file.c revision 027445c37282bc1ed26add45e573ad2d3e4860a5
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5#include <linux/config.h>
6#include <linux/time.h>
7#include <linux/reiserfs_fs.h>
8#include <linux/reiserfs_acl.h>
9#include <linux/reiserfs_xattr.h>
10#include <linux/smp_lock.h>
11#include <asm/uaccess.h>
12#include <linux/pagemap.h>
13#include <linux/swap.h>
14#include <linux/writeback.h>
15#include <linux/blkdev.h>
16#include <linux/buffer_head.h>
17#include <linux/quotaops.h>
18
19/*
20** We pack the tails of files on file close, not at the time they are written.
21** This implies an unnecessary copy of the tail and an unnecessary indirect item
22** insertion/balancing, for files that are written in one write.
23** It avoids unnecessary tail packings (balances) for files that are written in
24** multiple writes and are small enough to have tails.
25**
26** file_release is called by the VFS layer when the file is closed.  If
27** this is the last open file descriptor, and the file
28** small enough to have a tail, and the tail is currently in an
29** unformatted node, the tail is converted back into a direct item.
30**
31** We use reiserfs_truncate_file to pack the tail, since it already has
32** all the conditions coded.
33*/
34static int reiserfs_file_release(struct inode *inode, struct file *filp)
35{
36
37	struct reiserfs_transaction_handle th;
38	int err;
39	int jbegin_failure = 0;
40
41	if (!S_ISREG(inode->i_mode))
42		BUG();
43
44	/* fast out for when nothing needs to be done */
45	if ((atomic_read(&inode->i_count) > 1 ||
46	     !(REISERFS_I(inode)->i_flags & i_pack_on_close_mask) ||
47	     !tail_has_to_be_packed(inode)) &&
48	    REISERFS_I(inode)->i_prealloc_count <= 0) {
49		return 0;
50	}
51
52	mutex_lock(&inode->i_mutex);
53	reiserfs_write_lock(inode->i_sb);
54	/* freeing preallocation only involves relogging blocks that
55	 * are already in the current transaction.  preallocation gets
56	 * freed at the end of each transaction, so it is impossible for
57	 * us to log any additional blocks (including quota blocks)
58	 */
59	err = journal_begin(&th, inode->i_sb, 1);
60	if (err) {
61		/* uh oh, we can't allow the inode to go away while there
62		 * is still preallocation blocks pending.  Try to join the
63		 * aborted transaction
64		 */
65		jbegin_failure = err;
66		err = journal_join_abort(&th, inode->i_sb, 1);
67
68		if (err) {
69			/* hmpf, our choices here aren't good.  We can pin the inode
70			 * which will disallow unmount from every happening, we can
71			 * do nothing, which will corrupt random memory on unmount,
72			 * or we can forcibly remove the file from the preallocation
73			 * list, which will leak blocks on disk.  Lets pin the inode
74			 * and let the admin know what is going on.
75			 */
76			igrab(inode);
77			reiserfs_warning(inode->i_sb,
78					 "pinning inode %lu because the "
79					 "preallocation can't be freed");
80			goto out;
81		}
82	}
83	reiserfs_update_inode_transaction(inode);
84
85#ifdef REISERFS_PREALLOCATE
86	reiserfs_discard_prealloc(&th, inode);
87#endif
88	err = journal_end(&th, inode->i_sb, 1);
89
90	/* copy back the error code from journal_begin */
91	if (!err)
92		err = jbegin_failure;
93
94	if (!err && atomic_read(&inode->i_count) <= 1 &&
95	    (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) &&
96	    tail_has_to_be_packed(inode)) {
97		/* if regular file is released by last holder and it has been
98		   appended (we append by unformatted node only) or its direct
99		   item(s) had to be converted, then it may have to be
100		   indirect2direct converted */
101		err = reiserfs_truncate_file(inode, 0);
102	}
103      out:
104	mutex_unlock(&inode->i_mutex);
105	reiserfs_write_unlock(inode->i_sb);
106	return err;
107}
108
109static void reiserfs_vfs_truncate_file(struct inode *inode)
110{
111	reiserfs_truncate_file(inode, 1);
112}
113
114/* Sync a reiserfs file. */
115
116/*
117 * FIXME: sync_mapping_buffers() never has anything to sync.  Can
118 * be removed...
119 */
120
121static int reiserfs_sync_file(struct file *p_s_filp,
122			      struct dentry *p_s_dentry, int datasync)
123{
124	struct inode *p_s_inode = p_s_dentry->d_inode;
125	int n_err;
126	int barrier_done;
127
128	if (!S_ISREG(p_s_inode->i_mode))
129		BUG();
130	n_err = sync_mapping_buffers(p_s_inode->i_mapping);
131	reiserfs_write_lock(p_s_inode->i_sb);
132	barrier_done = reiserfs_commit_for_inode(p_s_inode);
133	reiserfs_write_unlock(p_s_inode->i_sb);
134	if (barrier_done != 1 && reiserfs_barrier_flush(p_s_inode->i_sb))
135		blkdev_issue_flush(p_s_inode->i_sb->s_bdev, NULL);
136	if (barrier_done < 0)
137		return barrier_done;
138	return (n_err < 0) ? -EIO : 0;
139}
140
141/* I really do not want to play with memory shortage right now, so
142   to simplify the code, we are not going to write more than this much pages at
143   a time. This still should considerably improve performance compared to 4k
144   at a time case. This is 32 pages of 4k size. */
145#define REISERFS_WRITE_PAGES_AT_A_TIME (128 * 1024) / PAGE_CACHE_SIZE
146
147/* Allocates blocks for a file to fulfil write request.
148   Maps all unmapped but prepared pages from the list.
149   Updates metadata with newly allocated blocknumbers as needed */
150static int reiserfs_allocate_blocks_for_region(struct reiserfs_transaction_handle *th, struct inode *inode,	/* Inode we work with */
151					       loff_t pos,	/* Writing position */
152					       int num_pages,	/* number of pages write going
153								   to touch */
154					       int write_bytes,	/* amount of bytes to write */
155					       struct page **prepared_pages,	/* array of
156										   prepared pages
157										 */
158					       int blocks_to_allocate	/* Amount of blocks we
159									   need to allocate to
160									   fit the data into file
161									 */
162    )
163{
164	struct cpu_key key;	// cpu key of item that we are going to deal with
165	struct item_head *ih;	// pointer to item head that we are going to deal with
166	struct buffer_head *bh;	// Buffer head that contains items that we are going to deal with
167	__le32 *item;		// pointer to item we are going to deal with
168	INITIALIZE_PATH(path);	// path to item, that we are going to deal with.
169	b_blocknr_t *allocated_blocks;	// Pointer to a place where allocated blocknumbers would be stored.
170	reiserfs_blocknr_hint_t hint;	// hint structure for block allocator.
171	size_t res;		// return value of various functions that we call.
172	int curr_block;		// current block used to keep track of unmapped blocks.
173	int i;			// loop counter
174	int itempos;		// position in item
175	unsigned int from = (pos & (PAGE_CACHE_SIZE - 1));	// writing position in
176	// first page
177	unsigned int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1;	/* last modified byte offset in last page */
178	__u64 hole_size;	// amount of blocks for a file hole, if it needed to be created.
179	int modifying_this_item = 0;	// Flag for items traversal code to keep track
180	// of the fact that we already prepared
181	// current block for journal
182	int will_prealloc = 0;
183	RFALSE(!blocks_to_allocate,
184	       "green-9004: tried to allocate zero blocks?");
185
186	/* only preallocate if this is a small write */
187	if (REISERFS_I(inode)->i_prealloc_count ||
188	    (!(write_bytes & (inode->i_sb->s_blocksize - 1)) &&
189	     blocks_to_allocate <
190	     REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize))
191		will_prealloc =
192		    REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize;
193
194	allocated_blocks = kmalloc((blocks_to_allocate + will_prealloc) *
195				   sizeof(b_blocknr_t), GFP_NOFS);
196	if (!allocated_blocks)
197		return -ENOMEM;
198
199	/* First we compose a key to point at the writing position, we want to do
200	   that outside of any locking region. */
201	make_cpu_key(&key, inode, pos + 1, TYPE_ANY, 3 /*key length */ );
202
203	/* If we came here, it means we absolutely need to open a transaction,
204	   since we need to allocate some blocks */
205	reiserfs_write_lock(inode->i_sb);	// Journaling stuff and we need that.
206	res = journal_begin(th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 3 + 1 + 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb));	// Wish I know if this number enough
207	if (res)
208		goto error_exit;
209	reiserfs_update_inode_transaction(inode);
210
211	/* Look for the in-tree position of our write, need path for block allocator */
212	res = search_for_position_by_key(inode->i_sb, &key, &path);
213	if (res == IO_ERROR) {
214		res = -EIO;
215		goto error_exit;
216	}
217
218	/* Allocate blocks */
219	/* First fill in "hint" structure for block allocator */
220	hint.th = th;		// transaction handle.
221	hint.path = &path;	// Path, so that block allocator can determine packing locality or whatever it needs to determine.
222	hint.inode = inode;	// Inode is needed by block allocator too.
223	hint.search_start = 0;	// We have no hint on where to search free blocks for block allocator.
224	hint.key = key.on_disk_key;	// on disk key of file.
225	hint.block = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);	// Number of disk blocks this file occupies already.
226	hint.formatted_node = 0;	// We are allocating blocks for unformatted node.
227	hint.preallocate = will_prealloc;
228
229	/* Call block allocator to allocate blocks */
230	res =
231	    reiserfs_allocate_blocknrs(&hint, allocated_blocks,
232				       blocks_to_allocate, blocks_to_allocate);
233	if (res != CARRY_ON) {
234		if (res == NO_DISK_SPACE) {
235			/* We flush the transaction in case of no space. This way some
236			   blocks might become free */
237			SB_JOURNAL(inode->i_sb)->j_must_wait = 1;
238			res = restart_transaction(th, inode, &path);
239			if (res)
240				goto error_exit;
241
242			/* We might have scheduled, so search again */
243			res =
244			    search_for_position_by_key(inode->i_sb, &key,
245						       &path);
246			if (res == IO_ERROR) {
247				res = -EIO;
248				goto error_exit;
249			}
250
251			/* update changed info for hint structure. */
252			res =
253			    reiserfs_allocate_blocknrs(&hint, allocated_blocks,
254						       blocks_to_allocate,
255						       blocks_to_allocate);
256			if (res != CARRY_ON) {
257				res = res == QUOTA_EXCEEDED ? -EDQUOT : -ENOSPC;
258				pathrelse(&path);
259				goto error_exit;
260			}
261		} else {
262			res = res == QUOTA_EXCEEDED ? -EDQUOT : -ENOSPC;
263			pathrelse(&path);
264			goto error_exit;
265		}
266	}
267#ifdef __BIG_ENDIAN
268	// Too bad, I have not found any way to convert a given region from
269	// cpu format to little endian format
270	{
271		int i;
272		for (i = 0; i < blocks_to_allocate; i++)
273			allocated_blocks[i] = cpu_to_le32(allocated_blocks[i]);
274	}
275#endif
276
277	/* Blocks allocating well might have scheduled and tree might have changed,
278	   let's search the tree again */
279	/* find where in the tree our write should go */
280	res = search_for_position_by_key(inode->i_sb, &key, &path);
281	if (res == IO_ERROR) {
282		res = -EIO;
283		goto error_exit_free_blocks;
284	}
285
286	bh = get_last_bh(&path);	// Get a bufferhead for last element in path.
287	ih = get_ih(&path);	// Get a pointer to last item head in path.
288	item = get_item(&path);	// Get a pointer to last item in path
289
290	/* Let's see what we have found */
291	if (res != POSITION_FOUND) {	/* position not found, this means that we
292					   might need to append file with holes
293					   first */
294		// Since we are writing past the file's end, we need to find out if
295		// there is a hole that needs to be inserted before our writing
296		// position, and how many blocks it is going to cover (we need to
297		//  populate pointers to file blocks representing the hole with zeros)
298
299		{
300			int item_offset = 1;
301			/*
302			 * if ih is stat data, its offset is 0 and we don't want to
303			 * add 1 to pos in the hole_size calculation
304			 */
305			if (is_statdata_le_ih(ih))
306				item_offset = 0;
307			hole_size = (pos + item_offset -
308				     (le_key_k_offset
309				      (get_inode_item_key_version(inode),
310				       &(ih->ih_key)) + op_bytes_number(ih,
311									inode->
312									i_sb->
313									s_blocksize)))
314			    >> inode->i_sb->s_blocksize_bits;
315		}
316
317		if (hole_size > 0) {
318			int to_paste = min_t(__u64, hole_size, MAX_ITEM_LEN(inode->i_sb->s_blocksize) / UNFM_P_SIZE);	// How much data to insert first time.
319			/* area filled with zeroes, to supply as list of zero blocknumbers
320			   We allocate it outside of loop just in case loop would spin for
321			   several iterations. */
322			char *zeros = kmalloc(to_paste * UNFM_P_SIZE, GFP_ATOMIC);	// We cannot insert more than MAX_ITEM_LEN bytes anyway.
323			if (!zeros) {
324				res = -ENOMEM;
325				goto error_exit_free_blocks;
326			}
327			memset(zeros, 0, to_paste * UNFM_P_SIZE);
328			do {
329				to_paste =
330				    min_t(__u64, hole_size,
331					  MAX_ITEM_LEN(inode->i_sb->
332						       s_blocksize) /
333					  UNFM_P_SIZE);
334				if (is_indirect_le_ih(ih)) {
335					/* Ok, there is existing indirect item already. Need to append it */
336					/* Calculate position past inserted item */
337					make_cpu_key(&key, inode,
338						     le_key_k_offset
339						     (get_inode_item_key_version
340						      (inode),
341						      &(ih->ih_key)) +
342						     op_bytes_number(ih,
343								     inode->
344								     i_sb->
345								     s_blocksize),
346						     TYPE_INDIRECT, 3);
347					res =
348					    reiserfs_paste_into_item(th, &path,
349								     &key,
350								     inode,
351								     (char *)
352								     zeros,
353								     UNFM_P_SIZE
354								     *
355								     to_paste);
356					if (res) {
357						kfree(zeros);
358						goto error_exit_free_blocks;
359					}
360				} else if (is_statdata_le_ih(ih)) {
361					/* No existing item, create it */
362					/* item head for new item */
363					struct item_head ins_ih;
364
365					/* create a key for our new item */
366					make_cpu_key(&key, inode, 1,
367						     TYPE_INDIRECT, 3);
368
369					/* Create new item head for our new item */
370					make_le_item_head(&ins_ih, &key,
371							  key.version, 1,
372							  TYPE_INDIRECT,
373							  to_paste *
374							  UNFM_P_SIZE,
375							  0 /* free space */ );
376
377					/* Find where such item should live in the tree */
378					res =
379					    search_item(inode->i_sb, &key,
380							&path);
381					if (res != ITEM_NOT_FOUND) {
382						/* item should not exist, otherwise we have error */
383						if (res != -ENOSPC) {
384							reiserfs_warning(inode->
385									 i_sb,
386									 "green-9008: search_by_key (%K) returned %d",
387									 &key,
388									 res);
389						}
390						res = -EIO;
391						kfree(zeros);
392						goto error_exit_free_blocks;
393					}
394					res =
395					    reiserfs_insert_item(th, &path,
396								 &key, &ins_ih,
397								 inode,
398								 (char *)zeros);
399				} else {
400					reiserfs_panic(inode->i_sb,
401						       "green-9011: Unexpected key type %K\n",
402						       &key);
403				}
404				if (res) {
405					kfree(zeros);
406					goto error_exit_free_blocks;
407				}
408				/* Now we want to check if transaction is too full, and if it is
409				   we restart it. This will also free the path. */
410				if (journal_transaction_should_end
411				    (th, th->t_blocks_allocated)) {
412					res =
413					    restart_transaction(th, inode,
414								&path);
415					if (res) {
416						pathrelse(&path);
417						kfree(zeros);
418						goto error_exit;
419					}
420				}
421
422				/* Well, need to recalculate path and stuff */
423				set_cpu_key_k_offset(&key,
424						     cpu_key_k_offset(&key) +
425						     (to_paste << inode->
426						      i_blkbits));
427				res =
428				    search_for_position_by_key(inode->i_sb,
429							       &key, &path);
430				if (res == IO_ERROR) {
431					res = -EIO;
432					kfree(zeros);
433					goto error_exit_free_blocks;
434				}
435				bh = get_last_bh(&path);
436				ih = get_ih(&path);
437				item = get_item(&path);
438				hole_size -= to_paste;
439			} while (hole_size);
440			kfree(zeros);
441		}
442	}
443	// Go through existing indirect items first
444	// replace all zeroes with blocknumbers from list
445	// Note that if no corresponding item was found, by previous search,
446	// it means there are no existing in-tree representation for file area
447	// we are going to overwrite, so there is nothing to scan through for holes.
448	for (curr_block = 0, itempos = path.pos_in_item;
449	     curr_block < blocks_to_allocate && res == POSITION_FOUND;) {
450	      retry:
451
452		if (itempos >= ih_item_len(ih) / UNFM_P_SIZE) {
453			/* We run out of data in this indirect item, let's look for another
454			   one. */
455			/* First if we are already modifying current item, log it */
456			if (modifying_this_item) {
457				journal_mark_dirty(th, inode->i_sb, bh);
458				modifying_this_item = 0;
459			}
460			/* Then set the key to look for a new indirect item (offset of old
461			   item is added to old item length */
462			set_cpu_key_k_offset(&key,
463					     le_key_k_offset
464					     (get_inode_item_key_version(inode),
465					      &(ih->ih_key)) +
466					     op_bytes_number(ih,
467							     inode->i_sb->
468							     s_blocksize));
469			/* Search ofor position of new key in the tree. */
470			res =
471			    search_for_position_by_key(inode->i_sb, &key,
472						       &path);
473			if (res == IO_ERROR) {
474				res = -EIO;
475				goto error_exit_free_blocks;
476			}
477			bh = get_last_bh(&path);
478			ih = get_ih(&path);
479			item = get_item(&path);
480			itempos = path.pos_in_item;
481			continue;	// loop to check all kinds of conditions and so on.
482		}
483		/* Ok, we have correct position in item now, so let's see if it is
484		   representing file hole (blocknumber is zero) and fill it if needed */
485		if (!item[itempos]) {
486			/* Ok, a hole. Now we need to check if we already prepared this
487			   block to be journaled */
488			while (!modifying_this_item) {	// loop until succeed
489				/* Well, this item is not journaled yet, so we must prepare
490				   it for journal first, before we can change it */
491				struct item_head tmp_ih;	// We copy item head of found item,
492				// here to detect if fs changed under
493				// us while we were preparing for
494				// journal.
495				int fs_gen;	// We store fs generation here to find if someone
496				// changes fs under our feet
497
498				copy_item_head(&tmp_ih, ih);	// Remember itemhead
499				fs_gen = get_generation(inode->i_sb);	// remember fs generation
500				reiserfs_prepare_for_journal(inode->i_sb, bh, 1);	// Prepare a buffer within which indirect item is stored for changing.
501				if (fs_changed(fs_gen, inode->i_sb)
502				    && item_moved(&tmp_ih, &path)) {
503					// Sigh, fs was changed under us, we need to look for new
504					// location of item we are working with
505
506					/* unmark prepaerd area as journaled and search for it's
507					   new position */
508					reiserfs_restore_prepared_buffer(inode->
509									 i_sb,
510									 bh);
511					res =
512					    search_for_position_by_key(inode->
513								       i_sb,
514								       &key,
515								       &path);
516					if (res == IO_ERROR) {
517						res = -EIO;
518						goto error_exit_free_blocks;
519					}
520					bh = get_last_bh(&path);
521					ih = get_ih(&path);
522					item = get_item(&path);
523					itempos = path.pos_in_item;
524					goto retry;
525				}
526				modifying_this_item = 1;
527			}
528			item[itempos] = allocated_blocks[curr_block];	// Assign new block
529			curr_block++;
530		}
531		itempos++;
532	}
533
534	if (modifying_this_item) {	// We need to log last-accessed block, if it
535		// was modified, but not logged yet.
536		journal_mark_dirty(th, inode->i_sb, bh);
537	}
538
539	if (curr_block < blocks_to_allocate) {
540		// Oh, well need to append to indirect item, or to create indirect item
541		// if there weren't any
542		if (is_indirect_le_ih(ih)) {
543			// Existing indirect item - append. First calculate key for append
544			// position. We do not need to recalculate path as it should
545			// already point to correct place.
546			make_cpu_key(&key, inode,
547				     le_key_k_offset(get_inode_item_key_version
548						     (inode),
549						     &(ih->ih_key)) +
550				     op_bytes_number(ih,
551						     inode->i_sb->s_blocksize),
552				     TYPE_INDIRECT, 3);
553			res =
554			    reiserfs_paste_into_item(th, &path, &key, inode,
555						     (char *)(allocated_blocks +
556							      curr_block),
557						     UNFM_P_SIZE *
558						     (blocks_to_allocate -
559						      curr_block));
560			if (res) {
561				goto error_exit_free_blocks;
562			}
563		} else if (is_statdata_le_ih(ih)) {
564			// Last found item was statdata. That means we need to create indirect item.
565			struct item_head ins_ih;	/* itemhead for new item */
566
567			/* create a key for our new item */
568			make_cpu_key(&key, inode, 1, TYPE_INDIRECT, 3);	// Position one,
569			// because that's
570			// where first
571			// indirect item
572			// begins
573			/* Create new item head for our new item */
574			make_le_item_head(&ins_ih, &key, key.version, 1,
575					  TYPE_INDIRECT,
576					  (blocks_to_allocate -
577					   curr_block) * UNFM_P_SIZE,
578					  0 /* free space */ );
579			/* Find where such item should live in the tree */
580			res = search_item(inode->i_sb, &key, &path);
581			if (res != ITEM_NOT_FOUND) {
582				/* Well, if we have found such item already, or some error
583				   occured, we need to warn user and return error */
584				if (res != -ENOSPC) {
585					reiserfs_warning(inode->i_sb,
586							 "green-9009: search_by_key (%K) "
587							 "returned %d", &key,
588							 res);
589				}
590				res = -EIO;
591				goto error_exit_free_blocks;
592			}
593			/* Insert item into the tree with the data as its body */
594			res =
595			    reiserfs_insert_item(th, &path, &key, &ins_ih,
596						 inode,
597						 (char *)(allocated_blocks +
598							  curr_block));
599		} else {
600			reiserfs_panic(inode->i_sb,
601				       "green-9010: unexpected item type for key %K\n",
602				       &key);
603		}
604	}
605	// the caller is responsible for closing the transaction
606	// unless we return an error, they are also responsible for logging
607	// the inode.
608	//
609	pathrelse(&path);
610	/*
611	 * cleanup prellocation from previous writes
612	 * if this is a partial block write
613	 */
614	if (write_bytes & (inode->i_sb->s_blocksize - 1))
615		reiserfs_discard_prealloc(th, inode);
616	reiserfs_write_unlock(inode->i_sb);
617
618	// go through all the pages/buffers and map the buffers to newly allocated
619	// blocks (so that system knows where to write these pages later).
620	curr_block = 0;
621	for (i = 0; i < num_pages; i++) {
622		struct page *page = prepared_pages[i];	//current page
623		struct buffer_head *head = page_buffers(page);	// first buffer for a page
624		int block_start, block_end;	// in-page offsets for buffers.
625
626		if (!page_buffers(page))
627			reiserfs_panic(inode->i_sb,
628				       "green-9005: No buffers for prepared page???");
629
630		/* For each buffer in page */
631		for (bh = head, block_start = 0; bh != head || !block_start;
632		     block_start = block_end, bh = bh->b_this_page) {
633			if (!bh)
634				reiserfs_panic(inode->i_sb,
635					       "green-9006: Allocated but absent buffer for a page?");
636			block_end = block_start + inode->i_sb->s_blocksize;
637			if (i == 0 && block_end <= from)
638				/* if this buffer is before requested data to map, skip it */
639				continue;
640			if (i == num_pages - 1 && block_start >= to)
641				/* If this buffer is after requested data to map, abort
642				   processing of current page */
643				break;
644
645			if (!buffer_mapped(bh)) {	// Ok, unmapped buffer, need to map it
646				map_bh(bh, inode->i_sb,
647				       le32_to_cpu(allocated_blocks
648						   [curr_block]));
649				curr_block++;
650				set_buffer_new(bh);
651			}
652		}
653	}
654
655	RFALSE(curr_block > blocks_to_allocate,
656	       "green-9007: Used too many blocks? weird");
657
658	kfree(allocated_blocks);
659	return 0;
660
661// Need to deal with transaction here.
662      error_exit_free_blocks:
663	pathrelse(&path);
664	// free blocks
665	for (i = 0; i < blocks_to_allocate; i++)
666		reiserfs_free_block(th, inode, le32_to_cpu(allocated_blocks[i]),
667				    1);
668
669      error_exit:
670	if (th->t_trans_id) {
671		int err;
672		// update any changes we made to blk count
673		mark_inode_dirty(inode);
674		err =
675		    journal_end(th, inode->i_sb,
676				JOURNAL_PER_BALANCE_CNT * 3 + 1 +
677				2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb));
678		if (err)
679			res = err;
680	}
681	reiserfs_write_unlock(inode->i_sb);
682	kfree(allocated_blocks);
683
684	return res;
685}
686
687/* Unlock pages prepared by reiserfs_prepare_file_region_for_write */
688static void reiserfs_unprepare_pages(struct page **prepared_pages,	/* list of locked pages */
689				     size_t num_pages /* amount of pages */ )
690{
691	int i;			// loop counter
692
693	for (i = 0; i < num_pages; i++) {
694		struct page *page = prepared_pages[i];
695
696		try_to_free_buffers(page);
697		unlock_page(page);
698		page_cache_release(page);
699	}
700}
701
702/* This function will copy data from userspace to specified pages within
703   supplied byte range */
704static int reiserfs_copy_from_user_to_file_region(loff_t pos,	/* In-file position */
705						  int num_pages,	/* Number of pages affected */
706						  int write_bytes,	/* Amount of bytes to write */
707						  struct page **prepared_pages,	/* pointer to
708										   array to
709										   prepared pages
710										 */
711						  const char __user * buf	/* Pointer to user-supplied
712										   data */
713    )
714{
715	long page_fault = 0;	// status of copy_from_user.
716	int i;			// loop counter.
717	int offset;		// offset in page
718
719	for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages;
720	     i++, offset = 0) {
721		size_t count = min_t(size_t, PAGE_CACHE_SIZE - offset, write_bytes);	// How much of bytes to write to this page
722		struct page *page = prepared_pages[i];	// Current page we process.
723
724		fault_in_pages_readable(buf, count);
725
726		/* Copy data from userspace to the current page */
727		kmap(page);
728		page_fault = __copy_from_user(page_address(page) + offset, buf, count);	// Copy the data.
729		/* Flush processor's dcache for this page */
730		flush_dcache_page(page);
731		kunmap(page);
732		buf += count;
733		write_bytes -= count;
734
735		if (page_fault)
736			break;	// Was there a fault? abort.
737	}
738
739	return page_fault ? -EFAULT : 0;
740}
741
742/* taken fs/buffer.c:__block_commit_write */
743int reiserfs_commit_page(struct inode *inode, struct page *page,
744			 unsigned from, unsigned to)
745{
746	unsigned block_start, block_end;
747	int partial = 0;
748	unsigned blocksize;
749	struct buffer_head *bh, *head;
750	unsigned long i_size_index = inode->i_size >> PAGE_CACHE_SHIFT;
751	int new;
752	int logit = reiserfs_file_data_log(inode);
753	struct super_block *s = inode->i_sb;
754	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
755	struct reiserfs_transaction_handle th;
756	int ret = 0;
757
758	th.t_trans_id = 0;
759	blocksize = 1 << inode->i_blkbits;
760
761	if (logit) {
762		reiserfs_write_lock(s);
763		ret = journal_begin(&th, s, bh_per_page + 1);
764		if (ret)
765			goto drop_write_lock;
766		reiserfs_update_inode_transaction(inode);
767	}
768	for (bh = head = page_buffers(page), block_start = 0;
769	     bh != head || !block_start;
770	     block_start = block_end, bh = bh->b_this_page) {
771
772		new = buffer_new(bh);
773		clear_buffer_new(bh);
774		block_end = block_start + blocksize;
775		if (block_end <= from || block_start >= to) {
776			if (!buffer_uptodate(bh))
777				partial = 1;
778		} else {
779			set_buffer_uptodate(bh);
780			if (logit) {
781				reiserfs_prepare_for_journal(s, bh, 1);
782				journal_mark_dirty(&th, s, bh);
783			} else if (!buffer_dirty(bh)) {
784				mark_buffer_dirty(bh);
785				/* do data=ordered on any page past the end
786				 * of file and any buffer marked BH_New.
787				 */
788				if (reiserfs_data_ordered(inode->i_sb) &&
789				    (new || page->index >= i_size_index)) {
790					reiserfs_add_ordered_list(inode, bh);
791				}
792			}
793		}
794	}
795	if (logit) {
796		ret = journal_end(&th, s, bh_per_page + 1);
797	      drop_write_lock:
798		reiserfs_write_unlock(s);
799	}
800	/*
801	 * If this is a partial write which happened to make all buffers
802	 * uptodate then we can optimize away a bogus readpage() for
803	 * the next read(). Here we 'discover' whether the page went
804	 * uptodate as a result of this (potentially partial) write.
805	 */
806	if (!partial)
807		SetPageUptodate(page);
808	return ret;
809}
810
811/* Submit pages for write. This was separated from actual file copying
812   because we might want to allocate block numbers in-between.
813   This function assumes that caller will adjust file size to correct value. */
814static int reiserfs_submit_file_region_for_write(struct reiserfs_transaction_handle *th, struct inode *inode, loff_t pos,	/* Writing position offset */
815						 size_t num_pages,	/* Number of pages to write */
816						 size_t write_bytes,	/* number of bytes to write */
817						 struct page **prepared_pages	/* list of pages */
818    )
819{
820	int status;		// return status of block_commit_write.
821	int retval = 0;		// Return value we are going to return.
822	int i;			// loop counter
823	int offset;		// Writing offset in page.
824	int orig_write_bytes = write_bytes;
825	int sd_update = 0;
826
827	for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages;
828	     i++, offset = 0) {
829		int count = min_t(int, PAGE_CACHE_SIZE - offset, write_bytes);	// How much of bytes to write to this page
830		struct page *page = prepared_pages[i];	// Current page we process.
831
832		status =
833		    reiserfs_commit_page(inode, page, offset, offset + count);
834		if (status)
835			retval = status;	// To not overcomplicate matters We are going to
836		// submit all the pages even if there was error.
837		// we only remember error status to report it on
838		// exit.
839		write_bytes -= count;
840	}
841	/* now that we've gotten all the ordered buffers marked dirty,
842	 * we can safely update i_size and close any running transaction
843	 */
844	if (pos + orig_write_bytes > inode->i_size) {
845		inode->i_size = pos + orig_write_bytes;	// Set new size
846		/* If the file have grown so much that tail packing is no
847		 * longer possible, reset "need to pack" flag */
848		if ((have_large_tails(inode->i_sb) &&
849		     inode->i_size > i_block_size(inode) * 4) ||
850		    (have_small_tails(inode->i_sb) &&
851		     inode->i_size > i_block_size(inode)))
852			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
853		else if ((have_large_tails(inode->i_sb) &&
854			  inode->i_size < i_block_size(inode) * 4) ||
855			 (have_small_tails(inode->i_sb) &&
856			  inode->i_size < i_block_size(inode)))
857			REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
858
859		if (th->t_trans_id) {
860			reiserfs_write_lock(inode->i_sb);
861			// this sets the proper flags for O_SYNC to trigger a commit
862			mark_inode_dirty(inode);
863			reiserfs_write_unlock(inode->i_sb);
864		} else {
865			reiserfs_write_lock(inode->i_sb);
866			reiserfs_update_inode_transaction(inode);
867			mark_inode_dirty(inode);
868			reiserfs_write_unlock(inode->i_sb);
869		}
870
871		sd_update = 1;
872	}
873	if (th->t_trans_id) {
874		reiserfs_write_lock(inode->i_sb);
875		if (!sd_update)
876			mark_inode_dirty(inode);
877		status = journal_end(th, th->t_super, th->t_blocks_allocated);
878		if (status)
879			retval = status;
880		reiserfs_write_unlock(inode->i_sb);
881	}
882	th->t_trans_id = 0;
883
884	/*
885	 * we have to unlock the pages after updating i_size, otherwise
886	 * we race with writepage
887	 */
888	for (i = 0; i < num_pages; i++) {
889		struct page *page = prepared_pages[i];
890		unlock_page(page);
891		mark_page_accessed(page);
892		page_cache_release(page);
893	}
894	return retval;
895}
896
897/* Look if passed writing region is going to touch file's tail
898   (if it is present). And if it is, convert the tail to unformatted node */
899static int reiserfs_check_for_tail_and_convert(struct inode *inode,	/* inode to deal with */
900					       loff_t pos,	/* Writing position */
901					       int write_bytes	/* amount of bytes to write */
902    )
903{
904	INITIALIZE_PATH(path);	// needed for search_for_position
905	struct cpu_key key;	// Key that would represent last touched writing byte.
906	struct item_head *ih;	// item header of found block;
907	int res;		// Return value of various functions we call.
908	int cont_expand_offset;	// We will put offset for generic_cont_expand here
909	// This can be int just because tails are created
910	// only for small files.
911
912/* this embodies a dependency on a particular tail policy */
913	if (inode->i_size >= inode->i_sb->s_blocksize * 4) {
914		/* such a big files do not have tails, so we won't bother ourselves
915		   to look for tails, simply return */
916		return 0;
917	}
918
919	reiserfs_write_lock(inode->i_sb);
920	/* find the item containing the last byte to be written, or if
921	 * writing past the end of the file then the last item of the
922	 * file (and then we check its type). */
923	make_cpu_key(&key, inode, pos + write_bytes + 1, TYPE_ANY,
924		     3 /*key length */ );
925	res = search_for_position_by_key(inode->i_sb, &key, &path);
926	if (res == IO_ERROR) {
927		reiserfs_write_unlock(inode->i_sb);
928		return -EIO;
929	}
930	ih = get_ih(&path);
931	res = 0;
932	if (is_direct_le_ih(ih)) {
933		/* Ok, closest item is file tail (tails are stored in "direct"
934		 * items), so we need to unpack it. */
935		/* To not overcomplicate matters, we just call generic_cont_expand
936		   which will in turn call other stuff and finally will boil down to
937		   reiserfs_get_block() that would do necessary conversion. */
938		cont_expand_offset =
939		    le_key_k_offset(get_inode_item_key_version(inode),
940				    &(ih->ih_key));
941		pathrelse(&path);
942		res = generic_cont_expand(inode, cont_expand_offset);
943	} else
944		pathrelse(&path);
945
946	reiserfs_write_unlock(inode->i_sb);
947	return res;
948}
949
950/* This function locks pages starting from @pos for @inode.
951   @num_pages pages are locked and stored in
952   @prepared_pages array. Also buffers are allocated for these pages.
953   First and last page of the region is read if it is overwritten only
954   partially. If last page did not exist before write (file hole or file
955   append), it is zeroed, then.
956   Returns number of unallocated blocks that should be allocated to cover
957   new file data.*/
958static int reiserfs_prepare_file_region_for_write(struct inode *inode
959						  /* Inode of the file */ ,
960						  loff_t pos,	/* position in the file */
961						  size_t num_pages,	/* number of pages to
962									   prepare */
963						  size_t write_bytes,	/* Amount of bytes to be
964									   overwritten from
965									   @pos */
966						  struct page **prepared_pages	/* pointer to array
967										   where to store
968										   prepared pages */
969    )
970{
971	int res = 0;		// Return values of different functions we call.
972	unsigned long index = pos >> PAGE_CACHE_SHIFT;	// Offset in file in pages.
973	int from = (pos & (PAGE_CACHE_SIZE - 1));	// Writing offset in first page
974	int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1;
975	/* offset of last modified byte in last
976	   page */
977	struct address_space *mapping = inode->i_mapping;	// Pages are mapped here.
978	int i;			// Simple counter
979	int blocks = 0;		/* Return value (blocks that should be allocated) */
980	struct buffer_head *bh, *head;	// Current bufferhead and first bufferhead
981	// of a page.
982	unsigned block_start, block_end;	// Starting and ending offsets of current
983	// buffer in the page.
984	struct buffer_head *wait[2], **wait_bh = wait;	// Buffers for page, if
985	// Page appeared to be not up
986	// to date. Note how we have
987	// at most 2 buffers, this is
988	// because we at most may
989	// partially overwrite two
990	// buffers for one page. One at                                                 // the beginning of write area
991	// and one at the end.
992	// Everything inthe middle gets                                                 // overwritten totally.
993
994	struct cpu_key key;	// cpu key of item that we are going to deal with
995	struct item_head *ih = NULL;	// pointer to item head that we are going to deal with
996	struct buffer_head *itembuf = NULL;	// Buffer head that contains items that we are going to deal with
997	INITIALIZE_PATH(path);	// path to item, that we are going to deal with.
998	__le32 *item = NULL;	// pointer to item we are going to deal with
999	int item_pos = -1;	/* Position in indirect item */
1000
1001	if (num_pages < 1) {
1002		reiserfs_warning(inode->i_sb,
1003				 "green-9001: reiserfs_prepare_file_region_for_write "
1004				 "called with zero number of pages to process");
1005		return -EFAULT;
1006	}
1007
1008	/* We have 2 loops for pages. In first loop we grab and lock the pages, so
1009	   that nobody would touch these until we release the pages. Then
1010	   we'd start to deal with mapping buffers to blocks. */
1011	for (i = 0; i < num_pages; i++) {
1012		prepared_pages[i] = grab_cache_page(mapping, index + i);	// locks the page
1013		if (!prepared_pages[i]) {
1014			res = -ENOMEM;
1015			goto failed_page_grabbing;
1016		}
1017		if (!page_has_buffers(prepared_pages[i]))
1018			create_empty_buffers(prepared_pages[i],
1019					     inode->i_sb->s_blocksize, 0);
1020	}
1021
1022	/* Let's count amount of blocks for a case where all the blocks
1023	   overwritten are new (we will substract already allocated blocks later) */
1024	if (num_pages > 2)
1025		/* These are full-overwritten pages so we count all the blocks in
1026		   these pages are counted as needed to be allocated */
1027		blocks =
1028		    (num_pages - 2) << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1029
1030	/* count blocks needed for first page (possibly partially written) */
1031	blocks += ((PAGE_CACHE_SIZE - from) >> inode->i_blkbits) + !!(from & (inode->i_sb->s_blocksize - 1));	/* roundup */
1032
1033	/* Now we account for last page. If last page == first page (we
1034	   overwrite only one page), we substract all the blocks past the
1035	   last writing position in a page out of already calculated number
1036	   of blocks */
1037	blocks += ((num_pages > 1) << (PAGE_CACHE_SHIFT - inode->i_blkbits)) -
1038	    ((PAGE_CACHE_SIZE - to) >> inode->i_blkbits);
1039	/* Note how we do not roundup here since partial blocks still
1040	   should be allocated */
1041
1042	/* Now if all the write area lies past the file end, no point in
1043	   maping blocks, since there is none, so we just zero out remaining
1044	   parts of first and last pages in write area (if needed) */
1045	if ((pos & ~((loff_t) PAGE_CACHE_SIZE - 1)) > inode->i_size) {
1046		if (from != 0) {	/* First page needs to be partially zeroed */
1047			char *kaddr = kmap_atomic(prepared_pages[0], KM_USER0);
1048			memset(kaddr, 0, from);
1049			kunmap_atomic(kaddr, KM_USER0);
1050		}
1051		if (to != PAGE_CACHE_SIZE) {	/* Last page needs to be partially zeroed */
1052			char *kaddr =
1053			    kmap_atomic(prepared_pages[num_pages - 1],
1054					KM_USER0);
1055			memset(kaddr + to, 0, PAGE_CACHE_SIZE - to);
1056			kunmap_atomic(kaddr, KM_USER0);
1057		}
1058
1059		/* Since all blocks are new - use already calculated value */
1060		return blocks;
1061	}
1062
1063	/* Well, since we write somewhere into the middle of a file, there is
1064	   possibility we are writing over some already allocated blocks, so
1065	   let's map these blocks and substract number of such blocks out of blocks
1066	   we need to allocate (calculated above) */
1067	/* Mask write position to start on blocksize, we do it out of the
1068	   loop for performance reasons */
1069	pos &= ~((loff_t) inode->i_sb->s_blocksize - 1);
1070	/* Set cpu key to the starting position in a file (on left block boundary) */
1071	make_cpu_key(&key, inode,
1072		     1 + ((pos) & ~((loff_t) inode->i_sb->s_blocksize - 1)),
1073		     TYPE_ANY, 3 /*key length */ );
1074
1075	reiserfs_write_lock(inode->i_sb);	// We need that for at least search_by_key()
1076	for (i = 0; i < num_pages; i++) {
1077
1078		head = page_buffers(prepared_pages[i]);
1079		/* For each buffer in the page */
1080		for (bh = head, block_start = 0; bh != head || !block_start;
1081		     block_start = block_end, bh = bh->b_this_page) {
1082			if (!bh)
1083				reiserfs_panic(inode->i_sb,
1084					       "green-9002: Allocated but absent buffer for a page?");
1085			/* Find where this buffer ends */
1086			block_end = block_start + inode->i_sb->s_blocksize;
1087			if (i == 0 && block_end <= from)
1088				/* if this buffer is before requested data to map, skip it */
1089				continue;
1090
1091			if (i == num_pages - 1 && block_start >= to) {
1092				/* If this buffer is after requested data to map, abort
1093				   processing of current page */
1094				break;
1095			}
1096
1097			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
1098				/* This is optimisation for a case where buffer is mapped
1099				   and have blocknumber assigned. In case significant amount
1100				   of such buffers are present, we may avoid some amount
1101				   of search_by_key calls.
1102				   Probably it would be possible to move parts of this code
1103				   out of BKL, but I afraid that would overcomplicate code
1104				   without any noticeable benefit.
1105				 */
1106				item_pos++;
1107				/* Update the key */
1108				set_cpu_key_k_offset(&key,
1109						     cpu_key_k_offset(&key) +
1110						     inode->i_sb->s_blocksize);
1111				blocks--;	// Decrease the amount of blocks that need to be
1112				// allocated
1113				continue;	// Go to the next buffer
1114			}
1115
1116			if (!itembuf ||	/* if first iteration */
1117			    item_pos >= ih_item_len(ih) / UNFM_P_SIZE) {	/* or if we progressed past the
1118										   current unformatted_item */
1119				/* Try to find next item */
1120				res =
1121				    search_for_position_by_key(inode->i_sb,
1122							       &key, &path);
1123				/* Abort if no more items */
1124				if (res != POSITION_FOUND) {
1125					/* make sure later loops don't use this item */
1126					itembuf = NULL;
1127					item = NULL;
1128					break;
1129				}
1130
1131				/* Update information about current indirect item */
1132				itembuf = get_last_bh(&path);
1133				ih = get_ih(&path);
1134				item = get_item(&path);
1135				item_pos = path.pos_in_item;
1136
1137				RFALSE(!is_indirect_le_ih(ih),
1138				       "green-9003: indirect item expected");
1139			}
1140
1141			/* See if there is some block associated with the file
1142			   at that position, map the buffer to this block */
1143			if (get_block_num(item, item_pos)) {
1144				map_bh(bh, inode->i_sb,
1145				       get_block_num(item, item_pos));
1146				blocks--;	// Decrease the amount of blocks that need to be
1147				// allocated
1148			}
1149			item_pos++;
1150			/* Update the key */
1151			set_cpu_key_k_offset(&key,
1152					     cpu_key_k_offset(&key) +
1153					     inode->i_sb->s_blocksize);
1154		}
1155	}
1156	pathrelse(&path);	// Free the path
1157	reiserfs_write_unlock(inode->i_sb);
1158
1159	/* Now zero out unmappend buffers for the first and last pages of
1160	   write area or issue read requests if page is mapped. */
1161	/* First page, see if it is not uptodate */
1162	if (!PageUptodate(prepared_pages[0])) {
1163		head = page_buffers(prepared_pages[0]);
1164
1165		/* For each buffer in page */
1166		for (bh = head, block_start = 0; bh != head || !block_start;
1167		     block_start = block_end, bh = bh->b_this_page) {
1168
1169			if (!bh)
1170				reiserfs_panic(inode->i_sb,
1171					       "green-9002: Allocated but absent buffer for a page?");
1172			/* Find where this buffer ends */
1173			block_end = block_start + inode->i_sb->s_blocksize;
1174			if (block_end <= from)
1175				/* if this buffer is before requested data to map, skip it */
1176				continue;
1177			if (block_start < from) {	/* Aha, our partial buffer */
1178				if (buffer_mapped(bh)) {	/* If it is mapped, we need to
1179								   issue READ request for it to
1180								   not loose data */
1181					ll_rw_block(READ, 1, &bh);
1182					*wait_bh++ = bh;
1183				} else {	/* Not mapped, zero it */
1184					char *kaddr =
1185					    kmap_atomic(prepared_pages[0],
1186							KM_USER0);
1187					memset(kaddr + block_start, 0,
1188					       from - block_start);
1189					kunmap_atomic(kaddr, KM_USER0);
1190					set_buffer_uptodate(bh);
1191				}
1192			}
1193		}
1194	}
1195
1196	/* Last page, see if it is not uptodate, or if the last page is past the end of the file. */
1197	if (!PageUptodate(prepared_pages[num_pages - 1]) ||
1198	    ((pos + write_bytes) >> PAGE_CACHE_SHIFT) >
1199	    (inode->i_size >> PAGE_CACHE_SHIFT)) {
1200		head = page_buffers(prepared_pages[num_pages - 1]);
1201
1202		/* for each buffer in page */
1203		for (bh = head, block_start = 0; bh != head || !block_start;
1204		     block_start = block_end, bh = bh->b_this_page) {
1205
1206			if (!bh)
1207				reiserfs_panic(inode->i_sb,
1208					       "green-9002: Allocated but absent buffer for a page?");
1209			/* Find where this buffer ends */
1210			block_end = block_start + inode->i_sb->s_blocksize;
1211			if (block_start >= to)
1212				/* if this buffer is after requested data to map, skip it */
1213				break;
1214			if (block_end > to) {	/* Aha, our partial buffer */
1215				if (buffer_mapped(bh)) {	/* If it is mapped, we need to
1216								   issue READ request for it to
1217								   not loose data */
1218					ll_rw_block(READ, 1, &bh);
1219					*wait_bh++ = bh;
1220				} else {	/* Not mapped, zero it */
1221					char *kaddr =
1222					    kmap_atomic(prepared_pages
1223							[num_pages - 1],
1224							KM_USER0);
1225					memset(kaddr + to, 0, block_end - to);
1226					kunmap_atomic(kaddr, KM_USER0);
1227					set_buffer_uptodate(bh);
1228				}
1229			}
1230		}
1231	}
1232
1233	/* Wait for read requests we made to happen, if necessary */
1234	while (wait_bh > wait) {
1235		wait_on_buffer(*--wait_bh);
1236		if (!buffer_uptodate(*wait_bh)) {
1237			res = -EIO;
1238			goto failed_read;
1239		}
1240	}
1241
1242	return blocks;
1243      failed_page_grabbing:
1244	num_pages = i;
1245      failed_read:
1246	reiserfs_unprepare_pages(prepared_pages, num_pages);
1247	return res;
1248}
1249
1250/* Write @count bytes at position @ppos in a file indicated by @file
1251   from the buffer @buf.
1252
1253   generic_file_write() is only appropriate for filesystems that are not seeking to optimize performance and want
1254   something simple that works.  It is not for serious use by general purpose filesystems, excepting the one that it was
1255   written for (ext2/3).  This is for several reasons:
1256
1257   * It has no understanding of any filesystem specific optimizations.
1258
1259   * It enters the filesystem repeatedly for each page that is written.
1260
1261   * It depends on reiserfs_get_block() function which if implemented by reiserfs performs costly search_by_key
1262   * operation for each page it is supplied with. By contrast reiserfs_file_write() feeds as much as possible at a time
1263   * to reiserfs which allows for fewer tree traversals.
1264
1265   * Each indirect pointer insertion takes a lot of cpu, because it involves memory moves inside of blocks.
1266
1267   * Asking the block allocation code for blocks one at a time is slightly less efficient.
1268
1269   All of these reasons for not using only generic file write were understood back when reiserfs was first miscoded to
1270   use it, but we were in a hurry to make code freeze, and so it couldn't be revised then.  This new code should make
1271   things right finally.
1272
1273   Future Features: providing search_by_key with hints.
1274
1275*/
1276static ssize_t reiserfs_file_write(struct file *file,	/* the file we are going to write into */
1277				   const char __user * buf,	/*  pointer to user supplied data
1278								   (in userspace) */
1279				   size_t count,	/* amount of bytes to write */
1280				   loff_t * ppos	/* pointer to position in file that we start writing at. Should be updated to
1281							 * new current position before returning. */
1282				   )
1283{
1284	size_t already_written = 0;	// Number of bytes already written to the file.
1285	loff_t pos;		// Current position in the file.
1286	ssize_t res;		// return value of various functions that we call.
1287	int err = 0;
1288	struct inode *inode = file->f_dentry->d_inode;	// Inode of the file that we are writing to.
1289	/* To simplify coding at this time, we store
1290	   locked pages in array for now */
1291	struct page *prepared_pages[REISERFS_WRITE_PAGES_AT_A_TIME];
1292	struct reiserfs_transaction_handle th;
1293	th.t_trans_id = 0;
1294
1295	/* If a filesystem is converted from 3.5 to 3.6, we'll have v3.5 items
1296	* lying around (most of the disk, in fact). Despite the filesystem
1297	* now being a v3.6 format, the old items still can't support large
1298	* file sizes. Catch this case here, as the rest of the VFS layer is
1299	* oblivious to the different limitations between old and new items.
1300	* reiserfs_setattr catches this for truncates. This chunk is lifted
1301	* from generic_write_checks. */
1302	if (get_inode_item_key_version (inode) == KEY_FORMAT_3_5 &&
1303	    *ppos + count > MAX_NON_LFS) {
1304		if (*ppos >= MAX_NON_LFS) {
1305			send_sig(SIGXFSZ, current, 0);
1306			return -EFBIG;
1307		}
1308		if (count > MAX_NON_LFS - (unsigned long)*ppos)
1309			count = MAX_NON_LFS - (unsigned long)*ppos;
1310	}
1311
1312	if (file->f_flags & O_DIRECT) {	// Direct IO needs treatment
1313		ssize_t result, after_file_end = 0;
1314		if ((*ppos + count >= inode->i_size)
1315		    || (file->f_flags & O_APPEND)) {
1316			/* If we are appending a file, we need to put this savelink in here.
1317			   If we will crash while doing direct io, finish_unfinished will
1318			   cut the garbage from the file end. */
1319			reiserfs_write_lock(inode->i_sb);
1320			err =
1321			    journal_begin(&th, inode->i_sb,
1322					  JOURNAL_PER_BALANCE_CNT);
1323			if (err) {
1324				reiserfs_write_unlock(inode->i_sb);
1325				return err;
1326			}
1327			reiserfs_update_inode_transaction(inode);
1328			add_save_link(&th, inode, 1 /* Truncate */ );
1329			after_file_end = 1;
1330			err =
1331			    journal_end(&th, inode->i_sb,
1332					JOURNAL_PER_BALANCE_CNT);
1333			reiserfs_write_unlock(inode->i_sb);
1334			if (err)
1335				return err;
1336		}
1337		result = do_sync_write(file, buf, count, ppos);
1338
1339		if (after_file_end) {	/* Now update i_size and remove the savelink */
1340			struct reiserfs_transaction_handle th;
1341			reiserfs_write_lock(inode->i_sb);
1342			err = journal_begin(&th, inode->i_sb, 1);
1343			if (err) {
1344				reiserfs_write_unlock(inode->i_sb);
1345				return err;
1346			}
1347			reiserfs_update_inode_transaction(inode);
1348			mark_inode_dirty(inode);
1349			err = journal_end(&th, inode->i_sb, 1);
1350			if (err) {
1351				reiserfs_write_unlock(inode->i_sb);
1352				return err;
1353			}
1354			err = remove_save_link(inode, 1 /* truncate */ );
1355			reiserfs_write_unlock(inode->i_sb);
1356			if (err)
1357				return err;
1358		}
1359
1360		return result;
1361	}
1362
1363	if (unlikely((ssize_t) count < 0))
1364		return -EINVAL;
1365
1366	if (unlikely(!access_ok(VERIFY_READ, buf, count)))
1367		return -EFAULT;
1368
1369	mutex_lock(&inode->i_mutex);	// locks the entire file for just us
1370
1371	pos = *ppos;
1372
1373	/* Check if we can write to specified region of file, file
1374	   is not overly big and this kind of stuff. Adjust pos and
1375	   count, if needed */
1376	res = generic_write_checks(file, &pos, &count, 0);
1377	if (res)
1378		goto out;
1379
1380	if (count == 0)
1381		goto out;
1382
1383	res = remove_suid(file->f_dentry);
1384	if (res)
1385		goto out;
1386
1387	file_update_time(file);
1388
1389	// Ok, we are done with all the checks.
1390
1391	// Now we should start real work
1392
1393	/* If we are going to write past the file's packed tail or if we are going
1394	   to overwrite part of the tail, we need that tail to be converted into
1395	   unformatted node */
1396	res = reiserfs_check_for_tail_and_convert(inode, pos, count);
1397	if (res)
1398		goto out;
1399
1400	while (count > 0) {
1401		/* This is the main loop in which we running until some error occures
1402		   or until we write all of the data. */
1403		size_t num_pages;	/* amount of pages we are going to write this iteration */
1404		size_t write_bytes;	/* amount of bytes to write during this iteration */
1405		size_t blocks_to_allocate;	/* how much blocks we need to allocate for this iteration */
1406
1407		/*  (pos & (PAGE_CACHE_SIZE-1)) is an idiom for offset into a page of pos */
1408		num_pages = !!((pos + count) & (PAGE_CACHE_SIZE - 1)) +	/* round up partial
1409									   pages */
1410		    ((count +
1411		      (pos & (PAGE_CACHE_SIZE - 1))) >> PAGE_CACHE_SHIFT);
1412		/* convert size to amount of
1413		   pages */
1414		reiserfs_write_lock(inode->i_sb);
1415		if (num_pages > REISERFS_WRITE_PAGES_AT_A_TIME
1416		    || num_pages > reiserfs_can_fit_pages(inode->i_sb)) {
1417			/* If we were asked to write more data than we want to or if there
1418			   is not that much space, then we shorten amount of data to write
1419			   for this iteration. */
1420			num_pages =
1421			    min_t(size_t, REISERFS_WRITE_PAGES_AT_A_TIME,
1422				  reiserfs_can_fit_pages(inode->i_sb));
1423			/* Also we should not forget to set size in bytes accordingly */
1424			write_bytes = (num_pages << PAGE_CACHE_SHIFT) -
1425			    (pos & (PAGE_CACHE_SIZE - 1));
1426			/* If position is not on the
1427			   start of the page, we need
1428			   to substract the offset
1429			   within page */
1430		} else
1431			write_bytes = count;
1432
1433		/* reserve the blocks to be allocated later, so that later on
1434		   we still have the space to write the blocks to */
1435		reiserfs_claim_blocks_to_be_allocated(inode->i_sb,
1436						      num_pages <<
1437						      (PAGE_CACHE_SHIFT -
1438						       inode->i_blkbits));
1439		reiserfs_write_unlock(inode->i_sb);
1440
1441		if (!num_pages) {	/* If we do not have enough space even for a single page... */
1442			if (pos >
1443			    inode->i_size + inode->i_sb->s_blocksize -
1444			    (pos & (inode->i_sb->s_blocksize - 1))) {
1445				res = -ENOSPC;
1446				break;	// In case we are writing past the end of the last file block, break.
1447			}
1448			// Otherwise we are possibly overwriting the file, so
1449			// let's set write size to be equal or less than blocksize.
1450			// This way we get it correctly for file holes.
1451			// But overwriting files on absolutelly full volumes would not
1452			// be very efficient. Well, people are not supposed to fill
1453			// 100% of disk space anyway.
1454			write_bytes =
1455			    min_t(size_t, count,
1456				  inode->i_sb->s_blocksize -
1457				  (pos & (inode->i_sb->s_blocksize - 1)));
1458			num_pages = 1;
1459			// No blocks were claimed before, so do it now.
1460			reiserfs_claim_blocks_to_be_allocated(inode->i_sb,
1461							      1 <<
1462							      (PAGE_CACHE_SHIFT
1463							       -
1464							       inode->
1465							       i_blkbits));
1466		}
1467
1468		/* Prepare for writing into the region, read in all the
1469		   partially overwritten pages, if needed. And lock the pages,
1470		   so that nobody else can access these until we are done.
1471		   We get number of actual blocks needed as a result. */
1472		res = reiserfs_prepare_file_region_for_write(inode, pos,
1473							     num_pages,
1474							     write_bytes,
1475							     prepared_pages);
1476		if (res < 0) {
1477			reiserfs_release_claimed_blocks(inode->i_sb,
1478							num_pages <<
1479							(PAGE_CACHE_SHIFT -
1480							 inode->i_blkbits));
1481			break;
1482		}
1483
1484		blocks_to_allocate = res;
1485
1486		/* First we correct our estimate of how many blocks we need */
1487		reiserfs_release_claimed_blocks(inode->i_sb,
1488						(num_pages <<
1489						 (PAGE_CACHE_SHIFT -
1490						  inode->i_sb->
1491						  s_blocksize_bits)) -
1492						blocks_to_allocate);
1493
1494		if (blocks_to_allocate > 0) {	/*We only allocate blocks if we need to */
1495			/* Fill in all the possible holes and append the file if needed */
1496			res =
1497			    reiserfs_allocate_blocks_for_region(&th, inode, pos,
1498								num_pages,
1499								write_bytes,
1500								prepared_pages,
1501								blocks_to_allocate);
1502		}
1503
1504		/* well, we have allocated the blocks, so it is time to free
1505		   the reservation we made earlier. */
1506		reiserfs_release_claimed_blocks(inode->i_sb,
1507						blocks_to_allocate);
1508		if (res) {
1509			reiserfs_unprepare_pages(prepared_pages, num_pages);
1510			break;
1511		}
1512
1513/* NOTE that allocating blocks and filling blocks can be done in reverse order
1514   and probably we would do that just to get rid of garbage in files after a
1515   crash */
1516
1517		/* Copy data from user-supplied buffer to file's pages */
1518		res =
1519		    reiserfs_copy_from_user_to_file_region(pos, num_pages,
1520							   write_bytes,
1521							   prepared_pages, buf);
1522		if (res) {
1523			reiserfs_unprepare_pages(prepared_pages, num_pages);
1524			break;
1525		}
1526
1527		/* Send the pages to disk and unlock them. */
1528		res =
1529		    reiserfs_submit_file_region_for_write(&th, inode, pos,
1530							  num_pages,
1531							  write_bytes,
1532							  prepared_pages);
1533		if (res)
1534			break;
1535
1536		already_written += write_bytes;
1537		buf += write_bytes;
1538		*ppos = pos += write_bytes;
1539		count -= write_bytes;
1540		balance_dirty_pages_ratelimited_nr(inode->i_mapping, num_pages);
1541	}
1542
1543	/* this is only true on error */
1544	if (th.t_trans_id) {
1545		reiserfs_write_lock(inode->i_sb);
1546		err = journal_end(&th, th.t_super, th.t_blocks_allocated);
1547		reiserfs_write_unlock(inode->i_sb);
1548		if (err) {
1549			res = err;
1550			goto out;
1551		}
1552	}
1553
1554	if (likely(res >= 0) &&
1555	    (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))))
1556		res = generic_osync_inode(inode, file->f_mapping,
1557		                          OSYNC_METADATA | OSYNC_DATA);
1558
1559	mutex_unlock(&inode->i_mutex);
1560	reiserfs_async_progress_wait(inode->i_sb);
1561	return (already_written != 0) ? already_written : res;
1562
1563      out:
1564	mutex_unlock(&inode->i_mutex);	// unlock the file on exit.
1565	return res;
1566}
1567
1568const struct file_operations reiserfs_file_operations = {
1569	.read = do_sync_read,
1570	.write = reiserfs_file_write,
1571	.ioctl = reiserfs_ioctl,
1572#ifdef CONFIG_COMPAT
1573	.compat_ioctl = reiserfs_compat_ioctl,
1574#endif
1575	.mmap = generic_file_mmap,
1576	.open = generic_file_open,
1577	.release = reiserfs_file_release,
1578	.fsync = reiserfs_sync_file,
1579	.sendfile = generic_file_sendfile,
1580	.aio_read = generic_file_aio_read,
1581	.aio_write = generic_file_aio_write,
1582	.splice_read = generic_file_splice_read,
1583	.splice_write = generic_file_splice_write,
1584};
1585
1586struct inode_operations reiserfs_file_inode_operations = {
1587	.truncate = reiserfs_vfs_truncate_file,
1588	.setattr = reiserfs_setattr,
1589	.setxattr = reiserfs_setxattr,
1590	.getxattr = reiserfs_getxattr,
1591	.listxattr = reiserfs_listxattr,
1592	.removexattr = reiserfs_removexattr,
1593	.permission = reiserfs_permission,
1594};
1595