aops.c revision f17c20dd2ec81e8ff328b81bc847da9429d0975b
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
27#include <linux/swap.h>
28#include <linux/pipe_fs_i.h>
29#include <linux/mpage.h>
30#include <linux/quotaops.h>
31
32#include <cluster/masklog.h>
33
34#include "ocfs2.h"
35
36#include "alloc.h"
37#include "aops.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "file.h"
41#include "inode.h"
42#include "journal.h"
43#include "suballoc.h"
44#include "super.h"
45#include "symlink.h"
46#include "refcounttree.h"
47#include "ocfs2_trace.h"
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52				   struct buffer_head *bh_result, int create)
53{
54	int err = -EIO;
55	int status;
56	struct ocfs2_dinode *fe = NULL;
57	struct buffer_head *bh = NULL;
58	struct buffer_head *buffer_cache_bh = NULL;
59	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60	void *kaddr;
61
62	trace_ocfs2_symlink_get_block(
63			(unsigned long long)OCFS2_I(inode)->ip_blkno,
64			(unsigned long long)iblock, bh_result, create);
65
66	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70		     (unsigned long long)iblock);
71		goto bail;
72	}
73
74	status = ocfs2_read_inode_block(inode, &bh);
75	if (status < 0) {
76		mlog_errno(status);
77		goto bail;
78	}
79	fe = (struct ocfs2_dinode *) bh->b_data;
80
81	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82						    le32_to_cpu(fe->i_clusters))) {
83		mlog(ML_ERROR, "block offset is outside the allocated size: "
84		     "%llu\n", (unsigned long long)iblock);
85		goto bail;
86	}
87
88	/* We don't use the page cache to create symlink data, so if
89	 * need be, copy it over from the buffer cache. */
90	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92			    iblock;
93		buffer_cache_bh = sb_getblk(osb->sb, blkno);
94		if (!buffer_cache_bh) {
95			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96			goto bail;
97		}
98
99		/* we haven't locked out transactions, so a commit
100		 * could've happened. Since we've got a reference on
101		 * the bh, even if it commits while we're doing the
102		 * copy, the data is still good. */
103		if (buffer_jbd(buffer_cache_bh)
104		    && ocfs2_inode_is_new(inode)) {
105			kaddr = kmap_atomic(bh_result->b_page);
106			if (!kaddr) {
107				mlog(ML_ERROR, "couldn't kmap!\n");
108				goto bail;
109			}
110			memcpy(kaddr + (bh_result->b_size * iblock),
111			       buffer_cache_bh->b_data,
112			       bh_result->b_size);
113			kunmap_atomic(kaddr);
114			set_buffer_uptodate(bh_result);
115		}
116		brelse(buffer_cache_bh);
117	}
118
119	map_bh(bh_result, inode->i_sb,
120	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121
122	err = 0;
123
124bail:
125	brelse(bh);
126
127	return err;
128}
129
130int ocfs2_get_block(struct inode *inode, sector_t iblock,
131		    struct buffer_head *bh_result, int create)
132{
133	int err = 0;
134	unsigned int ext_flags;
135	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136	u64 p_blkno, count, past_eof;
137	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138
139	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140			      (unsigned long long)iblock, bh_result, create);
141
142	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144		     inode, inode->i_ino);
145
146	if (S_ISLNK(inode->i_mode)) {
147		/* this always does I/O for some reason. */
148		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149		goto bail;
150	}
151
152	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153					  &ext_flags);
154	if (err) {
155		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157		     (unsigned long long)p_blkno);
158		goto bail;
159	}
160
161	if (max_blocks < count)
162		count = max_blocks;
163
164	/*
165	 * ocfs2 never allocates in this function - the only time we
166	 * need to use BH_New is when we're extending i_size on a file
167	 * system which doesn't support holes, in which case BH_New
168	 * allows __block_write_begin() to zero.
169	 *
170	 * If we see this on a sparse file system, then a truncate has
171	 * raced us and removed the cluster. In this case, we clear
172	 * the buffers dirty and uptodate bits and let the buffer code
173	 * ignore it as a hole.
174	 */
175	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176		clear_buffer_dirty(bh_result);
177		clear_buffer_uptodate(bh_result);
178		goto bail;
179	}
180
181	/* Treat the unwritten extent as a hole for zeroing purposes. */
182	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183		map_bh(bh_result, inode->i_sb, p_blkno);
184
185	bh_result->b_size = count << inode->i_blkbits;
186
187	if (!ocfs2_sparse_alloc(osb)) {
188		if (p_blkno == 0) {
189			err = -EIO;
190			mlog(ML_ERROR,
191			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192			     (unsigned long long)iblock,
193			     (unsigned long long)p_blkno,
194			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
195			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196			dump_stack();
197			goto bail;
198		}
199	}
200
201	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202
203	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204				  (unsigned long long)past_eof);
205	if (create && (iblock >= past_eof))
206		set_buffer_new(bh_result);
207
208bail:
209	if (err < 0)
210		err = -EIO;
211
212	return err;
213}
214
215int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216			   struct buffer_head *di_bh)
217{
218	void *kaddr;
219	loff_t size;
220	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
225		return -EROFS;
226	}
227
228	size = i_size_read(inode);
229
230	if (size > PAGE_CACHE_SIZE ||
231	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232		ocfs2_error(inode->i_sb,
233			    "Inode %llu has with inline data has bad size: %Lu",
234			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
235			    (unsigned long long)size);
236		return -EROFS;
237	}
238
239	kaddr = kmap_atomic(page);
240	if (size)
241		memcpy(kaddr, di->id2.i_data.id_data, size);
242	/* Clear the remaining part of the page */
243	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244	flush_dcache_page(page);
245	kunmap_atomic(kaddr);
246
247	SetPageUptodate(page);
248
249	return 0;
250}
251
252static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253{
254	int ret;
255	struct buffer_head *di_bh = NULL;
256
257	BUG_ON(!PageLocked(page));
258	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259
260	ret = ocfs2_read_inode_block(inode, &di_bh);
261	if (ret) {
262		mlog_errno(ret);
263		goto out;
264	}
265
266	ret = ocfs2_read_inline_data(inode, page, di_bh);
267out:
268	unlock_page(page);
269
270	brelse(di_bh);
271	return ret;
272}
273
274static int ocfs2_readpage(struct file *file, struct page *page)
275{
276	struct inode *inode = page->mapping->host;
277	struct ocfs2_inode_info *oi = OCFS2_I(inode);
278	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279	int ret, unlock = 1;
280
281	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282			     (page ? page->index : 0));
283
284	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285	if (ret != 0) {
286		if (ret == AOP_TRUNCATED_PAGE)
287			unlock = 0;
288		mlog_errno(ret);
289		goto out;
290	}
291
292	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293		/*
294		 * Unlock the page and cycle ip_alloc_sem so that we don't
295		 * busyloop waiting for ip_alloc_sem to unlock
296		 */
297		ret = AOP_TRUNCATED_PAGE;
298		unlock_page(page);
299		unlock = 0;
300		down_read(&oi->ip_alloc_sem);
301		up_read(&oi->ip_alloc_sem);
302		goto out_inode_unlock;
303	}
304
305	/*
306	 * i_size might have just been updated as we grabed the meta lock.  We
307	 * might now be discovering a truncate that hit on another node.
308	 * block_read_full_page->get_block freaks out if it is asked to read
309	 * beyond the end of a file, so we check here.  Callers
310	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
311	 * and notice that the page they just read isn't needed.
312	 *
313	 * XXX sys_readahead() seems to get that wrong?
314	 */
315	if (start >= i_size_read(inode)) {
316		zero_user(page, 0, PAGE_SIZE);
317		SetPageUptodate(page);
318		ret = 0;
319		goto out_alloc;
320	}
321
322	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
323		ret = ocfs2_readpage_inline(inode, page);
324	else
325		ret = block_read_full_page(page, ocfs2_get_block);
326	unlock = 0;
327
328out_alloc:
329	up_read(&OCFS2_I(inode)->ip_alloc_sem);
330out_inode_unlock:
331	ocfs2_inode_unlock(inode, 0);
332out:
333	if (unlock)
334		unlock_page(page);
335	return ret;
336}
337
338/*
339 * This is used only for read-ahead. Failures or difficult to handle
340 * situations are safe to ignore.
341 *
342 * Right now, we don't bother with BH_Boundary - in-inode extent lists
343 * are quite large (243 extents on 4k blocks), so most inodes don't
344 * grow out to a tree. If need be, detecting boundary extents could
345 * trivially be added in a future version of ocfs2_get_block().
346 */
347static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
348			   struct list_head *pages, unsigned nr_pages)
349{
350	int ret, err = -EIO;
351	struct inode *inode = mapping->host;
352	struct ocfs2_inode_info *oi = OCFS2_I(inode);
353	loff_t start;
354	struct page *last;
355
356	/*
357	 * Use the nonblocking flag for the dlm code to avoid page
358	 * lock inversion, but don't bother with retrying.
359	 */
360	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
361	if (ret)
362		return err;
363
364	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
365		ocfs2_inode_unlock(inode, 0);
366		return err;
367	}
368
369	/*
370	 * Don't bother with inline-data. There isn't anything
371	 * to read-ahead in that case anyway...
372	 */
373	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
374		goto out_unlock;
375
376	/*
377	 * Check whether a remote node truncated this file - we just
378	 * drop out in that case as it's not worth handling here.
379	 */
380	last = list_entry(pages->prev, struct page, lru);
381	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
382	if (start >= i_size_read(inode))
383		goto out_unlock;
384
385	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
386
387out_unlock:
388	up_read(&oi->ip_alloc_sem);
389	ocfs2_inode_unlock(inode, 0);
390
391	return err;
392}
393
394/* Note: Because we don't support holes, our allocation has
395 * already happened (allocation writes zeros to the file data)
396 * so we don't have to worry about ordered writes in
397 * ocfs2_writepage.
398 *
399 * ->writepage is called during the process of invalidating the page cache
400 * during blocked lock processing.  It can't block on any cluster locks
401 * to during block mapping.  It's relying on the fact that the block
402 * mapping can't have disappeared under the dirty pages that it is
403 * being asked to write back.
404 */
405static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
406{
407	trace_ocfs2_writepage(
408		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
409		page->index);
410
411	return block_write_full_page(page, ocfs2_get_block, wbc);
412}
413
414/* Taken from ext3. We don't necessarily need the full blown
415 * functionality yet, but IMHO it's better to cut and paste the whole
416 * thing so we can avoid introducing our own bugs (and easily pick up
417 * their fixes when they happen) --Mark */
418int walk_page_buffers(	handle_t *handle,
419			struct buffer_head *head,
420			unsigned from,
421			unsigned to,
422			int *partial,
423			int (*fn)(	handle_t *handle,
424					struct buffer_head *bh))
425{
426	struct buffer_head *bh;
427	unsigned block_start, block_end;
428	unsigned blocksize = head->b_size;
429	int err, ret = 0;
430	struct buffer_head *next;
431
432	for (	bh = head, block_start = 0;
433		ret == 0 && (bh != head || !block_start);
434	    	block_start = block_end, bh = next)
435	{
436		next = bh->b_this_page;
437		block_end = block_start + blocksize;
438		if (block_end <= from || block_start >= to) {
439			if (partial && !buffer_uptodate(bh))
440				*partial = 1;
441			continue;
442		}
443		err = (*fn)(handle, bh);
444		if (!ret)
445			ret = err;
446	}
447	return ret;
448}
449
450static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
451{
452	sector_t status;
453	u64 p_blkno = 0;
454	int err = 0;
455	struct inode *inode = mapping->host;
456
457	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
458			 (unsigned long long)block);
459
460	/* We don't need to lock journal system files, since they aren't
461	 * accessed concurrently from multiple nodes.
462	 */
463	if (!INODE_JOURNAL(inode)) {
464		err = ocfs2_inode_lock(inode, NULL, 0);
465		if (err) {
466			if (err != -ENOENT)
467				mlog_errno(err);
468			goto bail;
469		}
470		down_read(&OCFS2_I(inode)->ip_alloc_sem);
471	}
472
473	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
474		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
475						  NULL);
476
477	if (!INODE_JOURNAL(inode)) {
478		up_read(&OCFS2_I(inode)->ip_alloc_sem);
479		ocfs2_inode_unlock(inode, 0);
480	}
481
482	if (err) {
483		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
484		     (unsigned long long)block);
485		mlog_errno(err);
486		goto bail;
487	}
488
489bail:
490	status = err ? 0 : p_blkno;
491
492	return status;
493}
494
495/*
496 * TODO: Make this into a generic get_blocks function.
497 *
498 * From do_direct_io in direct-io.c:
499 *  "So what we do is to permit the ->get_blocks function to populate
500 *   bh.b_size with the size of IO which is permitted at this offset and
501 *   this i_blkbits."
502 *
503 * This function is called directly from get_more_blocks in direct-io.c.
504 *
505 * called like this: dio->get_blocks(dio->inode, fs_startblk,
506 * 					fs_count, map_bh, dio->rw == WRITE);
507 *
508 * Note that we never bother to allocate blocks here, and thus ignore the
509 * create argument.
510 */
511static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
512				     struct buffer_head *bh_result, int create)
513{
514	int ret;
515	u64 p_blkno, inode_blocks, contig_blocks;
516	unsigned int ext_flags;
517	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
518	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
519
520	/* This function won't even be called if the request isn't all
521	 * nicely aligned and of the right size, so there's no need
522	 * for us to check any of that. */
523
524	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
525
526	/* This figures out the size of the next contiguous block, and
527	 * our logical offset */
528	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
529					  &contig_blocks, &ext_flags);
530	if (ret) {
531		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
532		     (unsigned long long)iblock);
533		ret = -EIO;
534		goto bail;
535	}
536
537	/* We should already CoW the refcounted extent in case of create. */
538	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
539
540	/*
541	 * get_more_blocks() expects us to describe a hole by clearing
542	 * the mapped bit on bh_result().
543	 *
544	 * Consider an unwritten extent as a hole.
545	 */
546	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
547		map_bh(bh_result, inode->i_sb, p_blkno);
548	else
549		clear_buffer_mapped(bh_result);
550
551	/* make sure we don't map more than max_blocks blocks here as
552	   that's all the kernel will handle at this point. */
553	if (max_blocks < contig_blocks)
554		contig_blocks = max_blocks;
555	bh_result->b_size = contig_blocks << blocksize_bits;
556bail:
557	return ret;
558}
559
560/*
561 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
562 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
563 * to protect io on one node from truncation on another.
564 */
565static void ocfs2_dio_end_io(struct kiocb *iocb,
566			     loff_t offset,
567			     ssize_t bytes,
568			     void *private)
569{
570	struct inode *inode = file_inode(iocb->ki_filp);
571	int level;
572	wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
573
574	/* this io's submitter should not have unlocked this before we could */
575	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
576
577	if (ocfs2_iocb_is_sem_locked(iocb))
578		ocfs2_iocb_clear_sem_locked(iocb);
579
580	if (ocfs2_iocb_is_unaligned_aio(iocb)) {
581		ocfs2_iocb_clear_unaligned_aio(iocb);
582
583		if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
584		    waitqueue_active(wq)) {
585			wake_up_all(wq);
586		}
587	}
588
589	ocfs2_iocb_clear_rw_locked(iocb);
590
591	level = ocfs2_iocb_rw_locked_level(iocb);
592	ocfs2_rw_unlock(inode, level);
593}
594
595/*
596 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
597 * from ext3.  PageChecked() bits have been removed as OCFS2 does not
598 * do journalled data.
599 */
600static void ocfs2_invalidatepage(struct page *page, unsigned int offset,
601				 unsigned int length)
602{
603	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
604
605	jbd2_journal_invalidatepage(journal, page, offset, length);
606}
607
608static int ocfs2_releasepage(struct page *page, gfp_t wait)
609{
610	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
611
612	if (!page_has_buffers(page))
613		return 0;
614	return jbd2_journal_try_to_free_buffers(journal, page, wait);
615}
616
617static ssize_t ocfs2_direct_IO(int rw,
618			       struct kiocb *iocb,
619			       const struct iovec *iov,
620			       loff_t offset,
621			       unsigned long nr_segs)
622{
623	struct file *file = iocb->ki_filp;
624	struct inode *inode = file_inode(file)->i_mapping->host;
625
626	/*
627	 * Fallback to buffered I/O if we see an inode without
628	 * extents.
629	 */
630	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
631		return 0;
632
633	/* Fallback to buffered I/O if we are appending. */
634	if (i_size_read(inode) <= offset)
635		return 0;
636
637	return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
638				    iov, offset, nr_segs,
639				    ocfs2_direct_IO_get_blocks,
640				    ocfs2_dio_end_io, NULL, 0);
641}
642
643static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
644					    u32 cpos,
645					    unsigned int *start,
646					    unsigned int *end)
647{
648	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
649
650	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
651		unsigned int cpp;
652
653		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
654
655		cluster_start = cpos % cpp;
656		cluster_start = cluster_start << osb->s_clustersize_bits;
657
658		cluster_end = cluster_start + osb->s_clustersize;
659	}
660
661	BUG_ON(cluster_start > PAGE_SIZE);
662	BUG_ON(cluster_end > PAGE_SIZE);
663
664	if (start)
665		*start = cluster_start;
666	if (end)
667		*end = cluster_end;
668}
669
670/*
671 * 'from' and 'to' are the region in the page to avoid zeroing.
672 *
673 * If pagesize > clustersize, this function will avoid zeroing outside
674 * of the cluster boundary.
675 *
676 * from == to == 0 is code for "zero the entire cluster region"
677 */
678static void ocfs2_clear_page_regions(struct page *page,
679				     struct ocfs2_super *osb, u32 cpos,
680				     unsigned from, unsigned to)
681{
682	void *kaddr;
683	unsigned int cluster_start, cluster_end;
684
685	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
686
687	kaddr = kmap_atomic(page);
688
689	if (from || to) {
690		if (from > cluster_start)
691			memset(kaddr + cluster_start, 0, from - cluster_start);
692		if (to < cluster_end)
693			memset(kaddr + to, 0, cluster_end - to);
694	} else {
695		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
696	}
697
698	kunmap_atomic(kaddr);
699}
700
701/*
702 * Nonsparse file systems fully allocate before we get to the write
703 * code. This prevents ocfs2_write() from tagging the write as an
704 * allocating one, which means ocfs2_map_page_blocks() might try to
705 * read-in the blocks at the tail of our file. Avoid reading them by
706 * testing i_size against each block offset.
707 */
708static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
709				 unsigned int block_start)
710{
711	u64 offset = page_offset(page) + block_start;
712
713	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
714		return 1;
715
716	if (i_size_read(inode) > offset)
717		return 1;
718
719	return 0;
720}
721
722/*
723 * Some of this taken from __block_write_begin(). We already have our
724 * mapping by now though, and the entire write will be allocating or
725 * it won't, so not much need to use BH_New.
726 *
727 * This will also skip zeroing, which is handled externally.
728 */
729int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
730			  struct inode *inode, unsigned int from,
731			  unsigned int to, int new)
732{
733	int ret = 0;
734	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
735	unsigned int block_end, block_start;
736	unsigned int bsize = 1 << inode->i_blkbits;
737
738	if (!page_has_buffers(page))
739		create_empty_buffers(page, bsize, 0);
740
741	head = page_buffers(page);
742	for (bh = head, block_start = 0; bh != head || !block_start;
743	     bh = bh->b_this_page, block_start += bsize) {
744		block_end = block_start + bsize;
745
746		clear_buffer_new(bh);
747
748		/*
749		 * Ignore blocks outside of our i/o range -
750		 * they may belong to unallocated clusters.
751		 */
752		if (block_start >= to || block_end <= from) {
753			if (PageUptodate(page))
754				set_buffer_uptodate(bh);
755			continue;
756		}
757
758		/*
759		 * For an allocating write with cluster size >= page
760		 * size, we always write the entire page.
761		 */
762		if (new)
763			set_buffer_new(bh);
764
765		if (!buffer_mapped(bh)) {
766			map_bh(bh, inode->i_sb, *p_blkno);
767			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
768		}
769
770		if (PageUptodate(page)) {
771			if (!buffer_uptodate(bh))
772				set_buffer_uptodate(bh);
773		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
774			   !buffer_new(bh) &&
775			   ocfs2_should_read_blk(inode, page, block_start) &&
776			   (block_start < from || block_end > to)) {
777			ll_rw_block(READ, 1, &bh);
778			*wait_bh++=bh;
779		}
780
781		*p_blkno = *p_blkno + 1;
782	}
783
784	/*
785	 * If we issued read requests - let them complete.
786	 */
787	while(wait_bh > wait) {
788		wait_on_buffer(*--wait_bh);
789		if (!buffer_uptodate(*wait_bh))
790			ret = -EIO;
791	}
792
793	if (ret == 0 || !new)
794		return ret;
795
796	/*
797	 * If we get -EIO above, zero out any newly allocated blocks
798	 * to avoid exposing stale data.
799	 */
800	bh = head;
801	block_start = 0;
802	do {
803		block_end = block_start + bsize;
804		if (block_end <= from)
805			goto next_bh;
806		if (block_start >= to)
807			break;
808
809		zero_user(page, block_start, bh->b_size);
810		set_buffer_uptodate(bh);
811		mark_buffer_dirty(bh);
812
813next_bh:
814		block_start = block_end;
815		bh = bh->b_this_page;
816	} while (bh != head);
817
818	return ret;
819}
820
821#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
822#define OCFS2_MAX_CTXT_PAGES	1
823#else
824#define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
825#endif
826
827#define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
828
829/*
830 * Describe the state of a single cluster to be written to.
831 */
832struct ocfs2_write_cluster_desc {
833	u32		c_cpos;
834	u32		c_phys;
835	/*
836	 * Give this a unique field because c_phys eventually gets
837	 * filled.
838	 */
839	unsigned	c_new;
840	unsigned	c_unwritten;
841	unsigned	c_needs_zero;
842};
843
844struct ocfs2_write_ctxt {
845	/* Logical cluster position / len of write */
846	u32				w_cpos;
847	u32				w_clen;
848
849	/* First cluster allocated in a nonsparse extend */
850	u32				w_first_new_cpos;
851
852	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
853
854	/*
855	 * This is true if page_size > cluster_size.
856	 *
857	 * It triggers a set of special cases during write which might
858	 * have to deal with allocating writes to partial pages.
859	 */
860	unsigned int			w_large_pages;
861
862	/*
863	 * Pages involved in this write.
864	 *
865	 * w_target_page is the page being written to by the user.
866	 *
867	 * w_pages is an array of pages which always contains
868	 * w_target_page, and in the case of an allocating write with
869	 * page_size < cluster size, it will contain zero'd and mapped
870	 * pages adjacent to w_target_page which need to be written
871	 * out in so that future reads from that region will get
872	 * zero's.
873	 */
874	unsigned int			w_num_pages;
875	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
876	struct page			*w_target_page;
877
878	/*
879	 * w_target_locked is used for page_mkwrite path indicating no unlocking
880	 * against w_target_page in ocfs2_write_end_nolock.
881	 */
882	unsigned int			w_target_locked:1;
883
884	/*
885	 * ocfs2_write_end() uses this to know what the real range to
886	 * write in the target should be.
887	 */
888	unsigned int			w_target_from;
889	unsigned int			w_target_to;
890
891	/*
892	 * We could use journal_current_handle() but this is cleaner,
893	 * IMHO -Mark
894	 */
895	handle_t			*w_handle;
896
897	struct buffer_head		*w_di_bh;
898
899	struct ocfs2_cached_dealloc_ctxt w_dealloc;
900};
901
902void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
903{
904	int i;
905
906	for(i = 0; i < num_pages; i++) {
907		if (pages[i]) {
908			unlock_page(pages[i]);
909			mark_page_accessed(pages[i]);
910			page_cache_release(pages[i]);
911		}
912	}
913}
914
915static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
916{
917	int i;
918
919	/*
920	 * w_target_locked is only set to true in the page_mkwrite() case.
921	 * The intent is to allow us to lock the target page from write_begin()
922	 * to write_end(). The caller must hold a ref on w_target_page.
923	 */
924	if (wc->w_target_locked) {
925		BUG_ON(!wc->w_target_page);
926		for (i = 0; i < wc->w_num_pages; i++) {
927			if (wc->w_target_page == wc->w_pages[i]) {
928				wc->w_pages[i] = NULL;
929				break;
930			}
931		}
932		mark_page_accessed(wc->w_target_page);
933		page_cache_release(wc->w_target_page);
934	}
935	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
936
937	brelse(wc->w_di_bh);
938	kfree(wc);
939}
940
941static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
942				  struct ocfs2_super *osb, loff_t pos,
943				  unsigned len, struct buffer_head *di_bh)
944{
945	u32 cend;
946	struct ocfs2_write_ctxt *wc;
947
948	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
949	if (!wc)
950		return -ENOMEM;
951
952	wc->w_cpos = pos >> osb->s_clustersize_bits;
953	wc->w_first_new_cpos = UINT_MAX;
954	cend = (pos + len - 1) >> osb->s_clustersize_bits;
955	wc->w_clen = cend - wc->w_cpos + 1;
956	get_bh(di_bh);
957	wc->w_di_bh = di_bh;
958
959	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
960		wc->w_large_pages = 1;
961	else
962		wc->w_large_pages = 0;
963
964	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
965
966	*wcp = wc;
967
968	return 0;
969}
970
971/*
972 * If a page has any new buffers, zero them out here, and mark them uptodate
973 * and dirty so they'll be written out (in order to prevent uninitialised
974 * block data from leaking). And clear the new bit.
975 */
976static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
977{
978	unsigned int block_start, block_end;
979	struct buffer_head *head, *bh;
980
981	BUG_ON(!PageLocked(page));
982	if (!page_has_buffers(page))
983		return;
984
985	bh = head = page_buffers(page);
986	block_start = 0;
987	do {
988		block_end = block_start + bh->b_size;
989
990		if (buffer_new(bh)) {
991			if (block_end > from && block_start < to) {
992				if (!PageUptodate(page)) {
993					unsigned start, end;
994
995					start = max(from, block_start);
996					end = min(to, block_end);
997
998					zero_user_segment(page, start, end);
999					set_buffer_uptodate(bh);
1000				}
1001
1002				clear_buffer_new(bh);
1003				mark_buffer_dirty(bh);
1004			}
1005		}
1006
1007		block_start = block_end;
1008		bh = bh->b_this_page;
1009	} while (bh != head);
1010}
1011
1012/*
1013 * Only called when we have a failure during allocating write to write
1014 * zero's to the newly allocated region.
1015 */
1016static void ocfs2_write_failure(struct inode *inode,
1017				struct ocfs2_write_ctxt *wc,
1018				loff_t user_pos, unsigned user_len)
1019{
1020	int i;
1021	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1022		to = user_pos + user_len;
1023	struct page *tmppage;
1024
1025	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1026
1027	for(i = 0; i < wc->w_num_pages; i++) {
1028		tmppage = wc->w_pages[i];
1029
1030		if (page_has_buffers(tmppage)) {
1031			if (ocfs2_should_order_data(inode))
1032				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1033
1034			block_commit_write(tmppage, from, to);
1035		}
1036	}
1037}
1038
1039static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1040					struct ocfs2_write_ctxt *wc,
1041					struct page *page, u32 cpos,
1042					loff_t user_pos, unsigned user_len,
1043					int new)
1044{
1045	int ret;
1046	unsigned int map_from = 0, map_to = 0;
1047	unsigned int cluster_start, cluster_end;
1048	unsigned int user_data_from = 0, user_data_to = 0;
1049
1050	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1051					&cluster_start, &cluster_end);
1052
1053	/* treat the write as new if the a hole/lseek spanned across
1054	 * the page boundary.
1055	 */
1056	new = new | ((i_size_read(inode) <= page_offset(page)) &&
1057			(page_offset(page) <= user_pos));
1058
1059	if (page == wc->w_target_page) {
1060		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1061		map_to = map_from + user_len;
1062
1063		if (new)
1064			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1065						    cluster_start, cluster_end,
1066						    new);
1067		else
1068			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1069						    map_from, map_to, new);
1070		if (ret) {
1071			mlog_errno(ret);
1072			goto out;
1073		}
1074
1075		user_data_from = map_from;
1076		user_data_to = map_to;
1077		if (new) {
1078			map_from = cluster_start;
1079			map_to = cluster_end;
1080		}
1081	} else {
1082		/*
1083		 * If we haven't allocated the new page yet, we
1084		 * shouldn't be writing it out without copying user
1085		 * data. This is likely a math error from the caller.
1086		 */
1087		BUG_ON(!new);
1088
1089		map_from = cluster_start;
1090		map_to = cluster_end;
1091
1092		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1093					    cluster_start, cluster_end, new);
1094		if (ret) {
1095			mlog_errno(ret);
1096			goto out;
1097		}
1098	}
1099
1100	/*
1101	 * Parts of newly allocated pages need to be zero'd.
1102	 *
1103	 * Above, we have also rewritten 'to' and 'from' - as far as
1104	 * the rest of the function is concerned, the entire cluster
1105	 * range inside of a page needs to be written.
1106	 *
1107	 * We can skip this if the page is up to date - it's already
1108	 * been zero'd from being read in as a hole.
1109	 */
1110	if (new && !PageUptodate(page))
1111		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1112					 cpos, user_data_from, user_data_to);
1113
1114	flush_dcache_page(page);
1115
1116out:
1117	return ret;
1118}
1119
1120/*
1121 * This function will only grab one clusters worth of pages.
1122 */
1123static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1124				      struct ocfs2_write_ctxt *wc,
1125				      u32 cpos, loff_t user_pos,
1126				      unsigned user_len, int new,
1127				      struct page *mmap_page)
1128{
1129	int ret = 0, i;
1130	unsigned long start, target_index, end_index, index;
1131	struct inode *inode = mapping->host;
1132	loff_t last_byte;
1133
1134	target_index = user_pos >> PAGE_CACHE_SHIFT;
1135
1136	/*
1137	 * Figure out how many pages we'll be manipulating here. For
1138	 * non allocating write, we just change the one
1139	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1140	 * writing past i_size, we only need enough pages to cover the
1141	 * last page of the write.
1142	 */
1143	if (new) {
1144		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1145		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1146		/*
1147		 * We need the index *past* the last page we could possibly
1148		 * touch.  This is the page past the end of the write or
1149		 * i_size, whichever is greater.
1150		 */
1151		last_byte = max(user_pos + user_len, i_size_read(inode));
1152		BUG_ON(last_byte < 1);
1153		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1154		if ((start + wc->w_num_pages) > end_index)
1155			wc->w_num_pages = end_index - start;
1156	} else {
1157		wc->w_num_pages = 1;
1158		start = target_index;
1159	}
1160
1161	for(i = 0; i < wc->w_num_pages; i++) {
1162		index = start + i;
1163
1164		if (index == target_index && mmap_page) {
1165			/*
1166			 * ocfs2_pagemkwrite() is a little different
1167			 * and wants us to directly use the page
1168			 * passed in.
1169			 */
1170			lock_page(mmap_page);
1171
1172			/* Exit and let the caller retry */
1173			if (mmap_page->mapping != mapping) {
1174				WARN_ON(mmap_page->mapping);
1175				unlock_page(mmap_page);
1176				ret = -EAGAIN;
1177				goto out;
1178			}
1179
1180			page_cache_get(mmap_page);
1181			wc->w_pages[i] = mmap_page;
1182			wc->w_target_locked = true;
1183		} else {
1184			wc->w_pages[i] = find_or_create_page(mapping, index,
1185							     GFP_NOFS);
1186			if (!wc->w_pages[i]) {
1187				ret = -ENOMEM;
1188				mlog_errno(ret);
1189				goto out;
1190			}
1191		}
1192		wait_for_stable_page(wc->w_pages[i]);
1193
1194		if (index == target_index)
1195			wc->w_target_page = wc->w_pages[i];
1196	}
1197out:
1198	if (ret)
1199		wc->w_target_locked = false;
1200	return ret;
1201}
1202
1203/*
1204 * Prepare a single cluster for write one cluster into the file.
1205 */
1206static int ocfs2_write_cluster(struct address_space *mapping,
1207			       u32 phys, unsigned int unwritten,
1208			       unsigned int should_zero,
1209			       struct ocfs2_alloc_context *data_ac,
1210			       struct ocfs2_alloc_context *meta_ac,
1211			       struct ocfs2_write_ctxt *wc, u32 cpos,
1212			       loff_t user_pos, unsigned user_len)
1213{
1214	int ret, i, new;
1215	u64 v_blkno, p_blkno;
1216	struct inode *inode = mapping->host;
1217	struct ocfs2_extent_tree et;
1218
1219	new = phys == 0 ? 1 : 0;
1220	if (new) {
1221		u32 tmp_pos;
1222
1223		/*
1224		 * This is safe to call with the page locks - it won't take
1225		 * any additional semaphores or cluster locks.
1226		 */
1227		tmp_pos = cpos;
1228		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1229					   &tmp_pos, 1, 0, wc->w_di_bh,
1230					   wc->w_handle, data_ac,
1231					   meta_ac, NULL);
1232		/*
1233		 * This shouldn't happen because we must have already
1234		 * calculated the correct meta data allocation required. The
1235		 * internal tree allocation code should know how to increase
1236		 * transaction credits itself.
1237		 *
1238		 * If need be, we could handle -EAGAIN for a
1239		 * RESTART_TRANS here.
1240		 */
1241		mlog_bug_on_msg(ret == -EAGAIN,
1242				"Inode %llu: EAGAIN return during allocation.\n",
1243				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1244		if (ret < 0) {
1245			mlog_errno(ret);
1246			goto out;
1247		}
1248	} else if (unwritten) {
1249		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1250					      wc->w_di_bh);
1251		ret = ocfs2_mark_extent_written(inode, &et,
1252						wc->w_handle, cpos, 1, phys,
1253						meta_ac, &wc->w_dealloc);
1254		if (ret < 0) {
1255			mlog_errno(ret);
1256			goto out;
1257		}
1258	}
1259
1260	if (should_zero)
1261		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1262	else
1263		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1264
1265	/*
1266	 * The only reason this should fail is due to an inability to
1267	 * find the extent added.
1268	 */
1269	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1270					  NULL);
1271	if (ret < 0) {
1272		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1273			    "at logical block %llu",
1274			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1275			    (unsigned long long)v_blkno);
1276		goto out;
1277	}
1278
1279	BUG_ON(p_blkno == 0);
1280
1281	for(i = 0; i < wc->w_num_pages; i++) {
1282		int tmpret;
1283
1284		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1285						      wc->w_pages[i], cpos,
1286						      user_pos, user_len,
1287						      should_zero);
1288		if (tmpret) {
1289			mlog_errno(tmpret);
1290			if (ret == 0)
1291				ret = tmpret;
1292		}
1293	}
1294
1295	/*
1296	 * We only have cleanup to do in case of allocating write.
1297	 */
1298	if (ret && new)
1299		ocfs2_write_failure(inode, wc, user_pos, user_len);
1300
1301out:
1302
1303	return ret;
1304}
1305
1306static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1307				       struct ocfs2_alloc_context *data_ac,
1308				       struct ocfs2_alloc_context *meta_ac,
1309				       struct ocfs2_write_ctxt *wc,
1310				       loff_t pos, unsigned len)
1311{
1312	int ret, i;
1313	loff_t cluster_off;
1314	unsigned int local_len = len;
1315	struct ocfs2_write_cluster_desc *desc;
1316	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1317
1318	for (i = 0; i < wc->w_clen; i++) {
1319		desc = &wc->w_desc[i];
1320
1321		/*
1322		 * We have to make sure that the total write passed in
1323		 * doesn't extend past a single cluster.
1324		 */
1325		local_len = len;
1326		cluster_off = pos & (osb->s_clustersize - 1);
1327		if ((cluster_off + local_len) > osb->s_clustersize)
1328			local_len = osb->s_clustersize - cluster_off;
1329
1330		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1331					  desc->c_unwritten,
1332					  desc->c_needs_zero,
1333					  data_ac, meta_ac,
1334					  wc, desc->c_cpos, pos, local_len);
1335		if (ret) {
1336			mlog_errno(ret);
1337			goto out;
1338		}
1339
1340		len -= local_len;
1341		pos += local_len;
1342	}
1343
1344	ret = 0;
1345out:
1346	return ret;
1347}
1348
1349/*
1350 * ocfs2_write_end() wants to know which parts of the target page it
1351 * should complete the write on. It's easiest to compute them ahead of
1352 * time when a more complete view of the write is available.
1353 */
1354static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1355					struct ocfs2_write_ctxt *wc,
1356					loff_t pos, unsigned len, int alloc)
1357{
1358	struct ocfs2_write_cluster_desc *desc;
1359
1360	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1361	wc->w_target_to = wc->w_target_from + len;
1362
1363	if (alloc == 0)
1364		return;
1365
1366	/*
1367	 * Allocating write - we may have different boundaries based
1368	 * on page size and cluster size.
1369	 *
1370	 * NOTE: We can no longer compute one value from the other as
1371	 * the actual write length and user provided length may be
1372	 * different.
1373	 */
1374
1375	if (wc->w_large_pages) {
1376		/*
1377		 * We only care about the 1st and last cluster within
1378		 * our range and whether they should be zero'd or not. Either
1379		 * value may be extended out to the start/end of a
1380		 * newly allocated cluster.
1381		 */
1382		desc = &wc->w_desc[0];
1383		if (desc->c_needs_zero)
1384			ocfs2_figure_cluster_boundaries(osb,
1385							desc->c_cpos,
1386							&wc->w_target_from,
1387							NULL);
1388
1389		desc = &wc->w_desc[wc->w_clen - 1];
1390		if (desc->c_needs_zero)
1391			ocfs2_figure_cluster_boundaries(osb,
1392							desc->c_cpos,
1393							NULL,
1394							&wc->w_target_to);
1395	} else {
1396		wc->w_target_from = 0;
1397		wc->w_target_to = PAGE_CACHE_SIZE;
1398	}
1399}
1400
1401/*
1402 * Populate each single-cluster write descriptor in the write context
1403 * with information about the i/o to be done.
1404 *
1405 * Returns the number of clusters that will have to be allocated, as
1406 * well as a worst case estimate of the number of extent records that
1407 * would have to be created during a write to an unwritten region.
1408 */
1409static int ocfs2_populate_write_desc(struct inode *inode,
1410				     struct ocfs2_write_ctxt *wc,
1411				     unsigned int *clusters_to_alloc,
1412				     unsigned int *extents_to_split)
1413{
1414	int ret;
1415	struct ocfs2_write_cluster_desc *desc;
1416	unsigned int num_clusters = 0;
1417	unsigned int ext_flags = 0;
1418	u32 phys = 0;
1419	int i;
1420
1421	*clusters_to_alloc = 0;
1422	*extents_to_split = 0;
1423
1424	for (i = 0; i < wc->w_clen; i++) {
1425		desc = &wc->w_desc[i];
1426		desc->c_cpos = wc->w_cpos + i;
1427
1428		if (num_clusters == 0) {
1429			/*
1430			 * Need to look up the next extent record.
1431			 */
1432			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1433						 &num_clusters, &ext_flags);
1434			if (ret) {
1435				mlog_errno(ret);
1436				goto out;
1437			}
1438
1439			/* We should already CoW the refcountd extent. */
1440			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1441
1442			/*
1443			 * Assume worst case - that we're writing in
1444			 * the middle of the extent.
1445			 *
1446			 * We can assume that the write proceeds from
1447			 * left to right, in which case the extent
1448			 * insert code is smart enough to coalesce the
1449			 * next splits into the previous records created.
1450			 */
1451			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1452				*extents_to_split = *extents_to_split + 2;
1453		} else if (phys) {
1454			/*
1455			 * Only increment phys if it doesn't describe
1456			 * a hole.
1457			 */
1458			phys++;
1459		}
1460
1461		/*
1462		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1463		 * file that got extended.  w_first_new_cpos tells us
1464		 * where the newly allocated clusters are so we can
1465		 * zero them.
1466		 */
1467		if (desc->c_cpos >= wc->w_first_new_cpos) {
1468			BUG_ON(phys == 0);
1469			desc->c_needs_zero = 1;
1470		}
1471
1472		desc->c_phys = phys;
1473		if (phys == 0) {
1474			desc->c_new = 1;
1475			desc->c_needs_zero = 1;
1476			*clusters_to_alloc = *clusters_to_alloc + 1;
1477		}
1478
1479		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1480			desc->c_unwritten = 1;
1481			desc->c_needs_zero = 1;
1482		}
1483
1484		num_clusters--;
1485	}
1486
1487	ret = 0;
1488out:
1489	return ret;
1490}
1491
1492static int ocfs2_write_begin_inline(struct address_space *mapping,
1493				    struct inode *inode,
1494				    struct ocfs2_write_ctxt *wc)
1495{
1496	int ret;
1497	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1498	struct page *page;
1499	handle_t *handle;
1500	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1501
1502	page = find_or_create_page(mapping, 0, GFP_NOFS);
1503	if (!page) {
1504		ret = -ENOMEM;
1505		mlog_errno(ret);
1506		goto out;
1507	}
1508	/*
1509	 * If we don't set w_num_pages then this page won't get unlocked
1510	 * and freed on cleanup of the write context.
1511	 */
1512	wc->w_pages[0] = wc->w_target_page = page;
1513	wc->w_num_pages = 1;
1514
1515	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1516	if (IS_ERR(handle)) {
1517		ret = PTR_ERR(handle);
1518		mlog_errno(ret);
1519		goto out;
1520	}
1521
1522	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1523				      OCFS2_JOURNAL_ACCESS_WRITE);
1524	if (ret) {
1525		ocfs2_commit_trans(osb, handle);
1526
1527		mlog_errno(ret);
1528		goto out;
1529	}
1530
1531	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1532		ocfs2_set_inode_data_inline(inode, di);
1533
1534	if (!PageUptodate(page)) {
1535		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1536		if (ret) {
1537			ocfs2_commit_trans(osb, handle);
1538
1539			goto out;
1540		}
1541	}
1542
1543	wc->w_handle = handle;
1544out:
1545	return ret;
1546}
1547
1548int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1549{
1550	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1551
1552	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1553		return 1;
1554	return 0;
1555}
1556
1557static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1558					  struct inode *inode, loff_t pos,
1559					  unsigned len, struct page *mmap_page,
1560					  struct ocfs2_write_ctxt *wc)
1561{
1562	int ret, written = 0;
1563	loff_t end = pos + len;
1564	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1565	struct ocfs2_dinode *di = NULL;
1566
1567	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1568					     len, (unsigned long long)pos,
1569					     oi->ip_dyn_features);
1570
1571	/*
1572	 * Handle inodes which already have inline data 1st.
1573	 */
1574	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1575		if (mmap_page == NULL &&
1576		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1577			goto do_inline_write;
1578
1579		/*
1580		 * The write won't fit - we have to give this inode an
1581		 * inline extent list now.
1582		 */
1583		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1584		if (ret)
1585			mlog_errno(ret);
1586		goto out;
1587	}
1588
1589	/*
1590	 * Check whether the inode can accept inline data.
1591	 */
1592	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1593		return 0;
1594
1595	/*
1596	 * Check whether the write can fit.
1597	 */
1598	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1599	if (mmap_page ||
1600	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1601		return 0;
1602
1603do_inline_write:
1604	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1605	if (ret) {
1606		mlog_errno(ret);
1607		goto out;
1608	}
1609
1610	/*
1611	 * This signals to the caller that the data can be written
1612	 * inline.
1613	 */
1614	written = 1;
1615out:
1616	return written ? written : ret;
1617}
1618
1619/*
1620 * This function only does anything for file systems which can't
1621 * handle sparse files.
1622 *
1623 * What we want to do here is fill in any hole between the current end
1624 * of allocation and the end of our write. That way the rest of the
1625 * write path can treat it as an non-allocating write, which has no
1626 * special case code for sparse/nonsparse files.
1627 */
1628static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1629					struct buffer_head *di_bh,
1630					loff_t pos, unsigned len,
1631					struct ocfs2_write_ctxt *wc)
1632{
1633	int ret;
1634	loff_t newsize = pos + len;
1635
1636	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1637
1638	if (newsize <= i_size_read(inode))
1639		return 0;
1640
1641	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1642	if (ret)
1643		mlog_errno(ret);
1644
1645	wc->w_first_new_cpos =
1646		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1647
1648	return ret;
1649}
1650
1651static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1652			   loff_t pos)
1653{
1654	int ret = 0;
1655
1656	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1657	if (pos > i_size_read(inode))
1658		ret = ocfs2_zero_extend(inode, di_bh, pos);
1659
1660	return ret;
1661}
1662
1663/*
1664 * Try to flush truncate logs if we can free enough clusters from it.
1665 * As for return value, "< 0" means error, "0" no space and "1" means
1666 * we have freed enough spaces and let the caller try to allocate again.
1667 */
1668static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1669					  unsigned int needed)
1670{
1671	tid_t target;
1672	int ret = 0;
1673	unsigned int truncated_clusters;
1674
1675	mutex_lock(&osb->osb_tl_inode->i_mutex);
1676	truncated_clusters = osb->truncated_clusters;
1677	mutex_unlock(&osb->osb_tl_inode->i_mutex);
1678
1679	/*
1680	 * Check whether we can succeed in allocating if we free
1681	 * the truncate log.
1682	 */
1683	if (truncated_clusters < needed)
1684		goto out;
1685
1686	ret = ocfs2_flush_truncate_log(osb);
1687	if (ret) {
1688		mlog_errno(ret);
1689		goto out;
1690	}
1691
1692	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1693		jbd2_log_wait_commit(osb->journal->j_journal, target);
1694		ret = 1;
1695	}
1696out:
1697	return ret;
1698}
1699
1700int ocfs2_write_begin_nolock(struct file *filp,
1701			     struct address_space *mapping,
1702			     loff_t pos, unsigned len, unsigned flags,
1703			     struct page **pagep, void **fsdata,
1704			     struct buffer_head *di_bh, struct page *mmap_page)
1705{
1706	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1707	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1708	struct ocfs2_write_ctxt *wc;
1709	struct inode *inode = mapping->host;
1710	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1711	struct ocfs2_dinode *di;
1712	struct ocfs2_alloc_context *data_ac = NULL;
1713	struct ocfs2_alloc_context *meta_ac = NULL;
1714	handle_t *handle;
1715	struct ocfs2_extent_tree et;
1716	int try_free = 1, ret1;
1717
1718try_again:
1719	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1720	if (ret) {
1721		mlog_errno(ret);
1722		return ret;
1723	}
1724
1725	if (ocfs2_supports_inline_data(osb)) {
1726		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1727						     mmap_page, wc);
1728		if (ret == 1) {
1729			ret = 0;
1730			goto success;
1731		}
1732		if (ret < 0) {
1733			mlog_errno(ret);
1734			goto out;
1735		}
1736	}
1737
1738	if (ocfs2_sparse_alloc(osb))
1739		ret = ocfs2_zero_tail(inode, di_bh, pos);
1740	else
1741		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1742						   wc);
1743	if (ret) {
1744		mlog_errno(ret);
1745		goto out;
1746	}
1747
1748	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1749	if (ret < 0) {
1750		mlog_errno(ret);
1751		goto out;
1752	} else if (ret == 1) {
1753		clusters_need = wc->w_clen;
1754		ret = ocfs2_refcount_cow(inode, di_bh,
1755					 wc->w_cpos, wc->w_clen, UINT_MAX);
1756		if (ret) {
1757			mlog_errno(ret);
1758			goto out;
1759		}
1760	}
1761
1762	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1763					&extents_to_split);
1764	if (ret) {
1765		mlog_errno(ret);
1766		goto out;
1767	}
1768	clusters_need += clusters_to_alloc;
1769
1770	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1771
1772	trace_ocfs2_write_begin_nolock(
1773			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1774			(long long)i_size_read(inode),
1775			le32_to_cpu(di->i_clusters),
1776			pos, len, flags, mmap_page,
1777			clusters_to_alloc, extents_to_split);
1778
1779	/*
1780	 * We set w_target_from, w_target_to here so that
1781	 * ocfs2_write_end() knows which range in the target page to
1782	 * write out. An allocation requires that we write the entire
1783	 * cluster range.
1784	 */
1785	if (clusters_to_alloc || extents_to_split) {
1786		/*
1787		 * XXX: We are stretching the limits of
1788		 * ocfs2_lock_allocators(). It greatly over-estimates
1789		 * the work to be done.
1790		 */
1791		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1792					      wc->w_di_bh);
1793		ret = ocfs2_lock_allocators(inode, &et,
1794					    clusters_to_alloc, extents_to_split,
1795					    &data_ac, &meta_ac);
1796		if (ret) {
1797			mlog_errno(ret);
1798			goto out;
1799		}
1800
1801		if (data_ac)
1802			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1803
1804		credits = ocfs2_calc_extend_credits(inode->i_sb,
1805						    &di->id2.i_list,
1806						    clusters_to_alloc);
1807
1808	}
1809
1810	/*
1811	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1812	 * and non-sparse clusters we just extended.  For non-sparse writes,
1813	 * we know zeros will only be needed in the first and/or last cluster.
1814	 */
1815	if (clusters_to_alloc || extents_to_split ||
1816	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1817			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1818		cluster_of_pages = 1;
1819	else
1820		cluster_of_pages = 0;
1821
1822	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1823
1824	handle = ocfs2_start_trans(osb, credits);
1825	if (IS_ERR(handle)) {
1826		ret = PTR_ERR(handle);
1827		mlog_errno(ret);
1828		goto out;
1829	}
1830
1831	wc->w_handle = handle;
1832
1833	if (clusters_to_alloc) {
1834		ret = dquot_alloc_space_nodirty(inode,
1835			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1836		if (ret)
1837			goto out_commit;
1838	}
1839	/*
1840	 * We don't want this to fail in ocfs2_write_end(), so do it
1841	 * here.
1842	 */
1843	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1844				      OCFS2_JOURNAL_ACCESS_WRITE);
1845	if (ret) {
1846		mlog_errno(ret);
1847		goto out_quota;
1848	}
1849
1850	/*
1851	 * Fill our page array first. That way we've grabbed enough so
1852	 * that we can zero and flush if we error after adding the
1853	 * extent.
1854	 */
1855	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1856					 cluster_of_pages, mmap_page);
1857	if (ret && ret != -EAGAIN) {
1858		mlog_errno(ret);
1859		goto out_quota;
1860	}
1861
1862	/*
1863	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1864	 * the target page. In this case, we exit with no error and no target
1865	 * page. This will trigger the caller, page_mkwrite(), to re-try
1866	 * the operation.
1867	 */
1868	if (ret == -EAGAIN) {
1869		BUG_ON(wc->w_target_page);
1870		ret = 0;
1871		goto out_quota;
1872	}
1873
1874	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1875					  len);
1876	if (ret) {
1877		mlog_errno(ret);
1878		goto out_quota;
1879	}
1880
1881	if (data_ac)
1882		ocfs2_free_alloc_context(data_ac);
1883	if (meta_ac)
1884		ocfs2_free_alloc_context(meta_ac);
1885
1886success:
1887	*pagep = wc->w_target_page;
1888	*fsdata = wc;
1889	return 0;
1890out_quota:
1891	if (clusters_to_alloc)
1892		dquot_free_space(inode,
1893			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1894out_commit:
1895	ocfs2_commit_trans(osb, handle);
1896
1897out:
1898	ocfs2_free_write_ctxt(wc);
1899
1900	if (data_ac)
1901		ocfs2_free_alloc_context(data_ac);
1902	if (meta_ac)
1903		ocfs2_free_alloc_context(meta_ac);
1904
1905	if (ret == -ENOSPC && try_free) {
1906		/*
1907		 * Try to free some truncate log so that we can have enough
1908		 * clusters to allocate.
1909		 */
1910		try_free = 0;
1911
1912		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1913		if (ret1 == 1)
1914			goto try_again;
1915
1916		if (ret1 < 0)
1917			mlog_errno(ret1);
1918	}
1919
1920	return ret;
1921}
1922
1923static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1924			     loff_t pos, unsigned len, unsigned flags,
1925			     struct page **pagep, void **fsdata)
1926{
1927	int ret;
1928	struct buffer_head *di_bh = NULL;
1929	struct inode *inode = mapping->host;
1930
1931	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1932	if (ret) {
1933		mlog_errno(ret);
1934		return ret;
1935	}
1936
1937	/*
1938	 * Take alloc sem here to prevent concurrent lookups. That way
1939	 * the mapping, zeroing and tree manipulation within
1940	 * ocfs2_write() will be safe against ->readpage(). This
1941	 * should also serve to lock out allocation from a shared
1942	 * writeable region.
1943	 */
1944	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1945
1946	ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1947				       fsdata, di_bh, NULL);
1948	if (ret) {
1949		mlog_errno(ret);
1950		goto out_fail;
1951	}
1952
1953	brelse(di_bh);
1954
1955	return 0;
1956
1957out_fail:
1958	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1959
1960	brelse(di_bh);
1961	ocfs2_inode_unlock(inode, 1);
1962
1963	return ret;
1964}
1965
1966static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1967				   unsigned len, unsigned *copied,
1968				   struct ocfs2_dinode *di,
1969				   struct ocfs2_write_ctxt *wc)
1970{
1971	void *kaddr;
1972
1973	if (unlikely(*copied < len)) {
1974		if (!PageUptodate(wc->w_target_page)) {
1975			*copied = 0;
1976			return;
1977		}
1978	}
1979
1980	kaddr = kmap_atomic(wc->w_target_page);
1981	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1982	kunmap_atomic(kaddr);
1983
1984	trace_ocfs2_write_end_inline(
1985	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1986	     (unsigned long long)pos, *copied,
1987	     le16_to_cpu(di->id2.i_data.id_count),
1988	     le16_to_cpu(di->i_dyn_features));
1989}
1990
1991int ocfs2_write_end_nolock(struct address_space *mapping,
1992			   loff_t pos, unsigned len, unsigned copied,
1993			   struct page *page, void *fsdata)
1994{
1995	int i;
1996	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1997	struct inode *inode = mapping->host;
1998	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1999	struct ocfs2_write_ctxt *wc = fsdata;
2000	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2001	handle_t *handle = wc->w_handle;
2002	struct page *tmppage;
2003
2004	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2005		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2006		goto out_write_size;
2007	}
2008
2009	if (unlikely(copied < len)) {
2010		if (!PageUptodate(wc->w_target_page))
2011			copied = 0;
2012
2013		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2014				       start+len);
2015	}
2016	flush_dcache_page(wc->w_target_page);
2017
2018	for(i = 0; i < wc->w_num_pages; i++) {
2019		tmppage = wc->w_pages[i];
2020
2021		if (tmppage == wc->w_target_page) {
2022			from = wc->w_target_from;
2023			to = wc->w_target_to;
2024
2025			BUG_ON(from > PAGE_CACHE_SIZE ||
2026			       to > PAGE_CACHE_SIZE ||
2027			       to < from);
2028		} else {
2029			/*
2030			 * Pages adjacent to the target (if any) imply
2031			 * a hole-filling write in which case we want
2032			 * to flush their entire range.
2033			 */
2034			from = 0;
2035			to = PAGE_CACHE_SIZE;
2036		}
2037
2038		if (page_has_buffers(tmppage)) {
2039			if (ocfs2_should_order_data(inode))
2040				ocfs2_jbd2_file_inode(wc->w_handle, inode);
2041			block_commit_write(tmppage, from, to);
2042		}
2043	}
2044
2045out_write_size:
2046	pos += copied;
2047	if (pos > i_size_read(inode)) {
2048		i_size_write(inode, pos);
2049		mark_inode_dirty(inode);
2050	}
2051	inode->i_blocks = ocfs2_inode_sector_count(inode);
2052	di->i_size = cpu_to_le64((u64)i_size_read(inode));
2053	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2054	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2055	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2056	ocfs2_journal_dirty(handle, wc->w_di_bh);
2057
2058	ocfs2_commit_trans(osb, handle);
2059
2060	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2061
2062	ocfs2_free_write_ctxt(wc);
2063
2064	return copied;
2065}
2066
2067static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2068			   loff_t pos, unsigned len, unsigned copied,
2069			   struct page *page, void *fsdata)
2070{
2071	int ret;
2072	struct inode *inode = mapping->host;
2073
2074	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2075
2076	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2077	ocfs2_inode_unlock(inode, 1);
2078
2079	return ret;
2080}
2081
2082const struct address_space_operations ocfs2_aops = {
2083	.readpage		= ocfs2_readpage,
2084	.readpages		= ocfs2_readpages,
2085	.writepage		= ocfs2_writepage,
2086	.write_begin		= ocfs2_write_begin,
2087	.write_end		= ocfs2_write_end,
2088	.bmap			= ocfs2_bmap,
2089	.direct_IO		= ocfs2_direct_IO,
2090	.invalidatepage		= ocfs2_invalidatepage,
2091	.releasepage		= ocfs2_releasepage,
2092	.migratepage		= buffer_migrate_page,
2093	.is_partially_uptodate	= block_is_partially_uptodate,
2094	.error_remove_page	= generic_error_remove_page,
2095};
2096