file.c revision 5274f052e7b3dbd81935772eb551dfd0325dfa9d
1/* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5#include <linux/time.h> 6#include <linux/reiserfs_fs.h> 7#include <linux/reiserfs_acl.h> 8#include <linux/reiserfs_xattr.h> 9#include <linux/smp_lock.h> 10#include <asm/uaccess.h> 11#include <linux/pagemap.h> 12#include <linux/swap.h> 13#include <linux/writeback.h> 14#include <linux/blkdev.h> 15#include <linux/buffer_head.h> 16#include <linux/quotaops.h> 17 18/* 19** We pack the tails of files on file close, not at the time they are written. 20** This implies an unnecessary copy of the tail and an unnecessary indirect item 21** insertion/balancing, for files that are written in one write. 22** It avoids unnecessary tail packings (balances) for files that are written in 23** multiple writes and are small enough to have tails. 24** 25** file_release is called by the VFS layer when the file is closed. If 26** this is the last open file descriptor, and the file 27** small enough to have a tail, and the tail is currently in an 28** unformatted node, the tail is converted back into a direct item. 29** 30** We use reiserfs_truncate_file to pack the tail, since it already has 31** all the conditions coded. 32*/ 33static int reiserfs_file_release(struct inode *inode, struct file *filp) 34{ 35 36 struct reiserfs_transaction_handle th; 37 int err; 38 int jbegin_failure = 0; 39 40 if (!S_ISREG(inode->i_mode)) 41 BUG(); 42 43 /* fast out for when nothing needs to be done */ 44 if ((atomic_read(&inode->i_count) > 1 || 45 !(REISERFS_I(inode)->i_flags & i_pack_on_close_mask) || 46 !tail_has_to_be_packed(inode)) && 47 REISERFS_I(inode)->i_prealloc_count <= 0) { 48 return 0; 49 } 50 51 reiserfs_write_lock(inode->i_sb); 52 mutex_lock(&inode->i_mutex); 53 /* freeing preallocation only involves relogging blocks that 54 * are already in the current transaction. preallocation gets 55 * freed at the end of each transaction, so it is impossible for 56 * us to log any additional blocks (including quota blocks) 57 */ 58 err = journal_begin(&th, inode->i_sb, 1); 59 if (err) { 60 /* uh oh, we can't allow the inode to go away while there 61 * is still preallocation blocks pending. Try to join the 62 * aborted transaction 63 */ 64 jbegin_failure = err; 65 err = journal_join_abort(&th, inode->i_sb, 1); 66 67 if (err) { 68 /* hmpf, our choices here aren't good. We can pin the inode 69 * which will disallow unmount from every happening, we can 70 * do nothing, which will corrupt random memory on unmount, 71 * or we can forcibly remove the file from the preallocation 72 * list, which will leak blocks on disk. Lets pin the inode 73 * and let the admin know what is going on. 74 */ 75 igrab(inode); 76 reiserfs_warning(inode->i_sb, 77 "pinning inode %lu because the " 78 "preallocation can't be freed"); 79 goto out; 80 } 81 } 82 reiserfs_update_inode_transaction(inode); 83 84#ifdef REISERFS_PREALLOCATE 85 reiserfs_discard_prealloc(&th, inode); 86#endif 87 err = journal_end(&th, inode->i_sb, 1); 88 89 /* copy back the error code from journal_begin */ 90 if (!err) 91 err = jbegin_failure; 92 93 if (!err && atomic_read(&inode->i_count) <= 1 && 94 (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) && 95 tail_has_to_be_packed(inode)) { 96 /* if regular file is released by last holder and it has been 97 appended (we append by unformatted node only) or its direct 98 item(s) had to be converted, then it may have to be 99 indirect2direct converted */ 100 err = reiserfs_truncate_file(inode, 0); 101 } 102 out: 103 mutex_unlock(&inode->i_mutex); 104 reiserfs_write_unlock(inode->i_sb); 105 return err; 106} 107 108static void reiserfs_vfs_truncate_file(struct inode *inode) 109{ 110 reiserfs_truncate_file(inode, 1); 111} 112 113/* Sync a reiserfs file. */ 114 115/* 116 * FIXME: sync_mapping_buffers() never has anything to sync. Can 117 * be removed... 118 */ 119 120static int reiserfs_sync_file(struct file *p_s_filp, 121 struct dentry *p_s_dentry, int datasync) 122{ 123 struct inode *p_s_inode = p_s_dentry->d_inode; 124 int n_err; 125 int barrier_done; 126 127 if (!S_ISREG(p_s_inode->i_mode)) 128 BUG(); 129 n_err = sync_mapping_buffers(p_s_inode->i_mapping); 130 reiserfs_write_lock(p_s_inode->i_sb); 131 barrier_done = reiserfs_commit_for_inode(p_s_inode); 132 reiserfs_write_unlock(p_s_inode->i_sb); 133 if (barrier_done != 1) 134 blkdev_issue_flush(p_s_inode->i_sb->s_bdev, NULL); 135 if (barrier_done < 0) 136 return barrier_done; 137 return (n_err < 0) ? -EIO : 0; 138} 139 140/* I really do not want to play with memory shortage right now, so 141 to simplify the code, we are not going to write more than this much pages at 142 a time. This still should considerably improve performance compared to 4k 143 at a time case. This is 32 pages of 4k size. */ 144#define REISERFS_WRITE_PAGES_AT_A_TIME (128 * 1024) / PAGE_CACHE_SIZE 145 146/* Allocates blocks for a file to fulfil write request. 147 Maps all unmapped but prepared pages from the list. 148 Updates metadata with newly allocated blocknumbers as needed */ 149static int reiserfs_allocate_blocks_for_region(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode we work with */ 150 loff_t pos, /* Writing position */ 151 int num_pages, /* number of pages write going 152 to touch */ 153 int write_bytes, /* amount of bytes to write */ 154 struct page **prepared_pages, /* array of 155 prepared pages 156 */ 157 int blocks_to_allocate /* Amount of blocks we 158 need to allocate to 159 fit the data into file 160 */ 161 ) 162{ 163 struct cpu_key key; // cpu key of item that we are going to deal with 164 struct item_head *ih; // pointer to item head that we are going to deal with 165 struct buffer_head *bh; // Buffer head that contains items that we are going to deal with 166 __le32 *item; // pointer to item we are going to deal with 167 INITIALIZE_PATH(path); // path to item, that we are going to deal with. 168 b_blocknr_t *allocated_blocks; // Pointer to a place where allocated blocknumbers would be stored. 169 reiserfs_blocknr_hint_t hint; // hint structure for block allocator. 170 size_t res; // return value of various functions that we call. 171 int curr_block; // current block used to keep track of unmapped blocks. 172 int i; // loop counter 173 int itempos; // position in item 174 unsigned int from = (pos & (PAGE_CACHE_SIZE - 1)); // writing position in 175 // first page 176 unsigned int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1; /* last modified byte offset in last page */ 177 __u64 hole_size; // amount of blocks for a file hole, if it needed to be created. 178 int modifying_this_item = 0; // Flag for items traversal code to keep track 179 // of the fact that we already prepared 180 // current block for journal 181 int will_prealloc = 0; 182 RFALSE(!blocks_to_allocate, 183 "green-9004: tried to allocate zero blocks?"); 184 185 /* only preallocate if this is a small write */ 186 if (REISERFS_I(inode)->i_prealloc_count || 187 (!(write_bytes & (inode->i_sb->s_blocksize - 1)) && 188 blocks_to_allocate < 189 REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize)) 190 will_prealloc = 191 REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize; 192 193 allocated_blocks = kmalloc((blocks_to_allocate + will_prealloc) * 194 sizeof(b_blocknr_t), GFP_NOFS); 195 if (!allocated_blocks) 196 return -ENOMEM; 197 198 /* First we compose a key to point at the writing position, we want to do 199 that outside of any locking region. */ 200 make_cpu_key(&key, inode, pos + 1, TYPE_ANY, 3 /*key length */ ); 201 202 /* If we came here, it means we absolutely need to open a transaction, 203 since we need to allocate some blocks */ 204 reiserfs_write_lock(inode->i_sb); // Journaling stuff and we need that. 205 res = journal_begin(th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 3 + 1 + 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb)); // Wish I know if this number enough 206 if (res) 207 goto error_exit; 208 reiserfs_update_inode_transaction(inode); 209 210 /* Look for the in-tree position of our write, need path for block allocator */ 211 res = search_for_position_by_key(inode->i_sb, &key, &path); 212 if (res == IO_ERROR) { 213 res = -EIO; 214 goto error_exit; 215 } 216 217 /* Allocate blocks */ 218 /* First fill in "hint" structure for block allocator */ 219 hint.th = th; // transaction handle. 220 hint.path = &path; // Path, so that block allocator can determine packing locality or whatever it needs to determine. 221 hint.inode = inode; // Inode is needed by block allocator too. 222 hint.search_start = 0; // We have no hint on where to search free blocks for block allocator. 223 hint.key = key.on_disk_key; // on disk key of file. 224 hint.block = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); // Number of disk blocks this file occupies already. 225 hint.formatted_node = 0; // We are allocating blocks for unformatted node. 226 hint.preallocate = will_prealloc; 227 228 /* Call block allocator to allocate blocks */ 229 res = 230 reiserfs_allocate_blocknrs(&hint, allocated_blocks, 231 blocks_to_allocate, blocks_to_allocate); 232 if (res != CARRY_ON) { 233 if (res == NO_DISK_SPACE) { 234 /* We flush the transaction in case of no space. This way some 235 blocks might become free */ 236 SB_JOURNAL(inode->i_sb)->j_must_wait = 1; 237 res = restart_transaction(th, inode, &path); 238 if (res) 239 goto error_exit; 240 241 /* We might have scheduled, so search again */ 242 res = 243 search_for_position_by_key(inode->i_sb, &key, 244 &path); 245 if (res == IO_ERROR) { 246 res = -EIO; 247 goto error_exit; 248 } 249 250 /* update changed info for hint structure. */ 251 res = 252 reiserfs_allocate_blocknrs(&hint, allocated_blocks, 253 blocks_to_allocate, 254 blocks_to_allocate); 255 if (res != CARRY_ON) { 256 res = res == QUOTA_EXCEEDED ? -EDQUOT : -ENOSPC; 257 pathrelse(&path); 258 goto error_exit; 259 } 260 } else { 261 res = res == QUOTA_EXCEEDED ? -EDQUOT : -ENOSPC; 262 pathrelse(&path); 263 goto error_exit; 264 } 265 } 266#ifdef __BIG_ENDIAN 267 // Too bad, I have not found any way to convert a given region from 268 // cpu format to little endian format 269 { 270 int i; 271 for (i = 0; i < blocks_to_allocate; i++) 272 allocated_blocks[i] = cpu_to_le32(allocated_blocks[i]); 273 } 274#endif 275 276 /* Blocks allocating well might have scheduled and tree might have changed, 277 let's search the tree again */ 278 /* find where in the tree our write should go */ 279 res = search_for_position_by_key(inode->i_sb, &key, &path); 280 if (res == IO_ERROR) { 281 res = -EIO; 282 goto error_exit_free_blocks; 283 } 284 285 bh = get_last_bh(&path); // Get a bufferhead for last element in path. 286 ih = get_ih(&path); // Get a pointer to last item head in path. 287 item = get_item(&path); // Get a pointer to last item in path 288 289 /* Let's see what we have found */ 290 if (res != POSITION_FOUND) { /* position not found, this means that we 291 might need to append file with holes 292 first */ 293 // Since we are writing past the file's end, we need to find out if 294 // there is a hole that needs to be inserted before our writing 295 // position, and how many blocks it is going to cover (we need to 296 // populate pointers to file blocks representing the hole with zeros) 297 298 { 299 int item_offset = 1; 300 /* 301 * if ih is stat data, its offset is 0 and we don't want to 302 * add 1 to pos in the hole_size calculation 303 */ 304 if (is_statdata_le_ih(ih)) 305 item_offset = 0; 306 hole_size = (pos + item_offset - 307 (le_key_k_offset 308 (get_inode_item_key_version(inode), 309 &(ih->ih_key)) + op_bytes_number(ih, 310 inode-> 311 i_sb-> 312 s_blocksize))) 313 >> inode->i_sb->s_blocksize_bits; 314 } 315 316 if (hole_size > 0) { 317 int to_paste = min_t(__u64, hole_size, MAX_ITEM_LEN(inode->i_sb->s_blocksize) / UNFM_P_SIZE); // How much data to insert first time. 318 /* area filled with zeroes, to supply as list of zero blocknumbers 319 We allocate it outside of loop just in case loop would spin for 320 several iterations. */ 321 char *zeros = kmalloc(to_paste * UNFM_P_SIZE, GFP_ATOMIC); // We cannot insert more than MAX_ITEM_LEN bytes anyway. 322 if (!zeros) { 323 res = -ENOMEM; 324 goto error_exit_free_blocks; 325 } 326 memset(zeros, 0, to_paste * UNFM_P_SIZE); 327 do { 328 to_paste = 329 min_t(__u64, hole_size, 330 MAX_ITEM_LEN(inode->i_sb-> 331 s_blocksize) / 332 UNFM_P_SIZE); 333 if (is_indirect_le_ih(ih)) { 334 /* Ok, there is existing indirect item already. Need to append it */ 335 /* Calculate position past inserted item */ 336 make_cpu_key(&key, inode, 337 le_key_k_offset 338 (get_inode_item_key_version 339 (inode), 340 &(ih->ih_key)) + 341 op_bytes_number(ih, 342 inode-> 343 i_sb-> 344 s_blocksize), 345 TYPE_INDIRECT, 3); 346 res = 347 reiserfs_paste_into_item(th, &path, 348 &key, 349 inode, 350 (char *) 351 zeros, 352 UNFM_P_SIZE 353 * 354 to_paste); 355 if (res) { 356 kfree(zeros); 357 goto error_exit_free_blocks; 358 } 359 } else if (is_statdata_le_ih(ih)) { 360 /* No existing item, create it */ 361 /* item head for new item */ 362 struct item_head ins_ih; 363 364 /* create a key for our new item */ 365 make_cpu_key(&key, inode, 1, 366 TYPE_INDIRECT, 3); 367 368 /* Create new item head for our new item */ 369 make_le_item_head(&ins_ih, &key, 370 key.version, 1, 371 TYPE_INDIRECT, 372 to_paste * 373 UNFM_P_SIZE, 374 0 /* free space */ ); 375 376 /* Find where such item should live in the tree */ 377 res = 378 search_item(inode->i_sb, &key, 379 &path); 380 if (res != ITEM_NOT_FOUND) { 381 /* item should not exist, otherwise we have error */ 382 if (res != -ENOSPC) { 383 reiserfs_warning(inode-> 384 i_sb, 385 "green-9008: search_by_key (%K) returned %d", 386 &key, 387 res); 388 } 389 res = -EIO; 390 kfree(zeros); 391 goto error_exit_free_blocks; 392 } 393 res = 394 reiserfs_insert_item(th, &path, 395 &key, &ins_ih, 396 inode, 397 (char *)zeros); 398 } else { 399 reiserfs_panic(inode->i_sb, 400 "green-9011: Unexpected key type %K\n", 401 &key); 402 } 403 if (res) { 404 kfree(zeros); 405 goto error_exit_free_blocks; 406 } 407 /* Now we want to check if transaction is too full, and if it is 408 we restart it. This will also free the path. */ 409 if (journal_transaction_should_end 410 (th, th->t_blocks_allocated)) { 411 res = 412 restart_transaction(th, inode, 413 &path); 414 if (res) { 415 pathrelse(&path); 416 kfree(zeros); 417 goto error_exit; 418 } 419 } 420 421 /* Well, need to recalculate path and stuff */ 422 set_cpu_key_k_offset(&key, 423 cpu_key_k_offset(&key) + 424 (to_paste << inode-> 425 i_blkbits)); 426 res = 427 search_for_position_by_key(inode->i_sb, 428 &key, &path); 429 if (res == IO_ERROR) { 430 res = -EIO; 431 kfree(zeros); 432 goto error_exit_free_blocks; 433 } 434 bh = get_last_bh(&path); 435 ih = get_ih(&path); 436 item = get_item(&path); 437 hole_size -= to_paste; 438 } while (hole_size); 439 kfree(zeros); 440 } 441 } 442 // Go through existing indirect items first 443 // replace all zeroes with blocknumbers from list 444 // Note that if no corresponding item was found, by previous search, 445 // it means there are no existing in-tree representation for file area 446 // we are going to overwrite, so there is nothing to scan through for holes. 447 for (curr_block = 0, itempos = path.pos_in_item; 448 curr_block < blocks_to_allocate && res == POSITION_FOUND;) { 449 retry: 450 451 if (itempos >= ih_item_len(ih) / UNFM_P_SIZE) { 452 /* We run out of data in this indirect item, let's look for another 453 one. */ 454 /* First if we are already modifying current item, log it */ 455 if (modifying_this_item) { 456 journal_mark_dirty(th, inode->i_sb, bh); 457 modifying_this_item = 0; 458 } 459 /* Then set the key to look for a new indirect item (offset of old 460 item is added to old item length */ 461 set_cpu_key_k_offset(&key, 462 le_key_k_offset 463 (get_inode_item_key_version(inode), 464 &(ih->ih_key)) + 465 op_bytes_number(ih, 466 inode->i_sb-> 467 s_blocksize)); 468 /* Search ofor position of new key in the tree. */ 469 res = 470 search_for_position_by_key(inode->i_sb, &key, 471 &path); 472 if (res == IO_ERROR) { 473 res = -EIO; 474 goto error_exit_free_blocks; 475 } 476 bh = get_last_bh(&path); 477 ih = get_ih(&path); 478 item = get_item(&path); 479 itempos = path.pos_in_item; 480 continue; // loop to check all kinds of conditions and so on. 481 } 482 /* Ok, we have correct position in item now, so let's see if it is 483 representing file hole (blocknumber is zero) and fill it if needed */ 484 if (!item[itempos]) { 485 /* Ok, a hole. Now we need to check if we already prepared this 486 block to be journaled */ 487 while (!modifying_this_item) { // loop until succeed 488 /* Well, this item is not journaled yet, so we must prepare 489 it for journal first, before we can change it */ 490 struct item_head tmp_ih; // We copy item head of found item, 491 // here to detect if fs changed under 492 // us while we were preparing for 493 // journal. 494 int fs_gen; // We store fs generation here to find if someone 495 // changes fs under our feet 496 497 copy_item_head(&tmp_ih, ih); // Remember itemhead 498 fs_gen = get_generation(inode->i_sb); // remember fs generation 499 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); // Prepare a buffer within which indirect item is stored for changing. 500 if (fs_changed(fs_gen, inode->i_sb) 501 && item_moved(&tmp_ih, &path)) { 502 // Sigh, fs was changed under us, we need to look for new 503 // location of item we are working with 504 505 /* unmark prepaerd area as journaled and search for it's 506 new position */ 507 reiserfs_restore_prepared_buffer(inode-> 508 i_sb, 509 bh); 510 res = 511 search_for_position_by_key(inode-> 512 i_sb, 513 &key, 514 &path); 515 if (res == IO_ERROR) { 516 res = -EIO; 517 goto error_exit_free_blocks; 518 } 519 bh = get_last_bh(&path); 520 ih = get_ih(&path); 521 item = get_item(&path); 522 itempos = path.pos_in_item; 523 goto retry; 524 } 525 modifying_this_item = 1; 526 } 527 item[itempos] = allocated_blocks[curr_block]; // Assign new block 528 curr_block++; 529 } 530 itempos++; 531 } 532 533 if (modifying_this_item) { // We need to log last-accessed block, if it 534 // was modified, but not logged yet. 535 journal_mark_dirty(th, inode->i_sb, bh); 536 } 537 538 if (curr_block < blocks_to_allocate) { 539 // Oh, well need to append to indirect item, or to create indirect item 540 // if there weren't any 541 if (is_indirect_le_ih(ih)) { 542 // Existing indirect item - append. First calculate key for append 543 // position. We do not need to recalculate path as it should 544 // already point to correct place. 545 make_cpu_key(&key, inode, 546 le_key_k_offset(get_inode_item_key_version 547 (inode), 548 &(ih->ih_key)) + 549 op_bytes_number(ih, 550 inode->i_sb->s_blocksize), 551 TYPE_INDIRECT, 3); 552 res = 553 reiserfs_paste_into_item(th, &path, &key, inode, 554 (char *)(allocated_blocks + 555 curr_block), 556 UNFM_P_SIZE * 557 (blocks_to_allocate - 558 curr_block)); 559 if (res) { 560 goto error_exit_free_blocks; 561 } 562 } else if (is_statdata_le_ih(ih)) { 563 // Last found item was statdata. That means we need to create indirect item. 564 struct item_head ins_ih; /* itemhead for new item */ 565 566 /* create a key for our new item */ 567 make_cpu_key(&key, inode, 1, TYPE_INDIRECT, 3); // Position one, 568 // because that's 569 // where first 570 // indirect item 571 // begins 572 /* Create new item head for our new item */ 573 make_le_item_head(&ins_ih, &key, key.version, 1, 574 TYPE_INDIRECT, 575 (blocks_to_allocate - 576 curr_block) * UNFM_P_SIZE, 577 0 /* free space */ ); 578 /* Find where such item should live in the tree */ 579 res = search_item(inode->i_sb, &key, &path); 580 if (res != ITEM_NOT_FOUND) { 581 /* Well, if we have found such item already, or some error 582 occured, we need to warn user and return error */ 583 if (res != -ENOSPC) { 584 reiserfs_warning(inode->i_sb, 585 "green-9009: search_by_key (%K) " 586 "returned %d", &key, 587 res); 588 } 589 res = -EIO; 590 goto error_exit_free_blocks; 591 } 592 /* Insert item into the tree with the data as its body */ 593 res = 594 reiserfs_insert_item(th, &path, &key, &ins_ih, 595 inode, 596 (char *)(allocated_blocks + 597 curr_block)); 598 } else { 599 reiserfs_panic(inode->i_sb, 600 "green-9010: unexpected item type for key %K\n", 601 &key); 602 } 603 } 604 // the caller is responsible for closing the transaction 605 // unless we return an error, they are also responsible for logging 606 // the inode. 607 // 608 pathrelse(&path); 609 /* 610 * cleanup prellocation from previous writes 611 * if this is a partial block write 612 */ 613 if (write_bytes & (inode->i_sb->s_blocksize - 1)) 614 reiserfs_discard_prealloc(th, inode); 615 reiserfs_write_unlock(inode->i_sb); 616 617 // go through all the pages/buffers and map the buffers to newly allocated 618 // blocks (so that system knows where to write these pages later). 619 curr_block = 0; 620 for (i = 0; i < num_pages; i++) { 621 struct page *page = prepared_pages[i]; //current page 622 struct buffer_head *head = page_buffers(page); // first buffer for a page 623 int block_start, block_end; // in-page offsets for buffers. 624 625 if (!page_buffers(page)) 626 reiserfs_panic(inode->i_sb, 627 "green-9005: No buffers for prepared page???"); 628 629 /* For each buffer in page */ 630 for (bh = head, block_start = 0; bh != head || !block_start; 631 block_start = block_end, bh = bh->b_this_page) { 632 if (!bh) 633 reiserfs_panic(inode->i_sb, 634 "green-9006: Allocated but absent buffer for a page?"); 635 block_end = block_start + inode->i_sb->s_blocksize; 636 if (i == 0 && block_end <= from) 637 /* if this buffer is before requested data to map, skip it */ 638 continue; 639 if (i == num_pages - 1 && block_start >= to) 640 /* If this buffer is after requested data to map, abort 641 processing of current page */ 642 break; 643 644 if (!buffer_mapped(bh)) { // Ok, unmapped buffer, need to map it 645 map_bh(bh, inode->i_sb, 646 le32_to_cpu(allocated_blocks 647 [curr_block])); 648 curr_block++; 649 set_buffer_new(bh); 650 } 651 } 652 } 653 654 RFALSE(curr_block > blocks_to_allocate, 655 "green-9007: Used too many blocks? weird"); 656 657 kfree(allocated_blocks); 658 return 0; 659 660// Need to deal with transaction here. 661 error_exit_free_blocks: 662 pathrelse(&path); 663 // free blocks 664 for (i = 0; i < blocks_to_allocate; i++) 665 reiserfs_free_block(th, inode, le32_to_cpu(allocated_blocks[i]), 666 1); 667 668 error_exit: 669 if (th->t_trans_id) { 670 int err; 671 // update any changes we made to blk count 672 mark_inode_dirty(inode); 673 err = 674 journal_end(th, inode->i_sb, 675 JOURNAL_PER_BALANCE_CNT * 3 + 1 + 676 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb)); 677 if (err) 678 res = err; 679 } 680 reiserfs_write_unlock(inode->i_sb); 681 kfree(allocated_blocks); 682 683 return res; 684} 685 686/* Unlock pages prepared by reiserfs_prepare_file_region_for_write */ 687static void reiserfs_unprepare_pages(struct page **prepared_pages, /* list of locked pages */ 688 size_t num_pages /* amount of pages */ ) 689{ 690 int i; // loop counter 691 692 for (i = 0; i < num_pages; i++) { 693 struct page *page = prepared_pages[i]; 694 695 try_to_free_buffers(page); 696 unlock_page(page); 697 page_cache_release(page); 698 } 699} 700 701/* This function will copy data from userspace to specified pages within 702 supplied byte range */ 703static int reiserfs_copy_from_user_to_file_region(loff_t pos, /* In-file position */ 704 int num_pages, /* Number of pages affected */ 705 int write_bytes, /* Amount of bytes to write */ 706 struct page **prepared_pages, /* pointer to 707 array to 708 prepared pages 709 */ 710 const char __user * buf /* Pointer to user-supplied 711 data */ 712 ) 713{ 714 long page_fault = 0; // status of copy_from_user. 715 int i; // loop counter. 716 int offset; // offset in page 717 718 for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages; 719 i++, offset = 0) { 720 size_t count = min_t(size_t, PAGE_CACHE_SIZE - offset, write_bytes); // How much of bytes to write to this page 721 struct page *page = prepared_pages[i]; // Current page we process. 722 723 fault_in_pages_readable(buf, count); 724 725 /* Copy data from userspace to the current page */ 726 kmap(page); 727 page_fault = __copy_from_user(page_address(page) + offset, buf, count); // Copy the data. 728 /* Flush processor's dcache for this page */ 729 flush_dcache_page(page); 730 kunmap(page); 731 buf += count; 732 write_bytes -= count; 733 734 if (page_fault) 735 break; // Was there a fault? abort. 736 } 737 738 return page_fault ? -EFAULT : 0; 739} 740 741/* taken fs/buffer.c:__block_commit_write */ 742int reiserfs_commit_page(struct inode *inode, struct page *page, 743 unsigned from, unsigned to) 744{ 745 unsigned block_start, block_end; 746 int partial = 0; 747 unsigned blocksize; 748 struct buffer_head *bh, *head; 749 unsigned long i_size_index = inode->i_size >> PAGE_CACHE_SHIFT; 750 int new; 751 int logit = reiserfs_file_data_log(inode); 752 struct super_block *s = inode->i_sb; 753 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize; 754 struct reiserfs_transaction_handle th; 755 int ret = 0; 756 757 th.t_trans_id = 0; 758 blocksize = 1 << inode->i_blkbits; 759 760 if (logit) { 761 reiserfs_write_lock(s); 762 ret = journal_begin(&th, s, bh_per_page + 1); 763 if (ret) 764 goto drop_write_lock; 765 reiserfs_update_inode_transaction(inode); 766 } 767 for (bh = head = page_buffers(page), block_start = 0; 768 bh != head || !block_start; 769 block_start = block_end, bh = bh->b_this_page) { 770 771 new = buffer_new(bh); 772 clear_buffer_new(bh); 773 block_end = block_start + blocksize; 774 if (block_end <= from || block_start >= to) { 775 if (!buffer_uptodate(bh)) 776 partial = 1; 777 } else { 778 set_buffer_uptodate(bh); 779 if (logit) { 780 reiserfs_prepare_for_journal(s, bh, 1); 781 journal_mark_dirty(&th, s, bh); 782 } else if (!buffer_dirty(bh)) { 783 mark_buffer_dirty(bh); 784 /* do data=ordered on any page past the end 785 * of file and any buffer marked BH_New. 786 */ 787 if (reiserfs_data_ordered(inode->i_sb) && 788 (new || page->index >= i_size_index)) { 789 reiserfs_add_ordered_list(inode, bh); 790 } 791 } 792 } 793 } 794 if (logit) { 795 ret = journal_end(&th, s, bh_per_page + 1); 796 drop_write_lock: 797 reiserfs_write_unlock(s); 798 } 799 /* 800 * If this is a partial write which happened to make all buffers 801 * uptodate then we can optimize away a bogus readpage() for 802 * the next read(). Here we 'discover' whether the page went 803 * uptodate as a result of this (potentially partial) write. 804 */ 805 if (!partial) 806 SetPageUptodate(page); 807 return ret; 808} 809 810/* Submit pages for write. This was separated from actual file copying 811 because we might want to allocate block numbers in-between. 812 This function assumes that caller will adjust file size to correct value. */ 813static int reiserfs_submit_file_region_for_write(struct reiserfs_transaction_handle *th, struct inode *inode, loff_t pos, /* Writing position offset */ 814 size_t num_pages, /* Number of pages to write */ 815 size_t write_bytes, /* number of bytes to write */ 816 struct page **prepared_pages /* list of pages */ 817 ) 818{ 819 int status; // return status of block_commit_write. 820 int retval = 0; // Return value we are going to return. 821 int i; // loop counter 822 int offset; // Writing offset in page. 823 int orig_write_bytes = write_bytes; 824 int sd_update = 0; 825 826 for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages; 827 i++, offset = 0) { 828 int count = min_t(int, PAGE_CACHE_SIZE - offset, write_bytes); // How much of bytes to write to this page 829 struct page *page = prepared_pages[i]; // Current page we process. 830 831 status = 832 reiserfs_commit_page(inode, page, offset, offset + count); 833 if (status) 834 retval = status; // To not overcomplicate matters We are going to 835 // submit all the pages even if there was error. 836 // we only remember error status to report it on 837 // exit. 838 write_bytes -= count; 839 } 840 /* now that we've gotten all the ordered buffers marked dirty, 841 * we can safely update i_size and close any running transaction 842 */ 843 if (pos + orig_write_bytes > inode->i_size) { 844 inode->i_size = pos + orig_write_bytes; // Set new size 845 /* If the file have grown so much that tail packing is no 846 * longer possible, reset "need to pack" flag */ 847 if ((have_large_tails(inode->i_sb) && 848 inode->i_size > i_block_size(inode) * 4) || 849 (have_small_tails(inode->i_sb) && 850 inode->i_size > i_block_size(inode))) 851 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 852 else if ((have_large_tails(inode->i_sb) && 853 inode->i_size < i_block_size(inode) * 4) || 854 (have_small_tails(inode->i_sb) && 855 inode->i_size < i_block_size(inode))) 856 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; 857 858 if (th->t_trans_id) { 859 reiserfs_write_lock(inode->i_sb); 860 // this sets the proper flags for O_SYNC to trigger a commit 861 mark_inode_dirty(inode); 862 reiserfs_write_unlock(inode->i_sb); 863 } else 864 mark_inode_dirty(inode); 865 866 sd_update = 1; 867 } 868 if (th->t_trans_id) { 869 reiserfs_write_lock(inode->i_sb); 870 if (!sd_update) 871 mark_inode_dirty(inode); 872 status = journal_end(th, th->t_super, th->t_blocks_allocated); 873 if (status) 874 retval = status; 875 reiserfs_write_unlock(inode->i_sb); 876 } 877 th->t_trans_id = 0; 878 879 /* 880 * we have to unlock the pages after updating i_size, otherwise 881 * we race with writepage 882 */ 883 for (i = 0; i < num_pages; i++) { 884 struct page *page = prepared_pages[i]; 885 unlock_page(page); 886 mark_page_accessed(page); 887 page_cache_release(page); 888 } 889 return retval; 890} 891 892/* Look if passed writing region is going to touch file's tail 893 (if it is present). And if it is, convert the tail to unformatted node */ 894static int reiserfs_check_for_tail_and_convert(struct inode *inode, /* inode to deal with */ 895 loff_t pos, /* Writing position */ 896 int write_bytes /* amount of bytes to write */ 897 ) 898{ 899 INITIALIZE_PATH(path); // needed for search_for_position 900 struct cpu_key key; // Key that would represent last touched writing byte. 901 struct item_head *ih; // item header of found block; 902 int res; // Return value of various functions we call. 903 int cont_expand_offset; // We will put offset for generic_cont_expand here 904 // This can be int just because tails are created 905 // only for small files. 906 907/* this embodies a dependency on a particular tail policy */ 908 if (inode->i_size >= inode->i_sb->s_blocksize * 4) { 909 /* such a big files do not have tails, so we won't bother ourselves 910 to look for tails, simply return */ 911 return 0; 912 } 913 914 reiserfs_write_lock(inode->i_sb); 915 /* find the item containing the last byte to be written, or if 916 * writing past the end of the file then the last item of the 917 * file (and then we check its type). */ 918 make_cpu_key(&key, inode, pos + write_bytes + 1, TYPE_ANY, 919 3 /*key length */ ); 920 res = search_for_position_by_key(inode->i_sb, &key, &path); 921 if (res == IO_ERROR) { 922 reiserfs_write_unlock(inode->i_sb); 923 return -EIO; 924 } 925 ih = get_ih(&path); 926 res = 0; 927 if (is_direct_le_ih(ih)) { 928 /* Ok, closest item is file tail (tails are stored in "direct" 929 * items), so we need to unpack it. */ 930 /* To not overcomplicate matters, we just call generic_cont_expand 931 which will in turn call other stuff and finally will boil down to 932 reiserfs_get_block() that would do necessary conversion. */ 933 cont_expand_offset = 934 le_key_k_offset(get_inode_item_key_version(inode), 935 &(ih->ih_key)); 936 pathrelse(&path); 937 res = generic_cont_expand(inode, cont_expand_offset); 938 } else 939 pathrelse(&path); 940 941 reiserfs_write_unlock(inode->i_sb); 942 return res; 943} 944 945/* This function locks pages starting from @pos for @inode. 946 @num_pages pages are locked and stored in 947 @prepared_pages array. Also buffers are allocated for these pages. 948 First and last page of the region is read if it is overwritten only 949 partially. If last page did not exist before write (file hole or file 950 append), it is zeroed, then. 951 Returns number of unallocated blocks that should be allocated to cover 952 new file data.*/ 953static int reiserfs_prepare_file_region_for_write(struct inode *inode 954 /* Inode of the file */ , 955 loff_t pos, /* position in the file */ 956 size_t num_pages, /* number of pages to 957 prepare */ 958 size_t write_bytes, /* Amount of bytes to be 959 overwritten from 960 @pos */ 961 struct page **prepared_pages /* pointer to array 962 where to store 963 prepared pages */ 964 ) 965{ 966 int res = 0; // Return values of different functions we call. 967 unsigned long index = pos >> PAGE_CACHE_SHIFT; // Offset in file in pages. 968 int from = (pos & (PAGE_CACHE_SIZE - 1)); // Writing offset in first page 969 int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1; 970 /* offset of last modified byte in last 971 page */ 972 struct address_space *mapping = inode->i_mapping; // Pages are mapped here. 973 int i; // Simple counter 974 int blocks = 0; /* Return value (blocks that should be allocated) */ 975 struct buffer_head *bh, *head; // Current bufferhead and first bufferhead 976 // of a page. 977 unsigned block_start, block_end; // Starting and ending offsets of current 978 // buffer in the page. 979 struct buffer_head *wait[2], **wait_bh = wait; // Buffers for page, if 980 // Page appeared to be not up 981 // to date. Note how we have 982 // at most 2 buffers, this is 983 // because we at most may 984 // partially overwrite two 985 // buffers for one page. One at // the beginning of write area 986 // and one at the end. 987 // Everything inthe middle gets // overwritten totally. 988 989 struct cpu_key key; // cpu key of item that we are going to deal with 990 struct item_head *ih = NULL; // pointer to item head that we are going to deal with 991 struct buffer_head *itembuf = NULL; // Buffer head that contains items that we are going to deal with 992 INITIALIZE_PATH(path); // path to item, that we are going to deal with. 993 __le32 *item = NULL; // pointer to item we are going to deal with 994 int item_pos = -1; /* Position in indirect item */ 995 996 if (num_pages < 1) { 997 reiserfs_warning(inode->i_sb, 998 "green-9001: reiserfs_prepare_file_region_for_write " 999 "called with zero number of pages to process"); 1000 return -EFAULT; 1001 } 1002 1003 /* We have 2 loops for pages. In first loop we grab and lock the pages, so 1004 that nobody would touch these until we release the pages. Then 1005 we'd start to deal with mapping buffers to blocks. */ 1006 for (i = 0; i < num_pages; i++) { 1007 prepared_pages[i] = grab_cache_page(mapping, index + i); // locks the page 1008 if (!prepared_pages[i]) { 1009 res = -ENOMEM; 1010 goto failed_page_grabbing; 1011 } 1012 if (!page_has_buffers(prepared_pages[i])) 1013 create_empty_buffers(prepared_pages[i], 1014 inode->i_sb->s_blocksize, 0); 1015 } 1016 1017 /* Let's count amount of blocks for a case where all the blocks 1018 overwritten are new (we will substract already allocated blocks later) */ 1019 if (num_pages > 2) 1020 /* These are full-overwritten pages so we count all the blocks in 1021 these pages are counted as needed to be allocated */ 1022 blocks = 1023 (num_pages - 2) << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1024 1025 /* count blocks needed for first page (possibly partially written) */ 1026 blocks += ((PAGE_CACHE_SIZE - from) >> inode->i_blkbits) + !!(from & (inode->i_sb->s_blocksize - 1)); /* roundup */ 1027 1028 /* Now we account for last page. If last page == first page (we 1029 overwrite only one page), we substract all the blocks past the 1030 last writing position in a page out of already calculated number 1031 of blocks */ 1032 blocks += ((num_pages > 1) << (PAGE_CACHE_SHIFT - inode->i_blkbits)) - 1033 ((PAGE_CACHE_SIZE - to) >> inode->i_blkbits); 1034 /* Note how we do not roundup here since partial blocks still 1035 should be allocated */ 1036 1037 /* Now if all the write area lies past the file end, no point in 1038 maping blocks, since there is none, so we just zero out remaining 1039 parts of first and last pages in write area (if needed) */ 1040 if ((pos & ~((loff_t) PAGE_CACHE_SIZE - 1)) > inode->i_size) { 1041 if (from != 0) { /* First page needs to be partially zeroed */ 1042 char *kaddr = kmap_atomic(prepared_pages[0], KM_USER0); 1043 memset(kaddr, 0, from); 1044 kunmap_atomic(kaddr, KM_USER0); 1045 } 1046 if (to != PAGE_CACHE_SIZE) { /* Last page needs to be partially zeroed */ 1047 char *kaddr = 1048 kmap_atomic(prepared_pages[num_pages - 1], 1049 KM_USER0); 1050 memset(kaddr + to, 0, PAGE_CACHE_SIZE - to); 1051 kunmap_atomic(kaddr, KM_USER0); 1052 } 1053 1054 /* Since all blocks are new - use already calculated value */ 1055 return blocks; 1056 } 1057 1058 /* Well, since we write somewhere into the middle of a file, there is 1059 possibility we are writing over some already allocated blocks, so 1060 let's map these blocks and substract number of such blocks out of blocks 1061 we need to allocate (calculated above) */ 1062 /* Mask write position to start on blocksize, we do it out of the 1063 loop for performance reasons */ 1064 pos &= ~((loff_t) inode->i_sb->s_blocksize - 1); 1065 /* Set cpu key to the starting position in a file (on left block boundary) */ 1066 make_cpu_key(&key, inode, 1067 1 + ((pos) & ~((loff_t) inode->i_sb->s_blocksize - 1)), 1068 TYPE_ANY, 3 /*key length */ ); 1069 1070 reiserfs_write_lock(inode->i_sb); // We need that for at least search_by_key() 1071 for (i = 0; i < num_pages; i++) { 1072 1073 head = page_buffers(prepared_pages[i]); 1074 /* For each buffer in the page */ 1075 for (bh = head, block_start = 0; bh != head || !block_start; 1076 block_start = block_end, bh = bh->b_this_page) { 1077 if (!bh) 1078 reiserfs_panic(inode->i_sb, 1079 "green-9002: Allocated but absent buffer for a page?"); 1080 /* Find where this buffer ends */ 1081 block_end = block_start + inode->i_sb->s_blocksize; 1082 if (i == 0 && block_end <= from) 1083 /* if this buffer is before requested data to map, skip it */ 1084 continue; 1085 1086 if (i == num_pages - 1 && block_start >= to) { 1087 /* If this buffer is after requested data to map, abort 1088 processing of current page */ 1089 break; 1090 } 1091 1092 if (buffer_mapped(bh) && bh->b_blocknr != 0) { 1093 /* This is optimisation for a case where buffer is mapped 1094 and have blocknumber assigned. In case significant amount 1095 of such buffers are present, we may avoid some amount 1096 of search_by_key calls. 1097 Probably it would be possible to move parts of this code 1098 out of BKL, but I afraid that would overcomplicate code 1099 without any noticeable benefit. 1100 */ 1101 item_pos++; 1102 /* Update the key */ 1103 set_cpu_key_k_offset(&key, 1104 cpu_key_k_offset(&key) + 1105 inode->i_sb->s_blocksize); 1106 blocks--; // Decrease the amount of blocks that need to be 1107 // allocated 1108 continue; // Go to the next buffer 1109 } 1110 1111 if (!itembuf || /* if first iteration */ 1112 item_pos >= ih_item_len(ih) / UNFM_P_SIZE) { /* or if we progressed past the 1113 current unformatted_item */ 1114 /* Try to find next item */ 1115 res = 1116 search_for_position_by_key(inode->i_sb, 1117 &key, &path); 1118 /* Abort if no more items */ 1119 if (res != POSITION_FOUND) { 1120 /* make sure later loops don't use this item */ 1121 itembuf = NULL; 1122 item = NULL; 1123 break; 1124 } 1125 1126 /* Update information about current indirect item */ 1127 itembuf = get_last_bh(&path); 1128 ih = get_ih(&path); 1129 item = get_item(&path); 1130 item_pos = path.pos_in_item; 1131 1132 RFALSE(!is_indirect_le_ih(ih), 1133 "green-9003: indirect item expected"); 1134 } 1135 1136 /* See if there is some block associated with the file 1137 at that position, map the buffer to this block */ 1138 if (get_block_num(item, item_pos)) { 1139 map_bh(bh, inode->i_sb, 1140 get_block_num(item, item_pos)); 1141 blocks--; // Decrease the amount of blocks that need to be 1142 // allocated 1143 } 1144 item_pos++; 1145 /* Update the key */ 1146 set_cpu_key_k_offset(&key, 1147 cpu_key_k_offset(&key) + 1148 inode->i_sb->s_blocksize); 1149 } 1150 } 1151 pathrelse(&path); // Free the path 1152 reiserfs_write_unlock(inode->i_sb); 1153 1154 /* Now zero out unmappend buffers for the first and last pages of 1155 write area or issue read requests if page is mapped. */ 1156 /* First page, see if it is not uptodate */ 1157 if (!PageUptodate(prepared_pages[0])) { 1158 head = page_buffers(prepared_pages[0]); 1159 1160 /* For each buffer in page */ 1161 for (bh = head, block_start = 0; bh != head || !block_start; 1162 block_start = block_end, bh = bh->b_this_page) { 1163 1164 if (!bh) 1165 reiserfs_panic(inode->i_sb, 1166 "green-9002: Allocated but absent buffer for a page?"); 1167 /* Find where this buffer ends */ 1168 block_end = block_start + inode->i_sb->s_blocksize; 1169 if (block_end <= from) 1170 /* if this buffer is before requested data to map, skip it */ 1171 continue; 1172 if (block_start < from) { /* Aha, our partial buffer */ 1173 if (buffer_mapped(bh)) { /* If it is mapped, we need to 1174 issue READ request for it to 1175 not loose data */ 1176 ll_rw_block(READ, 1, &bh); 1177 *wait_bh++ = bh; 1178 } else { /* Not mapped, zero it */ 1179 char *kaddr = 1180 kmap_atomic(prepared_pages[0], 1181 KM_USER0); 1182 memset(kaddr + block_start, 0, 1183 from - block_start); 1184 kunmap_atomic(kaddr, KM_USER0); 1185 set_buffer_uptodate(bh); 1186 } 1187 } 1188 } 1189 } 1190 1191 /* Last page, see if it is not uptodate, or if the last page is past the end of the file. */ 1192 if (!PageUptodate(prepared_pages[num_pages - 1]) || 1193 ((pos + write_bytes) >> PAGE_CACHE_SHIFT) > 1194 (inode->i_size >> PAGE_CACHE_SHIFT)) { 1195 head = page_buffers(prepared_pages[num_pages - 1]); 1196 1197 /* for each buffer in page */ 1198 for (bh = head, block_start = 0; bh != head || !block_start; 1199 block_start = block_end, bh = bh->b_this_page) { 1200 1201 if (!bh) 1202 reiserfs_panic(inode->i_sb, 1203 "green-9002: Allocated but absent buffer for a page?"); 1204 /* Find where this buffer ends */ 1205 block_end = block_start + inode->i_sb->s_blocksize; 1206 if (block_start >= to) 1207 /* if this buffer is after requested data to map, skip it */ 1208 break; 1209 if (block_end > to) { /* Aha, our partial buffer */ 1210 if (buffer_mapped(bh)) { /* If it is mapped, we need to 1211 issue READ request for it to 1212 not loose data */ 1213 ll_rw_block(READ, 1, &bh); 1214 *wait_bh++ = bh; 1215 } else { /* Not mapped, zero it */ 1216 char *kaddr = 1217 kmap_atomic(prepared_pages 1218 [num_pages - 1], 1219 KM_USER0); 1220 memset(kaddr + to, 0, block_end - to); 1221 kunmap_atomic(kaddr, KM_USER0); 1222 set_buffer_uptodate(bh); 1223 } 1224 } 1225 } 1226 } 1227 1228 /* Wait for read requests we made to happen, if necessary */ 1229 while (wait_bh > wait) { 1230 wait_on_buffer(*--wait_bh); 1231 if (!buffer_uptodate(*wait_bh)) { 1232 res = -EIO; 1233 goto failed_read; 1234 } 1235 } 1236 1237 return blocks; 1238 failed_page_grabbing: 1239 num_pages = i; 1240 failed_read: 1241 reiserfs_unprepare_pages(prepared_pages, num_pages); 1242 return res; 1243} 1244 1245/* Write @count bytes at position @ppos in a file indicated by @file 1246 from the buffer @buf. 1247 1248 generic_file_write() is only appropriate for filesystems that are not seeking to optimize performance and want 1249 something simple that works. It is not for serious use by general purpose filesystems, excepting the one that it was 1250 written for (ext2/3). This is for several reasons: 1251 1252 * It has no understanding of any filesystem specific optimizations. 1253 1254 * It enters the filesystem repeatedly for each page that is written. 1255 1256 * It depends on reiserfs_get_block() function which if implemented by reiserfs performs costly search_by_key 1257 * operation for each page it is supplied with. By contrast reiserfs_file_write() feeds as much as possible at a time 1258 * to reiserfs which allows for fewer tree traversals. 1259 1260 * Each indirect pointer insertion takes a lot of cpu, because it involves memory moves inside of blocks. 1261 1262 * Asking the block allocation code for blocks one at a time is slightly less efficient. 1263 1264 All of these reasons for not using only generic file write were understood back when reiserfs was first miscoded to 1265 use it, but we were in a hurry to make code freeze, and so it couldn't be revised then. This new code should make 1266 things right finally. 1267 1268 Future Features: providing search_by_key with hints. 1269 1270*/ 1271static ssize_t reiserfs_file_write(struct file *file, /* the file we are going to write into */ 1272 const char __user * buf, /* pointer to user supplied data 1273 (in userspace) */ 1274 size_t count, /* amount of bytes to write */ 1275 loff_t * ppos /* pointer to position in file that we start writing at. Should be updated to 1276 * new current position before returning. */ 1277 ) 1278{ 1279 size_t already_written = 0; // Number of bytes already written to the file. 1280 loff_t pos; // Current position in the file. 1281 ssize_t res; // return value of various functions that we call. 1282 int err = 0; 1283 struct inode *inode = file->f_dentry->d_inode; // Inode of the file that we are writing to. 1284 /* To simplify coding at this time, we store 1285 locked pages in array for now */ 1286 struct page *prepared_pages[REISERFS_WRITE_PAGES_AT_A_TIME]; 1287 struct reiserfs_transaction_handle th; 1288 th.t_trans_id = 0; 1289 1290 /* If a filesystem is converted from 3.5 to 3.6, we'll have v3.5 items 1291 * lying around (most of the disk, in fact). Despite the filesystem 1292 * now being a v3.6 format, the old items still can't support large 1293 * file sizes. Catch this case here, as the rest of the VFS layer is 1294 * oblivious to the different limitations between old and new items. 1295 * reiserfs_setattr catches this for truncates. This chunk is lifted 1296 * from generic_write_checks. */ 1297 if (get_inode_item_key_version (inode) == KEY_FORMAT_3_5 && 1298 *ppos + count > MAX_NON_LFS) { 1299 if (*ppos >= MAX_NON_LFS) { 1300 send_sig(SIGXFSZ, current, 0); 1301 return -EFBIG; 1302 } 1303 if (count > MAX_NON_LFS - (unsigned long)*ppos) 1304 count = MAX_NON_LFS - (unsigned long)*ppos; 1305 } 1306 1307 if (file->f_flags & O_DIRECT) { // Direct IO needs treatment 1308 ssize_t result, after_file_end = 0; 1309 if ((*ppos + count >= inode->i_size) 1310 || (file->f_flags & O_APPEND)) { 1311 /* If we are appending a file, we need to put this savelink in here. 1312 If we will crash while doing direct io, finish_unfinished will 1313 cut the garbage from the file end. */ 1314 reiserfs_write_lock(inode->i_sb); 1315 err = 1316 journal_begin(&th, inode->i_sb, 1317 JOURNAL_PER_BALANCE_CNT); 1318 if (err) { 1319 reiserfs_write_unlock(inode->i_sb); 1320 return err; 1321 } 1322 reiserfs_update_inode_transaction(inode); 1323 add_save_link(&th, inode, 1 /* Truncate */ ); 1324 after_file_end = 1; 1325 err = 1326 journal_end(&th, inode->i_sb, 1327 JOURNAL_PER_BALANCE_CNT); 1328 reiserfs_write_unlock(inode->i_sb); 1329 if (err) 1330 return err; 1331 } 1332 result = generic_file_write(file, buf, count, ppos); 1333 1334 if (after_file_end) { /* Now update i_size and remove the savelink */ 1335 struct reiserfs_transaction_handle th; 1336 reiserfs_write_lock(inode->i_sb); 1337 err = journal_begin(&th, inode->i_sb, 1); 1338 if (err) { 1339 reiserfs_write_unlock(inode->i_sb); 1340 return err; 1341 } 1342 reiserfs_update_inode_transaction(inode); 1343 mark_inode_dirty(inode); 1344 err = journal_end(&th, inode->i_sb, 1); 1345 if (err) { 1346 reiserfs_write_unlock(inode->i_sb); 1347 return err; 1348 } 1349 err = remove_save_link(inode, 1 /* truncate */ ); 1350 reiserfs_write_unlock(inode->i_sb); 1351 if (err) 1352 return err; 1353 } 1354 1355 return result; 1356 } 1357 1358 if (unlikely((ssize_t) count < 0)) 1359 return -EINVAL; 1360 1361 if (unlikely(!access_ok(VERIFY_READ, buf, count))) 1362 return -EFAULT; 1363 1364 mutex_lock(&inode->i_mutex); // locks the entire file for just us 1365 1366 pos = *ppos; 1367 1368 /* Check if we can write to specified region of file, file 1369 is not overly big and this kind of stuff. Adjust pos and 1370 count, if needed */ 1371 res = generic_write_checks(file, &pos, &count, 0); 1372 if (res) 1373 goto out; 1374 1375 if (count == 0) 1376 goto out; 1377 1378 res = remove_suid(file->f_dentry); 1379 if (res) 1380 goto out; 1381 1382 file_update_time(file); 1383 1384 // Ok, we are done with all the checks. 1385 1386 // Now we should start real work 1387 1388 /* If we are going to write past the file's packed tail or if we are going 1389 to overwrite part of the tail, we need that tail to be converted into 1390 unformatted node */ 1391 res = reiserfs_check_for_tail_and_convert(inode, pos, count); 1392 if (res) 1393 goto out; 1394 1395 while (count > 0) { 1396 /* This is the main loop in which we running until some error occures 1397 or until we write all of the data. */ 1398 size_t num_pages; /* amount of pages we are going to write this iteration */ 1399 size_t write_bytes; /* amount of bytes to write during this iteration */ 1400 size_t blocks_to_allocate; /* how much blocks we need to allocate for this iteration */ 1401 1402 /* (pos & (PAGE_CACHE_SIZE-1)) is an idiom for offset into a page of pos */ 1403 num_pages = !!((pos + count) & (PAGE_CACHE_SIZE - 1)) + /* round up partial 1404 pages */ 1405 ((count + 1406 (pos & (PAGE_CACHE_SIZE - 1))) >> PAGE_CACHE_SHIFT); 1407 /* convert size to amount of 1408 pages */ 1409 reiserfs_write_lock(inode->i_sb); 1410 if (num_pages > REISERFS_WRITE_PAGES_AT_A_TIME 1411 || num_pages > reiserfs_can_fit_pages(inode->i_sb)) { 1412 /* If we were asked to write more data than we want to or if there 1413 is not that much space, then we shorten amount of data to write 1414 for this iteration. */ 1415 num_pages = 1416 min_t(size_t, REISERFS_WRITE_PAGES_AT_A_TIME, 1417 reiserfs_can_fit_pages(inode->i_sb)); 1418 /* Also we should not forget to set size in bytes accordingly */ 1419 write_bytes = (num_pages << PAGE_CACHE_SHIFT) - 1420 (pos & (PAGE_CACHE_SIZE - 1)); 1421 /* If position is not on the 1422 start of the page, we need 1423 to substract the offset 1424 within page */ 1425 } else 1426 write_bytes = count; 1427 1428 /* reserve the blocks to be allocated later, so that later on 1429 we still have the space to write the blocks to */ 1430 reiserfs_claim_blocks_to_be_allocated(inode->i_sb, 1431 num_pages << 1432 (PAGE_CACHE_SHIFT - 1433 inode->i_blkbits)); 1434 reiserfs_write_unlock(inode->i_sb); 1435 1436 if (!num_pages) { /* If we do not have enough space even for a single page... */ 1437 if (pos > 1438 inode->i_size + inode->i_sb->s_blocksize - 1439 (pos & (inode->i_sb->s_blocksize - 1))) { 1440 res = -ENOSPC; 1441 break; // In case we are writing past the end of the last file block, break. 1442 } 1443 // Otherwise we are possibly overwriting the file, so 1444 // let's set write size to be equal or less than blocksize. 1445 // This way we get it correctly for file holes. 1446 // But overwriting files on absolutelly full volumes would not 1447 // be very efficient. Well, people are not supposed to fill 1448 // 100% of disk space anyway. 1449 write_bytes = 1450 min_t(size_t, count, 1451 inode->i_sb->s_blocksize - 1452 (pos & (inode->i_sb->s_blocksize - 1))); 1453 num_pages = 1; 1454 // No blocks were claimed before, so do it now. 1455 reiserfs_claim_blocks_to_be_allocated(inode->i_sb, 1456 1 << 1457 (PAGE_CACHE_SHIFT 1458 - 1459 inode-> 1460 i_blkbits)); 1461 } 1462 1463 /* Prepare for writing into the region, read in all the 1464 partially overwritten pages, if needed. And lock the pages, 1465 so that nobody else can access these until we are done. 1466 We get number of actual blocks needed as a result. */ 1467 res = reiserfs_prepare_file_region_for_write(inode, pos, 1468 num_pages, 1469 write_bytes, 1470 prepared_pages); 1471 if (res < 0) { 1472 reiserfs_release_claimed_blocks(inode->i_sb, 1473 num_pages << 1474 (PAGE_CACHE_SHIFT - 1475 inode->i_blkbits)); 1476 break; 1477 } 1478 1479 blocks_to_allocate = res; 1480 1481 /* First we correct our estimate of how many blocks we need */ 1482 reiserfs_release_claimed_blocks(inode->i_sb, 1483 (num_pages << 1484 (PAGE_CACHE_SHIFT - 1485 inode->i_sb-> 1486 s_blocksize_bits)) - 1487 blocks_to_allocate); 1488 1489 if (blocks_to_allocate > 0) { /*We only allocate blocks if we need to */ 1490 /* Fill in all the possible holes and append the file if needed */ 1491 res = 1492 reiserfs_allocate_blocks_for_region(&th, inode, pos, 1493 num_pages, 1494 write_bytes, 1495 prepared_pages, 1496 blocks_to_allocate); 1497 } 1498 1499 /* well, we have allocated the blocks, so it is time to free 1500 the reservation we made earlier. */ 1501 reiserfs_release_claimed_blocks(inode->i_sb, 1502 blocks_to_allocate); 1503 if (res) { 1504 reiserfs_unprepare_pages(prepared_pages, num_pages); 1505 break; 1506 } 1507 1508/* NOTE that allocating blocks and filling blocks can be done in reverse order 1509 and probably we would do that just to get rid of garbage in files after a 1510 crash */ 1511 1512 /* Copy data from user-supplied buffer to file's pages */ 1513 res = 1514 reiserfs_copy_from_user_to_file_region(pos, num_pages, 1515 write_bytes, 1516 prepared_pages, buf); 1517 if (res) { 1518 reiserfs_unprepare_pages(prepared_pages, num_pages); 1519 break; 1520 } 1521 1522 /* Send the pages to disk and unlock them. */ 1523 res = 1524 reiserfs_submit_file_region_for_write(&th, inode, pos, 1525 num_pages, 1526 write_bytes, 1527 prepared_pages); 1528 if (res) 1529 break; 1530 1531 already_written += write_bytes; 1532 buf += write_bytes; 1533 *ppos = pos += write_bytes; 1534 count -= write_bytes; 1535 balance_dirty_pages_ratelimited_nr(inode->i_mapping, num_pages); 1536 } 1537 1538 /* this is only true on error */ 1539 if (th.t_trans_id) { 1540 reiserfs_write_lock(inode->i_sb); 1541 err = journal_end(&th, th.t_super, th.t_blocks_allocated); 1542 reiserfs_write_unlock(inode->i_sb); 1543 if (err) { 1544 res = err; 1545 goto out; 1546 } 1547 } 1548 1549 if (likely(res >= 0) && 1550 (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode)))) 1551 res = generic_osync_inode(inode, file->f_mapping, 1552 OSYNC_METADATA | OSYNC_DATA); 1553 1554 mutex_unlock(&inode->i_mutex); 1555 reiserfs_async_progress_wait(inode->i_sb); 1556 return (already_written != 0) ? already_written : res; 1557 1558 out: 1559 mutex_unlock(&inode->i_mutex); // unlock the file on exit. 1560 return res; 1561} 1562 1563static ssize_t reiserfs_aio_write(struct kiocb *iocb, const char __user * buf, 1564 size_t count, loff_t pos) 1565{ 1566 return generic_file_aio_write(iocb, buf, count, pos); 1567} 1568 1569const struct file_operations reiserfs_file_operations = { 1570 .read = generic_file_read, 1571 .write = reiserfs_file_write, 1572 .ioctl = reiserfs_ioctl, 1573 .mmap = generic_file_mmap, 1574 .release = reiserfs_file_release, 1575 .fsync = reiserfs_sync_file, 1576 .sendfile = generic_file_sendfile, 1577 .aio_read = generic_file_aio_read, 1578 .aio_write = reiserfs_aio_write, 1579 .splice_read = generic_file_splice_read, 1580 .splice_write = generic_file_splice_write, 1581}; 1582 1583struct inode_operations reiserfs_file_inode_operations = { 1584 .truncate = reiserfs_vfs_truncate_file, 1585 .setattr = reiserfs_setattr, 1586 .setxattr = reiserfs_setxattr, 1587 .getxattr = reiserfs_getxattr, 1588 .listxattr = reiserfs_listxattr, 1589 .removexattr = reiserfs_removexattr, 1590 .permission = reiserfs_permission, 1591}; 1592