aops.c revision eeb47d1234af1a9267836f680a8e114b2e88d0dc
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
27#include <linux/swap.h>
28#include <linux/pipe_fs_i.h>
29
30#define MLOG_MASK_PREFIX ML_FILE_IO
31#include <cluster/masklog.h>
32
33#include "ocfs2.h"
34
35#include "alloc.h"
36#include "aops.h"
37#include "dlmglue.h"
38#include "extent_map.h"
39#include "file.h"
40#include "inode.h"
41#include "journal.h"
42#include "suballoc.h"
43#include "super.h"
44#include "symlink.h"
45
46#include "buffer_head_io.h"
47
48static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
49				   struct buffer_head *bh_result, int create)
50{
51	int err = -EIO;
52	int status;
53	struct ocfs2_dinode *fe = NULL;
54	struct buffer_head *bh = NULL;
55	struct buffer_head *buffer_cache_bh = NULL;
56	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
57	void *kaddr;
58
59	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
60		   (unsigned long long)iblock, bh_result, create);
61
62	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
63
64	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
65		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
66		     (unsigned long long)iblock);
67		goto bail;
68	}
69
70	status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
71				  OCFS2_I(inode)->ip_blkno,
72				  &bh, OCFS2_BH_CACHED, inode);
73	if (status < 0) {
74		mlog_errno(status);
75		goto bail;
76	}
77	fe = (struct ocfs2_dinode *) bh->b_data;
78
79	if (!OCFS2_IS_VALID_DINODE(fe)) {
80		mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
81		     (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
82		     fe->i_signature);
83		goto bail;
84	}
85
86	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87						    le32_to_cpu(fe->i_clusters))) {
88		mlog(ML_ERROR, "block offset is outside the allocated size: "
89		     "%llu\n", (unsigned long long)iblock);
90		goto bail;
91	}
92
93	/* We don't use the page cache to create symlink data, so if
94	 * need be, copy it over from the buffer cache. */
95	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
96		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
97			    iblock;
98		buffer_cache_bh = sb_getblk(osb->sb, blkno);
99		if (!buffer_cache_bh) {
100			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
101			goto bail;
102		}
103
104		/* we haven't locked out transactions, so a commit
105		 * could've happened. Since we've got a reference on
106		 * the bh, even if it commits while we're doing the
107		 * copy, the data is still good. */
108		if (buffer_jbd(buffer_cache_bh)
109		    && ocfs2_inode_is_new(inode)) {
110			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
111			if (!kaddr) {
112				mlog(ML_ERROR, "couldn't kmap!\n");
113				goto bail;
114			}
115			memcpy(kaddr + (bh_result->b_size * iblock),
116			       buffer_cache_bh->b_data,
117			       bh_result->b_size);
118			kunmap_atomic(kaddr, KM_USER0);
119			set_buffer_uptodate(bh_result);
120		}
121		brelse(buffer_cache_bh);
122	}
123
124	map_bh(bh_result, inode->i_sb,
125	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
126
127	err = 0;
128
129bail:
130	if (bh)
131		brelse(bh);
132
133	mlog_exit(err);
134	return err;
135}
136
137static int ocfs2_get_block(struct inode *inode, sector_t iblock,
138			   struct buffer_head *bh_result, int create)
139{
140	int err = 0;
141	unsigned int ext_flags;
142	u64 p_blkno, past_eof;
143	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
144
145	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
146		   (unsigned long long)iblock, bh_result, create);
147
148	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150		     inode, inode->i_ino);
151
152	if (S_ISLNK(inode->i_mode)) {
153		/* this always does I/O for some reason. */
154		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155		goto bail;
156	}
157
158	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL,
159					  &ext_flags);
160	if (err) {
161		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163		     (unsigned long long)p_blkno);
164		goto bail;
165	}
166
167	/*
168	 * ocfs2 never allocates in this function - the only time we
169	 * need to use BH_New is when we're extending i_size on a file
170	 * system which doesn't support holes, in which case BH_New
171	 * allows block_prepare_write() to zero.
172	 */
173	mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
174			"ino %lu, iblock %llu\n", inode->i_ino,
175			(unsigned long long)iblock);
176
177	/* Treat the unwritten extent as a hole for zeroing purposes. */
178	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
179		map_bh(bh_result, inode->i_sb, p_blkno);
180
181	if (!ocfs2_sparse_alloc(osb)) {
182		if (p_blkno == 0) {
183			err = -EIO;
184			mlog(ML_ERROR,
185			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
186			     (unsigned long long)iblock,
187			     (unsigned long long)p_blkno,
188			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
189			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
190			dump_stack();
191		}
192
193		past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
194		mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
195		     (unsigned long long)past_eof);
196
197		if (create && (iblock >= past_eof))
198			set_buffer_new(bh_result);
199	}
200
201bail:
202	if (err < 0)
203		err = -EIO;
204
205	mlog_exit(err);
206	return err;
207}
208
209static int ocfs2_readpage(struct file *file, struct page *page)
210{
211	struct inode *inode = page->mapping->host;
212	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
213	int ret, unlock = 1;
214
215	mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
216
217	ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
218	if (ret != 0) {
219		if (ret == AOP_TRUNCATED_PAGE)
220			unlock = 0;
221		mlog_errno(ret);
222		goto out;
223	}
224
225	if (down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem) == 0) {
226		ret = AOP_TRUNCATED_PAGE;
227		goto out_meta_unlock;
228	}
229
230	/*
231	 * i_size might have just been updated as we grabed the meta lock.  We
232	 * might now be discovering a truncate that hit on another node.
233	 * block_read_full_page->get_block freaks out if it is asked to read
234	 * beyond the end of a file, so we check here.  Callers
235	 * (generic_file_read, fault->nopage) are clever enough to check i_size
236	 * and notice that the page they just read isn't needed.
237	 *
238	 * XXX sys_readahead() seems to get that wrong?
239	 */
240	if (start >= i_size_read(inode)) {
241		zero_user_page(page, 0, PAGE_SIZE, KM_USER0);
242		SetPageUptodate(page);
243		ret = 0;
244		goto out_alloc;
245	}
246
247	ret = ocfs2_data_lock_with_page(inode, 0, page);
248	if (ret != 0) {
249		if (ret == AOP_TRUNCATED_PAGE)
250			unlock = 0;
251		mlog_errno(ret);
252		goto out_alloc;
253	}
254
255	ret = block_read_full_page(page, ocfs2_get_block);
256	unlock = 0;
257
258	ocfs2_data_unlock(inode, 0);
259out_alloc:
260	up_read(&OCFS2_I(inode)->ip_alloc_sem);
261out_meta_unlock:
262	ocfs2_meta_unlock(inode, 0);
263out:
264	if (unlock)
265		unlock_page(page);
266	mlog_exit(ret);
267	return ret;
268}
269
270/* Note: Because we don't support holes, our allocation has
271 * already happened (allocation writes zeros to the file data)
272 * so we don't have to worry about ordered writes in
273 * ocfs2_writepage.
274 *
275 * ->writepage is called during the process of invalidating the page cache
276 * during blocked lock processing.  It can't block on any cluster locks
277 * to during block mapping.  It's relying on the fact that the block
278 * mapping can't have disappeared under the dirty pages that it is
279 * being asked to write back.
280 */
281static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
282{
283	int ret;
284
285	mlog_entry("(0x%p)\n", page);
286
287	ret = block_write_full_page(page, ocfs2_get_block, wbc);
288
289	mlog_exit(ret);
290
291	return ret;
292}
293
294/*
295 * This is called from ocfs2_write_zero_page() which has handled it's
296 * own cluster locking and has ensured allocation exists for those
297 * blocks to be written.
298 */
299int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
300			       unsigned from, unsigned to)
301{
302	int ret;
303
304	down_read(&OCFS2_I(inode)->ip_alloc_sem);
305
306	ret = block_prepare_write(page, from, to, ocfs2_get_block);
307
308	up_read(&OCFS2_I(inode)->ip_alloc_sem);
309
310	return ret;
311}
312
313/* Taken from ext3. We don't necessarily need the full blown
314 * functionality yet, but IMHO it's better to cut and paste the whole
315 * thing so we can avoid introducing our own bugs (and easily pick up
316 * their fixes when they happen) --Mark */
317int walk_page_buffers(	handle_t *handle,
318			struct buffer_head *head,
319			unsigned from,
320			unsigned to,
321			int *partial,
322			int (*fn)(	handle_t *handle,
323					struct buffer_head *bh))
324{
325	struct buffer_head *bh;
326	unsigned block_start, block_end;
327	unsigned blocksize = head->b_size;
328	int err, ret = 0;
329	struct buffer_head *next;
330
331	for (	bh = head, block_start = 0;
332		ret == 0 && (bh != head || !block_start);
333	    	block_start = block_end, bh = next)
334	{
335		next = bh->b_this_page;
336		block_end = block_start + blocksize;
337		if (block_end <= from || block_start >= to) {
338			if (partial && !buffer_uptodate(bh))
339				*partial = 1;
340			continue;
341		}
342		err = (*fn)(handle, bh);
343		if (!ret)
344			ret = err;
345	}
346	return ret;
347}
348
349handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
350							 struct page *page,
351							 unsigned from,
352							 unsigned to)
353{
354	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
355	handle_t *handle = NULL;
356	int ret = 0;
357
358	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
359	if (!handle) {
360		ret = -ENOMEM;
361		mlog_errno(ret);
362		goto out;
363	}
364
365	if (ocfs2_should_order_data(inode)) {
366		ret = walk_page_buffers(handle,
367					page_buffers(page),
368					from, to, NULL,
369					ocfs2_journal_dirty_data);
370		if (ret < 0)
371			mlog_errno(ret);
372	}
373out:
374	if (ret) {
375		if (handle)
376			ocfs2_commit_trans(osb, handle);
377		handle = ERR_PTR(ret);
378	}
379	return handle;
380}
381
382static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
383{
384	sector_t status;
385	u64 p_blkno = 0;
386	int err = 0;
387	struct inode *inode = mapping->host;
388
389	mlog_entry("(block = %llu)\n", (unsigned long long)block);
390
391	/* We don't need to lock journal system files, since they aren't
392	 * accessed concurrently from multiple nodes.
393	 */
394	if (!INODE_JOURNAL(inode)) {
395		err = ocfs2_meta_lock(inode, NULL, 0);
396		if (err) {
397			if (err != -ENOENT)
398				mlog_errno(err);
399			goto bail;
400		}
401		down_read(&OCFS2_I(inode)->ip_alloc_sem);
402	}
403
404	err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, NULL);
405
406	if (!INODE_JOURNAL(inode)) {
407		up_read(&OCFS2_I(inode)->ip_alloc_sem);
408		ocfs2_meta_unlock(inode, 0);
409	}
410
411	if (err) {
412		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
413		     (unsigned long long)block);
414		mlog_errno(err);
415		goto bail;
416	}
417
418
419bail:
420	status = err ? 0 : p_blkno;
421
422	mlog_exit((int)status);
423
424	return status;
425}
426
427/*
428 * TODO: Make this into a generic get_blocks function.
429 *
430 * From do_direct_io in direct-io.c:
431 *  "So what we do is to permit the ->get_blocks function to populate
432 *   bh.b_size with the size of IO which is permitted at this offset and
433 *   this i_blkbits."
434 *
435 * This function is called directly from get_more_blocks in direct-io.c.
436 *
437 * called like this: dio->get_blocks(dio->inode, fs_startblk,
438 * 					fs_count, map_bh, dio->rw == WRITE);
439 */
440static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
441				     struct buffer_head *bh_result, int create)
442{
443	int ret;
444	u64 p_blkno, inode_blocks, contig_blocks;
445	unsigned int ext_flags;
446	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
447	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
448
449	/* This function won't even be called if the request isn't all
450	 * nicely aligned and of the right size, so there's no need
451	 * for us to check any of that. */
452
453	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
454
455	/*
456	 * Any write past EOF is not allowed because we'd be extending.
457	 */
458	if (create && (iblock + max_blocks) > inode_blocks) {
459		ret = -EIO;
460		goto bail;
461	}
462
463	/* This figures out the size of the next contiguous block, and
464	 * our logical offset */
465	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
466					  &contig_blocks, &ext_flags);
467	if (ret) {
468		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
469		     (unsigned long long)iblock);
470		ret = -EIO;
471		goto bail;
472	}
473
474	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
475		ocfs2_error(inode->i_sb,
476			    "Inode %llu has a hole at block %llu\n",
477			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
478			    (unsigned long long)iblock);
479		ret = -EROFS;
480		goto bail;
481	}
482
483	/*
484	 * get_more_blocks() expects us to describe a hole by clearing
485	 * the mapped bit on bh_result().
486	 *
487	 * Consider an unwritten extent as a hole.
488	 */
489	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
490		map_bh(bh_result, inode->i_sb, p_blkno);
491	else {
492		/*
493		 * ocfs2_prepare_inode_for_write() should have caught
494		 * the case where we'd be filling a hole and triggered
495		 * a buffered write instead.
496		 */
497		if (create) {
498			ret = -EIO;
499			mlog_errno(ret);
500			goto bail;
501		}
502
503		clear_buffer_mapped(bh_result);
504	}
505
506	/* make sure we don't map more than max_blocks blocks here as
507	   that's all the kernel will handle at this point. */
508	if (max_blocks < contig_blocks)
509		contig_blocks = max_blocks;
510	bh_result->b_size = contig_blocks << blocksize_bits;
511bail:
512	return ret;
513}
514
515/*
516 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
517 * particularly interested in the aio/dio case.  Like the core uses
518 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
519 * truncation on another.
520 */
521static void ocfs2_dio_end_io(struct kiocb *iocb,
522			     loff_t offset,
523			     ssize_t bytes,
524			     void *private)
525{
526	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
527	int level;
528
529	/* this io's submitter should not have unlocked this before we could */
530	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
531
532	ocfs2_iocb_clear_rw_locked(iocb);
533
534	level = ocfs2_iocb_rw_locked_level(iocb);
535	if (!level)
536		up_read(&inode->i_alloc_sem);
537	ocfs2_rw_unlock(inode, level);
538}
539
540/*
541 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
542 * from ext3.  PageChecked() bits have been removed as OCFS2 does not
543 * do journalled data.
544 */
545static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
546{
547	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
548
549	journal_invalidatepage(journal, page, offset);
550}
551
552static int ocfs2_releasepage(struct page *page, gfp_t wait)
553{
554	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
555
556	if (!page_has_buffers(page))
557		return 0;
558	return journal_try_to_free_buffers(journal, page, wait);
559}
560
561static ssize_t ocfs2_direct_IO(int rw,
562			       struct kiocb *iocb,
563			       const struct iovec *iov,
564			       loff_t offset,
565			       unsigned long nr_segs)
566{
567	struct file *file = iocb->ki_filp;
568	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
569	int ret;
570
571	mlog_entry_void();
572
573	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
574		/*
575		 * We get PR data locks even for O_DIRECT.  This
576		 * allows concurrent O_DIRECT I/O but doesn't let
577		 * O_DIRECT with extending and buffered zeroing writes
578		 * race.  If they did race then the buffered zeroing
579		 * could be written back after the O_DIRECT I/O.  It's
580		 * one thing to tell people not to mix buffered and
581		 * O_DIRECT writes, but expecting them to understand
582		 * that file extension is also an implicit buffered
583		 * write is too much.  By getting the PR we force
584		 * writeback of the buffered zeroing before
585		 * proceeding.
586		 */
587		ret = ocfs2_data_lock(inode, 0);
588		if (ret < 0) {
589			mlog_errno(ret);
590			goto out;
591		}
592		ocfs2_data_unlock(inode, 0);
593	}
594
595	ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
596					    inode->i_sb->s_bdev, iov, offset,
597					    nr_segs,
598					    ocfs2_direct_IO_get_blocks,
599					    ocfs2_dio_end_io);
600out:
601	mlog_exit(ret);
602	return ret;
603}
604
605static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
606					    u32 cpos,
607					    unsigned int *start,
608					    unsigned int *end)
609{
610	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
611
612	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
613		unsigned int cpp;
614
615		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
616
617		cluster_start = cpos % cpp;
618		cluster_start = cluster_start << osb->s_clustersize_bits;
619
620		cluster_end = cluster_start + osb->s_clustersize;
621	}
622
623	BUG_ON(cluster_start > PAGE_SIZE);
624	BUG_ON(cluster_end > PAGE_SIZE);
625
626	if (start)
627		*start = cluster_start;
628	if (end)
629		*end = cluster_end;
630}
631
632/*
633 * 'from' and 'to' are the region in the page to avoid zeroing.
634 *
635 * If pagesize > clustersize, this function will avoid zeroing outside
636 * of the cluster boundary.
637 *
638 * from == to == 0 is code for "zero the entire cluster region"
639 */
640static void ocfs2_clear_page_regions(struct page *page,
641				     struct ocfs2_super *osb, u32 cpos,
642				     unsigned from, unsigned to)
643{
644	void *kaddr;
645	unsigned int cluster_start, cluster_end;
646
647	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
648
649	kaddr = kmap_atomic(page, KM_USER0);
650
651	if (from || to) {
652		if (from > cluster_start)
653			memset(kaddr + cluster_start, 0, from - cluster_start);
654		if (to < cluster_end)
655			memset(kaddr + to, 0, cluster_end - to);
656	} else {
657		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
658	}
659
660	kunmap_atomic(kaddr, KM_USER0);
661}
662
663/*
664 * Some of this taken from block_prepare_write(). We already have our
665 * mapping by now though, and the entire write will be allocating or
666 * it won't, so not much need to use BH_New.
667 *
668 * This will also skip zeroing, which is handled externally.
669 */
670int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
671			  struct inode *inode, unsigned int from,
672			  unsigned int to, int new)
673{
674	int ret = 0;
675	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
676	unsigned int block_end, block_start;
677	unsigned int bsize = 1 << inode->i_blkbits;
678
679	if (!page_has_buffers(page))
680		create_empty_buffers(page, bsize, 0);
681
682	head = page_buffers(page);
683	for (bh = head, block_start = 0; bh != head || !block_start;
684	     bh = bh->b_this_page, block_start += bsize) {
685		block_end = block_start + bsize;
686
687		/*
688		 * Ignore blocks outside of our i/o range -
689		 * they may belong to unallocated clusters.
690		 */
691		if (block_start >= to || block_end <= from) {
692			if (PageUptodate(page))
693				set_buffer_uptodate(bh);
694			continue;
695		}
696
697		/*
698		 * For an allocating write with cluster size >= page
699		 * size, we always write the entire page.
700		 */
701
702		if (buffer_new(bh))
703			clear_buffer_new(bh);
704
705		if (!buffer_mapped(bh)) {
706			map_bh(bh, inode->i_sb, *p_blkno);
707			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
708		}
709
710		if (PageUptodate(page)) {
711			if (!buffer_uptodate(bh))
712				set_buffer_uptodate(bh);
713		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
714		     (block_start < from || block_end > to)) {
715			ll_rw_block(READ, 1, &bh);
716			*wait_bh++=bh;
717		}
718
719		*p_blkno = *p_blkno + 1;
720	}
721
722	/*
723	 * If we issued read requests - let them complete.
724	 */
725	while(wait_bh > wait) {
726		wait_on_buffer(*--wait_bh);
727		if (!buffer_uptodate(*wait_bh))
728			ret = -EIO;
729	}
730
731	if (ret == 0 || !new)
732		return ret;
733
734	/*
735	 * If we get -EIO above, zero out any newly allocated blocks
736	 * to avoid exposing stale data.
737	 */
738	bh = head;
739	block_start = 0;
740	do {
741		void *kaddr;
742
743		block_end = block_start + bsize;
744		if (block_end <= from)
745			goto next_bh;
746		if (block_start >= to)
747			break;
748
749		kaddr = kmap_atomic(page, KM_USER0);
750		memset(kaddr+block_start, 0, bh->b_size);
751		flush_dcache_page(page);
752		kunmap_atomic(kaddr, KM_USER0);
753		set_buffer_uptodate(bh);
754		mark_buffer_dirty(bh);
755
756next_bh:
757		block_start = block_end;
758		bh = bh->b_this_page;
759	} while (bh != head);
760
761	return ret;
762}
763
764/*
765 * This will copy user data from the buffer page in the splice
766 * context.
767 *
768 * For now, we ignore SPLICE_F_MOVE as that would require some extra
769 * communication out all the way to ocfs2_write().
770 */
771int ocfs2_map_and_write_splice_data(struct inode *inode,
772				  struct ocfs2_write_ctxt *wc, u64 *p_blkno,
773				  unsigned int *ret_from, unsigned int *ret_to)
774{
775	int ret;
776	unsigned int to, from, cluster_start, cluster_end;
777	char *src, *dst;
778	struct ocfs2_splice_write_priv *sp = wc->w_private;
779	struct pipe_buffer *buf = sp->s_buf;
780	unsigned long bytes, src_from;
781	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
782
783	ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
784					&cluster_end);
785
786	from = sp->s_offset;
787	src_from = sp->s_buf_offset;
788	bytes = wc->w_count;
789
790	if (wc->w_large_pages) {
791		/*
792		 * For cluster size < page size, we have to
793		 * calculate pos within the cluster and obey
794		 * the rightmost boundary.
795		 */
796		bytes = min(bytes, (unsigned long)(osb->s_clustersize
797				   - (wc->w_pos & (osb->s_clustersize - 1))));
798	}
799	to = from + bytes;
800
801	BUG_ON(from > PAGE_CACHE_SIZE);
802	BUG_ON(to > PAGE_CACHE_SIZE);
803	BUG_ON(from < cluster_start);
804	BUG_ON(to > cluster_end);
805
806	if (wc->w_this_page_new)
807		ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
808					    cluster_start, cluster_end, 1);
809	else
810		ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
811					    from, to, 0);
812	if (ret) {
813		mlog_errno(ret);
814		goto out;
815	}
816
817	src = buf->ops->map(sp->s_pipe, buf, 1);
818	dst = kmap_atomic(wc->w_this_page, KM_USER1);
819	memcpy(dst + from, src + src_from, bytes);
820	kunmap_atomic(wc->w_this_page, KM_USER1);
821	buf->ops->unmap(sp->s_pipe, buf, src);
822
823	wc->w_finished_copy = 1;
824
825	*ret_from = from;
826	*ret_to = to;
827out:
828
829	return bytes ? (unsigned int)bytes : ret;
830}
831
832/*
833 * This will copy user data from the iovec in the buffered write
834 * context.
835 */
836int ocfs2_map_and_write_user_data(struct inode *inode,
837				  struct ocfs2_write_ctxt *wc, u64 *p_blkno,
838				  unsigned int *ret_from, unsigned int *ret_to)
839{
840	int ret;
841	unsigned int to, from, cluster_start, cluster_end;
842	unsigned long bytes, src_from;
843	char *dst;
844	struct ocfs2_buffered_write_priv *bp = wc->w_private;
845	const struct iovec *cur_iov = bp->b_cur_iov;
846	char __user *buf;
847	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
848
849	ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
850					&cluster_end);
851
852	buf = cur_iov->iov_base + bp->b_cur_off;
853	src_from = (unsigned long)buf & ~PAGE_CACHE_MASK;
854
855	from = wc->w_pos & (PAGE_CACHE_SIZE - 1);
856
857	/*
858	 * This is a lot of comparisons, but it reads quite
859	 * easily, which is important here.
860	 */
861	/* Stay within the src page */
862	bytes = PAGE_SIZE - src_from;
863	/* Stay within the vector */
864	bytes = min(bytes,
865		    (unsigned long)(cur_iov->iov_len - bp->b_cur_off));
866	/* Stay within count */
867	bytes = min(bytes, (unsigned long)wc->w_count);
868	/*
869	 * For clustersize > page size, just stay within
870	 * target page, otherwise we have to calculate pos
871	 * within the cluster and obey the rightmost
872	 * boundary.
873	 */
874	if (wc->w_large_pages) {
875		/*
876		 * For cluster size < page size, we have to
877		 * calculate pos within the cluster and obey
878		 * the rightmost boundary.
879		 */
880		bytes = min(bytes, (unsigned long)(osb->s_clustersize
881				   - (wc->w_pos & (osb->s_clustersize - 1))));
882	} else {
883		/*
884		 * cluster size > page size is the most common
885		 * case - we just stay within the target page
886		 * boundary.
887		 */
888		bytes = min(bytes, PAGE_CACHE_SIZE - from);
889	}
890
891	to = from + bytes;
892
893	BUG_ON(from > PAGE_CACHE_SIZE);
894	BUG_ON(to > PAGE_CACHE_SIZE);
895	BUG_ON(from < cluster_start);
896	BUG_ON(to > cluster_end);
897
898	if (wc->w_this_page_new)
899		ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
900					    cluster_start, cluster_end, 1);
901	else
902		ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
903					    from, to, 0);
904	if (ret) {
905		mlog_errno(ret);
906		goto out;
907	}
908
909	dst = kmap(wc->w_this_page);
910	memcpy(dst + from, bp->b_src_buf + src_from, bytes);
911	kunmap(wc->w_this_page);
912
913	/*
914	 * XXX: This is slow, but simple. The caller of
915	 * ocfs2_buffered_write_cluster() is responsible for
916	 * passing through the iovecs, so it's difficult to
917	 * predict what our next step is in here after our
918	 * initial write. A future version should be pushing
919	 * that iovec manipulation further down.
920	 *
921	 * By setting this, we indicate that a copy from user
922	 * data was done, and subsequent calls for this
923	 * cluster will skip copying more data.
924	 */
925	wc->w_finished_copy = 1;
926
927	*ret_from = from;
928	*ret_to = to;
929out:
930
931	return bytes ? (unsigned int)bytes : ret;
932}
933
934/*
935 * Map, fill and write a page to disk.
936 *
937 * The work of copying data is done via callback.  Newly allocated
938 * pages which don't take user data will be zero'd (set 'new' to
939 * indicate an allocating write)
940 *
941 * Returns a negative error code or the number of bytes copied into
942 * the page.
943 */
944static int ocfs2_write_data_page(struct inode *inode, handle_t *handle,
945				 u64 *p_blkno, struct page *page,
946				 struct ocfs2_write_ctxt *wc, int new)
947{
948	int ret, copied = 0;
949	unsigned int from = 0, to = 0;
950	unsigned int cluster_start, cluster_end;
951	unsigned int zero_from = 0, zero_to = 0;
952
953	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), wc->w_cpos,
954					&cluster_start, &cluster_end);
955
956	if ((wc->w_pos >> PAGE_CACHE_SHIFT) == page->index
957	    && !wc->w_finished_copy) {
958
959		wc->w_this_page = page;
960		wc->w_this_page_new = new;
961		ret = wc->w_write_data_page(inode, wc, p_blkno, &from, &to);
962		if (ret < 0) {
963			mlog_errno(ret);
964			goto out;
965		}
966
967		copied = ret;
968
969		zero_from = from;
970		zero_to = to;
971		if (new) {
972			from = cluster_start;
973			to = cluster_end;
974		}
975	} else {
976		/*
977		 * If we haven't allocated the new page yet, we
978		 * shouldn't be writing it out without copying user
979		 * data. This is likely a math error from the caller.
980		 */
981		BUG_ON(!new);
982
983		from = cluster_start;
984		to = cluster_end;
985
986		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
987					    cluster_start, cluster_end, 1);
988		if (ret) {
989			mlog_errno(ret);
990			goto out;
991		}
992	}
993
994	/*
995	 * Parts of newly allocated pages need to be zero'd.
996	 *
997	 * Above, we have also rewritten 'to' and 'from' - as far as
998	 * the rest of the function is concerned, the entire cluster
999	 * range inside of a page needs to be written.
1000	 *
1001	 * We can skip this if the page is up to date - it's already
1002	 * been zero'd from being read in as a hole.
1003	 */
1004	if (new && !PageUptodate(page))
1005		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1006					 wc->w_cpos, zero_from, zero_to);
1007
1008	flush_dcache_page(page);
1009
1010	if (ocfs2_should_order_data(inode)) {
1011		ret = walk_page_buffers(handle,
1012					page_buffers(page),
1013					from, to, NULL,
1014					ocfs2_journal_dirty_data);
1015		if (ret < 0)
1016			mlog_errno(ret);
1017	}
1018
1019	/*
1020	 * We don't use generic_commit_write() because we need to
1021	 * handle our own i_size update.
1022	 */
1023	ret = block_commit_write(page, from, to);
1024	if (ret)
1025		mlog_errno(ret);
1026out:
1027
1028	return copied ? copied : ret;
1029}
1030
1031/*
1032 * Do the actual write of some data into an inode. Optionally allocate
1033 * in order to fulfill the write.
1034 *
1035 * cpos is the logical cluster offset within the file to write at
1036 *
1037 * 'phys' is the physical mapping of that offset. a 'phys' value of
1038 * zero indicates that allocation is required. In this case, data_ac
1039 * and meta_ac should be valid (meta_ac can be null if metadata
1040 * allocation isn't required).
1041 */
1042static ssize_t ocfs2_write(struct file *file, u32 phys, handle_t *handle,
1043			   struct buffer_head *di_bh,
1044			   struct ocfs2_alloc_context *data_ac,
1045			   struct ocfs2_alloc_context *meta_ac,
1046			   struct ocfs2_write_ctxt *wc)
1047{
1048	int ret, i, numpages = 1, new;
1049	unsigned int copied = 0;
1050	u32 tmp_pos;
1051	u64 v_blkno, p_blkno;
1052	struct address_space *mapping = file->f_mapping;
1053	struct inode *inode = mapping->host;
1054	unsigned long index, start;
1055	struct page **cpages;
1056
1057	new = phys == 0 ? 1 : 0;
1058
1059	/*
1060	 * Figure out how many pages we'll be manipulating here. For
1061	 * non allocating write, we just change the one
1062	 * page. Otherwise, we'll need a whole clusters worth.
1063	 */
1064	if (new)
1065		numpages = ocfs2_pages_per_cluster(inode->i_sb);
1066
1067	cpages = kzalloc(sizeof(*cpages) * numpages, GFP_NOFS);
1068	if (!cpages) {
1069		ret = -ENOMEM;
1070		mlog_errno(ret);
1071		return ret;
1072	}
1073
1074	/*
1075	 * Fill our page array first. That way we've grabbed enough so
1076	 * that we can zero and flush if we error after adding the
1077	 * extent.
1078	 */
1079	if (new) {
1080		start = ocfs2_align_clusters_to_page_index(inode->i_sb,
1081							   wc->w_cpos);
1082		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, wc->w_cpos);
1083	} else {
1084		start = wc->w_pos >> PAGE_CACHE_SHIFT;
1085		v_blkno = wc->w_pos >> inode->i_sb->s_blocksize_bits;
1086	}
1087
1088	for(i = 0; i < numpages; i++) {
1089		index = start + i;
1090
1091		cpages[i] = find_or_create_page(mapping, index, GFP_NOFS);
1092		if (!cpages[i]) {
1093			ret = -ENOMEM;
1094			mlog_errno(ret);
1095			goto out;
1096		}
1097	}
1098
1099	if (new) {
1100		/*
1101		 * This is safe to call with the page locks - it won't take
1102		 * any additional semaphores or cluster locks.
1103		 */
1104		tmp_pos = wc->w_cpos;
1105		ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1106						 &tmp_pos, 1, di_bh, handle,
1107						 data_ac, meta_ac, NULL);
1108		/*
1109		 * This shouldn't happen because we must have already
1110		 * calculated the correct meta data allocation required. The
1111		 * internal tree allocation code should know how to increase
1112		 * transaction credits itself.
1113		 *
1114		 * If need be, we could handle -EAGAIN for a
1115		 * RESTART_TRANS here.
1116		 */
1117		mlog_bug_on_msg(ret == -EAGAIN,
1118				"Inode %llu: EAGAIN return during allocation.\n",
1119				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1120		if (ret < 0) {
1121			mlog_errno(ret);
1122			goto out;
1123		}
1124	}
1125
1126	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1127					  NULL);
1128	if (ret < 0) {
1129
1130		/*
1131		 * XXX: Should we go readonly here?
1132		 */
1133
1134		mlog_errno(ret);
1135		goto out;
1136	}
1137
1138	BUG_ON(p_blkno == 0);
1139
1140	for(i = 0; i < numpages; i++) {
1141		ret = ocfs2_write_data_page(inode, handle, &p_blkno, cpages[i],
1142					    wc, new);
1143		if (ret < 0) {
1144			mlog_errno(ret);
1145			goto out;
1146		}
1147
1148		copied += ret;
1149	}
1150
1151out:
1152	for(i = 0; i < numpages; i++) {
1153		unlock_page(cpages[i]);
1154		mark_page_accessed(cpages[i]);
1155		page_cache_release(cpages[i]);
1156	}
1157	kfree(cpages);
1158
1159	return copied ? copied : ret;
1160}
1161
1162static void ocfs2_write_ctxt_init(struct ocfs2_write_ctxt *wc,
1163				  struct ocfs2_super *osb, loff_t pos,
1164				  size_t count, ocfs2_page_writer *cb,
1165				  void *cb_priv)
1166{
1167	wc->w_count = count;
1168	wc->w_pos = pos;
1169	wc->w_cpos = wc->w_pos >> osb->s_clustersize_bits;
1170	wc->w_finished_copy = 0;
1171
1172	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1173		wc->w_large_pages = 1;
1174	else
1175		wc->w_large_pages = 0;
1176
1177	wc->w_write_data_page = cb;
1178	wc->w_private = cb_priv;
1179}
1180
1181/*
1182 * Write a cluster to an inode. The cluster may not be allocated yet,
1183 * in which case it will be. This only exists for buffered writes -
1184 * O_DIRECT takes a more "traditional" path through the kernel.
1185 *
1186 * The caller is responsible for incrementing pos, written counts, etc
1187 *
1188 * For file systems that don't support sparse files, pre-allocation
1189 * and page zeroing up until cpos should be done prior to this
1190 * function call.
1191 *
1192 * Callers should be holding i_sem, and the rw cluster lock.
1193 *
1194 * Returns the number of user bytes written, or less than zero for
1195 * error.
1196 */
1197ssize_t ocfs2_buffered_write_cluster(struct file *file, loff_t pos,
1198				     size_t count, ocfs2_page_writer *actor,
1199				     void *priv)
1200{
1201	int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1202	ssize_t written = 0;
1203	u32 phys;
1204	struct inode *inode = file->f_mapping->host;
1205	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1206	struct buffer_head *di_bh = NULL;
1207	struct ocfs2_dinode *di;
1208	struct ocfs2_alloc_context *data_ac = NULL;
1209	struct ocfs2_alloc_context *meta_ac = NULL;
1210	handle_t *handle;
1211	struct ocfs2_write_ctxt wc;
1212
1213	ocfs2_write_ctxt_init(&wc, osb, pos, count, actor, priv);
1214
1215	ret = ocfs2_meta_lock(inode, &di_bh, 1);
1216	if (ret) {
1217		mlog_errno(ret);
1218		goto out;
1219	}
1220	di = (struct ocfs2_dinode *)di_bh->b_data;
1221
1222	/*
1223	 * Take alloc sem here to prevent concurrent lookups. That way
1224	 * the mapping, zeroing and tree manipulation within
1225	 * ocfs2_write() will be safe against ->readpage(). This
1226	 * should also serve to lock out allocation from a shared
1227	 * writeable region.
1228	 */
1229	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1230
1231	ret = ocfs2_get_clusters(inode, wc.w_cpos, &phys, NULL, NULL);
1232	if (ret) {
1233		mlog_errno(ret);
1234		goto out_meta;
1235	}
1236
1237	/* phys == 0 means that allocation is required. */
1238	if (phys == 0) {
1239		ret = ocfs2_lock_allocators(inode, di, 1, &data_ac, &meta_ac);
1240		if (ret) {
1241			mlog_errno(ret);
1242			goto out_meta;
1243		}
1244
1245		credits = ocfs2_calc_extend_credits(inode->i_sb, di, 1);
1246	}
1247
1248	ret = ocfs2_data_lock(inode, 1);
1249	if (ret) {
1250		mlog_errno(ret);
1251		goto out_meta;
1252	}
1253
1254	handle = ocfs2_start_trans(osb, credits);
1255	if (IS_ERR(handle)) {
1256		ret = PTR_ERR(handle);
1257		mlog_errno(ret);
1258		goto out_data;
1259	}
1260
1261	written = ocfs2_write(file, phys, handle, di_bh, data_ac,
1262			      meta_ac, &wc);
1263	if (written < 0) {
1264		ret = written;
1265		mlog_errno(ret);
1266		goto out_commit;
1267	}
1268
1269	ret = ocfs2_journal_access(handle, inode, di_bh,
1270				   OCFS2_JOURNAL_ACCESS_WRITE);
1271	if (ret) {
1272		mlog_errno(ret);
1273		goto out_commit;
1274	}
1275
1276	pos += written;
1277	if (pos > inode->i_size) {
1278		i_size_write(inode, pos);
1279		mark_inode_dirty(inode);
1280	}
1281	inode->i_blocks = ocfs2_inode_sector_count(inode);
1282	di->i_size = cpu_to_le64((u64)i_size_read(inode));
1283	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1284	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1285	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1286
1287	ret = ocfs2_journal_dirty(handle, di_bh);
1288	if (ret)
1289		mlog_errno(ret);
1290
1291out_commit:
1292	ocfs2_commit_trans(osb, handle);
1293
1294out_data:
1295	ocfs2_data_unlock(inode, 1);
1296
1297out_meta:
1298	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1299	ocfs2_meta_unlock(inode, 1);
1300
1301out:
1302	brelse(di_bh);
1303	if (data_ac)
1304		ocfs2_free_alloc_context(data_ac);
1305	if (meta_ac)
1306		ocfs2_free_alloc_context(meta_ac);
1307
1308	return written ? written : ret;
1309}
1310
1311const struct address_space_operations ocfs2_aops = {
1312	.readpage	= ocfs2_readpage,
1313	.writepage	= ocfs2_writepage,
1314	.bmap		= ocfs2_bmap,
1315	.sync_page	= block_sync_page,
1316	.direct_IO	= ocfs2_direct_IO,
1317	.invalidatepage	= ocfs2_invalidatepage,
1318	.releasepage	= ocfs2_releasepage,
1319	.migratepage	= buffer_migrate_page,
1320};
1321