file.c revision 027445c37282bc1ed26add45e573ad2d3e4860a5
1/* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5#include <linux/config.h> 6#include <linux/time.h> 7#include <linux/reiserfs_fs.h> 8#include <linux/reiserfs_acl.h> 9#include <linux/reiserfs_xattr.h> 10#include <linux/smp_lock.h> 11#include <asm/uaccess.h> 12#include <linux/pagemap.h> 13#include <linux/swap.h> 14#include <linux/writeback.h> 15#include <linux/blkdev.h> 16#include <linux/buffer_head.h> 17#include <linux/quotaops.h> 18 19/* 20** We pack the tails of files on file close, not at the time they are written. 21** This implies an unnecessary copy of the tail and an unnecessary indirect item 22** insertion/balancing, for files that are written in one write. 23** It avoids unnecessary tail packings (balances) for files that are written in 24** multiple writes and are small enough to have tails. 25** 26** file_release is called by the VFS layer when the file is closed. If 27** this is the last open file descriptor, and the file 28** small enough to have a tail, and the tail is currently in an 29** unformatted node, the tail is converted back into a direct item. 30** 31** We use reiserfs_truncate_file to pack the tail, since it already has 32** all the conditions coded. 33*/ 34static int reiserfs_file_release(struct inode *inode, struct file *filp) 35{ 36 37 struct reiserfs_transaction_handle th; 38 int err; 39 int jbegin_failure = 0; 40 41 if (!S_ISREG(inode->i_mode)) 42 BUG(); 43 44 /* fast out for when nothing needs to be done */ 45 if ((atomic_read(&inode->i_count) > 1 || 46 !(REISERFS_I(inode)->i_flags & i_pack_on_close_mask) || 47 !tail_has_to_be_packed(inode)) && 48 REISERFS_I(inode)->i_prealloc_count <= 0) { 49 return 0; 50 } 51 52 mutex_lock(&inode->i_mutex); 53 reiserfs_write_lock(inode->i_sb); 54 /* freeing preallocation only involves relogging blocks that 55 * are already in the current transaction. preallocation gets 56 * freed at the end of each transaction, so it is impossible for 57 * us to log any additional blocks (including quota blocks) 58 */ 59 err = journal_begin(&th, inode->i_sb, 1); 60 if (err) { 61 /* uh oh, we can't allow the inode to go away while there 62 * is still preallocation blocks pending. Try to join the 63 * aborted transaction 64 */ 65 jbegin_failure = err; 66 err = journal_join_abort(&th, inode->i_sb, 1); 67 68 if (err) { 69 /* hmpf, our choices here aren't good. We can pin the inode 70 * which will disallow unmount from every happening, we can 71 * do nothing, which will corrupt random memory on unmount, 72 * or we can forcibly remove the file from the preallocation 73 * list, which will leak blocks on disk. Lets pin the inode 74 * and let the admin know what is going on. 75 */ 76 igrab(inode); 77 reiserfs_warning(inode->i_sb, 78 "pinning inode %lu because the " 79 "preallocation can't be freed"); 80 goto out; 81 } 82 } 83 reiserfs_update_inode_transaction(inode); 84 85#ifdef REISERFS_PREALLOCATE 86 reiserfs_discard_prealloc(&th, inode); 87#endif 88 err = journal_end(&th, inode->i_sb, 1); 89 90 /* copy back the error code from journal_begin */ 91 if (!err) 92 err = jbegin_failure; 93 94 if (!err && atomic_read(&inode->i_count) <= 1 && 95 (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) && 96 tail_has_to_be_packed(inode)) { 97 /* if regular file is released by last holder and it has been 98 appended (we append by unformatted node only) or its direct 99 item(s) had to be converted, then it may have to be 100 indirect2direct converted */ 101 err = reiserfs_truncate_file(inode, 0); 102 } 103 out: 104 mutex_unlock(&inode->i_mutex); 105 reiserfs_write_unlock(inode->i_sb); 106 return err; 107} 108 109static void reiserfs_vfs_truncate_file(struct inode *inode) 110{ 111 reiserfs_truncate_file(inode, 1); 112} 113 114/* Sync a reiserfs file. */ 115 116/* 117 * FIXME: sync_mapping_buffers() never has anything to sync. Can 118 * be removed... 119 */ 120 121static int reiserfs_sync_file(struct file *p_s_filp, 122 struct dentry *p_s_dentry, int datasync) 123{ 124 struct inode *p_s_inode = p_s_dentry->d_inode; 125 int n_err; 126 int barrier_done; 127 128 if (!S_ISREG(p_s_inode->i_mode)) 129 BUG(); 130 n_err = sync_mapping_buffers(p_s_inode->i_mapping); 131 reiserfs_write_lock(p_s_inode->i_sb); 132 barrier_done = reiserfs_commit_for_inode(p_s_inode); 133 reiserfs_write_unlock(p_s_inode->i_sb); 134 if (barrier_done != 1 && reiserfs_barrier_flush(p_s_inode->i_sb)) 135 blkdev_issue_flush(p_s_inode->i_sb->s_bdev, NULL); 136 if (barrier_done < 0) 137 return barrier_done; 138 return (n_err < 0) ? -EIO : 0; 139} 140 141/* I really do not want to play with memory shortage right now, so 142 to simplify the code, we are not going to write more than this much pages at 143 a time. This still should considerably improve performance compared to 4k 144 at a time case. This is 32 pages of 4k size. */ 145#define REISERFS_WRITE_PAGES_AT_A_TIME (128 * 1024) / PAGE_CACHE_SIZE 146 147/* Allocates blocks for a file to fulfil write request. 148 Maps all unmapped but prepared pages from the list. 149 Updates metadata with newly allocated blocknumbers as needed */ 150static int reiserfs_allocate_blocks_for_region(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode we work with */ 151 loff_t pos, /* Writing position */ 152 int num_pages, /* number of pages write going 153 to touch */ 154 int write_bytes, /* amount of bytes to write */ 155 struct page **prepared_pages, /* array of 156 prepared pages 157 */ 158 int blocks_to_allocate /* Amount of blocks we 159 need to allocate to 160 fit the data into file 161 */ 162 ) 163{ 164 struct cpu_key key; // cpu key of item that we are going to deal with 165 struct item_head *ih; // pointer to item head that we are going to deal with 166 struct buffer_head *bh; // Buffer head that contains items that we are going to deal with 167 __le32 *item; // pointer to item we are going to deal with 168 INITIALIZE_PATH(path); // path to item, that we are going to deal with. 169 b_blocknr_t *allocated_blocks; // Pointer to a place where allocated blocknumbers would be stored. 170 reiserfs_blocknr_hint_t hint; // hint structure for block allocator. 171 size_t res; // return value of various functions that we call. 172 int curr_block; // current block used to keep track of unmapped blocks. 173 int i; // loop counter 174 int itempos; // position in item 175 unsigned int from = (pos & (PAGE_CACHE_SIZE - 1)); // writing position in 176 // first page 177 unsigned int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1; /* last modified byte offset in last page */ 178 __u64 hole_size; // amount of blocks for a file hole, if it needed to be created. 179 int modifying_this_item = 0; // Flag for items traversal code to keep track 180 // of the fact that we already prepared 181 // current block for journal 182 int will_prealloc = 0; 183 RFALSE(!blocks_to_allocate, 184 "green-9004: tried to allocate zero blocks?"); 185 186 /* only preallocate if this is a small write */ 187 if (REISERFS_I(inode)->i_prealloc_count || 188 (!(write_bytes & (inode->i_sb->s_blocksize - 1)) && 189 blocks_to_allocate < 190 REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize)) 191 will_prealloc = 192 REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize; 193 194 allocated_blocks = kmalloc((blocks_to_allocate + will_prealloc) * 195 sizeof(b_blocknr_t), GFP_NOFS); 196 if (!allocated_blocks) 197 return -ENOMEM; 198 199 /* First we compose a key to point at the writing position, we want to do 200 that outside of any locking region. */ 201 make_cpu_key(&key, inode, pos + 1, TYPE_ANY, 3 /*key length */ ); 202 203 /* If we came here, it means we absolutely need to open a transaction, 204 since we need to allocate some blocks */ 205 reiserfs_write_lock(inode->i_sb); // Journaling stuff and we need that. 206 res = journal_begin(th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 3 + 1 + 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb)); // Wish I know if this number enough 207 if (res) 208 goto error_exit; 209 reiserfs_update_inode_transaction(inode); 210 211 /* Look for the in-tree position of our write, need path for block allocator */ 212 res = search_for_position_by_key(inode->i_sb, &key, &path); 213 if (res == IO_ERROR) { 214 res = -EIO; 215 goto error_exit; 216 } 217 218 /* Allocate blocks */ 219 /* First fill in "hint" structure for block allocator */ 220 hint.th = th; // transaction handle. 221 hint.path = &path; // Path, so that block allocator can determine packing locality or whatever it needs to determine. 222 hint.inode = inode; // Inode is needed by block allocator too. 223 hint.search_start = 0; // We have no hint on where to search free blocks for block allocator. 224 hint.key = key.on_disk_key; // on disk key of file. 225 hint.block = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); // Number of disk blocks this file occupies already. 226 hint.formatted_node = 0; // We are allocating blocks for unformatted node. 227 hint.preallocate = will_prealloc; 228 229 /* Call block allocator to allocate blocks */ 230 res = 231 reiserfs_allocate_blocknrs(&hint, allocated_blocks, 232 blocks_to_allocate, blocks_to_allocate); 233 if (res != CARRY_ON) { 234 if (res == NO_DISK_SPACE) { 235 /* We flush the transaction in case of no space. This way some 236 blocks might become free */ 237 SB_JOURNAL(inode->i_sb)->j_must_wait = 1; 238 res = restart_transaction(th, inode, &path); 239 if (res) 240 goto error_exit; 241 242 /* We might have scheduled, so search again */ 243 res = 244 search_for_position_by_key(inode->i_sb, &key, 245 &path); 246 if (res == IO_ERROR) { 247 res = -EIO; 248 goto error_exit; 249 } 250 251 /* update changed info for hint structure. */ 252 res = 253 reiserfs_allocate_blocknrs(&hint, allocated_blocks, 254 blocks_to_allocate, 255 blocks_to_allocate); 256 if (res != CARRY_ON) { 257 res = res == QUOTA_EXCEEDED ? -EDQUOT : -ENOSPC; 258 pathrelse(&path); 259 goto error_exit; 260 } 261 } else { 262 res = res == QUOTA_EXCEEDED ? -EDQUOT : -ENOSPC; 263 pathrelse(&path); 264 goto error_exit; 265 } 266 } 267#ifdef __BIG_ENDIAN 268 // Too bad, I have not found any way to convert a given region from 269 // cpu format to little endian format 270 { 271 int i; 272 for (i = 0; i < blocks_to_allocate; i++) 273 allocated_blocks[i] = cpu_to_le32(allocated_blocks[i]); 274 } 275#endif 276 277 /* Blocks allocating well might have scheduled and tree might have changed, 278 let's search the tree again */ 279 /* find where in the tree our write should go */ 280 res = search_for_position_by_key(inode->i_sb, &key, &path); 281 if (res == IO_ERROR) { 282 res = -EIO; 283 goto error_exit_free_blocks; 284 } 285 286 bh = get_last_bh(&path); // Get a bufferhead for last element in path. 287 ih = get_ih(&path); // Get a pointer to last item head in path. 288 item = get_item(&path); // Get a pointer to last item in path 289 290 /* Let's see what we have found */ 291 if (res != POSITION_FOUND) { /* position not found, this means that we 292 might need to append file with holes 293 first */ 294 // Since we are writing past the file's end, we need to find out if 295 // there is a hole that needs to be inserted before our writing 296 // position, and how many blocks it is going to cover (we need to 297 // populate pointers to file blocks representing the hole with zeros) 298 299 { 300 int item_offset = 1; 301 /* 302 * if ih is stat data, its offset is 0 and we don't want to 303 * add 1 to pos in the hole_size calculation 304 */ 305 if (is_statdata_le_ih(ih)) 306 item_offset = 0; 307 hole_size = (pos + item_offset - 308 (le_key_k_offset 309 (get_inode_item_key_version(inode), 310 &(ih->ih_key)) + op_bytes_number(ih, 311 inode-> 312 i_sb-> 313 s_blocksize))) 314 >> inode->i_sb->s_blocksize_bits; 315 } 316 317 if (hole_size > 0) { 318 int to_paste = min_t(__u64, hole_size, MAX_ITEM_LEN(inode->i_sb->s_blocksize) / UNFM_P_SIZE); // How much data to insert first time. 319 /* area filled with zeroes, to supply as list of zero blocknumbers 320 We allocate it outside of loop just in case loop would spin for 321 several iterations. */ 322 char *zeros = kmalloc(to_paste * UNFM_P_SIZE, GFP_ATOMIC); // We cannot insert more than MAX_ITEM_LEN bytes anyway. 323 if (!zeros) { 324 res = -ENOMEM; 325 goto error_exit_free_blocks; 326 } 327 memset(zeros, 0, to_paste * UNFM_P_SIZE); 328 do { 329 to_paste = 330 min_t(__u64, hole_size, 331 MAX_ITEM_LEN(inode->i_sb-> 332 s_blocksize) / 333 UNFM_P_SIZE); 334 if (is_indirect_le_ih(ih)) { 335 /* Ok, there is existing indirect item already. Need to append it */ 336 /* Calculate position past inserted item */ 337 make_cpu_key(&key, inode, 338 le_key_k_offset 339 (get_inode_item_key_version 340 (inode), 341 &(ih->ih_key)) + 342 op_bytes_number(ih, 343 inode-> 344 i_sb-> 345 s_blocksize), 346 TYPE_INDIRECT, 3); 347 res = 348 reiserfs_paste_into_item(th, &path, 349 &key, 350 inode, 351 (char *) 352 zeros, 353 UNFM_P_SIZE 354 * 355 to_paste); 356 if (res) { 357 kfree(zeros); 358 goto error_exit_free_blocks; 359 } 360 } else if (is_statdata_le_ih(ih)) { 361 /* No existing item, create it */ 362 /* item head for new item */ 363 struct item_head ins_ih; 364 365 /* create a key for our new item */ 366 make_cpu_key(&key, inode, 1, 367 TYPE_INDIRECT, 3); 368 369 /* Create new item head for our new item */ 370 make_le_item_head(&ins_ih, &key, 371 key.version, 1, 372 TYPE_INDIRECT, 373 to_paste * 374 UNFM_P_SIZE, 375 0 /* free space */ ); 376 377 /* Find where such item should live in the tree */ 378 res = 379 search_item(inode->i_sb, &key, 380 &path); 381 if (res != ITEM_NOT_FOUND) { 382 /* item should not exist, otherwise we have error */ 383 if (res != -ENOSPC) { 384 reiserfs_warning(inode-> 385 i_sb, 386 "green-9008: search_by_key (%K) returned %d", 387 &key, 388 res); 389 } 390 res = -EIO; 391 kfree(zeros); 392 goto error_exit_free_blocks; 393 } 394 res = 395 reiserfs_insert_item(th, &path, 396 &key, &ins_ih, 397 inode, 398 (char *)zeros); 399 } else { 400 reiserfs_panic(inode->i_sb, 401 "green-9011: Unexpected key type %K\n", 402 &key); 403 } 404 if (res) { 405 kfree(zeros); 406 goto error_exit_free_blocks; 407 } 408 /* Now we want to check if transaction is too full, and if it is 409 we restart it. This will also free the path. */ 410 if (journal_transaction_should_end 411 (th, th->t_blocks_allocated)) { 412 res = 413 restart_transaction(th, inode, 414 &path); 415 if (res) { 416 pathrelse(&path); 417 kfree(zeros); 418 goto error_exit; 419 } 420 } 421 422 /* Well, need to recalculate path and stuff */ 423 set_cpu_key_k_offset(&key, 424 cpu_key_k_offset(&key) + 425 (to_paste << inode-> 426 i_blkbits)); 427 res = 428 search_for_position_by_key(inode->i_sb, 429 &key, &path); 430 if (res == IO_ERROR) { 431 res = -EIO; 432 kfree(zeros); 433 goto error_exit_free_blocks; 434 } 435 bh = get_last_bh(&path); 436 ih = get_ih(&path); 437 item = get_item(&path); 438 hole_size -= to_paste; 439 } while (hole_size); 440 kfree(zeros); 441 } 442 } 443 // Go through existing indirect items first 444 // replace all zeroes with blocknumbers from list 445 // Note that if no corresponding item was found, by previous search, 446 // it means there are no existing in-tree representation for file area 447 // we are going to overwrite, so there is nothing to scan through for holes. 448 for (curr_block = 0, itempos = path.pos_in_item; 449 curr_block < blocks_to_allocate && res == POSITION_FOUND;) { 450 retry: 451 452 if (itempos >= ih_item_len(ih) / UNFM_P_SIZE) { 453 /* We run out of data in this indirect item, let's look for another 454 one. */ 455 /* First if we are already modifying current item, log it */ 456 if (modifying_this_item) { 457 journal_mark_dirty(th, inode->i_sb, bh); 458 modifying_this_item = 0; 459 } 460 /* Then set the key to look for a new indirect item (offset of old 461 item is added to old item length */ 462 set_cpu_key_k_offset(&key, 463 le_key_k_offset 464 (get_inode_item_key_version(inode), 465 &(ih->ih_key)) + 466 op_bytes_number(ih, 467 inode->i_sb-> 468 s_blocksize)); 469 /* Search ofor position of new key in the tree. */ 470 res = 471 search_for_position_by_key(inode->i_sb, &key, 472 &path); 473 if (res == IO_ERROR) { 474 res = -EIO; 475 goto error_exit_free_blocks; 476 } 477 bh = get_last_bh(&path); 478 ih = get_ih(&path); 479 item = get_item(&path); 480 itempos = path.pos_in_item; 481 continue; // loop to check all kinds of conditions and so on. 482 } 483 /* Ok, we have correct position in item now, so let's see if it is 484 representing file hole (blocknumber is zero) and fill it if needed */ 485 if (!item[itempos]) { 486 /* Ok, a hole. Now we need to check if we already prepared this 487 block to be journaled */ 488 while (!modifying_this_item) { // loop until succeed 489 /* Well, this item is not journaled yet, so we must prepare 490 it for journal first, before we can change it */ 491 struct item_head tmp_ih; // We copy item head of found item, 492 // here to detect if fs changed under 493 // us while we were preparing for 494 // journal. 495 int fs_gen; // We store fs generation here to find if someone 496 // changes fs under our feet 497 498 copy_item_head(&tmp_ih, ih); // Remember itemhead 499 fs_gen = get_generation(inode->i_sb); // remember fs generation 500 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); // Prepare a buffer within which indirect item is stored for changing. 501 if (fs_changed(fs_gen, inode->i_sb) 502 && item_moved(&tmp_ih, &path)) { 503 // Sigh, fs was changed under us, we need to look for new 504 // location of item we are working with 505 506 /* unmark prepaerd area as journaled and search for it's 507 new position */ 508 reiserfs_restore_prepared_buffer(inode-> 509 i_sb, 510 bh); 511 res = 512 search_for_position_by_key(inode-> 513 i_sb, 514 &key, 515 &path); 516 if (res == IO_ERROR) { 517 res = -EIO; 518 goto error_exit_free_blocks; 519 } 520 bh = get_last_bh(&path); 521 ih = get_ih(&path); 522 item = get_item(&path); 523 itempos = path.pos_in_item; 524 goto retry; 525 } 526 modifying_this_item = 1; 527 } 528 item[itempos] = allocated_blocks[curr_block]; // Assign new block 529 curr_block++; 530 } 531 itempos++; 532 } 533 534 if (modifying_this_item) { // We need to log last-accessed block, if it 535 // was modified, but not logged yet. 536 journal_mark_dirty(th, inode->i_sb, bh); 537 } 538 539 if (curr_block < blocks_to_allocate) { 540 // Oh, well need to append to indirect item, or to create indirect item 541 // if there weren't any 542 if (is_indirect_le_ih(ih)) { 543 // Existing indirect item - append. First calculate key for append 544 // position. We do not need to recalculate path as it should 545 // already point to correct place. 546 make_cpu_key(&key, inode, 547 le_key_k_offset(get_inode_item_key_version 548 (inode), 549 &(ih->ih_key)) + 550 op_bytes_number(ih, 551 inode->i_sb->s_blocksize), 552 TYPE_INDIRECT, 3); 553 res = 554 reiserfs_paste_into_item(th, &path, &key, inode, 555 (char *)(allocated_blocks + 556 curr_block), 557 UNFM_P_SIZE * 558 (blocks_to_allocate - 559 curr_block)); 560 if (res) { 561 goto error_exit_free_blocks; 562 } 563 } else if (is_statdata_le_ih(ih)) { 564 // Last found item was statdata. That means we need to create indirect item. 565 struct item_head ins_ih; /* itemhead for new item */ 566 567 /* create a key for our new item */ 568 make_cpu_key(&key, inode, 1, TYPE_INDIRECT, 3); // Position one, 569 // because that's 570 // where first 571 // indirect item 572 // begins 573 /* Create new item head for our new item */ 574 make_le_item_head(&ins_ih, &key, key.version, 1, 575 TYPE_INDIRECT, 576 (blocks_to_allocate - 577 curr_block) * UNFM_P_SIZE, 578 0 /* free space */ ); 579 /* Find where such item should live in the tree */ 580 res = search_item(inode->i_sb, &key, &path); 581 if (res != ITEM_NOT_FOUND) { 582 /* Well, if we have found such item already, or some error 583 occured, we need to warn user and return error */ 584 if (res != -ENOSPC) { 585 reiserfs_warning(inode->i_sb, 586 "green-9009: search_by_key (%K) " 587 "returned %d", &key, 588 res); 589 } 590 res = -EIO; 591 goto error_exit_free_blocks; 592 } 593 /* Insert item into the tree with the data as its body */ 594 res = 595 reiserfs_insert_item(th, &path, &key, &ins_ih, 596 inode, 597 (char *)(allocated_blocks + 598 curr_block)); 599 } else { 600 reiserfs_panic(inode->i_sb, 601 "green-9010: unexpected item type for key %K\n", 602 &key); 603 } 604 } 605 // the caller is responsible for closing the transaction 606 // unless we return an error, they are also responsible for logging 607 // the inode. 608 // 609 pathrelse(&path); 610 /* 611 * cleanup prellocation from previous writes 612 * if this is a partial block write 613 */ 614 if (write_bytes & (inode->i_sb->s_blocksize - 1)) 615 reiserfs_discard_prealloc(th, inode); 616 reiserfs_write_unlock(inode->i_sb); 617 618 // go through all the pages/buffers and map the buffers to newly allocated 619 // blocks (so that system knows where to write these pages later). 620 curr_block = 0; 621 for (i = 0; i < num_pages; i++) { 622 struct page *page = prepared_pages[i]; //current page 623 struct buffer_head *head = page_buffers(page); // first buffer for a page 624 int block_start, block_end; // in-page offsets for buffers. 625 626 if (!page_buffers(page)) 627 reiserfs_panic(inode->i_sb, 628 "green-9005: No buffers for prepared page???"); 629 630 /* For each buffer in page */ 631 for (bh = head, block_start = 0; bh != head || !block_start; 632 block_start = block_end, bh = bh->b_this_page) { 633 if (!bh) 634 reiserfs_panic(inode->i_sb, 635 "green-9006: Allocated but absent buffer for a page?"); 636 block_end = block_start + inode->i_sb->s_blocksize; 637 if (i == 0 && block_end <= from) 638 /* if this buffer is before requested data to map, skip it */ 639 continue; 640 if (i == num_pages - 1 && block_start >= to) 641 /* If this buffer is after requested data to map, abort 642 processing of current page */ 643 break; 644 645 if (!buffer_mapped(bh)) { // Ok, unmapped buffer, need to map it 646 map_bh(bh, inode->i_sb, 647 le32_to_cpu(allocated_blocks 648 [curr_block])); 649 curr_block++; 650 set_buffer_new(bh); 651 } 652 } 653 } 654 655 RFALSE(curr_block > blocks_to_allocate, 656 "green-9007: Used too many blocks? weird"); 657 658 kfree(allocated_blocks); 659 return 0; 660 661// Need to deal with transaction here. 662 error_exit_free_blocks: 663 pathrelse(&path); 664 // free blocks 665 for (i = 0; i < blocks_to_allocate; i++) 666 reiserfs_free_block(th, inode, le32_to_cpu(allocated_blocks[i]), 667 1); 668 669 error_exit: 670 if (th->t_trans_id) { 671 int err; 672 // update any changes we made to blk count 673 mark_inode_dirty(inode); 674 err = 675 journal_end(th, inode->i_sb, 676 JOURNAL_PER_BALANCE_CNT * 3 + 1 + 677 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb)); 678 if (err) 679 res = err; 680 } 681 reiserfs_write_unlock(inode->i_sb); 682 kfree(allocated_blocks); 683 684 return res; 685} 686 687/* Unlock pages prepared by reiserfs_prepare_file_region_for_write */ 688static void reiserfs_unprepare_pages(struct page **prepared_pages, /* list of locked pages */ 689 size_t num_pages /* amount of pages */ ) 690{ 691 int i; // loop counter 692 693 for (i = 0; i < num_pages; i++) { 694 struct page *page = prepared_pages[i]; 695 696 try_to_free_buffers(page); 697 unlock_page(page); 698 page_cache_release(page); 699 } 700} 701 702/* This function will copy data from userspace to specified pages within 703 supplied byte range */ 704static int reiserfs_copy_from_user_to_file_region(loff_t pos, /* In-file position */ 705 int num_pages, /* Number of pages affected */ 706 int write_bytes, /* Amount of bytes to write */ 707 struct page **prepared_pages, /* pointer to 708 array to 709 prepared pages 710 */ 711 const char __user * buf /* Pointer to user-supplied 712 data */ 713 ) 714{ 715 long page_fault = 0; // status of copy_from_user. 716 int i; // loop counter. 717 int offset; // offset in page 718 719 for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages; 720 i++, offset = 0) { 721 size_t count = min_t(size_t, PAGE_CACHE_SIZE - offset, write_bytes); // How much of bytes to write to this page 722 struct page *page = prepared_pages[i]; // Current page we process. 723 724 fault_in_pages_readable(buf, count); 725 726 /* Copy data from userspace to the current page */ 727 kmap(page); 728 page_fault = __copy_from_user(page_address(page) + offset, buf, count); // Copy the data. 729 /* Flush processor's dcache for this page */ 730 flush_dcache_page(page); 731 kunmap(page); 732 buf += count; 733 write_bytes -= count; 734 735 if (page_fault) 736 break; // Was there a fault? abort. 737 } 738 739 return page_fault ? -EFAULT : 0; 740} 741 742/* taken fs/buffer.c:__block_commit_write */ 743int reiserfs_commit_page(struct inode *inode, struct page *page, 744 unsigned from, unsigned to) 745{ 746 unsigned block_start, block_end; 747 int partial = 0; 748 unsigned blocksize; 749 struct buffer_head *bh, *head; 750 unsigned long i_size_index = inode->i_size >> PAGE_CACHE_SHIFT; 751 int new; 752 int logit = reiserfs_file_data_log(inode); 753 struct super_block *s = inode->i_sb; 754 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize; 755 struct reiserfs_transaction_handle th; 756 int ret = 0; 757 758 th.t_trans_id = 0; 759 blocksize = 1 << inode->i_blkbits; 760 761 if (logit) { 762 reiserfs_write_lock(s); 763 ret = journal_begin(&th, s, bh_per_page + 1); 764 if (ret) 765 goto drop_write_lock; 766 reiserfs_update_inode_transaction(inode); 767 } 768 for (bh = head = page_buffers(page), block_start = 0; 769 bh != head || !block_start; 770 block_start = block_end, bh = bh->b_this_page) { 771 772 new = buffer_new(bh); 773 clear_buffer_new(bh); 774 block_end = block_start + blocksize; 775 if (block_end <= from || block_start >= to) { 776 if (!buffer_uptodate(bh)) 777 partial = 1; 778 } else { 779 set_buffer_uptodate(bh); 780 if (logit) { 781 reiserfs_prepare_for_journal(s, bh, 1); 782 journal_mark_dirty(&th, s, bh); 783 } else if (!buffer_dirty(bh)) { 784 mark_buffer_dirty(bh); 785 /* do data=ordered on any page past the end 786 * of file and any buffer marked BH_New. 787 */ 788 if (reiserfs_data_ordered(inode->i_sb) && 789 (new || page->index >= i_size_index)) { 790 reiserfs_add_ordered_list(inode, bh); 791 } 792 } 793 } 794 } 795 if (logit) { 796 ret = journal_end(&th, s, bh_per_page + 1); 797 drop_write_lock: 798 reiserfs_write_unlock(s); 799 } 800 /* 801 * If this is a partial write which happened to make all buffers 802 * uptodate then we can optimize away a bogus readpage() for 803 * the next read(). Here we 'discover' whether the page went 804 * uptodate as a result of this (potentially partial) write. 805 */ 806 if (!partial) 807 SetPageUptodate(page); 808 return ret; 809} 810 811/* Submit pages for write. This was separated from actual file copying 812 because we might want to allocate block numbers in-between. 813 This function assumes that caller will adjust file size to correct value. */ 814static int reiserfs_submit_file_region_for_write(struct reiserfs_transaction_handle *th, struct inode *inode, loff_t pos, /* Writing position offset */ 815 size_t num_pages, /* Number of pages to write */ 816 size_t write_bytes, /* number of bytes to write */ 817 struct page **prepared_pages /* list of pages */ 818 ) 819{ 820 int status; // return status of block_commit_write. 821 int retval = 0; // Return value we are going to return. 822 int i; // loop counter 823 int offset; // Writing offset in page. 824 int orig_write_bytes = write_bytes; 825 int sd_update = 0; 826 827 for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages; 828 i++, offset = 0) { 829 int count = min_t(int, PAGE_CACHE_SIZE - offset, write_bytes); // How much of bytes to write to this page 830 struct page *page = prepared_pages[i]; // Current page we process. 831 832 status = 833 reiserfs_commit_page(inode, page, offset, offset + count); 834 if (status) 835 retval = status; // To not overcomplicate matters We are going to 836 // submit all the pages even if there was error. 837 // we only remember error status to report it on 838 // exit. 839 write_bytes -= count; 840 } 841 /* now that we've gotten all the ordered buffers marked dirty, 842 * we can safely update i_size and close any running transaction 843 */ 844 if (pos + orig_write_bytes > inode->i_size) { 845 inode->i_size = pos + orig_write_bytes; // Set new size 846 /* If the file have grown so much that tail packing is no 847 * longer possible, reset "need to pack" flag */ 848 if ((have_large_tails(inode->i_sb) && 849 inode->i_size > i_block_size(inode) * 4) || 850 (have_small_tails(inode->i_sb) && 851 inode->i_size > i_block_size(inode))) 852 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 853 else if ((have_large_tails(inode->i_sb) && 854 inode->i_size < i_block_size(inode) * 4) || 855 (have_small_tails(inode->i_sb) && 856 inode->i_size < i_block_size(inode))) 857 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; 858 859 if (th->t_trans_id) { 860 reiserfs_write_lock(inode->i_sb); 861 // this sets the proper flags for O_SYNC to trigger a commit 862 mark_inode_dirty(inode); 863 reiserfs_write_unlock(inode->i_sb); 864 } else { 865 reiserfs_write_lock(inode->i_sb); 866 reiserfs_update_inode_transaction(inode); 867 mark_inode_dirty(inode); 868 reiserfs_write_unlock(inode->i_sb); 869 } 870 871 sd_update = 1; 872 } 873 if (th->t_trans_id) { 874 reiserfs_write_lock(inode->i_sb); 875 if (!sd_update) 876 mark_inode_dirty(inode); 877 status = journal_end(th, th->t_super, th->t_blocks_allocated); 878 if (status) 879 retval = status; 880 reiserfs_write_unlock(inode->i_sb); 881 } 882 th->t_trans_id = 0; 883 884 /* 885 * we have to unlock the pages after updating i_size, otherwise 886 * we race with writepage 887 */ 888 for (i = 0; i < num_pages; i++) { 889 struct page *page = prepared_pages[i]; 890 unlock_page(page); 891 mark_page_accessed(page); 892 page_cache_release(page); 893 } 894 return retval; 895} 896 897/* Look if passed writing region is going to touch file's tail 898 (if it is present). And if it is, convert the tail to unformatted node */ 899static int reiserfs_check_for_tail_and_convert(struct inode *inode, /* inode to deal with */ 900 loff_t pos, /* Writing position */ 901 int write_bytes /* amount of bytes to write */ 902 ) 903{ 904 INITIALIZE_PATH(path); // needed for search_for_position 905 struct cpu_key key; // Key that would represent last touched writing byte. 906 struct item_head *ih; // item header of found block; 907 int res; // Return value of various functions we call. 908 int cont_expand_offset; // We will put offset for generic_cont_expand here 909 // This can be int just because tails are created 910 // only for small files. 911 912/* this embodies a dependency on a particular tail policy */ 913 if (inode->i_size >= inode->i_sb->s_blocksize * 4) { 914 /* such a big files do not have tails, so we won't bother ourselves 915 to look for tails, simply return */ 916 return 0; 917 } 918 919 reiserfs_write_lock(inode->i_sb); 920 /* find the item containing the last byte to be written, or if 921 * writing past the end of the file then the last item of the 922 * file (and then we check its type). */ 923 make_cpu_key(&key, inode, pos + write_bytes + 1, TYPE_ANY, 924 3 /*key length */ ); 925 res = search_for_position_by_key(inode->i_sb, &key, &path); 926 if (res == IO_ERROR) { 927 reiserfs_write_unlock(inode->i_sb); 928 return -EIO; 929 } 930 ih = get_ih(&path); 931 res = 0; 932 if (is_direct_le_ih(ih)) { 933 /* Ok, closest item is file tail (tails are stored in "direct" 934 * items), so we need to unpack it. */ 935 /* To not overcomplicate matters, we just call generic_cont_expand 936 which will in turn call other stuff and finally will boil down to 937 reiserfs_get_block() that would do necessary conversion. */ 938 cont_expand_offset = 939 le_key_k_offset(get_inode_item_key_version(inode), 940 &(ih->ih_key)); 941 pathrelse(&path); 942 res = generic_cont_expand(inode, cont_expand_offset); 943 } else 944 pathrelse(&path); 945 946 reiserfs_write_unlock(inode->i_sb); 947 return res; 948} 949 950/* This function locks pages starting from @pos for @inode. 951 @num_pages pages are locked and stored in 952 @prepared_pages array. Also buffers are allocated for these pages. 953 First and last page of the region is read if it is overwritten only 954 partially. If last page did not exist before write (file hole or file 955 append), it is zeroed, then. 956 Returns number of unallocated blocks that should be allocated to cover 957 new file data.*/ 958static int reiserfs_prepare_file_region_for_write(struct inode *inode 959 /* Inode of the file */ , 960 loff_t pos, /* position in the file */ 961 size_t num_pages, /* number of pages to 962 prepare */ 963 size_t write_bytes, /* Amount of bytes to be 964 overwritten from 965 @pos */ 966 struct page **prepared_pages /* pointer to array 967 where to store 968 prepared pages */ 969 ) 970{ 971 int res = 0; // Return values of different functions we call. 972 unsigned long index = pos >> PAGE_CACHE_SHIFT; // Offset in file in pages. 973 int from = (pos & (PAGE_CACHE_SIZE - 1)); // Writing offset in first page 974 int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1; 975 /* offset of last modified byte in last 976 page */ 977 struct address_space *mapping = inode->i_mapping; // Pages are mapped here. 978 int i; // Simple counter 979 int blocks = 0; /* Return value (blocks that should be allocated) */ 980 struct buffer_head *bh, *head; // Current bufferhead and first bufferhead 981 // of a page. 982 unsigned block_start, block_end; // Starting and ending offsets of current 983 // buffer in the page. 984 struct buffer_head *wait[2], **wait_bh = wait; // Buffers for page, if 985 // Page appeared to be not up 986 // to date. Note how we have 987 // at most 2 buffers, this is 988 // because we at most may 989 // partially overwrite two 990 // buffers for one page. One at // the beginning of write area 991 // and one at the end. 992 // Everything inthe middle gets // overwritten totally. 993 994 struct cpu_key key; // cpu key of item that we are going to deal with 995 struct item_head *ih = NULL; // pointer to item head that we are going to deal with 996 struct buffer_head *itembuf = NULL; // Buffer head that contains items that we are going to deal with 997 INITIALIZE_PATH(path); // path to item, that we are going to deal with. 998 __le32 *item = NULL; // pointer to item we are going to deal with 999 int item_pos = -1; /* Position in indirect item */ 1000 1001 if (num_pages < 1) { 1002 reiserfs_warning(inode->i_sb, 1003 "green-9001: reiserfs_prepare_file_region_for_write " 1004 "called with zero number of pages to process"); 1005 return -EFAULT; 1006 } 1007 1008 /* We have 2 loops for pages. In first loop we grab and lock the pages, so 1009 that nobody would touch these until we release the pages. Then 1010 we'd start to deal with mapping buffers to blocks. */ 1011 for (i = 0; i < num_pages; i++) { 1012 prepared_pages[i] = grab_cache_page(mapping, index + i); // locks the page 1013 if (!prepared_pages[i]) { 1014 res = -ENOMEM; 1015 goto failed_page_grabbing; 1016 } 1017 if (!page_has_buffers(prepared_pages[i])) 1018 create_empty_buffers(prepared_pages[i], 1019 inode->i_sb->s_blocksize, 0); 1020 } 1021 1022 /* Let's count amount of blocks for a case where all the blocks 1023 overwritten are new (we will substract already allocated blocks later) */ 1024 if (num_pages > 2) 1025 /* These are full-overwritten pages so we count all the blocks in 1026 these pages are counted as needed to be allocated */ 1027 blocks = 1028 (num_pages - 2) << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1029 1030 /* count blocks needed for first page (possibly partially written) */ 1031 blocks += ((PAGE_CACHE_SIZE - from) >> inode->i_blkbits) + !!(from & (inode->i_sb->s_blocksize - 1)); /* roundup */ 1032 1033 /* Now we account for last page. If last page == first page (we 1034 overwrite only one page), we substract all the blocks past the 1035 last writing position in a page out of already calculated number 1036 of blocks */ 1037 blocks += ((num_pages > 1) << (PAGE_CACHE_SHIFT - inode->i_blkbits)) - 1038 ((PAGE_CACHE_SIZE - to) >> inode->i_blkbits); 1039 /* Note how we do not roundup here since partial blocks still 1040 should be allocated */ 1041 1042 /* Now if all the write area lies past the file end, no point in 1043 maping blocks, since there is none, so we just zero out remaining 1044 parts of first and last pages in write area (if needed) */ 1045 if ((pos & ~((loff_t) PAGE_CACHE_SIZE - 1)) > inode->i_size) { 1046 if (from != 0) { /* First page needs to be partially zeroed */ 1047 char *kaddr = kmap_atomic(prepared_pages[0], KM_USER0); 1048 memset(kaddr, 0, from); 1049 kunmap_atomic(kaddr, KM_USER0); 1050 } 1051 if (to != PAGE_CACHE_SIZE) { /* Last page needs to be partially zeroed */ 1052 char *kaddr = 1053 kmap_atomic(prepared_pages[num_pages - 1], 1054 KM_USER0); 1055 memset(kaddr + to, 0, PAGE_CACHE_SIZE - to); 1056 kunmap_atomic(kaddr, KM_USER0); 1057 } 1058 1059 /* Since all blocks are new - use already calculated value */ 1060 return blocks; 1061 } 1062 1063 /* Well, since we write somewhere into the middle of a file, there is 1064 possibility we are writing over some already allocated blocks, so 1065 let's map these blocks and substract number of such blocks out of blocks 1066 we need to allocate (calculated above) */ 1067 /* Mask write position to start on blocksize, we do it out of the 1068 loop for performance reasons */ 1069 pos &= ~((loff_t) inode->i_sb->s_blocksize - 1); 1070 /* Set cpu key to the starting position in a file (on left block boundary) */ 1071 make_cpu_key(&key, inode, 1072 1 + ((pos) & ~((loff_t) inode->i_sb->s_blocksize - 1)), 1073 TYPE_ANY, 3 /*key length */ ); 1074 1075 reiserfs_write_lock(inode->i_sb); // We need that for at least search_by_key() 1076 for (i = 0; i < num_pages; i++) { 1077 1078 head = page_buffers(prepared_pages[i]); 1079 /* For each buffer in the page */ 1080 for (bh = head, block_start = 0; bh != head || !block_start; 1081 block_start = block_end, bh = bh->b_this_page) { 1082 if (!bh) 1083 reiserfs_panic(inode->i_sb, 1084 "green-9002: Allocated but absent buffer for a page?"); 1085 /* Find where this buffer ends */ 1086 block_end = block_start + inode->i_sb->s_blocksize; 1087 if (i == 0 && block_end <= from) 1088 /* if this buffer is before requested data to map, skip it */ 1089 continue; 1090 1091 if (i == num_pages - 1 && block_start >= to) { 1092 /* If this buffer is after requested data to map, abort 1093 processing of current page */ 1094 break; 1095 } 1096 1097 if (buffer_mapped(bh) && bh->b_blocknr != 0) { 1098 /* This is optimisation for a case where buffer is mapped 1099 and have blocknumber assigned. In case significant amount 1100 of such buffers are present, we may avoid some amount 1101 of search_by_key calls. 1102 Probably it would be possible to move parts of this code 1103 out of BKL, but I afraid that would overcomplicate code 1104 without any noticeable benefit. 1105 */ 1106 item_pos++; 1107 /* Update the key */ 1108 set_cpu_key_k_offset(&key, 1109 cpu_key_k_offset(&key) + 1110 inode->i_sb->s_blocksize); 1111 blocks--; // Decrease the amount of blocks that need to be 1112 // allocated 1113 continue; // Go to the next buffer 1114 } 1115 1116 if (!itembuf || /* if first iteration */ 1117 item_pos >= ih_item_len(ih) / UNFM_P_SIZE) { /* or if we progressed past the 1118 current unformatted_item */ 1119 /* Try to find next item */ 1120 res = 1121 search_for_position_by_key(inode->i_sb, 1122 &key, &path); 1123 /* Abort if no more items */ 1124 if (res != POSITION_FOUND) { 1125 /* make sure later loops don't use this item */ 1126 itembuf = NULL; 1127 item = NULL; 1128 break; 1129 } 1130 1131 /* Update information about current indirect item */ 1132 itembuf = get_last_bh(&path); 1133 ih = get_ih(&path); 1134 item = get_item(&path); 1135 item_pos = path.pos_in_item; 1136 1137 RFALSE(!is_indirect_le_ih(ih), 1138 "green-9003: indirect item expected"); 1139 } 1140 1141 /* See if there is some block associated with the file 1142 at that position, map the buffer to this block */ 1143 if (get_block_num(item, item_pos)) { 1144 map_bh(bh, inode->i_sb, 1145 get_block_num(item, item_pos)); 1146 blocks--; // Decrease the amount of blocks that need to be 1147 // allocated 1148 } 1149 item_pos++; 1150 /* Update the key */ 1151 set_cpu_key_k_offset(&key, 1152 cpu_key_k_offset(&key) + 1153 inode->i_sb->s_blocksize); 1154 } 1155 } 1156 pathrelse(&path); // Free the path 1157 reiserfs_write_unlock(inode->i_sb); 1158 1159 /* Now zero out unmappend buffers for the first and last pages of 1160 write area or issue read requests if page is mapped. */ 1161 /* First page, see if it is not uptodate */ 1162 if (!PageUptodate(prepared_pages[0])) { 1163 head = page_buffers(prepared_pages[0]); 1164 1165 /* For each buffer in page */ 1166 for (bh = head, block_start = 0; bh != head || !block_start; 1167 block_start = block_end, bh = bh->b_this_page) { 1168 1169 if (!bh) 1170 reiserfs_panic(inode->i_sb, 1171 "green-9002: Allocated but absent buffer for a page?"); 1172 /* Find where this buffer ends */ 1173 block_end = block_start + inode->i_sb->s_blocksize; 1174 if (block_end <= from) 1175 /* if this buffer is before requested data to map, skip it */ 1176 continue; 1177 if (block_start < from) { /* Aha, our partial buffer */ 1178 if (buffer_mapped(bh)) { /* If it is mapped, we need to 1179 issue READ request for it to 1180 not loose data */ 1181 ll_rw_block(READ, 1, &bh); 1182 *wait_bh++ = bh; 1183 } else { /* Not mapped, zero it */ 1184 char *kaddr = 1185 kmap_atomic(prepared_pages[0], 1186 KM_USER0); 1187 memset(kaddr + block_start, 0, 1188 from - block_start); 1189 kunmap_atomic(kaddr, KM_USER0); 1190 set_buffer_uptodate(bh); 1191 } 1192 } 1193 } 1194 } 1195 1196 /* Last page, see if it is not uptodate, or if the last page is past the end of the file. */ 1197 if (!PageUptodate(prepared_pages[num_pages - 1]) || 1198 ((pos + write_bytes) >> PAGE_CACHE_SHIFT) > 1199 (inode->i_size >> PAGE_CACHE_SHIFT)) { 1200 head = page_buffers(prepared_pages[num_pages - 1]); 1201 1202 /* for each buffer in page */ 1203 for (bh = head, block_start = 0; bh != head || !block_start; 1204 block_start = block_end, bh = bh->b_this_page) { 1205 1206 if (!bh) 1207 reiserfs_panic(inode->i_sb, 1208 "green-9002: Allocated but absent buffer for a page?"); 1209 /* Find where this buffer ends */ 1210 block_end = block_start + inode->i_sb->s_blocksize; 1211 if (block_start >= to) 1212 /* if this buffer is after requested data to map, skip it */ 1213 break; 1214 if (block_end > to) { /* Aha, our partial buffer */ 1215 if (buffer_mapped(bh)) { /* If it is mapped, we need to 1216 issue READ request for it to 1217 not loose data */ 1218 ll_rw_block(READ, 1, &bh); 1219 *wait_bh++ = bh; 1220 } else { /* Not mapped, zero it */ 1221 char *kaddr = 1222 kmap_atomic(prepared_pages 1223 [num_pages - 1], 1224 KM_USER0); 1225 memset(kaddr + to, 0, block_end - to); 1226 kunmap_atomic(kaddr, KM_USER0); 1227 set_buffer_uptodate(bh); 1228 } 1229 } 1230 } 1231 } 1232 1233 /* Wait for read requests we made to happen, if necessary */ 1234 while (wait_bh > wait) { 1235 wait_on_buffer(*--wait_bh); 1236 if (!buffer_uptodate(*wait_bh)) { 1237 res = -EIO; 1238 goto failed_read; 1239 } 1240 } 1241 1242 return blocks; 1243 failed_page_grabbing: 1244 num_pages = i; 1245 failed_read: 1246 reiserfs_unprepare_pages(prepared_pages, num_pages); 1247 return res; 1248} 1249 1250/* Write @count bytes at position @ppos in a file indicated by @file 1251 from the buffer @buf. 1252 1253 generic_file_write() is only appropriate for filesystems that are not seeking to optimize performance and want 1254 something simple that works. It is not for serious use by general purpose filesystems, excepting the one that it was 1255 written for (ext2/3). This is for several reasons: 1256 1257 * It has no understanding of any filesystem specific optimizations. 1258 1259 * It enters the filesystem repeatedly for each page that is written. 1260 1261 * It depends on reiserfs_get_block() function which if implemented by reiserfs performs costly search_by_key 1262 * operation for each page it is supplied with. By contrast reiserfs_file_write() feeds as much as possible at a time 1263 * to reiserfs which allows for fewer tree traversals. 1264 1265 * Each indirect pointer insertion takes a lot of cpu, because it involves memory moves inside of blocks. 1266 1267 * Asking the block allocation code for blocks one at a time is slightly less efficient. 1268 1269 All of these reasons for not using only generic file write were understood back when reiserfs was first miscoded to 1270 use it, but we were in a hurry to make code freeze, and so it couldn't be revised then. This new code should make 1271 things right finally. 1272 1273 Future Features: providing search_by_key with hints. 1274 1275*/ 1276static ssize_t reiserfs_file_write(struct file *file, /* the file we are going to write into */ 1277 const char __user * buf, /* pointer to user supplied data 1278 (in userspace) */ 1279 size_t count, /* amount of bytes to write */ 1280 loff_t * ppos /* pointer to position in file that we start writing at. Should be updated to 1281 * new current position before returning. */ 1282 ) 1283{ 1284 size_t already_written = 0; // Number of bytes already written to the file. 1285 loff_t pos; // Current position in the file. 1286 ssize_t res; // return value of various functions that we call. 1287 int err = 0; 1288 struct inode *inode = file->f_dentry->d_inode; // Inode of the file that we are writing to. 1289 /* To simplify coding at this time, we store 1290 locked pages in array for now */ 1291 struct page *prepared_pages[REISERFS_WRITE_PAGES_AT_A_TIME]; 1292 struct reiserfs_transaction_handle th; 1293 th.t_trans_id = 0; 1294 1295 /* If a filesystem is converted from 3.5 to 3.6, we'll have v3.5 items 1296 * lying around (most of the disk, in fact). Despite the filesystem 1297 * now being a v3.6 format, the old items still can't support large 1298 * file sizes. Catch this case here, as the rest of the VFS layer is 1299 * oblivious to the different limitations between old and new items. 1300 * reiserfs_setattr catches this for truncates. This chunk is lifted 1301 * from generic_write_checks. */ 1302 if (get_inode_item_key_version (inode) == KEY_FORMAT_3_5 && 1303 *ppos + count > MAX_NON_LFS) { 1304 if (*ppos >= MAX_NON_LFS) { 1305 send_sig(SIGXFSZ, current, 0); 1306 return -EFBIG; 1307 } 1308 if (count > MAX_NON_LFS - (unsigned long)*ppos) 1309 count = MAX_NON_LFS - (unsigned long)*ppos; 1310 } 1311 1312 if (file->f_flags & O_DIRECT) { // Direct IO needs treatment 1313 ssize_t result, after_file_end = 0; 1314 if ((*ppos + count >= inode->i_size) 1315 || (file->f_flags & O_APPEND)) { 1316 /* If we are appending a file, we need to put this savelink in here. 1317 If we will crash while doing direct io, finish_unfinished will 1318 cut the garbage from the file end. */ 1319 reiserfs_write_lock(inode->i_sb); 1320 err = 1321 journal_begin(&th, inode->i_sb, 1322 JOURNAL_PER_BALANCE_CNT); 1323 if (err) { 1324 reiserfs_write_unlock(inode->i_sb); 1325 return err; 1326 } 1327 reiserfs_update_inode_transaction(inode); 1328 add_save_link(&th, inode, 1 /* Truncate */ ); 1329 after_file_end = 1; 1330 err = 1331 journal_end(&th, inode->i_sb, 1332 JOURNAL_PER_BALANCE_CNT); 1333 reiserfs_write_unlock(inode->i_sb); 1334 if (err) 1335 return err; 1336 } 1337 result = do_sync_write(file, buf, count, ppos); 1338 1339 if (after_file_end) { /* Now update i_size and remove the savelink */ 1340 struct reiserfs_transaction_handle th; 1341 reiserfs_write_lock(inode->i_sb); 1342 err = journal_begin(&th, inode->i_sb, 1); 1343 if (err) { 1344 reiserfs_write_unlock(inode->i_sb); 1345 return err; 1346 } 1347 reiserfs_update_inode_transaction(inode); 1348 mark_inode_dirty(inode); 1349 err = journal_end(&th, inode->i_sb, 1); 1350 if (err) { 1351 reiserfs_write_unlock(inode->i_sb); 1352 return err; 1353 } 1354 err = remove_save_link(inode, 1 /* truncate */ ); 1355 reiserfs_write_unlock(inode->i_sb); 1356 if (err) 1357 return err; 1358 } 1359 1360 return result; 1361 } 1362 1363 if (unlikely((ssize_t) count < 0)) 1364 return -EINVAL; 1365 1366 if (unlikely(!access_ok(VERIFY_READ, buf, count))) 1367 return -EFAULT; 1368 1369 mutex_lock(&inode->i_mutex); // locks the entire file for just us 1370 1371 pos = *ppos; 1372 1373 /* Check if we can write to specified region of file, file 1374 is not overly big and this kind of stuff. Adjust pos and 1375 count, if needed */ 1376 res = generic_write_checks(file, &pos, &count, 0); 1377 if (res) 1378 goto out; 1379 1380 if (count == 0) 1381 goto out; 1382 1383 res = remove_suid(file->f_dentry); 1384 if (res) 1385 goto out; 1386 1387 file_update_time(file); 1388 1389 // Ok, we are done with all the checks. 1390 1391 // Now we should start real work 1392 1393 /* If we are going to write past the file's packed tail or if we are going 1394 to overwrite part of the tail, we need that tail to be converted into 1395 unformatted node */ 1396 res = reiserfs_check_for_tail_and_convert(inode, pos, count); 1397 if (res) 1398 goto out; 1399 1400 while (count > 0) { 1401 /* This is the main loop in which we running until some error occures 1402 or until we write all of the data. */ 1403 size_t num_pages; /* amount of pages we are going to write this iteration */ 1404 size_t write_bytes; /* amount of bytes to write during this iteration */ 1405 size_t blocks_to_allocate; /* how much blocks we need to allocate for this iteration */ 1406 1407 /* (pos & (PAGE_CACHE_SIZE-1)) is an idiom for offset into a page of pos */ 1408 num_pages = !!((pos + count) & (PAGE_CACHE_SIZE - 1)) + /* round up partial 1409 pages */ 1410 ((count + 1411 (pos & (PAGE_CACHE_SIZE - 1))) >> PAGE_CACHE_SHIFT); 1412 /* convert size to amount of 1413 pages */ 1414 reiserfs_write_lock(inode->i_sb); 1415 if (num_pages > REISERFS_WRITE_PAGES_AT_A_TIME 1416 || num_pages > reiserfs_can_fit_pages(inode->i_sb)) { 1417 /* If we were asked to write more data than we want to or if there 1418 is not that much space, then we shorten amount of data to write 1419 for this iteration. */ 1420 num_pages = 1421 min_t(size_t, REISERFS_WRITE_PAGES_AT_A_TIME, 1422 reiserfs_can_fit_pages(inode->i_sb)); 1423 /* Also we should not forget to set size in bytes accordingly */ 1424 write_bytes = (num_pages << PAGE_CACHE_SHIFT) - 1425 (pos & (PAGE_CACHE_SIZE - 1)); 1426 /* If position is not on the 1427 start of the page, we need 1428 to substract the offset 1429 within page */ 1430 } else 1431 write_bytes = count; 1432 1433 /* reserve the blocks to be allocated later, so that later on 1434 we still have the space to write the blocks to */ 1435 reiserfs_claim_blocks_to_be_allocated(inode->i_sb, 1436 num_pages << 1437 (PAGE_CACHE_SHIFT - 1438 inode->i_blkbits)); 1439 reiserfs_write_unlock(inode->i_sb); 1440 1441 if (!num_pages) { /* If we do not have enough space even for a single page... */ 1442 if (pos > 1443 inode->i_size + inode->i_sb->s_blocksize - 1444 (pos & (inode->i_sb->s_blocksize - 1))) { 1445 res = -ENOSPC; 1446 break; // In case we are writing past the end of the last file block, break. 1447 } 1448 // Otherwise we are possibly overwriting the file, so 1449 // let's set write size to be equal or less than blocksize. 1450 // This way we get it correctly for file holes. 1451 // But overwriting files on absolutelly full volumes would not 1452 // be very efficient. Well, people are not supposed to fill 1453 // 100% of disk space anyway. 1454 write_bytes = 1455 min_t(size_t, count, 1456 inode->i_sb->s_blocksize - 1457 (pos & (inode->i_sb->s_blocksize - 1))); 1458 num_pages = 1; 1459 // No blocks were claimed before, so do it now. 1460 reiserfs_claim_blocks_to_be_allocated(inode->i_sb, 1461 1 << 1462 (PAGE_CACHE_SHIFT 1463 - 1464 inode-> 1465 i_blkbits)); 1466 } 1467 1468 /* Prepare for writing into the region, read in all the 1469 partially overwritten pages, if needed. And lock the pages, 1470 so that nobody else can access these until we are done. 1471 We get number of actual blocks needed as a result. */ 1472 res = reiserfs_prepare_file_region_for_write(inode, pos, 1473 num_pages, 1474 write_bytes, 1475 prepared_pages); 1476 if (res < 0) { 1477 reiserfs_release_claimed_blocks(inode->i_sb, 1478 num_pages << 1479 (PAGE_CACHE_SHIFT - 1480 inode->i_blkbits)); 1481 break; 1482 } 1483 1484 blocks_to_allocate = res; 1485 1486 /* First we correct our estimate of how many blocks we need */ 1487 reiserfs_release_claimed_blocks(inode->i_sb, 1488 (num_pages << 1489 (PAGE_CACHE_SHIFT - 1490 inode->i_sb-> 1491 s_blocksize_bits)) - 1492 blocks_to_allocate); 1493 1494 if (blocks_to_allocate > 0) { /*We only allocate blocks if we need to */ 1495 /* Fill in all the possible holes and append the file if needed */ 1496 res = 1497 reiserfs_allocate_blocks_for_region(&th, inode, pos, 1498 num_pages, 1499 write_bytes, 1500 prepared_pages, 1501 blocks_to_allocate); 1502 } 1503 1504 /* well, we have allocated the blocks, so it is time to free 1505 the reservation we made earlier. */ 1506 reiserfs_release_claimed_blocks(inode->i_sb, 1507 blocks_to_allocate); 1508 if (res) { 1509 reiserfs_unprepare_pages(prepared_pages, num_pages); 1510 break; 1511 } 1512 1513/* NOTE that allocating blocks and filling blocks can be done in reverse order 1514 and probably we would do that just to get rid of garbage in files after a 1515 crash */ 1516 1517 /* Copy data from user-supplied buffer to file's pages */ 1518 res = 1519 reiserfs_copy_from_user_to_file_region(pos, num_pages, 1520 write_bytes, 1521 prepared_pages, buf); 1522 if (res) { 1523 reiserfs_unprepare_pages(prepared_pages, num_pages); 1524 break; 1525 } 1526 1527 /* Send the pages to disk and unlock them. */ 1528 res = 1529 reiserfs_submit_file_region_for_write(&th, inode, pos, 1530 num_pages, 1531 write_bytes, 1532 prepared_pages); 1533 if (res) 1534 break; 1535 1536 already_written += write_bytes; 1537 buf += write_bytes; 1538 *ppos = pos += write_bytes; 1539 count -= write_bytes; 1540 balance_dirty_pages_ratelimited_nr(inode->i_mapping, num_pages); 1541 } 1542 1543 /* this is only true on error */ 1544 if (th.t_trans_id) { 1545 reiserfs_write_lock(inode->i_sb); 1546 err = journal_end(&th, th.t_super, th.t_blocks_allocated); 1547 reiserfs_write_unlock(inode->i_sb); 1548 if (err) { 1549 res = err; 1550 goto out; 1551 } 1552 } 1553 1554 if (likely(res >= 0) && 1555 (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode)))) 1556 res = generic_osync_inode(inode, file->f_mapping, 1557 OSYNC_METADATA | OSYNC_DATA); 1558 1559 mutex_unlock(&inode->i_mutex); 1560 reiserfs_async_progress_wait(inode->i_sb); 1561 return (already_written != 0) ? already_written : res; 1562 1563 out: 1564 mutex_unlock(&inode->i_mutex); // unlock the file on exit. 1565 return res; 1566} 1567 1568const struct file_operations reiserfs_file_operations = { 1569 .read = do_sync_read, 1570 .write = reiserfs_file_write, 1571 .ioctl = reiserfs_ioctl, 1572#ifdef CONFIG_COMPAT 1573 .compat_ioctl = reiserfs_compat_ioctl, 1574#endif 1575 .mmap = generic_file_mmap, 1576 .open = generic_file_open, 1577 .release = reiserfs_file_release, 1578 .fsync = reiserfs_sync_file, 1579 .sendfile = generic_file_sendfile, 1580 .aio_read = generic_file_aio_read, 1581 .aio_write = generic_file_aio_write, 1582 .splice_read = generic_file_splice_read, 1583 .splice_write = generic_file_splice_write, 1584}; 1585 1586struct inode_operations reiserfs_file_inode_operations = { 1587 .truncate = reiserfs_vfs_truncate_file, 1588 .setattr = reiserfs_setattr, 1589 .setxattr = reiserfs_setxattr, 1590 .getxattr = reiserfs_getxattr, 1591 .listxattr = reiserfs_listxattr, 1592 .removexattr = reiserfs_removexattr, 1593 .permission = reiserfs_permission, 1594}; 1595