fix_node.c revision cf776a7a4dafa330dd371a6a301ddf9e38747d93
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5#include <linux/time.h>
6#include <linux/slab.h>
7#include <linux/string.h>
8#include "reiserfs.h"
9#include <linux/buffer_head.h>
10
11/*
12 * To make any changes in the tree we find a node that contains item
13 * to be changed/deleted or position in the node we insert a new item
14 * to. We call this node S. To do balancing we need to decide what we
15 * will shift to left/right neighbor, or to a new node, where new item
16 * will be etc. To make this analysis simpler we build virtual
17 * node. Virtual node is an array of items, that will replace items of
18 * node S. (For instance if we are going to delete an item, virtual
19 * node does not contain it). Virtual node keeps information about
20 * item sizes and types, mergeability of first and last items, sizes
21 * of all entries in directory item. We use this array of items when
22 * calculating what we can shift to neighbors and how many nodes we
23 * have to have if we do not any shiftings, if we shift to left/right
24 * neighbor or to both.
25 */
26
27/*
28 * Takes item number in virtual node, returns number of item
29 * that it has in source buffer
30 */
31static inline int old_item_num(int new_num, int affected_item_num, int mode)
32{
33	if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
34		return new_num;
35
36	if (mode == M_INSERT) {
37
38		RFALSE(new_num == 0,
39		       "vs-8005: for INSERT mode and item number of inserted item");
40
41		return new_num - 1;
42	}
43
44	RFALSE(mode != M_DELETE,
45	       "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
46	       mode);
47	/* delete mode */
48	return new_num + 1;
49}
50
51static void create_virtual_node(struct tree_balance *tb, int h)
52{
53	struct item_head *ih;
54	struct virtual_node *vn = tb->tb_vn;
55	int new_num;
56	struct buffer_head *Sh;	/* this comes from tb->S[h] */
57
58	Sh = PATH_H_PBUFFER(tb->tb_path, h);
59
60	/* size of changed node */
61	vn->vn_size =
62	    MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
63
64	/* for internal nodes array if virtual items is not created */
65	if (h) {
66		vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
67		return;
68	}
69
70	/* number of items in virtual node  */
71	vn->vn_nr_item =
72	    B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
73	    ((vn->vn_mode == M_DELETE) ? 1 : 0);
74
75	/* first virtual item */
76	vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
77	memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
78	vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
79
80	/* first item in the node */
81	ih = item_head(Sh, 0);
82
83	/* define the mergeability for 0-th item (if it is not being deleted) */
84	if (op_is_left_mergeable(&(ih->ih_key), Sh->b_size)
85	    && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
86		vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
87
88	/*
89	 * go through all items that remain in the virtual
90	 * node (except for the new (inserted) one)
91	 */
92	for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
93		int j;
94		struct virtual_item *vi = vn->vn_vi + new_num;
95		int is_affected =
96		    ((new_num != vn->vn_affected_item_num) ? 0 : 1);
97
98		if (is_affected && vn->vn_mode == M_INSERT)
99			continue;
100
101		/* get item number in source node */
102		j = old_item_num(new_num, vn->vn_affected_item_num,
103				 vn->vn_mode);
104
105		vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
106		vi->vi_ih = ih + j;
107		vi->vi_item = ih_item_body(Sh, ih + j);
108		vi->vi_uarea = vn->vn_free_ptr;
109
110		/*
111		 * FIXME: there is no check that item operation did not
112		 * consume too much memory
113		 */
114		vn->vn_free_ptr +=
115		    op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
116		if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
117			reiserfs_panic(tb->tb_sb, "vs-8030",
118				       "virtual node space consumed");
119
120		if (!is_affected)
121			/* this is not being changed */
122			continue;
123
124		if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
125			vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
126			/* pointer to data which is going to be pasted */
127			vi->vi_new_data = vn->vn_data;
128		}
129	}
130
131	/* virtual inserted item is not defined yet */
132	if (vn->vn_mode == M_INSERT) {
133		struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
134
135		RFALSE(vn->vn_ins_ih == NULL,
136		       "vs-8040: item header of inserted item is not specified");
137		vi->vi_item_len = tb->insert_size[0];
138		vi->vi_ih = vn->vn_ins_ih;
139		vi->vi_item = vn->vn_data;
140		vi->vi_uarea = vn->vn_free_ptr;
141
142		op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
143			     tb->insert_size[0]);
144	}
145
146	/*
147	 * set right merge flag we take right delimiting key and
148	 * check whether it is a mergeable item
149	 */
150	if (tb->CFR[0]) {
151		struct reiserfs_key *key;
152
153		key = internal_key(tb->CFR[0], tb->rkey[0]);
154		if (op_is_left_mergeable(key, Sh->b_size)
155		    && (vn->vn_mode != M_DELETE
156			|| vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
157			vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
158			    VI_TYPE_RIGHT_MERGEABLE;
159
160#ifdef CONFIG_REISERFS_CHECK
161		if (op_is_left_mergeable(key, Sh->b_size) &&
162		    !(vn->vn_mode != M_DELETE
163		      || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
164			/*
165			 * we delete last item and it could be merged
166			 * with right neighbor's first item
167			 */
168			if (!
169			    (B_NR_ITEMS(Sh) == 1
170			     && is_direntry_le_ih(item_head(Sh, 0))
171			     && ih_entry_count(item_head(Sh, 0)) == 1)) {
172				/*
173				 * node contains more than 1 item, or item
174				 * is not directory item, or this item
175				 * contains more than 1 entry
176				 */
177				print_block(Sh, 0, -1, -1);
178				reiserfs_panic(tb->tb_sb, "vs-8045",
179					       "rdkey %k, affected item==%d "
180					       "(mode==%c) Must be %c",
181					       key, vn->vn_affected_item_num,
182					       vn->vn_mode, M_DELETE);
183			}
184		}
185#endif
186
187	}
188}
189
190/*
191 * Using virtual node check, how many items can be
192 * shifted to left neighbor
193 */
194static void check_left(struct tree_balance *tb, int h, int cur_free)
195{
196	int i;
197	struct virtual_node *vn = tb->tb_vn;
198	struct virtual_item *vi;
199	int d_size, ih_size;
200
201	RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
202
203	/* internal level */
204	if (h > 0) {
205		tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
206		return;
207	}
208
209	/* leaf level */
210
211	if (!cur_free || !vn->vn_nr_item) {
212		/* no free space or nothing to move */
213		tb->lnum[h] = 0;
214		tb->lbytes = -1;
215		return;
216	}
217
218	RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
219	       "vs-8055: parent does not exist or invalid");
220
221	vi = vn->vn_vi;
222	if ((unsigned int)cur_free >=
223	    (vn->vn_size -
224	     ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
225		/* all contents of S[0] fits into L[0] */
226
227		RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
228		       "vs-8055: invalid mode or balance condition failed");
229
230		tb->lnum[0] = vn->vn_nr_item;
231		tb->lbytes = -1;
232		return;
233	}
234
235	d_size = 0, ih_size = IH_SIZE;
236
237	/* first item may be merge with last item in left neighbor */
238	if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
239		d_size = -((int)IH_SIZE), ih_size = 0;
240
241	tb->lnum[0] = 0;
242	for (i = 0; i < vn->vn_nr_item;
243	     i++, ih_size = IH_SIZE, d_size = 0, vi++) {
244		d_size += vi->vi_item_len;
245		if (cur_free >= d_size) {
246			/* the item can be shifted entirely */
247			cur_free -= d_size;
248			tb->lnum[0]++;
249			continue;
250		}
251
252		/* the item cannot be shifted entirely, try to split it */
253		/*
254		 * check whether L[0] can hold ih and at least one byte
255		 * of the item body
256		 */
257
258		/* cannot shift even a part of the current item */
259		if (cur_free <= ih_size) {
260			tb->lbytes = -1;
261			return;
262		}
263		cur_free -= ih_size;
264
265		tb->lbytes = op_check_left(vi, cur_free, 0, 0);
266		if (tb->lbytes != -1)
267			/* count partially shifted item */
268			tb->lnum[0]++;
269
270		break;
271	}
272
273	return;
274}
275
276/*
277 * Using virtual node check, how many items can be
278 * shifted to right neighbor
279 */
280static void check_right(struct tree_balance *tb, int h, int cur_free)
281{
282	int i;
283	struct virtual_node *vn = tb->tb_vn;
284	struct virtual_item *vi;
285	int d_size, ih_size;
286
287	RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
288
289	/* internal level */
290	if (h > 0) {
291		tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
292		return;
293	}
294
295	/* leaf level */
296
297	if (!cur_free || !vn->vn_nr_item) {
298		/* no free space  */
299		tb->rnum[h] = 0;
300		tb->rbytes = -1;
301		return;
302	}
303
304	RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
305	       "vs-8075: parent does not exist or invalid");
306
307	vi = vn->vn_vi + vn->vn_nr_item - 1;
308	if ((unsigned int)cur_free >=
309	    (vn->vn_size -
310	     ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
311		/* all contents of S[0] fits into R[0] */
312
313		RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
314		       "vs-8080: invalid mode or balance condition failed");
315
316		tb->rnum[h] = vn->vn_nr_item;
317		tb->rbytes = -1;
318		return;
319	}
320
321	d_size = 0, ih_size = IH_SIZE;
322
323	/* last item may be merge with first item in right neighbor */
324	if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
325		d_size = -(int)IH_SIZE, ih_size = 0;
326
327	tb->rnum[0] = 0;
328	for (i = vn->vn_nr_item - 1; i >= 0;
329	     i--, d_size = 0, ih_size = IH_SIZE, vi--) {
330		d_size += vi->vi_item_len;
331		if (cur_free >= d_size) {
332			/* the item can be shifted entirely */
333			cur_free -= d_size;
334			tb->rnum[0]++;
335			continue;
336		}
337
338		/*
339		 * check whether R[0] can hold ih and at least one
340		 * byte of the item body
341		 */
342
343		/* cannot shift even a part of the current item */
344		if (cur_free <= ih_size) {
345			tb->rbytes = -1;
346			return;
347		}
348
349		/*
350		 * R[0] can hold the header of the item and at least
351		 * one byte of its body
352		 */
353		cur_free -= ih_size;	/* cur_free is still > 0 */
354
355		tb->rbytes = op_check_right(vi, cur_free);
356		if (tb->rbytes != -1)
357			/* count partially shifted item */
358			tb->rnum[0]++;
359
360		break;
361	}
362
363	return;
364}
365
366/*
367 * from - number of items, which are shifted to left neighbor entirely
368 * to - number of item, which are shifted to right neighbor entirely
369 * from_bytes - number of bytes of boundary item (or directory entries)
370 *              which are shifted to left neighbor
371 * to_bytes - number of bytes of boundary item (or directory entries)
372 *            which are shifted to right neighbor
373 */
374static int get_num_ver(int mode, struct tree_balance *tb, int h,
375		       int from, int from_bytes,
376		       int to, int to_bytes, short *snum012, int flow)
377{
378	int i;
379	int cur_free;
380	int units;
381	struct virtual_node *vn = tb->tb_vn;
382	int total_node_size, max_node_size, current_item_size;
383	int needed_nodes;
384
385	/* position of item we start filling node from */
386	int start_item;
387
388	/* position of item we finish filling node by */
389	int end_item;
390
391	/*
392	 * number of first bytes (entries for directory) of start_item-th item
393	 * we do not include into node that is being filled
394	 */
395	int start_bytes;
396
397	/*
398	 * number of last bytes (entries for directory) of end_item-th item
399	 * we do node include into node that is being filled
400	 */
401	int end_bytes;
402
403	/*
404	 * these are positions in virtual item of items, that are split
405	 * between S[0] and S1new and S1new and S2new
406	 */
407	int split_item_positions[2];
408
409	split_item_positions[0] = -1;
410	split_item_positions[1] = -1;
411
412	/*
413	 * We only create additional nodes if we are in insert or paste mode
414	 * or we are in replace mode at the internal level. If h is 0 and
415	 * the mode is M_REPLACE then in fix_nodes we change the mode to
416	 * paste or insert before we get here in the code.
417	 */
418	RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
419	       "vs-8100: insert_size < 0 in overflow");
420
421	max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
422
423	/*
424	 * snum012 [0-2] - number of items, that lay
425	 * to S[0], first new node and second new node
426	 */
427	snum012[3] = -1;	/* s1bytes */
428	snum012[4] = -1;	/* s2bytes */
429
430	/* internal level */
431	if (h > 0) {
432		i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
433		if (i == max_node_size)
434			return 1;
435		return (i / max_node_size + 1);
436	}
437
438	/* leaf level */
439	needed_nodes = 1;
440	total_node_size = 0;
441	cur_free = max_node_size;
442
443	/* start from 'from'-th item */
444	start_item = from;
445	/* skip its first 'start_bytes' units */
446	start_bytes = ((from_bytes != -1) ? from_bytes : 0);
447
448	/* last included item is the 'end_item'-th one */
449	end_item = vn->vn_nr_item - to - 1;
450	/* do not count last 'end_bytes' units of 'end_item'-th item */
451	end_bytes = (to_bytes != -1) ? to_bytes : 0;
452
453	/*
454	 * go through all item beginning from the start_item-th item
455	 * and ending by the end_item-th item. Do not count first
456	 * 'start_bytes' units of 'start_item'-th item and last
457	 * 'end_bytes' of 'end_item'-th item
458	 */
459	for (i = start_item; i <= end_item; i++) {
460		struct virtual_item *vi = vn->vn_vi + i;
461		int skip_from_end = ((i == end_item) ? end_bytes : 0);
462
463		RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
464
465		/* get size of current item */
466		current_item_size = vi->vi_item_len;
467
468		/*
469		 * do not take in calculation head part (from_bytes)
470		 * of from-th item
471		 */
472		current_item_size -=
473		    op_part_size(vi, 0 /*from start */ , start_bytes);
474
475		/* do not take in calculation tail part of last item */
476		current_item_size -=
477		    op_part_size(vi, 1 /*from end */ , skip_from_end);
478
479		/* if item fits into current node entierly */
480		if (total_node_size + current_item_size <= max_node_size) {
481			snum012[needed_nodes - 1]++;
482			total_node_size += current_item_size;
483			start_bytes = 0;
484			continue;
485		}
486
487		/*
488		 * virtual item length is longer, than max size of item in
489		 * a node. It is impossible for direct item
490		 */
491		if (current_item_size > max_node_size) {
492			RFALSE(is_direct_le_ih(vi->vi_ih),
493			       "vs-8110: "
494			       "direct item length is %d. It can not be longer than %d",
495			       current_item_size, max_node_size);
496			/* we will try to split it */
497			flow = 1;
498		}
499
500		/* as we do not split items, take new node and continue */
501		if (!flow) {
502			needed_nodes++;
503			i--;
504			total_node_size = 0;
505			continue;
506		}
507
508		/*
509		 * calculate number of item units which fit into node being
510		 * filled
511		 */
512		{
513			int free_space;
514
515			free_space = max_node_size - total_node_size - IH_SIZE;
516			units =
517			    op_check_left(vi, free_space, start_bytes,
518					  skip_from_end);
519			/*
520			 * nothing fits into current node, take new
521			 * node and continue
522			 */
523			if (units == -1) {
524				needed_nodes++, i--, total_node_size = 0;
525				continue;
526			}
527		}
528
529		/* something fits into the current node */
530		start_bytes += units;
531		snum012[needed_nodes - 1 + 3] = units;
532
533		if (needed_nodes > 2)
534			reiserfs_warning(tb->tb_sb, "vs-8111",
535					 "split_item_position is out of range");
536		snum012[needed_nodes - 1]++;
537		split_item_positions[needed_nodes - 1] = i;
538		needed_nodes++;
539		/* continue from the same item with start_bytes != -1 */
540		start_item = i;
541		i--;
542		total_node_size = 0;
543	}
544
545	/*
546	 * sum012[4] (if it is not -1) contains number of units of which
547	 * are to be in S1new, snum012[3] - to be in S0. They are supposed
548	 * to be S1bytes and S2bytes correspondingly, so recalculate
549	 */
550	if (snum012[4] > 0) {
551		int split_item_num;
552		int bytes_to_r, bytes_to_l;
553		int bytes_to_S1new;
554
555		split_item_num = split_item_positions[1];
556		bytes_to_l =
557		    ((from == split_item_num
558		      && from_bytes != -1) ? from_bytes : 0);
559		bytes_to_r =
560		    ((end_item == split_item_num
561		      && end_bytes != -1) ? end_bytes : 0);
562		bytes_to_S1new =
563		    ((split_item_positions[0] ==
564		      split_item_positions[1]) ? snum012[3] : 0);
565
566		/* s2bytes */
567		snum012[4] =
568		    op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
569		    bytes_to_r - bytes_to_l - bytes_to_S1new;
570
571		if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
572		    vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
573			reiserfs_warning(tb->tb_sb, "vs-8115",
574					 "not directory or indirect item");
575	}
576
577	/* now we know S2bytes, calculate S1bytes */
578	if (snum012[3] > 0) {
579		int split_item_num;
580		int bytes_to_r, bytes_to_l;
581		int bytes_to_S2new;
582
583		split_item_num = split_item_positions[0];
584		bytes_to_l =
585		    ((from == split_item_num
586		      && from_bytes != -1) ? from_bytes : 0);
587		bytes_to_r =
588		    ((end_item == split_item_num
589		      && end_bytes != -1) ? end_bytes : 0);
590		bytes_to_S2new =
591		    ((split_item_positions[0] == split_item_positions[1]
592		      && snum012[4] != -1) ? snum012[4] : 0);
593
594		/* s1bytes */
595		snum012[3] =
596		    op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
597		    bytes_to_r - bytes_to_l - bytes_to_S2new;
598	}
599
600	return needed_nodes;
601}
602
603
604/*
605 * Set parameters for balancing.
606 * Performs write of results of analysis of balancing into structure tb,
607 * where it will later be used by the functions that actually do the balancing.
608 * Parameters:
609 *	tb	tree_balance structure;
610 *	h	current level of the node;
611 *	lnum	number of items from S[h] that must be shifted to L[h];
612 *	rnum	number of items from S[h] that must be shifted to R[h];
613 *	blk_num	number of blocks that S[h] will be splitted into;
614 *	s012	number of items that fall into splitted nodes.
615 *	lbytes	number of bytes which flow to the left neighbor from the
616 *              item that is not not shifted entirely
617 *	rbytes	number of bytes which flow to the right neighbor from the
618 *              item that is not not shifted entirely
619 *	s1bytes	number of bytes which flow to the first  new node when
620 *              S[0] splits (this number is contained in s012 array)
621 */
622
623static void set_parameters(struct tree_balance *tb, int h, int lnum,
624			   int rnum, int blk_num, short *s012, int lb, int rb)
625{
626
627	tb->lnum[h] = lnum;
628	tb->rnum[h] = rnum;
629	tb->blknum[h] = blk_num;
630
631	/* only for leaf level */
632	if (h == 0) {
633		if (s012 != NULL) {
634			tb->s0num = *s012++,
635			    tb->s1num = *s012++, tb->s2num = *s012++;
636			tb->s1bytes = *s012++;
637			tb->s2bytes = *s012;
638		}
639		tb->lbytes = lb;
640		tb->rbytes = rb;
641	}
642	PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
643	PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
644
645	PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
646	PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
647}
648
649/*
650 * check if node disappears if we shift tb->lnum[0] items to left
651 * neighbor and tb->rnum[0] to the right one.
652 */
653static int is_leaf_removable(struct tree_balance *tb)
654{
655	struct virtual_node *vn = tb->tb_vn;
656	int to_left, to_right;
657	int size;
658	int remain_items;
659
660	/*
661	 * number of items that will be shifted to left (right) neighbor
662	 * entirely
663	 */
664	to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
665	to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
666	remain_items = vn->vn_nr_item;
667
668	/* how many items remain in S[0] after shiftings to neighbors */
669	remain_items -= (to_left + to_right);
670
671	/* all content of node can be shifted to neighbors */
672	if (remain_items < 1) {
673		set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
674			       NULL, -1, -1);
675		return 1;
676	}
677
678	/* S[0] is not removable */
679	if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
680		return 0;
681
682	/* check whether we can divide 1 remaining item between neighbors */
683
684	/* get size of remaining item (in item units) */
685	size = op_unit_num(&(vn->vn_vi[to_left]));
686
687	if (tb->lbytes + tb->rbytes >= size) {
688		set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
689			       tb->lbytes, -1);
690		return 1;
691	}
692
693	return 0;
694}
695
696/* check whether L, S, R can be joined in one node */
697static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
698{
699	struct virtual_node *vn = tb->tb_vn;
700	int ih_size;
701	struct buffer_head *S0;
702
703	S0 = PATH_H_PBUFFER(tb->tb_path, 0);
704
705	ih_size = 0;
706	if (vn->vn_nr_item) {
707		if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
708			ih_size += IH_SIZE;
709
710		if (vn->vn_vi[vn->vn_nr_item - 1].
711		    vi_type & VI_TYPE_RIGHT_MERGEABLE)
712			ih_size += IH_SIZE;
713	} else {
714		/* there was only one item and it will be deleted */
715		struct item_head *ih;
716
717		RFALSE(B_NR_ITEMS(S0) != 1,
718		       "vs-8125: item number must be 1: it is %d",
719		       B_NR_ITEMS(S0));
720
721		ih = item_head(S0, 0);
722		if (tb->CFR[0]
723		    && !comp_short_le_keys(&(ih->ih_key),
724					   internal_key(tb->CFR[0],
725							  tb->rkey[0])))
726			/*
727			 * Directory must be in correct state here: that is
728			 * somewhere at the left side should exist first
729			 * directory item. But the item being deleted can
730			 * not be that first one because its right neighbor
731			 * is item of the same directory. (But first item
732			 * always gets deleted in last turn). So, neighbors
733			 * of deleted item can be merged, so we can save
734			 * ih_size
735			 */
736			if (is_direntry_le_ih(ih)) {
737				ih_size = IH_SIZE;
738
739				/*
740				 * we might check that left neighbor exists
741				 * and is of the same directory
742				 */
743				RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
744				       "vs-8130: first directory item can not be removed until directory is not empty");
745			}
746
747	}
748
749	if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
750		set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
751		PROC_INFO_INC(tb->tb_sb, leaves_removable);
752		return 1;
753	}
754	return 0;
755
756}
757
758/* when we do not split item, lnum and rnum are numbers of entire items */
759#define SET_PAR_SHIFT_LEFT \
760if (h)\
761{\
762   int to_l;\
763   \
764   to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
765	      (MAX_NR_KEY(Sh) + 1 - lpar);\
766	      \
767	      set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
768}\
769else \
770{\
771   if (lset==LEFT_SHIFT_FLOW)\
772     set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
773		     tb->lbytes, -1);\
774   else\
775     set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
776		     -1, -1);\
777}
778
779#define SET_PAR_SHIFT_RIGHT \
780if (h)\
781{\
782   int to_r;\
783   \
784   to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
785   \
786   set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
787}\
788else \
789{\
790   if (rset==RIGHT_SHIFT_FLOW)\
791     set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
792		  -1, tb->rbytes);\
793   else\
794     set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
795		  -1, -1);\
796}
797
798static void free_buffers_in_tb(struct tree_balance *tb)
799{
800	int i;
801
802	pathrelse(tb->tb_path);
803
804	for (i = 0; i < MAX_HEIGHT; i++) {
805		brelse(tb->L[i]);
806		brelse(tb->R[i]);
807		brelse(tb->FL[i]);
808		brelse(tb->FR[i]);
809		brelse(tb->CFL[i]);
810		brelse(tb->CFR[i]);
811
812		tb->L[i] = NULL;
813		tb->R[i] = NULL;
814		tb->FL[i] = NULL;
815		tb->FR[i] = NULL;
816		tb->CFL[i] = NULL;
817		tb->CFR[i] = NULL;
818	}
819}
820
821/*
822 * Get new buffers for storing new nodes that are created while balancing.
823 * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
824 *	        CARRY_ON - schedule didn't occur while the function worked;
825 *	        NO_DISK_SPACE - no disk space.
826 */
827/* The function is NOT SCHEDULE-SAFE! */
828static int get_empty_nodes(struct tree_balance *tb, int h)
829{
830	struct buffer_head *new_bh, *Sh = PATH_H_PBUFFER(tb->tb_path, h);
831	b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
832	int counter, number_of_freeblk;
833	int  amount_needed;	/* number of needed empty blocks */
834	int  retval = CARRY_ON;
835	struct super_block *sb = tb->tb_sb;
836
837	/*
838	 * number_of_freeblk is the number of empty blocks which have been
839	 * acquired for use by the balancing algorithm minus the number of
840	 * empty blocks used in the previous levels of the analysis,
841	 * number_of_freeblk = tb->cur_blknum can be non-zero if a schedule
842	 * occurs after empty blocks are acquired, and the balancing analysis
843	 * is then restarted, amount_needed is the number needed by this
844	 * level (h) of the balancing analysis.
845	 *
846	 * Note that for systems with many processes writing, it would be
847	 * more layout optimal to calculate the total number needed by all
848	 * levels and then to run reiserfs_new_blocks to get all of them at
849	 * once.
850	 */
851
852	/*
853	 * Initiate number_of_freeblk to the amount acquired prior to the
854	 * restart of the analysis or 0 if not restarted, then subtract the
855	 * amount needed by all of the levels of the tree below h.
856	 */
857	/* blknum includes S[h], so we subtract 1 in this calculation */
858	for (counter = 0, number_of_freeblk = tb->cur_blknum;
859	     counter < h; counter++)
860		number_of_freeblk -=
861		    (tb->blknum[counter]) ? (tb->blknum[counter] -
862						   1) : 0;
863
864	/* Allocate missing empty blocks. */
865	/* if Sh == 0  then we are getting a new root */
866	amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1;
867	/*
868	 * Amount_needed = the amount that we need more than the
869	 * amount that we have.
870	 */
871	if (amount_needed > number_of_freeblk)
872		amount_needed -= number_of_freeblk;
873	else	/* If we have enough already then there is nothing to do. */
874		return CARRY_ON;
875
876	/*
877	 * No need to check quota - is not allocated for blocks used
878	 * for formatted nodes
879	 */
880	if (reiserfs_new_form_blocknrs(tb, blocknrs,
881				       amount_needed) == NO_DISK_SPACE)
882		return NO_DISK_SPACE;
883
884	/* for each blocknumber we just got, get a buffer and stick it on FEB */
885	for (blocknr = blocknrs, counter = 0;
886	     counter < amount_needed; blocknr++, counter++) {
887
888		RFALSE(!*blocknr,
889		       "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
890
891		new_bh = sb_getblk(sb, *blocknr);
892		RFALSE(buffer_dirty(new_bh) ||
893		       buffer_journaled(new_bh) ||
894		       buffer_journal_dirty(new_bh),
895		       "PAP-8140: journaled or dirty buffer %b for the new block",
896		       new_bh);
897
898		/* Put empty buffers into the array. */
899		RFALSE(tb->FEB[tb->cur_blknum],
900		       "PAP-8141: busy slot for new buffer");
901
902		set_buffer_journal_new(new_bh);
903		tb->FEB[tb->cur_blknum++] = new_bh;
904	}
905
906	if (retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb))
907		retval = REPEAT_SEARCH;
908
909	return retval;
910}
911
912/*
913 * Get free space of the left neighbor, which is stored in the parent
914 * node of the left neighbor.
915 */
916static int get_lfree(struct tree_balance *tb, int h)
917{
918	struct buffer_head *l, *f;
919	int order;
920
921	if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
922	    (l = tb->FL[h]) == NULL)
923		return 0;
924
925	if (f == l)
926		order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
927	else {
928		order = B_NR_ITEMS(l);
929		f = l;
930	}
931
932	return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
933}
934
935/*
936 * Get free space of the right neighbor,
937 * which is stored in the parent node of the right neighbor.
938 */
939static int get_rfree(struct tree_balance *tb, int h)
940{
941	struct buffer_head *r, *f;
942	int order;
943
944	if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
945	    (r = tb->FR[h]) == NULL)
946		return 0;
947
948	if (f == r)
949		order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
950	else {
951		order = 0;
952		f = r;
953	}
954
955	return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
956
957}
958
959/* Check whether left neighbor is in memory. */
960static int is_left_neighbor_in_cache(struct tree_balance *tb, int h)
961{
962	struct buffer_head *father, *left;
963	struct super_block *sb = tb->tb_sb;
964	b_blocknr_t left_neighbor_blocknr;
965	int left_neighbor_position;
966
967	/* Father of the left neighbor does not exist. */
968	if (!tb->FL[h])
969		return 0;
970
971	/* Calculate father of the node to be balanced. */
972	father = PATH_H_PBUFFER(tb->tb_path, h + 1);
973
974	RFALSE(!father ||
975	       !B_IS_IN_TREE(father) ||
976	       !B_IS_IN_TREE(tb->FL[h]) ||
977	       !buffer_uptodate(father) ||
978	       !buffer_uptodate(tb->FL[h]),
979	       "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
980	       father, tb->FL[h]);
981
982	/*
983	 * Get position of the pointer to the left neighbor
984	 * into the left father.
985	 */
986	left_neighbor_position = (father == tb->FL[h]) ?
987	    tb->lkey[h] : B_NR_ITEMS(tb->FL[h]);
988	/* Get left neighbor block number. */
989	left_neighbor_blocknr =
990	    B_N_CHILD_NUM(tb->FL[h], left_neighbor_position);
991	/* Look for the left neighbor in the cache. */
992	if ((left = sb_find_get_block(sb, left_neighbor_blocknr))) {
993
994		RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
995		       "vs-8170: left neighbor (%b %z) is not in the tree",
996		       left, left);
997		put_bh(left);
998		return 1;
999	}
1000
1001	return 0;
1002}
1003
1004#define LEFT_PARENTS  'l'
1005#define RIGHT_PARENTS 'r'
1006
1007static void decrement_key(struct cpu_key *key)
1008{
1009	/* call item specific function for this key */
1010	item_ops[cpu_key_k_type(key)]->decrement_key(key);
1011}
1012
1013/*
1014 * Calculate far left/right parent of the left/right neighbor of the
1015 * current node, that is calculate the left/right (FL[h]/FR[h]) neighbor
1016 * of the parent F[h].
1017 * Calculate left/right common parent of the current node and L[h]/R[h].
1018 * Calculate left/right delimiting key position.
1019 * Returns:	PATH_INCORRECT    - path in the tree is not correct
1020 *		SCHEDULE_OCCURRED - schedule occurred while the function worked
1021 *	        CARRY_ON          - schedule didn't occur while the function
1022 *				    worked
1023 */
1024static int get_far_parent(struct tree_balance *tb,
1025			  int h,
1026			  struct buffer_head **pfather,
1027			  struct buffer_head **pcom_father, char c_lr_par)
1028{
1029	struct buffer_head *parent;
1030	INITIALIZE_PATH(s_path_to_neighbor_father);
1031	struct treepath *path = tb->tb_path;
1032	struct cpu_key s_lr_father_key;
1033	int counter,
1034	    position = INT_MAX,
1035	    first_last_position = 0,
1036	    path_offset = PATH_H_PATH_OFFSET(path, h);
1037
1038	/*
1039	 * Starting from F[h] go upwards in the tree, and look for the common
1040	 * ancestor of F[h], and its neighbor l/r, that should be obtained.
1041	 */
1042
1043	counter = path_offset;
1044
1045	RFALSE(counter < FIRST_PATH_ELEMENT_OFFSET,
1046	       "PAP-8180: invalid path length");
1047
1048	for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) {
1049		/*
1050		 * Check whether parent of the current buffer in the path
1051		 * is really parent in the tree.
1052		 */
1053		if (!B_IS_IN_TREE
1054		    (parent = PATH_OFFSET_PBUFFER(path, counter - 1)))
1055			return REPEAT_SEARCH;
1056
1057		/* Check whether position in the parent is correct. */
1058		if ((position =
1059		     PATH_OFFSET_POSITION(path,
1060					  counter - 1)) >
1061		    B_NR_ITEMS(parent))
1062			return REPEAT_SEARCH;
1063
1064		/*
1065		 * Check whether parent at the path really points
1066		 * to the child.
1067		 */
1068		if (B_N_CHILD_NUM(parent, position) !=
1069		    PATH_OFFSET_PBUFFER(path, counter)->b_blocknr)
1070			return REPEAT_SEARCH;
1071
1072		/*
1073		 * Return delimiting key if position in the parent is not
1074		 * equal to first/last one.
1075		 */
1076		if (c_lr_par == RIGHT_PARENTS)
1077			first_last_position = B_NR_ITEMS(parent);
1078		if (position != first_last_position) {
1079			*pcom_father = parent;
1080			get_bh(*pcom_father);
1081			/*(*pcom_father = parent)->b_count++; */
1082			break;
1083		}
1084	}
1085
1086	/* if we are in the root of the tree, then there is no common father */
1087	if (counter == FIRST_PATH_ELEMENT_OFFSET) {
1088		/*
1089		 * Check whether first buffer in the path is the
1090		 * root of the tree.
1091		 */
1092		if (PATH_OFFSET_PBUFFER
1093		    (tb->tb_path,
1094		     FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
1095		    SB_ROOT_BLOCK(tb->tb_sb)) {
1096			*pfather = *pcom_father = NULL;
1097			return CARRY_ON;
1098		}
1099		return REPEAT_SEARCH;
1100	}
1101
1102	RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL,
1103	       "PAP-8185: (%b %z) level too small",
1104	       *pcom_father, *pcom_father);
1105
1106	/* Check whether the common parent is locked. */
1107
1108	if (buffer_locked(*pcom_father)) {
1109
1110		/* Release the write lock while the buffer is busy */
1111		int depth = reiserfs_write_unlock_nested(tb->tb_sb);
1112		__wait_on_buffer(*pcom_father);
1113		reiserfs_write_lock_nested(tb->tb_sb, depth);
1114		if (FILESYSTEM_CHANGED_TB(tb)) {
1115			brelse(*pcom_father);
1116			return REPEAT_SEARCH;
1117		}
1118	}
1119
1120	/*
1121	 * So, we got common parent of the current node and its
1122	 * left/right neighbor.  Now we are getting the parent of the
1123	 * left/right neighbor.
1124	 */
1125
1126	/* Form key to get parent of the left/right neighbor. */
1127	le_key2cpu_key(&s_lr_father_key,
1128		       internal_key(*pcom_father,
1129				      (c_lr_par ==
1130				       LEFT_PARENTS) ? (tb->lkey[h - 1] =
1131							position -
1132							1) : (tb->rkey[h -
1133									   1] =
1134							      position)));
1135
1136	if (c_lr_par == LEFT_PARENTS)
1137		decrement_key(&s_lr_father_key);
1138
1139	if (search_by_key
1140	    (tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
1141	     h + 1) == IO_ERROR)
1142		/* path is released */
1143		return IO_ERROR;
1144
1145	if (FILESYSTEM_CHANGED_TB(tb)) {
1146		pathrelse(&s_path_to_neighbor_father);
1147		brelse(*pcom_father);
1148		return REPEAT_SEARCH;
1149	}
1150
1151	*pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
1152
1153	RFALSE(B_LEVEL(*pfather) != h + 1,
1154	       "PAP-8190: (%b %z) level too small", *pfather, *pfather);
1155	RFALSE(s_path_to_neighbor_father.path_length <
1156	       FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
1157
1158	s_path_to_neighbor_father.path_length--;
1159	pathrelse(&s_path_to_neighbor_father);
1160	return CARRY_ON;
1161}
1162
1163/*
1164 * Get parents of neighbors of node in the path(S[path_offset]) and
1165 * common parents of S[path_offset] and L[path_offset]/R[path_offset]:
1166 * F[path_offset], FL[path_offset], FR[path_offset], CFL[path_offset],
1167 * CFR[path_offset].
1168 * Calculate numbers of left and right delimiting keys position:
1169 * lkey[path_offset], rkey[path_offset].
1170 * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked
1171 *	        CARRY_ON - schedule didn't occur while the function worked
1172 */
1173static int get_parents(struct tree_balance *tb, int h)
1174{
1175	struct treepath *path = tb->tb_path;
1176	int position,
1177	    ret,
1178	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
1179	struct buffer_head *curf, *curcf;
1180
1181	/* Current node is the root of the tree or will be root of the tree */
1182	if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1183		/*
1184		 * The root can not have parents.
1185		 * Release nodes which previously were obtained as
1186		 * parents of the current node neighbors.
1187		 */
1188		brelse(tb->FL[h]);
1189		brelse(tb->CFL[h]);
1190		brelse(tb->FR[h]);
1191		brelse(tb->CFR[h]);
1192		tb->FL[h]  = NULL;
1193		tb->CFL[h] = NULL;
1194		tb->FR[h]  = NULL;
1195		tb->CFR[h] = NULL;
1196		return CARRY_ON;
1197	}
1198
1199	/* Get parent FL[path_offset] of L[path_offset]. */
1200	position = PATH_OFFSET_POSITION(path, path_offset - 1);
1201	if (position) {
1202		/* Current node is not the first child of its parent. */
1203		curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1204		curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1205		get_bh(curf);
1206		get_bh(curf);
1207		tb->lkey[h] = position - 1;
1208	} else {
1209		/*
1210		 * Calculate current parent of L[path_offset], which is the
1211		 * left neighbor of the current node.  Calculate current
1212		 * common parent of L[path_offset] and the current node.
1213		 * Note that CFL[path_offset] not equal FL[path_offset] and
1214		 * CFL[path_offset] not equal F[path_offset].
1215		 * Calculate lkey[path_offset].
1216		 */
1217		if ((ret = get_far_parent(tb, h + 1, &curf,
1218						  &curcf,
1219						  LEFT_PARENTS)) != CARRY_ON)
1220			return ret;
1221	}
1222
1223	brelse(tb->FL[h]);
1224	tb->FL[h] = curf;	/* New initialization of FL[h]. */
1225	brelse(tb->CFL[h]);
1226	tb->CFL[h] = curcf;	/* New initialization of CFL[h]. */
1227
1228	RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1229	       (curcf && !B_IS_IN_TREE(curcf)),
1230	       "PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf);
1231
1232	/* Get parent FR[h] of R[h]. */
1233
1234	/* Current node is the last child of F[h]. FR[h] != F[h]. */
1235	if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) {
1236		/*
1237		 * Calculate current parent of R[h], which is the right
1238		 * neighbor of F[h].  Calculate current common parent of
1239		 * R[h] and current node. Note that CFR[h] not equal
1240		 * FR[path_offset] and CFR[h] not equal F[h].
1241		 */
1242		if ((ret =
1243		     get_far_parent(tb, h + 1, &curf, &curcf,
1244				    RIGHT_PARENTS)) != CARRY_ON)
1245			return ret;
1246	} else {
1247		/* Current node is not the last child of its parent F[h]. */
1248		curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1249		curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1250		get_bh(curf);
1251		get_bh(curf);
1252		tb->rkey[h] = position;
1253	}
1254
1255	brelse(tb->FR[h]);
1256	/* New initialization of FR[path_offset]. */
1257	tb->FR[h] = curf;
1258
1259	brelse(tb->CFR[h]);
1260	/* New initialization of CFR[path_offset]. */
1261	tb->CFR[h] = curcf;
1262
1263	RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1264	       (curcf && !B_IS_IN_TREE(curcf)),
1265	       "PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf);
1266
1267	return CARRY_ON;
1268}
1269
1270/*
1271 * it is possible to remove node as result of shiftings to
1272 * neighbors even when we insert or paste item.
1273 */
1274static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
1275				      struct tree_balance *tb, int h)
1276{
1277	struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
1278	int levbytes = tb->insert_size[h];
1279	struct item_head *ih;
1280	struct reiserfs_key *r_key = NULL;
1281
1282	ih = item_head(Sh, 0);
1283	if (tb->CFR[h])
1284		r_key = internal_key(tb->CFR[h], tb->rkey[h]);
1285
1286	if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
1287	    /* shifting may merge items which might save space */
1288	    -
1289	    ((!h
1290	      && op_is_left_mergeable(&(ih->ih_key), Sh->b_size)) ? IH_SIZE : 0)
1291	    -
1292	    ((!h && r_key
1293	      && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
1294	    + ((h) ? KEY_SIZE : 0)) {
1295		/* node can not be removed */
1296		if (sfree >= levbytes) {
1297			/* new item fits into node S[h] without any shifting */
1298			if (!h)
1299				tb->s0num =
1300				    B_NR_ITEMS(Sh) +
1301				    ((mode == M_INSERT) ? 1 : 0);
1302			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1303			return NO_BALANCING_NEEDED;
1304		}
1305	}
1306	PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
1307	return !NO_BALANCING_NEEDED;
1308}
1309
1310/*
1311 * Check whether current node S[h] is balanced when increasing its size by
1312 * Inserting or Pasting.
1313 * Calculate parameters for balancing for current level h.
1314 * Parameters:
1315 *	tb	tree_balance structure;
1316 *	h	current level of the node;
1317 *	inum	item number in S[h];
1318 *	mode	i - insert, p - paste;
1319 * Returns:	1 - schedule occurred;
1320 *	        0 - balancing for higher levels needed;
1321 *	       -1 - no balancing for higher levels needed;
1322 *	       -2 - no disk space.
1323 */
1324/* ip means Inserting or Pasting */
1325static int ip_check_balance(struct tree_balance *tb, int h)
1326{
1327	struct virtual_node *vn = tb->tb_vn;
1328	/*
1329	 * Number of bytes that must be inserted into (value is negative
1330	 * if bytes are deleted) buffer which contains node being balanced.
1331	 * The mnemonic is that the attempted change in node space used
1332	 * level is levbytes bytes.
1333	 */
1334	int levbytes;
1335	int ret;
1336
1337	int lfree, sfree, rfree /* free space in L, S and R */ ;
1338
1339	/*
1340	 * nver is short for number of vertixes, and lnver is the number if
1341	 * we shift to the left, rnver is the number if we shift to the
1342	 * right, and lrnver is the number if we shift in both directions.
1343	 * The goal is to minimize first the number of vertixes, and second,
1344	 * the number of vertixes whose contents are changed by shifting,
1345	 * and third the number of uncached vertixes whose contents are
1346	 * changed by shifting and must be read from disk.
1347	 */
1348	int nver, lnver, rnver, lrnver;
1349
1350	/*
1351	 * used at leaf level only, S0 = S[0] is the node being balanced,
1352	 * sInum [ I = 0,1,2 ] is the number of items that will
1353	 * remain in node SI after balancing.  S1 and S2 are new
1354	 * nodes that might be created.
1355	 */
1356
1357	/*
1358	 * we perform 8 calls to get_num_ver().  For each call we
1359	 * calculate five parameters.  where 4th parameter is s1bytes
1360	 * and 5th - s2bytes
1361	 *
1362	 * s0num, s1num, s2num for 8 cases
1363	 * 0,1 - do not shift and do not shift but bottle
1364	 * 2   - shift only whole item to left
1365	 * 3   - shift to left and bottle as much as possible
1366	 * 4,5 - shift to right (whole items and as much as possible
1367	 * 6,7 - shift to both directions (whole items and as much as possible)
1368	 */
1369	short snum012[40] = { 0, };
1370
1371	/* Sh is the node whose balance is currently being checked */
1372	struct buffer_head *Sh;
1373
1374	Sh = PATH_H_PBUFFER(tb->tb_path, h);
1375	levbytes = tb->insert_size[h];
1376
1377	/* Calculate balance parameters for creating new root. */
1378	if (!Sh) {
1379		if (!h)
1380			reiserfs_panic(tb->tb_sb, "vs-8210",
1381				       "S[0] can not be 0");
1382		switch (ret = get_empty_nodes(tb, h)) {
1383		/* no balancing for higher levels needed */
1384		case CARRY_ON:
1385			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1386			return NO_BALANCING_NEEDED;
1387
1388		case NO_DISK_SPACE:
1389		case REPEAT_SEARCH:
1390			return ret;
1391		default:
1392			reiserfs_panic(tb->tb_sb, "vs-8215", "incorrect "
1393				       "return value of get_empty_nodes");
1394		}
1395	}
1396
1397	/* get parents of S[h] neighbors. */
1398	ret = get_parents(tb, h);
1399	if (ret != CARRY_ON)
1400		return ret;
1401
1402	sfree = B_FREE_SPACE(Sh);
1403
1404	/* get free space of neighbors */
1405	rfree = get_rfree(tb, h);
1406	lfree = get_lfree(tb, h);
1407
1408	/* and new item fits into node S[h] without any shifting */
1409	if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
1410	    NO_BALANCING_NEEDED)
1411		return NO_BALANCING_NEEDED;
1412
1413	create_virtual_node(tb, h);
1414
1415	/*
1416	 * determine maximal number of items we can shift to the left
1417	 * neighbor (in tb structure) and the maximal number of bytes
1418	 * that can flow to the left neighbor from the left most liquid
1419	 * item that cannot be shifted from S[0] entirely (returned value)
1420	 */
1421	check_left(tb, h, lfree);
1422
1423	/*
1424	 * determine maximal number of items we can shift to the right
1425	 * neighbor (in tb structure) and the maximal number of bytes
1426	 * that can flow to the right neighbor from the right most liquid
1427	 * item that cannot be shifted from S[0] entirely (returned value)
1428	 */
1429	check_right(tb, h, rfree);
1430
1431	/*
1432	 * all contents of internal node S[h] can be moved into its
1433	 * neighbors, S[h] will be removed after balancing
1434	 */
1435	if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
1436		int to_r;
1437
1438		/*
1439		 * Since we are working on internal nodes, and our internal
1440		 * nodes have fixed size entries, then we can balance by the
1441		 * number of items rather than the space they consume.  In this
1442		 * routine we set the left node equal to the right node,
1443		 * allowing a difference of less than or equal to 1 child
1444		 * pointer.
1445		 */
1446		to_r =
1447		    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1448		     vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1449						tb->rnum[h]);
1450		set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1451			       -1, -1);
1452		return CARRY_ON;
1453	}
1454
1455	/*
1456	 * this checks balance condition, that any two neighboring nodes
1457	 * can not fit in one node
1458	 */
1459	RFALSE(h &&
1460	       (tb->lnum[h] >= vn->vn_nr_item + 1 ||
1461		tb->rnum[h] >= vn->vn_nr_item + 1),
1462	       "vs-8220: tree is not balanced on internal level");
1463	RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
1464		      (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
1465	       "vs-8225: tree is not balanced on leaf level");
1466
1467	/*
1468	 * all contents of S[0] can be moved into its neighbors
1469	 * S[0] will be removed after balancing.
1470	 */
1471	if (!h && is_leaf_removable(tb))
1472		return CARRY_ON;
1473
1474	/*
1475	 * why do we perform this check here rather than earlier??
1476	 * Answer: we can win 1 node in some cases above. Moreover we
1477	 * checked it above, when we checked, that S[0] is not removable
1478	 * in principle
1479	 */
1480
1481	 /* new item fits into node S[h] without any shifting */
1482	if (sfree >= levbytes) {
1483		if (!h)
1484			tb->s0num = vn->vn_nr_item;
1485		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1486		return NO_BALANCING_NEEDED;
1487	}
1488
1489	{
1490		int lpar, rpar, nset, lset, rset, lrset;
1491		/* regular overflowing of the node */
1492
1493		/*
1494		 * get_num_ver works in 2 modes (FLOW & NO_FLOW)
1495		 * lpar, rpar - number of items we can shift to left/right
1496		 *              neighbor (including splitting item)
1497		 * nset, lset, rset, lrset - shows, whether flowing items
1498		 *                           give better packing
1499		 */
1500#define FLOW 1
1501#define NO_FLOW 0		/* do not any splitting */
1502
1503		/* we choose one of the following */
1504#define NOTHING_SHIFT_NO_FLOW	0
1505#define NOTHING_SHIFT_FLOW	5
1506#define LEFT_SHIFT_NO_FLOW	10
1507#define LEFT_SHIFT_FLOW		15
1508#define RIGHT_SHIFT_NO_FLOW	20
1509#define RIGHT_SHIFT_FLOW	25
1510#define LR_SHIFT_NO_FLOW	30
1511#define LR_SHIFT_FLOW		35
1512
1513		lpar = tb->lnum[h];
1514		rpar = tb->rnum[h];
1515
1516		/*
1517		 * calculate number of blocks S[h] must be split into when
1518		 * nothing is shifted to the neighbors, as well as number of
1519		 * items in each part of the split node (s012 numbers),
1520		 * and number of bytes (s1bytes) of the shared drop which
1521		 * flow to S1 if any
1522		 */
1523		nset = NOTHING_SHIFT_NO_FLOW;
1524		nver = get_num_ver(vn->vn_mode, tb, h,
1525				   0, -1, h ? vn->vn_nr_item : 0, -1,
1526				   snum012, NO_FLOW);
1527
1528		if (!h) {
1529			int nver1;
1530
1531			/*
1532			 * note, that in this case we try to bottle
1533			 * between S[0] and S1 (S1 - the first new node)
1534			 */
1535			nver1 = get_num_ver(vn->vn_mode, tb, h,
1536					    0, -1, 0, -1,
1537					    snum012 + NOTHING_SHIFT_FLOW, FLOW);
1538			if (nver > nver1)
1539				nset = NOTHING_SHIFT_FLOW, nver = nver1;
1540		}
1541
1542		/*
1543		 * calculate number of blocks S[h] must be split into when
1544		 * l_shift_num first items and l_shift_bytes of the right
1545		 * most liquid item to be shifted are shifted to the left
1546		 * neighbor, as well as number of items in each part of the
1547		 * splitted node (s012 numbers), and number of bytes
1548		 * (s1bytes) of the shared drop which flow to S1 if any
1549		 */
1550		lset = LEFT_SHIFT_NO_FLOW;
1551		lnver = get_num_ver(vn->vn_mode, tb, h,
1552				    lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1553				    -1, h ? vn->vn_nr_item : 0, -1,
1554				    snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
1555		if (!h) {
1556			int lnver1;
1557
1558			lnver1 = get_num_ver(vn->vn_mode, tb, h,
1559					     lpar -
1560					     ((tb->lbytes != -1) ? 1 : 0),
1561					     tb->lbytes, 0, -1,
1562					     snum012 + LEFT_SHIFT_FLOW, FLOW);
1563			if (lnver > lnver1)
1564				lset = LEFT_SHIFT_FLOW, lnver = lnver1;
1565		}
1566
1567		/*
1568		 * calculate number of blocks S[h] must be split into when
1569		 * r_shift_num first items and r_shift_bytes of the left most
1570		 * liquid item to be shifted are shifted to the right neighbor,
1571		 * as well as number of items in each part of the splitted
1572		 * node (s012 numbers), and number of bytes (s1bytes) of the
1573		 * shared drop which flow to S1 if any
1574		 */
1575		rset = RIGHT_SHIFT_NO_FLOW;
1576		rnver = get_num_ver(vn->vn_mode, tb, h,
1577				    0, -1,
1578				    h ? (vn->vn_nr_item - rpar) : (rpar -
1579								   ((tb->
1580								     rbytes !=
1581								     -1) ? 1 :
1582								    0)), -1,
1583				    snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
1584		if (!h) {
1585			int rnver1;
1586
1587			rnver1 = get_num_ver(vn->vn_mode, tb, h,
1588					     0, -1,
1589					     (rpar -
1590					      ((tb->rbytes != -1) ? 1 : 0)),
1591					     tb->rbytes,
1592					     snum012 + RIGHT_SHIFT_FLOW, FLOW);
1593
1594			if (rnver > rnver1)
1595				rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
1596		}
1597
1598		/*
1599		 * calculate number of blocks S[h] must be split into when
1600		 * items are shifted in both directions, as well as number
1601		 * of items in each part of the splitted node (s012 numbers),
1602		 * and number of bytes (s1bytes) of the shared drop which
1603		 * flow to S1 if any
1604		 */
1605		lrset = LR_SHIFT_NO_FLOW;
1606		lrnver = get_num_ver(vn->vn_mode, tb, h,
1607				     lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1608				     -1,
1609				     h ? (vn->vn_nr_item - rpar) : (rpar -
1610								    ((tb->
1611								      rbytes !=
1612								      -1) ? 1 :
1613								     0)), -1,
1614				     snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
1615		if (!h) {
1616			int lrnver1;
1617
1618			lrnver1 = get_num_ver(vn->vn_mode, tb, h,
1619					      lpar -
1620					      ((tb->lbytes != -1) ? 1 : 0),
1621					      tb->lbytes,
1622					      (rpar -
1623					       ((tb->rbytes != -1) ? 1 : 0)),
1624					      tb->rbytes,
1625					      snum012 + LR_SHIFT_FLOW, FLOW);
1626			if (lrnver > lrnver1)
1627				lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
1628		}
1629
1630		/*
1631		 * Our general shifting strategy is:
1632		 * 1) to minimized number of new nodes;
1633		 * 2) to minimized number of neighbors involved in shifting;
1634		 * 3) to minimized number of disk reads;
1635		 */
1636
1637		/* we can win TWO or ONE nodes by shifting in both directions */
1638		if (lrnver < lnver && lrnver < rnver) {
1639			RFALSE(h &&
1640			       (tb->lnum[h] != 1 ||
1641				tb->rnum[h] != 1 ||
1642				lrnver != 1 || rnver != 2 || lnver != 2
1643				|| h != 1), "vs-8230: bad h");
1644			if (lrset == LR_SHIFT_FLOW)
1645				set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
1646					       lrnver, snum012 + lrset,
1647					       tb->lbytes, tb->rbytes);
1648			else
1649				set_parameters(tb, h,
1650					       tb->lnum[h] -
1651					       ((tb->lbytes == -1) ? 0 : 1),
1652					       tb->rnum[h] -
1653					       ((tb->rbytes == -1) ? 0 : 1),
1654					       lrnver, snum012 + lrset, -1, -1);
1655
1656			return CARRY_ON;
1657		}
1658
1659		/*
1660		 * if shifting doesn't lead to better packing
1661		 * then don't shift
1662		 */
1663		if (nver == lrnver) {
1664			set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
1665				       -1);
1666			return CARRY_ON;
1667		}
1668
1669		/*
1670		 * now we know that for better packing shifting in only one
1671		 * direction either to the left or to the right is required
1672		 */
1673
1674		/*
1675		 * if shifting to the left is better than
1676		 * shifting to the right
1677		 */
1678		if (lnver < rnver) {
1679			SET_PAR_SHIFT_LEFT;
1680			return CARRY_ON;
1681		}
1682
1683		/*
1684		 * if shifting to the right is better than
1685		 * shifting to the left
1686		 */
1687		if (lnver > rnver) {
1688			SET_PAR_SHIFT_RIGHT;
1689			return CARRY_ON;
1690		}
1691
1692		/*
1693		 * now shifting in either direction gives the same number
1694		 * of nodes and we can make use of the cached neighbors
1695		 */
1696		if (is_left_neighbor_in_cache(tb, h)) {
1697			SET_PAR_SHIFT_LEFT;
1698			return CARRY_ON;
1699		}
1700
1701		/*
1702		 * shift to the right independently on whether the
1703		 * right neighbor in cache or not
1704		 */
1705		SET_PAR_SHIFT_RIGHT;
1706		return CARRY_ON;
1707	}
1708}
1709
1710/*
1711 * Check whether current node S[h] is balanced when Decreasing its size by
1712 * Deleting or Cutting for INTERNAL node of S+tree.
1713 * Calculate parameters for balancing for current level h.
1714 * Parameters:
1715 *	tb	tree_balance structure;
1716 *	h	current level of the node;
1717 *	inum	item number in S[h];
1718 *	mode	i - insert, p - paste;
1719 * Returns:	1 - schedule occurred;
1720 *	        0 - balancing for higher levels needed;
1721 *	       -1 - no balancing for higher levels needed;
1722 *	       -2 - no disk space.
1723 *
1724 * Note: Items of internal nodes have fixed size, so the balance condition for
1725 * the internal part of S+tree is as for the B-trees.
1726 */
1727static int dc_check_balance_internal(struct tree_balance *tb, int h)
1728{
1729	struct virtual_node *vn = tb->tb_vn;
1730
1731	/*
1732	 * Sh is the node whose balance is currently being checked,
1733	 * and Fh is its father.
1734	 */
1735	struct buffer_head *Sh, *Fh;
1736	int maxsize, ret;
1737	int lfree, rfree /* free space in L and R */ ;
1738
1739	Sh = PATH_H_PBUFFER(tb->tb_path, h);
1740	Fh = PATH_H_PPARENT(tb->tb_path, h);
1741
1742	maxsize = MAX_CHILD_SIZE(Sh);
1743
1744	/*
1745	 * using tb->insert_size[h], which is negative in this case,
1746	 * create_virtual_node calculates:
1747	 * new_nr_item = number of items node would have if operation is
1748	 * performed without balancing (new_nr_item);
1749	 */
1750	create_virtual_node(tb, h);
1751
1752	if (!Fh) {		/* S[h] is the root. */
1753		/* no balancing for higher levels needed */
1754		if (vn->vn_nr_item > 0) {
1755			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1756			return NO_BALANCING_NEEDED;
1757		}
1758		/*
1759		 * new_nr_item == 0.
1760		 * Current root will be deleted resulting in
1761		 * decrementing the tree height.
1762		 */
1763		set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
1764		return CARRY_ON;
1765	}
1766
1767	if ((ret = get_parents(tb, h)) != CARRY_ON)
1768		return ret;
1769
1770	/* get free space of neighbors */
1771	rfree = get_rfree(tb, h);
1772	lfree = get_lfree(tb, h);
1773
1774	/* determine maximal number of items we can fit into neighbors */
1775	check_left(tb, h, lfree);
1776	check_right(tb, h, rfree);
1777
1778	/*
1779	 * Balance condition for the internal node is valid.
1780	 * In this case we balance only if it leads to better packing.
1781	 */
1782	if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) {
1783		/*
1784		 * Here we join S[h] with one of its neighbors,
1785		 * which is impossible with greater values of new_nr_item.
1786		 */
1787		if (vn->vn_nr_item == MIN_NR_KEY(Sh)) {
1788			/* All contents of S[h] can be moved to L[h]. */
1789			if (tb->lnum[h] >= vn->vn_nr_item + 1) {
1790				int n;
1791				int order_L;
1792
1793				order_L =
1794				    ((n =
1795				      PATH_H_B_ITEM_ORDER(tb->tb_path,
1796							  h)) ==
1797				     0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1798				n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
1799				    (DC_SIZE + KEY_SIZE);
1800				set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
1801					       -1);
1802				return CARRY_ON;
1803			}
1804
1805			/* All contents of S[h] can be moved to R[h]. */
1806			if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1807				int n;
1808				int order_R;
1809
1810				order_R =
1811				    ((n =
1812				      PATH_H_B_ITEM_ORDER(tb->tb_path,
1813							  h)) ==
1814				     B_NR_ITEMS(Fh)) ? 0 : n + 1;
1815				n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
1816				    (DC_SIZE + KEY_SIZE);
1817				set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
1818					       -1);
1819				return CARRY_ON;
1820			}
1821		}
1822
1823		/*
1824		 * All contents of S[h] can be moved to the neighbors
1825		 * (L[h] & R[h]).
1826		 */
1827		if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1828			int to_r;
1829
1830			to_r =
1831			    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
1832			     tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
1833			    (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1834			set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
1835				       0, NULL, -1, -1);
1836			return CARRY_ON;
1837		}
1838
1839		/* Balancing does not lead to better packing. */
1840		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1841		return NO_BALANCING_NEEDED;
1842	}
1843
1844	/*
1845	 * Current node contain insufficient number of items.
1846	 * Balancing is required.
1847	 */
1848	/* Check whether we can merge S[h] with left neighbor. */
1849	if (tb->lnum[h] >= vn->vn_nr_item + 1)
1850		if (is_left_neighbor_in_cache(tb, h)
1851		    || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
1852			int n;
1853			int order_L;
1854
1855			order_L =
1856			    ((n =
1857			      PATH_H_B_ITEM_ORDER(tb->tb_path,
1858						  h)) ==
1859			     0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1860			n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
1861								      KEY_SIZE);
1862			set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
1863			return CARRY_ON;
1864		}
1865
1866	/* Check whether we can merge S[h] with right neighbor. */
1867	if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1868		int n;
1869		int order_R;
1870
1871		order_R =
1872		    ((n =
1873		      PATH_H_B_ITEM_ORDER(tb->tb_path,
1874					  h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
1875		n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
1876							      KEY_SIZE);
1877		set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
1878		return CARRY_ON;
1879	}
1880
1881	/* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1882	if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1883		int to_r;
1884
1885		to_r =
1886		    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1887		     vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1888						tb->rnum[h]);
1889		set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1890			       -1, -1);
1891		return CARRY_ON;
1892	}
1893
1894	/* For internal nodes try to borrow item from a neighbor */
1895	RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
1896
1897	/* Borrow one or two items from caching neighbor */
1898	if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
1899		int from_l;
1900
1901		from_l =
1902		    (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
1903		     1) / 2 - (vn->vn_nr_item + 1);
1904		set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
1905		return CARRY_ON;
1906	}
1907
1908	set_parameters(tb, h, 0,
1909		       -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
1910			  1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
1911	return CARRY_ON;
1912}
1913
1914/*
1915 * Check whether current node S[h] is balanced when Decreasing its size by
1916 * Deleting or Truncating for LEAF node of S+tree.
1917 * Calculate parameters for balancing for current level h.
1918 * Parameters:
1919 *	tb	tree_balance structure;
1920 *	h	current level of the node;
1921 *	inum	item number in S[h];
1922 *	mode	i - insert, p - paste;
1923 * Returns:	1 - schedule occurred;
1924 *	        0 - balancing for higher levels needed;
1925 *	       -1 - no balancing for higher levels needed;
1926 *	       -2 - no disk space.
1927 */
1928static int dc_check_balance_leaf(struct tree_balance *tb, int h)
1929{
1930	struct virtual_node *vn = tb->tb_vn;
1931
1932	/*
1933	 * Number of bytes that must be deleted from
1934	 * (value is negative if bytes are deleted) buffer which
1935	 * contains node being balanced.  The mnemonic is that the
1936	 * attempted change in node space used level is levbytes bytes.
1937	 */
1938	int levbytes;
1939
1940	/* the maximal item size */
1941	int maxsize, ret;
1942
1943	/*
1944	 * S0 is the node whose balance is currently being checked,
1945	 * and F0 is its father.
1946	 */
1947	struct buffer_head *S0, *F0;
1948	int lfree, rfree /* free space in L and R */ ;
1949
1950	S0 = PATH_H_PBUFFER(tb->tb_path, 0);
1951	F0 = PATH_H_PPARENT(tb->tb_path, 0);
1952
1953	levbytes = tb->insert_size[h];
1954
1955	maxsize = MAX_CHILD_SIZE(S0);	/* maximal possible size of an item */
1956
1957	if (!F0) {		/* S[0] is the root now. */
1958
1959		RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
1960		       "vs-8240: attempt to create empty buffer tree");
1961
1962		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1963		return NO_BALANCING_NEEDED;
1964	}
1965
1966	if ((ret = get_parents(tb, h)) != CARRY_ON)
1967		return ret;
1968
1969	/* get free space of neighbors */
1970	rfree = get_rfree(tb, h);
1971	lfree = get_lfree(tb, h);
1972
1973	create_virtual_node(tb, h);
1974
1975	/* if 3 leaves can be merge to one, set parameters and return */
1976	if (are_leaves_removable(tb, lfree, rfree))
1977		return CARRY_ON;
1978
1979	/*
1980	 * determine maximal number of items we can shift to the left/right
1981	 * neighbor and the maximal number of bytes that can flow to the
1982	 * left/right neighbor from the left/right most liquid item that
1983	 * cannot be shifted from S[0] entirely
1984	 */
1985	check_left(tb, h, lfree);
1986	check_right(tb, h, rfree);
1987
1988	/* check whether we can merge S with left neighbor. */
1989	if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
1990		if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) ||	/* S can not be merged with R */
1991		    !tb->FR[h]) {
1992
1993			RFALSE(!tb->FL[h],
1994			       "vs-8245: dc_check_balance_leaf: FL[h] must exist");
1995
1996			/* set parameter to merge S[0] with its left neighbor */
1997			set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
1998			return CARRY_ON;
1999		}
2000
2001	/* check whether we can merge S[0] with right neighbor. */
2002	if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
2003		set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
2004		return CARRY_ON;
2005	}
2006
2007	/*
2008	 * All contents of S[0] can be moved to the neighbors (L[0] & R[0]).
2009	 * Set parameters and return
2010	 */
2011	if (is_leaf_removable(tb))
2012		return CARRY_ON;
2013
2014	/* Balancing is not required. */
2015	tb->s0num = vn->vn_nr_item;
2016	set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
2017	return NO_BALANCING_NEEDED;
2018}
2019
2020/*
2021 * Check whether current node S[h] is balanced when Decreasing its size by
2022 * Deleting or Cutting.
2023 * Calculate parameters for balancing for current level h.
2024 * Parameters:
2025 *	tb	tree_balance structure;
2026 *	h	current level of the node;
2027 *	inum	item number in S[h];
2028 *	mode	d - delete, c - cut.
2029 * Returns:	1 - schedule occurred;
2030 *	        0 - balancing for higher levels needed;
2031 *	       -1 - no balancing for higher levels needed;
2032 *	       -2 - no disk space.
2033 */
2034static int dc_check_balance(struct tree_balance *tb, int h)
2035{
2036	RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
2037	       "vs-8250: S is not initialized");
2038
2039	if (h)
2040		return dc_check_balance_internal(tb, h);
2041	else
2042		return dc_check_balance_leaf(tb, h);
2043}
2044
2045/*
2046 * Check whether current node S[h] is balanced.
2047 * Calculate parameters for balancing for current level h.
2048 * Parameters:
2049 *
2050 *	tb	tree_balance structure:
2051 *
2052 *              tb is a large structure that must be read about in the header
2053 *		file at the same time as this procedure if the reader is
2054 *		to successfully understand this procedure
2055 *
2056 *	h	current level of the node;
2057 *	inum	item number in S[h];
2058 *	mode	i - insert, p - paste, d - delete, c - cut.
2059 * Returns:	1 - schedule occurred;
2060 *	        0 - balancing for higher levels needed;
2061 *	       -1 - no balancing for higher levels needed;
2062 *	       -2 - no disk space.
2063 */
2064static int check_balance(int mode,
2065			 struct tree_balance *tb,
2066			 int h,
2067			 int inum,
2068			 int pos_in_item,
2069			 struct item_head *ins_ih, const void *data)
2070{
2071	struct virtual_node *vn;
2072
2073	vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
2074	vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
2075	vn->vn_mode = mode;
2076	vn->vn_affected_item_num = inum;
2077	vn->vn_pos_in_item = pos_in_item;
2078	vn->vn_ins_ih = ins_ih;
2079	vn->vn_data = data;
2080
2081	RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
2082	       "vs-8255: ins_ih can not be 0 in insert mode");
2083
2084	/* Calculate balance parameters when size of node is increasing. */
2085	if (tb->insert_size[h] > 0)
2086		return ip_check_balance(tb, h);
2087
2088	/* Calculate balance parameters when  size of node is decreasing. */
2089	return dc_check_balance(tb, h);
2090}
2091
2092/* Check whether parent at the path is the really parent of the current node.*/
2093static int get_direct_parent(struct tree_balance *tb, int h)
2094{
2095	struct buffer_head *bh;
2096	struct treepath *path = tb->tb_path;
2097	int position,
2098	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
2099
2100	/* We are in the root or in the new root. */
2101	if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
2102
2103		RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
2104		       "PAP-8260: invalid offset in the path");
2105
2106		if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)->
2107		    b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) {
2108			/* Root is not changed. */
2109			PATH_OFFSET_PBUFFER(path, path_offset - 1) = NULL;
2110			PATH_OFFSET_POSITION(path, path_offset - 1) = 0;
2111			return CARRY_ON;
2112		}
2113		/* Root is changed and we must recalculate the path. */
2114		return REPEAT_SEARCH;
2115	}
2116
2117	/* Parent in the path is not in the tree. */
2118	if (!B_IS_IN_TREE
2119	    (bh = PATH_OFFSET_PBUFFER(path, path_offset - 1)))
2120		return REPEAT_SEARCH;
2121
2122	if ((position =
2123	     PATH_OFFSET_POSITION(path,
2124				  path_offset - 1)) > B_NR_ITEMS(bh))
2125		return REPEAT_SEARCH;
2126
2127	/* Parent in the path is not parent of the current node in the tree. */
2128	if (B_N_CHILD_NUM(bh, position) !=
2129	    PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr)
2130		return REPEAT_SEARCH;
2131
2132	if (buffer_locked(bh)) {
2133		int depth = reiserfs_write_unlock_nested(tb->tb_sb);
2134		__wait_on_buffer(bh);
2135		reiserfs_write_lock_nested(tb->tb_sb, depth);
2136		if (FILESYSTEM_CHANGED_TB(tb))
2137			return REPEAT_SEARCH;
2138	}
2139
2140	/*
2141	 * Parent in the path is unlocked and really parent
2142	 * of the current node.
2143	 */
2144	return CARRY_ON;
2145}
2146
2147/*
2148 * Using lnum[h] and rnum[h] we should determine what neighbors
2149 * of S[h] we
2150 * need in order to balance S[h], and get them if necessary.
2151 * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
2152 *	        CARRY_ON - schedule didn't occur while the function worked;
2153 */
2154static int get_neighbors(struct tree_balance *tb, int h)
2155{
2156	int child_position,
2157	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h + 1);
2158	unsigned long son_number;
2159	struct super_block *sb = tb->tb_sb;
2160	struct buffer_head *bh;
2161	int depth;
2162
2163	PROC_INFO_INC(sb, get_neighbors[h]);
2164
2165	if (tb->lnum[h]) {
2166		/* We need left neighbor to balance S[h]. */
2167		PROC_INFO_INC(sb, need_l_neighbor[h]);
2168		bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
2169
2170		RFALSE(bh == tb->FL[h] &&
2171		       !PATH_OFFSET_POSITION(tb->tb_path, path_offset),
2172		       "PAP-8270: invalid position in the parent");
2173
2174		child_position =
2175		    (bh ==
2176		     tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb->
2177								       FL[h]);
2178		son_number = B_N_CHILD_NUM(tb->FL[h], child_position);
2179		depth = reiserfs_write_unlock_nested(tb->tb_sb);
2180		bh = sb_bread(sb, son_number);
2181		reiserfs_write_lock_nested(tb->tb_sb, depth);
2182		if (!bh)
2183			return IO_ERROR;
2184		if (FILESYSTEM_CHANGED_TB(tb)) {
2185			brelse(bh);
2186			PROC_INFO_INC(sb, get_neighbors_restart[h]);
2187			return REPEAT_SEARCH;
2188		}
2189
2190		RFALSE(!B_IS_IN_TREE(tb->FL[h]) ||
2191		       child_position > B_NR_ITEMS(tb->FL[h]) ||
2192		       B_N_CHILD_NUM(tb->FL[h], child_position) !=
2193		       bh->b_blocknr, "PAP-8275: invalid parent");
2194		RFALSE(!B_IS_IN_TREE(bh), "PAP-8280: invalid child");
2195		RFALSE(!h &&
2196		       B_FREE_SPACE(bh) !=
2197		       MAX_CHILD_SIZE(bh) -
2198		       dc_size(B_N_CHILD(tb->FL[0], child_position)),
2199		       "PAP-8290: invalid child size of left neighbor");
2200
2201		brelse(tb->L[h]);
2202		tb->L[h] = bh;
2203	}
2204
2205	/* We need right neighbor to balance S[path_offset]. */
2206	if (tb->rnum[h]) {
2207		PROC_INFO_INC(sb, need_r_neighbor[h]);
2208		bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
2209
2210		RFALSE(bh == tb->FR[h] &&
2211		       PATH_OFFSET_POSITION(tb->tb_path,
2212					    path_offset) >=
2213		       B_NR_ITEMS(bh),
2214		       "PAP-8295: invalid position in the parent");
2215
2216		child_position =
2217		    (bh == tb->FR[h]) ? tb->rkey[h] + 1 : 0;
2218		son_number = B_N_CHILD_NUM(tb->FR[h], child_position);
2219		depth = reiserfs_write_unlock_nested(tb->tb_sb);
2220		bh = sb_bread(sb, son_number);
2221		reiserfs_write_lock_nested(tb->tb_sb, depth);
2222		if (!bh)
2223			return IO_ERROR;
2224		if (FILESYSTEM_CHANGED_TB(tb)) {
2225			brelse(bh);
2226			PROC_INFO_INC(sb, get_neighbors_restart[h]);
2227			return REPEAT_SEARCH;
2228		}
2229		brelse(tb->R[h]);
2230		tb->R[h] = bh;
2231
2232		RFALSE(!h
2233		       && B_FREE_SPACE(bh) !=
2234		       MAX_CHILD_SIZE(bh) -
2235		       dc_size(B_N_CHILD(tb->FR[0], child_position)),
2236		       "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
2237		       B_FREE_SPACE(bh), MAX_CHILD_SIZE(bh),
2238		       dc_size(B_N_CHILD(tb->FR[0], child_position)));
2239
2240	}
2241	return CARRY_ON;
2242}
2243
2244static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
2245{
2246	int max_num_of_items;
2247	int max_num_of_entries;
2248	unsigned long blocksize = sb->s_blocksize;
2249
2250#define MIN_NAME_LEN 1
2251
2252	max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
2253	max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
2254	    (DEH_SIZE + MIN_NAME_LEN);
2255
2256	return sizeof(struct virtual_node) +
2257	    max(max_num_of_items * sizeof(struct virtual_item),
2258		sizeof(struct virtual_item) + sizeof(struct direntry_uarea) +
2259		(max_num_of_entries - 1) * sizeof(__u16));
2260}
2261
2262/*
2263 * maybe we should fail balancing we are going to perform when kmalloc
2264 * fails several times. But now it will loop until kmalloc gets
2265 * required memory
2266 */
2267static int get_mem_for_virtual_node(struct tree_balance *tb)
2268{
2269	int check_fs = 0;
2270	int size;
2271	char *buf;
2272
2273	size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
2274
2275	/* we have to allocate more memory for virtual node */
2276	if (size > tb->vn_buf_size) {
2277		if (tb->vn_buf) {
2278			/* free memory allocated before */
2279			kfree(tb->vn_buf);
2280			/* this is not needed if kfree is atomic */
2281			check_fs = 1;
2282		}
2283
2284		/* virtual node requires now more memory */
2285		tb->vn_buf_size = size;
2286
2287		/* get memory for virtual item */
2288		buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
2289		if (!buf) {
2290			/*
2291			 * getting memory with GFP_KERNEL priority may involve
2292			 * balancing now (due to indirect_to_direct conversion
2293			 * on dcache shrinking). So, release path and collected
2294			 * resources here
2295			 */
2296			free_buffers_in_tb(tb);
2297			buf = kmalloc(size, GFP_NOFS);
2298			if (!buf) {
2299				tb->vn_buf_size = 0;
2300			}
2301			tb->vn_buf = buf;
2302			schedule();
2303			return REPEAT_SEARCH;
2304		}
2305
2306		tb->vn_buf = buf;
2307	}
2308
2309	if (check_fs && FILESYSTEM_CHANGED_TB(tb))
2310		return REPEAT_SEARCH;
2311
2312	return CARRY_ON;
2313}
2314
2315#ifdef CONFIG_REISERFS_CHECK
2316static void tb_buffer_sanity_check(struct super_block *sb,
2317				   struct buffer_head *bh,
2318				   const char *descr, int level)
2319{
2320	if (bh) {
2321		if (atomic_read(&(bh->b_count)) <= 0)
2322
2323			reiserfs_panic(sb, "jmacd-1", "negative or zero "
2324				       "reference counter for buffer %s[%d] "
2325				       "(%b)", descr, level, bh);
2326
2327		if (!buffer_uptodate(bh))
2328			reiserfs_panic(sb, "jmacd-2", "buffer is not up "
2329				       "to date %s[%d] (%b)",
2330				       descr, level, bh);
2331
2332		if (!B_IS_IN_TREE(bh))
2333			reiserfs_panic(sb, "jmacd-3", "buffer is not "
2334				       "in tree %s[%d] (%b)",
2335				       descr, level, bh);
2336
2337		if (bh->b_bdev != sb->s_bdev)
2338			reiserfs_panic(sb, "jmacd-4", "buffer has wrong "
2339				       "device %s[%d] (%b)",
2340				       descr, level, bh);
2341
2342		if (bh->b_size != sb->s_blocksize)
2343			reiserfs_panic(sb, "jmacd-5", "buffer has wrong "
2344				       "blocksize %s[%d] (%b)",
2345				       descr, level, bh);
2346
2347		if (bh->b_blocknr > SB_BLOCK_COUNT(sb))
2348			reiserfs_panic(sb, "jmacd-6", "buffer block "
2349				       "number too high %s[%d] (%b)",
2350				       descr, level, bh);
2351	}
2352}
2353#else
2354static void tb_buffer_sanity_check(struct super_block *sb,
2355				   struct buffer_head *bh,
2356				   const char *descr, int level)
2357{;
2358}
2359#endif
2360
2361static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
2362{
2363	return reiserfs_prepare_for_journal(s, bh, 0);
2364}
2365
2366static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
2367{
2368	struct buffer_head *locked;
2369#ifdef CONFIG_REISERFS_CHECK
2370	int repeat_counter = 0;
2371#endif
2372	int i;
2373
2374	do {
2375
2376		locked = NULL;
2377
2378		for (i = tb->tb_path->path_length;
2379		     !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
2380			if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) {
2381				/*
2382				 * if I understand correctly, we can only
2383				 * be sure the last buffer in the path is
2384				 * in the tree --clm
2385				 */
2386#ifdef CONFIG_REISERFS_CHECK
2387				if (PATH_PLAST_BUFFER(tb->tb_path) ==
2388				    PATH_OFFSET_PBUFFER(tb->tb_path, i))
2389					tb_buffer_sanity_check(tb->tb_sb,
2390							       PATH_OFFSET_PBUFFER
2391							       (tb->tb_path,
2392								i), "S",
2393							       tb->tb_path->
2394							       path_length - i);
2395#endif
2396				if (!clear_all_dirty_bits(tb->tb_sb,
2397							  PATH_OFFSET_PBUFFER
2398							  (tb->tb_path,
2399							   i))) {
2400					locked =
2401					    PATH_OFFSET_PBUFFER(tb->tb_path,
2402								i);
2403				}
2404			}
2405		}
2406
2407		for (i = 0; !locked && i < MAX_HEIGHT && tb->insert_size[i];
2408		     i++) {
2409
2410			if (tb->lnum[i]) {
2411
2412				if (tb->L[i]) {
2413					tb_buffer_sanity_check(tb->tb_sb,
2414							       tb->L[i],
2415							       "L", i);
2416					if (!clear_all_dirty_bits
2417					    (tb->tb_sb, tb->L[i]))
2418						locked = tb->L[i];
2419				}
2420
2421				if (!locked && tb->FL[i]) {
2422					tb_buffer_sanity_check(tb->tb_sb,
2423							       tb->FL[i],
2424							       "FL", i);
2425					if (!clear_all_dirty_bits
2426					    (tb->tb_sb, tb->FL[i]))
2427						locked = tb->FL[i];
2428				}
2429
2430				if (!locked && tb->CFL[i]) {
2431					tb_buffer_sanity_check(tb->tb_sb,
2432							       tb->CFL[i],
2433							       "CFL", i);
2434					if (!clear_all_dirty_bits
2435					    (tb->tb_sb, tb->CFL[i]))
2436						locked = tb->CFL[i];
2437				}
2438
2439			}
2440
2441			if (!locked && (tb->rnum[i])) {
2442
2443				if (tb->R[i]) {
2444					tb_buffer_sanity_check(tb->tb_sb,
2445							       tb->R[i],
2446							       "R", i);
2447					if (!clear_all_dirty_bits
2448					    (tb->tb_sb, tb->R[i]))
2449						locked = tb->R[i];
2450				}
2451
2452				if (!locked && tb->FR[i]) {
2453					tb_buffer_sanity_check(tb->tb_sb,
2454							       tb->FR[i],
2455							       "FR", i);
2456					if (!clear_all_dirty_bits
2457					    (tb->tb_sb, tb->FR[i]))
2458						locked = tb->FR[i];
2459				}
2460
2461				if (!locked && tb->CFR[i]) {
2462					tb_buffer_sanity_check(tb->tb_sb,
2463							       tb->CFR[i],
2464							       "CFR", i);
2465					if (!clear_all_dirty_bits
2466					    (tb->tb_sb, tb->CFR[i]))
2467						locked = tb->CFR[i];
2468				}
2469			}
2470		}
2471
2472		/*
2473		 * as far as I can tell, this is not required.  The FEB list
2474		 * seems to be full of newly allocated nodes, which will
2475		 * never be locked, dirty, or anything else.
2476		 * To be safe, I'm putting in the checks and waits in.
2477		 * For the moment, they are needed to keep the code in
2478		 * journal.c from complaining about the buffer.
2479		 * That code is inside CONFIG_REISERFS_CHECK as well.  --clm
2480		 */
2481		for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
2482			if (tb->FEB[i]) {
2483				if (!clear_all_dirty_bits
2484				    (tb->tb_sb, tb->FEB[i]))
2485					locked = tb->FEB[i];
2486			}
2487		}
2488
2489		if (locked) {
2490			int depth;
2491#ifdef CONFIG_REISERFS_CHECK
2492			repeat_counter++;
2493			if ((repeat_counter % 10000) == 0) {
2494				reiserfs_warning(tb->tb_sb, "reiserfs-8200",
2495						 "too many iterations waiting "
2496						 "for buffer to unlock "
2497						 "(%b)", locked);
2498
2499				/* Don't loop forever.  Try to recover from possible error. */
2500
2501				return (FILESYSTEM_CHANGED_TB(tb)) ?
2502				    REPEAT_SEARCH : CARRY_ON;
2503			}
2504#endif
2505			depth = reiserfs_write_unlock_nested(tb->tb_sb);
2506			__wait_on_buffer(locked);
2507			reiserfs_write_lock_nested(tb->tb_sb, depth);
2508			if (FILESYSTEM_CHANGED_TB(tb))
2509				return REPEAT_SEARCH;
2510		}
2511
2512	} while (locked);
2513
2514	return CARRY_ON;
2515}
2516
2517/*
2518 * Prepare for balancing, that is
2519 *	get all necessary parents, and neighbors;
2520 *	analyze what and where should be moved;
2521 *	get sufficient number of new nodes;
2522 * Balancing will start only after all resources will be collected at a time.
2523 *
2524 * When ported to SMP kernels, only at the last moment after all needed nodes
2525 * are collected in cache, will the resources be locked using the usual
2526 * textbook ordered lock acquisition algorithms.  Note that ensuring that
2527 * this code neither write locks what it does not need to write lock nor locks
2528 * out of order will be a pain in the butt that could have been avoided.
2529 * Grumble grumble. -Hans
2530 *
2531 * fix is meant in the sense of render unchanging
2532 *
2533 * Latency might be improved by first gathering a list of what buffers
2534 * are needed and then getting as many of them in parallel as possible? -Hans
2535 *
2536 * Parameters:
2537 *	op_mode	i - insert, d - delete, c - cut (truncate), p - paste (append)
2538 *	tb	tree_balance structure;
2539 *	inum	item number in S[h];
2540 *      pos_in_item - comment this if you can
2541 *      ins_ih	item head of item being inserted
2542 *	data	inserted item or data to be pasted
2543 * Returns:	1 - schedule occurred while the function worked;
2544 *	        0 - schedule didn't occur while the function worked;
2545 *             -1 - if no_disk_space
2546 */
2547
2548int fix_nodes(int op_mode, struct tree_balance *tb,
2549	      struct item_head *ins_ih, const void *data)
2550{
2551	int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path);
2552	int pos_in_item;
2553
2554	/*
2555	 * we set wait_tb_buffers_run when we have to restore any dirty
2556	 * bits cleared during wait_tb_buffers_run
2557	 */
2558	int wait_tb_buffers_run = 0;
2559	struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path);
2560
2561	++REISERFS_SB(tb->tb_sb)->s_fix_nodes;
2562
2563	pos_in_item = tb->tb_path->pos_in_item;
2564
2565	tb->fs_gen = get_generation(tb->tb_sb);
2566
2567	/*
2568	 * we prepare and log the super here so it will already be in the
2569	 * transaction when do_balance needs to change it.
2570	 * This way do_balance won't have to schedule when trying to prepare
2571	 * the super for logging
2572	 */
2573	reiserfs_prepare_for_journal(tb->tb_sb,
2574				     SB_BUFFER_WITH_SB(tb->tb_sb), 1);
2575	journal_mark_dirty(tb->transaction_handle,
2576			   SB_BUFFER_WITH_SB(tb->tb_sb));
2577	if (FILESYSTEM_CHANGED_TB(tb))
2578		return REPEAT_SEARCH;
2579
2580	/* if it possible in indirect_to_direct conversion */
2581	if (buffer_locked(tbS0)) {
2582		int depth = reiserfs_write_unlock_nested(tb->tb_sb);
2583		__wait_on_buffer(tbS0);
2584		reiserfs_write_lock_nested(tb->tb_sb, depth);
2585		if (FILESYSTEM_CHANGED_TB(tb))
2586			return REPEAT_SEARCH;
2587	}
2588#ifdef CONFIG_REISERFS_CHECK
2589	if (REISERFS_SB(tb->tb_sb)->cur_tb) {
2590		print_cur_tb("fix_nodes");
2591		reiserfs_panic(tb->tb_sb, "PAP-8305",
2592			       "there is pending do_balance");
2593	}
2594
2595	if (!buffer_uptodate(tbS0) || !B_IS_IN_TREE(tbS0))
2596		reiserfs_panic(tb->tb_sb, "PAP-8320", "S[0] (%b %z) is "
2597			       "not uptodate at the beginning of fix_nodes "
2598			       "or not in tree (mode %c)",
2599			       tbS0, tbS0, op_mode);
2600
2601	/* Check parameters. */
2602	switch (op_mode) {
2603	case M_INSERT:
2604		if (item_num <= 0 || item_num > B_NR_ITEMS(tbS0))
2605			reiserfs_panic(tb->tb_sb, "PAP-8330", "Incorrect "
2606				       "item number %d (in S0 - %d) in case "
2607				       "of insert", item_num,
2608				       B_NR_ITEMS(tbS0));
2609		break;
2610	case M_PASTE:
2611	case M_DELETE:
2612	case M_CUT:
2613		if (item_num < 0 || item_num >= B_NR_ITEMS(tbS0)) {
2614			print_block(tbS0, 0, -1, -1);
2615			reiserfs_panic(tb->tb_sb, "PAP-8335", "Incorrect "
2616				       "item number(%d); mode = %c "
2617				       "insert_size = %d",
2618				       item_num, op_mode,
2619				       tb->insert_size[0]);
2620		}
2621		break;
2622	default:
2623		reiserfs_panic(tb->tb_sb, "PAP-8340", "Incorrect mode "
2624			       "of operation");
2625	}
2626#endif
2627
2628	if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH)
2629		/* FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat */
2630		return REPEAT_SEARCH;
2631
2632	/* Starting from the leaf level; for all levels h of the tree. */
2633	for (h = 0; h < MAX_HEIGHT && tb->insert_size[h]; h++) {
2634		ret = get_direct_parent(tb, h);
2635		if (ret != CARRY_ON)
2636			goto repeat;
2637
2638		ret = check_balance(op_mode, tb, h, item_num,
2639				    pos_in_item, ins_ih, data);
2640		if (ret != CARRY_ON) {
2641			if (ret == NO_BALANCING_NEEDED) {
2642				/* No balancing for higher levels needed. */
2643				ret = get_neighbors(tb, h);
2644				if (ret != CARRY_ON)
2645					goto repeat;
2646				if (h != MAX_HEIGHT - 1)
2647					tb->insert_size[h + 1] = 0;
2648				/*
2649				 * ok, analysis and resource gathering
2650				 * are complete
2651				 */
2652				break;
2653			}
2654			goto repeat;
2655		}
2656
2657		ret = get_neighbors(tb, h);
2658		if (ret != CARRY_ON)
2659			goto repeat;
2660
2661		/*
2662		 * No disk space, or schedule occurred and analysis may be
2663		 * invalid and needs to be redone.
2664		 */
2665		ret = get_empty_nodes(tb, h);
2666		if (ret != CARRY_ON)
2667			goto repeat;
2668
2669		/*
2670		 * We have a positive insert size but no nodes exist on this
2671		 * level, this means that we are creating a new root.
2672		 */
2673		if (!PATH_H_PBUFFER(tb->tb_path, h)) {
2674
2675			RFALSE(tb->blknum[h] != 1,
2676			       "PAP-8350: creating new empty root");
2677
2678			if (h < MAX_HEIGHT - 1)
2679				tb->insert_size[h + 1] = 0;
2680		} else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) {
2681			/*
2682			 * The tree needs to be grown, so this node S[h]
2683			 * which is the root node is split into two nodes,
2684			 * and a new node (S[h+1]) will be created to
2685			 * become the root node.
2686			 */
2687			if (tb->blknum[h] > 1) {
2688
2689				RFALSE(h == MAX_HEIGHT - 1,
2690				       "PAP-8355: attempt to create too high of a tree");
2691
2692				tb->insert_size[h + 1] =
2693				    (DC_SIZE +
2694				     KEY_SIZE) * (tb->blknum[h] - 1) +
2695				    DC_SIZE;
2696			} else if (h < MAX_HEIGHT - 1)
2697				tb->insert_size[h + 1] = 0;
2698		} else
2699			tb->insert_size[h + 1] =
2700			    (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1);
2701	}
2702
2703	ret = wait_tb_buffers_until_unlocked(tb);
2704	if (ret == CARRY_ON) {
2705		if (FILESYSTEM_CHANGED_TB(tb)) {
2706			wait_tb_buffers_run = 1;
2707			ret = REPEAT_SEARCH;
2708			goto repeat;
2709		} else {
2710			return CARRY_ON;
2711		}
2712	} else {
2713		wait_tb_buffers_run = 1;
2714		goto repeat;
2715	}
2716
2717repeat:
2718	/*
2719	 * fix_nodes was unable to perform its calculation due to
2720	 * filesystem got changed under us, lack of free disk space or i/o
2721	 * failure. If the first is the case - the search will be
2722	 * repeated. For now - free all resources acquired so far except
2723	 * for the new allocated nodes
2724	 */
2725	{
2726		int i;
2727
2728		/* Release path buffers. */
2729		if (wait_tb_buffers_run) {
2730			pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2731		} else {
2732			pathrelse(tb->tb_path);
2733		}
2734		/* brelse all resources collected for balancing */
2735		for (i = 0; i < MAX_HEIGHT; i++) {
2736			if (wait_tb_buffers_run) {
2737				reiserfs_restore_prepared_buffer(tb->tb_sb,
2738								 tb->L[i]);
2739				reiserfs_restore_prepared_buffer(tb->tb_sb,
2740								 tb->R[i]);
2741				reiserfs_restore_prepared_buffer(tb->tb_sb,
2742								 tb->FL[i]);
2743				reiserfs_restore_prepared_buffer(tb->tb_sb,
2744								 tb->FR[i]);
2745				reiserfs_restore_prepared_buffer(tb->tb_sb,
2746								 tb->
2747								 CFL[i]);
2748				reiserfs_restore_prepared_buffer(tb->tb_sb,
2749								 tb->
2750								 CFR[i]);
2751			}
2752
2753			brelse(tb->L[i]);
2754			brelse(tb->R[i]);
2755			brelse(tb->FL[i]);
2756			brelse(tb->FR[i]);
2757			brelse(tb->CFL[i]);
2758			brelse(tb->CFR[i]);
2759
2760			tb->L[i] = NULL;
2761			tb->R[i] = NULL;
2762			tb->FL[i] = NULL;
2763			tb->FR[i] = NULL;
2764			tb->CFL[i] = NULL;
2765			tb->CFR[i] = NULL;
2766		}
2767
2768		if (wait_tb_buffers_run) {
2769			for (i = 0; i < MAX_FEB_SIZE; i++) {
2770				if (tb->FEB[i])
2771					reiserfs_restore_prepared_buffer
2772					    (tb->tb_sb, tb->FEB[i]);
2773			}
2774		}
2775		return ret;
2776	}
2777
2778}
2779
2780void unfix_nodes(struct tree_balance *tb)
2781{
2782	int i;
2783
2784	/* Release path buffers. */
2785	pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2786
2787	/* brelse all resources collected for balancing */
2788	for (i = 0; i < MAX_HEIGHT; i++) {
2789		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
2790		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
2791		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
2792		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
2793		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
2794		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
2795
2796		brelse(tb->L[i]);
2797		brelse(tb->R[i]);
2798		brelse(tb->FL[i]);
2799		brelse(tb->FR[i]);
2800		brelse(tb->CFL[i]);
2801		brelse(tb->CFR[i]);
2802	}
2803
2804	/* deal with list of allocated (used and unused) nodes */
2805	for (i = 0; i < MAX_FEB_SIZE; i++) {
2806		if (tb->FEB[i]) {
2807			b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
2808			/*
2809			 * de-allocated block which was not used by
2810			 * balancing and bforget about buffer for it
2811			 */
2812			brelse(tb->FEB[i]);
2813			reiserfs_free_block(tb->transaction_handle, NULL,
2814					    blocknr, 0);
2815		}
2816		if (tb->used[i]) {
2817			/* release used as new nodes including a new root */
2818			brelse(tb->used[i]);
2819		}
2820	}
2821
2822	kfree(tb->vn_buf);
2823
2824}
2825