ibalance.c revision bd4c625c061c2a38568d0add3478f59172455159
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5#include <linux/config.h>
6#include <asm/uaccess.h>
7#include <linux/string.h>
8#include <linux/time.h>
9#include <linux/reiserfs_fs.h>
10#include <linux/buffer_head.h>
11
12/* this is one and only function that is used outside (do_balance.c) */
13int balance_internal(struct tree_balance *,
14		     int, int, struct item_head *, struct buffer_head **);
15
16/* modes of internal_shift_left, internal_shift_right and internal_insert_childs */
17#define INTERNAL_SHIFT_FROM_S_TO_L 0
18#define INTERNAL_SHIFT_FROM_R_TO_S 1
19#define INTERNAL_SHIFT_FROM_L_TO_S 2
20#define INTERNAL_SHIFT_FROM_S_TO_R 3
21#define INTERNAL_INSERT_TO_S 4
22#define INTERNAL_INSERT_TO_L 5
23#define INTERNAL_INSERT_TO_R 6
24
25static void internal_define_dest_src_infos(int shift_mode,
26					   struct tree_balance *tb,
27					   int h,
28					   struct buffer_info *dest_bi,
29					   struct buffer_info *src_bi,
30					   int *d_key, struct buffer_head **cf)
31{
32	memset(dest_bi, 0, sizeof(struct buffer_info));
33	memset(src_bi, 0, sizeof(struct buffer_info));
34	/* define dest, src, dest parent, dest position */
35	switch (shift_mode) {
36	case INTERNAL_SHIFT_FROM_S_TO_L:	/* used in internal_shift_left */
37		src_bi->tb = tb;
38		src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
39		src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
40		src_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
41		dest_bi->tb = tb;
42		dest_bi->bi_bh = tb->L[h];
43		dest_bi->bi_parent = tb->FL[h];
44		dest_bi->bi_position = get_left_neighbor_position(tb, h);
45		*d_key = tb->lkey[h];
46		*cf = tb->CFL[h];
47		break;
48	case INTERNAL_SHIFT_FROM_L_TO_S:
49		src_bi->tb = tb;
50		src_bi->bi_bh = tb->L[h];
51		src_bi->bi_parent = tb->FL[h];
52		src_bi->bi_position = get_left_neighbor_position(tb, h);
53		dest_bi->tb = tb;
54		dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
55		dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
56		dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);	/* dest position is analog of dest->b_item_order */
57		*d_key = tb->lkey[h];
58		*cf = tb->CFL[h];
59		break;
60
61	case INTERNAL_SHIFT_FROM_R_TO_S:	/* used in internal_shift_left */
62		src_bi->tb = tb;
63		src_bi->bi_bh = tb->R[h];
64		src_bi->bi_parent = tb->FR[h];
65		src_bi->bi_position = get_right_neighbor_position(tb, h);
66		dest_bi->tb = tb;
67		dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
68		dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
69		dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
70		*d_key = tb->rkey[h];
71		*cf = tb->CFR[h];
72		break;
73
74	case INTERNAL_SHIFT_FROM_S_TO_R:
75		src_bi->tb = tb;
76		src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
77		src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
78		src_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
79		dest_bi->tb = tb;
80		dest_bi->bi_bh = tb->R[h];
81		dest_bi->bi_parent = tb->FR[h];
82		dest_bi->bi_position = get_right_neighbor_position(tb, h);
83		*d_key = tb->rkey[h];
84		*cf = tb->CFR[h];
85		break;
86
87	case INTERNAL_INSERT_TO_L:
88		dest_bi->tb = tb;
89		dest_bi->bi_bh = tb->L[h];
90		dest_bi->bi_parent = tb->FL[h];
91		dest_bi->bi_position = get_left_neighbor_position(tb, h);
92		break;
93
94	case INTERNAL_INSERT_TO_S:
95		dest_bi->tb = tb;
96		dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
97		dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
98		dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
99		break;
100
101	case INTERNAL_INSERT_TO_R:
102		dest_bi->tb = tb;
103		dest_bi->bi_bh = tb->R[h];
104		dest_bi->bi_parent = tb->FR[h];
105		dest_bi->bi_position = get_right_neighbor_position(tb, h);
106		break;
107
108	default:
109		reiserfs_panic(tb->tb_sb,
110			       "internal_define_dest_src_infos: shift type is unknown (%d)",
111			       shift_mode);
112	}
113}
114
115/* Insert count node pointers into buffer cur before position to + 1.
116 * Insert count items into buffer cur before position to.
117 * Items and node pointers are specified by inserted and bh respectively.
118 */
119static void internal_insert_childs(struct buffer_info *cur_bi,
120				   int to, int count,
121				   struct item_head *inserted,
122				   struct buffer_head **bh)
123{
124	struct buffer_head *cur = cur_bi->bi_bh;
125	struct block_head *blkh;
126	int nr;
127	struct reiserfs_key *ih;
128	struct disk_child new_dc[2];
129	struct disk_child *dc;
130	int i;
131
132	if (count <= 0)
133		return;
134
135	blkh = B_BLK_HEAD(cur);
136	nr = blkh_nr_item(blkh);
137
138	RFALSE(count > 2, "too many children (%d) are to be inserted", count);
139	RFALSE(B_FREE_SPACE(cur) < count * (KEY_SIZE + DC_SIZE),
140	       "no enough free space (%d), needed %d bytes",
141	       B_FREE_SPACE(cur), count * (KEY_SIZE + DC_SIZE));
142
143	/* prepare space for count disk_child */
144	dc = B_N_CHILD(cur, to + 1);
145
146	memmove(dc + count, dc, (nr + 1 - (to + 1)) * DC_SIZE);
147
148	/* copy to_be_insert disk children */
149	for (i = 0; i < count; i++) {
150		put_dc_size(&(new_dc[i]),
151			    MAX_CHILD_SIZE(bh[i]) - B_FREE_SPACE(bh[i]));
152		put_dc_block_number(&(new_dc[i]), bh[i]->b_blocknr);
153	}
154	memcpy(dc, new_dc, DC_SIZE * count);
155
156	/* prepare space for count items  */
157	ih = B_N_PDELIM_KEY(cur, ((to == -1) ? 0 : to));
158
159	memmove(ih + count, ih,
160		(nr - to) * KEY_SIZE + (nr + 1 + count) * DC_SIZE);
161
162	/* copy item headers (keys) */
163	memcpy(ih, inserted, KEY_SIZE);
164	if (count > 1)
165		memcpy(ih + 1, inserted + 1, KEY_SIZE);
166
167	/* sizes, item number */
168	set_blkh_nr_item(blkh, blkh_nr_item(blkh) + count);
169	set_blkh_free_space(blkh,
170			    blkh_free_space(blkh) - count * (DC_SIZE +
171							     KEY_SIZE));
172
173	do_balance_mark_internal_dirty(cur_bi->tb, cur, 0);
174
175	/*&&&&&&&&&&&&&&&&&&&&&&&& */
176	check_internal(cur);
177	/*&&&&&&&&&&&&&&&&&&&&&&&& */
178
179	if (cur_bi->bi_parent) {
180		struct disk_child *t_dc =
181		    B_N_CHILD(cur_bi->bi_parent, cur_bi->bi_position);
182		put_dc_size(t_dc,
183			    dc_size(t_dc) + (count * (DC_SIZE + KEY_SIZE)));
184		do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent,
185					       0);
186
187		/*&&&&&&&&&&&&&&&&&&&&&&&& */
188		check_internal(cur_bi->bi_parent);
189		/*&&&&&&&&&&&&&&&&&&&&&&&& */
190	}
191
192}
193
194/* Delete del_num items and node pointers from buffer cur starting from *
195 * the first_i'th item and first_p'th pointers respectively.		*/
196static void internal_delete_pointers_items(struct buffer_info *cur_bi,
197					   int first_p,
198					   int first_i, int del_num)
199{
200	struct buffer_head *cur = cur_bi->bi_bh;
201	int nr;
202	struct block_head *blkh;
203	struct reiserfs_key *key;
204	struct disk_child *dc;
205
206	RFALSE(cur == NULL, "buffer is 0");
207	RFALSE(del_num < 0,
208	       "negative number of items (%d) can not be deleted", del_num);
209	RFALSE(first_p < 0 || first_p + del_num > B_NR_ITEMS(cur) + 1
210	       || first_i < 0,
211	       "first pointer order (%d) < 0 or "
212	       "no so many pointers (%d), only (%d) or "
213	       "first key order %d < 0", first_p, first_p + del_num,
214	       B_NR_ITEMS(cur) + 1, first_i);
215	if (del_num == 0)
216		return;
217
218	blkh = B_BLK_HEAD(cur);
219	nr = blkh_nr_item(blkh);
220
221	if (first_p == 0 && del_num == nr + 1) {
222		RFALSE(first_i != 0,
223		       "1st deleted key must have order 0, not %d", first_i);
224		make_empty_node(cur_bi);
225		return;
226	}
227
228	RFALSE(first_i + del_num > B_NR_ITEMS(cur),
229	       "first_i = %d del_num = %d "
230	       "no so many keys (%d) in the node (%b)(%z)",
231	       first_i, del_num, first_i + del_num, cur, cur);
232
233	/* deleting */
234	dc = B_N_CHILD(cur, first_p);
235
236	memmove(dc, dc + del_num, (nr + 1 - first_p - del_num) * DC_SIZE);
237	key = B_N_PDELIM_KEY(cur, first_i);
238	memmove(key, key + del_num,
239		(nr - first_i - del_num) * KEY_SIZE + (nr + 1 -
240						       del_num) * DC_SIZE);
241
242	/* sizes, item number */
243	set_blkh_nr_item(blkh, blkh_nr_item(blkh) - del_num);
244	set_blkh_free_space(blkh,
245			    blkh_free_space(blkh) +
246			    (del_num * (KEY_SIZE + DC_SIZE)));
247
248	do_balance_mark_internal_dirty(cur_bi->tb, cur, 0);
249	/*&&&&&&&&&&&&&&&&&&&&&&& */
250	check_internal(cur);
251	/*&&&&&&&&&&&&&&&&&&&&&&& */
252
253	if (cur_bi->bi_parent) {
254		struct disk_child *t_dc;
255		t_dc = B_N_CHILD(cur_bi->bi_parent, cur_bi->bi_position);
256		put_dc_size(t_dc,
257			    dc_size(t_dc) - (del_num * (KEY_SIZE + DC_SIZE)));
258
259		do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent,
260					       0);
261		/*&&&&&&&&&&&&&&&&&&&&&&&& */
262		check_internal(cur_bi->bi_parent);
263		/*&&&&&&&&&&&&&&&&&&&&&&&& */
264	}
265}
266
267/* delete n node pointers and items starting from given position */
268static void internal_delete_childs(struct buffer_info *cur_bi, int from, int n)
269{
270	int i_from;
271
272	i_from = (from == 0) ? from : from - 1;
273
274	/* delete n pointers starting from `from' position in CUR;
275	   delete n keys starting from 'i_from' position in CUR;
276	 */
277	internal_delete_pointers_items(cur_bi, from, i_from, n);
278}
279
280/* copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest
281* last_first == FIRST_TO_LAST means, that we copy first items from src to tail of dest
282 * last_first == LAST_TO_FIRST means, that we copy last items from src to head of dest
283 */
284static void internal_copy_pointers_items(struct buffer_info *dest_bi,
285					 struct buffer_head *src,
286					 int last_first, int cpy_num)
287{
288	/* ATTENTION! Number of node pointers in DEST is equal to number of items in DEST *
289	 * as delimiting key have already inserted to buffer dest.*/
290	struct buffer_head *dest = dest_bi->bi_bh;
291	int nr_dest, nr_src;
292	int dest_order, src_order;
293	struct block_head *blkh;
294	struct reiserfs_key *key;
295	struct disk_child *dc;
296
297	nr_src = B_NR_ITEMS(src);
298
299	RFALSE(dest == NULL || src == NULL,
300	       "src (%p) or dest (%p) buffer is 0", src, dest);
301	RFALSE(last_first != FIRST_TO_LAST && last_first != LAST_TO_FIRST,
302	       "invalid last_first parameter (%d)", last_first);
303	RFALSE(nr_src < cpy_num - 1,
304	       "no so many items (%d) in src (%d)", cpy_num, nr_src);
305	RFALSE(cpy_num < 0, "cpy_num less than 0 (%d)", cpy_num);
306	RFALSE(cpy_num - 1 + B_NR_ITEMS(dest) > (int)MAX_NR_KEY(dest),
307	       "cpy_num (%d) + item number in dest (%d) can not be > MAX_NR_KEY(%d)",
308	       cpy_num, B_NR_ITEMS(dest), MAX_NR_KEY(dest));
309
310	if (cpy_num == 0)
311		return;
312
313	/* coping */
314	blkh = B_BLK_HEAD(dest);
315	nr_dest = blkh_nr_item(blkh);
316
317	/*dest_order = (last_first == LAST_TO_FIRST) ? 0 : nr_dest; */
318	/*src_order = (last_first == LAST_TO_FIRST) ? (nr_src - cpy_num + 1) : 0; */
319	(last_first == LAST_TO_FIRST) ? (dest_order = 0, src_order =
320					 nr_src - cpy_num + 1) : (dest_order =
321								  nr_dest,
322								  src_order =
323								  0);
324
325	/* prepare space for cpy_num pointers */
326	dc = B_N_CHILD(dest, dest_order);
327
328	memmove(dc + cpy_num, dc, (nr_dest - dest_order) * DC_SIZE);
329
330	/* insert pointers */
331	memcpy(dc, B_N_CHILD(src, src_order), DC_SIZE * cpy_num);
332
333	/* prepare space for cpy_num - 1 item headers */
334	key = B_N_PDELIM_KEY(dest, dest_order);
335	memmove(key + cpy_num - 1, key,
336		KEY_SIZE * (nr_dest - dest_order) + DC_SIZE * (nr_dest +
337							       cpy_num));
338
339	/* insert headers */
340	memcpy(key, B_N_PDELIM_KEY(src, src_order), KEY_SIZE * (cpy_num - 1));
341
342	/* sizes, item number */
343	set_blkh_nr_item(blkh, blkh_nr_item(blkh) + (cpy_num - 1));
344	set_blkh_free_space(blkh,
345			    blkh_free_space(blkh) - (KEY_SIZE * (cpy_num - 1) +
346						     DC_SIZE * cpy_num));
347
348	do_balance_mark_internal_dirty(dest_bi->tb, dest, 0);
349
350	/*&&&&&&&&&&&&&&&&&&&&&&&& */
351	check_internal(dest);
352	/*&&&&&&&&&&&&&&&&&&&&&&&& */
353
354	if (dest_bi->bi_parent) {
355		struct disk_child *t_dc;
356		t_dc = B_N_CHILD(dest_bi->bi_parent, dest_bi->bi_position);
357		put_dc_size(t_dc,
358			    dc_size(t_dc) + (KEY_SIZE * (cpy_num - 1) +
359					     DC_SIZE * cpy_num));
360
361		do_balance_mark_internal_dirty(dest_bi->tb, dest_bi->bi_parent,
362					       0);
363		/*&&&&&&&&&&&&&&&&&&&&&&&& */
364		check_internal(dest_bi->bi_parent);
365		/*&&&&&&&&&&&&&&&&&&&&&&&& */
366	}
367
368}
369
370/* Copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest.
371 * Delete cpy_num - del_par items and node pointers from buffer src.
372 * last_first == FIRST_TO_LAST means, that we copy/delete first items from src.
373 * last_first == LAST_TO_FIRST means, that we copy/delete last items from src.
374 */
375static void internal_move_pointers_items(struct buffer_info *dest_bi,
376					 struct buffer_info *src_bi,
377					 int last_first, int cpy_num,
378					 int del_par)
379{
380	int first_pointer;
381	int first_item;
382
383	internal_copy_pointers_items(dest_bi, src_bi->bi_bh, last_first,
384				     cpy_num);
385
386	if (last_first == FIRST_TO_LAST) {	/* shift_left occurs */
387		first_pointer = 0;
388		first_item = 0;
389		/* delete cpy_num - del_par pointers and keys starting for pointers with first_pointer,
390		   for key - with first_item */
391		internal_delete_pointers_items(src_bi, first_pointer,
392					       first_item, cpy_num - del_par);
393	} else {		/* shift_right occurs */
394		int i, j;
395
396		i = (cpy_num - del_par ==
397		     (j =
398		      B_NR_ITEMS(src_bi->bi_bh)) + 1) ? 0 : j - cpy_num +
399		    del_par;
400
401		internal_delete_pointers_items(src_bi,
402					       j + 1 - cpy_num + del_par, i,
403					       cpy_num - del_par);
404	}
405}
406
407/* Insert n_src'th key of buffer src before n_dest'th key of buffer dest. */
408static void internal_insert_key(struct buffer_info *dest_bi, int dest_position_before,	/* insert key before key with n_dest number */
409				struct buffer_head *src, int src_position)
410{
411	struct buffer_head *dest = dest_bi->bi_bh;
412	int nr;
413	struct block_head *blkh;
414	struct reiserfs_key *key;
415
416	RFALSE(dest == NULL || src == NULL,
417	       "source(%p) or dest(%p) buffer is 0", src, dest);
418	RFALSE(dest_position_before < 0 || src_position < 0,
419	       "source(%d) or dest(%d) key number less than 0",
420	       src_position, dest_position_before);
421	RFALSE(dest_position_before > B_NR_ITEMS(dest) ||
422	       src_position >= B_NR_ITEMS(src),
423	       "invalid position in dest (%d (key number %d)) or in src (%d (key number %d))",
424	       dest_position_before, B_NR_ITEMS(dest),
425	       src_position, B_NR_ITEMS(src));
426	RFALSE(B_FREE_SPACE(dest) < KEY_SIZE,
427	       "no enough free space (%d) in dest buffer", B_FREE_SPACE(dest));
428
429	blkh = B_BLK_HEAD(dest);
430	nr = blkh_nr_item(blkh);
431
432	/* prepare space for inserting key */
433	key = B_N_PDELIM_KEY(dest, dest_position_before);
434	memmove(key + 1, key,
435		(nr - dest_position_before) * KEY_SIZE + (nr + 1) * DC_SIZE);
436
437	/* insert key */
438	memcpy(key, B_N_PDELIM_KEY(src, src_position), KEY_SIZE);
439
440	/* Change dirt, free space, item number fields. */
441
442	set_blkh_nr_item(blkh, blkh_nr_item(blkh) + 1);
443	set_blkh_free_space(blkh, blkh_free_space(blkh) - KEY_SIZE);
444
445	do_balance_mark_internal_dirty(dest_bi->tb, dest, 0);
446
447	if (dest_bi->bi_parent) {
448		struct disk_child *t_dc;
449		t_dc = B_N_CHILD(dest_bi->bi_parent, dest_bi->bi_position);
450		put_dc_size(t_dc, dc_size(t_dc) + KEY_SIZE);
451
452		do_balance_mark_internal_dirty(dest_bi->tb, dest_bi->bi_parent,
453					       0);
454	}
455}
456
457/* Insert d_key'th (delimiting) key from buffer cfl to tail of dest.
458 * Copy pointer_amount node pointers and pointer_amount - 1 items from buffer src to buffer dest.
459 * Replace  d_key'th key in buffer cfl.
460 * Delete pointer_amount items and node pointers from buffer src.
461 */
462/* this can be invoked both to shift from S to L and from R to S */
463static void internal_shift_left(int mode,	/* INTERNAL_FROM_S_TO_L | INTERNAL_FROM_R_TO_S */
464				struct tree_balance *tb,
465				int h, int pointer_amount)
466{
467	struct buffer_info dest_bi, src_bi;
468	struct buffer_head *cf;
469	int d_key_position;
470
471	internal_define_dest_src_infos(mode, tb, h, &dest_bi, &src_bi,
472				       &d_key_position, &cf);
473
474	/*printk("pointer_amount = %d\n",pointer_amount); */
475
476	if (pointer_amount) {
477		/* insert delimiting key from common father of dest and src to node dest into position B_NR_ITEM(dest) */
478		internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf,
479				    d_key_position);
480
481		if (B_NR_ITEMS(src_bi.bi_bh) == pointer_amount - 1) {
482			if (src_bi.bi_position /*src->b_item_order */  == 0)
483				replace_key(tb, cf, d_key_position,
484					    src_bi.
485					    bi_parent /*src->b_parent */ , 0);
486		} else
487			replace_key(tb, cf, d_key_position, src_bi.bi_bh,
488				    pointer_amount - 1);
489	}
490	/* last parameter is del_parameter */
491	internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST,
492				     pointer_amount, 0);
493
494}
495
496/* Insert delimiting key to L[h].
497 * Copy n node pointers and n - 1 items from buffer S[h] to L[h].
498 * Delete n - 1 items and node pointers from buffer S[h].
499 */
500/* it always shifts from S[h] to L[h] */
501static void internal_shift1_left(struct tree_balance *tb,
502				 int h, int pointer_amount)
503{
504	struct buffer_info dest_bi, src_bi;
505	struct buffer_head *cf;
506	int d_key_position;
507
508	internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
509				       &dest_bi, &src_bi, &d_key_position, &cf);
510
511	if (pointer_amount > 0)	/* insert lkey[h]-th key  from CFL[h] to left neighbor L[h] */
512		internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf,
513				    d_key_position);
514	/*            internal_insert_key (tb->L[h], B_NR_ITEM(tb->L[h]), tb->CFL[h], tb->lkey[h]); */
515
516	/* last parameter is del_parameter */
517	internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST,
518				     pointer_amount, 1);
519	/*    internal_move_pointers_items (tb->L[h], tb->S[h], FIRST_TO_LAST, pointer_amount, 1); */
520}
521
522/* Insert d_key'th (delimiting) key from buffer cfr to head of dest.
523 * Copy n node pointers and n - 1 items from buffer src to buffer dest.
524 * Replace  d_key'th key in buffer cfr.
525 * Delete n items and node pointers from buffer src.
526 */
527static void internal_shift_right(int mode,	/* INTERNAL_FROM_S_TO_R | INTERNAL_FROM_L_TO_S */
528				 struct tree_balance *tb,
529				 int h, int pointer_amount)
530{
531	struct buffer_info dest_bi, src_bi;
532	struct buffer_head *cf;
533	int d_key_position;
534	int nr;
535
536	internal_define_dest_src_infos(mode, tb, h, &dest_bi, &src_bi,
537				       &d_key_position, &cf);
538
539	nr = B_NR_ITEMS(src_bi.bi_bh);
540
541	if (pointer_amount > 0) {
542		/* insert delimiting key from common father of dest and src to dest node into position 0 */
543		internal_insert_key(&dest_bi, 0, cf, d_key_position);
544		if (nr == pointer_amount - 1) {
545			RFALSE(src_bi.bi_bh != PATH_H_PBUFFER(tb->tb_path, h) /*tb->S[h] */ ||
546			       dest_bi.bi_bh != tb->R[h],
547			       "src (%p) must be == tb->S[h](%p) when it disappears",
548			       src_bi.bi_bh, PATH_H_PBUFFER(tb->tb_path, h));
549			/* when S[h] disappers replace left delemiting key as well */
550			if (tb->CFL[h])
551				replace_key(tb, cf, d_key_position, tb->CFL[h],
552					    tb->lkey[h]);
553		} else
554			replace_key(tb, cf, d_key_position, src_bi.bi_bh,
555				    nr - pointer_amount);
556	}
557
558	/* last parameter is del_parameter */
559	internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST,
560				     pointer_amount, 0);
561}
562
563/* Insert delimiting key to R[h].
564 * Copy n node pointers and n - 1 items from buffer S[h] to R[h].
565 * Delete n - 1 items and node pointers from buffer S[h].
566 */
567/* it always shift from S[h] to R[h] */
568static void internal_shift1_right(struct tree_balance *tb,
569				  int h, int pointer_amount)
570{
571	struct buffer_info dest_bi, src_bi;
572	struct buffer_head *cf;
573	int d_key_position;
574
575	internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
576				       &dest_bi, &src_bi, &d_key_position, &cf);
577
578	if (pointer_amount > 0)	/* insert rkey from CFR[h] to right neighbor R[h] */
579		internal_insert_key(&dest_bi, 0, cf, d_key_position);
580	/*            internal_insert_key (tb->R[h], 0, tb->CFR[h], tb->rkey[h]); */
581
582	/* last parameter is del_parameter */
583	internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST,
584				     pointer_amount, 1);
585	/*    internal_move_pointers_items (tb->R[h], tb->S[h], LAST_TO_FIRST, pointer_amount, 1); */
586}
587
588/* Delete insert_num node pointers together with their left items
589 * and balance current node.*/
590static void balance_internal_when_delete(struct tree_balance *tb,
591					 int h, int child_pos)
592{
593	int insert_num;
594	int n;
595	struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h);
596	struct buffer_info bi;
597
598	insert_num = tb->insert_size[h] / ((int)(DC_SIZE + KEY_SIZE));
599
600	/* delete child-node-pointer(s) together with their left item(s) */
601	bi.tb = tb;
602	bi.bi_bh = tbSh;
603	bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
604	bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
605
606	internal_delete_childs(&bi, child_pos, -insert_num);
607
608	RFALSE(tb->blknum[h] > 1,
609	       "tb->blknum[%d]=%d when insert_size < 0", h, tb->blknum[h]);
610
611	n = B_NR_ITEMS(tbSh);
612
613	if (tb->lnum[h] == 0 && tb->rnum[h] == 0) {
614		if (tb->blknum[h] == 0) {
615			/* node S[h] (root of the tree) is empty now */
616			struct buffer_head *new_root;
617
618			RFALSE(n
619			       || B_FREE_SPACE(tbSh) !=
620			       MAX_CHILD_SIZE(tbSh) - DC_SIZE,
621			       "buffer must have only 0 keys (%d)", n);
622			RFALSE(bi.bi_parent, "root has parent (%p)",
623			       bi.bi_parent);
624
625			/* choose a new root */
626			if (!tb->L[h - 1] || !B_NR_ITEMS(tb->L[h - 1]))
627				new_root = tb->R[h - 1];
628			else
629				new_root = tb->L[h - 1];
630			/* switch super block's tree root block number to the new value */
631			PUT_SB_ROOT_BLOCK(tb->tb_sb, new_root->b_blocknr);
632			//REISERFS_SB(tb->tb_sb)->s_rs->s_tree_height --;
633			PUT_SB_TREE_HEIGHT(tb->tb_sb,
634					   SB_TREE_HEIGHT(tb->tb_sb) - 1);
635
636			do_balance_mark_sb_dirty(tb,
637						 REISERFS_SB(tb->tb_sb)->s_sbh,
638						 1);
639			/*&&&&&&&&&&&&&&&&&&&&&& */
640			if (h > 1)
641				/* use check_internal if new root is an internal node */
642				check_internal(new_root);
643			/*&&&&&&&&&&&&&&&&&&&&&& */
644
645			/* do what is needed for buffer thrown from tree */
646			reiserfs_invalidate_buffer(tb, tbSh);
647			return;
648		}
649		return;
650	}
651
652	if (tb->L[h] && tb->lnum[h] == -B_NR_ITEMS(tb->L[h]) - 1) {	/* join S[h] with L[h] */
653
654		RFALSE(tb->rnum[h] != 0,
655		       "invalid tb->rnum[%d]==%d when joining S[h] with L[h]",
656		       h, tb->rnum[h]);
657
658		internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, n + 1);
659		reiserfs_invalidate_buffer(tb, tbSh);
660
661		return;
662	}
663
664	if (tb->R[h] && tb->rnum[h] == -B_NR_ITEMS(tb->R[h]) - 1) {	/* join S[h] with R[h] */
665		RFALSE(tb->lnum[h] != 0,
666		       "invalid tb->lnum[%d]==%d when joining S[h] with R[h]",
667		       h, tb->lnum[h]);
668
669		internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h, n + 1);
670
671		reiserfs_invalidate_buffer(tb, tbSh);
672		return;
673	}
674
675	if (tb->lnum[h] < 0) {	/* borrow from left neighbor L[h] */
676		RFALSE(tb->rnum[h] != 0,
677		       "wrong tb->rnum[%d]==%d when borrow from L[h]", h,
678		       tb->rnum[h]);
679		/*internal_shift_right (tb, h, tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], -tb->lnum[h]); */
680		internal_shift_right(INTERNAL_SHIFT_FROM_L_TO_S, tb, h,
681				     -tb->lnum[h]);
682		return;
683	}
684
685	if (tb->rnum[h] < 0) {	/* borrow from right neighbor R[h] */
686		RFALSE(tb->lnum[h] != 0,
687		       "invalid tb->lnum[%d]==%d when borrow from R[h]",
688		       h, tb->lnum[h]);
689		internal_shift_left(INTERNAL_SHIFT_FROM_R_TO_S, tb, h, -tb->rnum[h]);	/*tb->S[h], tb->CFR[h], tb->rkey[h], tb->R[h], -tb->rnum[h]); */
690		return;
691	}
692
693	if (tb->lnum[h] > 0) {	/* split S[h] into two parts and put them into neighbors */
694		RFALSE(tb->rnum[h] == 0 || tb->lnum[h] + tb->rnum[h] != n + 1,
695		       "invalid tb->lnum[%d]==%d or tb->rnum[%d]==%d when S[h](item number == %d) is split between them",
696		       h, tb->lnum[h], h, tb->rnum[h], n);
697
698		internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]);	/*tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], tb->lnum[h]); */
699		internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
700				     tb->rnum[h]);
701
702		reiserfs_invalidate_buffer(tb, tbSh);
703
704		return;
705	}
706	reiserfs_panic(tb->tb_sb,
707		       "balance_internal_when_delete: unexpected tb->lnum[%d]==%d or tb->rnum[%d]==%d",
708		       h, tb->lnum[h], h, tb->rnum[h]);
709}
710
711/* Replace delimiting key of buffers L[h] and S[h] by the given key.*/
712static void replace_lkey(struct tree_balance *tb, int h, struct item_head *key)
713{
714	RFALSE(tb->L[h] == NULL || tb->CFL[h] == NULL,
715	       "L[h](%p) and CFL[h](%p) must exist in replace_lkey",
716	       tb->L[h], tb->CFL[h]);
717
718	if (B_NR_ITEMS(PATH_H_PBUFFER(tb->tb_path, h)) == 0)
719		return;
720
721	memcpy(B_N_PDELIM_KEY(tb->CFL[h], tb->lkey[h]), key, KEY_SIZE);
722
723	do_balance_mark_internal_dirty(tb, tb->CFL[h], 0);
724}
725
726/* Replace delimiting key of buffers S[h] and R[h] by the given key.*/
727static void replace_rkey(struct tree_balance *tb, int h, struct item_head *key)
728{
729	RFALSE(tb->R[h] == NULL || tb->CFR[h] == NULL,
730	       "R[h](%p) and CFR[h](%p) must exist in replace_rkey",
731	       tb->R[h], tb->CFR[h]);
732	RFALSE(B_NR_ITEMS(tb->R[h]) == 0,
733	       "R[h] can not be empty if it exists (item number=%d)",
734	       B_NR_ITEMS(tb->R[h]));
735
736	memcpy(B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]), key, KEY_SIZE);
737
738	do_balance_mark_internal_dirty(tb, tb->CFR[h], 0);
739}
740
741int balance_internal(struct tree_balance *tb,	/* tree_balance structure               */
742		     int h,	/* level of the tree                    */
743		     int child_pos, struct item_head *insert_key,	/* key for insertion on higher level    */
744		     struct buffer_head **insert_ptr	/* node for insertion on higher level */
745    )
746    /* if inserting/pasting
747       {
748       child_pos is the position of the node-pointer in S[h] that        *
749       pointed to S[h-1] before balancing of the h-1 level;              *
750       this means that new pointers and items must be inserted AFTER *
751       child_pos
752       }
753       else
754       {
755       it is the position of the leftmost pointer that must be deleted (together with
756       its corresponding key to the left of the pointer)
757       as a result of the previous level's balancing.
758       }
759     */
760{
761	struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h);
762	struct buffer_info bi;
763	int order;		/* we return this: it is 0 if there is no S[h], else it is tb->S[h]->b_item_order */
764	int insert_num, n, k;
765	struct buffer_head *S_new;
766	struct item_head new_insert_key;
767	struct buffer_head *new_insert_ptr = NULL;
768	struct item_head *new_insert_key_addr = insert_key;
769
770	RFALSE(h < 1, "h (%d) can not be < 1 on internal level", h);
771
772	PROC_INFO_INC(tb->tb_sb, balance_at[h]);
773
774	order =
775	    (tbSh) ? PATH_H_POSITION(tb->tb_path,
776				     h + 1) /*tb->S[h]->b_item_order */ : 0;
777
778	/* Using insert_size[h] calculate the number insert_num of items
779	   that must be inserted to or deleted from S[h]. */
780	insert_num = tb->insert_size[h] / ((int)(KEY_SIZE + DC_SIZE));
781
782	/* Check whether insert_num is proper * */
783	RFALSE(insert_num < -2 || insert_num > 2,
784	       "incorrect number of items inserted to the internal node (%d)",
785	       insert_num);
786	RFALSE(h > 1 && (insert_num > 1 || insert_num < -1),
787	       "incorrect number of items (%d) inserted to the internal node on a level (h=%d) higher than last internal level",
788	       insert_num, h);
789
790	/* Make balance in case insert_num < 0 */
791	if (insert_num < 0) {
792		balance_internal_when_delete(tb, h, child_pos);
793		return order;
794	}
795
796	k = 0;
797	if (tb->lnum[h] > 0) {
798		/* shift lnum[h] items from S[h] to the left neighbor L[h].
799		   check how many of new items fall into L[h] or CFL[h] after
800		   shifting */
801		n = B_NR_ITEMS(tb->L[h]);	/* number of items in L[h] */
802		if (tb->lnum[h] <= child_pos) {
803			/* new items don't fall into L[h] or CFL[h] */
804			internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
805					    tb->lnum[h]);
806			/*internal_shift_left (tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,tb->lnum[h]); */
807			child_pos -= tb->lnum[h];
808		} else if (tb->lnum[h] > child_pos + insert_num) {
809			/* all new items fall into L[h] */
810			internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
811					    tb->lnum[h] - insert_num);
812			/*                  internal_shift_left(tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,
813			   tb->lnum[h]-insert_num);
814			 */
815			/* insert insert_num keys and node-pointers into L[h] */
816			bi.tb = tb;
817			bi.bi_bh = tb->L[h];
818			bi.bi_parent = tb->FL[h];
819			bi.bi_position = get_left_neighbor_position(tb, h);
820			internal_insert_childs(&bi,
821					       /*tb->L[h], tb->S[h-1]->b_next */
822					       n + child_pos + 1,
823					       insert_num, insert_key,
824					       insert_ptr);
825
826			insert_num = 0;
827		} else {
828			struct disk_child *dc;
829
830			/* some items fall into L[h] or CFL[h], but some don't fall */
831			internal_shift1_left(tb, h, child_pos + 1);
832			/* calculate number of new items that fall into L[h] */
833			k = tb->lnum[h] - child_pos - 1;
834			bi.tb = tb;
835			bi.bi_bh = tb->L[h];
836			bi.bi_parent = tb->FL[h];
837			bi.bi_position = get_left_neighbor_position(tb, h);
838			internal_insert_childs(&bi,
839					       /*tb->L[h], tb->S[h-1]->b_next, */
840					       n + child_pos + 1, k,
841					       insert_key, insert_ptr);
842
843			replace_lkey(tb, h, insert_key + k);
844
845			/* replace the first node-ptr in S[h] by node-ptr to insert_ptr[k] */
846			dc = B_N_CHILD(tbSh, 0);
847			put_dc_size(dc,
848				    MAX_CHILD_SIZE(insert_ptr[k]) -
849				    B_FREE_SPACE(insert_ptr[k]));
850			put_dc_block_number(dc, insert_ptr[k]->b_blocknr);
851
852			do_balance_mark_internal_dirty(tb, tbSh, 0);
853
854			k++;
855			insert_key += k;
856			insert_ptr += k;
857			insert_num -= k;
858			child_pos = 0;
859		}
860	}
861	/* tb->lnum[h] > 0 */
862	if (tb->rnum[h] > 0) {
863		/*shift rnum[h] items from S[h] to the right neighbor R[h] */
864		/* check how many of new items fall into R or CFR after shifting */
865		n = B_NR_ITEMS(tbSh);	/* number of items in S[h] */
866		if (n - tb->rnum[h] >= child_pos)
867			/* new items fall into S[h] */
868			/*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],tb->rnum[h]); */
869			internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
870					     tb->rnum[h]);
871		else if (n + insert_num - tb->rnum[h] < child_pos) {
872			/* all new items fall into R[h] */
873			/*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],
874			   tb->rnum[h] - insert_num); */
875			internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
876					     tb->rnum[h] - insert_num);
877
878			/* insert insert_num keys and node-pointers into R[h] */
879			bi.tb = tb;
880			bi.bi_bh = tb->R[h];
881			bi.bi_parent = tb->FR[h];
882			bi.bi_position = get_right_neighbor_position(tb, h);
883			internal_insert_childs(&bi,
884					       /*tb->R[h],tb->S[h-1]->b_next */
885					       child_pos - n - insert_num +
886					       tb->rnum[h] - 1,
887					       insert_num, insert_key,
888					       insert_ptr);
889			insert_num = 0;
890		} else {
891			struct disk_child *dc;
892
893			/* one of the items falls into CFR[h] */
894			internal_shift1_right(tb, h, n - child_pos + 1);
895			/* calculate number of new items that fall into R[h] */
896			k = tb->rnum[h] - n + child_pos - 1;
897			bi.tb = tb;
898			bi.bi_bh = tb->R[h];
899			bi.bi_parent = tb->FR[h];
900			bi.bi_position = get_right_neighbor_position(tb, h);
901			internal_insert_childs(&bi,
902					       /*tb->R[h], tb->R[h]->b_child, */
903					       0, k, insert_key + 1,
904					       insert_ptr + 1);
905
906			replace_rkey(tb, h, insert_key + insert_num - k - 1);
907
908			/* replace the first node-ptr in R[h] by node-ptr insert_ptr[insert_num-k-1] */
909			dc = B_N_CHILD(tb->R[h], 0);
910			put_dc_size(dc,
911				    MAX_CHILD_SIZE(insert_ptr
912						   [insert_num - k - 1]) -
913				    B_FREE_SPACE(insert_ptr
914						 [insert_num - k - 1]));
915			put_dc_block_number(dc,
916					    insert_ptr[insert_num - k -
917						       1]->b_blocknr);
918
919			do_balance_mark_internal_dirty(tb, tb->R[h], 0);
920
921			insert_num -= (k + 1);
922		}
923	}
924
925    /** Fill new node that appears instead of S[h] **/
926	RFALSE(tb->blknum[h] > 2, "blknum can not be > 2 for internal level");
927	RFALSE(tb->blknum[h] < 0, "blknum can not be < 0");
928
929	if (!tb->blknum[h]) {	/* node S[h] is empty now */
930		RFALSE(!tbSh, "S[h] is equal NULL");
931
932		/* do what is needed for buffer thrown from tree */
933		reiserfs_invalidate_buffer(tb, tbSh);
934		return order;
935	}
936
937	if (!tbSh) {
938		/* create new root */
939		struct disk_child *dc;
940		struct buffer_head *tbSh_1 = PATH_H_PBUFFER(tb->tb_path, h - 1);
941		struct block_head *blkh;
942
943		if (tb->blknum[h] != 1)
944			reiserfs_panic(NULL,
945				       "balance_internal: One new node required for creating the new root");
946		/* S[h] = empty buffer from the list FEB. */
947		tbSh = get_FEB(tb);
948		blkh = B_BLK_HEAD(tbSh);
949		set_blkh_level(blkh, h + 1);
950
951		/* Put the unique node-pointer to S[h] that points to S[h-1]. */
952
953		dc = B_N_CHILD(tbSh, 0);
954		put_dc_block_number(dc, tbSh_1->b_blocknr);
955		put_dc_size(dc,
956			    (MAX_CHILD_SIZE(tbSh_1) - B_FREE_SPACE(tbSh_1)));
957
958		tb->insert_size[h] -= DC_SIZE;
959		set_blkh_free_space(blkh, blkh_free_space(blkh) - DC_SIZE);
960
961		do_balance_mark_internal_dirty(tb, tbSh, 0);
962
963		/*&&&&&&&&&&&&&&&&&&&&&&&& */
964		check_internal(tbSh);
965		/*&&&&&&&&&&&&&&&&&&&&&&&& */
966
967		/* put new root into path structure */
968		PATH_OFFSET_PBUFFER(tb->tb_path, ILLEGAL_PATH_ELEMENT_OFFSET) =
969		    tbSh;
970
971		/* Change root in structure super block. */
972		PUT_SB_ROOT_BLOCK(tb->tb_sb, tbSh->b_blocknr);
973		PUT_SB_TREE_HEIGHT(tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) + 1);
974		do_balance_mark_sb_dirty(tb, REISERFS_SB(tb->tb_sb)->s_sbh, 1);
975	}
976
977	if (tb->blknum[h] == 2) {
978		int snum;
979		struct buffer_info dest_bi, src_bi;
980
981		/* S_new = free buffer from list FEB */
982		S_new = get_FEB(tb);
983
984		set_blkh_level(B_BLK_HEAD(S_new), h + 1);
985
986		dest_bi.tb = tb;
987		dest_bi.bi_bh = S_new;
988		dest_bi.bi_parent = NULL;
989		dest_bi.bi_position = 0;
990		src_bi.tb = tb;
991		src_bi.bi_bh = tbSh;
992		src_bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
993		src_bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
994
995		n = B_NR_ITEMS(tbSh);	/* number of items in S[h] */
996		snum = (insert_num + n + 1) / 2;
997		if (n - snum >= child_pos) {
998			/* new items don't fall into S_new */
999			/*  store the delimiting key for the next level */
1000			/* new_insert_key = (n - snum)'th key in S[h] */
1001			memcpy(&new_insert_key, B_N_PDELIM_KEY(tbSh, n - snum),
1002			       KEY_SIZE);
1003			/* last parameter is del_par */
1004			internal_move_pointers_items(&dest_bi, &src_bi,
1005						     LAST_TO_FIRST, snum, 0);
1006			/*            internal_move_pointers_items(S_new, tbSh, LAST_TO_FIRST, snum, 0); */
1007		} else if (n + insert_num - snum < child_pos) {
1008			/* all new items fall into S_new */
1009			/*  store the delimiting key for the next level */
1010			/* new_insert_key = (n + insert_item - snum)'th key in S[h] */
1011			memcpy(&new_insert_key,
1012			       B_N_PDELIM_KEY(tbSh, n + insert_num - snum),
1013			       KEY_SIZE);
1014			/* last parameter is del_par */
1015			internal_move_pointers_items(&dest_bi, &src_bi,
1016						     LAST_TO_FIRST,
1017						     snum - insert_num, 0);
1018			/*                  internal_move_pointers_items(S_new,tbSh,1,snum - insert_num,0); */
1019
1020			/* insert insert_num keys and node-pointers into S_new */
1021			internal_insert_childs(&dest_bi,
1022					       /*S_new,tb->S[h-1]->b_next, */
1023					       child_pos - n - insert_num +
1024					       snum - 1,
1025					       insert_num, insert_key,
1026					       insert_ptr);
1027
1028			insert_num = 0;
1029		} else {
1030			struct disk_child *dc;
1031
1032			/* some items fall into S_new, but some don't fall */
1033			/* last parameter is del_par */
1034			internal_move_pointers_items(&dest_bi, &src_bi,
1035						     LAST_TO_FIRST,
1036						     n - child_pos + 1, 1);
1037			/*                  internal_move_pointers_items(S_new,tbSh,1,n - child_pos + 1,1); */
1038			/* calculate number of new items that fall into S_new */
1039			k = snum - n + child_pos - 1;
1040
1041			internal_insert_childs(&dest_bi, /*S_new, */ 0, k,
1042					       insert_key + 1, insert_ptr + 1);
1043
1044			/* new_insert_key = insert_key[insert_num - k - 1] */
1045			memcpy(&new_insert_key, insert_key + insert_num - k - 1,
1046			       KEY_SIZE);
1047			/* replace first node-ptr in S_new by node-ptr to insert_ptr[insert_num-k-1] */
1048
1049			dc = B_N_CHILD(S_new, 0);
1050			put_dc_size(dc,
1051				    (MAX_CHILD_SIZE
1052				     (insert_ptr[insert_num - k - 1]) -
1053				     B_FREE_SPACE(insert_ptr
1054						  [insert_num - k - 1])));
1055			put_dc_block_number(dc,
1056					    insert_ptr[insert_num - k -
1057						       1]->b_blocknr);
1058
1059			do_balance_mark_internal_dirty(tb, S_new, 0);
1060
1061			insert_num -= (k + 1);
1062		}
1063		/* new_insert_ptr = node_pointer to S_new */
1064		new_insert_ptr = S_new;
1065
1066		RFALSE(!buffer_journaled(S_new) || buffer_journal_dirty(S_new)
1067		       || buffer_dirty(S_new), "cm-00001: bad S_new (%b)",
1068		       S_new);
1069
1070		// S_new is released in unfix_nodes
1071	}
1072
1073	n = B_NR_ITEMS(tbSh);	/*number of items in S[h] */
1074
1075	if (0 <= child_pos && child_pos <= n && insert_num > 0) {
1076		bi.tb = tb;
1077		bi.bi_bh = tbSh;
1078		bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
1079		bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
1080		internal_insert_childs(&bi,	/*tbSh, */
1081				       /*          ( tb->S[h-1]->b_parent == tb->S[h] ) ? tb->S[h-1]->b_next :  tb->S[h]->b_child->b_next, */
1082				       child_pos, insert_num, insert_key,
1083				       insert_ptr);
1084	}
1085
1086	memcpy(new_insert_key_addr, &new_insert_key, KEY_SIZE);
1087	insert_ptr[0] = new_insert_ptr;
1088
1089	return order;
1090}
1091