inode.c revision 27b3a5c51b50a234fb4a21146841e6723b5934ce
1/* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5#include <linux/time.h> 6#include <linux/fs.h> 7#include <linux/reiserfs_fs.h> 8#include <linux/reiserfs_acl.h> 9#include <linux/reiserfs_xattr.h> 10#include <linux/exportfs.h> 11#include <linux/smp_lock.h> 12#include <linux/pagemap.h> 13#include <linux/highmem.h> 14#include <asm/uaccess.h> 15#include <asm/unaligned.h> 16#include <linux/buffer_head.h> 17#include <linux/mpage.h> 18#include <linux/writeback.h> 19#include <linux/quotaops.h> 20#include <linux/swap.h> 21 22int reiserfs_commit_write(struct file *f, struct page *page, 23 unsigned from, unsigned to); 24int reiserfs_prepare_write(struct file *f, struct page *page, 25 unsigned from, unsigned to); 26 27void reiserfs_delete_inode(struct inode *inode) 28{ 29 /* We need blocks for transaction + (user+group) quota update (possibly delete) */ 30 int jbegin_count = 31 JOURNAL_PER_BALANCE_CNT * 2 + 32 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb); 33 struct reiserfs_transaction_handle th; 34 int err; 35 36 truncate_inode_pages(&inode->i_data, 0); 37 38 reiserfs_write_lock(inode->i_sb); 39 40 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */ 41 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */ 42 reiserfs_delete_xattrs(inode); 43 44 if (journal_begin(&th, inode->i_sb, jbegin_count)) 45 goto out; 46 reiserfs_update_inode_transaction(inode); 47 48 reiserfs_discard_prealloc(&th, inode); 49 50 err = reiserfs_delete_object(&th, inode); 51 52 /* Do quota update inside a transaction for journaled quotas. We must do that 53 * after delete_object so that quota updates go into the same transaction as 54 * stat data deletion */ 55 if (!err) 56 vfs_dq_free_inode(inode); 57 58 if (journal_end(&th, inode->i_sb, jbegin_count)) 59 goto out; 60 61 /* check return value from reiserfs_delete_object after 62 * ending the transaction 63 */ 64 if (err) 65 goto out; 66 67 /* all items of file are deleted, so we can remove "save" link */ 68 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything 69 * about an error here */ 70 } else { 71 /* no object items are in the tree */ 72 ; 73 } 74 out: 75 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */ 76 inode->i_blocks = 0; 77 reiserfs_write_unlock(inode->i_sb); 78} 79 80static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid, 81 __u32 objectid, loff_t offset, int type, int length) 82{ 83 key->version = version; 84 85 key->on_disk_key.k_dir_id = dirid; 86 key->on_disk_key.k_objectid = objectid; 87 set_cpu_key_k_offset(key, offset); 88 set_cpu_key_k_type(key, type); 89 key->key_length = length; 90} 91 92/* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set 93 offset and type of key */ 94void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset, 95 int type, int length) 96{ 97 _make_cpu_key(key, get_inode_item_key_version(inode), 98 le32_to_cpu(INODE_PKEY(inode)->k_dir_id), 99 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type, 100 length); 101} 102 103// 104// when key is 0, do not set version and short key 105// 106inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 107 int version, 108 loff_t offset, int type, int length, 109 int entry_count /*or ih_free_space */ ) 110{ 111 if (key) { 112 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id); 113 ih->ih_key.k_objectid = 114 cpu_to_le32(key->on_disk_key.k_objectid); 115 } 116 put_ih_version(ih, version); 117 set_le_ih_k_offset(ih, offset); 118 set_le_ih_k_type(ih, type); 119 put_ih_item_len(ih, length); 120 /* set_ih_free_space (ih, 0); */ 121 // for directory items it is entry count, for directs and stat 122 // datas - 0xffff, for indirects - 0 123 put_ih_entry_count(ih, entry_count); 124} 125 126// 127// FIXME: we might cache recently accessed indirect item 128 129// Ugh. Not too eager for that.... 130// I cut the code until such time as I see a convincing argument (benchmark). 131// I don't want a bloated inode struct..., and I don't like code complexity.... 132 133/* cutting the code is fine, since it really isn't in use yet and is easy 134** to add back in. But, Vladimir has a really good idea here. Think 135** about what happens for reading a file. For each page, 136** The VFS layer calls reiserfs_readpage, who searches the tree to find 137** an indirect item. This indirect item has X number of pointers, where 138** X is a big number if we've done the block allocation right. But, 139** we only use one or two of these pointers during each call to readpage, 140** needlessly researching again later on. 141** 142** The size of the cache could be dynamic based on the size of the file. 143** 144** I'd also like to see us cache the location the stat data item, since 145** we are needlessly researching for that frequently. 146** 147** --chris 148*/ 149 150/* If this page has a file tail in it, and 151** it was read in by get_block_create_0, the page data is valid, 152** but tail is still sitting in a direct item, and we can't write to 153** it. So, look through this page, and check all the mapped buffers 154** to make sure they have valid block numbers. Any that don't need 155** to be unmapped, so that block_prepare_write will correctly call 156** reiserfs_get_block to convert the tail into an unformatted node 157*/ 158static inline void fix_tail_page_for_writing(struct page *page) 159{ 160 struct buffer_head *head, *next, *bh; 161 162 if (page && page_has_buffers(page)) { 163 head = page_buffers(page); 164 bh = head; 165 do { 166 next = bh->b_this_page; 167 if (buffer_mapped(bh) && bh->b_blocknr == 0) { 168 reiserfs_unmap_buffer(bh); 169 } 170 bh = next; 171 } while (bh != head); 172 } 173} 174 175/* reiserfs_get_block does not need to allocate a block only if it has been 176 done already or non-hole position has been found in the indirect item */ 177static inline int allocation_needed(int retval, b_blocknr_t allocated, 178 struct item_head *ih, 179 __le32 * item, int pos_in_item) 180{ 181 if (allocated) 182 return 0; 183 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) && 184 get_block_num(item, pos_in_item)) 185 return 0; 186 return 1; 187} 188 189static inline int indirect_item_found(int retval, struct item_head *ih) 190{ 191 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih); 192} 193 194static inline void set_block_dev_mapped(struct buffer_head *bh, 195 b_blocknr_t block, struct inode *inode) 196{ 197 map_bh(bh, inode->i_sb, block); 198} 199 200// 201// files which were created in the earlier version can not be longer, 202// than 2 gb 203// 204static int file_capable(struct inode *inode, sector_t block) 205{ 206 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file. 207 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb 208 return 1; 209 210 return 0; 211} 212 213static int restart_transaction(struct reiserfs_transaction_handle *th, 214 struct inode *inode, struct treepath *path) 215{ 216 struct super_block *s = th->t_super; 217 int len = th->t_blocks_allocated; 218 int err; 219 220 BUG_ON(!th->t_trans_id); 221 BUG_ON(!th->t_refcount); 222 223 pathrelse(path); 224 225 /* we cannot restart while nested */ 226 if (th->t_refcount > 1) { 227 return 0; 228 } 229 reiserfs_update_sd(th, inode); 230 err = journal_end(th, s, len); 231 if (!err) { 232 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6); 233 if (!err) 234 reiserfs_update_inode_transaction(inode); 235 } 236 return err; 237} 238 239// it is called by get_block when create == 0. Returns block number 240// for 'block'-th logical block of file. When it hits direct item it 241// returns 0 (being called from bmap) or read direct item into piece 242// of page (bh_result) 243 244// Please improve the english/clarity in the comment above, as it is 245// hard to understand. 246 247static int _get_block_create_0(struct inode *inode, sector_t block, 248 struct buffer_head *bh_result, int args) 249{ 250 INITIALIZE_PATH(path); 251 struct cpu_key key; 252 struct buffer_head *bh; 253 struct item_head *ih, tmp_ih; 254 b_blocknr_t blocknr; 255 char *p = NULL; 256 int chars; 257 int ret; 258 int result; 259 int done = 0; 260 unsigned long offset; 261 262 // prepare the key to look for the 'block'-th block of file 263 make_cpu_key(&key, inode, 264 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY, 265 3); 266 267 result = search_for_position_by_key(inode->i_sb, &key, &path); 268 if (result != POSITION_FOUND) { 269 pathrelse(&path); 270 if (p) 271 kunmap(bh_result->b_page); 272 if (result == IO_ERROR) 273 return -EIO; 274 // We do not return -ENOENT if there is a hole but page is uptodate, because it means 275 // That there is some MMAPED data associated with it that is yet to be written to disk. 276 if ((args & GET_BLOCK_NO_HOLE) 277 && !PageUptodate(bh_result->b_page)) { 278 return -ENOENT; 279 } 280 return 0; 281 } 282 // 283 bh = get_last_bh(&path); 284 ih = get_ih(&path); 285 if (is_indirect_le_ih(ih)) { 286 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih); 287 288 /* FIXME: here we could cache indirect item or part of it in 289 the inode to avoid search_by_key in case of subsequent 290 access to file */ 291 blocknr = get_block_num(ind_item, path.pos_in_item); 292 ret = 0; 293 if (blocknr) { 294 map_bh(bh_result, inode->i_sb, blocknr); 295 if (path.pos_in_item == 296 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) { 297 set_buffer_boundary(bh_result); 298 } 299 } else 300 // We do not return -ENOENT if there is a hole but page is uptodate, because it means 301 // That there is some MMAPED data associated with it that is yet to be written to disk. 302 if ((args & GET_BLOCK_NO_HOLE) 303 && !PageUptodate(bh_result->b_page)) { 304 ret = -ENOENT; 305 } 306 307 pathrelse(&path); 308 if (p) 309 kunmap(bh_result->b_page); 310 return ret; 311 } 312 // requested data are in direct item(s) 313 if (!(args & GET_BLOCK_READ_DIRECT)) { 314 // we are called by bmap. FIXME: we can not map block of file 315 // when it is stored in direct item(s) 316 pathrelse(&path); 317 if (p) 318 kunmap(bh_result->b_page); 319 return -ENOENT; 320 } 321 322 /* if we've got a direct item, and the buffer or page was uptodate, 323 ** we don't want to pull data off disk again. skip to the 324 ** end, where we map the buffer and return 325 */ 326 if (buffer_uptodate(bh_result)) { 327 goto finished; 328 } else 329 /* 330 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date 331 ** pages without any buffers. If the page is up to date, we don't want 332 ** read old data off disk. Set the up to date bit on the buffer instead 333 ** and jump to the end 334 */ 335 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) { 336 set_buffer_uptodate(bh_result); 337 goto finished; 338 } 339 // read file tail into part of page 340 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1); 341 copy_item_head(&tmp_ih, ih); 342 343 /* we only want to kmap if we are reading the tail into the page. 344 ** this is not the common case, so we don't kmap until we are 345 ** sure we need to. But, this means the item might move if 346 ** kmap schedules 347 */ 348 if (!p) 349 p = (char *)kmap(bh_result->b_page); 350 351 p += offset; 352 memset(p, 0, inode->i_sb->s_blocksize); 353 do { 354 if (!is_direct_le_ih(ih)) { 355 BUG(); 356 } 357 /* make sure we don't read more bytes than actually exist in 358 ** the file. This can happen in odd cases where i_size isn't 359 ** correct, and when direct item padding results in a few 360 ** extra bytes at the end of the direct item 361 */ 362 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size) 363 break; 364 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) { 365 chars = 366 inode->i_size - (le_ih_k_offset(ih) - 1) - 367 path.pos_in_item; 368 done = 1; 369 } else { 370 chars = ih_item_len(ih) - path.pos_in_item; 371 } 372 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars); 373 374 if (done) 375 break; 376 377 p += chars; 378 379 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1)) 380 // we done, if read direct item is not the last item of 381 // node FIXME: we could try to check right delimiting key 382 // to see whether direct item continues in the right 383 // neighbor or rely on i_size 384 break; 385 386 // update key to look for the next piece 387 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars); 388 result = search_for_position_by_key(inode->i_sb, &key, &path); 389 if (result != POSITION_FOUND) 390 // i/o error most likely 391 break; 392 bh = get_last_bh(&path); 393 ih = get_ih(&path); 394 } while (1); 395 396 flush_dcache_page(bh_result->b_page); 397 kunmap(bh_result->b_page); 398 399 finished: 400 pathrelse(&path); 401 402 if (result == IO_ERROR) 403 return -EIO; 404 405 /* this buffer has valid data, but isn't valid for io. mapping it to 406 * block #0 tells the rest of reiserfs it just has a tail in it 407 */ 408 map_bh(bh_result, inode->i_sb, 0); 409 set_buffer_uptodate(bh_result); 410 return 0; 411} 412 413// this is called to create file map. So, _get_block_create_0 will not 414// read direct item 415static int reiserfs_bmap(struct inode *inode, sector_t block, 416 struct buffer_head *bh_result, int create) 417{ 418 if (!file_capable(inode, block)) 419 return -EFBIG; 420 421 reiserfs_write_lock(inode->i_sb); 422 /* do not read the direct item */ 423 _get_block_create_0(inode, block, bh_result, 0); 424 reiserfs_write_unlock(inode->i_sb); 425 return 0; 426} 427 428/* special version of get_block that is only used by grab_tail_page right 429** now. It is sent to block_prepare_write, and when you try to get a 430** block past the end of the file (or a block from a hole) it returns 431** -ENOENT instead of a valid buffer. block_prepare_write expects to 432** be able to do i/o on the buffers returned, unless an error value 433** is also returned. 434** 435** So, this allows block_prepare_write to be used for reading a single block 436** in a page. Where it does not produce a valid page for holes, or past the 437** end of the file. This turns out to be exactly what we need for reading 438** tails for conversion. 439** 440** The point of the wrapper is forcing a certain value for create, even 441** though the VFS layer is calling this function with create==1. If you 442** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block, 443** don't use this function. 444*/ 445static int reiserfs_get_block_create_0(struct inode *inode, sector_t block, 446 struct buffer_head *bh_result, 447 int create) 448{ 449 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE); 450} 451 452/* This is special helper for reiserfs_get_block in case we are executing 453 direct_IO request. */ 454static int reiserfs_get_blocks_direct_io(struct inode *inode, 455 sector_t iblock, 456 struct buffer_head *bh_result, 457 int create) 458{ 459 int ret; 460 461 bh_result->b_page = NULL; 462 463 /* We set the b_size before reiserfs_get_block call since it is 464 referenced in convert_tail_for_hole() that may be called from 465 reiserfs_get_block() */ 466 bh_result->b_size = (1 << inode->i_blkbits); 467 468 ret = reiserfs_get_block(inode, iblock, bh_result, 469 create | GET_BLOCK_NO_DANGLE); 470 if (ret) 471 goto out; 472 473 /* don't allow direct io onto tail pages */ 474 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 475 /* make sure future calls to the direct io funcs for this offset 476 ** in the file fail by unmapping the buffer 477 */ 478 clear_buffer_mapped(bh_result); 479 ret = -EINVAL; 480 } 481 /* Possible unpacked tail. Flush the data before pages have 482 disappeared */ 483 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) { 484 int err; 485 486 reiserfs_write_lock(inode->i_sb); 487 488 err = reiserfs_commit_for_inode(inode); 489 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 490 491 reiserfs_write_unlock(inode->i_sb); 492 493 if (err < 0) 494 ret = err; 495 } 496 out: 497 return ret; 498} 499 500/* 501** helper function for when reiserfs_get_block is called for a hole 502** but the file tail is still in a direct item 503** bh_result is the buffer head for the hole 504** tail_offset is the offset of the start of the tail in the file 505** 506** This calls prepare_write, which will start a new transaction 507** you should not be in a transaction, or have any paths held when you 508** call this. 509*/ 510static int convert_tail_for_hole(struct inode *inode, 511 struct buffer_head *bh_result, 512 loff_t tail_offset) 513{ 514 unsigned long index; 515 unsigned long tail_end; 516 unsigned long tail_start; 517 struct page *tail_page; 518 struct page *hole_page = bh_result->b_page; 519 int retval = 0; 520 521 if ((tail_offset & (bh_result->b_size - 1)) != 1) 522 return -EIO; 523 524 /* always try to read until the end of the block */ 525 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1); 526 tail_end = (tail_start | (bh_result->b_size - 1)) + 1; 527 528 index = tail_offset >> PAGE_CACHE_SHIFT; 529 /* hole_page can be zero in case of direct_io, we are sure 530 that we cannot get here if we write with O_DIRECT into 531 tail page */ 532 if (!hole_page || index != hole_page->index) { 533 tail_page = grab_cache_page(inode->i_mapping, index); 534 retval = -ENOMEM; 535 if (!tail_page) { 536 goto out; 537 } 538 } else { 539 tail_page = hole_page; 540 } 541 542 /* we don't have to make sure the conversion did not happen while 543 ** we were locking the page because anyone that could convert 544 ** must first take i_mutex. 545 ** 546 ** We must fix the tail page for writing because it might have buffers 547 ** that are mapped, but have a block number of 0. This indicates tail 548 ** data that has been read directly into the page, and block_prepare_write 549 ** won't trigger a get_block in this case. 550 */ 551 fix_tail_page_for_writing(tail_page); 552 retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end); 553 if (retval) 554 goto unlock; 555 556 /* tail conversion might change the data in the page */ 557 flush_dcache_page(tail_page); 558 559 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end); 560 561 unlock: 562 if (tail_page != hole_page) { 563 unlock_page(tail_page); 564 page_cache_release(tail_page); 565 } 566 out: 567 return retval; 568} 569 570static inline int _allocate_block(struct reiserfs_transaction_handle *th, 571 sector_t block, 572 struct inode *inode, 573 b_blocknr_t * allocated_block_nr, 574 struct treepath *path, int flags) 575{ 576 BUG_ON(!th->t_trans_id); 577 578#ifdef REISERFS_PREALLOCATE 579 if (!(flags & GET_BLOCK_NO_IMUX)) { 580 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr, 581 path, block); 582 } 583#endif 584 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path, 585 block); 586} 587 588int reiserfs_get_block(struct inode *inode, sector_t block, 589 struct buffer_head *bh_result, int create) 590{ 591 int repeat, retval = 0; 592 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int 593 INITIALIZE_PATH(path); 594 int pos_in_item; 595 struct cpu_key key; 596 struct buffer_head *bh, *unbh = NULL; 597 struct item_head *ih, tmp_ih; 598 __le32 *item; 599 int done; 600 int fs_gen; 601 int lock_depth; 602 struct reiserfs_transaction_handle *th = NULL; 603 /* space reserved in transaction batch: 604 . 3 balancings in direct->indirect conversion 605 . 1 block involved into reiserfs_update_sd() 606 XXX in practically impossible worst case direct2indirect() 607 can incur (much) more than 3 balancings. 608 quota update for user, group */ 609 int jbegin_count = 610 JOURNAL_PER_BALANCE_CNT * 3 + 1 + 611 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb); 612 int version; 613 int dangle = 1; 614 loff_t new_offset = 615 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1; 616 617 lock_depth = reiserfs_write_lock_once(inode->i_sb); 618 version = get_inode_item_key_version(inode); 619 620 if (!file_capable(inode, block)) { 621 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 622 return -EFBIG; 623 } 624 625 /* if !create, we aren't changing the FS, so we don't need to 626 ** log anything, so we don't need to start a transaction 627 */ 628 if (!(create & GET_BLOCK_CREATE)) { 629 int ret; 630 /* find number of block-th logical block of the file */ 631 ret = _get_block_create_0(inode, block, bh_result, 632 create | GET_BLOCK_READ_DIRECT); 633 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 634 return ret; 635 } 636 /* 637 * if we're already in a transaction, make sure to close 638 * any new transactions we start in this func 639 */ 640 if ((create & GET_BLOCK_NO_DANGLE) || 641 reiserfs_transaction_running(inode->i_sb)) 642 dangle = 0; 643 644 /* If file is of such a size, that it might have a tail and tails are enabled 645 ** we should mark it as possibly needing tail packing on close 646 */ 647 if ((have_large_tails(inode->i_sb) 648 && inode->i_size < i_block_size(inode) * 4) 649 || (have_small_tails(inode->i_sb) 650 && inode->i_size < i_block_size(inode))) 651 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; 652 653 /* set the key of the first byte in the 'block'-th block of file */ 654 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ ); 655 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) { 656 start_trans: 657 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count); 658 if (!th) { 659 retval = -ENOMEM; 660 goto failure; 661 } 662 reiserfs_update_inode_transaction(inode); 663 } 664 research: 665 666 retval = search_for_position_by_key(inode->i_sb, &key, &path); 667 if (retval == IO_ERROR) { 668 retval = -EIO; 669 goto failure; 670 } 671 672 bh = get_last_bh(&path); 673 ih = get_ih(&path); 674 item = get_item(&path); 675 pos_in_item = path.pos_in_item; 676 677 fs_gen = get_generation(inode->i_sb); 678 copy_item_head(&tmp_ih, ih); 679 680 if (allocation_needed 681 (retval, allocated_block_nr, ih, item, pos_in_item)) { 682 /* we have to allocate block for the unformatted node */ 683 if (!th) { 684 pathrelse(&path); 685 goto start_trans; 686 } 687 688 repeat = 689 _allocate_block(th, block, inode, &allocated_block_nr, 690 &path, create); 691 692 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) { 693 /* restart the transaction to give the journal a chance to free 694 ** some blocks. releases the path, so we have to go back to 695 ** research if we succeed on the second try 696 */ 697 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1; 698 retval = restart_transaction(th, inode, &path); 699 if (retval) 700 goto failure; 701 repeat = 702 _allocate_block(th, block, inode, 703 &allocated_block_nr, NULL, create); 704 705 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) { 706 goto research; 707 } 708 if (repeat == QUOTA_EXCEEDED) 709 retval = -EDQUOT; 710 else 711 retval = -ENOSPC; 712 goto failure; 713 } 714 715 if (fs_changed(fs_gen, inode->i_sb) 716 && item_moved(&tmp_ih, &path)) { 717 goto research; 718 } 719 } 720 721 if (indirect_item_found(retval, ih)) { 722 b_blocknr_t unfm_ptr; 723 /* 'block'-th block is in the file already (there is 724 corresponding cell in some indirect item). But it may be 725 zero unformatted node pointer (hole) */ 726 unfm_ptr = get_block_num(item, pos_in_item); 727 if (unfm_ptr == 0) { 728 /* use allocated block to plug the hole */ 729 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 730 if (fs_changed(fs_gen, inode->i_sb) 731 && item_moved(&tmp_ih, &path)) { 732 reiserfs_restore_prepared_buffer(inode->i_sb, 733 bh); 734 goto research; 735 } 736 set_buffer_new(bh_result); 737 if (buffer_dirty(bh_result) 738 && reiserfs_data_ordered(inode->i_sb)) 739 reiserfs_add_ordered_list(inode, bh_result); 740 put_block_num(item, pos_in_item, allocated_block_nr); 741 unfm_ptr = allocated_block_nr; 742 journal_mark_dirty(th, inode->i_sb, bh); 743 reiserfs_update_sd(th, inode); 744 } 745 set_block_dev_mapped(bh_result, unfm_ptr, inode); 746 pathrelse(&path); 747 retval = 0; 748 if (!dangle && th) 749 retval = reiserfs_end_persistent_transaction(th); 750 751 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 752 753 /* the item was found, so new blocks were not added to the file 754 ** there is no need to make sure the inode is updated with this 755 ** transaction 756 */ 757 return retval; 758 } 759 760 if (!th) { 761 pathrelse(&path); 762 goto start_trans; 763 } 764 765 /* desired position is not found or is in the direct item. We have 766 to append file with holes up to 'block'-th block converting 767 direct items to indirect one if necessary */ 768 done = 0; 769 do { 770 if (is_statdata_le_ih(ih)) { 771 __le32 unp = 0; 772 struct cpu_key tmp_key; 773 774 /* indirect item has to be inserted */ 775 make_le_item_head(&tmp_ih, &key, version, 1, 776 TYPE_INDIRECT, UNFM_P_SIZE, 777 0 /* free_space */ ); 778 779 if (cpu_key_k_offset(&key) == 1) { 780 /* we are going to add 'block'-th block to the file. Use 781 allocated block for that */ 782 unp = cpu_to_le32(allocated_block_nr); 783 set_block_dev_mapped(bh_result, 784 allocated_block_nr, inode); 785 set_buffer_new(bh_result); 786 done = 1; 787 } 788 tmp_key = key; // ;) 789 set_cpu_key_k_offset(&tmp_key, 1); 790 PATH_LAST_POSITION(&path)++; 791 792 retval = 793 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih, 794 inode, (char *)&unp); 795 if (retval) { 796 reiserfs_free_block(th, inode, 797 allocated_block_nr, 1); 798 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST 799 } 800 //mark_tail_converted (inode); 801 } else if (is_direct_le_ih(ih)) { 802 /* direct item has to be converted */ 803 loff_t tail_offset; 804 805 tail_offset = 806 ((le_ih_k_offset(ih) - 807 1) & ~(inode->i_sb->s_blocksize - 1)) + 1; 808 if (tail_offset == cpu_key_k_offset(&key)) { 809 /* direct item we just found fits into block we have 810 to map. Convert it into unformatted node: use 811 bh_result for the conversion */ 812 set_block_dev_mapped(bh_result, 813 allocated_block_nr, inode); 814 unbh = bh_result; 815 done = 1; 816 } else { 817 /* we have to padd file tail stored in direct item(s) 818 up to block size and convert it to unformatted 819 node. FIXME: this should also get into page cache */ 820 821 pathrelse(&path); 822 /* 823 * ugly, but we can only end the transaction if 824 * we aren't nested 825 */ 826 BUG_ON(!th->t_refcount); 827 if (th->t_refcount == 1) { 828 retval = 829 reiserfs_end_persistent_transaction 830 (th); 831 th = NULL; 832 if (retval) 833 goto failure; 834 } 835 836 retval = 837 convert_tail_for_hole(inode, bh_result, 838 tail_offset); 839 if (retval) { 840 if (retval != -ENOSPC) 841 reiserfs_error(inode->i_sb, 842 "clm-6004", 843 "convert tail failed " 844 "inode %lu, error %d", 845 inode->i_ino, 846 retval); 847 if (allocated_block_nr) { 848 /* the bitmap, the super, and the stat data == 3 */ 849 if (!th) 850 th = reiserfs_persistent_transaction(inode->i_sb, 3); 851 if (th) 852 reiserfs_free_block(th, 853 inode, 854 allocated_block_nr, 855 1); 856 } 857 goto failure; 858 } 859 goto research; 860 } 861 retval = 862 direct2indirect(th, inode, &path, unbh, 863 tail_offset); 864 if (retval) { 865 reiserfs_unmap_buffer(unbh); 866 reiserfs_free_block(th, inode, 867 allocated_block_nr, 1); 868 goto failure; 869 } 870 /* it is important the set_buffer_uptodate is done after 871 ** the direct2indirect. The buffer might contain valid 872 ** data newer than the data on disk (read by readpage, changed, 873 ** and then sent here by writepage). direct2indirect needs 874 ** to know if unbh was already up to date, so it can decide 875 ** if the data in unbh needs to be replaced with data from 876 ** the disk 877 */ 878 set_buffer_uptodate(unbh); 879 880 /* unbh->b_page == NULL in case of DIRECT_IO request, this means 881 buffer will disappear shortly, so it should not be added to 882 */ 883 if (unbh->b_page) { 884 /* we've converted the tail, so we must 885 ** flush unbh before the transaction commits 886 */ 887 reiserfs_add_tail_list(inode, unbh); 888 889 /* mark it dirty now to prevent commit_write from adding 890 ** this buffer to the inode's dirty buffer list 891 */ 892 /* 893 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty(). 894 * It's still atomic, but it sets the page dirty too, 895 * which makes it eligible for writeback at any time by the 896 * VM (which was also the case with __mark_buffer_dirty()) 897 */ 898 mark_buffer_dirty(unbh); 899 } 900 } else { 901 /* append indirect item with holes if needed, when appending 902 pointer to 'block'-th block use block, which is already 903 allocated */ 904 struct cpu_key tmp_key; 905 unp_t unf_single = 0; // We use this in case we need to allocate only 906 // one block which is a fastpath 907 unp_t *un; 908 __u64 max_to_insert = 909 MAX_ITEM_LEN(inode->i_sb->s_blocksize) / 910 UNFM_P_SIZE; 911 __u64 blocks_needed; 912 913 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE, 914 "vs-804: invalid position for append"); 915 /* indirect item has to be appended, set up key of that position */ 916 make_cpu_key(&tmp_key, inode, 917 le_key_k_offset(version, 918 &(ih->ih_key)) + 919 op_bytes_number(ih, 920 inode->i_sb->s_blocksize), 921 //pos_in_item * inode->i_sb->s_blocksize, 922 TYPE_INDIRECT, 3); // key type is unimportant 923 924 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key), 925 "green-805: invalid offset"); 926 blocks_needed = 927 1 + 928 ((cpu_key_k_offset(&key) - 929 cpu_key_k_offset(&tmp_key)) >> inode->i_sb-> 930 s_blocksize_bits); 931 932 if (blocks_needed == 1) { 933 un = &unf_single; 934 } else { 935 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_ATOMIC); // We need to avoid scheduling. 936 if (!un) { 937 un = &unf_single; 938 blocks_needed = 1; 939 max_to_insert = 0; 940 } 941 } 942 if (blocks_needed <= max_to_insert) { 943 /* we are going to add target block to the file. Use allocated 944 block for that */ 945 un[blocks_needed - 1] = 946 cpu_to_le32(allocated_block_nr); 947 set_block_dev_mapped(bh_result, 948 allocated_block_nr, inode); 949 set_buffer_new(bh_result); 950 done = 1; 951 } else { 952 /* paste hole to the indirect item */ 953 /* If kmalloc failed, max_to_insert becomes zero and it means we 954 only have space for one block */ 955 blocks_needed = 956 max_to_insert ? max_to_insert : 1; 957 } 958 retval = 959 reiserfs_paste_into_item(th, &path, &tmp_key, inode, 960 (char *)un, 961 UNFM_P_SIZE * 962 blocks_needed); 963 964 if (blocks_needed != 1) 965 kfree(un); 966 967 if (retval) { 968 reiserfs_free_block(th, inode, 969 allocated_block_nr, 1); 970 goto failure; 971 } 972 if (!done) { 973 /* We need to mark new file size in case this function will be 974 interrupted/aborted later on. And we may do this only for 975 holes. */ 976 inode->i_size += 977 inode->i_sb->s_blocksize * blocks_needed; 978 } 979 } 980 981 if (done == 1) 982 break; 983 984 /* this loop could log more blocks than we had originally asked 985 ** for. So, we have to allow the transaction to end if it is 986 ** too big or too full. Update the inode so things are 987 ** consistent if we crash before the function returns 988 ** 989 ** release the path so that anybody waiting on the path before 990 ** ending their transaction will be able to continue. 991 */ 992 if (journal_transaction_should_end(th, th->t_blocks_allocated)) { 993 retval = restart_transaction(th, inode, &path); 994 if (retval) 995 goto failure; 996 } 997 /* 998 * inserting indirect pointers for a hole can take a 999 * long time. reschedule if needed and also release the write 1000 * lock for others. 1001 */ 1002 if (need_resched()) { 1003 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 1004 schedule(); 1005 lock_depth = reiserfs_write_lock_once(inode->i_sb); 1006 } 1007 1008 retval = search_for_position_by_key(inode->i_sb, &key, &path); 1009 if (retval == IO_ERROR) { 1010 retval = -EIO; 1011 goto failure; 1012 } 1013 if (retval == POSITION_FOUND) { 1014 reiserfs_warning(inode->i_sb, "vs-825", 1015 "%K should not be found", &key); 1016 retval = -EEXIST; 1017 if (allocated_block_nr) 1018 reiserfs_free_block(th, inode, 1019 allocated_block_nr, 1); 1020 pathrelse(&path); 1021 goto failure; 1022 } 1023 bh = get_last_bh(&path); 1024 ih = get_ih(&path); 1025 item = get_item(&path); 1026 pos_in_item = path.pos_in_item; 1027 } while (1); 1028 1029 retval = 0; 1030 1031 failure: 1032 if (th && (!dangle || (retval && !th->t_trans_id))) { 1033 int err; 1034 if (th->t_trans_id) 1035 reiserfs_update_sd(th, inode); 1036 err = reiserfs_end_persistent_transaction(th); 1037 if (err) 1038 retval = err; 1039 } 1040 1041 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 1042 reiserfs_check_path(&path); 1043 return retval; 1044} 1045 1046static int 1047reiserfs_readpages(struct file *file, struct address_space *mapping, 1048 struct list_head *pages, unsigned nr_pages) 1049{ 1050 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block); 1051} 1052 1053/* Compute real number of used bytes by file 1054 * Following three functions can go away when we'll have enough space in stat item 1055 */ 1056static int real_space_diff(struct inode *inode, int sd_size) 1057{ 1058 int bytes; 1059 loff_t blocksize = inode->i_sb->s_blocksize; 1060 1061 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) 1062 return sd_size; 1063 1064 /* End of file is also in full block with indirect reference, so round 1065 ** up to the next block. 1066 ** 1067 ** there is just no way to know if the tail is actually packed 1068 ** on the file, so we have to assume it isn't. When we pack the 1069 ** tail, we add 4 bytes to pretend there really is an unformatted 1070 ** node pointer 1071 */ 1072 bytes = 1073 ((inode->i_size + 1074 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE + 1075 sd_size; 1076 return bytes; 1077} 1078 1079static inline loff_t to_real_used_space(struct inode *inode, ulong blocks, 1080 int sd_size) 1081{ 1082 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1083 return inode->i_size + 1084 (loff_t) (real_space_diff(inode, sd_size)); 1085 } 1086 return ((loff_t) real_space_diff(inode, sd_size)) + 1087 (((loff_t) blocks) << 9); 1088} 1089 1090/* Compute number of blocks used by file in ReiserFS counting */ 1091static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size) 1092{ 1093 loff_t bytes = inode_get_bytes(inode); 1094 loff_t real_space = real_space_diff(inode, sd_size); 1095 1096 /* keeps fsck and non-quota versions of reiserfs happy */ 1097 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1098 bytes += (loff_t) 511; 1099 } 1100 1101 /* files from before the quota patch might i_blocks such that 1102 ** bytes < real_space. Deal with that here to prevent it from 1103 ** going negative. 1104 */ 1105 if (bytes < real_space) 1106 return 0; 1107 return (bytes - real_space) >> 9; 1108} 1109 1110// 1111// BAD: new directories have stat data of new type and all other items 1112// of old type. Version stored in the inode says about body items, so 1113// in update_stat_data we can not rely on inode, but have to check 1114// item version directly 1115// 1116 1117// called by read_locked_inode 1118static void init_inode(struct inode *inode, struct treepath *path) 1119{ 1120 struct buffer_head *bh; 1121 struct item_head *ih; 1122 __u32 rdev; 1123 //int version = ITEM_VERSION_1; 1124 1125 bh = PATH_PLAST_BUFFER(path); 1126 ih = PATH_PITEM_HEAD(path); 1127 1128 copy_key(INODE_PKEY(inode), &(ih->ih_key)); 1129 1130 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list)); 1131 REISERFS_I(inode)->i_flags = 0; 1132 REISERFS_I(inode)->i_prealloc_block = 0; 1133 REISERFS_I(inode)->i_prealloc_count = 0; 1134 REISERFS_I(inode)->i_trans_id = 0; 1135 REISERFS_I(inode)->i_jl = NULL; 1136 mutex_init(&(REISERFS_I(inode)->i_mmap)); 1137 reiserfs_init_xattr_rwsem(inode); 1138 1139 if (stat_data_v1(ih)) { 1140 struct stat_data_v1 *sd = 1141 (struct stat_data_v1 *)B_I_PITEM(bh, ih); 1142 unsigned long blocks; 1143 1144 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1145 set_inode_sd_version(inode, STAT_DATA_V1); 1146 inode->i_mode = sd_v1_mode(sd); 1147 inode->i_nlink = sd_v1_nlink(sd); 1148 inode->i_uid = sd_v1_uid(sd); 1149 inode->i_gid = sd_v1_gid(sd); 1150 inode->i_size = sd_v1_size(sd); 1151 inode->i_atime.tv_sec = sd_v1_atime(sd); 1152 inode->i_mtime.tv_sec = sd_v1_mtime(sd); 1153 inode->i_ctime.tv_sec = sd_v1_ctime(sd); 1154 inode->i_atime.tv_nsec = 0; 1155 inode->i_ctime.tv_nsec = 0; 1156 inode->i_mtime.tv_nsec = 0; 1157 1158 inode->i_blocks = sd_v1_blocks(sd); 1159 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1160 blocks = (inode->i_size + 511) >> 9; 1161 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9); 1162 if (inode->i_blocks > blocks) { 1163 // there was a bug in <=3.5.23 when i_blocks could take negative 1164 // values. Starting from 3.5.17 this value could even be stored in 1165 // stat data. For such files we set i_blocks based on file 1166 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be 1167 // only updated if file's inode will ever change 1168 inode->i_blocks = blocks; 1169 } 1170 1171 rdev = sd_v1_rdev(sd); 1172 REISERFS_I(inode)->i_first_direct_byte = 1173 sd_v1_first_direct_byte(sd); 1174 /* an early bug in the quota code can give us an odd number for the 1175 ** block count. This is incorrect, fix it here. 1176 */ 1177 if (inode->i_blocks & 1) { 1178 inode->i_blocks++; 1179 } 1180 inode_set_bytes(inode, 1181 to_real_used_space(inode, inode->i_blocks, 1182 SD_V1_SIZE)); 1183 /* nopack is initially zero for v1 objects. For v2 objects, 1184 nopack is initialised from sd_attrs */ 1185 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 1186 } else { 1187 // new stat data found, but object may have old items 1188 // (directories and symlinks) 1189 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih); 1190 1191 inode->i_mode = sd_v2_mode(sd); 1192 inode->i_nlink = sd_v2_nlink(sd); 1193 inode->i_uid = sd_v2_uid(sd); 1194 inode->i_size = sd_v2_size(sd); 1195 inode->i_gid = sd_v2_gid(sd); 1196 inode->i_mtime.tv_sec = sd_v2_mtime(sd); 1197 inode->i_atime.tv_sec = sd_v2_atime(sd); 1198 inode->i_ctime.tv_sec = sd_v2_ctime(sd); 1199 inode->i_ctime.tv_nsec = 0; 1200 inode->i_mtime.tv_nsec = 0; 1201 inode->i_atime.tv_nsec = 0; 1202 inode->i_blocks = sd_v2_blocks(sd); 1203 rdev = sd_v2_rdev(sd); 1204 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1205 inode->i_generation = 1206 le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1207 else 1208 inode->i_generation = sd_v2_generation(sd); 1209 1210 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1211 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1212 else 1213 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1214 REISERFS_I(inode)->i_first_direct_byte = 0; 1215 set_inode_sd_version(inode, STAT_DATA_V2); 1216 inode_set_bytes(inode, 1217 to_real_used_space(inode, inode->i_blocks, 1218 SD_V2_SIZE)); 1219 /* read persistent inode attributes from sd and initalise 1220 generic inode flags from them */ 1221 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd); 1222 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode); 1223 } 1224 1225 pathrelse(path); 1226 if (S_ISREG(inode->i_mode)) { 1227 inode->i_op = &reiserfs_file_inode_operations; 1228 inode->i_fop = &reiserfs_file_operations; 1229 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1230 } else if (S_ISDIR(inode->i_mode)) { 1231 inode->i_op = &reiserfs_dir_inode_operations; 1232 inode->i_fop = &reiserfs_dir_operations; 1233 } else if (S_ISLNK(inode->i_mode)) { 1234 inode->i_op = &reiserfs_symlink_inode_operations; 1235 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1236 } else { 1237 inode->i_blocks = 0; 1238 inode->i_op = &reiserfs_special_inode_operations; 1239 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev)); 1240 } 1241} 1242 1243// update new stat data with inode fields 1244static void inode2sd(void *sd, struct inode *inode, loff_t size) 1245{ 1246 struct stat_data *sd_v2 = (struct stat_data *)sd; 1247 __u16 flags; 1248 1249 set_sd_v2_mode(sd_v2, inode->i_mode); 1250 set_sd_v2_nlink(sd_v2, inode->i_nlink); 1251 set_sd_v2_uid(sd_v2, inode->i_uid); 1252 set_sd_v2_size(sd_v2, size); 1253 set_sd_v2_gid(sd_v2, inode->i_gid); 1254 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec); 1255 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec); 1256 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec); 1257 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE)); 1258 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1259 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev)); 1260 else 1261 set_sd_v2_generation(sd_v2, inode->i_generation); 1262 flags = REISERFS_I(inode)->i_attrs; 1263 i_attrs_to_sd_attrs(inode, &flags); 1264 set_sd_v2_attrs(sd_v2, flags); 1265} 1266 1267// used to copy inode's fields to old stat data 1268static void inode2sd_v1(void *sd, struct inode *inode, loff_t size) 1269{ 1270 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd; 1271 1272 set_sd_v1_mode(sd_v1, inode->i_mode); 1273 set_sd_v1_uid(sd_v1, inode->i_uid); 1274 set_sd_v1_gid(sd_v1, inode->i_gid); 1275 set_sd_v1_nlink(sd_v1, inode->i_nlink); 1276 set_sd_v1_size(sd_v1, size); 1277 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec); 1278 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec); 1279 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec); 1280 1281 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1282 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev)); 1283 else 1284 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE)); 1285 1286 // Sigh. i_first_direct_byte is back 1287 set_sd_v1_first_direct_byte(sd_v1, 1288 REISERFS_I(inode)->i_first_direct_byte); 1289} 1290 1291/* NOTE, you must prepare the buffer head before sending it here, 1292** and then log it after the call 1293*/ 1294static void update_stat_data(struct treepath *path, struct inode *inode, 1295 loff_t size) 1296{ 1297 struct buffer_head *bh; 1298 struct item_head *ih; 1299 1300 bh = PATH_PLAST_BUFFER(path); 1301 ih = PATH_PITEM_HEAD(path); 1302 1303 if (!is_statdata_le_ih(ih)) 1304 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h", 1305 INODE_PKEY(inode), ih); 1306 1307 if (stat_data_v1(ih)) { 1308 // path points to old stat data 1309 inode2sd_v1(B_I_PITEM(bh, ih), inode, size); 1310 } else { 1311 inode2sd(B_I_PITEM(bh, ih), inode, size); 1312 } 1313 1314 return; 1315} 1316 1317void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 1318 struct inode *inode, loff_t size) 1319{ 1320 struct cpu_key key; 1321 INITIALIZE_PATH(path); 1322 struct buffer_head *bh; 1323 int fs_gen; 1324 struct item_head *ih, tmp_ih; 1325 int retval; 1326 1327 BUG_ON(!th->t_trans_id); 1328 1329 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant 1330 1331 for (;;) { 1332 int pos; 1333 /* look for the object's stat data */ 1334 retval = search_item(inode->i_sb, &key, &path); 1335 if (retval == IO_ERROR) { 1336 reiserfs_error(inode->i_sb, "vs-13050", 1337 "i/o failure occurred trying to " 1338 "update %K stat data", &key); 1339 return; 1340 } 1341 if (retval == ITEM_NOT_FOUND) { 1342 pos = PATH_LAST_POSITION(&path); 1343 pathrelse(&path); 1344 if (inode->i_nlink == 0) { 1345 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */ 1346 return; 1347 } 1348 reiserfs_warning(inode->i_sb, "vs-13060", 1349 "stat data of object %k (nlink == %d) " 1350 "not found (pos %d)", 1351 INODE_PKEY(inode), inode->i_nlink, 1352 pos); 1353 reiserfs_check_path(&path); 1354 return; 1355 } 1356 1357 /* sigh, prepare_for_journal might schedule. When it schedules the 1358 ** FS might change. We have to detect that, and loop back to the 1359 ** search if the stat data item has moved 1360 */ 1361 bh = get_last_bh(&path); 1362 ih = get_ih(&path); 1363 copy_item_head(&tmp_ih, ih); 1364 fs_gen = get_generation(inode->i_sb); 1365 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 1366 if (fs_changed(fs_gen, inode->i_sb) 1367 && item_moved(&tmp_ih, &path)) { 1368 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 1369 continue; /* Stat_data item has been moved after scheduling. */ 1370 } 1371 break; 1372 } 1373 update_stat_data(&path, inode, size); 1374 journal_mark_dirty(th, th->t_super, bh); 1375 pathrelse(&path); 1376 return; 1377} 1378 1379/* reiserfs_read_locked_inode is called to read the inode off disk, and it 1380** does a make_bad_inode when things go wrong. But, we need to make sure 1381** and clear the key in the private portion of the inode, otherwise a 1382** corresponding iput might try to delete whatever object the inode last 1383** represented. 1384*/ 1385static void reiserfs_make_bad_inode(struct inode *inode) 1386{ 1387 memset(INODE_PKEY(inode), 0, KEY_SIZE); 1388 make_bad_inode(inode); 1389} 1390 1391// 1392// initially this function was derived from minix or ext2's analog and 1393// evolved as the prototype did 1394// 1395 1396int reiserfs_init_locked_inode(struct inode *inode, void *p) 1397{ 1398 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p; 1399 inode->i_ino = args->objectid; 1400 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid); 1401 return 0; 1402} 1403 1404/* looks for stat data in the tree, and fills up the fields of in-core 1405 inode stat data fields */ 1406void reiserfs_read_locked_inode(struct inode *inode, 1407 struct reiserfs_iget_args *args) 1408{ 1409 INITIALIZE_PATH(path_to_sd); 1410 struct cpu_key key; 1411 unsigned long dirino; 1412 int retval; 1413 1414 dirino = args->dirid; 1415 1416 /* set version 1, version 2 could be used too, because stat data 1417 key is the same in both versions */ 1418 key.version = KEY_FORMAT_3_5; 1419 key.on_disk_key.k_dir_id = dirino; 1420 key.on_disk_key.k_objectid = inode->i_ino; 1421 key.on_disk_key.k_offset = 0; 1422 key.on_disk_key.k_type = 0; 1423 1424 /* look for the object's stat data */ 1425 retval = search_item(inode->i_sb, &key, &path_to_sd); 1426 if (retval == IO_ERROR) { 1427 reiserfs_error(inode->i_sb, "vs-13070", 1428 "i/o failure occurred trying to find " 1429 "stat data of %K", &key); 1430 reiserfs_make_bad_inode(inode); 1431 return; 1432 } 1433 if (retval != ITEM_FOUND) { 1434 /* a stale NFS handle can trigger this without it being an error */ 1435 pathrelse(&path_to_sd); 1436 reiserfs_make_bad_inode(inode); 1437 inode->i_nlink = 0; 1438 return; 1439 } 1440 1441 init_inode(inode, &path_to_sd); 1442 1443 /* It is possible that knfsd is trying to access inode of a file 1444 that is being removed from the disk by some other thread. As we 1445 update sd on unlink all that is required is to check for nlink 1446 here. This bug was first found by Sizif when debugging 1447 SquidNG/Butterfly, forgotten, and found again after Philippe 1448 Gramoulle <philippe.gramoulle@mmania.com> reproduced it. 1449 1450 More logical fix would require changes in fs/inode.c:iput() to 1451 remove inode from hash-table _after_ fs cleaned disk stuff up and 1452 in iget() to return NULL if I_FREEING inode is found in 1453 hash-table. */ 1454 /* Currently there is one place where it's ok to meet inode with 1455 nlink==0: processing of open-unlinked and half-truncated files 1456 during mount (fs/reiserfs/super.c:finish_unfinished()). */ 1457 if ((inode->i_nlink == 0) && 1458 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) { 1459 reiserfs_warning(inode->i_sb, "vs-13075", 1460 "dead inode read from disk %K. " 1461 "This is likely to be race with knfsd. Ignore", 1462 &key); 1463 reiserfs_make_bad_inode(inode); 1464 } 1465 1466 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */ 1467 1468} 1469 1470/** 1471 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked(). 1472 * 1473 * @inode: inode from hash table to check 1474 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args. 1475 * 1476 * This function is called by iget5_locked() to distinguish reiserfs inodes 1477 * having the same inode numbers. Such inodes can only exist due to some 1478 * error condition. One of them should be bad. Inodes with identical 1479 * inode numbers (objectids) are distinguished by parent directory ids. 1480 * 1481 */ 1482int reiserfs_find_actor(struct inode *inode, void *opaque) 1483{ 1484 struct reiserfs_iget_args *args; 1485 1486 args = opaque; 1487 /* args is already in CPU order */ 1488 return (inode->i_ino == args->objectid) && 1489 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid); 1490} 1491 1492struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key) 1493{ 1494 struct inode *inode; 1495 struct reiserfs_iget_args args; 1496 1497 args.objectid = key->on_disk_key.k_objectid; 1498 args.dirid = key->on_disk_key.k_dir_id; 1499 inode = iget5_locked(s, key->on_disk_key.k_objectid, 1500 reiserfs_find_actor, reiserfs_init_locked_inode, 1501 (void *)(&args)); 1502 if (!inode) 1503 return ERR_PTR(-ENOMEM); 1504 1505 if (inode->i_state & I_NEW) { 1506 reiserfs_read_locked_inode(inode, &args); 1507 unlock_new_inode(inode); 1508 } 1509 1510 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) { 1511 /* either due to i/o error or a stale NFS handle */ 1512 iput(inode); 1513 inode = NULL; 1514 } 1515 return inode; 1516} 1517 1518static struct dentry *reiserfs_get_dentry(struct super_block *sb, 1519 u32 objectid, u32 dir_id, u32 generation) 1520 1521{ 1522 struct cpu_key key; 1523 struct inode *inode; 1524 1525 key.on_disk_key.k_objectid = objectid; 1526 key.on_disk_key.k_dir_id = dir_id; 1527 reiserfs_write_lock(sb); 1528 inode = reiserfs_iget(sb, &key); 1529 if (inode && !IS_ERR(inode) && generation != 0 && 1530 generation != inode->i_generation) { 1531 iput(inode); 1532 inode = NULL; 1533 } 1534 reiserfs_write_unlock(sb); 1535 1536 return d_obtain_alias(inode); 1537} 1538 1539struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1540 int fh_len, int fh_type) 1541{ 1542 /* fhtype happens to reflect the number of u32s encoded. 1543 * due to a bug in earlier code, fhtype might indicate there 1544 * are more u32s then actually fitted. 1545 * so if fhtype seems to be more than len, reduce fhtype. 1546 * Valid types are: 1547 * 2 - objectid + dir_id - legacy support 1548 * 3 - objectid + dir_id + generation 1549 * 4 - objectid + dir_id + objectid and dirid of parent - legacy 1550 * 5 - objectid + dir_id + generation + objectid and dirid of parent 1551 * 6 - as above plus generation of directory 1552 * 6 does not fit in NFSv2 handles 1553 */ 1554 if (fh_type > fh_len) { 1555 if (fh_type != 6 || fh_len != 5) 1556 reiserfs_warning(sb, "reiserfs-13077", 1557 "nfsd/reiserfs, fhtype=%d, len=%d - odd", 1558 fh_type, fh_len); 1559 fh_type = 5; 1560 } 1561 1562 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1], 1563 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0); 1564} 1565 1566struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, 1567 int fh_len, int fh_type) 1568{ 1569 if (fh_type < 4) 1570 return NULL; 1571 1572 return reiserfs_get_dentry(sb, 1573 (fh_type >= 5) ? fid->raw[3] : fid->raw[2], 1574 (fh_type >= 5) ? fid->raw[4] : fid->raw[3], 1575 (fh_type == 6) ? fid->raw[5] : 0); 1576} 1577 1578int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp, 1579 int need_parent) 1580{ 1581 struct inode *inode = dentry->d_inode; 1582 int maxlen = *lenp; 1583 1584 if (maxlen < 3) 1585 return 255; 1586 1587 data[0] = inode->i_ino; 1588 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1589 data[2] = inode->i_generation; 1590 *lenp = 3; 1591 /* no room for directory info? return what we've stored so far */ 1592 if (maxlen < 5 || !need_parent) 1593 return 3; 1594 1595 spin_lock(&dentry->d_lock); 1596 inode = dentry->d_parent->d_inode; 1597 data[3] = inode->i_ino; 1598 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1599 *lenp = 5; 1600 if (maxlen >= 6) { 1601 data[5] = inode->i_generation; 1602 *lenp = 6; 1603 } 1604 spin_unlock(&dentry->d_lock); 1605 return *lenp; 1606} 1607 1608/* looks for stat data, then copies fields to it, marks the buffer 1609 containing stat data as dirty */ 1610/* reiserfs inodes are never really dirty, since the dirty inode call 1611** always logs them. This call allows the VFS inode marking routines 1612** to properly mark inodes for datasync and such, but only actually 1613** does something when called for a synchronous update. 1614*/ 1615int reiserfs_write_inode(struct inode *inode, int do_sync) 1616{ 1617 struct reiserfs_transaction_handle th; 1618 int jbegin_count = 1; 1619 1620 if (inode->i_sb->s_flags & MS_RDONLY) 1621 return -EROFS; 1622 /* memory pressure can sometimes initiate write_inode calls with sync == 1, 1623 ** these cases are just when the system needs ram, not when the 1624 ** inode needs to reach disk for safety, and they can safely be 1625 ** ignored because the altered inode has already been logged. 1626 */ 1627 if (do_sync && !(current->flags & PF_MEMALLOC)) { 1628 reiserfs_write_lock(inode->i_sb); 1629 if (!journal_begin(&th, inode->i_sb, jbegin_count)) { 1630 reiserfs_update_sd(&th, inode); 1631 journal_end_sync(&th, inode->i_sb, jbegin_count); 1632 } 1633 reiserfs_write_unlock(inode->i_sb); 1634 } 1635 return 0; 1636} 1637 1638/* stat data of new object is inserted already, this inserts the item 1639 containing "." and ".." entries */ 1640static int reiserfs_new_directory(struct reiserfs_transaction_handle *th, 1641 struct inode *inode, 1642 struct item_head *ih, struct treepath *path, 1643 struct inode *dir) 1644{ 1645 struct super_block *sb = th->t_super; 1646 char empty_dir[EMPTY_DIR_SIZE]; 1647 char *body = empty_dir; 1648 struct cpu_key key; 1649 int retval; 1650 1651 BUG_ON(!th->t_trans_id); 1652 1653 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id), 1654 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET, 1655 TYPE_DIRENTRY, 3 /*key length */ ); 1656 1657 /* compose item head for new item. Directories consist of items of 1658 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it 1659 is done by reiserfs_new_inode */ 1660 if (old_format_only(sb)) { 1661 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1662 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2); 1663 1664 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id, 1665 ih->ih_key.k_objectid, 1666 INODE_PKEY(dir)->k_dir_id, 1667 INODE_PKEY(dir)->k_objectid); 1668 } else { 1669 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1670 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2); 1671 1672 make_empty_dir_item(body, ih->ih_key.k_dir_id, 1673 ih->ih_key.k_objectid, 1674 INODE_PKEY(dir)->k_dir_id, 1675 INODE_PKEY(dir)->k_objectid); 1676 } 1677 1678 /* look for place in the tree for new item */ 1679 retval = search_item(sb, &key, path); 1680 if (retval == IO_ERROR) { 1681 reiserfs_error(sb, "vs-13080", 1682 "i/o failure occurred creating new directory"); 1683 return -EIO; 1684 } 1685 if (retval == ITEM_FOUND) { 1686 pathrelse(path); 1687 reiserfs_warning(sb, "vs-13070", 1688 "object with this key exists (%k)", 1689 &(ih->ih_key)); 1690 return -EEXIST; 1691 } 1692 1693 /* insert item, that is empty directory item */ 1694 return reiserfs_insert_item(th, path, &key, ih, inode, body); 1695} 1696 1697/* stat data of object has been inserted, this inserts the item 1698 containing the body of symlink */ 1699static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */ 1700 struct item_head *ih, 1701 struct treepath *path, const char *symname, 1702 int item_len) 1703{ 1704 struct super_block *sb = th->t_super; 1705 struct cpu_key key; 1706 int retval; 1707 1708 BUG_ON(!th->t_trans_id); 1709 1710 _make_cpu_key(&key, KEY_FORMAT_3_5, 1711 le32_to_cpu(ih->ih_key.k_dir_id), 1712 le32_to_cpu(ih->ih_key.k_objectid), 1713 1, TYPE_DIRECT, 3 /*key length */ ); 1714 1715 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len, 1716 0 /*free_space */ ); 1717 1718 /* look for place in the tree for new item */ 1719 retval = search_item(sb, &key, path); 1720 if (retval == IO_ERROR) { 1721 reiserfs_error(sb, "vs-13080", 1722 "i/o failure occurred creating new symlink"); 1723 return -EIO; 1724 } 1725 if (retval == ITEM_FOUND) { 1726 pathrelse(path); 1727 reiserfs_warning(sb, "vs-13080", 1728 "object with this key exists (%k)", 1729 &(ih->ih_key)); 1730 return -EEXIST; 1731 } 1732 1733 /* insert item, that is body of symlink */ 1734 return reiserfs_insert_item(th, path, &key, ih, inode, symname); 1735} 1736 1737/* inserts the stat data into the tree, and then calls 1738 reiserfs_new_directory (to insert ".", ".." item if new object is 1739 directory) or reiserfs_new_symlink (to insert symlink body if new 1740 object is symlink) or nothing (if new object is regular file) 1741 1742 NOTE! uid and gid must already be set in the inode. If we return 1743 non-zero due to an error, we have to drop the quota previously allocated 1744 for the fresh inode. This can only be done outside a transaction, so 1745 if we return non-zero, we also end the transaction. */ 1746int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 1747 struct inode *dir, int mode, const char *symname, 1748 /* 0 for regular, EMTRY_DIR_SIZE for dirs, 1749 strlen (symname) for symlinks) */ 1750 loff_t i_size, struct dentry *dentry, 1751 struct inode *inode, 1752 struct reiserfs_security_handle *security) 1753{ 1754 struct super_block *sb; 1755 struct reiserfs_iget_args args; 1756 INITIALIZE_PATH(path_to_key); 1757 struct cpu_key key; 1758 struct item_head ih; 1759 struct stat_data sd; 1760 int retval; 1761 int err; 1762 1763 BUG_ON(!th->t_trans_id); 1764 1765 if (vfs_dq_alloc_inode(inode)) { 1766 err = -EDQUOT; 1767 goto out_end_trans; 1768 } 1769 if (!dir->i_nlink) { 1770 err = -EPERM; 1771 goto out_bad_inode; 1772 } 1773 1774 sb = dir->i_sb; 1775 1776 /* item head of new item */ 1777 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir); 1778 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th)); 1779 if (!ih.ih_key.k_objectid) { 1780 err = -ENOMEM; 1781 goto out_bad_inode; 1782 } 1783 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid); 1784 if (old_format_only(sb)) 1785 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET, 1786 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT); 1787 else 1788 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET, 1789 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT); 1790 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE); 1791 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id); 1792 if (insert_inode_locked4(inode, args.objectid, 1793 reiserfs_find_actor, &args) < 0) { 1794 err = -EINVAL; 1795 goto out_bad_inode; 1796 } 1797 if (old_format_only(sb)) 1798 /* not a perfect generation count, as object ids can be reused, but 1799 ** this is as good as reiserfs can do right now. 1800 ** note that the private part of inode isn't filled in yet, we have 1801 ** to use the directory. 1802 */ 1803 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid); 1804 else 1805#if defined( USE_INODE_GENERATION_COUNTER ) 1806 inode->i_generation = 1807 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation); 1808#else 1809 inode->i_generation = ++event; 1810#endif 1811 1812 /* fill stat data */ 1813 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1); 1814 1815 /* uid and gid must already be set by the caller for quota init */ 1816 1817 /* symlink cannot be immutable or append only, right? */ 1818 if (S_ISLNK(inode->i_mode)) 1819 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND); 1820 1821 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC; 1822 inode->i_size = i_size; 1823 inode->i_blocks = 0; 1824 inode->i_bytes = 0; 1825 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 : 1826 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ; 1827 1828 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list)); 1829 REISERFS_I(inode)->i_flags = 0; 1830 REISERFS_I(inode)->i_prealloc_block = 0; 1831 REISERFS_I(inode)->i_prealloc_count = 0; 1832 REISERFS_I(inode)->i_trans_id = 0; 1833 REISERFS_I(inode)->i_jl = NULL; 1834 REISERFS_I(inode)->i_attrs = 1835 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK; 1836 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode); 1837 mutex_init(&(REISERFS_I(inode)->i_mmap)); 1838 reiserfs_init_xattr_rwsem(inode); 1839 1840 /* key to search for correct place for new stat data */ 1841 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id), 1842 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET, 1843 TYPE_STAT_DATA, 3 /*key length */ ); 1844 1845 /* find proper place for inserting of stat data */ 1846 retval = search_item(sb, &key, &path_to_key); 1847 if (retval == IO_ERROR) { 1848 err = -EIO; 1849 goto out_bad_inode; 1850 } 1851 if (retval == ITEM_FOUND) { 1852 pathrelse(&path_to_key); 1853 err = -EEXIST; 1854 goto out_bad_inode; 1855 } 1856 if (old_format_only(sb)) { 1857 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) { 1858 pathrelse(&path_to_key); 1859 /* i_uid or i_gid is too big to be stored in stat data v3.5 */ 1860 err = -EINVAL; 1861 goto out_bad_inode; 1862 } 1863 inode2sd_v1(&sd, inode, inode->i_size); 1864 } else { 1865 inode2sd(&sd, inode, inode->i_size); 1866 } 1867 // store in in-core inode the key of stat data and version all 1868 // object items will have (directory items will have old offset 1869 // format, other new objects will consist of new items) 1870 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode)) 1871 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1872 else 1873 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1874 if (old_format_only(sb)) 1875 set_inode_sd_version(inode, STAT_DATA_V1); 1876 else 1877 set_inode_sd_version(inode, STAT_DATA_V2); 1878 1879 /* insert the stat data into the tree */ 1880#ifdef DISPLACE_NEW_PACKING_LOCALITIES 1881 if (REISERFS_I(dir)->new_packing_locality) 1882 th->displace_new_blocks = 1; 1883#endif 1884 retval = 1885 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode, 1886 (char *)(&sd)); 1887 if (retval) { 1888 err = retval; 1889 reiserfs_check_path(&path_to_key); 1890 goto out_bad_inode; 1891 } 1892#ifdef DISPLACE_NEW_PACKING_LOCALITIES 1893 if (!th->displace_new_blocks) 1894 REISERFS_I(dir)->new_packing_locality = 0; 1895#endif 1896 if (S_ISDIR(mode)) { 1897 /* insert item with "." and ".." */ 1898 retval = 1899 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir); 1900 } 1901 1902 if (S_ISLNK(mode)) { 1903 /* insert body of symlink */ 1904 if (!old_format_only(sb)) 1905 i_size = ROUND_UP(i_size); 1906 retval = 1907 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname, 1908 i_size); 1909 } 1910 if (retval) { 1911 err = retval; 1912 reiserfs_check_path(&path_to_key); 1913 journal_end(th, th->t_super, th->t_blocks_allocated); 1914 goto out_inserted_sd; 1915 } 1916 1917 if (reiserfs_posixacl(inode->i_sb)) { 1918 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode); 1919 if (retval) { 1920 err = retval; 1921 reiserfs_check_path(&path_to_key); 1922 journal_end(th, th->t_super, th->t_blocks_allocated); 1923 goto out_inserted_sd; 1924 } 1925 } else if (inode->i_sb->s_flags & MS_POSIXACL) { 1926 reiserfs_warning(inode->i_sb, "jdm-13090", 1927 "ACLs aren't enabled in the fs, " 1928 "but vfs thinks they are!"); 1929 } else if (IS_PRIVATE(dir)) 1930 inode->i_flags |= S_PRIVATE; 1931 1932 if (security->name) { 1933 retval = reiserfs_security_write(th, inode, security); 1934 if (retval) { 1935 err = retval; 1936 reiserfs_check_path(&path_to_key); 1937 retval = journal_end(th, th->t_super, 1938 th->t_blocks_allocated); 1939 if (retval) 1940 err = retval; 1941 goto out_inserted_sd; 1942 } 1943 } 1944 1945 reiserfs_update_sd(th, inode); 1946 reiserfs_check_path(&path_to_key); 1947 1948 return 0; 1949 1950/* it looks like you can easily compress these two goto targets into 1951 * one. Keeping it like this doesn't actually hurt anything, and they 1952 * are place holders for what the quota code actually needs. 1953 */ 1954 out_bad_inode: 1955 /* Invalidate the object, nothing was inserted yet */ 1956 INODE_PKEY(inode)->k_objectid = 0; 1957 1958 /* Quota change must be inside a transaction for journaling */ 1959 vfs_dq_free_inode(inode); 1960 1961 out_end_trans: 1962 journal_end(th, th->t_super, th->t_blocks_allocated); 1963 /* Drop can be outside and it needs more credits so it's better to have it outside */ 1964 vfs_dq_drop(inode); 1965 inode->i_flags |= S_NOQUOTA; 1966 make_bad_inode(inode); 1967 1968 out_inserted_sd: 1969 inode->i_nlink = 0; 1970 th->t_trans_id = 0; /* so the caller can't use this handle later */ 1971 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */ 1972 iput(inode); 1973 return err; 1974} 1975 1976/* 1977** finds the tail page in the page cache, 1978** reads the last block in. 1979** 1980** On success, page_result is set to a locked, pinned page, and bh_result 1981** is set to an up to date buffer for the last block in the file. returns 0. 1982** 1983** tail conversion is not done, so bh_result might not be valid for writing 1984** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before 1985** trying to write the block. 1986** 1987** on failure, nonzero is returned, page_result and bh_result are untouched. 1988*/ 1989static int grab_tail_page(struct inode *inode, 1990 struct page **page_result, 1991 struct buffer_head **bh_result) 1992{ 1993 1994 /* we want the page with the last byte in the file, 1995 ** not the page that will hold the next byte for appending 1996 */ 1997 unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT; 1998 unsigned long pos = 0; 1999 unsigned long start = 0; 2000 unsigned long blocksize = inode->i_sb->s_blocksize; 2001 unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1); 2002 struct buffer_head *bh; 2003 struct buffer_head *head; 2004 struct page *page; 2005 int error; 2006 2007 /* we know that we are only called with inode->i_size > 0. 2008 ** we also know that a file tail can never be as big as a block 2009 ** If i_size % blocksize == 0, our file is currently block aligned 2010 ** and it won't need converting or zeroing after a truncate. 2011 */ 2012 if ((offset & (blocksize - 1)) == 0) { 2013 return -ENOENT; 2014 } 2015 page = grab_cache_page(inode->i_mapping, index); 2016 error = -ENOMEM; 2017 if (!page) { 2018 goto out; 2019 } 2020 /* start within the page of the last block in the file */ 2021 start = (offset / blocksize) * blocksize; 2022 2023 error = block_prepare_write(page, start, offset, 2024 reiserfs_get_block_create_0); 2025 if (error) 2026 goto unlock; 2027 2028 head = page_buffers(page); 2029 bh = head; 2030 do { 2031 if (pos >= start) { 2032 break; 2033 } 2034 bh = bh->b_this_page; 2035 pos += blocksize; 2036 } while (bh != head); 2037 2038 if (!buffer_uptodate(bh)) { 2039 /* note, this should never happen, prepare_write should 2040 ** be taking care of this for us. If the buffer isn't up to date, 2041 ** I've screwed up the code to find the buffer, or the code to 2042 ** call prepare_write 2043 */ 2044 reiserfs_error(inode->i_sb, "clm-6000", 2045 "error reading block %lu", bh->b_blocknr); 2046 error = -EIO; 2047 goto unlock; 2048 } 2049 *bh_result = bh; 2050 *page_result = page; 2051 2052 out: 2053 return error; 2054 2055 unlock: 2056 unlock_page(page); 2057 page_cache_release(page); 2058 return error; 2059} 2060 2061/* 2062** vfs version of truncate file. Must NOT be called with 2063** a transaction already started. 2064** 2065** some code taken from block_truncate_page 2066*/ 2067int reiserfs_truncate_file(struct inode *inode, int update_timestamps) 2068{ 2069 struct reiserfs_transaction_handle th; 2070 /* we want the offset for the first byte after the end of the file */ 2071 unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 2072 unsigned blocksize = inode->i_sb->s_blocksize; 2073 unsigned length; 2074 struct page *page = NULL; 2075 int error; 2076 struct buffer_head *bh = NULL; 2077 int err2; 2078 int lock_depth; 2079 2080 lock_depth = reiserfs_write_lock_once(inode->i_sb); 2081 2082 if (inode->i_size > 0) { 2083 error = grab_tail_page(inode, &page, &bh); 2084 if (error) { 2085 // -ENOENT means we truncated past the end of the file, 2086 // and get_block_create_0 could not find a block to read in, 2087 // which is ok. 2088 if (error != -ENOENT) 2089 reiserfs_error(inode->i_sb, "clm-6001", 2090 "grab_tail_page failed %d", 2091 error); 2092 page = NULL; 2093 bh = NULL; 2094 } 2095 } 2096 2097 /* so, if page != NULL, we have a buffer head for the offset at 2098 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0, 2099 ** then we have an unformatted node. Otherwise, we have a direct item, 2100 ** and no zeroing is required on disk. We zero after the truncate, 2101 ** because the truncate might pack the item anyway 2102 ** (it will unmap bh if it packs). 2103 */ 2104 /* it is enough to reserve space in transaction for 2 balancings: 2105 one for "save" link adding and another for the first 2106 cut_from_item. 1 is for update_sd */ 2107 error = journal_begin(&th, inode->i_sb, 2108 JOURNAL_PER_BALANCE_CNT * 2 + 1); 2109 if (error) 2110 goto out; 2111 reiserfs_update_inode_transaction(inode); 2112 if (update_timestamps) 2113 /* we are doing real truncate: if the system crashes before the last 2114 transaction of truncating gets committed - on reboot the file 2115 either appears truncated properly or not truncated at all */ 2116 add_save_link(&th, inode, 1); 2117 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps); 2118 error = 2119 journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1); 2120 if (error) 2121 goto out; 2122 2123 /* check reiserfs_do_truncate after ending the transaction */ 2124 if (err2) { 2125 error = err2; 2126 goto out; 2127 } 2128 2129 if (update_timestamps) { 2130 error = remove_save_link(inode, 1 /* truncate */); 2131 if (error) 2132 goto out; 2133 } 2134 2135 if (page) { 2136 length = offset & (blocksize - 1); 2137 /* if we are not on a block boundary */ 2138 if (length) { 2139 length = blocksize - length; 2140 zero_user(page, offset, length); 2141 if (buffer_mapped(bh) && bh->b_blocknr != 0) { 2142 mark_buffer_dirty(bh); 2143 } 2144 } 2145 unlock_page(page); 2146 page_cache_release(page); 2147 } 2148 2149 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 2150 2151 return 0; 2152 out: 2153 if (page) { 2154 unlock_page(page); 2155 page_cache_release(page); 2156 } 2157 2158 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 2159 2160 return error; 2161} 2162 2163static int map_block_for_writepage(struct inode *inode, 2164 struct buffer_head *bh_result, 2165 unsigned long block) 2166{ 2167 struct reiserfs_transaction_handle th; 2168 int fs_gen; 2169 struct item_head tmp_ih; 2170 struct item_head *ih; 2171 struct buffer_head *bh; 2172 __le32 *item; 2173 struct cpu_key key; 2174 INITIALIZE_PATH(path); 2175 int pos_in_item; 2176 int jbegin_count = JOURNAL_PER_BALANCE_CNT; 2177 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1; 2178 int retval; 2179 int use_get_block = 0; 2180 int bytes_copied = 0; 2181 int copy_size; 2182 int trans_running = 0; 2183 2184 /* catch places below that try to log something without starting a trans */ 2185 th.t_trans_id = 0; 2186 2187 if (!buffer_uptodate(bh_result)) { 2188 return -EIO; 2189 } 2190 2191 kmap(bh_result->b_page); 2192 start_over: 2193 reiserfs_write_lock(inode->i_sb); 2194 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3); 2195 2196 research: 2197 retval = search_for_position_by_key(inode->i_sb, &key, &path); 2198 if (retval != POSITION_FOUND) { 2199 use_get_block = 1; 2200 goto out; 2201 } 2202 2203 bh = get_last_bh(&path); 2204 ih = get_ih(&path); 2205 item = get_item(&path); 2206 pos_in_item = path.pos_in_item; 2207 2208 /* we've found an unformatted node */ 2209 if (indirect_item_found(retval, ih)) { 2210 if (bytes_copied > 0) { 2211 reiserfs_warning(inode->i_sb, "clm-6002", 2212 "bytes_copied %d", bytes_copied); 2213 } 2214 if (!get_block_num(item, pos_in_item)) { 2215 /* crap, we are writing to a hole */ 2216 use_get_block = 1; 2217 goto out; 2218 } 2219 set_block_dev_mapped(bh_result, 2220 get_block_num(item, pos_in_item), inode); 2221 } else if (is_direct_le_ih(ih)) { 2222 char *p; 2223 p = page_address(bh_result->b_page); 2224 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1); 2225 copy_size = ih_item_len(ih) - pos_in_item; 2226 2227 fs_gen = get_generation(inode->i_sb); 2228 copy_item_head(&tmp_ih, ih); 2229 2230 if (!trans_running) { 2231 /* vs-3050 is gone, no need to drop the path */ 2232 retval = journal_begin(&th, inode->i_sb, jbegin_count); 2233 if (retval) 2234 goto out; 2235 reiserfs_update_inode_transaction(inode); 2236 trans_running = 1; 2237 if (fs_changed(fs_gen, inode->i_sb) 2238 && item_moved(&tmp_ih, &path)) { 2239 reiserfs_restore_prepared_buffer(inode->i_sb, 2240 bh); 2241 goto research; 2242 } 2243 } 2244 2245 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 2246 2247 if (fs_changed(fs_gen, inode->i_sb) 2248 && item_moved(&tmp_ih, &path)) { 2249 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 2250 goto research; 2251 } 2252 2253 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied, 2254 copy_size); 2255 2256 journal_mark_dirty(&th, inode->i_sb, bh); 2257 bytes_copied += copy_size; 2258 set_block_dev_mapped(bh_result, 0, inode); 2259 2260 /* are there still bytes left? */ 2261 if (bytes_copied < bh_result->b_size && 2262 (byte_offset + bytes_copied) < inode->i_size) { 2263 set_cpu_key_k_offset(&key, 2264 cpu_key_k_offset(&key) + 2265 copy_size); 2266 goto research; 2267 } 2268 } else { 2269 reiserfs_warning(inode->i_sb, "clm-6003", 2270 "bad item inode %lu", inode->i_ino); 2271 retval = -EIO; 2272 goto out; 2273 } 2274 retval = 0; 2275 2276 out: 2277 pathrelse(&path); 2278 if (trans_running) { 2279 int err = journal_end(&th, inode->i_sb, jbegin_count); 2280 if (err) 2281 retval = err; 2282 trans_running = 0; 2283 } 2284 reiserfs_write_unlock(inode->i_sb); 2285 2286 /* this is where we fill in holes in the file. */ 2287 if (use_get_block) { 2288 retval = reiserfs_get_block(inode, block, bh_result, 2289 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX 2290 | GET_BLOCK_NO_DANGLE); 2291 if (!retval) { 2292 if (!buffer_mapped(bh_result) 2293 || bh_result->b_blocknr == 0) { 2294 /* get_block failed to find a mapped unformatted node. */ 2295 use_get_block = 0; 2296 goto start_over; 2297 } 2298 } 2299 } 2300 kunmap(bh_result->b_page); 2301 2302 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 2303 /* we've copied data from the page into the direct item, so the 2304 * buffer in the page is now clean, mark it to reflect that. 2305 */ 2306 lock_buffer(bh_result); 2307 clear_buffer_dirty(bh_result); 2308 unlock_buffer(bh_result); 2309 } 2310 return retval; 2311} 2312 2313/* 2314 * mason@suse.com: updated in 2.5.54 to follow the same general io 2315 * start/recovery path as __block_write_full_page, along with special 2316 * code to handle reiserfs tails. 2317 */ 2318static int reiserfs_write_full_page(struct page *page, 2319 struct writeback_control *wbc) 2320{ 2321 struct inode *inode = page->mapping->host; 2322 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT; 2323 int error = 0; 2324 unsigned long block; 2325 sector_t last_block; 2326 struct buffer_head *head, *bh; 2327 int partial = 0; 2328 int nr = 0; 2329 int checked = PageChecked(page); 2330 struct reiserfs_transaction_handle th; 2331 struct super_block *s = inode->i_sb; 2332 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize; 2333 th.t_trans_id = 0; 2334 2335 /* no logging allowed when nonblocking or from PF_MEMALLOC */ 2336 if (checked && (current->flags & PF_MEMALLOC)) { 2337 redirty_page_for_writepage(wbc, page); 2338 unlock_page(page); 2339 return 0; 2340 } 2341 2342 /* The page dirty bit is cleared before writepage is called, which 2343 * means we have to tell create_empty_buffers to make dirty buffers 2344 * The page really should be up to date at this point, so tossing 2345 * in the BH_Uptodate is just a sanity check. 2346 */ 2347 if (!page_has_buffers(page)) { 2348 create_empty_buffers(page, s->s_blocksize, 2349 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2350 } 2351 head = page_buffers(page); 2352 2353 /* last page in the file, zero out any contents past the 2354 ** last byte in the file 2355 */ 2356 if (page->index >= end_index) { 2357 unsigned last_offset; 2358 2359 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 2360 /* no file contents in this page */ 2361 if (page->index >= end_index + 1 || !last_offset) { 2362 unlock_page(page); 2363 return 0; 2364 } 2365 zero_user_segment(page, last_offset, PAGE_CACHE_SIZE); 2366 } 2367 bh = head; 2368 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits); 2369 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 2370 /* first map all the buffers, logging any direct items we find */ 2371 do { 2372 if (block > last_block) { 2373 /* 2374 * This can happen when the block size is less than 2375 * the page size. The corresponding bytes in the page 2376 * were zero filled above 2377 */ 2378 clear_buffer_dirty(bh); 2379 set_buffer_uptodate(bh); 2380 } else if ((checked || buffer_dirty(bh)) && 2381 (!buffer_mapped(bh) || (buffer_mapped(bh) 2382 && bh->b_blocknr == 2383 0))) { 2384 /* not mapped yet, or it points to a direct item, search 2385 * the btree for the mapping info, and log any direct 2386 * items found 2387 */ 2388 if ((error = map_block_for_writepage(inode, bh, block))) { 2389 goto fail; 2390 } 2391 } 2392 bh = bh->b_this_page; 2393 block++; 2394 } while (bh != head); 2395 2396 /* 2397 * we start the transaction after map_block_for_writepage, 2398 * because it can create holes in the file (an unbounded operation). 2399 * starting it here, we can make a reliable estimate for how many 2400 * blocks we're going to log 2401 */ 2402 if (checked) { 2403 ClearPageChecked(page); 2404 reiserfs_write_lock(s); 2405 error = journal_begin(&th, s, bh_per_page + 1); 2406 if (error) { 2407 reiserfs_write_unlock(s); 2408 goto fail; 2409 } 2410 reiserfs_update_inode_transaction(inode); 2411 } 2412 /* now go through and lock any dirty buffers on the page */ 2413 do { 2414 get_bh(bh); 2415 if (!buffer_mapped(bh)) 2416 continue; 2417 if (buffer_mapped(bh) && bh->b_blocknr == 0) 2418 continue; 2419 2420 if (checked) { 2421 reiserfs_prepare_for_journal(s, bh, 1); 2422 journal_mark_dirty(&th, s, bh); 2423 continue; 2424 } 2425 /* from this point on, we know the buffer is mapped to a 2426 * real block and not a direct item 2427 */ 2428 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 2429 lock_buffer(bh); 2430 } else { 2431 if (!trylock_buffer(bh)) { 2432 redirty_page_for_writepage(wbc, page); 2433 continue; 2434 } 2435 } 2436 if (test_clear_buffer_dirty(bh)) { 2437 mark_buffer_async_write(bh); 2438 } else { 2439 unlock_buffer(bh); 2440 } 2441 } while ((bh = bh->b_this_page) != head); 2442 2443 if (checked) { 2444 error = journal_end(&th, s, bh_per_page + 1); 2445 reiserfs_write_unlock(s); 2446 if (error) 2447 goto fail; 2448 } 2449 BUG_ON(PageWriteback(page)); 2450 set_page_writeback(page); 2451 unlock_page(page); 2452 2453 /* 2454 * since any buffer might be the only dirty buffer on the page, 2455 * the first submit_bh can bring the page out of writeback. 2456 * be careful with the buffers. 2457 */ 2458 do { 2459 struct buffer_head *next = bh->b_this_page; 2460 if (buffer_async_write(bh)) { 2461 submit_bh(WRITE, bh); 2462 nr++; 2463 } 2464 put_bh(bh); 2465 bh = next; 2466 } while (bh != head); 2467 2468 error = 0; 2469 done: 2470 if (nr == 0) { 2471 /* 2472 * if this page only had a direct item, it is very possible for 2473 * no io to be required without there being an error. Or, 2474 * someone else could have locked them and sent them down the 2475 * pipe without locking the page 2476 */ 2477 bh = head; 2478 do { 2479 if (!buffer_uptodate(bh)) { 2480 partial = 1; 2481 break; 2482 } 2483 bh = bh->b_this_page; 2484 } while (bh != head); 2485 if (!partial) 2486 SetPageUptodate(page); 2487 end_page_writeback(page); 2488 } 2489 return error; 2490 2491 fail: 2492 /* catches various errors, we need to make sure any valid dirty blocks 2493 * get to the media. The page is currently locked and not marked for 2494 * writeback 2495 */ 2496 ClearPageUptodate(page); 2497 bh = head; 2498 do { 2499 get_bh(bh); 2500 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) { 2501 lock_buffer(bh); 2502 mark_buffer_async_write(bh); 2503 } else { 2504 /* 2505 * clear any dirty bits that might have come from getting 2506 * attached to a dirty page 2507 */ 2508 clear_buffer_dirty(bh); 2509 } 2510 bh = bh->b_this_page; 2511 } while (bh != head); 2512 SetPageError(page); 2513 BUG_ON(PageWriteback(page)); 2514 set_page_writeback(page); 2515 unlock_page(page); 2516 do { 2517 struct buffer_head *next = bh->b_this_page; 2518 if (buffer_async_write(bh)) { 2519 clear_buffer_dirty(bh); 2520 submit_bh(WRITE, bh); 2521 nr++; 2522 } 2523 put_bh(bh); 2524 bh = next; 2525 } while (bh != head); 2526 goto done; 2527} 2528 2529static int reiserfs_readpage(struct file *f, struct page *page) 2530{ 2531 return block_read_full_page(page, reiserfs_get_block); 2532} 2533 2534static int reiserfs_writepage(struct page *page, struct writeback_control *wbc) 2535{ 2536 struct inode *inode = page->mapping->host; 2537 reiserfs_wait_on_write_block(inode->i_sb); 2538 return reiserfs_write_full_page(page, wbc); 2539} 2540 2541static int reiserfs_write_begin(struct file *file, 2542 struct address_space *mapping, 2543 loff_t pos, unsigned len, unsigned flags, 2544 struct page **pagep, void **fsdata) 2545{ 2546 struct inode *inode; 2547 struct page *page; 2548 pgoff_t index; 2549 int ret; 2550 int old_ref = 0; 2551 2552 inode = mapping->host; 2553 *fsdata = 0; 2554 if (flags & AOP_FLAG_CONT_EXPAND && 2555 (pos & (inode->i_sb->s_blocksize - 1)) == 0) { 2556 pos ++; 2557 *fsdata = (void *)(unsigned long)flags; 2558 } 2559 2560 index = pos >> PAGE_CACHE_SHIFT; 2561 page = grab_cache_page_write_begin(mapping, index, flags); 2562 if (!page) 2563 return -ENOMEM; 2564 *pagep = page; 2565 2566 reiserfs_wait_on_write_block(inode->i_sb); 2567 fix_tail_page_for_writing(page); 2568 if (reiserfs_transaction_running(inode->i_sb)) { 2569 struct reiserfs_transaction_handle *th; 2570 th = (struct reiserfs_transaction_handle *)current-> 2571 journal_info; 2572 BUG_ON(!th->t_refcount); 2573 BUG_ON(!th->t_trans_id); 2574 old_ref = th->t_refcount; 2575 th->t_refcount++; 2576 } 2577 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 2578 reiserfs_get_block); 2579 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2580 struct reiserfs_transaction_handle *th = current->journal_info; 2581 /* this gets a little ugly. If reiserfs_get_block returned an 2582 * error and left a transacstion running, we've got to close it, 2583 * and we've got to free handle if it was a persistent transaction. 2584 * 2585 * But, if we had nested into an existing transaction, we need 2586 * to just drop the ref count on the handle. 2587 * 2588 * If old_ref == 0, the transaction is from reiserfs_get_block, 2589 * and it was a persistent trans. Otherwise, it was nested above. 2590 */ 2591 if (th->t_refcount > old_ref) { 2592 if (old_ref) 2593 th->t_refcount--; 2594 else { 2595 int err; 2596 reiserfs_write_lock(inode->i_sb); 2597 err = reiserfs_end_persistent_transaction(th); 2598 reiserfs_write_unlock(inode->i_sb); 2599 if (err) 2600 ret = err; 2601 } 2602 } 2603 } 2604 if (ret) { 2605 unlock_page(page); 2606 page_cache_release(page); 2607 } 2608 return ret; 2609} 2610 2611int reiserfs_prepare_write(struct file *f, struct page *page, 2612 unsigned from, unsigned to) 2613{ 2614 struct inode *inode = page->mapping->host; 2615 int ret; 2616 int old_ref = 0; 2617 2618 reiserfs_write_unlock(inode->i_sb); 2619 reiserfs_wait_on_write_block(inode->i_sb); 2620 reiserfs_write_lock(inode->i_sb); 2621 2622 fix_tail_page_for_writing(page); 2623 if (reiserfs_transaction_running(inode->i_sb)) { 2624 struct reiserfs_transaction_handle *th; 2625 th = (struct reiserfs_transaction_handle *)current-> 2626 journal_info; 2627 BUG_ON(!th->t_refcount); 2628 BUG_ON(!th->t_trans_id); 2629 old_ref = th->t_refcount; 2630 th->t_refcount++; 2631 } 2632 2633 ret = block_prepare_write(page, from, to, reiserfs_get_block); 2634 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2635 struct reiserfs_transaction_handle *th = current->journal_info; 2636 /* this gets a little ugly. If reiserfs_get_block returned an 2637 * error and left a transacstion running, we've got to close it, 2638 * and we've got to free handle if it was a persistent transaction. 2639 * 2640 * But, if we had nested into an existing transaction, we need 2641 * to just drop the ref count on the handle. 2642 * 2643 * If old_ref == 0, the transaction is from reiserfs_get_block, 2644 * and it was a persistent trans. Otherwise, it was nested above. 2645 */ 2646 if (th->t_refcount > old_ref) { 2647 if (old_ref) 2648 th->t_refcount--; 2649 else { 2650 int err; 2651 reiserfs_write_lock(inode->i_sb); 2652 err = reiserfs_end_persistent_transaction(th); 2653 reiserfs_write_unlock(inode->i_sb); 2654 if (err) 2655 ret = err; 2656 } 2657 } 2658 } 2659 return ret; 2660 2661} 2662 2663static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block) 2664{ 2665 return generic_block_bmap(as, block, reiserfs_bmap); 2666} 2667 2668static int reiserfs_write_end(struct file *file, struct address_space *mapping, 2669 loff_t pos, unsigned len, unsigned copied, 2670 struct page *page, void *fsdata) 2671{ 2672 struct inode *inode = page->mapping->host; 2673 int ret = 0; 2674 int update_sd = 0; 2675 struct reiserfs_transaction_handle *th; 2676 unsigned start; 2677 int lock_depth = 0; 2678 bool locked = false; 2679 2680 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND) 2681 pos ++; 2682 2683 reiserfs_wait_on_write_block(inode->i_sb); 2684 if (reiserfs_transaction_running(inode->i_sb)) 2685 th = current->journal_info; 2686 else 2687 th = NULL; 2688 2689 start = pos & (PAGE_CACHE_SIZE - 1); 2690 if (unlikely(copied < len)) { 2691 if (!PageUptodate(page)) 2692 copied = 0; 2693 2694 page_zero_new_buffers(page, start + copied, start + len); 2695 } 2696 flush_dcache_page(page); 2697 2698 reiserfs_commit_page(inode, page, start, start + copied); 2699 2700 /* generic_commit_write does this for us, but does not update the 2701 ** transaction tracking stuff when the size changes. So, we have 2702 ** to do the i_size updates here. 2703 */ 2704 pos += copied; 2705 2706 if (pos > inode->i_size) { 2707 struct reiserfs_transaction_handle myth; 2708 lock_depth = reiserfs_write_lock_once(inode->i_sb); 2709 locked = true; 2710 /* If the file have grown beyond the border where it 2711 can have a tail, unmark it as needing a tail 2712 packing */ 2713 if ((have_large_tails(inode->i_sb) 2714 && inode->i_size > i_block_size(inode) * 4) 2715 || (have_small_tails(inode->i_sb) 2716 && inode->i_size > i_block_size(inode))) 2717 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2718 2719 ret = journal_begin(&myth, inode->i_sb, 1); 2720 if (ret) 2721 goto journal_error; 2722 2723 reiserfs_update_inode_transaction(inode); 2724 inode->i_size = pos; 2725 /* 2726 * this will just nest into our transaction. It's important 2727 * to use mark_inode_dirty so the inode gets pushed around on the 2728 * dirty lists, and so that O_SYNC works as expected 2729 */ 2730 mark_inode_dirty(inode); 2731 reiserfs_update_sd(&myth, inode); 2732 update_sd = 1; 2733 ret = journal_end(&myth, inode->i_sb, 1); 2734 if (ret) 2735 goto journal_error; 2736 } 2737 if (th) { 2738 if (!locked) { 2739 lock_depth = reiserfs_write_lock_once(inode->i_sb); 2740 locked = true; 2741 } 2742 if (!update_sd) 2743 mark_inode_dirty(inode); 2744 ret = reiserfs_end_persistent_transaction(th); 2745 if (ret) 2746 goto out; 2747 } 2748 2749 out: 2750 if (locked) 2751 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 2752 unlock_page(page); 2753 page_cache_release(page); 2754 return ret == 0 ? copied : ret; 2755 2756 journal_error: 2757 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 2758 locked = false; 2759 if (th) { 2760 if (!update_sd) 2761 reiserfs_update_sd(th, inode); 2762 ret = reiserfs_end_persistent_transaction(th); 2763 } 2764 goto out; 2765} 2766 2767int reiserfs_commit_write(struct file *f, struct page *page, 2768 unsigned from, unsigned to) 2769{ 2770 struct inode *inode = page->mapping->host; 2771 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to; 2772 int ret = 0; 2773 int update_sd = 0; 2774 struct reiserfs_transaction_handle *th = NULL; 2775 2776 reiserfs_write_unlock(inode->i_sb); 2777 reiserfs_wait_on_write_block(inode->i_sb); 2778 reiserfs_write_lock(inode->i_sb); 2779 2780 if (reiserfs_transaction_running(inode->i_sb)) { 2781 th = current->journal_info; 2782 } 2783 reiserfs_commit_page(inode, page, from, to); 2784 2785 /* generic_commit_write does this for us, but does not update the 2786 ** transaction tracking stuff when the size changes. So, we have 2787 ** to do the i_size updates here. 2788 */ 2789 if (pos > inode->i_size) { 2790 struct reiserfs_transaction_handle myth; 2791 /* If the file have grown beyond the border where it 2792 can have a tail, unmark it as needing a tail 2793 packing */ 2794 if ((have_large_tails(inode->i_sb) 2795 && inode->i_size > i_block_size(inode) * 4) 2796 || (have_small_tails(inode->i_sb) 2797 && inode->i_size > i_block_size(inode))) 2798 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2799 2800 ret = journal_begin(&myth, inode->i_sb, 1); 2801 if (ret) 2802 goto journal_error; 2803 2804 reiserfs_update_inode_transaction(inode); 2805 inode->i_size = pos; 2806 /* 2807 * this will just nest into our transaction. It's important 2808 * to use mark_inode_dirty so the inode gets pushed around on the 2809 * dirty lists, and so that O_SYNC works as expected 2810 */ 2811 mark_inode_dirty(inode); 2812 reiserfs_update_sd(&myth, inode); 2813 update_sd = 1; 2814 ret = journal_end(&myth, inode->i_sb, 1); 2815 if (ret) 2816 goto journal_error; 2817 } 2818 if (th) { 2819 if (!update_sd) 2820 mark_inode_dirty(inode); 2821 ret = reiserfs_end_persistent_transaction(th); 2822 if (ret) 2823 goto out; 2824 } 2825 2826 out: 2827 return ret; 2828 2829 journal_error: 2830 if (th) { 2831 if (!update_sd) 2832 reiserfs_update_sd(th, inode); 2833 ret = reiserfs_end_persistent_transaction(th); 2834 } 2835 2836 return ret; 2837} 2838 2839void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode) 2840{ 2841 if (reiserfs_attrs(inode->i_sb)) { 2842 if (sd_attrs & REISERFS_SYNC_FL) 2843 inode->i_flags |= S_SYNC; 2844 else 2845 inode->i_flags &= ~S_SYNC; 2846 if (sd_attrs & REISERFS_IMMUTABLE_FL) 2847 inode->i_flags |= S_IMMUTABLE; 2848 else 2849 inode->i_flags &= ~S_IMMUTABLE; 2850 if (sd_attrs & REISERFS_APPEND_FL) 2851 inode->i_flags |= S_APPEND; 2852 else 2853 inode->i_flags &= ~S_APPEND; 2854 if (sd_attrs & REISERFS_NOATIME_FL) 2855 inode->i_flags |= S_NOATIME; 2856 else 2857 inode->i_flags &= ~S_NOATIME; 2858 if (sd_attrs & REISERFS_NOTAIL_FL) 2859 REISERFS_I(inode)->i_flags |= i_nopack_mask; 2860 else 2861 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 2862 } 2863} 2864 2865void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs) 2866{ 2867 if (reiserfs_attrs(inode->i_sb)) { 2868 if (inode->i_flags & S_IMMUTABLE) 2869 *sd_attrs |= REISERFS_IMMUTABLE_FL; 2870 else 2871 *sd_attrs &= ~REISERFS_IMMUTABLE_FL; 2872 if (inode->i_flags & S_SYNC) 2873 *sd_attrs |= REISERFS_SYNC_FL; 2874 else 2875 *sd_attrs &= ~REISERFS_SYNC_FL; 2876 if (inode->i_flags & S_NOATIME) 2877 *sd_attrs |= REISERFS_NOATIME_FL; 2878 else 2879 *sd_attrs &= ~REISERFS_NOATIME_FL; 2880 if (REISERFS_I(inode)->i_flags & i_nopack_mask) 2881 *sd_attrs |= REISERFS_NOTAIL_FL; 2882 else 2883 *sd_attrs &= ~REISERFS_NOTAIL_FL; 2884 } 2885} 2886 2887/* decide if this buffer needs to stay around for data logging or ordered 2888** write purposes 2889*/ 2890static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh) 2891{ 2892 int ret = 1; 2893 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 2894 2895 lock_buffer(bh); 2896 spin_lock(&j->j_dirty_buffers_lock); 2897 if (!buffer_mapped(bh)) { 2898 goto free_jh; 2899 } 2900 /* the page is locked, and the only places that log a data buffer 2901 * also lock the page. 2902 */ 2903 if (reiserfs_file_data_log(inode)) { 2904 /* 2905 * very conservative, leave the buffer pinned if 2906 * anyone might need it. 2907 */ 2908 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) { 2909 ret = 0; 2910 } 2911 } else if (buffer_dirty(bh)) { 2912 struct reiserfs_journal_list *jl; 2913 struct reiserfs_jh *jh = bh->b_private; 2914 2915 /* why is this safe? 2916 * reiserfs_setattr updates i_size in the on disk 2917 * stat data before allowing vmtruncate to be called. 2918 * 2919 * If buffer was put onto the ordered list for this 2920 * transaction, we know for sure either this transaction 2921 * or an older one already has updated i_size on disk, 2922 * and this ordered data won't be referenced in the file 2923 * if we crash. 2924 * 2925 * if the buffer was put onto the ordered list for an older 2926 * transaction, we need to leave it around 2927 */ 2928 if (jh && (jl = jh->jl) 2929 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl) 2930 ret = 0; 2931 } 2932 free_jh: 2933 if (ret && bh->b_private) { 2934 reiserfs_free_jh(bh); 2935 } 2936 spin_unlock(&j->j_dirty_buffers_lock); 2937 unlock_buffer(bh); 2938 return ret; 2939} 2940 2941/* clm -- taken from fs/buffer.c:block_invalidate_page */ 2942static void reiserfs_invalidatepage(struct page *page, unsigned long offset) 2943{ 2944 struct buffer_head *head, *bh, *next; 2945 struct inode *inode = page->mapping->host; 2946 unsigned int curr_off = 0; 2947 int ret = 1; 2948 2949 BUG_ON(!PageLocked(page)); 2950 2951 if (offset == 0) 2952 ClearPageChecked(page); 2953 2954 if (!page_has_buffers(page)) 2955 goto out; 2956 2957 head = page_buffers(page); 2958 bh = head; 2959 do { 2960 unsigned int next_off = curr_off + bh->b_size; 2961 next = bh->b_this_page; 2962 2963 /* 2964 * is this block fully invalidated? 2965 */ 2966 if (offset <= curr_off) { 2967 if (invalidatepage_can_drop(inode, bh)) 2968 reiserfs_unmap_buffer(bh); 2969 else 2970 ret = 0; 2971 } 2972 curr_off = next_off; 2973 bh = next; 2974 } while (bh != head); 2975 2976 /* 2977 * We release buffers only if the entire page is being invalidated. 2978 * The get_block cached value has been unconditionally invalidated, 2979 * so real IO is not possible anymore. 2980 */ 2981 if (!offset && ret) { 2982 ret = try_to_release_page(page, 0); 2983 /* maybe should BUG_ON(!ret); - neilb */ 2984 } 2985 out: 2986 return; 2987} 2988 2989static int reiserfs_set_page_dirty(struct page *page) 2990{ 2991 struct inode *inode = page->mapping->host; 2992 if (reiserfs_file_data_log(inode)) { 2993 SetPageChecked(page); 2994 return __set_page_dirty_nobuffers(page); 2995 } 2996 return __set_page_dirty_buffers(page); 2997} 2998 2999/* 3000 * Returns 1 if the page's buffers were dropped. The page is locked. 3001 * 3002 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads 3003 * in the buffers at page_buffers(page). 3004 * 3005 * even in -o notail mode, we can't be sure an old mount without -o notail 3006 * didn't create files with tails. 3007 */ 3008static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags) 3009{ 3010 struct inode *inode = page->mapping->host; 3011 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3012 struct buffer_head *head; 3013 struct buffer_head *bh; 3014 int ret = 1; 3015 3016 WARN_ON(PageChecked(page)); 3017 spin_lock(&j->j_dirty_buffers_lock); 3018 head = page_buffers(page); 3019 bh = head; 3020 do { 3021 if (bh->b_private) { 3022 if (!buffer_dirty(bh) && !buffer_locked(bh)) { 3023 reiserfs_free_jh(bh); 3024 } else { 3025 ret = 0; 3026 break; 3027 } 3028 } 3029 bh = bh->b_this_page; 3030 } while (bh != head); 3031 if (ret) 3032 ret = try_to_free_buffers(page); 3033 spin_unlock(&j->j_dirty_buffers_lock); 3034 return ret; 3035} 3036 3037/* We thank Mingming Cao for helping us understand in great detail what 3038 to do in this section of the code. */ 3039static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb, 3040 const struct iovec *iov, loff_t offset, 3041 unsigned long nr_segs) 3042{ 3043 struct file *file = iocb->ki_filp; 3044 struct inode *inode = file->f_mapping->host; 3045 3046 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 3047 offset, nr_segs, 3048 reiserfs_get_blocks_direct_io, NULL); 3049} 3050 3051int reiserfs_setattr(struct dentry *dentry, struct iattr *attr) 3052{ 3053 struct inode *inode = dentry->d_inode; 3054 int error; 3055 unsigned int ia_valid; 3056 3057 /* must be turned off for recursive notify_change calls */ 3058 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID); 3059 3060 reiserfs_write_lock(inode->i_sb); 3061 if (attr->ia_valid & ATTR_SIZE) { 3062 /* version 2 items will be caught by the s_maxbytes check 3063 ** done for us in vmtruncate 3064 */ 3065 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 && 3066 attr->ia_size > MAX_NON_LFS) { 3067 error = -EFBIG; 3068 goto out; 3069 } 3070 /* fill in hole pointers in the expanding truncate case. */ 3071 if (attr->ia_size > inode->i_size) { 3072 error = generic_cont_expand_simple(inode, attr->ia_size); 3073 if (REISERFS_I(inode)->i_prealloc_count > 0) { 3074 int err; 3075 struct reiserfs_transaction_handle th; 3076 /* we're changing at most 2 bitmaps, inode + super */ 3077 err = journal_begin(&th, inode->i_sb, 4); 3078 if (!err) { 3079 reiserfs_discard_prealloc(&th, inode); 3080 err = journal_end(&th, inode->i_sb, 4); 3081 } 3082 if (err) 3083 error = err; 3084 } 3085 if (error) 3086 goto out; 3087 /* 3088 * file size is changed, ctime and mtime are 3089 * to be updated 3090 */ 3091 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME); 3092 } 3093 } 3094 3095 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) || 3096 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) && 3097 (get_inode_sd_version(inode) == STAT_DATA_V1)) { 3098 /* stat data of format v3.5 has 16 bit uid and gid */ 3099 error = -EINVAL; 3100 goto out; 3101 } 3102 3103 error = inode_change_ok(inode, attr); 3104 if (!error) { 3105 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 3106 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 3107 error = reiserfs_chown_xattrs(inode, attr); 3108 3109 if (!error) { 3110 struct reiserfs_transaction_handle th; 3111 int jbegin_count = 3112 2 * 3113 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) + 3114 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) + 3115 2; 3116 3117 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */ 3118 error = 3119 journal_begin(&th, inode->i_sb, 3120 jbegin_count); 3121 if (error) 3122 goto out; 3123 error = 3124 vfs_dq_transfer(inode, attr) ? -EDQUOT : 0; 3125 if (error) { 3126 journal_end(&th, inode->i_sb, 3127 jbegin_count); 3128 goto out; 3129 } 3130 /* Update corresponding info in inode so that everything is in 3131 * one transaction */ 3132 if (attr->ia_valid & ATTR_UID) 3133 inode->i_uid = attr->ia_uid; 3134 if (attr->ia_valid & ATTR_GID) 3135 inode->i_gid = attr->ia_gid; 3136 mark_inode_dirty(inode); 3137 error = 3138 journal_end(&th, inode->i_sb, jbegin_count); 3139 } 3140 } 3141 if (!error) 3142 error = inode_setattr(inode, attr); 3143 } 3144 3145 if (!error && reiserfs_posixacl(inode->i_sb)) { 3146 if (attr->ia_valid & ATTR_MODE) 3147 error = reiserfs_acl_chmod(inode); 3148 } 3149 3150 out: 3151 reiserfs_write_unlock(inode->i_sb); 3152 return error; 3153} 3154 3155const struct address_space_operations reiserfs_address_space_operations = { 3156 .writepage = reiserfs_writepage, 3157 .readpage = reiserfs_readpage, 3158 .readpages = reiserfs_readpages, 3159 .releasepage = reiserfs_releasepage, 3160 .invalidatepage = reiserfs_invalidatepage, 3161 .sync_page = block_sync_page, 3162 .write_begin = reiserfs_write_begin, 3163 .write_end = reiserfs_write_end, 3164 .bmap = reiserfs_aop_bmap, 3165 .direct_IO = reiserfs_direct_IO, 3166 .set_page_dirty = reiserfs_set_page_dirty, 3167}; 3168