inode.c revision 0222e6571c332563a48d4cf5487b67feabe60b5e
1/* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5#include <linux/time.h> 6#include <linux/fs.h> 7#include <linux/reiserfs_fs.h> 8#include <linux/reiserfs_acl.h> 9#include <linux/reiserfs_xattr.h> 10#include <linux/exportfs.h> 11#include <linux/smp_lock.h> 12#include <linux/pagemap.h> 13#include <linux/highmem.h> 14#include <asm/uaccess.h> 15#include <asm/unaligned.h> 16#include <linux/buffer_head.h> 17#include <linux/mpage.h> 18#include <linux/writeback.h> 19#include <linux/quotaops.h> 20#include <linux/swap.h> 21 22int reiserfs_commit_write(struct file *f, struct page *page, 23 unsigned from, unsigned to); 24int reiserfs_prepare_write(struct file *f, struct page *page, 25 unsigned from, unsigned to); 26 27void reiserfs_delete_inode(struct inode *inode) 28{ 29 /* We need blocks for transaction + (user+group) quota update (possibly delete) */ 30 int jbegin_count = 31 JOURNAL_PER_BALANCE_CNT * 2 + 32 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb); 33 struct reiserfs_transaction_handle th; 34 int err; 35 36 truncate_inode_pages(&inode->i_data, 0); 37 38 reiserfs_write_lock(inode->i_sb); 39 40 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */ 41 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */ 42 reiserfs_delete_xattrs(inode); 43 44 if (journal_begin(&th, inode->i_sb, jbegin_count)) 45 goto out; 46 reiserfs_update_inode_transaction(inode); 47 48 reiserfs_discard_prealloc(&th, inode); 49 50 err = reiserfs_delete_object(&th, inode); 51 52 /* Do quota update inside a transaction for journaled quotas. We must do that 53 * after delete_object so that quota updates go into the same transaction as 54 * stat data deletion */ 55 if (!err) 56 DQUOT_FREE_INODE(inode); 57 58 if (journal_end(&th, inode->i_sb, jbegin_count)) 59 goto out; 60 61 /* check return value from reiserfs_delete_object after 62 * ending the transaction 63 */ 64 if (err) 65 goto out; 66 67 /* all items of file are deleted, so we can remove "save" link */ 68 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything 69 * about an error here */ 70 } else { 71 /* no object items are in the tree */ 72 ; 73 } 74 out: 75 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */ 76 inode->i_blocks = 0; 77 reiserfs_write_unlock(inode->i_sb); 78} 79 80static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid, 81 __u32 objectid, loff_t offset, int type, int length) 82{ 83 key->version = version; 84 85 key->on_disk_key.k_dir_id = dirid; 86 key->on_disk_key.k_objectid = objectid; 87 set_cpu_key_k_offset(key, offset); 88 set_cpu_key_k_type(key, type); 89 key->key_length = length; 90} 91 92/* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set 93 offset and type of key */ 94void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset, 95 int type, int length) 96{ 97 _make_cpu_key(key, get_inode_item_key_version(inode), 98 le32_to_cpu(INODE_PKEY(inode)->k_dir_id), 99 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type, 100 length); 101} 102 103// 104// when key is 0, do not set version and short key 105// 106inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 107 int version, 108 loff_t offset, int type, int length, 109 int entry_count /*or ih_free_space */ ) 110{ 111 if (key) { 112 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id); 113 ih->ih_key.k_objectid = 114 cpu_to_le32(key->on_disk_key.k_objectid); 115 } 116 put_ih_version(ih, version); 117 set_le_ih_k_offset(ih, offset); 118 set_le_ih_k_type(ih, type); 119 put_ih_item_len(ih, length); 120 /* set_ih_free_space (ih, 0); */ 121 // for directory items it is entry count, for directs and stat 122 // datas - 0xffff, for indirects - 0 123 put_ih_entry_count(ih, entry_count); 124} 125 126// 127// FIXME: we might cache recently accessed indirect item 128 129// Ugh. Not too eager for that.... 130// I cut the code until such time as I see a convincing argument (benchmark). 131// I don't want a bloated inode struct..., and I don't like code complexity.... 132 133/* cutting the code is fine, since it really isn't in use yet and is easy 134** to add back in. But, Vladimir has a really good idea here. Think 135** about what happens for reading a file. For each page, 136** The VFS layer calls reiserfs_readpage, who searches the tree to find 137** an indirect item. This indirect item has X number of pointers, where 138** X is a big number if we've done the block allocation right. But, 139** we only use one or two of these pointers during each call to readpage, 140** needlessly researching again later on. 141** 142** The size of the cache could be dynamic based on the size of the file. 143** 144** I'd also like to see us cache the location the stat data item, since 145** we are needlessly researching for that frequently. 146** 147** --chris 148*/ 149 150/* If this page has a file tail in it, and 151** it was read in by get_block_create_0, the page data is valid, 152** but tail is still sitting in a direct item, and we can't write to 153** it. So, look through this page, and check all the mapped buffers 154** to make sure they have valid block numbers. Any that don't need 155** to be unmapped, so that block_prepare_write will correctly call 156** reiserfs_get_block to convert the tail into an unformatted node 157*/ 158static inline void fix_tail_page_for_writing(struct page *page) 159{ 160 struct buffer_head *head, *next, *bh; 161 162 if (page && page_has_buffers(page)) { 163 head = page_buffers(page); 164 bh = head; 165 do { 166 next = bh->b_this_page; 167 if (buffer_mapped(bh) && bh->b_blocknr == 0) { 168 reiserfs_unmap_buffer(bh); 169 } 170 bh = next; 171 } while (bh != head); 172 } 173} 174 175/* reiserfs_get_block does not need to allocate a block only if it has been 176 done already or non-hole position has been found in the indirect item */ 177static inline int allocation_needed(int retval, b_blocknr_t allocated, 178 struct item_head *ih, 179 __le32 * item, int pos_in_item) 180{ 181 if (allocated) 182 return 0; 183 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) && 184 get_block_num(item, pos_in_item)) 185 return 0; 186 return 1; 187} 188 189static inline int indirect_item_found(int retval, struct item_head *ih) 190{ 191 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih); 192} 193 194static inline void set_block_dev_mapped(struct buffer_head *bh, 195 b_blocknr_t block, struct inode *inode) 196{ 197 map_bh(bh, inode->i_sb, block); 198} 199 200// 201// files which were created in the earlier version can not be longer, 202// than 2 gb 203// 204static int file_capable(struct inode *inode, sector_t block) 205{ 206 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file. 207 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb 208 return 1; 209 210 return 0; 211} 212 213static int restart_transaction(struct reiserfs_transaction_handle *th, 214 struct inode *inode, struct treepath *path) 215{ 216 struct super_block *s = th->t_super; 217 int len = th->t_blocks_allocated; 218 int err; 219 220 BUG_ON(!th->t_trans_id); 221 BUG_ON(!th->t_refcount); 222 223 pathrelse(path); 224 225 /* we cannot restart while nested */ 226 if (th->t_refcount > 1) { 227 return 0; 228 } 229 reiserfs_update_sd(th, inode); 230 err = journal_end(th, s, len); 231 if (!err) { 232 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6); 233 if (!err) 234 reiserfs_update_inode_transaction(inode); 235 } 236 return err; 237} 238 239// it is called by get_block when create == 0. Returns block number 240// for 'block'-th logical block of file. When it hits direct item it 241// returns 0 (being called from bmap) or read direct item into piece 242// of page (bh_result) 243 244// Please improve the english/clarity in the comment above, as it is 245// hard to understand. 246 247static int _get_block_create_0(struct inode *inode, sector_t block, 248 struct buffer_head *bh_result, int args) 249{ 250 INITIALIZE_PATH(path); 251 struct cpu_key key; 252 struct buffer_head *bh; 253 struct item_head *ih, tmp_ih; 254 int fs_gen; 255 b_blocknr_t blocknr; 256 char *p = NULL; 257 int chars; 258 int ret; 259 int result; 260 int done = 0; 261 unsigned long offset; 262 263 // prepare the key to look for the 'block'-th block of file 264 make_cpu_key(&key, inode, 265 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY, 266 3); 267 268 research: 269 result = search_for_position_by_key(inode->i_sb, &key, &path); 270 if (result != POSITION_FOUND) { 271 pathrelse(&path); 272 if (p) 273 kunmap(bh_result->b_page); 274 if (result == IO_ERROR) 275 return -EIO; 276 // We do not return -ENOENT if there is a hole but page is uptodate, because it means 277 // That there is some MMAPED data associated with it that is yet to be written to disk. 278 if ((args & GET_BLOCK_NO_HOLE) 279 && !PageUptodate(bh_result->b_page)) { 280 return -ENOENT; 281 } 282 return 0; 283 } 284 // 285 bh = get_last_bh(&path); 286 ih = get_ih(&path); 287 if (is_indirect_le_ih(ih)) { 288 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih); 289 290 /* FIXME: here we could cache indirect item or part of it in 291 the inode to avoid search_by_key in case of subsequent 292 access to file */ 293 blocknr = get_block_num(ind_item, path.pos_in_item); 294 ret = 0; 295 if (blocknr) { 296 map_bh(bh_result, inode->i_sb, blocknr); 297 if (path.pos_in_item == 298 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) { 299 set_buffer_boundary(bh_result); 300 } 301 } else 302 // We do not return -ENOENT if there is a hole but page is uptodate, because it means 303 // That there is some MMAPED data associated with it that is yet to be written to disk. 304 if ((args & GET_BLOCK_NO_HOLE) 305 && !PageUptodate(bh_result->b_page)) { 306 ret = -ENOENT; 307 } 308 309 pathrelse(&path); 310 if (p) 311 kunmap(bh_result->b_page); 312 return ret; 313 } 314 // requested data are in direct item(s) 315 if (!(args & GET_BLOCK_READ_DIRECT)) { 316 // we are called by bmap. FIXME: we can not map block of file 317 // when it is stored in direct item(s) 318 pathrelse(&path); 319 if (p) 320 kunmap(bh_result->b_page); 321 return -ENOENT; 322 } 323 324 /* if we've got a direct item, and the buffer or page was uptodate, 325 ** we don't want to pull data off disk again. skip to the 326 ** end, where we map the buffer and return 327 */ 328 if (buffer_uptodate(bh_result)) { 329 goto finished; 330 } else 331 /* 332 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date 333 ** pages without any buffers. If the page is up to date, we don't want 334 ** read old data off disk. Set the up to date bit on the buffer instead 335 ** and jump to the end 336 */ 337 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) { 338 set_buffer_uptodate(bh_result); 339 goto finished; 340 } 341 // read file tail into part of page 342 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1); 343 fs_gen = get_generation(inode->i_sb); 344 copy_item_head(&tmp_ih, ih); 345 346 /* we only want to kmap if we are reading the tail into the page. 347 ** this is not the common case, so we don't kmap until we are 348 ** sure we need to. But, this means the item might move if 349 ** kmap schedules 350 */ 351 if (!p) { 352 p = (char *)kmap(bh_result->b_page); 353 if (fs_changed(fs_gen, inode->i_sb) 354 && item_moved(&tmp_ih, &path)) { 355 goto research; 356 } 357 } 358 p += offset; 359 memset(p, 0, inode->i_sb->s_blocksize); 360 do { 361 if (!is_direct_le_ih(ih)) { 362 BUG(); 363 } 364 /* make sure we don't read more bytes than actually exist in 365 ** the file. This can happen in odd cases where i_size isn't 366 ** correct, and when direct item padding results in a few 367 ** extra bytes at the end of the direct item 368 */ 369 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size) 370 break; 371 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) { 372 chars = 373 inode->i_size - (le_ih_k_offset(ih) - 1) - 374 path.pos_in_item; 375 done = 1; 376 } else { 377 chars = ih_item_len(ih) - path.pos_in_item; 378 } 379 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars); 380 381 if (done) 382 break; 383 384 p += chars; 385 386 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1)) 387 // we done, if read direct item is not the last item of 388 // node FIXME: we could try to check right delimiting key 389 // to see whether direct item continues in the right 390 // neighbor or rely on i_size 391 break; 392 393 // update key to look for the next piece 394 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars); 395 result = search_for_position_by_key(inode->i_sb, &key, &path); 396 if (result != POSITION_FOUND) 397 // i/o error most likely 398 break; 399 bh = get_last_bh(&path); 400 ih = get_ih(&path); 401 } while (1); 402 403 flush_dcache_page(bh_result->b_page); 404 kunmap(bh_result->b_page); 405 406 finished: 407 pathrelse(&path); 408 409 if (result == IO_ERROR) 410 return -EIO; 411 412 /* this buffer has valid data, but isn't valid for io. mapping it to 413 * block #0 tells the rest of reiserfs it just has a tail in it 414 */ 415 map_bh(bh_result, inode->i_sb, 0); 416 set_buffer_uptodate(bh_result); 417 return 0; 418} 419 420// this is called to create file map. So, _get_block_create_0 will not 421// read direct item 422static int reiserfs_bmap(struct inode *inode, sector_t block, 423 struct buffer_head *bh_result, int create) 424{ 425 if (!file_capable(inode, block)) 426 return -EFBIG; 427 428 reiserfs_write_lock(inode->i_sb); 429 /* do not read the direct item */ 430 _get_block_create_0(inode, block, bh_result, 0); 431 reiserfs_write_unlock(inode->i_sb); 432 return 0; 433} 434 435/* special version of get_block that is only used by grab_tail_page right 436** now. It is sent to block_prepare_write, and when you try to get a 437** block past the end of the file (or a block from a hole) it returns 438** -ENOENT instead of a valid buffer. block_prepare_write expects to 439** be able to do i/o on the buffers returned, unless an error value 440** is also returned. 441** 442** So, this allows block_prepare_write to be used for reading a single block 443** in a page. Where it does not produce a valid page for holes, or past the 444** end of the file. This turns out to be exactly what we need for reading 445** tails for conversion. 446** 447** The point of the wrapper is forcing a certain value for create, even 448** though the VFS layer is calling this function with create==1. If you 449** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block, 450** don't use this function. 451*/ 452static int reiserfs_get_block_create_0(struct inode *inode, sector_t block, 453 struct buffer_head *bh_result, 454 int create) 455{ 456 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE); 457} 458 459/* This is special helper for reiserfs_get_block in case we are executing 460 direct_IO request. */ 461static int reiserfs_get_blocks_direct_io(struct inode *inode, 462 sector_t iblock, 463 struct buffer_head *bh_result, 464 int create) 465{ 466 int ret; 467 468 bh_result->b_page = NULL; 469 470 /* We set the b_size before reiserfs_get_block call since it is 471 referenced in convert_tail_for_hole() that may be called from 472 reiserfs_get_block() */ 473 bh_result->b_size = (1 << inode->i_blkbits); 474 475 ret = reiserfs_get_block(inode, iblock, bh_result, 476 create | GET_BLOCK_NO_DANGLE); 477 if (ret) 478 goto out; 479 480 /* don't allow direct io onto tail pages */ 481 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 482 /* make sure future calls to the direct io funcs for this offset 483 ** in the file fail by unmapping the buffer 484 */ 485 clear_buffer_mapped(bh_result); 486 ret = -EINVAL; 487 } 488 /* Possible unpacked tail. Flush the data before pages have 489 disappeared */ 490 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) { 491 int err; 492 lock_kernel(); 493 err = reiserfs_commit_for_inode(inode); 494 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 495 unlock_kernel(); 496 if (err < 0) 497 ret = err; 498 } 499 out: 500 return ret; 501} 502 503/* 504** helper function for when reiserfs_get_block is called for a hole 505** but the file tail is still in a direct item 506** bh_result is the buffer head for the hole 507** tail_offset is the offset of the start of the tail in the file 508** 509** This calls prepare_write, which will start a new transaction 510** you should not be in a transaction, or have any paths held when you 511** call this. 512*/ 513static int convert_tail_for_hole(struct inode *inode, 514 struct buffer_head *bh_result, 515 loff_t tail_offset) 516{ 517 unsigned long index; 518 unsigned long tail_end; 519 unsigned long tail_start; 520 struct page *tail_page; 521 struct page *hole_page = bh_result->b_page; 522 int retval = 0; 523 524 if ((tail_offset & (bh_result->b_size - 1)) != 1) 525 return -EIO; 526 527 /* always try to read until the end of the block */ 528 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1); 529 tail_end = (tail_start | (bh_result->b_size - 1)) + 1; 530 531 index = tail_offset >> PAGE_CACHE_SHIFT; 532 /* hole_page can be zero in case of direct_io, we are sure 533 that we cannot get here if we write with O_DIRECT into 534 tail page */ 535 if (!hole_page || index != hole_page->index) { 536 tail_page = grab_cache_page(inode->i_mapping, index); 537 retval = -ENOMEM; 538 if (!tail_page) { 539 goto out; 540 } 541 } else { 542 tail_page = hole_page; 543 } 544 545 /* we don't have to make sure the conversion did not happen while 546 ** we were locking the page because anyone that could convert 547 ** must first take i_mutex. 548 ** 549 ** We must fix the tail page for writing because it might have buffers 550 ** that are mapped, but have a block number of 0. This indicates tail 551 ** data that has been read directly into the page, and block_prepare_write 552 ** won't trigger a get_block in this case. 553 */ 554 fix_tail_page_for_writing(tail_page); 555 retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end); 556 if (retval) 557 goto unlock; 558 559 /* tail conversion might change the data in the page */ 560 flush_dcache_page(tail_page); 561 562 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end); 563 564 unlock: 565 if (tail_page != hole_page) { 566 unlock_page(tail_page); 567 page_cache_release(tail_page); 568 } 569 out: 570 return retval; 571} 572 573static inline int _allocate_block(struct reiserfs_transaction_handle *th, 574 sector_t block, 575 struct inode *inode, 576 b_blocknr_t * allocated_block_nr, 577 struct treepath *path, int flags) 578{ 579 BUG_ON(!th->t_trans_id); 580 581#ifdef REISERFS_PREALLOCATE 582 if (!(flags & GET_BLOCK_NO_IMUX)) { 583 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr, 584 path, block); 585 } 586#endif 587 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path, 588 block); 589} 590 591int reiserfs_get_block(struct inode *inode, sector_t block, 592 struct buffer_head *bh_result, int create) 593{ 594 int repeat, retval = 0; 595 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int 596 INITIALIZE_PATH(path); 597 int pos_in_item; 598 struct cpu_key key; 599 struct buffer_head *bh, *unbh = NULL; 600 struct item_head *ih, tmp_ih; 601 __le32 *item; 602 int done; 603 int fs_gen; 604 struct reiserfs_transaction_handle *th = NULL; 605 /* space reserved in transaction batch: 606 . 3 balancings in direct->indirect conversion 607 . 1 block involved into reiserfs_update_sd() 608 XXX in practically impossible worst case direct2indirect() 609 can incur (much) more than 3 balancings. 610 quota update for user, group */ 611 int jbegin_count = 612 JOURNAL_PER_BALANCE_CNT * 3 + 1 + 613 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb); 614 int version; 615 int dangle = 1; 616 loff_t new_offset = 617 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1; 618 619 /* bad.... */ 620 reiserfs_write_lock(inode->i_sb); 621 version = get_inode_item_key_version(inode); 622 623 if (!file_capable(inode, block)) { 624 reiserfs_write_unlock(inode->i_sb); 625 return -EFBIG; 626 } 627 628 /* if !create, we aren't changing the FS, so we don't need to 629 ** log anything, so we don't need to start a transaction 630 */ 631 if (!(create & GET_BLOCK_CREATE)) { 632 int ret; 633 /* find number of block-th logical block of the file */ 634 ret = _get_block_create_0(inode, block, bh_result, 635 create | GET_BLOCK_READ_DIRECT); 636 reiserfs_write_unlock(inode->i_sb); 637 return ret; 638 } 639 /* 640 * if we're already in a transaction, make sure to close 641 * any new transactions we start in this func 642 */ 643 if ((create & GET_BLOCK_NO_DANGLE) || 644 reiserfs_transaction_running(inode->i_sb)) 645 dangle = 0; 646 647 /* If file is of such a size, that it might have a tail and tails are enabled 648 ** we should mark it as possibly needing tail packing on close 649 */ 650 if ((have_large_tails(inode->i_sb) 651 && inode->i_size < i_block_size(inode) * 4) 652 || (have_small_tails(inode->i_sb) 653 && inode->i_size < i_block_size(inode))) 654 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; 655 656 /* set the key of the first byte in the 'block'-th block of file */ 657 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ ); 658 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) { 659 start_trans: 660 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count); 661 if (!th) { 662 retval = -ENOMEM; 663 goto failure; 664 } 665 reiserfs_update_inode_transaction(inode); 666 } 667 research: 668 669 retval = search_for_position_by_key(inode->i_sb, &key, &path); 670 if (retval == IO_ERROR) { 671 retval = -EIO; 672 goto failure; 673 } 674 675 bh = get_last_bh(&path); 676 ih = get_ih(&path); 677 item = get_item(&path); 678 pos_in_item = path.pos_in_item; 679 680 fs_gen = get_generation(inode->i_sb); 681 copy_item_head(&tmp_ih, ih); 682 683 if (allocation_needed 684 (retval, allocated_block_nr, ih, item, pos_in_item)) { 685 /* we have to allocate block for the unformatted node */ 686 if (!th) { 687 pathrelse(&path); 688 goto start_trans; 689 } 690 691 repeat = 692 _allocate_block(th, block, inode, &allocated_block_nr, 693 &path, create); 694 695 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) { 696 /* restart the transaction to give the journal a chance to free 697 ** some blocks. releases the path, so we have to go back to 698 ** research if we succeed on the second try 699 */ 700 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1; 701 retval = restart_transaction(th, inode, &path); 702 if (retval) 703 goto failure; 704 repeat = 705 _allocate_block(th, block, inode, 706 &allocated_block_nr, NULL, create); 707 708 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) { 709 goto research; 710 } 711 if (repeat == QUOTA_EXCEEDED) 712 retval = -EDQUOT; 713 else 714 retval = -ENOSPC; 715 goto failure; 716 } 717 718 if (fs_changed(fs_gen, inode->i_sb) 719 && item_moved(&tmp_ih, &path)) { 720 goto research; 721 } 722 } 723 724 if (indirect_item_found(retval, ih)) { 725 b_blocknr_t unfm_ptr; 726 /* 'block'-th block is in the file already (there is 727 corresponding cell in some indirect item). But it may be 728 zero unformatted node pointer (hole) */ 729 unfm_ptr = get_block_num(item, pos_in_item); 730 if (unfm_ptr == 0) { 731 /* use allocated block to plug the hole */ 732 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 733 if (fs_changed(fs_gen, inode->i_sb) 734 && item_moved(&tmp_ih, &path)) { 735 reiserfs_restore_prepared_buffer(inode->i_sb, 736 bh); 737 goto research; 738 } 739 set_buffer_new(bh_result); 740 if (buffer_dirty(bh_result) 741 && reiserfs_data_ordered(inode->i_sb)) 742 reiserfs_add_ordered_list(inode, bh_result); 743 put_block_num(item, pos_in_item, allocated_block_nr); 744 unfm_ptr = allocated_block_nr; 745 journal_mark_dirty(th, inode->i_sb, bh); 746 reiserfs_update_sd(th, inode); 747 } 748 set_block_dev_mapped(bh_result, unfm_ptr, inode); 749 pathrelse(&path); 750 retval = 0; 751 if (!dangle && th) 752 retval = reiserfs_end_persistent_transaction(th); 753 754 reiserfs_write_unlock(inode->i_sb); 755 756 /* the item was found, so new blocks were not added to the file 757 ** there is no need to make sure the inode is updated with this 758 ** transaction 759 */ 760 return retval; 761 } 762 763 if (!th) { 764 pathrelse(&path); 765 goto start_trans; 766 } 767 768 /* desired position is not found or is in the direct item. We have 769 to append file with holes up to 'block'-th block converting 770 direct items to indirect one if necessary */ 771 done = 0; 772 do { 773 if (is_statdata_le_ih(ih)) { 774 __le32 unp = 0; 775 struct cpu_key tmp_key; 776 777 /* indirect item has to be inserted */ 778 make_le_item_head(&tmp_ih, &key, version, 1, 779 TYPE_INDIRECT, UNFM_P_SIZE, 780 0 /* free_space */ ); 781 782 if (cpu_key_k_offset(&key) == 1) { 783 /* we are going to add 'block'-th block to the file. Use 784 allocated block for that */ 785 unp = cpu_to_le32(allocated_block_nr); 786 set_block_dev_mapped(bh_result, 787 allocated_block_nr, inode); 788 set_buffer_new(bh_result); 789 done = 1; 790 } 791 tmp_key = key; // ;) 792 set_cpu_key_k_offset(&tmp_key, 1); 793 PATH_LAST_POSITION(&path)++; 794 795 retval = 796 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih, 797 inode, (char *)&unp); 798 if (retval) { 799 reiserfs_free_block(th, inode, 800 allocated_block_nr, 1); 801 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST 802 } 803 //mark_tail_converted (inode); 804 } else if (is_direct_le_ih(ih)) { 805 /* direct item has to be converted */ 806 loff_t tail_offset; 807 808 tail_offset = 809 ((le_ih_k_offset(ih) - 810 1) & ~(inode->i_sb->s_blocksize - 1)) + 1; 811 if (tail_offset == cpu_key_k_offset(&key)) { 812 /* direct item we just found fits into block we have 813 to map. Convert it into unformatted node: use 814 bh_result for the conversion */ 815 set_block_dev_mapped(bh_result, 816 allocated_block_nr, inode); 817 unbh = bh_result; 818 done = 1; 819 } else { 820 /* we have to padd file tail stored in direct item(s) 821 up to block size and convert it to unformatted 822 node. FIXME: this should also get into page cache */ 823 824 pathrelse(&path); 825 /* 826 * ugly, but we can only end the transaction if 827 * we aren't nested 828 */ 829 BUG_ON(!th->t_refcount); 830 if (th->t_refcount == 1) { 831 retval = 832 reiserfs_end_persistent_transaction 833 (th); 834 th = NULL; 835 if (retval) 836 goto failure; 837 } 838 839 retval = 840 convert_tail_for_hole(inode, bh_result, 841 tail_offset); 842 if (retval) { 843 if (retval != -ENOSPC) 844 reiserfs_error(inode->i_sb, 845 "clm-6004", 846 "convert tail failed " 847 "inode %lu, error %d", 848 inode->i_ino, 849 retval); 850 if (allocated_block_nr) { 851 /* the bitmap, the super, and the stat data == 3 */ 852 if (!th) 853 th = reiserfs_persistent_transaction(inode->i_sb, 3); 854 if (th) 855 reiserfs_free_block(th, 856 inode, 857 allocated_block_nr, 858 1); 859 } 860 goto failure; 861 } 862 goto research; 863 } 864 retval = 865 direct2indirect(th, inode, &path, unbh, 866 tail_offset); 867 if (retval) { 868 reiserfs_unmap_buffer(unbh); 869 reiserfs_free_block(th, inode, 870 allocated_block_nr, 1); 871 goto failure; 872 } 873 /* it is important the set_buffer_uptodate is done after 874 ** the direct2indirect. The buffer might contain valid 875 ** data newer than the data on disk (read by readpage, changed, 876 ** and then sent here by writepage). direct2indirect needs 877 ** to know if unbh was already up to date, so it can decide 878 ** if the data in unbh needs to be replaced with data from 879 ** the disk 880 */ 881 set_buffer_uptodate(unbh); 882 883 /* unbh->b_page == NULL in case of DIRECT_IO request, this means 884 buffer will disappear shortly, so it should not be added to 885 */ 886 if (unbh->b_page) { 887 /* we've converted the tail, so we must 888 ** flush unbh before the transaction commits 889 */ 890 reiserfs_add_tail_list(inode, unbh); 891 892 /* mark it dirty now to prevent commit_write from adding 893 ** this buffer to the inode's dirty buffer list 894 */ 895 /* 896 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty(). 897 * It's still atomic, but it sets the page dirty too, 898 * which makes it eligible for writeback at any time by the 899 * VM (which was also the case with __mark_buffer_dirty()) 900 */ 901 mark_buffer_dirty(unbh); 902 } 903 } else { 904 /* append indirect item with holes if needed, when appending 905 pointer to 'block'-th block use block, which is already 906 allocated */ 907 struct cpu_key tmp_key; 908 unp_t unf_single = 0; // We use this in case we need to allocate only 909 // one block which is a fastpath 910 unp_t *un; 911 __u64 max_to_insert = 912 MAX_ITEM_LEN(inode->i_sb->s_blocksize) / 913 UNFM_P_SIZE; 914 __u64 blocks_needed; 915 916 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE, 917 "vs-804: invalid position for append"); 918 /* indirect item has to be appended, set up key of that position */ 919 make_cpu_key(&tmp_key, inode, 920 le_key_k_offset(version, 921 &(ih->ih_key)) + 922 op_bytes_number(ih, 923 inode->i_sb->s_blocksize), 924 //pos_in_item * inode->i_sb->s_blocksize, 925 TYPE_INDIRECT, 3); // key type is unimportant 926 927 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key), 928 "green-805: invalid offset"); 929 blocks_needed = 930 1 + 931 ((cpu_key_k_offset(&key) - 932 cpu_key_k_offset(&tmp_key)) >> inode->i_sb-> 933 s_blocksize_bits); 934 935 if (blocks_needed == 1) { 936 un = &unf_single; 937 } else { 938 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_ATOMIC); // We need to avoid scheduling. 939 if (!un) { 940 un = &unf_single; 941 blocks_needed = 1; 942 max_to_insert = 0; 943 } 944 } 945 if (blocks_needed <= max_to_insert) { 946 /* we are going to add target block to the file. Use allocated 947 block for that */ 948 un[blocks_needed - 1] = 949 cpu_to_le32(allocated_block_nr); 950 set_block_dev_mapped(bh_result, 951 allocated_block_nr, inode); 952 set_buffer_new(bh_result); 953 done = 1; 954 } else { 955 /* paste hole to the indirect item */ 956 /* If kmalloc failed, max_to_insert becomes zero and it means we 957 only have space for one block */ 958 blocks_needed = 959 max_to_insert ? max_to_insert : 1; 960 } 961 retval = 962 reiserfs_paste_into_item(th, &path, &tmp_key, inode, 963 (char *)un, 964 UNFM_P_SIZE * 965 blocks_needed); 966 967 if (blocks_needed != 1) 968 kfree(un); 969 970 if (retval) { 971 reiserfs_free_block(th, inode, 972 allocated_block_nr, 1); 973 goto failure; 974 } 975 if (!done) { 976 /* We need to mark new file size in case this function will be 977 interrupted/aborted later on. And we may do this only for 978 holes. */ 979 inode->i_size += 980 inode->i_sb->s_blocksize * blocks_needed; 981 } 982 } 983 984 if (done == 1) 985 break; 986 987 /* this loop could log more blocks than we had originally asked 988 ** for. So, we have to allow the transaction to end if it is 989 ** too big or too full. Update the inode so things are 990 ** consistent if we crash before the function returns 991 ** 992 ** release the path so that anybody waiting on the path before 993 ** ending their transaction will be able to continue. 994 */ 995 if (journal_transaction_should_end(th, th->t_blocks_allocated)) { 996 retval = restart_transaction(th, inode, &path); 997 if (retval) 998 goto failure; 999 } 1000 /* inserting indirect pointers for a hole can take a 1001 ** long time. reschedule if needed 1002 */ 1003 cond_resched(); 1004 1005 retval = search_for_position_by_key(inode->i_sb, &key, &path); 1006 if (retval == IO_ERROR) { 1007 retval = -EIO; 1008 goto failure; 1009 } 1010 if (retval == POSITION_FOUND) { 1011 reiserfs_warning(inode->i_sb, "vs-825", 1012 "%K should not be found", &key); 1013 retval = -EEXIST; 1014 if (allocated_block_nr) 1015 reiserfs_free_block(th, inode, 1016 allocated_block_nr, 1); 1017 pathrelse(&path); 1018 goto failure; 1019 } 1020 bh = get_last_bh(&path); 1021 ih = get_ih(&path); 1022 item = get_item(&path); 1023 pos_in_item = path.pos_in_item; 1024 } while (1); 1025 1026 retval = 0; 1027 1028 failure: 1029 if (th && (!dangle || (retval && !th->t_trans_id))) { 1030 int err; 1031 if (th->t_trans_id) 1032 reiserfs_update_sd(th, inode); 1033 err = reiserfs_end_persistent_transaction(th); 1034 if (err) 1035 retval = err; 1036 } 1037 1038 reiserfs_write_unlock(inode->i_sb); 1039 reiserfs_check_path(&path); 1040 return retval; 1041} 1042 1043static int 1044reiserfs_readpages(struct file *file, struct address_space *mapping, 1045 struct list_head *pages, unsigned nr_pages) 1046{ 1047 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block); 1048} 1049 1050/* Compute real number of used bytes by file 1051 * Following three functions can go away when we'll have enough space in stat item 1052 */ 1053static int real_space_diff(struct inode *inode, int sd_size) 1054{ 1055 int bytes; 1056 loff_t blocksize = inode->i_sb->s_blocksize; 1057 1058 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) 1059 return sd_size; 1060 1061 /* End of file is also in full block with indirect reference, so round 1062 ** up to the next block. 1063 ** 1064 ** there is just no way to know if the tail is actually packed 1065 ** on the file, so we have to assume it isn't. When we pack the 1066 ** tail, we add 4 bytes to pretend there really is an unformatted 1067 ** node pointer 1068 */ 1069 bytes = 1070 ((inode->i_size + 1071 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE + 1072 sd_size; 1073 return bytes; 1074} 1075 1076static inline loff_t to_real_used_space(struct inode *inode, ulong blocks, 1077 int sd_size) 1078{ 1079 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1080 return inode->i_size + 1081 (loff_t) (real_space_diff(inode, sd_size)); 1082 } 1083 return ((loff_t) real_space_diff(inode, sd_size)) + 1084 (((loff_t) blocks) << 9); 1085} 1086 1087/* Compute number of blocks used by file in ReiserFS counting */ 1088static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size) 1089{ 1090 loff_t bytes = inode_get_bytes(inode); 1091 loff_t real_space = real_space_diff(inode, sd_size); 1092 1093 /* keeps fsck and non-quota versions of reiserfs happy */ 1094 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1095 bytes += (loff_t) 511; 1096 } 1097 1098 /* files from before the quota patch might i_blocks such that 1099 ** bytes < real_space. Deal with that here to prevent it from 1100 ** going negative. 1101 */ 1102 if (bytes < real_space) 1103 return 0; 1104 return (bytes - real_space) >> 9; 1105} 1106 1107// 1108// BAD: new directories have stat data of new type and all other items 1109// of old type. Version stored in the inode says about body items, so 1110// in update_stat_data we can not rely on inode, but have to check 1111// item version directly 1112// 1113 1114// called by read_locked_inode 1115static void init_inode(struct inode *inode, struct treepath *path) 1116{ 1117 struct buffer_head *bh; 1118 struct item_head *ih; 1119 __u32 rdev; 1120 //int version = ITEM_VERSION_1; 1121 1122 bh = PATH_PLAST_BUFFER(path); 1123 ih = PATH_PITEM_HEAD(path); 1124 1125 copy_key(INODE_PKEY(inode), &(ih->ih_key)); 1126 1127 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list)); 1128 REISERFS_I(inode)->i_flags = 0; 1129 REISERFS_I(inode)->i_prealloc_block = 0; 1130 REISERFS_I(inode)->i_prealloc_count = 0; 1131 REISERFS_I(inode)->i_trans_id = 0; 1132 REISERFS_I(inode)->i_jl = NULL; 1133 mutex_init(&(REISERFS_I(inode)->i_mmap)); 1134 reiserfs_init_acl_access(inode); 1135 reiserfs_init_acl_default(inode); 1136 reiserfs_init_xattr_rwsem(inode); 1137 1138 if (stat_data_v1(ih)) { 1139 struct stat_data_v1 *sd = 1140 (struct stat_data_v1 *)B_I_PITEM(bh, ih); 1141 unsigned long blocks; 1142 1143 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1144 set_inode_sd_version(inode, STAT_DATA_V1); 1145 inode->i_mode = sd_v1_mode(sd); 1146 inode->i_nlink = sd_v1_nlink(sd); 1147 inode->i_uid = sd_v1_uid(sd); 1148 inode->i_gid = sd_v1_gid(sd); 1149 inode->i_size = sd_v1_size(sd); 1150 inode->i_atime.tv_sec = sd_v1_atime(sd); 1151 inode->i_mtime.tv_sec = sd_v1_mtime(sd); 1152 inode->i_ctime.tv_sec = sd_v1_ctime(sd); 1153 inode->i_atime.tv_nsec = 0; 1154 inode->i_ctime.tv_nsec = 0; 1155 inode->i_mtime.tv_nsec = 0; 1156 1157 inode->i_blocks = sd_v1_blocks(sd); 1158 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1159 blocks = (inode->i_size + 511) >> 9; 1160 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9); 1161 if (inode->i_blocks > blocks) { 1162 // there was a bug in <=3.5.23 when i_blocks could take negative 1163 // values. Starting from 3.5.17 this value could even be stored in 1164 // stat data. For such files we set i_blocks based on file 1165 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be 1166 // only updated if file's inode will ever change 1167 inode->i_blocks = blocks; 1168 } 1169 1170 rdev = sd_v1_rdev(sd); 1171 REISERFS_I(inode)->i_first_direct_byte = 1172 sd_v1_first_direct_byte(sd); 1173 /* an early bug in the quota code can give us an odd number for the 1174 ** block count. This is incorrect, fix it here. 1175 */ 1176 if (inode->i_blocks & 1) { 1177 inode->i_blocks++; 1178 } 1179 inode_set_bytes(inode, 1180 to_real_used_space(inode, inode->i_blocks, 1181 SD_V1_SIZE)); 1182 /* nopack is initially zero for v1 objects. For v2 objects, 1183 nopack is initialised from sd_attrs */ 1184 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 1185 } else { 1186 // new stat data found, but object may have old items 1187 // (directories and symlinks) 1188 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih); 1189 1190 inode->i_mode = sd_v2_mode(sd); 1191 inode->i_nlink = sd_v2_nlink(sd); 1192 inode->i_uid = sd_v2_uid(sd); 1193 inode->i_size = sd_v2_size(sd); 1194 inode->i_gid = sd_v2_gid(sd); 1195 inode->i_mtime.tv_sec = sd_v2_mtime(sd); 1196 inode->i_atime.tv_sec = sd_v2_atime(sd); 1197 inode->i_ctime.tv_sec = sd_v2_ctime(sd); 1198 inode->i_ctime.tv_nsec = 0; 1199 inode->i_mtime.tv_nsec = 0; 1200 inode->i_atime.tv_nsec = 0; 1201 inode->i_blocks = sd_v2_blocks(sd); 1202 rdev = sd_v2_rdev(sd); 1203 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1204 inode->i_generation = 1205 le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1206 else 1207 inode->i_generation = sd_v2_generation(sd); 1208 1209 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1210 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1211 else 1212 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1213 REISERFS_I(inode)->i_first_direct_byte = 0; 1214 set_inode_sd_version(inode, STAT_DATA_V2); 1215 inode_set_bytes(inode, 1216 to_real_used_space(inode, inode->i_blocks, 1217 SD_V2_SIZE)); 1218 /* read persistent inode attributes from sd and initalise 1219 generic inode flags from them */ 1220 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd); 1221 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode); 1222 } 1223 1224 pathrelse(path); 1225 if (S_ISREG(inode->i_mode)) { 1226 inode->i_op = &reiserfs_file_inode_operations; 1227 inode->i_fop = &reiserfs_file_operations; 1228 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1229 } else if (S_ISDIR(inode->i_mode)) { 1230 inode->i_op = &reiserfs_dir_inode_operations; 1231 inode->i_fop = &reiserfs_dir_operations; 1232 } else if (S_ISLNK(inode->i_mode)) { 1233 inode->i_op = &reiserfs_symlink_inode_operations; 1234 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1235 } else { 1236 inode->i_blocks = 0; 1237 inode->i_op = &reiserfs_special_inode_operations; 1238 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev)); 1239 } 1240} 1241 1242// update new stat data with inode fields 1243static void inode2sd(void *sd, struct inode *inode, loff_t size) 1244{ 1245 struct stat_data *sd_v2 = (struct stat_data *)sd; 1246 __u16 flags; 1247 1248 set_sd_v2_mode(sd_v2, inode->i_mode); 1249 set_sd_v2_nlink(sd_v2, inode->i_nlink); 1250 set_sd_v2_uid(sd_v2, inode->i_uid); 1251 set_sd_v2_size(sd_v2, size); 1252 set_sd_v2_gid(sd_v2, inode->i_gid); 1253 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec); 1254 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec); 1255 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec); 1256 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE)); 1257 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1258 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev)); 1259 else 1260 set_sd_v2_generation(sd_v2, inode->i_generation); 1261 flags = REISERFS_I(inode)->i_attrs; 1262 i_attrs_to_sd_attrs(inode, &flags); 1263 set_sd_v2_attrs(sd_v2, flags); 1264} 1265 1266// used to copy inode's fields to old stat data 1267static void inode2sd_v1(void *sd, struct inode *inode, loff_t size) 1268{ 1269 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd; 1270 1271 set_sd_v1_mode(sd_v1, inode->i_mode); 1272 set_sd_v1_uid(sd_v1, inode->i_uid); 1273 set_sd_v1_gid(sd_v1, inode->i_gid); 1274 set_sd_v1_nlink(sd_v1, inode->i_nlink); 1275 set_sd_v1_size(sd_v1, size); 1276 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec); 1277 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec); 1278 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec); 1279 1280 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1281 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev)); 1282 else 1283 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE)); 1284 1285 // Sigh. i_first_direct_byte is back 1286 set_sd_v1_first_direct_byte(sd_v1, 1287 REISERFS_I(inode)->i_first_direct_byte); 1288} 1289 1290/* NOTE, you must prepare the buffer head before sending it here, 1291** and then log it after the call 1292*/ 1293static void update_stat_data(struct treepath *path, struct inode *inode, 1294 loff_t size) 1295{ 1296 struct buffer_head *bh; 1297 struct item_head *ih; 1298 1299 bh = PATH_PLAST_BUFFER(path); 1300 ih = PATH_PITEM_HEAD(path); 1301 1302 if (!is_statdata_le_ih(ih)) 1303 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h", 1304 INODE_PKEY(inode), ih); 1305 1306 if (stat_data_v1(ih)) { 1307 // path points to old stat data 1308 inode2sd_v1(B_I_PITEM(bh, ih), inode, size); 1309 } else { 1310 inode2sd(B_I_PITEM(bh, ih), inode, size); 1311 } 1312 1313 return; 1314} 1315 1316void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 1317 struct inode *inode, loff_t size) 1318{ 1319 struct cpu_key key; 1320 INITIALIZE_PATH(path); 1321 struct buffer_head *bh; 1322 int fs_gen; 1323 struct item_head *ih, tmp_ih; 1324 int retval; 1325 1326 BUG_ON(!th->t_trans_id); 1327 1328 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant 1329 1330 for (;;) { 1331 int pos; 1332 /* look for the object's stat data */ 1333 retval = search_item(inode->i_sb, &key, &path); 1334 if (retval == IO_ERROR) { 1335 reiserfs_error(inode->i_sb, "vs-13050", 1336 "i/o failure occurred trying to " 1337 "update %K stat data", &key); 1338 return; 1339 } 1340 if (retval == ITEM_NOT_FOUND) { 1341 pos = PATH_LAST_POSITION(&path); 1342 pathrelse(&path); 1343 if (inode->i_nlink == 0) { 1344 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */ 1345 return; 1346 } 1347 reiserfs_warning(inode->i_sb, "vs-13060", 1348 "stat data of object %k (nlink == %d) " 1349 "not found (pos %d)", 1350 INODE_PKEY(inode), inode->i_nlink, 1351 pos); 1352 reiserfs_check_path(&path); 1353 return; 1354 } 1355 1356 /* sigh, prepare_for_journal might schedule. When it schedules the 1357 ** FS might change. We have to detect that, and loop back to the 1358 ** search if the stat data item has moved 1359 */ 1360 bh = get_last_bh(&path); 1361 ih = get_ih(&path); 1362 copy_item_head(&tmp_ih, ih); 1363 fs_gen = get_generation(inode->i_sb); 1364 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 1365 if (fs_changed(fs_gen, inode->i_sb) 1366 && item_moved(&tmp_ih, &path)) { 1367 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 1368 continue; /* Stat_data item has been moved after scheduling. */ 1369 } 1370 break; 1371 } 1372 update_stat_data(&path, inode, size); 1373 journal_mark_dirty(th, th->t_super, bh); 1374 pathrelse(&path); 1375 return; 1376} 1377 1378/* reiserfs_read_locked_inode is called to read the inode off disk, and it 1379** does a make_bad_inode when things go wrong. But, we need to make sure 1380** and clear the key in the private portion of the inode, otherwise a 1381** corresponding iput might try to delete whatever object the inode last 1382** represented. 1383*/ 1384static void reiserfs_make_bad_inode(struct inode *inode) 1385{ 1386 memset(INODE_PKEY(inode), 0, KEY_SIZE); 1387 make_bad_inode(inode); 1388} 1389 1390// 1391// initially this function was derived from minix or ext2's analog and 1392// evolved as the prototype did 1393// 1394 1395int reiserfs_init_locked_inode(struct inode *inode, void *p) 1396{ 1397 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p; 1398 inode->i_ino = args->objectid; 1399 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid); 1400 return 0; 1401} 1402 1403/* looks for stat data in the tree, and fills up the fields of in-core 1404 inode stat data fields */ 1405void reiserfs_read_locked_inode(struct inode *inode, 1406 struct reiserfs_iget_args *args) 1407{ 1408 INITIALIZE_PATH(path_to_sd); 1409 struct cpu_key key; 1410 unsigned long dirino; 1411 int retval; 1412 1413 dirino = args->dirid; 1414 1415 /* set version 1, version 2 could be used too, because stat data 1416 key is the same in both versions */ 1417 key.version = KEY_FORMAT_3_5; 1418 key.on_disk_key.k_dir_id = dirino; 1419 key.on_disk_key.k_objectid = inode->i_ino; 1420 key.on_disk_key.k_offset = 0; 1421 key.on_disk_key.k_type = 0; 1422 1423 /* look for the object's stat data */ 1424 retval = search_item(inode->i_sb, &key, &path_to_sd); 1425 if (retval == IO_ERROR) { 1426 reiserfs_error(inode->i_sb, "vs-13070", 1427 "i/o failure occurred trying to find " 1428 "stat data of %K", &key); 1429 reiserfs_make_bad_inode(inode); 1430 return; 1431 } 1432 if (retval != ITEM_FOUND) { 1433 /* a stale NFS handle can trigger this without it being an error */ 1434 pathrelse(&path_to_sd); 1435 reiserfs_make_bad_inode(inode); 1436 inode->i_nlink = 0; 1437 return; 1438 } 1439 1440 init_inode(inode, &path_to_sd); 1441 1442 /* It is possible that knfsd is trying to access inode of a file 1443 that is being removed from the disk by some other thread. As we 1444 update sd on unlink all that is required is to check for nlink 1445 here. This bug was first found by Sizif when debugging 1446 SquidNG/Butterfly, forgotten, and found again after Philippe 1447 Gramoulle <philippe.gramoulle@mmania.com> reproduced it. 1448 1449 More logical fix would require changes in fs/inode.c:iput() to 1450 remove inode from hash-table _after_ fs cleaned disk stuff up and 1451 in iget() to return NULL if I_FREEING inode is found in 1452 hash-table. */ 1453 /* Currently there is one place where it's ok to meet inode with 1454 nlink==0: processing of open-unlinked and half-truncated files 1455 during mount (fs/reiserfs/super.c:finish_unfinished()). */ 1456 if ((inode->i_nlink == 0) && 1457 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) { 1458 reiserfs_warning(inode->i_sb, "vs-13075", 1459 "dead inode read from disk %K. " 1460 "This is likely to be race with knfsd. Ignore", 1461 &key); 1462 reiserfs_make_bad_inode(inode); 1463 } 1464 1465 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */ 1466 1467} 1468 1469/** 1470 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked(). 1471 * 1472 * @inode: inode from hash table to check 1473 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args. 1474 * 1475 * This function is called by iget5_locked() to distinguish reiserfs inodes 1476 * having the same inode numbers. Such inodes can only exist due to some 1477 * error condition. One of them should be bad. Inodes with identical 1478 * inode numbers (objectids) are distinguished by parent directory ids. 1479 * 1480 */ 1481int reiserfs_find_actor(struct inode *inode, void *opaque) 1482{ 1483 struct reiserfs_iget_args *args; 1484 1485 args = opaque; 1486 /* args is already in CPU order */ 1487 return (inode->i_ino == args->objectid) && 1488 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid); 1489} 1490 1491struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key) 1492{ 1493 struct inode *inode; 1494 struct reiserfs_iget_args args; 1495 1496 args.objectid = key->on_disk_key.k_objectid; 1497 args.dirid = key->on_disk_key.k_dir_id; 1498 inode = iget5_locked(s, key->on_disk_key.k_objectid, 1499 reiserfs_find_actor, reiserfs_init_locked_inode, 1500 (void *)(&args)); 1501 if (!inode) 1502 return ERR_PTR(-ENOMEM); 1503 1504 if (inode->i_state & I_NEW) { 1505 reiserfs_read_locked_inode(inode, &args); 1506 unlock_new_inode(inode); 1507 } 1508 1509 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) { 1510 /* either due to i/o error or a stale NFS handle */ 1511 iput(inode); 1512 inode = NULL; 1513 } 1514 return inode; 1515} 1516 1517static struct dentry *reiserfs_get_dentry(struct super_block *sb, 1518 u32 objectid, u32 dir_id, u32 generation) 1519 1520{ 1521 struct cpu_key key; 1522 struct inode *inode; 1523 1524 key.on_disk_key.k_objectid = objectid; 1525 key.on_disk_key.k_dir_id = dir_id; 1526 reiserfs_write_lock(sb); 1527 inode = reiserfs_iget(sb, &key); 1528 if (inode && !IS_ERR(inode) && generation != 0 && 1529 generation != inode->i_generation) { 1530 iput(inode); 1531 inode = NULL; 1532 } 1533 reiserfs_write_unlock(sb); 1534 1535 return d_obtain_alias(inode); 1536} 1537 1538struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1539 int fh_len, int fh_type) 1540{ 1541 /* fhtype happens to reflect the number of u32s encoded. 1542 * due to a bug in earlier code, fhtype might indicate there 1543 * are more u32s then actually fitted. 1544 * so if fhtype seems to be more than len, reduce fhtype. 1545 * Valid types are: 1546 * 2 - objectid + dir_id - legacy support 1547 * 3 - objectid + dir_id + generation 1548 * 4 - objectid + dir_id + objectid and dirid of parent - legacy 1549 * 5 - objectid + dir_id + generation + objectid and dirid of parent 1550 * 6 - as above plus generation of directory 1551 * 6 does not fit in NFSv2 handles 1552 */ 1553 if (fh_type > fh_len) { 1554 if (fh_type != 6 || fh_len != 5) 1555 reiserfs_warning(sb, "reiserfs-13077", 1556 "nfsd/reiserfs, fhtype=%d, len=%d - odd", 1557 fh_type, fh_len); 1558 fh_type = 5; 1559 } 1560 1561 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1], 1562 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0); 1563} 1564 1565struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, 1566 int fh_len, int fh_type) 1567{ 1568 if (fh_type < 4) 1569 return NULL; 1570 1571 return reiserfs_get_dentry(sb, 1572 (fh_type >= 5) ? fid->raw[3] : fid->raw[2], 1573 (fh_type >= 5) ? fid->raw[4] : fid->raw[3], 1574 (fh_type == 6) ? fid->raw[5] : 0); 1575} 1576 1577int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp, 1578 int need_parent) 1579{ 1580 struct inode *inode = dentry->d_inode; 1581 int maxlen = *lenp; 1582 1583 if (maxlen < 3) 1584 return 255; 1585 1586 data[0] = inode->i_ino; 1587 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1588 data[2] = inode->i_generation; 1589 *lenp = 3; 1590 /* no room for directory info? return what we've stored so far */ 1591 if (maxlen < 5 || !need_parent) 1592 return 3; 1593 1594 spin_lock(&dentry->d_lock); 1595 inode = dentry->d_parent->d_inode; 1596 data[3] = inode->i_ino; 1597 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1598 *lenp = 5; 1599 if (maxlen >= 6) { 1600 data[5] = inode->i_generation; 1601 *lenp = 6; 1602 } 1603 spin_unlock(&dentry->d_lock); 1604 return *lenp; 1605} 1606 1607/* looks for stat data, then copies fields to it, marks the buffer 1608 containing stat data as dirty */ 1609/* reiserfs inodes are never really dirty, since the dirty inode call 1610** always logs them. This call allows the VFS inode marking routines 1611** to properly mark inodes for datasync and such, but only actually 1612** does something when called for a synchronous update. 1613*/ 1614int reiserfs_write_inode(struct inode *inode, int do_sync) 1615{ 1616 struct reiserfs_transaction_handle th; 1617 int jbegin_count = 1; 1618 1619 if (inode->i_sb->s_flags & MS_RDONLY) 1620 return -EROFS; 1621 /* memory pressure can sometimes initiate write_inode calls with sync == 1, 1622 ** these cases are just when the system needs ram, not when the 1623 ** inode needs to reach disk for safety, and they can safely be 1624 ** ignored because the altered inode has already been logged. 1625 */ 1626 if (do_sync && !(current->flags & PF_MEMALLOC)) { 1627 reiserfs_write_lock(inode->i_sb); 1628 if (!journal_begin(&th, inode->i_sb, jbegin_count)) { 1629 reiserfs_update_sd(&th, inode); 1630 journal_end_sync(&th, inode->i_sb, jbegin_count); 1631 } 1632 reiserfs_write_unlock(inode->i_sb); 1633 } 1634 return 0; 1635} 1636 1637/* stat data of new object is inserted already, this inserts the item 1638 containing "." and ".." entries */ 1639static int reiserfs_new_directory(struct reiserfs_transaction_handle *th, 1640 struct inode *inode, 1641 struct item_head *ih, struct treepath *path, 1642 struct inode *dir) 1643{ 1644 struct super_block *sb = th->t_super; 1645 char empty_dir[EMPTY_DIR_SIZE]; 1646 char *body = empty_dir; 1647 struct cpu_key key; 1648 int retval; 1649 1650 BUG_ON(!th->t_trans_id); 1651 1652 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id), 1653 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET, 1654 TYPE_DIRENTRY, 3 /*key length */ ); 1655 1656 /* compose item head for new item. Directories consist of items of 1657 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it 1658 is done by reiserfs_new_inode */ 1659 if (old_format_only(sb)) { 1660 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1661 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2); 1662 1663 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id, 1664 ih->ih_key.k_objectid, 1665 INODE_PKEY(dir)->k_dir_id, 1666 INODE_PKEY(dir)->k_objectid); 1667 } else { 1668 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1669 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2); 1670 1671 make_empty_dir_item(body, ih->ih_key.k_dir_id, 1672 ih->ih_key.k_objectid, 1673 INODE_PKEY(dir)->k_dir_id, 1674 INODE_PKEY(dir)->k_objectid); 1675 } 1676 1677 /* look for place in the tree for new item */ 1678 retval = search_item(sb, &key, path); 1679 if (retval == IO_ERROR) { 1680 reiserfs_error(sb, "vs-13080", 1681 "i/o failure occurred creating new directory"); 1682 return -EIO; 1683 } 1684 if (retval == ITEM_FOUND) { 1685 pathrelse(path); 1686 reiserfs_warning(sb, "vs-13070", 1687 "object with this key exists (%k)", 1688 &(ih->ih_key)); 1689 return -EEXIST; 1690 } 1691 1692 /* insert item, that is empty directory item */ 1693 return reiserfs_insert_item(th, path, &key, ih, inode, body); 1694} 1695 1696/* stat data of object has been inserted, this inserts the item 1697 containing the body of symlink */ 1698static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */ 1699 struct item_head *ih, 1700 struct treepath *path, const char *symname, 1701 int item_len) 1702{ 1703 struct super_block *sb = th->t_super; 1704 struct cpu_key key; 1705 int retval; 1706 1707 BUG_ON(!th->t_trans_id); 1708 1709 _make_cpu_key(&key, KEY_FORMAT_3_5, 1710 le32_to_cpu(ih->ih_key.k_dir_id), 1711 le32_to_cpu(ih->ih_key.k_objectid), 1712 1, TYPE_DIRECT, 3 /*key length */ ); 1713 1714 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len, 1715 0 /*free_space */ ); 1716 1717 /* look for place in the tree for new item */ 1718 retval = search_item(sb, &key, path); 1719 if (retval == IO_ERROR) { 1720 reiserfs_error(sb, "vs-13080", 1721 "i/o failure occurred creating new symlink"); 1722 return -EIO; 1723 } 1724 if (retval == ITEM_FOUND) { 1725 pathrelse(path); 1726 reiserfs_warning(sb, "vs-13080", 1727 "object with this key exists (%k)", 1728 &(ih->ih_key)); 1729 return -EEXIST; 1730 } 1731 1732 /* insert item, that is body of symlink */ 1733 return reiserfs_insert_item(th, path, &key, ih, inode, symname); 1734} 1735 1736/* inserts the stat data into the tree, and then calls 1737 reiserfs_new_directory (to insert ".", ".." item if new object is 1738 directory) or reiserfs_new_symlink (to insert symlink body if new 1739 object is symlink) or nothing (if new object is regular file) 1740 1741 NOTE! uid and gid must already be set in the inode. If we return 1742 non-zero due to an error, we have to drop the quota previously allocated 1743 for the fresh inode. This can only be done outside a transaction, so 1744 if we return non-zero, we also end the transaction. */ 1745int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 1746 struct inode *dir, int mode, const char *symname, 1747 /* 0 for regular, EMTRY_DIR_SIZE for dirs, 1748 strlen (symname) for symlinks) */ 1749 loff_t i_size, struct dentry *dentry, 1750 struct inode *inode, 1751 struct reiserfs_security_handle *security) 1752{ 1753 struct super_block *sb; 1754 struct reiserfs_iget_args args; 1755 INITIALIZE_PATH(path_to_key); 1756 struct cpu_key key; 1757 struct item_head ih; 1758 struct stat_data sd; 1759 int retval; 1760 int err; 1761 1762 BUG_ON(!th->t_trans_id); 1763 1764 if (DQUOT_ALLOC_INODE(inode)) { 1765 err = -EDQUOT; 1766 goto out_end_trans; 1767 } 1768 if (!dir->i_nlink) { 1769 err = -EPERM; 1770 goto out_bad_inode; 1771 } 1772 1773 sb = dir->i_sb; 1774 1775 /* item head of new item */ 1776 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir); 1777 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th)); 1778 if (!ih.ih_key.k_objectid) { 1779 err = -ENOMEM; 1780 goto out_bad_inode; 1781 } 1782 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid); 1783 if (old_format_only(sb)) 1784 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET, 1785 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT); 1786 else 1787 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET, 1788 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT); 1789 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE); 1790 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id); 1791 if (insert_inode_locked4(inode, args.objectid, 1792 reiserfs_find_actor, &args) < 0) { 1793 err = -EINVAL; 1794 goto out_bad_inode; 1795 } 1796 if (old_format_only(sb)) 1797 /* not a perfect generation count, as object ids can be reused, but 1798 ** this is as good as reiserfs can do right now. 1799 ** note that the private part of inode isn't filled in yet, we have 1800 ** to use the directory. 1801 */ 1802 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid); 1803 else 1804#if defined( USE_INODE_GENERATION_COUNTER ) 1805 inode->i_generation = 1806 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation); 1807#else 1808 inode->i_generation = ++event; 1809#endif 1810 1811 /* fill stat data */ 1812 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1); 1813 1814 /* uid and gid must already be set by the caller for quota init */ 1815 1816 /* symlink cannot be immutable or append only, right? */ 1817 if (S_ISLNK(inode->i_mode)) 1818 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND); 1819 1820 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC; 1821 inode->i_size = i_size; 1822 inode->i_blocks = 0; 1823 inode->i_bytes = 0; 1824 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 : 1825 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ; 1826 1827 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list)); 1828 REISERFS_I(inode)->i_flags = 0; 1829 REISERFS_I(inode)->i_prealloc_block = 0; 1830 REISERFS_I(inode)->i_prealloc_count = 0; 1831 REISERFS_I(inode)->i_trans_id = 0; 1832 REISERFS_I(inode)->i_jl = NULL; 1833 REISERFS_I(inode)->i_attrs = 1834 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK; 1835 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode); 1836 mutex_init(&(REISERFS_I(inode)->i_mmap)); 1837 reiserfs_init_acl_access(inode); 1838 reiserfs_init_acl_default(inode); 1839 reiserfs_init_xattr_rwsem(inode); 1840 1841 /* key to search for correct place for new stat data */ 1842 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id), 1843 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET, 1844 TYPE_STAT_DATA, 3 /*key length */ ); 1845 1846 /* find proper place for inserting of stat data */ 1847 retval = search_item(sb, &key, &path_to_key); 1848 if (retval == IO_ERROR) { 1849 err = -EIO; 1850 goto out_bad_inode; 1851 } 1852 if (retval == ITEM_FOUND) { 1853 pathrelse(&path_to_key); 1854 err = -EEXIST; 1855 goto out_bad_inode; 1856 } 1857 if (old_format_only(sb)) { 1858 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) { 1859 pathrelse(&path_to_key); 1860 /* i_uid or i_gid is too big to be stored in stat data v3.5 */ 1861 err = -EINVAL; 1862 goto out_bad_inode; 1863 } 1864 inode2sd_v1(&sd, inode, inode->i_size); 1865 } else { 1866 inode2sd(&sd, inode, inode->i_size); 1867 } 1868 // store in in-core inode the key of stat data and version all 1869 // object items will have (directory items will have old offset 1870 // format, other new objects will consist of new items) 1871 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode)) 1872 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1873 else 1874 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1875 if (old_format_only(sb)) 1876 set_inode_sd_version(inode, STAT_DATA_V1); 1877 else 1878 set_inode_sd_version(inode, STAT_DATA_V2); 1879 1880 /* insert the stat data into the tree */ 1881#ifdef DISPLACE_NEW_PACKING_LOCALITIES 1882 if (REISERFS_I(dir)->new_packing_locality) 1883 th->displace_new_blocks = 1; 1884#endif 1885 retval = 1886 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode, 1887 (char *)(&sd)); 1888 if (retval) { 1889 err = retval; 1890 reiserfs_check_path(&path_to_key); 1891 goto out_bad_inode; 1892 } 1893#ifdef DISPLACE_NEW_PACKING_LOCALITIES 1894 if (!th->displace_new_blocks) 1895 REISERFS_I(dir)->new_packing_locality = 0; 1896#endif 1897 if (S_ISDIR(mode)) { 1898 /* insert item with "." and ".." */ 1899 retval = 1900 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir); 1901 } 1902 1903 if (S_ISLNK(mode)) { 1904 /* insert body of symlink */ 1905 if (!old_format_only(sb)) 1906 i_size = ROUND_UP(i_size); 1907 retval = 1908 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname, 1909 i_size); 1910 } 1911 if (retval) { 1912 err = retval; 1913 reiserfs_check_path(&path_to_key); 1914 journal_end(th, th->t_super, th->t_blocks_allocated); 1915 goto out_inserted_sd; 1916 } 1917 1918 if (reiserfs_posixacl(inode->i_sb)) { 1919 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode); 1920 if (retval) { 1921 err = retval; 1922 reiserfs_check_path(&path_to_key); 1923 journal_end(th, th->t_super, th->t_blocks_allocated); 1924 goto out_inserted_sd; 1925 } 1926 } else if (inode->i_sb->s_flags & MS_POSIXACL) { 1927 reiserfs_warning(inode->i_sb, "jdm-13090", 1928 "ACLs aren't enabled in the fs, " 1929 "but vfs thinks they are!"); 1930 } else if (IS_PRIVATE(dir)) 1931 inode->i_flags |= S_PRIVATE; 1932 1933 if (security->name) { 1934 retval = reiserfs_security_write(th, inode, security); 1935 if (retval) { 1936 err = retval; 1937 reiserfs_check_path(&path_to_key); 1938 retval = journal_end(th, th->t_super, 1939 th->t_blocks_allocated); 1940 if (retval) 1941 err = retval; 1942 goto out_inserted_sd; 1943 } 1944 } 1945 1946 reiserfs_update_sd(th, inode); 1947 reiserfs_check_path(&path_to_key); 1948 1949 return 0; 1950 1951/* it looks like you can easily compress these two goto targets into 1952 * one. Keeping it like this doesn't actually hurt anything, and they 1953 * are place holders for what the quota code actually needs. 1954 */ 1955 out_bad_inode: 1956 /* Invalidate the object, nothing was inserted yet */ 1957 INODE_PKEY(inode)->k_objectid = 0; 1958 1959 /* Quota change must be inside a transaction for journaling */ 1960 DQUOT_FREE_INODE(inode); 1961 1962 out_end_trans: 1963 journal_end(th, th->t_super, th->t_blocks_allocated); 1964 /* Drop can be outside and it needs more credits so it's better to have it outside */ 1965 DQUOT_DROP(inode); 1966 inode->i_flags |= S_NOQUOTA; 1967 make_bad_inode(inode); 1968 1969 out_inserted_sd: 1970 inode->i_nlink = 0; 1971 th->t_trans_id = 0; /* so the caller can't use this handle later */ 1972 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */ 1973 iput(inode); 1974 return err; 1975} 1976 1977/* 1978** finds the tail page in the page cache, 1979** reads the last block in. 1980** 1981** On success, page_result is set to a locked, pinned page, and bh_result 1982** is set to an up to date buffer for the last block in the file. returns 0. 1983** 1984** tail conversion is not done, so bh_result might not be valid for writing 1985** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before 1986** trying to write the block. 1987** 1988** on failure, nonzero is returned, page_result and bh_result are untouched. 1989*/ 1990static int grab_tail_page(struct inode *p_s_inode, 1991 struct page **page_result, 1992 struct buffer_head **bh_result) 1993{ 1994 1995 /* we want the page with the last byte in the file, 1996 ** not the page that will hold the next byte for appending 1997 */ 1998 unsigned long index = (p_s_inode->i_size - 1) >> PAGE_CACHE_SHIFT; 1999 unsigned long pos = 0; 2000 unsigned long start = 0; 2001 unsigned long blocksize = p_s_inode->i_sb->s_blocksize; 2002 unsigned long offset = (p_s_inode->i_size) & (PAGE_CACHE_SIZE - 1); 2003 struct buffer_head *bh; 2004 struct buffer_head *head; 2005 struct page *page; 2006 int error; 2007 2008 /* we know that we are only called with inode->i_size > 0. 2009 ** we also know that a file tail can never be as big as a block 2010 ** If i_size % blocksize == 0, our file is currently block aligned 2011 ** and it won't need converting or zeroing after a truncate. 2012 */ 2013 if ((offset & (blocksize - 1)) == 0) { 2014 return -ENOENT; 2015 } 2016 page = grab_cache_page(p_s_inode->i_mapping, index); 2017 error = -ENOMEM; 2018 if (!page) { 2019 goto out; 2020 } 2021 /* start within the page of the last block in the file */ 2022 start = (offset / blocksize) * blocksize; 2023 2024 error = block_prepare_write(page, start, offset, 2025 reiserfs_get_block_create_0); 2026 if (error) 2027 goto unlock; 2028 2029 head = page_buffers(page); 2030 bh = head; 2031 do { 2032 if (pos >= start) { 2033 break; 2034 } 2035 bh = bh->b_this_page; 2036 pos += blocksize; 2037 } while (bh != head); 2038 2039 if (!buffer_uptodate(bh)) { 2040 /* note, this should never happen, prepare_write should 2041 ** be taking care of this for us. If the buffer isn't up to date, 2042 ** I've screwed up the code to find the buffer, or the code to 2043 ** call prepare_write 2044 */ 2045 reiserfs_error(p_s_inode->i_sb, "clm-6000", 2046 "error reading block %lu", bh->b_blocknr); 2047 error = -EIO; 2048 goto unlock; 2049 } 2050 *bh_result = bh; 2051 *page_result = page; 2052 2053 out: 2054 return error; 2055 2056 unlock: 2057 unlock_page(page); 2058 page_cache_release(page); 2059 return error; 2060} 2061 2062/* 2063** vfs version of truncate file. Must NOT be called with 2064** a transaction already started. 2065** 2066** some code taken from block_truncate_page 2067*/ 2068int reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps) 2069{ 2070 struct reiserfs_transaction_handle th; 2071 /* we want the offset for the first byte after the end of the file */ 2072 unsigned long offset = p_s_inode->i_size & (PAGE_CACHE_SIZE - 1); 2073 unsigned blocksize = p_s_inode->i_sb->s_blocksize; 2074 unsigned length; 2075 struct page *page = NULL; 2076 int error; 2077 struct buffer_head *bh = NULL; 2078 int err2; 2079 2080 reiserfs_write_lock(p_s_inode->i_sb); 2081 2082 if (p_s_inode->i_size > 0) { 2083 if ((error = grab_tail_page(p_s_inode, &page, &bh))) { 2084 // -ENOENT means we truncated past the end of the file, 2085 // and get_block_create_0 could not find a block to read in, 2086 // which is ok. 2087 if (error != -ENOENT) 2088 reiserfs_error(p_s_inode->i_sb, "clm-6001", 2089 "grab_tail_page failed %d", 2090 error); 2091 page = NULL; 2092 bh = NULL; 2093 } 2094 } 2095 2096 /* so, if page != NULL, we have a buffer head for the offset at 2097 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0, 2098 ** then we have an unformatted node. Otherwise, we have a direct item, 2099 ** and no zeroing is required on disk. We zero after the truncate, 2100 ** because the truncate might pack the item anyway 2101 ** (it will unmap bh if it packs). 2102 */ 2103 /* it is enough to reserve space in transaction for 2 balancings: 2104 one for "save" link adding and another for the first 2105 cut_from_item. 1 is for update_sd */ 2106 error = journal_begin(&th, p_s_inode->i_sb, 2107 JOURNAL_PER_BALANCE_CNT * 2 + 1); 2108 if (error) 2109 goto out; 2110 reiserfs_update_inode_transaction(p_s_inode); 2111 if (update_timestamps) 2112 /* we are doing real truncate: if the system crashes before the last 2113 transaction of truncating gets committed - on reboot the file 2114 either appears truncated properly or not truncated at all */ 2115 add_save_link(&th, p_s_inode, 1); 2116 err2 = reiserfs_do_truncate(&th, p_s_inode, page, update_timestamps); 2117 error = 2118 journal_end(&th, p_s_inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1); 2119 if (error) 2120 goto out; 2121 2122 /* check reiserfs_do_truncate after ending the transaction */ 2123 if (err2) { 2124 error = err2; 2125 goto out; 2126 } 2127 2128 if (update_timestamps) { 2129 error = remove_save_link(p_s_inode, 1 /* truncate */ ); 2130 if (error) 2131 goto out; 2132 } 2133 2134 if (page) { 2135 length = offset & (blocksize - 1); 2136 /* if we are not on a block boundary */ 2137 if (length) { 2138 length = blocksize - length; 2139 zero_user(page, offset, length); 2140 if (buffer_mapped(bh) && bh->b_blocknr != 0) { 2141 mark_buffer_dirty(bh); 2142 } 2143 } 2144 unlock_page(page); 2145 page_cache_release(page); 2146 } 2147 2148 reiserfs_write_unlock(p_s_inode->i_sb); 2149 return 0; 2150 out: 2151 if (page) { 2152 unlock_page(page); 2153 page_cache_release(page); 2154 } 2155 reiserfs_write_unlock(p_s_inode->i_sb); 2156 return error; 2157} 2158 2159static int map_block_for_writepage(struct inode *inode, 2160 struct buffer_head *bh_result, 2161 unsigned long block) 2162{ 2163 struct reiserfs_transaction_handle th; 2164 int fs_gen; 2165 struct item_head tmp_ih; 2166 struct item_head *ih; 2167 struct buffer_head *bh; 2168 __le32 *item; 2169 struct cpu_key key; 2170 INITIALIZE_PATH(path); 2171 int pos_in_item; 2172 int jbegin_count = JOURNAL_PER_BALANCE_CNT; 2173 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1; 2174 int retval; 2175 int use_get_block = 0; 2176 int bytes_copied = 0; 2177 int copy_size; 2178 int trans_running = 0; 2179 2180 /* catch places below that try to log something without starting a trans */ 2181 th.t_trans_id = 0; 2182 2183 if (!buffer_uptodate(bh_result)) { 2184 return -EIO; 2185 } 2186 2187 kmap(bh_result->b_page); 2188 start_over: 2189 reiserfs_write_lock(inode->i_sb); 2190 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3); 2191 2192 research: 2193 retval = search_for_position_by_key(inode->i_sb, &key, &path); 2194 if (retval != POSITION_FOUND) { 2195 use_get_block = 1; 2196 goto out; 2197 } 2198 2199 bh = get_last_bh(&path); 2200 ih = get_ih(&path); 2201 item = get_item(&path); 2202 pos_in_item = path.pos_in_item; 2203 2204 /* we've found an unformatted node */ 2205 if (indirect_item_found(retval, ih)) { 2206 if (bytes_copied > 0) { 2207 reiserfs_warning(inode->i_sb, "clm-6002", 2208 "bytes_copied %d", bytes_copied); 2209 } 2210 if (!get_block_num(item, pos_in_item)) { 2211 /* crap, we are writing to a hole */ 2212 use_get_block = 1; 2213 goto out; 2214 } 2215 set_block_dev_mapped(bh_result, 2216 get_block_num(item, pos_in_item), inode); 2217 } else if (is_direct_le_ih(ih)) { 2218 char *p; 2219 p = page_address(bh_result->b_page); 2220 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1); 2221 copy_size = ih_item_len(ih) - pos_in_item; 2222 2223 fs_gen = get_generation(inode->i_sb); 2224 copy_item_head(&tmp_ih, ih); 2225 2226 if (!trans_running) { 2227 /* vs-3050 is gone, no need to drop the path */ 2228 retval = journal_begin(&th, inode->i_sb, jbegin_count); 2229 if (retval) 2230 goto out; 2231 reiserfs_update_inode_transaction(inode); 2232 trans_running = 1; 2233 if (fs_changed(fs_gen, inode->i_sb) 2234 && item_moved(&tmp_ih, &path)) { 2235 reiserfs_restore_prepared_buffer(inode->i_sb, 2236 bh); 2237 goto research; 2238 } 2239 } 2240 2241 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 2242 2243 if (fs_changed(fs_gen, inode->i_sb) 2244 && item_moved(&tmp_ih, &path)) { 2245 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 2246 goto research; 2247 } 2248 2249 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied, 2250 copy_size); 2251 2252 journal_mark_dirty(&th, inode->i_sb, bh); 2253 bytes_copied += copy_size; 2254 set_block_dev_mapped(bh_result, 0, inode); 2255 2256 /* are there still bytes left? */ 2257 if (bytes_copied < bh_result->b_size && 2258 (byte_offset + bytes_copied) < inode->i_size) { 2259 set_cpu_key_k_offset(&key, 2260 cpu_key_k_offset(&key) + 2261 copy_size); 2262 goto research; 2263 } 2264 } else { 2265 reiserfs_warning(inode->i_sb, "clm-6003", 2266 "bad item inode %lu", inode->i_ino); 2267 retval = -EIO; 2268 goto out; 2269 } 2270 retval = 0; 2271 2272 out: 2273 pathrelse(&path); 2274 if (trans_running) { 2275 int err = journal_end(&th, inode->i_sb, jbegin_count); 2276 if (err) 2277 retval = err; 2278 trans_running = 0; 2279 } 2280 reiserfs_write_unlock(inode->i_sb); 2281 2282 /* this is where we fill in holes in the file. */ 2283 if (use_get_block) { 2284 retval = reiserfs_get_block(inode, block, bh_result, 2285 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX 2286 | GET_BLOCK_NO_DANGLE); 2287 if (!retval) { 2288 if (!buffer_mapped(bh_result) 2289 || bh_result->b_blocknr == 0) { 2290 /* get_block failed to find a mapped unformatted node. */ 2291 use_get_block = 0; 2292 goto start_over; 2293 } 2294 } 2295 } 2296 kunmap(bh_result->b_page); 2297 2298 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 2299 /* we've copied data from the page into the direct item, so the 2300 * buffer in the page is now clean, mark it to reflect that. 2301 */ 2302 lock_buffer(bh_result); 2303 clear_buffer_dirty(bh_result); 2304 unlock_buffer(bh_result); 2305 } 2306 return retval; 2307} 2308 2309/* 2310 * mason@suse.com: updated in 2.5.54 to follow the same general io 2311 * start/recovery path as __block_write_full_page, along with special 2312 * code to handle reiserfs tails. 2313 */ 2314static int reiserfs_write_full_page(struct page *page, 2315 struct writeback_control *wbc) 2316{ 2317 struct inode *inode = page->mapping->host; 2318 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT; 2319 int error = 0; 2320 unsigned long block; 2321 sector_t last_block; 2322 struct buffer_head *head, *bh; 2323 int partial = 0; 2324 int nr = 0; 2325 int checked = PageChecked(page); 2326 struct reiserfs_transaction_handle th; 2327 struct super_block *s = inode->i_sb; 2328 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize; 2329 th.t_trans_id = 0; 2330 2331 /* no logging allowed when nonblocking or from PF_MEMALLOC */ 2332 if (checked && (current->flags & PF_MEMALLOC)) { 2333 redirty_page_for_writepage(wbc, page); 2334 unlock_page(page); 2335 return 0; 2336 } 2337 2338 /* The page dirty bit is cleared before writepage is called, which 2339 * means we have to tell create_empty_buffers to make dirty buffers 2340 * The page really should be up to date at this point, so tossing 2341 * in the BH_Uptodate is just a sanity check. 2342 */ 2343 if (!page_has_buffers(page)) { 2344 create_empty_buffers(page, s->s_blocksize, 2345 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2346 } 2347 head = page_buffers(page); 2348 2349 /* last page in the file, zero out any contents past the 2350 ** last byte in the file 2351 */ 2352 if (page->index >= end_index) { 2353 unsigned last_offset; 2354 2355 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 2356 /* no file contents in this page */ 2357 if (page->index >= end_index + 1 || !last_offset) { 2358 unlock_page(page); 2359 return 0; 2360 } 2361 zero_user_segment(page, last_offset, PAGE_CACHE_SIZE); 2362 } 2363 bh = head; 2364 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits); 2365 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 2366 /* first map all the buffers, logging any direct items we find */ 2367 do { 2368 if (block > last_block) { 2369 /* 2370 * This can happen when the block size is less than 2371 * the page size. The corresponding bytes in the page 2372 * were zero filled above 2373 */ 2374 clear_buffer_dirty(bh); 2375 set_buffer_uptodate(bh); 2376 } else if ((checked || buffer_dirty(bh)) && 2377 (!buffer_mapped(bh) || (buffer_mapped(bh) 2378 && bh->b_blocknr == 2379 0))) { 2380 /* not mapped yet, or it points to a direct item, search 2381 * the btree for the mapping info, and log any direct 2382 * items found 2383 */ 2384 if ((error = map_block_for_writepage(inode, bh, block))) { 2385 goto fail; 2386 } 2387 } 2388 bh = bh->b_this_page; 2389 block++; 2390 } while (bh != head); 2391 2392 /* 2393 * we start the transaction after map_block_for_writepage, 2394 * because it can create holes in the file (an unbounded operation). 2395 * starting it here, we can make a reliable estimate for how many 2396 * blocks we're going to log 2397 */ 2398 if (checked) { 2399 ClearPageChecked(page); 2400 reiserfs_write_lock(s); 2401 error = journal_begin(&th, s, bh_per_page + 1); 2402 if (error) { 2403 reiserfs_write_unlock(s); 2404 goto fail; 2405 } 2406 reiserfs_update_inode_transaction(inode); 2407 } 2408 /* now go through and lock any dirty buffers on the page */ 2409 do { 2410 get_bh(bh); 2411 if (!buffer_mapped(bh)) 2412 continue; 2413 if (buffer_mapped(bh) && bh->b_blocknr == 0) 2414 continue; 2415 2416 if (checked) { 2417 reiserfs_prepare_for_journal(s, bh, 1); 2418 journal_mark_dirty(&th, s, bh); 2419 continue; 2420 } 2421 /* from this point on, we know the buffer is mapped to a 2422 * real block and not a direct item 2423 */ 2424 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 2425 lock_buffer(bh); 2426 } else { 2427 if (!trylock_buffer(bh)) { 2428 redirty_page_for_writepage(wbc, page); 2429 continue; 2430 } 2431 } 2432 if (test_clear_buffer_dirty(bh)) { 2433 mark_buffer_async_write(bh); 2434 } else { 2435 unlock_buffer(bh); 2436 } 2437 } while ((bh = bh->b_this_page) != head); 2438 2439 if (checked) { 2440 error = journal_end(&th, s, bh_per_page + 1); 2441 reiserfs_write_unlock(s); 2442 if (error) 2443 goto fail; 2444 } 2445 BUG_ON(PageWriteback(page)); 2446 set_page_writeback(page); 2447 unlock_page(page); 2448 2449 /* 2450 * since any buffer might be the only dirty buffer on the page, 2451 * the first submit_bh can bring the page out of writeback. 2452 * be careful with the buffers. 2453 */ 2454 do { 2455 struct buffer_head *next = bh->b_this_page; 2456 if (buffer_async_write(bh)) { 2457 submit_bh(WRITE, bh); 2458 nr++; 2459 } 2460 put_bh(bh); 2461 bh = next; 2462 } while (bh != head); 2463 2464 error = 0; 2465 done: 2466 if (nr == 0) { 2467 /* 2468 * if this page only had a direct item, it is very possible for 2469 * no io to be required without there being an error. Or, 2470 * someone else could have locked them and sent them down the 2471 * pipe without locking the page 2472 */ 2473 bh = head; 2474 do { 2475 if (!buffer_uptodate(bh)) { 2476 partial = 1; 2477 break; 2478 } 2479 bh = bh->b_this_page; 2480 } while (bh != head); 2481 if (!partial) 2482 SetPageUptodate(page); 2483 end_page_writeback(page); 2484 } 2485 return error; 2486 2487 fail: 2488 /* catches various errors, we need to make sure any valid dirty blocks 2489 * get to the media. The page is currently locked and not marked for 2490 * writeback 2491 */ 2492 ClearPageUptodate(page); 2493 bh = head; 2494 do { 2495 get_bh(bh); 2496 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) { 2497 lock_buffer(bh); 2498 mark_buffer_async_write(bh); 2499 } else { 2500 /* 2501 * clear any dirty bits that might have come from getting 2502 * attached to a dirty page 2503 */ 2504 clear_buffer_dirty(bh); 2505 } 2506 bh = bh->b_this_page; 2507 } while (bh != head); 2508 SetPageError(page); 2509 BUG_ON(PageWriteback(page)); 2510 set_page_writeback(page); 2511 unlock_page(page); 2512 do { 2513 struct buffer_head *next = bh->b_this_page; 2514 if (buffer_async_write(bh)) { 2515 clear_buffer_dirty(bh); 2516 submit_bh(WRITE, bh); 2517 nr++; 2518 } 2519 put_bh(bh); 2520 bh = next; 2521 } while (bh != head); 2522 goto done; 2523} 2524 2525static int reiserfs_readpage(struct file *f, struct page *page) 2526{ 2527 return block_read_full_page(page, reiserfs_get_block); 2528} 2529 2530static int reiserfs_writepage(struct page *page, struct writeback_control *wbc) 2531{ 2532 struct inode *inode = page->mapping->host; 2533 reiserfs_wait_on_write_block(inode->i_sb); 2534 return reiserfs_write_full_page(page, wbc); 2535} 2536 2537static int reiserfs_write_begin(struct file *file, 2538 struct address_space *mapping, 2539 loff_t pos, unsigned len, unsigned flags, 2540 struct page **pagep, void **fsdata) 2541{ 2542 struct inode *inode; 2543 struct page *page; 2544 pgoff_t index; 2545 int ret; 2546 int old_ref = 0; 2547 2548 inode = mapping->host; 2549 *fsdata = 0; 2550 if (flags & AOP_FLAG_CONT_EXPAND && 2551 (pos & (inode->i_sb->s_blocksize - 1)) == 0) { 2552 pos ++; 2553 *fsdata = (void *)(unsigned long)flags; 2554 } 2555 2556 index = pos >> PAGE_CACHE_SHIFT; 2557 page = grab_cache_page_write_begin(mapping, index, flags); 2558 if (!page) 2559 return -ENOMEM; 2560 *pagep = page; 2561 2562 reiserfs_wait_on_write_block(inode->i_sb); 2563 fix_tail_page_for_writing(page); 2564 if (reiserfs_transaction_running(inode->i_sb)) { 2565 struct reiserfs_transaction_handle *th; 2566 th = (struct reiserfs_transaction_handle *)current-> 2567 journal_info; 2568 BUG_ON(!th->t_refcount); 2569 BUG_ON(!th->t_trans_id); 2570 old_ref = th->t_refcount; 2571 th->t_refcount++; 2572 } 2573 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 2574 reiserfs_get_block); 2575 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2576 struct reiserfs_transaction_handle *th = current->journal_info; 2577 /* this gets a little ugly. If reiserfs_get_block returned an 2578 * error and left a transacstion running, we've got to close it, 2579 * and we've got to free handle if it was a persistent transaction. 2580 * 2581 * But, if we had nested into an existing transaction, we need 2582 * to just drop the ref count on the handle. 2583 * 2584 * If old_ref == 0, the transaction is from reiserfs_get_block, 2585 * and it was a persistent trans. Otherwise, it was nested above. 2586 */ 2587 if (th->t_refcount > old_ref) { 2588 if (old_ref) 2589 th->t_refcount--; 2590 else { 2591 int err; 2592 reiserfs_write_lock(inode->i_sb); 2593 err = reiserfs_end_persistent_transaction(th); 2594 reiserfs_write_unlock(inode->i_sb); 2595 if (err) 2596 ret = err; 2597 } 2598 } 2599 } 2600 if (ret) { 2601 unlock_page(page); 2602 page_cache_release(page); 2603 } 2604 return ret; 2605} 2606 2607int reiserfs_prepare_write(struct file *f, struct page *page, 2608 unsigned from, unsigned to) 2609{ 2610 struct inode *inode = page->mapping->host; 2611 int ret; 2612 int old_ref = 0; 2613 2614 reiserfs_wait_on_write_block(inode->i_sb); 2615 fix_tail_page_for_writing(page); 2616 if (reiserfs_transaction_running(inode->i_sb)) { 2617 struct reiserfs_transaction_handle *th; 2618 th = (struct reiserfs_transaction_handle *)current-> 2619 journal_info; 2620 BUG_ON(!th->t_refcount); 2621 BUG_ON(!th->t_trans_id); 2622 old_ref = th->t_refcount; 2623 th->t_refcount++; 2624 } 2625 2626 ret = block_prepare_write(page, from, to, reiserfs_get_block); 2627 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2628 struct reiserfs_transaction_handle *th = current->journal_info; 2629 /* this gets a little ugly. If reiserfs_get_block returned an 2630 * error and left a transacstion running, we've got to close it, 2631 * and we've got to free handle if it was a persistent transaction. 2632 * 2633 * But, if we had nested into an existing transaction, we need 2634 * to just drop the ref count on the handle. 2635 * 2636 * If old_ref == 0, the transaction is from reiserfs_get_block, 2637 * and it was a persistent trans. Otherwise, it was nested above. 2638 */ 2639 if (th->t_refcount > old_ref) { 2640 if (old_ref) 2641 th->t_refcount--; 2642 else { 2643 int err; 2644 reiserfs_write_lock(inode->i_sb); 2645 err = reiserfs_end_persistent_transaction(th); 2646 reiserfs_write_unlock(inode->i_sb); 2647 if (err) 2648 ret = err; 2649 } 2650 } 2651 } 2652 return ret; 2653 2654} 2655 2656static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block) 2657{ 2658 return generic_block_bmap(as, block, reiserfs_bmap); 2659} 2660 2661static int reiserfs_write_end(struct file *file, struct address_space *mapping, 2662 loff_t pos, unsigned len, unsigned copied, 2663 struct page *page, void *fsdata) 2664{ 2665 struct inode *inode = page->mapping->host; 2666 int ret = 0; 2667 int update_sd = 0; 2668 struct reiserfs_transaction_handle *th; 2669 unsigned start; 2670 2671 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND) 2672 pos ++; 2673 2674 reiserfs_wait_on_write_block(inode->i_sb); 2675 if (reiserfs_transaction_running(inode->i_sb)) 2676 th = current->journal_info; 2677 else 2678 th = NULL; 2679 2680 start = pos & (PAGE_CACHE_SIZE - 1); 2681 if (unlikely(copied < len)) { 2682 if (!PageUptodate(page)) 2683 copied = 0; 2684 2685 page_zero_new_buffers(page, start + copied, start + len); 2686 } 2687 flush_dcache_page(page); 2688 2689 reiserfs_commit_page(inode, page, start, start + copied); 2690 2691 /* generic_commit_write does this for us, but does not update the 2692 ** transaction tracking stuff when the size changes. So, we have 2693 ** to do the i_size updates here. 2694 */ 2695 pos += copied; 2696 if (pos > inode->i_size) { 2697 struct reiserfs_transaction_handle myth; 2698 reiserfs_write_lock(inode->i_sb); 2699 /* If the file have grown beyond the border where it 2700 can have a tail, unmark it as needing a tail 2701 packing */ 2702 if ((have_large_tails(inode->i_sb) 2703 && inode->i_size > i_block_size(inode) * 4) 2704 || (have_small_tails(inode->i_sb) 2705 && inode->i_size > i_block_size(inode))) 2706 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2707 2708 ret = journal_begin(&myth, inode->i_sb, 1); 2709 if (ret) { 2710 reiserfs_write_unlock(inode->i_sb); 2711 goto journal_error; 2712 } 2713 reiserfs_update_inode_transaction(inode); 2714 inode->i_size = pos; 2715 /* 2716 * this will just nest into our transaction. It's important 2717 * to use mark_inode_dirty so the inode gets pushed around on the 2718 * dirty lists, and so that O_SYNC works as expected 2719 */ 2720 mark_inode_dirty(inode); 2721 reiserfs_update_sd(&myth, inode); 2722 update_sd = 1; 2723 ret = journal_end(&myth, inode->i_sb, 1); 2724 reiserfs_write_unlock(inode->i_sb); 2725 if (ret) 2726 goto journal_error; 2727 } 2728 if (th) { 2729 reiserfs_write_lock(inode->i_sb); 2730 if (!update_sd) 2731 mark_inode_dirty(inode); 2732 ret = reiserfs_end_persistent_transaction(th); 2733 reiserfs_write_unlock(inode->i_sb); 2734 if (ret) 2735 goto out; 2736 } 2737 2738 out: 2739 unlock_page(page); 2740 page_cache_release(page); 2741 return ret == 0 ? copied : ret; 2742 2743 journal_error: 2744 if (th) { 2745 reiserfs_write_lock(inode->i_sb); 2746 if (!update_sd) 2747 reiserfs_update_sd(th, inode); 2748 ret = reiserfs_end_persistent_transaction(th); 2749 reiserfs_write_unlock(inode->i_sb); 2750 } 2751 2752 goto out; 2753} 2754 2755int reiserfs_commit_write(struct file *f, struct page *page, 2756 unsigned from, unsigned to) 2757{ 2758 struct inode *inode = page->mapping->host; 2759 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to; 2760 int ret = 0; 2761 int update_sd = 0; 2762 struct reiserfs_transaction_handle *th = NULL; 2763 2764 reiserfs_wait_on_write_block(inode->i_sb); 2765 if (reiserfs_transaction_running(inode->i_sb)) { 2766 th = current->journal_info; 2767 } 2768 reiserfs_commit_page(inode, page, from, to); 2769 2770 /* generic_commit_write does this for us, but does not update the 2771 ** transaction tracking stuff when the size changes. So, we have 2772 ** to do the i_size updates here. 2773 */ 2774 if (pos > inode->i_size) { 2775 struct reiserfs_transaction_handle myth; 2776 reiserfs_write_lock(inode->i_sb); 2777 /* If the file have grown beyond the border where it 2778 can have a tail, unmark it as needing a tail 2779 packing */ 2780 if ((have_large_tails(inode->i_sb) 2781 && inode->i_size > i_block_size(inode) * 4) 2782 || (have_small_tails(inode->i_sb) 2783 && inode->i_size > i_block_size(inode))) 2784 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2785 2786 ret = journal_begin(&myth, inode->i_sb, 1); 2787 if (ret) { 2788 reiserfs_write_unlock(inode->i_sb); 2789 goto journal_error; 2790 } 2791 reiserfs_update_inode_transaction(inode); 2792 inode->i_size = pos; 2793 /* 2794 * this will just nest into our transaction. It's important 2795 * to use mark_inode_dirty so the inode gets pushed around on the 2796 * dirty lists, and so that O_SYNC works as expected 2797 */ 2798 mark_inode_dirty(inode); 2799 reiserfs_update_sd(&myth, inode); 2800 update_sd = 1; 2801 ret = journal_end(&myth, inode->i_sb, 1); 2802 reiserfs_write_unlock(inode->i_sb); 2803 if (ret) 2804 goto journal_error; 2805 } 2806 if (th) { 2807 reiserfs_write_lock(inode->i_sb); 2808 if (!update_sd) 2809 mark_inode_dirty(inode); 2810 ret = reiserfs_end_persistent_transaction(th); 2811 reiserfs_write_unlock(inode->i_sb); 2812 if (ret) 2813 goto out; 2814 } 2815 2816 out: 2817 return ret; 2818 2819 journal_error: 2820 if (th) { 2821 reiserfs_write_lock(inode->i_sb); 2822 if (!update_sd) 2823 reiserfs_update_sd(th, inode); 2824 ret = reiserfs_end_persistent_transaction(th); 2825 reiserfs_write_unlock(inode->i_sb); 2826 } 2827 2828 return ret; 2829} 2830 2831void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode) 2832{ 2833 if (reiserfs_attrs(inode->i_sb)) { 2834 if (sd_attrs & REISERFS_SYNC_FL) 2835 inode->i_flags |= S_SYNC; 2836 else 2837 inode->i_flags &= ~S_SYNC; 2838 if (sd_attrs & REISERFS_IMMUTABLE_FL) 2839 inode->i_flags |= S_IMMUTABLE; 2840 else 2841 inode->i_flags &= ~S_IMMUTABLE; 2842 if (sd_attrs & REISERFS_APPEND_FL) 2843 inode->i_flags |= S_APPEND; 2844 else 2845 inode->i_flags &= ~S_APPEND; 2846 if (sd_attrs & REISERFS_NOATIME_FL) 2847 inode->i_flags |= S_NOATIME; 2848 else 2849 inode->i_flags &= ~S_NOATIME; 2850 if (sd_attrs & REISERFS_NOTAIL_FL) 2851 REISERFS_I(inode)->i_flags |= i_nopack_mask; 2852 else 2853 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 2854 } 2855} 2856 2857void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs) 2858{ 2859 if (reiserfs_attrs(inode->i_sb)) { 2860 if (inode->i_flags & S_IMMUTABLE) 2861 *sd_attrs |= REISERFS_IMMUTABLE_FL; 2862 else 2863 *sd_attrs &= ~REISERFS_IMMUTABLE_FL; 2864 if (inode->i_flags & S_SYNC) 2865 *sd_attrs |= REISERFS_SYNC_FL; 2866 else 2867 *sd_attrs &= ~REISERFS_SYNC_FL; 2868 if (inode->i_flags & S_NOATIME) 2869 *sd_attrs |= REISERFS_NOATIME_FL; 2870 else 2871 *sd_attrs &= ~REISERFS_NOATIME_FL; 2872 if (REISERFS_I(inode)->i_flags & i_nopack_mask) 2873 *sd_attrs |= REISERFS_NOTAIL_FL; 2874 else 2875 *sd_attrs &= ~REISERFS_NOTAIL_FL; 2876 } 2877} 2878 2879/* decide if this buffer needs to stay around for data logging or ordered 2880** write purposes 2881*/ 2882static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh) 2883{ 2884 int ret = 1; 2885 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 2886 2887 lock_buffer(bh); 2888 spin_lock(&j->j_dirty_buffers_lock); 2889 if (!buffer_mapped(bh)) { 2890 goto free_jh; 2891 } 2892 /* the page is locked, and the only places that log a data buffer 2893 * also lock the page. 2894 */ 2895 if (reiserfs_file_data_log(inode)) { 2896 /* 2897 * very conservative, leave the buffer pinned if 2898 * anyone might need it. 2899 */ 2900 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) { 2901 ret = 0; 2902 } 2903 } else if (buffer_dirty(bh)) { 2904 struct reiserfs_journal_list *jl; 2905 struct reiserfs_jh *jh = bh->b_private; 2906 2907 /* why is this safe? 2908 * reiserfs_setattr updates i_size in the on disk 2909 * stat data before allowing vmtruncate to be called. 2910 * 2911 * If buffer was put onto the ordered list for this 2912 * transaction, we know for sure either this transaction 2913 * or an older one already has updated i_size on disk, 2914 * and this ordered data won't be referenced in the file 2915 * if we crash. 2916 * 2917 * if the buffer was put onto the ordered list for an older 2918 * transaction, we need to leave it around 2919 */ 2920 if (jh && (jl = jh->jl) 2921 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl) 2922 ret = 0; 2923 } 2924 free_jh: 2925 if (ret && bh->b_private) { 2926 reiserfs_free_jh(bh); 2927 } 2928 spin_unlock(&j->j_dirty_buffers_lock); 2929 unlock_buffer(bh); 2930 return ret; 2931} 2932 2933/* clm -- taken from fs/buffer.c:block_invalidate_page */ 2934static void reiserfs_invalidatepage(struct page *page, unsigned long offset) 2935{ 2936 struct buffer_head *head, *bh, *next; 2937 struct inode *inode = page->mapping->host; 2938 unsigned int curr_off = 0; 2939 int ret = 1; 2940 2941 BUG_ON(!PageLocked(page)); 2942 2943 if (offset == 0) 2944 ClearPageChecked(page); 2945 2946 if (!page_has_buffers(page)) 2947 goto out; 2948 2949 head = page_buffers(page); 2950 bh = head; 2951 do { 2952 unsigned int next_off = curr_off + bh->b_size; 2953 next = bh->b_this_page; 2954 2955 /* 2956 * is this block fully invalidated? 2957 */ 2958 if (offset <= curr_off) { 2959 if (invalidatepage_can_drop(inode, bh)) 2960 reiserfs_unmap_buffer(bh); 2961 else 2962 ret = 0; 2963 } 2964 curr_off = next_off; 2965 bh = next; 2966 } while (bh != head); 2967 2968 /* 2969 * We release buffers only if the entire page is being invalidated. 2970 * The get_block cached value has been unconditionally invalidated, 2971 * so real IO is not possible anymore. 2972 */ 2973 if (!offset && ret) { 2974 ret = try_to_release_page(page, 0); 2975 /* maybe should BUG_ON(!ret); - neilb */ 2976 } 2977 out: 2978 return; 2979} 2980 2981static int reiserfs_set_page_dirty(struct page *page) 2982{ 2983 struct inode *inode = page->mapping->host; 2984 if (reiserfs_file_data_log(inode)) { 2985 SetPageChecked(page); 2986 return __set_page_dirty_nobuffers(page); 2987 } 2988 return __set_page_dirty_buffers(page); 2989} 2990 2991/* 2992 * Returns 1 if the page's buffers were dropped. The page is locked. 2993 * 2994 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads 2995 * in the buffers at page_buffers(page). 2996 * 2997 * even in -o notail mode, we can't be sure an old mount without -o notail 2998 * didn't create files with tails. 2999 */ 3000static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags) 3001{ 3002 struct inode *inode = page->mapping->host; 3003 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3004 struct buffer_head *head; 3005 struct buffer_head *bh; 3006 int ret = 1; 3007 3008 WARN_ON(PageChecked(page)); 3009 spin_lock(&j->j_dirty_buffers_lock); 3010 head = page_buffers(page); 3011 bh = head; 3012 do { 3013 if (bh->b_private) { 3014 if (!buffer_dirty(bh) && !buffer_locked(bh)) { 3015 reiserfs_free_jh(bh); 3016 } else { 3017 ret = 0; 3018 break; 3019 } 3020 } 3021 bh = bh->b_this_page; 3022 } while (bh != head); 3023 if (ret) 3024 ret = try_to_free_buffers(page); 3025 spin_unlock(&j->j_dirty_buffers_lock); 3026 return ret; 3027} 3028 3029/* We thank Mingming Cao for helping us understand in great detail what 3030 to do in this section of the code. */ 3031static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb, 3032 const struct iovec *iov, loff_t offset, 3033 unsigned long nr_segs) 3034{ 3035 struct file *file = iocb->ki_filp; 3036 struct inode *inode = file->f_mapping->host; 3037 3038 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 3039 offset, nr_segs, 3040 reiserfs_get_blocks_direct_io, NULL); 3041} 3042 3043int reiserfs_setattr(struct dentry *dentry, struct iattr *attr) 3044{ 3045 struct inode *inode = dentry->d_inode; 3046 int error; 3047 unsigned int ia_valid; 3048 3049 /* must be turned off for recursive notify_change calls */ 3050 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID); 3051 3052 reiserfs_write_lock(inode->i_sb); 3053 if (attr->ia_valid & ATTR_SIZE) { 3054 /* version 2 items will be caught by the s_maxbytes check 3055 ** done for us in vmtruncate 3056 */ 3057 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 && 3058 attr->ia_size > MAX_NON_LFS) { 3059 error = -EFBIG; 3060 goto out; 3061 } 3062 /* fill in hole pointers in the expanding truncate case. */ 3063 if (attr->ia_size > inode->i_size) { 3064 error = generic_cont_expand_simple(inode, attr->ia_size); 3065 if (REISERFS_I(inode)->i_prealloc_count > 0) { 3066 int err; 3067 struct reiserfs_transaction_handle th; 3068 /* we're changing at most 2 bitmaps, inode + super */ 3069 err = journal_begin(&th, inode->i_sb, 4); 3070 if (!err) { 3071 reiserfs_discard_prealloc(&th, inode); 3072 err = journal_end(&th, inode->i_sb, 4); 3073 } 3074 if (err) 3075 error = err; 3076 } 3077 if (error) 3078 goto out; 3079 /* 3080 * file size is changed, ctime and mtime are 3081 * to be updated 3082 */ 3083 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME); 3084 } 3085 } 3086 3087 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) || 3088 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) && 3089 (get_inode_sd_version(inode) == STAT_DATA_V1)) { 3090 /* stat data of format v3.5 has 16 bit uid and gid */ 3091 error = -EINVAL; 3092 goto out; 3093 } 3094 3095 error = inode_change_ok(inode, attr); 3096 if (!error) { 3097 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 3098 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 3099 error = reiserfs_chown_xattrs(inode, attr); 3100 3101 if (!error) { 3102 struct reiserfs_transaction_handle th; 3103 int jbegin_count = 3104 2 * 3105 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) + 3106 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) + 3107 2; 3108 3109 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */ 3110 error = 3111 journal_begin(&th, inode->i_sb, 3112 jbegin_count); 3113 if (error) 3114 goto out; 3115 error = 3116 DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0; 3117 if (error) { 3118 journal_end(&th, inode->i_sb, 3119 jbegin_count); 3120 goto out; 3121 } 3122 /* Update corresponding info in inode so that everything is in 3123 * one transaction */ 3124 if (attr->ia_valid & ATTR_UID) 3125 inode->i_uid = attr->ia_uid; 3126 if (attr->ia_valid & ATTR_GID) 3127 inode->i_gid = attr->ia_gid; 3128 mark_inode_dirty(inode); 3129 error = 3130 journal_end(&th, inode->i_sb, jbegin_count); 3131 } 3132 } 3133 if (!error) 3134 error = inode_setattr(inode, attr); 3135 } 3136 3137 if (!error && reiserfs_posixacl(inode->i_sb)) { 3138 if (attr->ia_valid & ATTR_MODE) 3139 error = reiserfs_acl_chmod(inode); 3140 } 3141 3142 out: 3143 reiserfs_write_unlock(inode->i_sb); 3144 return error; 3145} 3146 3147const struct address_space_operations reiserfs_address_space_operations = { 3148 .writepage = reiserfs_writepage, 3149 .readpage = reiserfs_readpage, 3150 .readpages = reiserfs_readpages, 3151 .releasepage = reiserfs_releasepage, 3152 .invalidatepage = reiserfs_invalidatepage, 3153 .sync_page = block_sync_page, 3154 .write_begin = reiserfs_write_begin, 3155 .write_end = reiserfs_write_end, 3156 .bmap = reiserfs_aop_bmap, 3157 .direct_IO = reiserfs_direct_IO, 3158 .set_page_dirty = reiserfs_set_page_dirty, 3159}; 3160