539 * TODO: Make this into a generic get_blocks function.
540 *
541 * From do_direct_io in direct-io.c:
542 *  "So what we do is to permit the ->get_blocks function to populate
543 *   bh.b_size with the size of IO which is permitted at this offset and
544 *   this i_blkbits."
545 *
546 * This function is called directly from get_more_blocks in direct-io.c.
547 *
548 * called like this: dio->get_blocks(dio->inode, fs_startblk,
549 * 					fs_count, map_bh, dio->rw == WRITE);
550 */
551static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
552				     struct buffer_head *bh_result, int create)
553{
554	int ret;
555	u64 p_blkno, inode_blocks, contig_blocks;
556	unsigned int ext_flags;
557	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
558	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
559
560	/* This function won't even be called if the request isn't all
561	 * nicely aligned and of the right size, so there's no need
562	 * for us to check any of that. */
563
564	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
565
566	/*
567	 * Any write past EOF is not allowed because we'd be extending.
568	 */
569	if (create && (iblock + max_blocks) > inode_blocks) {
570		ret = -EIO;
571		goto bail;
572	}
573
574	/* This figures out the size of the next contiguous block, and
575	 * our logical offset */
576	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
577					  &contig_blocks, &ext_flags);
578	if (ret) {
579		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
580		     (unsigned long long)iblock);
581		ret = -EIO;
582		goto bail;
583	}
584
585	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
586		ocfs2_error(inode->i_sb,
587			    "Inode %llu has a hole at block %llu\n",
588			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
589			    (unsigned long long)iblock);
590		ret = -EROFS;
591		goto bail;
592	}
593
594	/* We should already CoW the refcounted extent. */
595	BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
596	/*
597	 * get_more_blocks() expects us to describe a hole by clearing
598	 * the mapped bit on bh_result().
599	 *
600	 * Consider an unwritten extent as a hole.
601	 */
602	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
603		map_bh(bh_result, inode->i_sb, p_blkno);
604	else {
605		/*
606		 * ocfs2_prepare_inode_for_write() should have caught
607		 * the case where we'd be filling a hole and triggered
608		 * a buffered write instead.
609		 */
610		if (create) {
611			ret = -EIO;
612			mlog_errno(ret);
613			goto bail;
614		}
615
616		clear_buffer_mapped(bh_result);
617	}
618
619	/* make sure we don't map more than max_blocks blocks here as
620	   that's all the kernel will handle at this point. */
621	if (max_blocks < contig_blocks)
622		contig_blocks = max_blocks;
623	bh_result->b_size = contig_blocks << blocksize_bits;
624bail:
625	return ret;
626}
627
628/*
629 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
630 * particularly interested in the aio/dio case.  Like the core uses
631 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
632 * truncation on another.
633 */
634static void ocfs2_dio_end_io(struct kiocb *iocb,
635			     loff_t offset,
636			     ssize_t bytes,
637			     void *private)
638{
639	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
640	int level;
641
642	/* this io's submitter should not have unlocked this before we could */
643	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
644
645	ocfs2_iocb_clear_rw_locked(iocb);
646
647	level = ocfs2_iocb_rw_locked_level(iocb);
648	if (!level)
649		up_read(&inode->i_alloc_sem);
650	ocfs2_rw_unlock(inode, level);
651}
652
653/*
654 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
655 * from ext3.  PageChecked() bits have been removed as OCFS2 does not
656 * do journalled data.
657 */
658static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
659{
660	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
661
662	jbd2_journal_invalidatepage(journal, page, offset);
663}
664
665static int ocfs2_releasepage(struct page *page, gfp_t wait)
666{
667	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
668
669	if (!page_has_buffers(page))
670		return 0;
671	return jbd2_journal_try_to_free_buffers(journal, page, wait);
672}
673
674static ssize_t ocfs2_direct_IO(int rw,
675			       struct kiocb *iocb,
676			       const struct iovec *iov,
677			       loff_t offset,
678			       unsigned long nr_segs)
679{
680	struct file *file = iocb->ki_filp;
681	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
682	int ret;
683
684	mlog_entry_void();
685
686	/*
687	 * Fallback to buffered I/O if we see an inode without
688	 * extents.
689	 */
690	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
691		return 0;
692
693	/* Fallback to buffered I/O if we are appending. */
694	if (i_size_read(inode) <= offset)
695		return 0;
696
697	ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
698					    inode->i_sb->s_bdev, iov, offset,
699					    nr_segs,
700					    ocfs2_direct_IO_get_blocks,
701					    ocfs2_dio_end_io);
702
703	mlog_exit(ret);
704	return ret;
705}
706
707static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
708					    u32 cpos,
709					    unsigned int *start,
710					    unsigned int *end)
711{
712	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
713
714	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
715		unsigned int cpp;
716
717		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
718
719		cluster_start = cpos % cpp;
720		cluster_start = cluster_start << osb->s_clustersize_bits;
721
722		cluster_end = cluster_start + osb->s_clustersize;
723	}
724
725	BUG_ON(cluster_start > PAGE_SIZE);
726	BUG_ON(cluster_end > PAGE_SIZE);
727
728	if (start)
729		*start = cluster_start;
730	if (end)
731		*end = cluster_end;
732}
733
734/*
735 * 'from' and 'to' are the region in the page to avoid zeroing.
736 *
737 * If pagesize > clustersize, this function will avoid zeroing outside
738 * of the cluster boundary.
739 *
740 * from == to == 0 is code for "zero the entire cluster region"
741 */
742static void ocfs2_clear_page_regions(struct page *page,
743				     struct ocfs2_super *osb, u32 cpos,
744				     unsigned from, unsigned to)
745{
746	void *kaddr;
747	unsigned int cluster_start, cluster_end;
748
749	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
750
751	kaddr = kmap_atomic(page, KM_USER0);
752
753	if (from || to) {
754		if (from > cluster_start)
755			memset(kaddr + cluster_start, 0, from - cluster_start);
756		if (to < cluster_end)
757			memset(kaddr + to, 0, cluster_end - to);
758	} else {
759		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
760	}
761
762	kunmap_atomic(kaddr, KM_USER0);
763}
764
765/*
766 * Nonsparse file systems fully allocate before we get to the write
767 * code. This prevents ocfs2_write() from tagging the write as an
768 * allocating one, which means ocfs2_map_page_blocks() might try to
769 * read-in the blocks at the tail of our file. Avoid reading them by
770 * testing i_size against each block offset.
771 */
772static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
773				 unsigned int block_start)
774{
775	u64 offset = page_offset(page) + block_start;
776
777	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
778		return 1;
779
780	if (i_size_read(inode) > offset)
781		return 1;
782
783	return 0;
784}
785
786/*
787 * Some of this taken from block_prepare_write(). We already have our
788 * mapping by now though, and the entire write will be allocating or
789 * it won't, so not much need to use BH_New.
790 *
791 * This will also skip zeroing, which is handled externally.
792 */
793int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
794			  struct inode *inode, unsigned int from,
795			  unsigned int to, int new)
796{
797	int ret = 0;
798	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
799	unsigned int block_end, block_start;
800	unsigned int bsize = 1 << inode->i_blkbits;
801
802	if (!page_has_buffers(page))
803		create_empty_buffers(page, bsize, 0);
804
805	head = page_buffers(page);
806	for (bh = head, block_start = 0; bh != head || !block_start;
807	     bh = bh->b_this_page, block_start += bsize) {
808		block_end = block_start + bsize;
809
810		clear_buffer_new(bh);
811
812		/*
813		 * Ignore blocks outside of our i/o range -
814		 * they may belong to unallocated clusters.
815		 */
816		if (block_start >= to || block_end <= from) {
817			if (PageUptodate(page))
818				set_buffer_uptodate(bh);
819			continue;
820		}
821
822		/*
823		 * For an allocating write with cluster size >= page
824		 * size, we always write the entire page.
825		 */
826		if (new)
827			set_buffer_new(bh);
828
829		if (!buffer_mapped(bh)) {
830			map_bh(bh, inode->i_sb, *p_blkno);
831			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
832		}
833
834		if (PageUptodate(page)) {
835			if (!buffer_uptodate(bh))
836				set_buffer_uptodate(bh);
837		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
838			   !buffer_new(bh) &&
839			   ocfs2_should_read_blk(inode, page, block_start) &&
840			   (block_start < from || block_end > to)) {
841			ll_rw_block(READ, 1, &bh);
842			*wait_bh++=bh;
843		}
844
845		*p_blkno = *p_blkno + 1;
846	}
847
848	/*
849	 * If we issued read requests - let them complete.
850	 */
851	while(wait_bh > wait) {
852		wait_on_buffer(*--wait_bh);
853		if (!buffer_uptodate(*wait_bh))
854			ret = -EIO;
855	}
856
857	if (ret == 0 || !new)
858		return ret;
859
860	/*
861	 * If we get -EIO above, zero out any newly allocated blocks
862	 * to avoid exposing stale data.
863	 */
864	bh = head;
865	block_start = 0;
866	do {
867		block_end = block_start + bsize;
868		if (block_end <= from)
869			goto next_bh;
870		if (block_start >= to)
871			break;
872
873		zero_user(page, block_start, bh->b_size);
874		set_buffer_uptodate(bh);
875		mark_buffer_dirty(bh);
876
877next_bh:
878		block_start = block_end;
879		bh = bh->b_this_page;
880	} while (bh != head);
881
882	return ret;
883}
884
885#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
886#define OCFS2_MAX_CTXT_PAGES	1
887#else
888#define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
889#endif
890
891#define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
892
893/*
894 * Describe the state of a single cluster to be written to.
895 */
896struct ocfs2_write_cluster_desc {
897	u32		c_cpos;
898	u32		c_phys;
899	/*
900	 * Give this a unique field because c_phys eventually gets
901	 * filled.
902	 */
903	unsigned	c_new;
904	unsigned	c_unwritten;
905	unsigned	c_needs_zero;
906};
907
908struct ocfs2_write_ctxt {
909	/* Logical cluster position / len of write */
910	u32				w_cpos;
911	u32				w_clen;
912
913	/* First cluster allocated in a nonsparse extend */
914	u32				w_first_new_cpos;
915
916	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
917
918	/*
919	 * This is true if page_size > cluster_size.
920	 *
921	 * It triggers a set of special cases during write which might
922	 * have to deal with allocating writes to partial pages.
923	 */
924	unsigned int			w_large_pages;
925
926	/*
927	 * Pages involved in this write.
928	 *
929	 * w_target_page is the page being written to by the user.
930	 *
931	 * w_pages is an array of pages which always contains
932	 * w_target_page, and in the case of an allocating write with
933	 * page_size < cluster size, it will contain zero'd and mapped
934	 * pages adjacent to w_target_page which need to be written
935	 * out in so that future reads from that region will get
936	 * zero's.
937	 */
938	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
939	unsigned int			w_num_pages;
940	struct page			*w_target_page;
941
942	/*
943	 * ocfs2_write_end() uses this to know what the real range to
944	 * write in the target should be.
945	 */
946	unsigned int			w_target_from;
947	unsigned int			w_target_to;
948
949	/*
950	 * We could use journal_current_handle() but this is cleaner,
951	 * IMHO -Mark
952	 */
953	handle_t			*w_handle;
954
955	struct buffer_head		*w_di_bh;
956
957	struct ocfs2_cached_dealloc_ctxt w_dealloc;
958};
959
960void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
961{
962	int i;
963
964	for(i = 0; i < num_pages; i++) {
965		if (pages[i]) {
966			unlock_page(pages[i]);
967			mark_page_accessed(pages[i]);
968			page_cache_release(pages[i]);
969		}
970	}
971}
972
973static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
974{
975	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
976
977	brelse(wc->w_di_bh);
978	kfree(wc);
979}
980
981static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
982				  struct ocfs2_super *osb, loff_t pos,
983				  unsigned len, struct buffer_head *di_bh)
984{
985	u32 cend;
986	struct ocfs2_write_ctxt *wc;
987
988	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
989	if (!wc)
990		return -ENOMEM;
991
992	wc->w_cpos = pos >> osb->s_clustersize_bits;
993	wc->w_first_new_cpos = UINT_MAX;
994	cend = (pos + len - 1) >> osb->s_clustersize_bits;
995	wc->w_clen = cend - wc->w_cpos + 1;
996	get_bh(di_bh);
997	wc->w_di_bh = di_bh;
998
999	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1000		wc->w_large_pages = 1;
1001	else
1002		wc->w_large_pages = 0;
1003
1004	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1005
1006	*wcp = wc;
1007
1008	return 0;
1009}
1010
1011/*
1012 * If a page has any new buffers, zero them out here, and mark them uptodate
1013 * and dirty so they'll be written out (in order to prevent uninitialised
1014 * block data from leaking). And clear the new bit.
1015 */
1016static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1017{
1018	unsigned int block_start, block_end;
1019	struct buffer_head *head, *bh;
1020
1021	BUG_ON(!PageLocked(page));
1022	if (!page_has_buffers(page))
1023		return;
1024
1025	bh = head = page_buffers(page);
1026	block_start = 0;
1027	do {
1028		block_end = block_start + bh->b_size;
1029
1030		if (buffer_new(bh)) {
1031			if (block_end > from && block_start < to) {
1032				if (!PageUptodate(page)) {
1033					unsigned start, end;
1034
1035					start = max(from, block_start);
1036					end = min(to, block_end);
1037
1038					zero_user_segment(page, start, end);
1039					set_buffer_uptodate(bh);
1040				}
1041
1042				clear_buffer_new(bh);
1043				mark_buffer_dirty(bh);
1044			}
1045		}
1046
1047		block_start = block_end;
1048		bh = bh->b_this_page;
1049	} while (bh != head);
1050}
1051
1052/*
1053 * Only called when we have a failure during allocating write to write
1054 * zero's to the newly allocated region.
1055 */
1056static void ocfs2_write_failure(struct inode *inode,
1057				struct ocfs2_write_ctxt *wc,
1058				loff_t user_pos, unsigned user_len)
1059{
1060	int i;
1061	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1062		to = user_pos + user_len;
1063	struct page *tmppage;
1064
1065	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1066
1067	for(i = 0; i < wc->w_num_pages; i++) {
1068		tmppage = wc->w_pages[i];
1069
1070		if (page_has_buffers(tmppage)) {
1071			if (ocfs2_should_order_data(inode))
1072				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1073
1074			block_commit_write(tmppage, from, to);
1075		}
1076	}
1077}
1078
1079static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1080					struct ocfs2_write_ctxt *wc,
1081					struct page *page, u32 cpos,
1082					loff_t user_pos, unsigned user_len,
1083					int new)
1084{
1085	int ret;
1086	unsigned int map_from = 0, map_to = 0;
1087	unsigned int cluster_start, cluster_end;
1088	unsigned int user_data_from = 0, user_data_to = 0;
1089
1090	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1091					&cluster_start, &cluster_end);
1092
1093	if (page == wc->w_target_page) {
1094		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1095		map_to = map_from + user_len;
1096
1097		if (new)
1098			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1099						    cluster_start, cluster_end,
1100						    new);
1101		else
1102			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1103						    map_from, map_to, new);
1104		if (ret) {
1105			mlog_errno(ret);
1106			goto out;
1107		}
1108
1109		user_data_from = map_from;
1110		user_data_to = map_to;
1111		if (new) {
1112			map_from = cluster_start;
1113			map_to = cluster_end;
1114		}
1115	} else {
1116		/*
1117		 * If we haven't allocated the new page yet, we
1118		 * shouldn't be writing it out without copying user
1119		 * data. This is likely a math error from the caller.
1120		 */
1121		BUG_ON(!new);
1122
1123		map_from = cluster_start;
1124		map_to = cluster_end;
1125
1126		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1127					    cluster_start, cluster_end, new);
1128		if (ret) {
1129			mlog_errno(ret);
1130			goto out;
1131		}
1132	}
1133
1134	/*
1135	 * Parts of newly allocated pages need to be zero'd.
1136	 *
1137	 * Above, we have also rewritten 'to' and 'from' - as far as
1138	 * the rest of the function is concerned, the entire cluster
1139	 * range inside of a page needs to be written.
1140	 *
1141	 * We can skip this if the page is up to date - it's already
1142	 * been zero'd from being read in as a hole.
1143	 */
1144	if (new && !PageUptodate(page))
1145		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1146					 cpos, user_data_from, user_data_to);
1147
1148	flush_dcache_page(page);
1149
1150out:
1151	return ret;
1152}
1153
1154/*
1155 * This function will only grab one clusters worth of pages.
1156 */
1157static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1158				      struct ocfs2_write_ctxt *wc,
1159				      u32 cpos, loff_t user_pos, int new,
1160				      struct page *mmap_page)
1161{
1162	int ret = 0, i;
1163	unsigned long start, target_index, index;
1164	struct inode *inode = mapping->host;
1165
1166	target_index = user_pos >> PAGE_CACHE_SHIFT;
1167
1168	/*
1169	 * Figure out how many pages we'll be manipulating here. For
1170	 * non allocating write, we just change the one
1171	 * page. Otherwise, we'll need a whole clusters worth.
1172	 */
1173	if (new) {
1174		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1175		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1176	} else {
1177		wc->w_num_pages = 1;
1178		start = target_index;
1179	}
1180
1181	for(i = 0; i < wc->w_num_pages; i++) {
1182		index = start + i;
1183
1184		if (index == target_index && mmap_page) {
1185			/*
1186			 * ocfs2_pagemkwrite() is a little different
1187			 * and wants us to directly use the page
1188			 * passed in.
1189			 */
1190			lock_page(mmap_page);
1191
1192			if (mmap_page->mapping != mapping) {
1193				unlock_page(mmap_page);
1194				/*
1195				 * Sanity check - the locking in
1196				 * ocfs2_pagemkwrite() should ensure
1197				 * that this code doesn't trigger.
1198				 */
1199				ret = -EINVAL;
1200				mlog_errno(ret);
1201				goto out;
1202			}
1203
1204			page_cache_get(mmap_page);
1205			wc->w_pages[i] = mmap_page;
1206		} else {
1207			wc->w_pages[i] = find_or_create_page(mapping, index,
1208							     GFP_NOFS);
1209			if (!wc->w_pages[i]) {
1210				ret = -ENOMEM;
1211				mlog_errno(ret);
1212				goto out;
1213			}
1214		}
1215
1216		if (index == target_index)
1217			wc->w_target_page = wc->w_pages[i];
1218	}
1219out:
1220	return ret;
1221}
1222
1223/*
1224 * Prepare a single cluster for write one cluster into the file.
1225 */
1226static int ocfs2_write_cluster(struct address_space *mapping,
1227			       u32 phys, unsigned int unwritten,
1228			       unsigned int should_zero,
1229			       struct ocfs2_alloc_context *data_ac,
1230			       struct ocfs2_alloc_context *meta_ac,
1231			       struct ocfs2_write_ctxt *wc, u32 cpos,
1232			       loff_t user_pos, unsigned user_len)
1233{
1234	int ret, i, new;
1235	u64 v_blkno, p_blkno;
1236	struct inode *inode = mapping->host;
1237	struct ocfs2_extent_tree et;
1238
1239	new = phys == 0 ? 1 : 0;
1240	if (new) {
1241		u32 tmp_pos;
1242
1243		/*
1244		 * This is safe to call with the page locks - it won't take
1245		 * any additional semaphores or cluster locks.
1246		 */
1247		tmp_pos = cpos;
1248		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1249					   &tmp_pos, 1, 0, wc->w_di_bh,
1250					   wc->w_handle, data_ac,
1251					   meta_ac, NULL);
1252		/*
1253		 * This shouldn't happen because we must have already
1254		 * calculated the correct meta data allocation required. The
1255		 * internal tree allocation code should know how to increase
1256		 * transaction credits itself.
1257		 *
1258		 * If need be, we could handle -EAGAIN for a
1259		 * RESTART_TRANS here.
1260		 */
1261		mlog_bug_on_msg(ret == -EAGAIN,
1262				"Inode %llu: EAGAIN return during allocation.\n",
1263				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1264		if (ret < 0) {
1265			mlog_errno(ret);
1266			goto out;
1267		}
1268	} else if (unwritten) {
1269		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1270					      wc->w_di_bh);
1271		ret = ocfs2_mark_extent_written(inode, &et,
1272						wc->w_handle, cpos, 1, phys,
1273						meta_ac, &wc->w_dealloc);
1274		if (ret < 0) {
1275			mlog_errno(ret);
1276			goto out;
1277		}
1278	}
1279
1280	if (should_zero)
1281		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1282	else
1283		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1284
1285	/*
1286	 * The only reason this should fail is due to an inability to
1287	 * find the extent added.
1288	 */
1289	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1290					  NULL);
1291	if (ret < 0) {
1292		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1293			    "at logical block %llu",
1294			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1295			    (unsigned long long)v_blkno);
1296		goto out;
1297	}
1298
1299	BUG_ON(p_blkno == 0);
1300
1301	for(i = 0; i < wc->w_num_pages; i++) {
1302		int tmpret;
1303
1304		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1305						      wc->w_pages[i], cpos,
1306						      user_pos, user_len,
1307						      should_zero);
1308		if (tmpret) {
1309			mlog_errno(tmpret);
1310			if (ret == 0)
1311				ret = tmpret;
1312		}
1313	}
1314
1315	/*
1316	 * We only have cleanup to do in case of allocating write.
1317	 */
1318	if (ret && new)
1319		ocfs2_write_failure(inode, wc, user_pos, user_len);
1320
1321out:
1322
1323	return ret;
1324}
1325
1326static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1327				       struct ocfs2_alloc_context *data_ac,
1328				       struct ocfs2_alloc_context *meta_ac,
1329				       struct ocfs2_write_ctxt *wc,
1330				       loff_t pos, unsigned len)
1331{
1332	int ret, i;
1333	loff_t cluster_off;
1334	unsigned int local_len = len;
1335	struct ocfs2_write_cluster_desc *desc;
1336	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1337
1338	for (i = 0; i < wc->w_clen; i++) {
1339		desc = &wc->w_desc[i];
1340
1341		/*
1342		 * We have to make sure that the total write passed in
1343		 * doesn't extend past a single cluster.
1344		 */
1345		local_len = len;
1346		cluster_off = pos & (osb->s_clustersize - 1);
1347		if ((cluster_off + local_len) > osb->s_clustersize)
1348			local_len = osb->s_clustersize - cluster_off;
1349
1350		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1351					  desc->c_unwritten,
1352					  desc->c_needs_zero,
1353					  data_ac, meta_ac,
1354					  wc, desc->c_cpos, pos, local_len);
1355		if (ret) {
1356			mlog_errno(ret);
1357			goto out;
1358		}
1359
1360		len -= local_len;
1361		pos += local_len;
1362	}
1363
1364	ret = 0;
1365out:
1366	return ret;
1367}
1368
1369/*
1370 * ocfs2_write_end() wants to know which parts of the target page it
1371 * should complete the write on. It's easiest to compute them ahead of
1372 * time when a more complete view of the write is available.
1373 */
1374static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1375					struct ocfs2_write_ctxt *wc,
1376					loff_t pos, unsigned len, int alloc)
1377{
1378	struct ocfs2_write_cluster_desc *desc;
1379
1380	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1381	wc->w_target_to = wc->w_target_from + len;
1382
1383	if (alloc == 0)
1384		return;
1385
1386	/*
1387	 * Allocating write - we may have different boundaries based
1388	 * on page size and cluster size.
1389	 *
1390	 * NOTE: We can no longer compute one value from the other as
1391	 * the actual write length and user provided length may be
1392	 * different.
1393	 */
1394
1395	if (wc->w_large_pages) {
1396		/*
1397		 * We only care about the 1st and last cluster within
1398		 * our range and whether they should be zero'd or not. Either
1399		 * value may be extended out to the start/end of a
1400		 * newly allocated cluster.
1401		 */
1402		desc = &wc->w_desc[0];
1403		if (desc->c_needs_zero)
1404			ocfs2_figure_cluster_boundaries(osb,
1405							desc->c_cpos,
1406							&wc->w_target_from,
1407							NULL);
1408
1409		desc = &wc->w_desc[wc->w_clen - 1];
1410		if (desc->c_needs_zero)
1411			ocfs2_figure_cluster_boundaries(osb,
1412							desc->c_cpos,
1413							NULL,
1414							&wc->w_target_to);
1415	} else {
1416		wc->w_target_from = 0;
1417		wc->w_target_to = PAGE_CACHE_SIZE;
1418	}
1419}
1420
1421/*
1422 * Populate each single-cluster write descriptor in the write context
1423 * with information about the i/o to be done.
1424 *
1425 * Returns the number of clusters that will have to be allocated, as
1426 * well as a worst case estimate of the number of extent records that
1427 * would have to be created during a write to an unwritten region.
1428 */
1429static int ocfs2_populate_write_desc(struct inode *inode,
1430				     struct ocfs2_write_ctxt *wc,
1431				     unsigned int *clusters_to_alloc,
1432				     unsigned int *extents_to_split)
1433{
1434	int ret;
1435	struct ocfs2_write_cluster_desc *desc;
1436	unsigned int num_clusters = 0;
1437	unsigned int ext_flags = 0;
1438	u32 phys = 0;
1439	int i;
1440
1441	*clusters_to_alloc = 0;
1442	*extents_to_split = 0;
1443
1444	for (i = 0; i < wc->w_clen; i++) {
1445		desc = &wc->w_desc[i];
1446		desc->c_cpos = wc->w_cpos + i;
1447
1448		if (num_clusters == 0) {
1449			/*
1450			 * Need to look up the next extent record.
1451			 */
1452			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1453						 &num_clusters, &ext_flags);
1454			if (ret) {
1455				mlog_errno(ret);
1456				goto out;
1457			}
1458
1459			/* We should already CoW the refcountd extent. */
1460			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1461
1462			/*
1463			 * Assume worst case - that we're writing in
1464			 * the middle of the extent.
1465			 *
1466			 * We can assume that the write proceeds from
1467			 * left to right, in which case the extent
1468			 * insert code is smart enough to coalesce the
1469			 * next splits into the previous records created.
1470			 */
1471			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1472				*extents_to_split = *extents_to_split + 2;
1473		} else if (phys) {
1474			/*
1475			 * Only increment phys if it doesn't describe
1476			 * a hole.
1477			 */
1478			phys++;
1479		}
1480
1481		/*
1482		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1483		 * file that got extended.  w_first_new_cpos tells us
1484		 * where the newly allocated clusters are so we can
1485		 * zero them.
1486		 */
1487		if (desc->c_cpos >= wc->w_first_new_cpos) {
1488			BUG_ON(phys == 0);
1489			desc->c_needs_zero = 1;
1490		}
1491
1492		desc->c_phys = phys;
1493		if (phys == 0) {
1494			desc->c_new = 1;
1495			desc->c_needs_zero = 1;
1496			*clusters_to_alloc = *clusters_to_alloc + 1;
1497		}
1498
1499		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1500			desc->c_unwritten = 1;
1501			desc->c_needs_zero = 1;
1502		}
1503
1504		num_clusters--;
1505	}
1506
1507	ret = 0;
1508out:
1509	return ret;
1510}
1511
1512static int ocfs2_write_begin_inline(struct address_space *mapping,
1513				    struct inode *inode,
1514				    struct ocfs2_write_ctxt *wc)
1515{
1516	int ret;
1517	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1518	struct page *page;
1519	handle_t *handle;
1520	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1521
1522	page = find_or_create_page(mapping, 0, GFP_NOFS);
1523	if (!page) {
1524		ret = -ENOMEM;
1525		mlog_errno(ret);
1526		goto out;
1527	}
1528	/*
1529	 * If we don't set w_num_pages then this page won't get unlocked
1530	 * and freed on cleanup of the write context.
1531	 */
1532	wc->w_pages[0] = wc->w_target_page = page;
1533	wc->w_num_pages = 1;
1534
1535	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1536	if (IS_ERR(handle)) {
1537		ret = PTR_ERR(handle);
1538		mlog_errno(ret);
1539		goto out;
1540	}
1541
1542	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1543				      OCFS2_JOURNAL_ACCESS_WRITE);
1544	if (ret) {
1545		ocfs2_commit_trans(osb, handle);
1546
1547		mlog_errno(ret);
1548		goto out;
1549	}
1550
1551	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1552		ocfs2_set_inode_data_inline(inode, di);
1553
1554	if (!PageUptodate(page)) {
1555		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1556		if (ret) {
1557			ocfs2_commit_trans(osb, handle);
1558
1559			goto out;
1560		}
1561	}
1562
1563	wc->w_handle = handle;
1564out:
1565	return ret;
1566}
1567
1568int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1569{
1570	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1571
1572	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1573		return 1;
1574	return 0;
1575}
1576
1577static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1578					  struct inode *inode, loff_t pos,
1579					  unsigned len, struct page *mmap_page,
1580					  struct ocfs2_write_ctxt *wc)
1581{
1582	int ret, written = 0;
1583	loff_t end = pos + len;
1584	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1585	struct ocfs2_dinode *di = NULL;
1586
1587	mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1588	     (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1589	     oi->ip_dyn_features);
1590
1591	/*
1592	 * Handle inodes which already have inline data 1st.
1593	 */
1594	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1595		if (mmap_page == NULL &&
1596		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1597			goto do_inline_write;
1598
1599		/*
1600		 * The write won't fit - we have to give this inode an
1601		 * inline extent list now.
1602		 */
1603		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1604		if (ret)
1605			mlog_errno(ret);
1606		goto out;
1607	}
1608
1609	/*
1610	 * Check whether the inode can accept inline data.
1611	 */
1612	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1613		return 0;
1614
1615	/*
1616	 * Check whether the write can fit.
1617	 */
1618	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1619	if (mmap_page ||
1620	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1621		return 0;
1622
1623do_inline_write:
1624	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1625	if (ret) {
1626		mlog_errno(ret);
1627		goto out;
1628	}
1629
1630	/*
1631	 * This signals to the caller that the data can be written
1632	 * inline.
1633	 */
1634	written = 1;
1635out:
1636	return written ? written : ret;
1637}
1638
1639/*
1640 * This function only does anything for file systems which can't
1641 * handle sparse files.
1642 *
1643 * What we want to do here is fill in any hole between the current end
1644 * of allocation and the end of our write. That way the rest of the
1645 * write path can treat it as an non-allocating write, which has no
1646 * special case code for sparse/nonsparse files.
1647 */
1648static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1649					unsigned len,
1650					struct ocfs2_write_ctxt *wc)
1651{
1652	int ret;
1653	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1654	loff_t newsize = pos + len;
1655
1656	if (ocfs2_sparse_alloc(osb))
1657		return 0;
1658
1659	if (newsize <= i_size_read(inode))
1660		return 0;
1661
1662	ret = ocfs2_extend_no_holes(inode, newsize, pos);
1663	if (ret)
1664		mlog_errno(ret);
1665
1666	wc->w_first_new_cpos =
1667		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1668
1669	return ret;
1670}
1671
1672int ocfs2_write_begin_nolock(struct address_space *mapping,
1673			     loff_t pos, unsigned len, unsigned flags,
1674			     struct page **pagep, void **fsdata,
1675			     struct buffer_head *di_bh, struct page *mmap_page)
1676{
1677	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1678	unsigned int clusters_to_alloc, extents_to_split;
1679	struct ocfs2_write_ctxt *wc;
1680	struct inode *inode = mapping->host;
1681	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1682	struct ocfs2_dinode *di;
1683	struct ocfs2_alloc_context *data_ac = NULL;
1684	struct ocfs2_alloc_context *meta_ac = NULL;
1685	handle_t *handle;
1686	struct ocfs2_extent_tree et;
1687
1688	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1689	if (ret) {
1690		mlog_errno(ret);
1691		return ret;
1692	}
1693
1694	if (ocfs2_supports_inline_data(osb)) {
1695		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1696						     mmap_page, wc);
1697		if (ret == 1) {
1698			ret = 0;
1699			goto success;
1700		}
1701		if (ret < 0) {
1702			mlog_errno(ret);
1703			goto out;
1704		}
1705	}
1706
1707	ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1708	if (ret) {
1709		mlog_errno(ret);
1710		goto out;
1711	}
1712
1713	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1714	if (ret < 0) {
1715		mlog_errno(ret);
1716		goto out;
1717	} else if (ret == 1) {
1718		ret = ocfs2_refcount_cow(inode, di_bh,
1719					 wc->w_cpos, wc->w_clen, UINT_MAX);
1720		if (ret) {
1721			mlog_errno(ret);
1722			goto out;
1723		}
1724	}
1725
1726	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1727					&extents_to_split);
1728	if (ret) {
1729		mlog_errno(ret);
1730		goto out;
1731	}
1732
1733	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1734
1735	/*
1736	 * We set w_target_from, w_target_to here so that
1737	 * ocfs2_write_end() knows which range in the target page to
1738	 * write out. An allocation requires that we write the entire
1739	 * cluster range.
1740	 */
1741	if (clusters_to_alloc || extents_to_split) {
1742		/*
1743		 * XXX: We are stretching the limits of
1744		 * ocfs2_lock_allocators(). It greatly over-estimates
1745		 * the work to be done.
1746		 */
1747		mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1748		     " clusters_to_add = %u, extents_to_split = %u\n",
1749		     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1750		     (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1751		     clusters_to_alloc, extents_to_split);
1752
1753		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1754					      wc->w_di_bh);
1755		ret = ocfs2_lock_allocators(inode, &et,
1756					    clusters_to_alloc, extents_to_split,
1757					    &data_ac, &meta_ac);
1758		if (ret) {
1759			mlog_errno(ret);
1760			goto out;
1761		}
1762
1763		credits = ocfs2_calc_extend_credits(inode->i_sb,
1764						    &di->id2.i_list,
1765						    clusters_to_alloc);
1766
1767	}
1768
1769	/*
1770	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1771	 * and non-sparse clusters we just extended.  For non-sparse writes,
1772	 * we know zeros will only be needed in the first and/or last cluster.
1773	 */
1774	if (clusters_to_alloc || extents_to_split ||
1775	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1776			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1777		cluster_of_pages = 1;
1778	else
1779		cluster_of_pages = 0;
1780
1781	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1782
1783	handle = ocfs2_start_trans(osb, credits);
1784	if (IS_ERR(handle)) {
1785		ret = PTR_ERR(handle);
1786		mlog_errno(ret);
1787		goto out;
1788	}
1789
1790	wc->w_handle = handle;
1791
1792	if (clusters_to_alloc && vfs_dq_alloc_space_nodirty(inode,
1793			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc))) {
1794		ret = -EDQUOT;
1795		goto out_commit;
1796	}
1797	/*
1798	 * We don't want this to fail in ocfs2_write_end(), so do it
1799	 * here.
1800	 */
1801	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1802				      OCFS2_JOURNAL_ACCESS_WRITE);
1803	if (ret) {
1804		mlog_errno(ret);
1805		goto out_quota;
1806	}
1807
1808	/*
1809	 * Fill our page array first. That way we've grabbed enough so
1810	 * that we can zero and flush if we error after adding the
1811	 * extent.
1812	 */
1813	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1814					 cluster_of_pages, mmap_page);
1815	if (ret) {
1816		mlog_errno(ret);
1817		goto out_quota;
1818	}
1819
1820	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1821					  len);
1822	if (ret) {
1823		mlog_errno(ret);
1824		goto out_quota;
1825	}
1826
1827	if (data_ac)
1828		ocfs2_free_alloc_context(data_ac);
1829	if (meta_ac)
1830		ocfs2_free_alloc_context(meta_ac);
1831
1832success:
1833	*pagep = wc->w_target_page;
1834	*fsdata = wc;
1835	return 0;
1836out_quota:
1837	if (clusters_to_alloc)
1838		vfs_dq_free_space(inode,
1839			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1840out_commit:
1841	ocfs2_commit_trans(osb, handle);
1842
1843out:
1844	ocfs2_free_write_ctxt(wc);
1845
1846	if (data_ac)
1847		ocfs2_free_alloc_context(data_ac);
1848	if (meta_ac)
1849		ocfs2_free_alloc_context(meta_ac);
1850	return ret;
1851}
1852
1853static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1854			     loff_t pos, unsigned len, unsigned flags,
1855			     struct page **pagep, void **fsdata)
1856{
1857	int ret;
1858	struct buffer_head *di_bh = NULL;
1859	struct inode *inode = mapping->host;
1860
1861	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1862	if (ret) {
1863		mlog_errno(ret);
1864		return ret;
1865	}
1866
1867	/*
1868	 * Take alloc sem here to prevent concurrent lookups. That way
1869	 * the mapping, zeroing and tree manipulation within
1870	 * ocfs2_write() will be safe against ->readpage(). This
1871	 * should also serve to lock out allocation from a shared
1872	 * writeable region.
1873	 */
1874	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1875
1876	ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1877				       fsdata, di_bh, NULL);
1878	if (ret) {
1879		mlog_errno(ret);
1880		goto out_fail;
1881	}
1882
1883	brelse(di_bh);
1884
1885	return 0;
1886
1887out_fail:
1888	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1889
1890	brelse(di_bh);
1891	ocfs2_inode_unlock(inode, 1);
1892
1893	return ret;
1894}
1895
1896static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1897				   unsigned len, unsigned *copied,
1898				   struct ocfs2_dinode *di,
1899				   struct ocfs2_write_ctxt *wc)
1900{
1901	void *kaddr;
1902
1903	if (unlikely(*copied < len)) {
1904		if (!PageUptodate(wc->w_target_page)) {
1905			*copied = 0;
1906			return;
1907		}
1908	}
1909
1910	kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1911	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1912	kunmap_atomic(kaddr, KM_USER0);
1913
1914	mlog(0, "Data written to inode at offset %llu. "
1915	     "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1916	     (unsigned long long)pos, *copied,
1917	     le16_to_cpu(di->id2.i_data.id_count),
1918	     le16_to_cpu(di->i_dyn_features));
1919}
1920
1921int ocfs2_write_end_nolock(struct address_space *mapping,
1922			   loff_t pos, unsigned len, unsigned copied,
1923			   struct page *page, void *fsdata)
1924{
1925	int i;
1926	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1927	struct inode *inode = mapping->host;
1928	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1929	struct ocfs2_write_ctxt *wc = fsdata;
1930	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1931	handle_t *handle = wc->w_handle;
1932	struct page *tmppage;
1933
1934	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1935		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1936		goto out_write_size;
1937	}
1938
1939	if (unlikely(copied < len)) {
1940		if (!PageUptodate(wc->w_target_page))
1941			copied = 0;
1942
1943		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1944				       start+len);
1945	}
1946	flush_dcache_page(wc->w_target_page);
1947
1948	for(i = 0; i < wc->w_num_pages; i++) {
1949		tmppage = wc->w_pages[i];
1950
1951		if (tmppage == wc->w_target_page) {
1952			from = wc->w_target_from;
1953			to = wc->w_target_to;
1954
1955			BUG_ON(from > PAGE_CACHE_SIZE ||
1956			       to > PAGE_CACHE_SIZE ||
1957			       to < from);
1958		} else {
1959			/*
1960			 * Pages adjacent to the target (if any) imply
1961			 * a hole-filling write in which case we want
1962			 * to flush their entire range.
1963			 */
1964			from = 0;
1965			to = PAGE_CACHE_SIZE;
1966		}
1967
1968		if (page_has_buffers(tmppage)) {
1969			if (ocfs2_should_order_data(inode))
1970				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1971			block_commit_write(tmppage, from, to);
1972		}
1973	}
1974
1975out_write_size:
1976	pos += copied;
1977	if (pos > inode->i_size) {
1978		i_size_write(inode, pos);
1979		mark_inode_dirty(inode);
1980	}
1981	inode->i_blocks = ocfs2_inode_sector_count(inode);
1982	di->i_size = cpu_to_le64((u64)i_size_read(inode));
1983	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1984	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1985	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1986	ocfs2_journal_dirty(handle, wc->w_di_bh);
1987
1988	ocfs2_commit_trans(osb, handle);
1989
1990	ocfs2_run_deallocs(osb, &wc->w_dealloc);
1991
1992	ocfs2_free_write_ctxt(wc);
1993
1994	return copied;
1995}
1996
1997static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1998			   loff_t pos, unsigned len, unsigned copied,
1999			   struct page *page, void *fsdata)
2000{
2001	int ret;
2002	struct inode *inode = mapping->host;
2003
2004	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2005
2006	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2007	ocfs2_inode_unlock(inode, 1);
2008
2009	return ret;
2010}
2011
2012const struct address_space_operations ocfs2_aops = {
2013	.readpage		= ocfs2_readpage,
2014	.readpages		= ocfs2_readpages,
2015	.writepage		= ocfs2_writepage,
2016	.write_begin		= ocfs2_write_begin,
2017	.write_end		= ocfs2_write_end,
2018	.bmap			= ocfs2_bmap,
2019	.sync_page		= block_sync_page,
2020	.direct_IO		= ocfs2_direct_IO,
2021	.invalidatepage		= ocfs2_invalidatepage,
2022	.releasepage		= ocfs2_releasepage,
2023	.migratepage		= buffer_migrate_page,
2024	.is_partially_uptodate	= block_is_partially_uptodate,
2025};
2026