aops.c revision db56246c6980e376b02d2da568d119da71f82fb9
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
27#include <linux/swap.h>
28#include <linux/pipe_fs_i.h>
29
30#define MLOG_MASK_PREFIX ML_FILE_IO
31#include <cluster/masklog.h>
32
33#include "ocfs2.h"
34
35#include "alloc.h"
36#include "aops.h"
37#include "dlmglue.h"
38#include "extent_map.h"
39#include "file.h"
40#include "inode.h"
41#include "journal.h"
42#include "suballoc.h"
43#include "super.h"
44#include "symlink.h"
45
46#include "buffer_head_io.h"
47
48static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
49				   struct buffer_head *bh_result, int create)
50{
51	int err = -EIO;
52	int status;
53	struct ocfs2_dinode *fe = NULL;
54	struct buffer_head *bh = NULL;
55	struct buffer_head *buffer_cache_bh = NULL;
56	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
57	void *kaddr;
58
59	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
60		   (unsigned long long)iblock, bh_result, create);
61
62	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
63
64	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
65		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
66		     (unsigned long long)iblock);
67		goto bail;
68	}
69
70	status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
71				  OCFS2_I(inode)->ip_blkno,
72				  &bh, OCFS2_BH_CACHED, inode);
73	if (status < 0) {
74		mlog_errno(status);
75		goto bail;
76	}
77	fe = (struct ocfs2_dinode *) bh->b_data;
78
79	if (!OCFS2_IS_VALID_DINODE(fe)) {
80		mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
81		     (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
82		     fe->i_signature);
83		goto bail;
84	}
85
86	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87						    le32_to_cpu(fe->i_clusters))) {
88		mlog(ML_ERROR, "block offset is outside the allocated size: "
89		     "%llu\n", (unsigned long long)iblock);
90		goto bail;
91	}
92
93	/* We don't use the page cache to create symlink data, so if
94	 * need be, copy it over from the buffer cache. */
95	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
96		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
97			    iblock;
98		buffer_cache_bh = sb_getblk(osb->sb, blkno);
99		if (!buffer_cache_bh) {
100			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
101			goto bail;
102		}
103
104		/* we haven't locked out transactions, so a commit
105		 * could've happened. Since we've got a reference on
106		 * the bh, even if it commits while we're doing the
107		 * copy, the data is still good. */
108		if (buffer_jbd(buffer_cache_bh)
109		    && ocfs2_inode_is_new(inode)) {
110			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
111			if (!kaddr) {
112				mlog(ML_ERROR, "couldn't kmap!\n");
113				goto bail;
114			}
115			memcpy(kaddr + (bh_result->b_size * iblock),
116			       buffer_cache_bh->b_data,
117			       bh_result->b_size);
118			kunmap_atomic(kaddr, KM_USER0);
119			set_buffer_uptodate(bh_result);
120		}
121		brelse(buffer_cache_bh);
122	}
123
124	map_bh(bh_result, inode->i_sb,
125	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
126
127	err = 0;
128
129bail:
130	if (bh)
131		brelse(bh);
132
133	mlog_exit(err);
134	return err;
135}
136
137static int ocfs2_get_block(struct inode *inode, sector_t iblock,
138			   struct buffer_head *bh_result, int create)
139{
140	int err = 0;
141	unsigned int ext_flags;
142	u64 p_blkno, past_eof;
143	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
144
145	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
146		   (unsigned long long)iblock, bh_result, create);
147
148	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150		     inode, inode->i_ino);
151
152	if (S_ISLNK(inode->i_mode)) {
153		/* this always does I/O for some reason. */
154		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155		goto bail;
156	}
157
158	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL,
159					  &ext_flags);
160	if (err) {
161		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163		     (unsigned long long)p_blkno);
164		goto bail;
165	}
166
167	/*
168	 * ocfs2 never allocates in this function - the only time we
169	 * need to use BH_New is when we're extending i_size on a file
170	 * system which doesn't support holes, in which case BH_New
171	 * allows block_prepare_write() to zero.
172	 */
173	mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
174			"ino %lu, iblock %llu\n", inode->i_ino,
175			(unsigned long long)iblock);
176
177	/* Treat the unwritten extent as a hole for zeroing purposes. */
178	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
179		map_bh(bh_result, inode->i_sb, p_blkno);
180
181	if (!ocfs2_sparse_alloc(osb)) {
182		if (p_blkno == 0) {
183			err = -EIO;
184			mlog(ML_ERROR,
185			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
186			     (unsigned long long)iblock,
187			     (unsigned long long)p_blkno,
188			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
189			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
190			dump_stack();
191		}
192
193		past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
194		mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
195		     (unsigned long long)past_eof);
196
197		if (create && (iblock >= past_eof))
198			set_buffer_new(bh_result);
199	}
200
201bail:
202	if (err < 0)
203		err = -EIO;
204
205	mlog_exit(err);
206	return err;
207}
208
209static int ocfs2_readpage(struct file *file, struct page *page)
210{
211	struct inode *inode = page->mapping->host;
212	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
213	int ret, unlock = 1;
214
215	mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
216
217	ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
218	if (ret != 0) {
219		if (ret == AOP_TRUNCATED_PAGE)
220			unlock = 0;
221		mlog_errno(ret);
222		goto out;
223	}
224
225	if (down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem) == 0) {
226		ret = AOP_TRUNCATED_PAGE;
227		goto out_meta_unlock;
228	}
229
230	/*
231	 * i_size might have just been updated as we grabed the meta lock.  We
232	 * might now be discovering a truncate that hit on another node.
233	 * block_read_full_page->get_block freaks out if it is asked to read
234	 * beyond the end of a file, so we check here.  Callers
235	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
236	 * and notice that the page they just read isn't needed.
237	 *
238	 * XXX sys_readahead() seems to get that wrong?
239	 */
240	if (start >= i_size_read(inode)) {
241		zero_user_page(page, 0, PAGE_SIZE, KM_USER0);
242		SetPageUptodate(page);
243		ret = 0;
244		goto out_alloc;
245	}
246
247	ret = ocfs2_data_lock_with_page(inode, 0, page);
248	if (ret != 0) {
249		if (ret == AOP_TRUNCATED_PAGE)
250			unlock = 0;
251		mlog_errno(ret);
252		goto out_alloc;
253	}
254
255	ret = block_read_full_page(page, ocfs2_get_block);
256	unlock = 0;
257
258	ocfs2_data_unlock(inode, 0);
259out_alloc:
260	up_read(&OCFS2_I(inode)->ip_alloc_sem);
261out_meta_unlock:
262	ocfs2_meta_unlock(inode, 0);
263out:
264	if (unlock)
265		unlock_page(page);
266	mlog_exit(ret);
267	return ret;
268}
269
270/* Note: Because we don't support holes, our allocation has
271 * already happened (allocation writes zeros to the file data)
272 * so we don't have to worry about ordered writes in
273 * ocfs2_writepage.
274 *
275 * ->writepage is called during the process of invalidating the page cache
276 * during blocked lock processing.  It can't block on any cluster locks
277 * to during block mapping.  It's relying on the fact that the block
278 * mapping can't have disappeared under the dirty pages that it is
279 * being asked to write back.
280 */
281static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
282{
283	int ret;
284
285	mlog_entry("(0x%p)\n", page);
286
287	ret = block_write_full_page(page, ocfs2_get_block, wbc);
288
289	mlog_exit(ret);
290
291	return ret;
292}
293
294/*
295 * This is called from ocfs2_write_zero_page() which has handled it's
296 * own cluster locking and has ensured allocation exists for those
297 * blocks to be written.
298 */
299int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
300			       unsigned from, unsigned to)
301{
302	int ret;
303
304	down_read(&OCFS2_I(inode)->ip_alloc_sem);
305
306	ret = block_prepare_write(page, from, to, ocfs2_get_block);
307
308	up_read(&OCFS2_I(inode)->ip_alloc_sem);
309
310	return ret;
311}
312
313/* Taken from ext3. We don't necessarily need the full blown
314 * functionality yet, but IMHO it's better to cut and paste the whole
315 * thing so we can avoid introducing our own bugs (and easily pick up
316 * their fixes when they happen) --Mark */
317int walk_page_buffers(	handle_t *handle,
318			struct buffer_head *head,
319			unsigned from,
320			unsigned to,
321			int *partial,
322			int (*fn)(	handle_t *handle,
323					struct buffer_head *bh))
324{
325	struct buffer_head *bh;
326	unsigned block_start, block_end;
327	unsigned blocksize = head->b_size;
328	int err, ret = 0;
329	struct buffer_head *next;
330
331	for (	bh = head, block_start = 0;
332		ret == 0 && (bh != head || !block_start);
333	    	block_start = block_end, bh = next)
334	{
335		next = bh->b_this_page;
336		block_end = block_start + blocksize;
337		if (block_end <= from || block_start >= to) {
338			if (partial && !buffer_uptodate(bh))
339				*partial = 1;
340			continue;
341		}
342		err = (*fn)(handle, bh);
343		if (!ret)
344			ret = err;
345	}
346	return ret;
347}
348
349handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
350							 struct page *page,
351							 unsigned from,
352							 unsigned to)
353{
354	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
355	handle_t *handle = NULL;
356	int ret = 0;
357
358	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
359	if (!handle) {
360		ret = -ENOMEM;
361		mlog_errno(ret);
362		goto out;
363	}
364
365	if (ocfs2_should_order_data(inode)) {
366		ret = walk_page_buffers(handle,
367					page_buffers(page),
368					from, to, NULL,
369					ocfs2_journal_dirty_data);
370		if (ret < 0)
371			mlog_errno(ret);
372	}
373out:
374	if (ret) {
375		if (handle)
376			ocfs2_commit_trans(osb, handle);
377		handle = ERR_PTR(ret);
378	}
379	return handle;
380}
381
382static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
383{
384	sector_t status;
385	u64 p_blkno = 0;
386	int err = 0;
387	struct inode *inode = mapping->host;
388
389	mlog_entry("(block = %llu)\n", (unsigned long long)block);
390
391	/* We don't need to lock journal system files, since they aren't
392	 * accessed concurrently from multiple nodes.
393	 */
394	if (!INODE_JOURNAL(inode)) {
395		err = ocfs2_meta_lock(inode, NULL, 0);
396		if (err) {
397			if (err != -ENOENT)
398				mlog_errno(err);
399			goto bail;
400		}
401		down_read(&OCFS2_I(inode)->ip_alloc_sem);
402	}
403
404	err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, NULL);
405
406	if (!INODE_JOURNAL(inode)) {
407		up_read(&OCFS2_I(inode)->ip_alloc_sem);
408		ocfs2_meta_unlock(inode, 0);
409	}
410
411	if (err) {
412		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
413		     (unsigned long long)block);
414		mlog_errno(err);
415		goto bail;
416	}
417
418
419bail:
420	status = err ? 0 : p_blkno;
421
422	mlog_exit((int)status);
423
424	return status;
425}
426
427/*
428 * TODO: Make this into a generic get_blocks function.
429 *
430 * From do_direct_io in direct-io.c:
431 *  "So what we do is to permit the ->get_blocks function to populate
432 *   bh.b_size with the size of IO which is permitted at this offset and
433 *   this i_blkbits."
434 *
435 * This function is called directly from get_more_blocks in direct-io.c.
436 *
437 * called like this: dio->get_blocks(dio->inode, fs_startblk,
438 * 					fs_count, map_bh, dio->rw == WRITE);
439 */
440static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
441				     struct buffer_head *bh_result, int create)
442{
443	int ret;
444	u64 p_blkno, inode_blocks, contig_blocks;
445	unsigned int ext_flags;
446	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
447	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
448
449	/* This function won't even be called if the request isn't all
450	 * nicely aligned and of the right size, so there's no need
451	 * for us to check any of that. */
452
453	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
454
455	/*
456	 * Any write past EOF is not allowed because we'd be extending.
457	 */
458	if (create && (iblock + max_blocks) > inode_blocks) {
459		ret = -EIO;
460		goto bail;
461	}
462
463	/* This figures out the size of the next contiguous block, and
464	 * our logical offset */
465	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
466					  &contig_blocks, &ext_flags);
467	if (ret) {
468		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
469		     (unsigned long long)iblock);
470		ret = -EIO;
471		goto bail;
472	}
473
474	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
475		ocfs2_error(inode->i_sb,
476			    "Inode %llu has a hole at block %llu\n",
477			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
478			    (unsigned long long)iblock);
479		ret = -EROFS;
480		goto bail;
481	}
482
483	/*
484	 * get_more_blocks() expects us to describe a hole by clearing
485	 * the mapped bit on bh_result().
486	 *
487	 * Consider an unwritten extent as a hole.
488	 */
489	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
490		map_bh(bh_result, inode->i_sb, p_blkno);
491	else {
492		/*
493		 * ocfs2_prepare_inode_for_write() should have caught
494		 * the case where we'd be filling a hole and triggered
495		 * a buffered write instead.
496		 */
497		if (create) {
498			ret = -EIO;
499			mlog_errno(ret);
500			goto bail;
501		}
502
503		clear_buffer_mapped(bh_result);
504	}
505
506	/* make sure we don't map more than max_blocks blocks here as
507	   that's all the kernel will handle at this point. */
508	if (max_blocks < contig_blocks)
509		contig_blocks = max_blocks;
510	bh_result->b_size = contig_blocks << blocksize_bits;
511bail:
512	return ret;
513}
514
515/*
516 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
517 * particularly interested in the aio/dio case.  Like the core uses
518 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
519 * truncation on another.
520 */
521static void ocfs2_dio_end_io(struct kiocb *iocb,
522			     loff_t offset,
523			     ssize_t bytes,
524			     void *private)
525{
526	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
527	int level;
528
529	/* this io's submitter should not have unlocked this before we could */
530	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
531
532	ocfs2_iocb_clear_rw_locked(iocb);
533
534	level = ocfs2_iocb_rw_locked_level(iocb);
535	if (!level)
536		up_read(&inode->i_alloc_sem);
537	ocfs2_rw_unlock(inode, level);
538}
539
540/*
541 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
542 * from ext3.  PageChecked() bits have been removed as OCFS2 does not
543 * do journalled data.
544 */
545static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
546{
547	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
548
549	journal_invalidatepage(journal, page, offset);
550}
551
552static int ocfs2_releasepage(struct page *page, gfp_t wait)
553{
554	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
555
556	if (!page_has_buffers(page))
557		return 0;
558	return journal_try_to_free_buffers(journal, page, wait);
559}
560
561static ssize_t ocfs2_direct_IO(int rw,
562			       struct kiocb *iocb,
563			       const struct iovec *iov,
564			       loff_t offset,
565			       unsigned long nr_segs)
566{
567	struct file *file = iocb->ki_filp;
568	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
569	int ret;
570
571	mlog_entry_void();
572
573	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
574		/*
575		 * We get PR data locks even for O_DIRECT.  This
576		 * allows concurrent O_DIRECT I/O but doesn't let
577		 * O_DIRECT with extending and buffered zeroing writes
578		 * race.  If they did race then the buffered zeroing
579		 * could be written back after the O_DIRECT I/O.  It's
580		 * one thing to tell people not to mix buffered and
581		 * O_DIRECT writes, but expecting them to understand
582		 * that file extension is also an implicit buffered
583		 * write is too much.  By getting the PR we force
584		 * writeback of the buffered zeroing before
585		 * proceeding.
586		 */
587		ret = ocfs2_data_lock(inode, 0);
588		if (ret < 0) {
589			mlog_errno(ret);
590			goto out;
591		}
592		ocfs2_data_unlock(inode, 0);
593	}
594
595	ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
596					    inode->i_sb->s_bdev, iov, offset,
597					    nr_segs,
598					    ocfs2_direct_IO_get_blocks,
599					    ocfs2_dio_end_io);
600out:
601	mlog_exit(ret);
602	return ret;
603}
604
605static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
606					    u32 cpos,
607					    unsigned int *start,
608					    unsigned int *end)
609{
610	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
611
612	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
613		unsigned int cpp;
614
615		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
616
617		cluster_start = cpos % cpp;
618		cluster_start = cluster_start << osb->s_clustersize_bits;
619
620		cluster_end = cluster_start + osb->s_clustersize;
621	}
622
623	BUG_ON(cluster_start > PAGE_SIZE);
624	BUG_ON(cluster_end > PAGE_SIZE);
625
626	if (start)
627		*start = cluster_start;
628	if (end)
629		*end = cluster_end;
630}
631
632/*
633 * 'from' and 'to' are the region in the page to avoid zeroing.
634 *
635 * If pagesize > clustersize, this function will avoid zeroing outside
636 * of the cluster boundary.
637 *
638 * from == to == 0 is code for "zero the entire cluster region"
639 */
640static void ocfs2_clear_page_regions(struct page *page,
641				     struct ocfs2_super *osb, u32 cpos,
642				     unsigned from, unsigned to)
643{
644	void *kaddr;
645	unsigned int cluster_start, cluster_end;
646
647	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
648
649	kaddr = kmap_atomic(page, KM_USER0);
650
651	if (from || to) {
652		if (from > cluster_start)
653			memset(kaddr + cluster_start, 0, from - cluster_start);
654		if (to < cluster_end)
655			memset(kaddr + to, 0, cluster_end - to);
656	} else {
657		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
658	}
659
660	kunmap_atomic(kaddr, KM_USER0);
661}
662
663/*
664 * Some of this taken from block_prepare_write(). We already have our
665 * mapping by now though, and the entire write will be allocating or
666 * it won't, so not much need to use BH_New.
667 *
668 * This will also skip zeroing, which is handled externally.
669 */
670int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
671			  struct inode *inode, unsigned int from,
672			  unsigned int to, int new)
673{
674	int ret = 0;
675	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
676	unsigned int block_end, block_start;
677	unsigned int bsize = 1 << inode->i_blkbits;
678
679	if (!page_has_buffers(page))
680		create_empty_buffers(page, bsize, 0);
681
682	head = page_buffers(page);
683	for (bh = head, block_start = 0; bh != head || !block_start;
684	     bh = bh->b_this_page, block_start += bsize) {
685		block_end = block_start + bsize;
686
687		clear_buffer_new(bh);
688
689		/*
690		 * Ignore blocks outside of our i/o range -
691		 * they may belong to unallocated clusters.
692		 */
693		if (block_start >= to || block_end <= from) {
694			if (PageUptodate(page))
695				set_buffer_uptodate(bh);
696			continue;
697		}
698
699		/*
700		 * For an allocating write with cluster size >= page
701		 * size, we always write the entire page.
702		 */
703		if (new)
704			set_buffer_new(bh);
705
706		if (!buffer_mapped(bh)) {
707			map_bh(bh, inode->i_sb, *p_blkno);
708			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
709		}
710
711		if (PageUptodate(page)) {
712			if (!buffer_uptodate(bh))
713				set_buffer_uptodate(bh);
714		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
715			   !buffer_new(bh) &&
716			   (block_start < from || block_end > to)) {
717			ll_rw_block(READ, 1, &bh);
718			*wait_bh++=bh;
719		}
720
721		*p_blkno = *p_blkno + 1;
722	}
723
724	/*
725	 * If we issued read requests - let them complete.
726	 */
727	while(wait_bh > wait) {
728		wait_on_buffer(*--wait_bh);
729		if (!buffer_uptodate(*wait_bh))
730			ret = -EIO;
731	}
732
733	if (ret == 0 || !new)
734		return ret;
735
736	/*
737	 * If we get -EIO above, zero out any newly allocated blocks
738	 * to avoid exposing stale data.
739	 */
740	bh = head;
741	block_start = 0;
742	do {
743		block_end = block_start + bsize;
744		if (block_end <= from)
745			goto next_bh;
746		if (block_start >= to)
747			break;
748
749		zero_user_page(page, block_start, bh->b_size, KM_USER0);
750		set_buffer_uptodate(bh);
751		mark_buffer_dirty(bh);
752
753next_bh:
754		block_start = block_end;
755		bh = bh->b_this_page;
756	} while (bh != head);
757
758	return ret;
759}
760
761#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
762#define OCFS2_MAX_CTXT_PAGES	1
763#else
764#define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
765#endif
766
767#define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
768
769/*
770 * Describe the state of a single cluster to be written to.
771 */
772struct ocfs2_write_cluster_desc {
773	u32		c_cpos;
774	u32		c_phys;
775	/*
776	 * Give this a unique field because c_phys eventually gets
777	 * filled.
778	 */
779	unsigned	c_new;
780	unsigned	c_unwritten;
781};
782
783static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
784{
785	return d->c_new || d->c_unwritten;
786}
787
788struct ocfs2_write_ctxt {
789	/* Logical cluster position / len of write */
790	u32				w_cpos;
791	u32				w_clen;
792
793	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
794
795	/*
796	 * This is true if page_size > cluster_size.
797	 *
798	 * It triggers a set of special cases during write which might
799	 * have to deal with allocating writes to partial pages.
800	 */
801	unsigned int			w_large_pages;
802
803	/*
804	 * Pages involved in this write.
805	 *
806	 * w_target_page is the page being written to by the user.
807	 *
808	 * w_pages is an array of pages which always contains
809	 * w_target_page, and in the case of an allocating write with
810	 * page_size < cluster size, it will contain zero'd and mapped
811	 * pages adjacent to w_target_page which need to be written
812	 * out in so that future reads from that region will get
813	 * zero's.
814	 */
815	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
816	unsigned int			w_num_pages;
817	struct page			*w_target_page;
818
819	/*
820	 * ocfs2_write_end() uses this to know what the real range to
821	 * write in the target should be.
822	 */
823	unsigned int			w_target_from;
824	unsigned int			w_target_to;
825
826	/*
827	 * We could use journal_current_handle() but this is cleaner,
828	 * IMHO -Mark
829	 */
830	handle_t			*w_handle;
831
832	struct buffer_head		*w_di_bh;
833
834	struct ocfs2_cached_dealloc_ctxt w_dealloc;
835};
836
837static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
838{
839	int i;
840
841	for(i = 0; i < wc->w_num_pages; i++) {
842		if (wc->w_pages[i] == NULL)
843			continue;
844
845		unlock_page(wc->w_pages[i]);
846		mark_page_accessed(wc->w_pages[i]);
847		page_cache_release(wc->w_pages[i]);
848	}
849
850	brelse(wc->w_di_bh);
851	kfree(wc);
852}
853
854static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
855				  struct ocfs2_super *osb, loff_t pos,
856				  unsigned len, struct buffer_head *di_bh)
857{
858	u32 cend;
859	struct ocfs2_write_ctxt *wc;
860
861	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
862	if (!wc)
863		return -ENOMEM;
864
865	wc->w_cpos = pos >> osb->s_clustersize_bits;
866	cend = (pos + len - 1) >> osb->s_clustersize_bits;
867	wc->w_clen = cend - wc->w_cpos + 1;
868	get_bh(di_bh);
869	wc->w_di_bh = di_bh;
870
871	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
872		wc->w_large_pages = 1;
873	else
874		wc->w_large_pages = 0;
875
876	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
877
878	*wcp = wc;
879
880	return 0;
881}
882
883/*
884 * If a page has any new buffers, zero them out here, and mark them uptodate
885 * and dirty so they'll be written out (in order to prevent uninitialised
886 * block data from leaking). And clear the new bit.
887 */
888static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
889{
890	unsigned int block_start, block_end;
891	struct buffer_head *head, *bh;
892
893	BUG_ON(!PageLocked(page));
894	if (!page_has_buffers(page))
895		return;
896
897	bh = head = page_buffers(page);
898	block_start = 0;
899	do {
900		block_end = block_start + bh->b_size;
901
902		if (buffer_new(bh)) {
903			if (block_end > from && block_start < to) {
904				if (!PageUptodate(page)) {
905					unsigned start, end;
906
907					start = max(from, block_start);
908					end = min(to, block_end);
909
910					zero_user_page(page, start, end - start, KM_USER0);
911					set_buffer_uptodate(bh);
912				}
913
914				clear_buffer_new(bh);
915				mark_buffer_dirty(bh);
916			}
917		}
918
919		block_start = block_end;
920		bh = bh->b_this_page;
921	} while (bh != head);
922}
923
924/*
925 * Only called when we have a failure during allocating write to write
926 * zero's to the newly allocated region.
927 */
928static void ocfs2_write_failure(struct inode *inode,
929				struct ocfs2_write_ctxt *wc,
930				loff_t user_pos, unsigned user_len)
931{
932	int i;
933	unsigned from, to;
934	struct page *tmppage;
935
936	ocfs2_zero_new_buffers(wc->w_target_page, user_pos, user_len);
937
938	if (wc->w_large_pages) {
939		from = wc->w_target_from;
940		to = wc->w_target_to;
941	} else {
942		from = 0;
943		to = PAGE_CACHE_SIZE;
944	}
945
946	for(i = 0; i < wc->w_num_pages; i++) {
947		tmppage = wc->w_pages[i];
948
949		if (ocfs2_should_order_data(inode))
950			walk_page_buffers(wc->w_handle, page_buffers(tmppage),
951					  from, to, NULL,
952					  ocfs2_journal_dirty_data);
953
954		block_commit_write(tmppage, from, to);
955	}
956}
957
958static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
959					struct ocfs2_write_ctxt *wc,
960					struct page *page, u32 cpos,
961					loff_t user_pos, unsigned user_len,
962					int new)
963{
964	int ret;
965	unsigned int map_from = 0, map_to = 0;
966	unsigned int cluster_start, cluster_end;
967	unsigned int user_data_from = 0, user_data_to = 0;
968
969	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
970					&cluster_start, &cluster_end);
971
972	if (page == wc->w_target_page) {
973		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
974		map_to = map_from + user_len;
975
976		if (new)
977			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
978						    cluster_start, cluster_end,
979						    new);
980		else
981			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
982						    map_from, map_to, new);
983		if (ret) {
984			mlog_errno(ret);
985			goto out;
986		}
987
988		user_data_from = map_from;
989		user_data_to = map_to;
990		if (new) {
991			map_from = cluster_start;
992			map_to = cluster_end;
993		}
994
995		wc->w_target_from = map_from;
996		wc->w_target_to = map_to;
997	} else {
998		/*
999		 * If we haven't allocated the new page yet, we
1000		 * shouldn't be writing it out without copying user
1001		 * data. This is likely a math error from the caller.
1002		 */
1003		BUG_ON(!new);
1004
1005		map_from = cluster_start;
1006		map_to = cluster_end;
1007
1008		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1009					    cluster_start, cluster_end, new);
1010		if (ret) {
1011			mlog_errno(ret);
1012			goto out;
1013		}
1014	}
1015
1016	/*
1017	 * Parts of newly allocated pages need to be zero'd.
1018	 *
1019	 * Above, we have also rewritten 'to' and 'from' - as far as
1020	 * the rest of the function is concerned, the entire cluster
1021	 * range inside of a page needs to be written.
1022	 *
1023	 * We can skip this if the page is up to date - it's already
1024	 * been zero'd from being read in as a hole.
1025	 */
1026	if (new && !PageUptodate(page))
1027		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1028					 cpos, user_data_from, user_data_to);
1029
1030	flush_dcache_page(page);
1031
1032out:
1033	return ret;
1034}
1035
1036/*
1037 * This function will only grab one clusters worth of pages.
1038 */
1039static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1040				      struct ocfs2_write_ctxt *wc,
1041				      u32 cpos, loff_t user_pos, int new,
1042				      struct page *mmap_page)
1043{
1044	int ret = 0, i;
1045	unsigned long start, target_index, index;
1046	struct inode *inode = mapping->host;
1047
1048	target_index = user_pos >> PAGE_CACHE_SHIFT;
1049
1050	/*
1051	 * Figure out how many pages we'll be manipulating here. For
1052	 * non allocating write, we just change the one
1053	 * page. Otherwise, we'll need a whole clusters worth.
1054	 */
1055	if (new) {
1056		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1057		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1058	} else {
1059		wc->w_num_pages = 1;
1060		start = target_index;
1061	}
1062
1063	for(i = 0; i < wc->w_num_pages; i++) {
1064		index = start + i;
1065
1066		if (index == target_index && mmap_page) {
1067			/*
1068			 * ocfs2_pagemkwrite() is a little different
1069			 * and wants us to directly use the page
1070			 * passed in.
1071			 */
1072			lock_page(mmap_page);
1073
1074			if (mmap_page->mapping != mapping) {
1075				unlock_page(mmap_page);
1076				/*
1077				 * Sanity check - the locking in
1078				 * ocfs2_pagemkwrite() should ensure
1079				 * that this code doesn't trigger.
1080				 */
1081				ret = -EINVAL;
1082				mlog_errno(ret);
1083				goto out;
1084			}
1085
1086			page_cache_get(mmap_page);
1087			wc->w_pages[i] = mmap_page;
1088		} else {
1089			wc->w_pages[i] = find_or_create_page(mapping, index,
1090							     GFP_NOFS);
1091			if (!wc->w_pages[i]) {
1092				ret = -ENOMEM;
1093				mlog_errno(ret);
1094				goto out;
1095			}
1096		}
1097
1098		if (index == target_index)
1099			wc->w_target_page = wc->w_pages[i];
1100	}
1101out:
1102	return ret;
1103}
1104
1105/*
1106 * Prepare a single cluster for write one cluster into the file.
1107 */
1108static int ocfs2_write_cluster(struct address_space *mapping,
1109			       u32 phys, unsigned int unwritten,
1110			       struct ocfs2_alloc_context *data_ac,
1111			       struct ocfs2_alloc_context *meta_ac,
1112			       struct ocfs2_write_ctxt *wc, u32 cpos,
1113			       loff_t user_pos, unsigned user_len)
1114{
1115	int ret, i, new, should_zero = 0;
1116	u64 v_blkno, p_blkno;
1117	struct inode *inode = mapping->host;
1118
1119	new = phys == 0 ? 1 : 0;
1120	if (new || unwritten)
1121		should_zero = 1;
1122
1123	if (new) {
1124		u32 tmp_pos;
1125
1126		/*
1127		 * This is safe to call with the page locks - it won't take
1128		 * any additional semaphores or cluster locks.
1129		 */
1130		tmp_pos = cpos;
1131		ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1132						 &tmp_pos, 1, 0, wc->w_di_bh,
1133						 wc->w_handle, data_ac,
1134						 meta_ac, NULL);
1135		/*
1136		 * This shouldn't happen because we must have already
1137		 * calculated the correct meta data allocation required. The
1138		 * internal tree allocation code should know how to increase
1139		 * transaction credits itself.
1140		 *
1141		 * If need be, we could handle -EAGAIN for a
1142		 * RESTART_TRANS here.
1143		 */
1144		mlog_bug_on_msg(ret == -EAGAIN,
1145				"Inode %llu: EAGAIN return during allocation.\n",
1146				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1147		if (ret < 0) {
1148			mlog_errno(ret);
1149			goto out;
1150		}
1151	} else if (unwritten) {
1152		ret = ocfs2_mark_extent_written(inode, wc->w_di_bh,
1153						wc->w_handle, cpos, 1, phys,
1154						meta_ac, &wc->w_dealloc);
1155		if (ret < 0) {
1156			mlog_errno(ret);
1157			goto out;
1158		}
1159	}
1160
1161	if (should_zero)
1162		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1163	else
1164		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1165
1166	/*
1167	 * The only reason this should fail is due to an inability to
1168	 * find the extent added.
1169	 */
1170	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1171					  NULL);
1172	if (ret < 0) {
1173		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1174			    "at logical block %llu",
1175			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1176			    (unsigned long long)v_blkno);
1177		goto out;
1178	}
1179
1180	BUG_ON(p_blkno == 0);
1181
1182	for(i = 0; i < wc->w_num_pages; i++) {
1183		int tmpret;
1184
1185		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1186						      wc->w_pages[i], cpos,
1187						      user_pos, user_len,
1188						      should_zero);
1189		if (tmpret) {
1190			mlog_errno(tmpret);
1191			if (ret == 0)
1192				tmpret = ret;
1193		}
1194	}
1195
1196	/*
1197	 * We only have cleanup to do in case of allocating write.
1198	 */
1199	if (ret && new)
1200		ocfs2_write_failure(inode, wc, user_pos, user_len);
1201
1202out:
1203
1204	return ret;
1205}
1206
1207static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1208				       struct ocfs2_alloc_context *data_ac,
1209				       struct ocfs2_alloc_context *meta_ac,
1210				       struct ocfs2_write_ctxt *wc,
1211				       loff_t pos, unsigned len)
1212{
1213	int ret, i;
1214	loff_t cluster_off;
1215	unsigned int local_len = len;
1216	struct ocfs2_write_cluster_desc *desc;
1217	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1218
1219	for (i = 0; i < wc->w_clen; i++) {
1220		desc = &wc->w_desc[i];
1221
1222		/*
1223		 * We have to make sure that the total write passed in
1224		 * doesn't extend past a single cluster.
1225		 */
1226		local_len = len;
1227		cluster_off = pos & (osb->s_clustersize - 1);
1228		if ((cluster_off + local_len) > osb->s_clustersize)
1229			local_len = osb->s_clustersize - cluster_off;
1230
1231		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1232					  desc->c_unwritten, data_ac, meta_ac,
1233					  wc, desc->c_cpos, pos, local_len);
1234		if (ret) {
1235			mlog_errno(ret);
1236			goto out;
1237		}
1238
1239		len -= local_len;
1240		pos += local_len;
1241	}
1242
1243	ret = 0;
1244out:
1245	return ret;
1246}
1247
1248/*
1249 * ocfs2_write_end() wants to know which parts of the target page it
1250 * should complete the write on. It's easiest to compute them ahead of
1251 * time when a more complete view of the write is available.
1252 */
1253static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1254					struct ocfs2_write_ctxt *wc,
1255					loff_t pos, unsigned len, int alloc)
1256{
1257	struct ocfs2_write_cluster_desc *desc;
1258
1259	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1260	wc->w_target_to = wc->w_target_from + len;
1261
1262	if (alloc == 0)
1263		return;
1264
1265	/*
1266	 * Allocating write - we may have different boundaries based
1267	 * on page size and cluster size.
1268	 *
1269	 * NOTE: We can no longer compute one value from the other as
1270	 * the actual write length and user provided length may be
1271	 * different.
1272	 */
1273
1274	if (wc->w_large_pages) {
1275		/*
1276		 * We only care about the 1st and last cluster within
1277		 * our range and whether they should be zero'd or not. Either
1278		 * value may be extended out to the start/end of a
1279		 * newly allocated cluster.
1280		 */
1281		desc = &wc->w_desc[0];
1282		if (ocfs2_should_zero_cluster(desc))
1283			ocfs2_figure_cluster_boundaries(osb,
1284							desc->c_cpos,
1285							&wc->w_target_from,
1286							NULL);
1287
1288		desc = &wc->w_desc[wc->w_clen - 1];
1289		if (ocfs2_should_zero_cluster(desc))
1290			ocfs2_figure_cluster_boundaries(osb,
1291							desc->c_cpos,
1292							NULL,
1293							&wc->w_target_to);
1294	} else {
1295		wc->w_target_from = 0;
1296		wc->w_target_to = PAGE_CACHE_SIZE;
1297	}
1298}
1299
1300/*
1301 * Populate each single-cluster write descriptor in the write context
1302 * with information about the i/o to be done.
1303 *
1304 * Returns the number of clusters that will have to be allocated, as
1305 * well as a worst case estimate of the number of extent records that
1306 * would have to be created during a write to an unwritten region.
1307 */
1308static int ocfs2_populate_write_desc(struct inode *inode,
1309				     struct ocfs2_write_ctxt *wc,
1310				     unsigned int *clusters_to_alloc,
1311				     unsigned int *extents_to_split)
1312{
1313	int ret;
1314	struct ocfs2_write_cluster_desc *desc;
1315	unsigned int num_clusters = 0;
1316	unsigned int ext_flags = 0;
1317	u32 phys = 0;
1318	int i;
1319
1320	*clusters_to_alloc = 0;
1321	*extents_to_split = 0;
1322
1323	for (i = 0; i < wc->w_clen; i++) {
1324		desc = &wc->w_desc[i];
1325		desc->c_cpos = wc->w_cpos + i;
1326
1327		if (num_clusters == 0) {
1328			/*
1329			 * Need to look up the next extent record.
1330			 */
1331			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1332						 &num_clusters, &ext_flags);
1333			if (ret) {
1334				mlog_errno(ret);
1335				goto out;
1336			}
1337
1338			/*
1339			 * Assume worst case - that we're writing in
1340			 * the middle of the extent.
1341			 *
1342			 * We can assume that the write proceeds from
1343			 * left to right, in which case the extent
1344			 * insert code is smart enough to coalesce the
1345			 * next splits into the previous records created.
1346			 */
1347			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1348				*extents_to_split = *extents_to_split + 2;
1349		} else if (phys) {
1350			/*
1351			 * Only increment phys if it doesn't describe
1352			 * a hole.
1353			 */
1354			phys++;
1355		}
1356
1357		desc->c_phys = phys;
1358		if (phys == 0) {
1359			desc->c_new = 1;
1360			*clusters_to_alloc = *clusters_to_alloc + 1;
1361		}
1362		if (ext_flags & OCFS2_EXT_UNWRITTEN)
1363			desc->c_unwritten = 1;
1364
1365		num_clusters--;
1366	}
1367
1368	ret = 0;
1369out:
1370	return ret;
1371}
1372
1373int ocfs2_write_begin_nolock(struct address_space *mapping,
1374			     loff_t pos, unsigned len, unsigned flags,
1375			     struct page **pagep, void **fsdata,
1376			     struct buffer_head *di_bh, struct page *mmap_page)
1377{
1378	int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1379	unsigned int clusters_to_alloc, extents_to_split;
1380	struct ocfs2_write_ctxt *wc;
1381	struct inode *inode = mapping->host;
1382	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1383	struct ocfs2_dinode *di;
1384	struct ocfs2_alloc_context *data_ac = NULL;
1385	struct ocfs2_alloc_context *meta_ac = NULL;
1386	handle_t *handle;
1387
1388	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1389	if (ret) {
1390		mlog_errno(ret);
1391		return ret;
1392	}
1393
1394	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1395					&extents_to_split);
1396	if (ret) {
1397		mlog_errno(ret);
1398		goto out;
1399	}
1400
1401	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1402
1403	/*
1404	 * We set w_target_from, w_target_to here so that
1405	 * ocfs2_write_end() knows which range in the target page to
1406	 * write out. An allocation requires that we write the entire
1407	 * cluster range.
1408	 */
1409	if (clusters_to_alloc || extents_to_split) {
1410		/*
1411		 * XXX: We are stretching the limits of
1412		 * ocfs2_lock_allocators(). It greatly over-estimates
1413		 * the work to be done.
1414		 */
1415		ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc,
1416					    extents_to_split, &data_ac, &meta_ac);
1417		if (ret) {
1418			mlog_errno(ret);
1419			goto out;
1420		}
1421
1422		credits = ocfs2_calc_extend_credits(inode->i_sb, di,
1423						    clusters_to_alloc);
1424
1425	}
1426
1427	ocfs2_set_target_boundaries(osb, wc, pos, len,
1428				    clusters_to_alloc + extents_to_split);
1429
1430	handle = ocfs2_start_trans(osb, credits);
1431	if (IS_ERR(handle)) {
1432		ret = PTR_ERR(handle);
1433		mlog_errno(ret);
1434		goto out;
1435	}
1436
1437	wc->w_handle = handle;
1438
1439	/*
1440	 * We don't want this to fail in ocfs2_write_end(), so do it
1441	 * here.
1442	 */
1443	ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1444				   OCFS2_JOURNAL_ACCESS_WRITE);
1445	if (ret) {
1446		mlog_errno(ret);
1447		goto out_commit;
1448	}
1449
1450	/*
1451	 * Fill our page array first. That way we've grabbed enough so
1452	 * that we can zero and flush if we error after adding the
1453	 * extent.
1454	 */
1455	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1456					 clusters_to_alloc + extents_to_split,
1457					 mmap_page);
1458	if (ret) {
1459		mlog_errno(ret);
1460		goto out_commit;
1461	}
1462
1463	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1464					  len);
1465	if (ret) {
1466		mlog_errno(ret);
1467		goto out_commit;
1468	}
1469
1470	if (data_ac)
1471		ocfs2_free_alloc_context(data_ac);
1472	if (meta_ac)
1473		ocfs2_free_alloc_context(meta_ac);
1474
1475	*pagep = wc->w_target_page;
1476	*fsdata = wc;
1477	return 0;
1478out_commit:
1479	ocfs2_commit_trans(osb, handle);
1480
1481out:
1482	ocfs2_free_write_ctxt(wc);
1483
1484	if (data_ac)
1485		ocfs2_free_alloc_context(data_ac);
1486	if (meta_ac)
1487		ocfs2_free_alloc_context(meta_ac);
1488	return ret;
1489}
1490
1491int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1492		      loff_t pos, unsigned len, unsigned flags,
1493		      struct page **pagep, void **fsdata)
1494{
1495	int ret;
1496	struct buffer_head *di_bh = NULL;
1497	struct inode *inode = mapping->host;
1498
1499	ret = ocfs2_meta_lock(inode, &di_bh, 1);
1500	if (ret) {
1501		mlog_errno(ret);
1502		return ret;
1503	}
1504
1505	/*
1506	 * Take alloc sem here to prevent concurrent lookups. That way
1507	 * the mapping, zeroing and tree manipulation within
1508	 * ocfs2_write() will be safe against ->readpage(). This
1509	 * should also serve to lock out allocation from a shared
1510	 * writeable region.
1511	 */
1512	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1513
1514	ret = ocfs2_data_lock(inode, 1);
1515	if (ret) {
1516		mlog_errno(ret);
1517		goto out_fail;
1518	}
1519
1520	ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1521				       fsdata, di_bh, NULL);
1522	if (ret) {
1523		mlog_errno(ret);
1524		goto out_fail_data;
1525	}
1526
1527	brelse(di_bh);
1528
1529	return 0;
1530
1531out_fail_data:
1532	ocfs2_data_unlock(inode, 1);
1533out_fail:
1534	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1535
1536	brelse(di_bh);
1537	ocfs2_meta_unlock(inode, 1);
1538
1539	return ret;
1540}
1541
1542int ocfs2_write_end_nolock(struct address_space *mapping,
1543			   loff_t pos, unsigned len, unsigned copied,
1544			   struct page *page, void *fsdata)
1545{
1546	int i;
1547	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1548	struct inode *inode = mapping->host;
1549	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1550	struct ocfs2_write_ctxt *wc = fsdata;
1551	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1552	handle_t *handle = wc->w_handle;
1553	struct page *tmppage;
1554
1555	if (unlikely(copied < len)) {
1556		if (!PageUptodate(wc->w_target_page))
1557			copied = 0;
1558
1559		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1560				       start+len);
1561	}
1562	flush_dcache_page(wc->w_target_page);
1563
1564	for(i = 0; i < wc->w_num_pages; i++) {
1565		tmppage = wc->w_pages[i];
1566
1567		if (tmppage == wc->w_target_page) {
1568			from = wc->w_target_from;
1569			to = wc->w_target_to;
1570
1571			BUG_ON(from > PAGE_CACHE_SIZE ||
1572			       to > PAGE_CACHE_SIZE ||
1573			       to < from);
1574		} else {
1575			/*
1576			 * Pages adjacent to the target (if any) imply
1577			 * a hole-filling write in which case we want
1578			 * to flush their entire range.
1579			 */
1580			from = 0;
1581			to = PAGE_CACHE_SIZE;
1582		}
1583
1584		if (ocfs2_should_order_data(inode))
1585			walk_page_buffers(wc->w_handle, page_buffers(tmppage),
1586					  from, to, NULL,
1587					  ocfs2_journal_dirty_data);
1588
1589		block_commit_write(tmppage, from, to);
1590	}
1591
1592	pos += copied;
1593	if (pos > inode->i_size) {
1594		i_size_write(inode, pos);
1595		mark_inode_dirty(inode);
1596	}
1597	inode->i_blocks = ocfs2_inode_sector_count(inode);
1598	di->i_size = cpu_to_le64((u64)i_size_read(inode));
1599	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1600	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1601	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1602	ocfs2_journal_dirty(handle, wc->w_di_bh);
1603
1604	ocfs2_commit_trans(osb, handle);
1605
1606	ocfs2_run_deallocs(osb, &wc->w_dealloc);
1607
1608	ocfs2_free_write_ctxt(wc);
1609
1610	return copied;
1611}
1612
1613int ocfs2_write_end(struct file *file, struct address_space *mapping,
1614		    loff_t pos, unsigned len, unsigned copied,
1615		    struct page *page, void *fsdata)
1616{
1617	int ret;
1618	struct inode *inode = mapping->host;
1619
1620	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1621
1622	ocfs2_data_unlock(inode, 1);
1623	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1624	ocfs2_meta_unlock(inode, 1);
1625
1626	return ret;
1627}
1628
1629const struct address_space_operations ocfs2_aops = {
1630	.readpage	= ocfs2_readpage,
1631	.writepage	= ocfs2_writepage,
1632	.bmap		= ocfs2_bmap,
1633	.sync_page	= block_sync_page,
1634	.direct_IO	= ocfs2_direct_IO,
1635	.invalidatepage	= ocfs2_invalidatepage,
1636	.releasepage	= ocfs2_releasepage,
1637	.migratepage	= buffer_migrate_page,
1638};
1639