inode.c revision 48d1788493f874e5d32dccb2911a7bc91c248b4b
1/* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5#include <linux/time.h> 6#include <linux/fs.h> 7#include "reiserfs.h" 8#include "acl.h" 9#include "xattr.h" 10#include <linux/exportfs.h> 11#include <linux/pagemap.h> 12#include <linux/highmem.h> 13#include <linux/slab.h> 14#include <asm/uaccess.h> 15#include <asm/unaligned.h> 16#include <linux/buffer_head.h> 17#include <linux/mpage.h> 18#include <linux/writeback.h> 19#include <linux/quotaops.h> 20#include <linux/swap.h> 21 22int reiserfs_commit_write(struct file *f, struct page *page, 23 unsigned from, unsigned to); 24 25void reiserfs_evict_inode(struct inode *inode) 26{ 27 /* We need blocks for transaction + (user+group) quota update (possibly delete) */ 28 int jbegin_count = 29 JOURNAL_PER_BALANCE_CNT * 2 + 30 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb); 31 struct reiserfs_transaction_handle th; 32 int depth; 33 int err; 34 35 if (!inode->i_nlink && !is_bad_inode(inode)) 36 dquot_initialize(inode); 37 38 truncate_inode_pages(&inode->i_data, 0); 39 if (inode->i_nlink) 40 goto no_delete; 41 42 depth = reiserfs_write_lock_once(inode->i_sb); 43 44 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */ 45 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */ 46 reiserfs_delete_xattrs(inode); 47 48 if (journal_begin(&th, inode->i_sb, jbegin_count)) 49 goto out; 50 reiserfs_update_inode_transaction(inode); 51 52 reiserfs_discard_prealloc(&th, inode); 53 54 err = reiserfs_delete_object(&th, inode); 55 56 /* Do quota update inside a transaction for journaled quotas. We must do that 57 * after delete_object so that quota updates go into the same transaction as 58 * stat data deletion */ 59 if (!err) 60 dquot_free_inode(inode); 61 62 if (journal_end(&th, inode->i_sb, jbegin_count)) 63 goto out; 64 65 /* check return value from reiserfs_delete_object after 66 * ending the transaction 67 */ 68 if (err) 69 goto out; 70 71 /* all items of file are deleted, so we can remove "save" link */ 72 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything 73 * about an error here */ 74 } else { 75 /* no object items are in the tree */ 76 ; 77 } 78 out: 79 reiserfs_write_unlock_once(inode->i_sb, depth); 80 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */ 81 dquot_drop(inode); 82 inode->i_blocks = 0; 83 return; 84 85no_delete: 86 clear_inode(inode); 87 dquot_drop(inode); 88} 89 90static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid, 91 __u32 objectid, loff_t offset, int type, int length) 92{ 93 key->version = version; 94 95 key->on_disk_key.k_dir_id = dirid; 96 key->on_disk_key.k_objectid = objectid; 97 set_cpu_key_k_offset(key, offset); 98 set_cpu_key_k_type(key, type); 99 key->key_length = length; 100} 101 102/* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set 103 offset and type of key */ 104void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset, 105 int type, int length) 106{ 107 _make_cpu_key(key, get_inode_item_key_version(inode), 108 le32_to_cpu(INODE_PKEY(inode)->k_dir_id), 109 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type, 110 length); 111} 112 113// 114// when key is 0, do not set version and short key 115// 116inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 117 int version, 118 loff_t offset, int type, int length, 119 int entry_count /*or ih_free_space */ ) 120{ 121 if (key) { 122 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id); 123 ih->ih_key.k_objectid = 124 cpu_to_le32(key->on_disk_key.k_objectid); 125 } 126 put_ih_version(ih, version); 127 set_le_ih_k_offset(ih, offset); 128 set_le_ih_k_type(ih, type); 129 put_ih_item_len(ih, length); 130 /* set_ih_free_space (ih, 0); */ 131 // for directory items it is entry count, for directs and stat 132 // datas - 0xffff, for indirects - 0 133 put_ih_entry_count(ih, entry_count); 134} 135 136// 137// FIXME: we might cache recently accessed indirect item 138 139// Ugh. Not too eager for that.... 140// I cut the code until such time as I see a convincing argument (benchmark). 141// I don't want a bloated inode struct..., and I don't like code complexity.... 142 143/* cutting the code is fine, since it really isn't in use yet and is easy 144** to add back in. But, Vladimir has a really good idea here. Think 145** about what happens for reading a file. For each page, 146** The VFS layer calls reiserfs_readpage, who searches the tree to find 147** an indirect item. This indirect item has X number of pointers, where 148** X is a big number if we've done the block allocation right. But, 149** we only use one or two of these pointers during each call to readpage, 150** needlessly researching again later on. 151** 152** The size of the cache could be dynamic based on the size of the file. 153** 154** I'd also like to see us cache the location the stat data item, since 155** we are needlessly researching for that frequently. 156** 157** --chris 158*/ 159 160/* If this page has a file tail in it, and 161** it was read in by get_block_create_0, the page data is valid, 162** but tail is still sitting in a direct item, and we can't write to 163** it. So, look through this page, and check all the mapped buffers 164** to make sure they have valid block numbers. Any that don't need 165** to be unmapped, so that __block_write_begin will correctly call 166** reiserfs_get_block to convert the tail into an unformatted node 167*/ 168static inline void fix_tail_page_for_writing(struct page *page) 169{ 170 struct buffer_head *head, *next, *bh; 171 172 if (page && page_has_buffers(page)) { 173 head = page_buffers(page); 174 bh = head; 175 do { 176 next = bh->b_this_page; 177 if (buffer_mapped(bh) && bh->b_blocknr == 0) { 178 reiserfs_unmap_buffer(bh); 179 } 180 bh = next; 181 } while (bh != head); 182 } 183} 184 185/* reiserfs_get_block does not need to allocate a block only if it has been 186 done already or non-hole position has been found in the indirect item */ 187static inline int allocation_needed(int retval, b_blocknr_t allocated, 188 struct item_head *ih, 189 __le32 * item, int pos_in_item) 190{ 191 if (allocated) 192 return 0; 193 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) && 194 get_block_num(item, pos_in_item)) 195 return 0; 196 return 1; 197} 198 199static inline int indirect_item_found(int retval, struct item_head *ih) 200{ 201 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih); 202} 203 204static inline void set_block_dev_mapped(struct buffer_head *bh, 205 b_blocknr_t block, struct inode *inode) 206{ 207 map_bh(bh, inode->i_sb, block); 208} 209 210// 211// files which were created in the earlier version can not be longer, 212// than 2 gb 213// 214static int file_capable(struct inode *inode, sector_t block) 215{ 216 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file. 217 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb 218 return 1; 219 220 return 0; 221} 222 223static int restart_transaction(struct reiserfs_transaction_handle *th, 224 struct inode *inode, struct treepath *path) 225{ 226 struct super_block *s = th->t_super; 227 int len = th->t_blocks_allocated; 228 int err; 229 230 BUG_ON(!th->t_trans_id); 231 BUG_ON(!th->t_refcount); 232 233 pathrelse(path); 234 235 /* we cannot restart while nested */ 236 if (th->t_refcount > 1) { 237 return 0; 238 } 239 reiserfs_update_sd(th, inode); 240 err = journal_end(th, s, len); 241 if (!err) { 242 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6); 243 if (!err) 244 reiserfs_update_inode_transaction(inode); 245 } 246 return err; 247} 248 249// it is called by get_block when create == 0. Returns block number 250// for 'block'-th logical block of file. When it hits direct item it 251// returns 0 (being called from bmap) or read direct item into piece 252// of page (bh_result) 253 254// Please improve the english/clarity in the comment above, as it is 255// hard to understand. 256 257static int _get_block_create_0(struct inode *inode, sector_t block, 258 struct buffer_head *bh_result, int args) 259{ 260 INITIALIZE_PATH(path); 261 struct cpu_key key; 262 struct buffer_head *bh; 263 struct item_head *ih, tmp_ih; 264 b_blocknr_t blocknr; 265 char *p = NULL; 266 int chars; 267 int ret; 268 int result; 269 int done = 0; 270 unsigned long offset; 271 272 // prepare the key to look for the 'block'-th block of file 273 make_cpu_key(&key, inode, 274 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY, 275 3); 276 277 result = search_for_position_by_key(inode->i_sb, &key, &path); 278 if (result != POSITION_FOUND) { 279 pathrelse(&path); 280 if (p) 281 kunmap(bh_result->b_page); 282 if (result == IO_ERROR) 283 return -EIO; 284 // We do not return -ENOENT if there is a hole but page is uptodate, because it means 285 // That there is some MMAPED data associated with it that is yet to be written to disk. 286 if ((args & GET_BLOCK_NO_HOLE) 287 && !PageUptodate(bh_result->b_page)) { 288 return -ENOENT; 289 } 290 return 0; 291 } 292 // 293 bh = get_last_bh(&path); 294 ih = get_ih(&path); 295 if (is_indirect_le_ih(ih)) { 296 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih); 297 298 /* FIXME: here we could cache indirect item or part of it in 299 the inode to avoid search_by_key in case of subsequent 300 access to file */ 301 blocknr = get_block_num(ind_item, path.pos_in_item); 302 ret = 0; 303 if (blocknr) { 304 map_bh(bh_result, inode->i_sb, blocknr); 305 if (path.pos_in_item == 306 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) { 307 set_buffer_boundary(bh_result); 308 } 309 } else 310 // We do not return -ENOENT if there is a hole but page is uptodate, because it means 311 // That there is some MMAPED data associated with it that is yet to be written to disk. 312 if ((args & GET_BLOCK_NO_HOLE) 313 && !PageUptodate(bh_result->b_page)) { 314 ret = -ENOENT; 315 } 316 317 pathrelse(&path); 318 if (p) 319 kunmap(bh_result->b_page); 320 return ret; 321 } 322 // requested data are in direct item(s) 323 if (!(args & GET_BLOCK_READ_DIRECT)) { 324 // we are called by bmap. FIXME: we can not map block of file 325 // when it is stored in direct item(s) 326 pathrelse(&path); 327 if (p) 328 kunmap(bh_result->b_page); 329 return -ENOENT; 330 } 331 332 /* if we've got a direct item, and the buffer or page was uptodate, 333 ** we don't want to pull data off disk again. skip to the 334 ** end, where we map the buffer and return 335 */ 336 if (buffer_uptodate(bh_result)) { 337 goto finished; 338 } else 339 /* 340 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date 341 ** pages without any buffers. If the page is up to date, we don't want 342 ** read old data off disk. Set the up to date bit on the buffer instead 343 ** and jump to the end 344 */ 345 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) { 346 set_buffer_uptodate(bh_result); 347 goto finished; 348 } 349 // read file tail into part of page 350 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1); 351 copy_item_head(&tmp_ih, ih); 352 353 /* we only want to kmap if we are reading the tail into the page. 354 ** this is not the common case, so we don't kmap until we are 355 ** sure we need to. But, this means the item might move if 356 ** kmap schedules 357 */ 358 if (!p) 359 p = (char *)kmap(bh_result->b_page); 360 361 p += offset; 362 memset(p, 0, inode->i_sb->s_blocksize); 363 do { 364 if (!is_direct_le_ih(ih)) { 365 BUG(); 366 } 367 /* make sure we don't read more bytes than actually exist in 368 ** the file. This can happen in odd cases where i_size isn't 369 ** correct, and when direct item padding results in a few 370 ** extra bytes at the end of the direct item 371 */ 372 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size) 373 break; 374 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) { 375 chars = 376 inode->i_size - (le_ih_k_offset(ih) - 1) - 377 path.pos_in_item; 378 done = 1; 379 } else { 380 chars = ih_item_len(ih) - path.pos_in_item; 381 } 382 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars); 383 384 if (done) 385 break; 386 387 p += chars; 388 389 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1)) 390 // we done, if read direct item is not the last item of 391 // node FIXME: we could try to check right delimiting key 392 // to see whether direct item continues in the right 393 // neighbor or rely on i_size 394 break; 395 396 // update key to look for the next piece 397 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars); 398 result = search_for_position_by_key(inode->i_sb, &key, &path); 399 if (result != POSITION_FOUND) 400 // i/o error most likely 401 break; 402 bh = get_last_bh(&path); 403 ih = get_ih(&path); 404 } while (1); 405 406 flush_dcache_page(bh_result->b_page); 407 kunmap(bh_result->b_page); 408 409 finished: 410 pathrelse(&path); 411 412 if (result == IO_ERROR) 413 return -EIO; 414 415 /* this buffer has valid data, but isn't valid for io. mapping it to 416 * block #0 tells the rest of reiserfs it just has a tail in it 417 */ 418 map_bh(bh_result, inode->i_sb, 0); 419 set_buffer_uptodate(bh_result); 420 return 0; 421} 422 423// this is called to create file map. So, _get_block_create_0 will not 424// read direct item 425static int reiserfs_bmap(struct inode *inode, sector_t block, 426 struct buffer_head *bh_result, int create) 427{ 428 if (!file_capable(inode, block)) 429 return -EFBIG; 430 431 reiserfs_write_lock(inode->i_sb); 432 /* do not read the direct item */ 433 _get_block_create_0(inode, block, bh_result, 0); 434 reiserfs_write_unlock(inode->i_sb); 435 return 0; 436} 437 438/* special version of get_block that is only used by grab_tail_page right 439** now. It is sent to __block_write_begin, and when you try to get a 440** block past the end of the file (or a block from a hole) it returns 441** -ENOENT instead of a valid buffer. __block_write_begin expects to 442** be able to do i/o on the buffers returned, unless an error value 443** is also returned. 444** 445** So, this allows __block_write_begin to be used for reading a single block 446** in a page. Where it does not produce a valid page for holes, or past the 447** end of the file. This turns out to be exactly what we need for reading 448** tails for conversion. 449** 450** The point of the wrapper is forcing a certain value for create, even 451** though the VFS layer is calling this function with create==1. If you 452** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block, 453** don't use this function. 454*/ 455static int reiserfs_get_block_create_0(struct inode *inode, sector_t block, 456 struct buffer_head *bh_result, 457 int create) 458{ 459 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE); 460} 461 462/* This is special helper for reiserfs_get_block in case we are executing 463 direct_IO request. */ 464static int reiserfs_get_blocks_direct_io(struct inode *inode, 465 sector_t iblock, 466 struct buffer_head *bh_result, 467 int create) 468{ 469 int ret; 470 471 bh_result->b_page = NULL; 472 473 /* We set the b_size before reiserfs_get_block call since it is 474 referenced in convert_tail_for_hole() that may be called from 475 reiserfs_get_block() */ 476 bh_result->b_size = (1 << inode->i_blkbits); 477 478 ret = reiserfs_get_block(inode, iblock, bh_result, 479 create | GET_BLOCK_NO_DANGLE); 480 if (ret) 481 goto out; 482 483 /* don't allow direct io onto tail pages */ 484 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 485 /* make sure future calls to the direct io funcs for this offset 486 ** in the file fail by unmapping the buffer 487 */ 488 clear_buffer_mapped(bh_result); 489 ret = -EINVAL; 490 } 491 /* Possible unpacked tail. Flush the data before pages have 492 disappeared */ 493 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) { 494 int err; 495 496 reiserfs_write_lock(inode->i_sb); 497 498 err = reiserfs_commit_for_inode(inode); 499 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 500 501 reiserfs_write_unlock(inode->i_sb); 502 503 if (err < 0) 504 ret = err; 505 } 506 out: 507 return ret; 508} 509 510/* 511** helper function for when reiserfs_get_block is called for a hole 512** but the file tail is still in a direct item 513** bh_result is the buffer head for the hole 514** tail_offset is the offset of the start of the tail in the file 515** 516** This calls prepare_write, which will start a new transaction 517** you should not be in a transaction, or have any paths held when you 518** call this. 519*/ 520static int convert_tail_for_hole(struct inode *inode, 521 struct buffer_head *bh_result, 522 loff_t tail_offset) 523{ 524 unsigned long index; 525 unsigned long tail_end; 526 unsigned long tail_start; 527 struct page *tail_page; 528 struct page *hole_page = bh_result->b_page; 529 int retval = 0; 530 531 if ((tail_offset & (bh_result->b_size - 1)) != 1) 532 return -EIO; 533 534 /* always try to read until the end of the block */ 535 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1); 536 tail_end = (tail_start | (bh_result->b_size - 1)) + 1; 537 538 index = tail_offset >> PAGE_CACHE_SHIFT; 539 /* hole_page can be zero in case of direct_io, we are sure 540 that we cannot get here if we write with O_DIRECT into 541 tail page */ 542 if (!hole_page || index != hole_page->index) { 543 tail_page = grab_cache_page(inode->i_mapping, index); 544 retval = -ENOMEM; 545 if (!tail_page) { 546 goto out; 547 } 548 } else { 549 tail_page = hole_page; 550 } 551 552 /* we don't have to make sure the conversion did not happen while 553 ** we were locking the page because anyone that could convert 554 ** must first take i_mutex. 555 ** 556 ** We must fix the tail page for writing because it might have buffers 557 ** that are mapped, but have a block number of 0. This indicates tail 558 ** data that has been read directly into the page, and 559 ** __block_write_begin won't trigger a get_block in this case. 560 */ 561 fix_tail_page_for_writing(tail_page); 562 retval = __reiserfs_write_begin(tail_page, tail_start, 563 tail_end - tail_start); 564 if (retval) 565 goto unlock; 566 567 /* tail conversion might change the data in the page */ 568 flush_dcache_page(tail_page); 569 570 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end); 571 572 unlock: 573 if (tail_page != hole_page) { 574 unlock_page(tail_page); 575 page_cache_release(tail_page); 576 } 577 out: 578 return retval; 579} 580 581static inline int _allocate_block(struct reiserfs_transaction_handle *th, 582 sector_t block, 583 struct inode *inode, 584 b_blocknr_t * allocated_block_nr, 585 struct treepath *path, int flags) 586{ 587 BUG_ON(!th->t_trans_id); 588 589#ifdef REISERFS_PREALLOCATE 590 if (!(flags & GET_BLOCK_NO_IMUX)) { 591 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr, 592 path, block); 593 } 594#endif 595 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path, 596 block); 597} 598 599int reiserfs_get_block(struct inode *inode, sector_t block, 600 struct buffer_head *bh_result, int create) 601{ 602 int repeat, retval = 0; 603 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int 604 INITIALIZE_PATH(path); 605 int pos_in_item; 606 struct cpu_key key; 607 struct buffer_head *bh, *unbh = NULL; 608 struct item_head *ih, tmp_ih; 609 __le32 *item; 610 int done; 611 int fs_gen; 612 int lock_depth; 613 struct reiserfs_transaction_handle *th = NULL; 614 /* space reserved in transaction batch: 615 . 3 balancings in direct->indirect conversion 616 . 1 block involved into reiserfs_update_sd() 617 XXX in practically impossible worst case direct2indirect() 618 can incur (much) more than 3 balancings. 619 quota update for user, group */ 620 int jbegin_count = 621 JOURNAL_PER_BALANCE_CNT * 3 + 1 + 622 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb); 623 int version; 624 int dangle = 1; 625 loff_t new_offset = 626 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1; 627 628 lock_depth = reiserfs_write_lock_once(inode->i_sb); 629 version = get_inode_item_key_version(inode); 630 631 if (!file_capable(inode, block)) { 632 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 633 return -EFBIG; 634 } 635 636 /* if !create, we aren't changing the FS, so we don't need to 637 ** log anything, so we don't need to start a transaction 638 */ 639 if (!(create & GET_BLOCK_CREATE)) { 640 int ret; 641 /* find number of block-th logical block of the file */ 642 ret = _get_block_create_0(inode, block, bh_result, 643 create | GET_BLOCK_READ_DIRECT); 644 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 645 return ret; 646 } 647 /* 648 * if we're already in a transaction, make sure to close 649 * any new transactions we start in this func 650 */ 651 if ((create & GET_BLOCK_NO_DANGLE) || 652 reiserfs_transaction_running(inode->i_sb)) 653 dangle = 0; 654 655 /* If file is of such a size, that it might have a tail and tails are enabled 656 ** we should mark it as possibly needing tail packing on close 657 */ 658 if ((have_large_tails(inode->i_sb) 659 && inode->i_size < i_block_size(inode) * 4) 660 || (have_small_tails(inode->i_sb) 661 && inode->i_size < i_block_size(inode))) 662 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; 663 664 /* set the key of the first byte in the 'block'-th block of file */ 665 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ ); 666 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) { 667 start_trans: 668 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count); 669 if (!th) { 670 retval = -ENOMEM; 671 goto failure; 672 } 673 reiserfs_update_inode_transaction(inode); 674 } 675 research: 676 677 retval = search_for_position_by_key(inode->i_sb, &key, &path); 678 if (retval == IO_ERROR) { 679 retval = -EIO; 680 goto failure; 681 } 682 683 bh = get_last_bh(&path); 684 ih = get_ih(&path); 685 item = get_item(&path); 686 pos_in_item = path.pos_in_item; 687 688 fs_gen = get_generation(inode->i_sb); 689 copy_item_head(&tmp_ih, ih); 690 691 if (allocation_needed 692 (retval, allocated_block_nr, ih, item, pos_in_item)) { 693 /* we have to allocate block for the unformatted node */ 694 if (!th) { 695 pathrelse(&path); 696 goto start_trans; 697 } 698 699 repeat = 700 _allocate_block(th, block, inode, &allocated_block_nr, 701 &path, create); 702 703 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) { 704 /* restart the transaction to give the journal a chance to free 705 ** some blocks. releases the path, so we have to go back to 706 ** research if we succeed on the second try 707 */ 708 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1; 709 retval = restart_transaction(th, inode, &path); 710 if (retval) 711 goto failure; 712 repeat = 713 _allocate_block(th, block, inode, 714 &allocated_block_nr, NULL, create); 715 716 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) { 717 goto research; 718 } 719 if (repeat == QUOTA_EXCEEDED) 720 retval = -EDQUOT; 721 else 722 retval = -ENOSPC; 723 goto failure; 724 } 725 726 if (fs_changed(fs_gen, inode->i_sb) 727 && item_moved(&tmp_ih, &path)) { 728 goto research; 729 } 730 } 731 732 if (indirect_item_found(retval, ih)) { 733 b_blocknr_t unfm_ptr; 734 /* 'block'-th block is in the file already (there is 735 corresponding cell in some indirect item). But it may be 736 zero unformatted node pointer (hole) */ 737 unfm_ptr = get_block_num(item, pos_in_item); 738 if (unfm_ptr == 0) { 739 /* use allocated block to plug the hole */ 740 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 741 if (fs_changed(fs_gen, inode->i_sb) 742 && item_moved(&tmp_ih, &path)) { 743 reiserfs_restore_prepared_buffer(inode->i_sb, 744 bh); 745 goto research; 746 } 747 set_buffer_new(bh_result); 748 if (buffer_dirty(bh_result) 749 && reiserfs_data_ordered(inode->i_sb)) 750 reiserfs_add_ordered_list(inode, bh_result); 751 put_block_num(item, pos_in_item, allocated_block_nr); 752 unfm_ptr = allocated_block_nr; 753 journal_mark_dirty(th, inode->i_sb, bh); 754 reiserfs_update_sd(th, inode); 755 } 756 set_block_dev_mapped(bh_result, unfm_ptr, inode); 757 pathrelse(&path); 758 retval = 0; 759 if (!dangle && th) 760 retval = reiserfs_end_persistent_transaction(th); 761 762 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 763 764 /* the item was found, so new blocks were not added to the file 765 ** there is no need to make sure the inode is updated with this 766 ** transaction 767 */ 768 return retval; 769 } 770 771 if (!th) { 772 pathrelse(&path); 773 goto start_trans; 774 } 775 776 /* desired position is not found or is in the direct item. We have 777 to append file with holes up to 'block'-th block converting 778 direct items to indirect one if necessary */ 779 done = 0; 780 do { 781 if (is_statdata_le_ih(ih)) { 782 __le32 unp = 0; 783 struct cpu_key tmp_key; 784 785 /* indirect item has to be inserted */ 786 make_le_item_head(&tmp_ih, &key, version, 1, 787 TYPE_INDIRECT, UNFM_P_SIZE, 788 0 /* free_space */ ); 789 790 if (cpu_key_k_offset(&key) == 1) { 791 /* we are going to add 'block'-th block to the file. Use 792 allocated block for that */ 793 unp = cpu_to_le32(allocated_block_nr); 794 set_block_dev_mapped(bh_result, 795 allocated_block_nr, inode); 796 set_buffer_new(bh_result); 797 done = 1; 798 } 799 tmp_key = key; // ;) 800 set_cpu_key_k_offset(&tmp_key, 1); 801 PATH_LAST_POSITION(&path)++; 802 803 retval = 804 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih, 805 inode, (char *)&unp); 806 if (retval) { 807 reiserfs_free_block(th, inode, 808 allocated_block_nr, 1); 809 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST 810 } 811 //mark_tail_converted (inode); 812 } else if (is_direct_le_ih(ih)) { 813 /* direct item has to be converted */ 814 loff_t tail_offset; 815 816 tail_offset = 817 ((le_ih_k_offset(ih) - 818 1) & ~(inode->i_sb->s_blocksize - 1)) + 1; 819 if (tail_offset == cpu_key_k_offset(&key)) { 820 /* direct item we just found fits into block we have 821 to map. Convert it into unformatted node: use 822 bh_result for the conversion */ 823 set_block_dev_mapped(bh_result, 824 allocated_block_nr, inode); 825 unbh = bh_result; 826 done = 1; 827 } else { 828 /* we have to padd file tail stored in direct item(s) 829 up to block size and convert it to unformatted 830 node. FIXME: this should also get into page cache */ 831 832 pathrelse(&path); 833 /* 834 * ugly, but we can only end the transaction if 835 * we aren't nested 836 */ 837 BUG_ON(!th->t_refcount); 838 if (th->t_refcount == 1) { 839 retval = 840 reiserfs_end_persistent_transaction 841 (th); 842 th = NULL; 843 if (retval) 844 goto failure; 845 } 846 847 retval = 848 convert_tail_for_hole(inode, bh_result, 849 tail_offset); 850 if (retval) { 851 if (retval != -ENOSPC) 852 reiserfs_error(inode->i_sb, 853 "clm-6004", 854 "convert tail failed " 855 "inode %lu, error %d", 856 inode->i_ino, 857 retval); 858 if (allocated_block_nr) { 859 /* the bitmap, the super, and the stat data == 3 */ 860 if (!th) 861 th = reiserfs_persistent_transaction(inode->i_sb, 3); 862 if (th) 863 reiserfs_free_block(th, 864 inode, 865 allocated_block_nr, 866 1); 867 } 868 goto failure; 869 } 870 goto research; 871 } 872 retval = 873 direct2indirect(th, inode, &path, unbh, 874 tail_offset); 875 if (retval) { 876 reiserfs_unmap_buffer(unbh); 877 reiserfs_free_block(th, inode, 878 allocated_block_nr, 1); 879 goto failure; 880 } 881 /* it is important the set_buffer_uptodate is done after 882 ** the direct2indirect. The buffer might contain valid 883 ** data newer than the data on disk (read by readpage, changed, 884 ** and then sent here by writepage). direct2indirect needs 885 ** to know if unbh was already up to date, so it can decide 886 ** if the data in unbh needs to be replaced with data from 887 ** the disk 888 */ 889 set_buffer_uptodate(unbh); 890 891 /* unbh->b_page == NULL in case of DIRECT_IO request, this means 892 buffer will disappear shortly, so it should not be added to 893 */ 894 if (unbh->b_page) { 895 /* we've converted the tail, so we must 896 ** flush unbh before the transaction commits 897 */ 898 reiserfs_add_tail_list(inode, unbh); 899 900 /* mark it dirty now to prevent commit_write from adding 901 ** this buffer to the inode's dirty buffer list 902 */ 903 /* 904 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty(). 905 * It's still atomic, but it sets the page dirty too, 906 * which makes it eligible for writeback at any time by the 907 * VM (which was also the case with __mark_buffer_dirty()) 908 */ 909 mark_buffer_dirty(unbh); 910 } 911 } else { 912 /* append indirect item with holes if needed, when appending 913 pointer to 'block'-th block use block, which is already 914 allocated */ 915 struct cpu_key tmp_key; 916 unp_t unf_single = 0; // We use this in case we need to allocate only 917 // one block which is a fastpath 918 unp_t *un; 919 __u64 max_to_insert = 920 MAX_ITEM_LEN(inode->i_sb->s_blocksize) / 921 UNFM_P_SIZE; 922 __u64 blocks_needed; 923 924 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE, 925 "vs-804: invalid position for append"); 926 /* indirect item has to be appended, set up key of that position */ 927 make_cpu_key(&tmp_key, inode, 928 le_key_k_offset(version, 929 &(ih->ih_key)) + 930 op_bytes_number(ih, 931 inode->i_sb->s_blocksize), 932 //pos_in_item * inode->i_sb->s_blocksize, 933 TYPE_INDIRECT, 3); // key type is unimportant 934 935 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key), 936 "green-805: invalid offset"); 937 blocks_needed = 938 1 + 939 ((cpu_key_k_offset(&key) - 940 cpu_key_k_offset(&tmp_key)) >> inode->i_sb-> 941 s_blocksize_bits); 942 943 if (blocks_needed == 1) { 944 un = &unf_single; 945 } else { 946 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS); 947 if (!un) { 948 un = &unf_single; 949 blocks_needed = 1; 950 max_to_insert = 0; 951 } 952 } 953 if (blocks_needed <= max_to_insert) { 954 /* we are going to add target block to the file. Use allocated 955 block for that */ 956 un[blocks_needed - 1] = 957 cpu_to_le32(allocated_block_nr); 958 set_block_dev_mapped(bh_result, 959 allocated_block_nr, inode); 960 set_buffer_new(bh_result); 961 done = 1; 962 } else { 963 /* paste hole to the indirect item */ 964 /* If kmalloc failed, max_to_insert becomes zero and it means we 965 only have space for one block */ 966 blocks_needed = 967 max_to_insert ? max_to_insert : 1; 968 } 969 retval = 970 reiserfs_paste_into_item(th, &path, &tmp_key, inode, 971 (char *)un, 972 UNFM_P_SIZE * 973 blocks_needed); 974 975 if (blocks_needed != 1) 976 kfree(un); 977 978 if (retval) { 979 reiserfs_free_block(th, inode, 980 allocated_block_nr, 1); 981 goto failure; 982 } 983 if (!done) { 984 /* We need to mark new file size in case this function will be 985 interrupted/aborted later on. And we may do this only for 986 holes. */ 987 inode->i_size += 988 inode->i_sb->s_blocksize * blocks_needed; 989 } 990 } 991 992 if (done == 1) 993 break; 994 995 /* this loop could log more blocks than we had originally asked 996 ** for. So, we have to allow the transaction to end if it is 997 ** too big or too full. Update the inode so things are 998 ** consistent if we crash before the function returns 999 ** 1000 ** release the path so that anybody waiting on the path before 1001 ** ending their transaction will be able to continue. 1002 */ 1003 if (journal_transaction_should_end(th, th->t_blocks_allocated)) { 1004 retval = restart_transaction(th, inode, &path); 1005 if (retval) 1006 goto failure; 1007 } 1008 /* 1009 * inserting indirect pointers for a hole can take a 1010 * long time. reschedule if needed and also release the write 1011 * lock for others. 1012 */ 1013 if (need_resched()) { 1014 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 1015 schedule(); 1016 lock_depth = reiserfs_write_lock_once(inode->i_sb); 1017 } 1018 1019 retval = search_for_position_by_key(inode->i_sb, &key, &path); 1020 if (retval == IO_ERROR) { 1021 retval = -EIO; 1022 goto failure; 1023 } 1024 if (retval == POSITION_FOUND) { 1025 reiserfs_warning(inode->i_sb, "vs-825", 1026 "%K should not be found", &key); 1027 retval = -EEXIST; 1028 if (allocated_block_nr) 1029 reiserfs_free_block(th, inode, 1030 allocated_block_nr, 1); 1031 pathrelse(&path); 1032 goto failure; 1033 } 1034 bh = get_last_bh(&path); 1035 ih = get_ih(&path); 1036 item = get_item(&path); 1037 pos_in_item = path.pos_in_item; 1038 } while (1); 1039 1040 retval = 0; 1041 1042 failure: 1043 if (th && (!dangle || (retval && !th->t_trans_id))) { 1044 int err; 1045 if (th->t_trans_id) 1046 reiserfs_update_sd(th, inode); 1047 err = reiserfs_end_persistent_transaction(th); 1048 if (err) 1049 retval = err; 1050 } 1051 1052 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 1053 reiserfs_check_path(&path); 1054 return retval; 1055} 1056 1057static int 1058reiserfs_readpages(struct file *file, struct address_space *mapping, 1059 struct list_head *pages, unsigned nr_pages) 1060{ 1061 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block); 1062} 1063 1064/* Compute real number of used bytes by file 1065 * Following three functions can go away when we'll have enough space in stat item 1066 */ 1067static int real_space_diff(struct inode *inode, int sd_size) 1068{ 1069 int bytes; 1070 loff_t blocksize = inode->i_sb->s_blocksize; 1071 1072 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) 1073 return sd_size; 1074 1075 /* End of file is also in full block with indirect reference, so round 1076 ** up to the next block. 1077 ** 1078 ** there is just no way to know if the tail is actually packed 1079 ** on the file, so we have to assume it isn't. When we pack the 1080 ** tail, we add 4 bytes to pretend there really is an unformatted 1081 ** node pointer 1082 */ 1083 bytes = 1084 ((inode->i_size + 1085 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE + 1086 sd_size; 1087 return bytes; 1088} 1089 1090static inline loff_t to_real_used_space(struct inode *inode, ulong blocks, 1091 int sd_size) 1092{ 1093 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1094 return inode->i_size + 1095 (loff_t) (real_space_diff(inode, sd_size)); 1096 } 1097 return ((loff_t) real_space_diff(inode, sd_size)) + 1098 (((loff_t) blocks) << 9); 1099} 1100 1101/* Compute number of blocks used by file in ReiserFS counting */ 1102static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size) 1103{ 1104 loff_t bytes = inode_get_bytes(inode); 1105 loff_t real_space = real_space_diff(inode, sd_size); 1106 1107 /* keeps fsck and non-quota versions of reiserfs happy */ 1108 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1109 bytes += (loff_t) 511; 1110 } 1111 1112 /* files from before the quota patch might i_blocks such that 1113 ** bytes < real_space. Deal with that here to prevent it from 1114 ** going negative. 1115 */ 1116 if (bytes < real_space) 1117 return 0; 1118 return (bytes - real_space) >> 9; 1119} 1120 1121// 1122// BAD: new directories have stat data of new type and all other items 1123// of old type. Version stored in the inode says about body items, so 1124// in update_stat_data we can not rely on inode, but have to check 1125// item version directly 1126// 1127 1128// called by read_locked_inode 1129static void init_inode(struct inode *inode, struct treepath *path) 1130{ 1131 struct buffer_head *bh; 1132 struct item_head *ih; 1133 __u32 rdev; 1134 //int version = ITEM_VERSION_1; 1135 1136 bh = PATH_PLAST_BUFFER(path); 1137 ih = PATH_PITEM_HEAD(path); 1138 1139 copy_key(INODE_PKEY(inode), &(ih->ih_key)); 1140 1141 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list)); 1142 REISERFS_I(inode)->i_flags = 0; 1143 REISERFS_I(inode)->i_prealloc_block = 0; 1144 REISERFS_I(inode)->i_prealloc_count = 0; 1145 REISERFS_I(inode)->i_trans_id = 0; 1146 REISERFS_I(inode)->i_jl = NULL; 1147 reiserfs_init_xattr_rwsem(inode); 1148 1149 if (stat_data_v1(ih)) { 1150 struct stat_data_v1 *sd = 1151 (struct stat_data_v1 *)B_I_PITEM(bh, ih); 1152 unsigned long blocks; 1153 1154 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1155 set_inode_sd_version(inode, STAT_DATA_V1); 1156 inode->i_mode = sd_v1_mode(sd); 1157 set_nlink(inode, sd_v1_nlink(sd)); 1158 inode->i_uid = sd_v1_uid(sd); 1159 inode->i_gid = sd_v1_gid(sd); 1160 inode->i_size = sd_v1_size(sd); 1161 inode->i_atime.tv_sec = sd_v1_atime(sd); 1162 inode->i_mtime.tv_sec = sd_v1_mtime(sd); 1163 inode->i_ctime.tv_sec = sd_v1_ctime(sd); 1164 inode->i_atime.tv_nsec = 0; 1165 inode->i_ctime.tv_nsec = 0; 1166 inode->i_mtime.tv_nsec = 0; 1167 1168 inode->i_blocks = sd_v1_blocks(sd); 1169 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1170 blocks = (inode->i_size + 511) >> 9; 1171 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9); 1172 if (inode->i_blocks > blocks) { 1173 // there was a bug in <=3.5.23 when i_blocks could take negative 1174 // values. Starting from 3.5.17 this value could even be stored in 1175 // stat data. For such files we set i_blocks based on file 1176 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be 1177 // only updated if file's inode will ever change 1178 inode->i_blocks = blocks; 1179 } 1180 1181 rdev = sd_v1_rdev(sd); 1182 REISERFS_I(inode)->i_first_direct_byte = 1183 sd_v1_first_direct_byte(sd); 1184 /* an early bug in the quota code can give us an odd number for the 1185 ** block count. This is incorrect, fix it here. 1186 */ 1187 if (inode->i_blocks & 1) { 1188 inode->i_blocks++; 1189 } 1190 inode_set_bytes(inode, 1191 to_real_used_space(inode, inode->i_blocks, 1192 SD_V1_SIZE)); 1193 /* nopack is initially zero for v1 objects. For v2 objects, 1194 nopack is initialised from sd_attrs */ 1195 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 1196 } else { 1197 // new stat data found, but object may have old items 1198 // (directories and symlinks) 1199 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih); 1200 1201 inode->i_mode = sd_v2_mode(sd); 1202 set_nlink(inode, sd_v2_nlink(sd)); 1203 inode->i_uid = sd_v2_uid(sd); 1204 inode->i_size = sd_v2_size(sd); 1205 inode->i_gid = sd_v2_gid(sd); 1206 inode->i_mtime.tv_sec = sd_v2_mtime(sd); 1207 inode->i_atime.tv_sec = sd_v2_atime(sd); 1208 inode->i_ctime.tv_sec = sd_v2_ctime(sd); 1209 inode->i_ctime.tv_nsec = 0; 1210 inode->i_mtime.tv_nsec = 0; 1211 inode->i_atime.tv_nsec = 0; 1212 inode->i_blocks = sd_v2_blocks(sd); 1213 rdev = sd_v2_rdev(sd); 1214 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1215 inode->i_generation = 1216 le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1217 else 1218 inode->i_generation = sd_v2_generation(sd); 1219 1220 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1221 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1222 else 1223 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1224 REISERFS_I(inode)->i_first_direct_byte = 0; 1225 set_inode_sd_version(inode, STAT_DATA_V2); 1226 inode_set_bytes(inode, 1227 to_real_used_space(inode, inode->i_blocks, 1228 SD_V2_SIZE)); 1229 /* read persistent inode attributes from sd and initialise 1230 generic inode flags from them */ 1231 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd); 1232 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode); 1233 } 1234 1235 pathrelse(path); 1236 if (S_ISREG(inode->i_mode)) { 1237 inode->i_op = &reiserfs_file_inode_operations; 1238 inode->i_fop = &reiserfs_file_operations; 1239 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1240 } else if (S_ISDIR(inode->i_mode)) { 1241 inode->i_op = &reiserfs_dir_inode_operations; 1242 inode->i_fop = &reiserfs_dir_operations; 1243 } else if (S_ISLNK(inode->i_mode)) { 1244 inode->i_op = &reiserfs_symlink_inode_operations; 1245 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1246 } else { 1247 inode->i_blocks = 0; 1248 inode->i_op = &reiserfs_special_inode_operations; 1249 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev)); 1250 } 1251} 1252 1253// update new stat data with inode fields 1254static void inode2sd(void *sd, struct inode *inode, loff_t size) 1255{ 1256 struct stat_data *sd_v2 = (struct stat_data *)sd; 1257 __u16 flags; 1258 1259 set_sd_v2_mode(sd_v2, inode->i_mode); 1260 set_sd_v2_nlink(sd_v2, inode->i_nlink); 1261 set_sd_v2_uid(sd_v2, inode->i_uid); 1262 set_sd_v2_size(sd_v2, size); 1263 set_sd_v2_gid(sd_v2, inode->i_gid); 1264 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec); 1265 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec); 1266 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec); 1267 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE)); 1268 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1269 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev)); 1270 else 1271 set_sd_v2_generation(sd_v2, inode->i_generation); 1272 flags = REISERFS_I(inode)->i_attrs; 1273 i_attrs_to_sd_attrs(inode, &flags); 1274 set_sd_v2_attrs(sd_v2, flags); 1275} 1276 1277// used to copy inode's fields to old stat data 1278static void inode2sd_v1(void *sd, struct inode *inode, loff_t size) 1279{ 1280 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd; 1281 1282 set_sd_v1_mode(sd_v1, inode->i_mode); 1283 set_sd_v1_uid(sd_v1, inode->i_uid); 1284 set_sd_v1_gid(sd_v1, inode->i_gid); 1285 set_sd_v1_nlink(sd_v1, inode->i_nlink); 1286 set_sd_v1_size(sd_v1, size); 1287 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec); 1288 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec); 1289 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec); 1290 1291 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1292 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev)); 1293 else 1294 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE)); 1295 1296 // Sigh. i_first_direct_byte is back 1297 set_sd_v1_first_direct_byte(sd_v1, 1298 REISERFS_I(inode)->i_first_direct_byte); 1299} 1300 1301/* NOTE, you must prepare the buffer head before sending it here, 1302** and then log it after the call 1303*/ 1304static void update_stat_data(struct treepath *path, struct inode *inode, 1305 loff_t size) 1306{ 1307 struct buffer_head *bh; 1308 struct item_head *ih; 1309 1310 bh = PATH_PLAST_BUFFER(path); 1311 ih = PATH_PITEM_HEAD(path); 1312 1313 if (!is_statdata_le_ih(ih)) 1314 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h", 1315 INODE_PKEY(inode), ih); 1316 1317 if (stat_data_v1(ih)) { 1318 // path points to old stat data 1319 inode2sd_v1(B_I_PITEM(bh, ih), inode, size); 1320 } else { 1321 inode2sd(B_I_PITEM(bh, ih), inode, size); 1322 } 1323 1324 return; 1325} 1326 1327void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 1328 struct inode *inode, loff_t size) 1329{ 1330 struct cpu_key key; 1331 INITIALIZE_PATH(path); 1332 struct buffer_head *bh; 1333 int fs_gen; 1334 struct item_head *ih, tmp_ih; 1335 int retval; 1336 1337 BUG_ON(!th->t_trans_id); 1338 1339 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant 1340 1341 for (;;) { 1342 int pos; 1343 /* look for the object's stat data */ 1344 retval = search_item(inode->i_sb, &key, &path); 1345 if (retval == IO_ERROR) { 1346 reiserfs_error(inode->i_sb, "vs-13050", 1347 "i/o failure occurred trying to " 1348 "update %K stat data", &key); 1349 return; 1350 } 1351 if (retval == ITEM_NOT_FOUND) { 1352 pos = PATH_LAST_POSITION(&path); 1353 pathrelse(&path); 1354 if (inode->i_nlink == 0) { 1355 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */ 1356 return; 1357 } 1358 reiserfs_warning(inode->i_sb, "vs-13060", 1359 "stat data of object %k (nlink == %d) " 1360 "not found (pos %d)", 1361 INODE_PKEY(inode), inode->i_nlink, 1362 pos); 1363 reiserfs_check_path(&path); 1364 return; 1365 } 1366 1367 /* sigh, prepare_for_journal might schedule. When it schedules the 1368 ** FS might change. We have to detect that, and loop back to the 1369 ** search if the stat data item has moved 1370 */ 1371 bh = get_last_bh(&path); 1372 ih = get_ih(&path); 1373 copy_item_head(&tmp_ih, ih); 1374 fs_gen = get_generation(inode->i_sb); 1375 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 1376 if (fs_changed(fs_gen, inode->i_sb) 1377 && item_moved(&tmp_ih, &path)) { 1378 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 1379 continue; /* Stat_data item has been moved after scheduling. */ 1380 } 1381 break; 1382 } 1383 update_stat_data(&path, inode, size); 1384 journal_mark_dirty(th, th->t_super, bh); 1385 pathrelse(&path); 1386 return; 1387} 1388 1389/* reiserfs_read_locked_inode is called to read the inode off disk, and it 1390** does a make_bad_inode when things go wrong. But, we need to make sure 1391** and clear the key in the private portion of the inode, otherwise a 1392** corresponding iput might try to delete whatever object the inode last 1393** represented. 1394*/ 1395static void reiserfs_make_bad_inode(struct inode *inode) 1396{ 1397 memset(INODE_PKEY(inode), 0, KEY_SIZE); 1398 make_bad_inode(inode); 1399} 1400 1401// 1402// initially this function was derived from minix or ext2's analog and 1403// evolved as the prototype did 1404// 1405 1406int reiserfs_init_locked_inode(struct inode *inode, void *p) 1407{ 1408 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p; 1409 inode->i_ino = args->objectid; 1410 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid); 1411 return 0; 1412} 1413 1414/* looks for stat data in the tree, and fills up the fields of in-core 1415 inode stat data fields */ 1416void reiserfs_read_locked_inode(struct inode *inode, 1417 struct reiserfs_iget_args *args) 1418{ 1419 INITIALIZE_PATH(path_to_sd); 1420 struct cpu_key key; 1421 unsigned long dirino; 1422 int retval; 1423 1424 dirino = args->dirid; 1425 1426 /* set version 1, version 2 could be used too, because stat data 1427 key is the same in both versions */ 1428 key.version = KEY_FORMAT_3_5; 1429 key.on_disk_key.k_dir_id = dirino; 1430 key.on_disk_key.k_objectid = inode->i_ino; 1431 key.on_disk_key.k_offset = 0; 1432 key.on_disk_key.k_type = 0; 1433 1434 /* look for the object's stat data */ 1435 retval = search_item(inode->i_sb, &key, &path_to_sd); 1436 if (retval == IO_ERROR) { 1437 reiserfs_error(inode->i_sb, "vs-13070", 1438 "i/o failure occurred trying to find " 1439 "stat data of %K", &key); 1440 reiserfs_make_bad_inode(inode); 1441 return; 1442 } 1443 if (retval != ITEM_FOUND) { 1444 /* a stale NFS handle can trigger this without it being an error */ 1445 pathrelse(&path_to_sd); 1446 reiserfs_make_bad_inode(inode); 1447 clear_nlink(inode); 1448 return; 1449 } 1450 1451 init_inode(inode, &path_to_sd); 1452 1453 /* It is possible that knfsd is trying to access inode of a file 1454 that is being removed from the disk by some other thread. As we 1455 update sd on unlink all that is required is to check for nlink 1456 here. This bug was first found by Sizif when debugging 1457 SquidNG/Butterfly, forgotten, and found again after Philippe 1458 Gramoulle <philippe.gramoulle@mmania.com> reproduced it. 1459 1460 More logical fix would require changes in fs/inode.c:iput() to 1461 remove inode from hash-table _after_ fs cleaned disk stuff up and 1462 in iget() to return NULL if I_FREEING inode is found in 1463 hash-table. */ 1464 /* Currently there is one place where it's ok to meet inode with 1465 nlink==0: processing of open-unlinked and half-truncated files 1466 during mount (fs/reiserfs/super.c:finish_unfinished()). */ 1467 if ((inode->i_nlink == 0) && 1468 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) { 1469 reiserfs_warning(inode->i_sb, "vs-13075", 1470 "dead inode read from disk %K. " 1471 "This is likely to be race with knfsd. Ignore", 1472 &key); 1473 reiserfs_make_bad_inode(inode); 1474 } 1475 1476 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */ 1477 1478 /* 1479 * Stat data v1 doesn't support ACLs. 1480 */ 1481 if (get_inode_sd_version(inode) == STAT_DATA_V1) 1482 cache_no_acl(inode); 1483} 1484 1485/** 1486 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked(). 1487 * 1488 * @inode: inode from hash table to check 1489 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args. 1490 * 1491 * This function is called by iget5_locked() to distinguish reiserfs inodes 1492 * having the same inode numbers. Such inodes can only exist due to some 1493 * error condition. One of them should be bad. Inodes with identical 1494 * inode numbers (objectids) are distinguished by parent directory ids. 1495 * 1496 */ 1497int reiserfs_find_actor(struct inode *inode, void *opaque) 1498{ 1499 struct reiserfs_iget_args *args; 1500 1501 args = opaque; 1502 /* args is already in CPU order */ 1503 return (inode->i_ino == args->objectid) && 1504 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid); 1505} 1506 1507struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key) 1508{ 1509 struct inode *inode; 1510 struct reiserfs_iget_args args; 1511 1512 args.objectid = key->on_disk_key.k_objectid; 1513 args.dirid = key->on_disk_key.k_dir_id; 1514 reiserfs_write_unlock(s); 1515 inode = iget5_locked(s, key->on_disk_key.k_objectid, 1516 reiserfs_find_actor, reiserfs_init_locked_inode, 1517 (void *)(&args)); 1518 reiserfs_write_lock(s); 1519 if (!inode) 1520 return ERR_PTR(-ENOMEM); 1521 1522 if (inode->i_state & I_NEW) { 1523 reiserfs_read_locked_inode(inode, &args); 1524 unlock_new_inode(inode); 1525 } 1526 1527 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) { 1528 /* either due to i/o error or a stale NFS handle */ 1529 iput(inode); 1530 inode = NULL; 1531 } 1532 return inode; 1533} 1534 1535static struct dentry *reiserfs_get_dentry(struct super_block *sb, 1536 u32 objectid, u32 dir_id, u32 generation) 1537 1538{ 1539 struct cpu_key key; 1540 struct inode *inode; 1541 1542 key.on_disk_key.k_objectid = objectid; 1543 key.on_disk_key.k_dir_id = dir_id; 1544 reiserfs_write_lock(sb); 1545 inode = reiserfs_iget(sb, &key); 1546 if (inode && !IS_ERR(inode) && generation != 0 && 1547 generation != inode->i_generation) { 1548 iput(inode); 1549 inode = NULL; 1550 } 1551 reiserfs_write_unlock(sb); 1552 1553 return d_obtain_alias(inode); 1554} 1555 1556struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1557 int fh_len, int fh_type) 1558{ 1559 /* fhtype happens to reflect the number of u32s encoded. 1560 * due to a bug in earlier code, fhtype might indicate there 1561 * are more u32s then actually fitted. 1562 * so if fhtype seems to be more than len, reduce fhtype. 1563 * Valid types are: 1564 * 2 - objectid + dir_id - legacy support 1565 * 3 - objectid + dir_id + generation 1566 * 4 - objectid + dir_id + objectid and dirid of parent - legacy 1567 * 5 - objectid + dir_id + generation + objectid and dirid of parent 1568 * 6 - as above plus generation of directory 1569 * 6 does not fit in NFSv2 handles 1570 */ 1571 if (fh_type > fh_len) { 1572 if (fh_type != 6 || fh_len != 5) 1573 reiserfs_warning(sb, "reiserfs-13077", 1574 "nfsd/reiserfs, fhtype=%d, len=%d - odd", 1575 fh_type, fh_len); 1576 fh_type = 5; 1577 } 1578 1579 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1], 1580 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0); 1581} 1582 1583struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, 1584 int fh_len, int fh_type) 1585{ 1586 if (fh_type < 4) 1587 return NULL; 1588 1589 return reiserfs_get_dentry(sb, 1590 (fh_type >= 5) ? fid->raw[3] : fid->raw[2], 1591 (fh_type >= 5) ? fid->raw[4] : fid->raw[3], 1592 (fh_type == 6) ? fid->raw[5] : 0); 1593} 1594 1595int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp, 1596 struct inode *parent) 1597{ 1598 int maxlen = *lenp; 1599 1600 if (parent && (maxlen < 5)) { 1601 *lenp = 5; 1602 return 255; 1603 } else if (maxlen < 3) { 1604 *lenp = 3; 1605 return 255; 1606 } 1607 1608 data[0] = inode->i_ino; 1609 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1610 data[2] = inode->i_generation; 1611 *lenp = 3; 1612 if (parent) { 1613 data[3] = parent->i_ino; 1614 data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id); 1615 *lenp = 5; 1616 if (maxlen >= 6) { 1617 data[5] = parent->i_generation; 1618 *lenp = 6; 1619 } 1620 } 1621 return *lenp; 1622} 1623 1624/* looks for stat data, then copies fields to it, marks the buffer 1625 containing stat data as dirty */ 1626/* reiserfs inodes are never really dirty, since the dirty inode call 1627** always logs them. This call allows the VFS inode marking routines 1628** to properly mark inodes for datasync and such, but only actually 1629** does something when called for a synchronous update. 1630*/ 1631int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1632{ 1633 struct reiserfs_transaction_handle th; 1634 int jbegin_count = 1; 1635 1636 if (inode->i_sb->s_flags & MS_RDONLY) 1637 return -EROFS; 1638 /* memory pressure can sometimes initiate write_inode calls with sync == 1, 1639 ** these cases are just when the system needs ram, not when the 1640 ** inode needs to reach disk for safety, and they can safely be 1641 ** ignored because the altered inode has already been logged. 1642 */ 1643 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) { 1644 reiserfs_write_lock(inode->i_sb); 1645 if (!journal_begin(&th, inode->i_sb, jbegin_count)) { 1646 reiserfs_update_sd(&th, inode); 1647 journal_end_sync(&th, inode->i_sb, jbegin_count); 1648 } 1649 reiserfs_write_unlock(inode->i_sb); 1650 } 1651 return 0; 1652} 1653 1654/* stat data of new object is inserted already, this inserts the item 1655 containing "." and ".." entries */ 1656static int reiserfs_new_directory(struct reiserfs_transaction_handle *th, 1657 struct inode *inode, 1658 struct item_head *ih, struct treepath *path, 1659 struct inode *dir) 1660{ 1661 struct super_block *sb = th->t_super; 1662 char empty_dir[EMPTY_DIR_SIZE]; 1663 char *body = empty_dir; 1664 struct cpu_key key; 1665 int retval; 1666 1667 BUG_ON(!th->t_trans_id); 1668 1669 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id), 1670 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET, 1671 TYPE_DIRENTRY, 3 /*key length */ ); 1672 1673 /* compose item head for new item. Directories consist of items of 1674 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it 1675 is done by reiserfs_new_inode */ 1676 if (old_format_only(sb)) { 1677 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1678 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2); 1679 1680 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id, 1681 ih->ih_key.k_objectid, 1682 INODE_PKEY(dir)->k_dir_id, 1683 INODE_PKEY(dir)->k_objectid); 1684 } else { 1685 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1686 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2); 1687 1688 make_empty_dir_item(body, ih->ih_key.k_dir_id, 1689 ih->ih_key.k_objectid, 1690 INODE_PKEY(dir)->k_dir_id, 1691 INODE_PKEY(dir)->k_objectid); 1692 } 1693 1694 /* look for place in the tree for new item */ 1695 retval = search_item(sb, &key, path); 1696 if (retval == IO_ERROR) { 1697 reiserfs_error(sb, "vs-13080", 1698 "i/o failure occurred creating new directory"); 1699 return -EIO; 1700 } 1701 if (retval == ITEM_FOUND) { 1702 pathrelse(path); 1703 reiserfs_warning(sb, "vs-13070", 1704 "object with this key exists (%k)", 1705 &(ih->ih_key)); 1706 return -EEXIST; 1707 } 1708 1709 /* insert item, that is empty directory item */ 1710 return reiserfs_insert_item(th, path, &key, ih, inode, body); 1711} 1712 1713/* stat data of object has been inserted, this inserts the item 1714 containing the body of symlink */ 1715static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */ 1716 struct item_head *ih, 1717 struct treepath *path, const char *symname, 1718 int item_len) 1719{ 1720 struct super_block *sb = th->t_super; 1721 struct cpu_key key; 1722 int retval; 1723 1724 BUG_ON(!th->t_trans_id); 1725 1726 _make_cpu_key(&key, KEY_FORMAT_3_5, 1727 le32_to_cpu(ih->ih_key.k_dir_id), 1728 le32_to_cpu(ih->ih_key.k_objectid), 1729 1, TYPE_DIRECT, 3 /*key length */ ); 1730 1731 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len, 1732 0 /*free_space */ ); 1733 1734 /* look for place in the tree for new item */ 1735 retval = search_item(sb, &key, path); 1736 if (retval == IO_ERROR) { 1737 reiserfs_error(sb, "vs-13080", 1738 "i/o failure occurred creating new symlink"); 1739 return -EIO; 1740 } 1741 if (retval == ITEM_FOUND) { 1742 pathrelse(path); 1743 reiserfs_warning(sb, "vs-13080", 1744 "object with this key exists (%k)", 1745 &(ih->ih_key)); 1746 return -EEXIST; 1747 } 1748 1749 /* insert item, that is body of symlink */ 1750 return reiserfs_insert_item(th, path, &key, ih, inode, symname); 1751} 1752 1753/* inserts the stat data into the tree, and then calls 1754 reiserfs_new_directory (to insert ".", ".." item if new object is 1755 directory) or reiserfs_new_symlink (to insert symlink body if new 1756 object is symlink) or nothing (if new object is regular file) 1757 1758 NOTE! uid and gid must already be set in the inode. If we return 1759 non-zero due to an error, we have to drop the quota previously allocated 1760 for the fresh inode. This can only be done outside a transaction, so 1761 if we return non-zero, we also end the transaction. */ 1762int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 1763 struct inode *dir, umode_t mode, const char *symname, 1764 /* 0 for regular, EMTRY_DIR_SIZE for dirs, 1765 strlen (symname) for symlinks) */ 1766 loff_t i_size, struct dentry *dentry, 1767 struct inode *inode, 1768 struct reiserfs_security_handle *security) 1769{ 1770 struct super_block *sb; 1771 struct reiserfs_iget_args args; 1772 INITIALIZE_PATH(path_to_key); 1773 struct cpu_key key; 1774 struct item_head ih; 1775 struct stat_data sd; 1776 int retval; 1777 int err; 1778 1779 BUG_ON(!th->t_trans_id); 1780 1781 dquot_initialize(inode); 1782 err = dquot_alloc_inode(inode); 1783 if (err) 1784 goto out_end_trans; 1785 if (!dir->i_nlink) { 1786 err = -EPERM; 1787 goto out_bad_inode; 1788 } 1789 1790 sb = dir->i_sb; 1791 1792 /* item head of new item */ 1793 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir); 1794 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th)); 1795 if (!ih.ih_key.k_objectid) { 1796 err = -ENOMEM; 1797 goto out_bad_inode; 1798 } 1799 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid); 1800 if (old_format_only(sb)) 1801 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET, 1802 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT); 1803 else 1804 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET, 1805 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT); 1806 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE); 1807 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id); 1808 if (insert_inode_locked4(inode, args.objectid, 1809 reiserfs_find_actor, &args) < 0) { 1810 err = -EINVAL; 1811 goto out_bad_inode; 1812 } 1813 if (old_format_only(sb)) 1814 /* not a perfect generation count, as object ids can be reused, but 1815 ** this is as good as reiserfs can do right now. 1816 ** note that the private part of inode isn't filled in yet, we have 1817 ** to use the directory. 1818 */ 1819 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid); 1820 else 1821#if defined( USE_INODE_GENERATION_COUNTER ) 1822 inode->i_generation = 1823 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation); 1824#else 1825 inode->i_generation = ++event; 1826#endif 1827 1828 /* fill stat data */ 1829 set_nlink(inode, (S_ISDIR(mode) ? 2 : 1)); 1830 1831 /* uid and gid must already be set by the caller for quota init */ 1832 1833 /* symlink cannot be immutable or append only, right? */ 1834 if (S_ISLNK(inode->i_mode)) 1835 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND); 1836 1837 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC; 1838 inode->i_size = i_size; 1839 inode->i_blocks = 0; 1840 inode->i_bytes = 0; 1841 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 : 1842 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ; 1843 1844 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list)); 1845 REISERFS_I(inode)->i_flags = 0; 1846 REISERFS_I(inode)->i_prealloc_block = 0; 1847 REISERFS_I(inode)->i_prealloc_count = 0; 1848 REISERFS_I(inode)->i_trans_id = 0; 1849 REISERFS_I(inode)->i_jl = NULL; 1850 REISERFS_I(inode)->i_attrs = 1851 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK; 1852 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode); 1853 reiserfs_init_xattr_rwsem(inode); 1854 1855 /* key to search for correct place for new stat data */ 1856 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id), 1857 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET, 1858 TYPE_STAT_DATA, 3 /*key length */ ); 1859 1860 /* find proper place for inserting of stat data */ 1861 retval = search_item(sb, &key, &path_to_key); 1862 if (retval == IO_ERROR) { 1863 err = -EIO; 1864 goto out_bad_inode; 1865 } 1866 if (retval == ITEM_FOUND) { 1867 pathrelse(&path_to_key); 1868 err = -EEXIST; 1869 goto out_bad_inode; 1870 } 1871 if (old_format_only(sb)) { 1872 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) { 1873 pathrelse(&path_to_key); 1874 /* i_uid or i_gid is too big to be stored in stat data v3.5 */ 1875 err = -EINVAL; 1876 goto out_bad_inode; 1877 } 1878 inode2sd_v1(&sd, inode, inode->i_size); 1879 } else { 1880 inode2sd(&sd, inode, inode->i_size); 1881 } 1882 // store in in-core inode the key of stat data and version all 1883 // object items will have (directory items will have old offset 1884 // format, other new objects will consist of new items) 1885 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode)) 1886 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1887 else 1888 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1889 if (old_format_only(sb)) 1890 set_inode_sd_version(inode, STAT_DATA_V1); 1891 else 1892 set_inode_sd_version(inode, STAT_DATA_V2); 1893 1894 /* insert the stat data into the tree */ 1895#ifdef DISPLACE_NEW_PACKING_LOCALITIES 1896 if (REISERFS_I(dir)->new_packing_locality) 1897 th->displace_new_blocks = 1; 1898#endif 1899 retval = 1900 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode, 1901 (char *)(&sd)); 1902 if (retval) { 1903 err = retval; 1904 reiserfs_check_path(&path_to_key); 1905 goto out_bad_inode; 1906 } 1907#ifdef DISPLACE_NEW_PACKING_LOCALITIES 1908 if (!th->displace_new_blocks) 1909 REISERFS_I(dir)->new_packing_locality = 0; 1910#endif 1911 if (S_ISDIR(mode)) { 1912 /* insert item with "." and ".." */ 1913 retval = 1914 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir); 1915 } 1916 1917 if (S_ISLNK(mode)) { 1918 /* insert body of symlink */ 1919 if (!old_format_only(sb)) 1920 i_size = ROUND_UP(i_size); 1921 retval = 1922 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname, 1923 i_size); 1924 } 1925 if (retval) { 1926 err = retval; 1927 reiserfs_check_path(&path_to_key); 1928 journal_end(th, th->t_super, th->t_blocks_allocated); 1929 goto out_inserted_sd; 1930 } 1931 1932 if (reiserfs_posixacl(inode->i_sb)) { 1933 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode); 1934 if (retval) { 1935 err = retval; 1936 reiserfs_check_path(&path_to_key); 1937 journal_end(th, th->t_super, th->t_blocks_allocated); 1938 goto out_inserted_sd; 1939 } 1940 } else if (inode->i_sb->s_flags & MS_POSIXACL) { 1941 reiserfs_warning(inode->i_sb, "jdm-13090", 1942 "ACLs aren't enabled in the fs, " 1943 "but vfs thinks they are!"); 1944 } else if (IS_PRIVATE(dir)) 1945 inode->i_flags |= S_PRIVATE; 1946 1947 if (security->name) { 1948 retval = reiserfs_security_write(th, inode, security); 1949 if (retval) { 1950 err = retval; 1951 reiserfs_check_path(&path_to_key); 1952 retval = journal_end(th, th->t_super, 1953 th->t_blocks_allocated); 1954 if (retval) 1955 err = retval; 1956 goto out_inserted_sd; 1957 } 1958 } 1959 1960 reiserfs_update_sd(th, inode); 1961 reiserfs_check_path(&path_to_key); 1962 1963 return 0; 1964 1965/* it looks like you can easily compress these two goto targets into 1966 * one. Keeping it like this doesn't actually hurt anything, and they 1967 * are place holders for what the quota code actually needs. 1968 */ 1969 out_bad_inode: 1970 /* Invalidate the object, nothing was inserted yet */ 1971 INODE_PKEY(inode)->k_objectid = 0; 1972 1973 /* Quota change must be inside a transaction for journaling */ 1974 dquot_free_inode(inode); 1975 1976 out_end_trans: 1977 journal_end(th, th->t_super, th->t_blocks_allocated); 1978 /* Drop can be outside and it needs more credits so it's better to have it outside */ 1979 dquot_drop(inode); 1980 inode->i_flags |= S_NOQUOTA; 1981 make_bad_inode(inode); 1982 1983 out_inserted_sd: 1984 clear_nlink(inode); 1985 th->t_trans_id = 0; /* so the caller can't use this handle later */ 1986 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */ 1987 iput(inode); 1988 return err; 1989} 1990 1991/* 1992** finds the tail page in the page cache, 1993** reads the last block in. 1994** 1995** On success, page_result is set to a locked, pinned page, and bh_result 1996** is set to an up to date buffer for the last block in the file. returns 0. 1997** 1998** tail conversion is not done, so bh_result might not be valid for writing 1999** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before 2000** trying to write the block. 2001** 2002** on failure, nonzero is returned, page_result and bh_result are untouched. 2003*/ 2004static int grab_tail_page(struct inode *inode, 2005 struct page **page_result, 2006 struct buffer_head **bh_result) 2007{ 2008 2009 /* we want the page with the last byte in the file, 2010 ** not the page that will hold the next byte for appending 2011 */ 2012 unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT; 2013 unsigned long pos = 0; 2014 unsigned long start = 0; 2015 unsigned long blocksize = inode->i_sb->s_blocksize; 2016 unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1); 2017 struct buffer_head *bh; 2018 struct buffer_head *head; 2019 struct page *page; 2020 int error; 2021 2022 /* we know that we are only called with inode->i_size > 0. 2023 ** we also know that a file tail can never be as big as a block 2024 ** If i_size % blocksize == 0, our file is currently block aligned 2025 ** and it won't need converting or zeroing after a truncate. 2026 */ 2027 if ((offset & (blocksize - 1)) == 0) { 2028 return -ENOENT; 2029 } 2030 page = grab_cache_page(inode->i_mapping, index); 2031 error = -ENOMEM; 2032 if (!page) { 2033 goto out; 2034 } 2035 /* start within the page of the last block in the file */ 2036 start = (offset / blocksize) * blocksize; 2037 2038 error = __block_write_begin(page, start, offset - start, 2039 reiserfs_get_block_create_0); 2040 if (error) 2041 goto unlock; 2042 2043 head = page_buffers(page); 2044 bh = head; 2045 do { 2046 if (pos >= start) { 2047 break; 2048 } 2049 bh = bh->b_this_page; 2050 pos += blocksize; 2051 } while (bh != head); 2052 2053 if (!buffer_uptodate(bh)) { 2054 /* note, this should never happen, prepare_write should 2055 ** be taking care of this for us. If the buffer isn't up to date, 2056 ** I've screwed up the code to find the buffer, or the code to 2057 ** call prepare_write 2058 */ 2059 reiserfs_error(inode->i_sb, "clm-6000", 2060 "error reading block %lu", bh->b_blocknr); 2061 error = -EIO; 2062 goto unlock; 2063 } 2064 *bh_result = bh; 2065 *page_result = page; 2066 2067 out: 2068 return error; 2069 2070 unlock: 2071 unlock_page(page); 2072 page_cache_release(page); 2073 return error; 2074} 2075 2076/* 2077** vfs version of truncate file. Must NOT be called with 2078** a transaction already started. 2079** 2080** some code taken from block_truncate_page 2081*/ 2082int reiserfs_truncate_file(struct inode *inode, int update_timestamps) 2083{ 2084 struct reiserfs_transaction_handle th; 2085 /* we want the offset for the first byte after the end of the file */ 2086 unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 2087 unsigned blocksize = inode->i_sb->s_blocksize; 2088 unsigned length; 2089 struct page *page = NULL; 2090 int error; 2091 struct buffer_head *bh = NULL; 2092 int err2; 2093 int lock_depth; 2094 2095 lock_depth = reiserfs_write_lock_once(inode->i_sb); 2096 2097 if (inode->i_size > 0) { 2098 error = grab_tail_page(inode, &page, &bh); 2099 if (error) { 2100 // -ENOENT means we truncated past the end of the file, 2101 // and get_block_create_0 could not find a block to read in, 2102 // which is ok. 2103 if (error != -ENOENT) 2104 reiserfs_error(inode->i_sb, "clm-6001", 2105 "grab_tail_page failed %d", 2106 error); 2107 page = NULL; 2108 bh = NULL; 2109 } 2110 } 2111 2112 /* so, if page != NULL, we have a buffer head for the offset at 2113 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0, 2114 ** then we have an unformatted node. Otherwise, we have a direct item, 2115 ** and no zeroing is required on disk. We zero after the truncate, 2116 ** because the truncate might pack the item anyway 2117 ** (it will unmap bh if it packs). 2118 */ 2119 /* it is enough to reserve space in transaction for 2 balancings: 2120 one for "save" link adding and another for the first 2121 cut_from_item. 1 is for update_sd */ 2122 error = journal_begin(&th, inode->i_sb, 2123 JOURNAL_PER_BALANCE_CNT * 2 + 1); 2124 if (error) 2125 goto out; 2126 reiserfs_update_inode_transaction(inode); 2127 if (update_timestamps) 2128 /* we are doing real truncate: if the system crashes before the last 2129 transaction of truncating gets committed - on reboot the file 2130 either appears truncated properly or not truncated at all */ 2131 add_save_link(&th, inode, 1); 2132 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps); 2133 error = 2134 journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1); 2135 if (error) 2136 goto out; 2137 2138 /* check reiserfs_do_truncate after ending the transaction */ 2139 if (err2) { 2140 error = err2; 2141 goto out; 2142 } 2143 2144 if (update_timestamps) { 2145 error = remove_save_link(inode, 1 /* truncate */); 2146 if (error) 2147 goto out; 2148 } 2149 2150 if (page) { 2151 length = offset & (blocksize - 1); 2152 /* if we are not on a block boundary */ 2153 if (length) { 2154 length = blocksize - length; 2155 zero_user(page, offset, length); 2156 if (buffer_mapped(bh) && bh->b_blocknr != 0) { 2157 mark_buffer_dirty(bh); 2158 } 2159 } 2160 unlock_page(page); 2161 page_cache_release(page); 2162 } 2163 2164 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 2165 2166 return 0; 2167 out: 2168 if (page) { 2169 unlock_page(page); 2170 page_cache_release(page); 2171 } 2172 2173 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 2174 2175 return error; 2176} 2177 2178static int map_block_for_writepage(struct inode *inode, 2179 struct buffer_head *bh_result, 2180 unsigned long block) 2181{ 2182 struct reiserfs_transaction_handle th; 2183 int fs_gen; 2184 struct item_head tmp_ih; 2185 struct item_head *ih; 2186 struct buffer_head *bh; 2187 __le32 *item; 2188 struct cpu_key key; 2189 INITIALIZE_PATH(path); 2190 int pos_in_item; 2191 int jbegin_count = JOURNAL_PER_BALANCE_CNT; 2192 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1; 2193 int retval; 2194 int use_get_block = 0; 2195 int bytes_copied = 0; 2196 int copy_size; 2197 int trans_running = 0; 2198 2199 /* catch places below that try to log something without starting a trans */ 2200 th.t_trans_id = 0; 2201 2202 if (!buffer_uptodate(bh_result)) { 2203 return -EIO; 2204 } 2205 2206 kmap(bh_result->b_page); 2207 start_over: 2208 reiserfs_write_lock(inode->i_sb); 2209 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3); 2210 2211 research: 2212 retval = search_for_position_by_key(inode->i_sb, &key, &path); 2213 if (retval != POSITION_FOUND) { 2214 use_get_block = 1; 2215 goto out; 2216 } 2217 2218 bh = get_last_bh(&path); 2219 ih = get_ih(&path); 2220 item = get_item(&path); 2221 pos_in_item = path.pos_in_item; 2222 2223 /* we've found an unformatted node */ 2224 if (indirect_item_found(retval, ih)) { 2225 if (bytes_copied > 0) { 2226 reiserfs_warning(inode->i_sb, "clm-6002", 2227 "bytes_copied %d", bytes_copied); 2228 } 2229 if (!get_block_num(item, pos_in_item)) { 2230 /* crap, we are writing to a hole */ 2231 use_get_block = 1; 2232 goto out; 2233 } 2234 set_block_dev_mapped(bh_result, 2235 get_block_num(item, pos_in_item), inode); 2236 } else if (is_direct_le_ih(ih)) { 2237 char *p; 2238 p = page_address(bh_result->b_page); 2239 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1); 2240 copy_size = ih_item_len(ih) - pos_in_item; 2241 2242 fs_gen = get_generation(inode->i_sb); 2243 copy_item_head(&tmp_ih, ih); 2244 2245 if (!trans_running) { 2246 /* vs-3050 is gone, no need to drop the path */ 2247 retval = journal_begin(&th, inode->i_sb, jbegin_count); 2248 if (retval) 2249 goto out; 2250 reiserfs_update_inode_transaction(inode); 2251 trans_running = 1; 2252 if (fs_changed(fs_gen, inode->i_sb) 2253 && item_moved(&tmp_ih, &path)) { 2254 reiserfs_restore_prepared_buffer(inode->i_sb, 2255 bh); 2256 goto research; 2257 } 2258 } 2259 2260 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 2261 2262 if (fs_changed(fs_gen, inode->i_sb) 2263 && item_moved(&tmp_ih, &path)) { 2264 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 2265 goto research; 2266 } 2267 2268 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied, 2269 copy_size); 2270 2271 journal_mark_dirty(&th, inode->i_sb, bh); 2272 bytes_copied += copy_size; 2273 set_block_dev_mapped(bh_result, 0, inode); 2274 2275 /* are there still bytes left? */ 2276 if (bytes_copied < bh_result->b_size && 2277 (byte_offset + bytes_copied) < inode->i_size) { 2278 set_cpu_key_k_offset(&key, 2279 cpu_key_k_offset(&key) + 2280 copy_size); 2281 goto research; 2282 } 2283 } else { 2284 reiserfs_warning(inode->i_sb, "clm-6003", 2285 "bad item inode %lu", inode->i_ino); 2286 retval = -EIO; 2287 goto out; 2288 } 2289 retval = 0; 2290 2291 out: 2292 pathrelse(&path); 2293 if (trans_running) { 2294 int err = journal_end(&th, inode->i_sb, jbegin_count); 2295 if (err) 2296 retval = err; 2297 trans_running = 0; 2298 } 2299 reiserfs_write_unlock(inode->i_sb); 2300 2301 /* this is where we fill in holes in the file. */ 2302 if (use_get_block) { 2303 retval = reiserfs_get_block(inode, block, bh_result, 2304 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX 2305 | GET_BLOCK_NO_DANGLE); 2306 if (!retval) { 2307 if (!buffer_mapped(bh_result) 2308 || bh_result->b_blocknr == 0) { 2309 /* get_block failed to find a mapped unformatted node. */ 2310 use_get_block = 0; 2311 goto start_over; 2312 } 2313 } 2314 } 2315 kunmap(bh_result->b_page); 2316 2317 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 2318 /* we've copied data from the page into the direct item, so the 2319 * buffer in the page is now clean, mark it to reflect that. 2320 */ 2321 lock_buffer(bh_result); 2322 clear_buffer_dirty(bh_result); 2323 unlock_buffer(bh_result); 2324 } 2325 return retval; 2326} 2327 2328/* 2329 * mason@suse.com: updated in 2.5.54 to follow the same general io 2330 * start/recovery path as __block_write_full_page, along with special 2331 * code to handle reiserfs tails. 2332 */ 2333static int reiserfs_write_full_page(struct page *page, 2334 struct writeback_control *wbc) 2335{ 2336 struct inode *inode = page->mapping->host; 2337 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT; 2338 int error = 0; 2339 unsigned long block; 2340 sector_t last_block; 2341 struct buffer_head *head, *bh; 2342 int partial = 0; 2343 int nr = 0; 2344 int checked = PageChecked(page); 2345 struct reiserfs_transaction_handle th; 2346 struct super_block *s = inode->i_sb; 2347 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize; 2348 th.t_trans_id = 0; 2349 2350 /* no logging allowed when nonblocking or from PF_MEMALLOC */ 2351 if (checked && (current->flags & PF_MEMALLOC)) { 2352 redirty_page_for_writepage(wbc, page); 2353 unlock_page(page); 2354 return 0; 2355 } 2356 2357 /* The page dirty bit is cleared before writepage is called, which 2358 * means we have to tell create_empty_buffers to make dirty buffers 2359 * The page really should be up to date at this point, so tossing 2360 * in the BH_Uptodate is just a sanity check. 2361 */ 2362 if (!page_has_buffers(page)) { 2363 create_empty_buffers(page, s->s_blocksize, 2364 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2365 } 2366 head = page_buffers(page); 2367 2368 /* last page in the file, zero out any contents past the 2369 ** last byte in the file 2370 */ 2371 if (page->index >= end_index) { 2372 unsigned last_offset; 2373 2374 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 2375 /* no file contents in this page */ 2376 if (page->index >= end_index + 1 || !last_offset) { 2377 unlock_page(page); 2378 return 0; 2379 } 2380 zero_user_segment(page, last_offset, PAGE_CACHE_SIZE); 2381 } 2382 bh = head; 2383 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits); 2384 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 2385 /* first map all the buffers, logging any direct items we find */ 2386 do { 2387 if (block > last_block) { 2388 /* 2389 * This can happen when the block size is less than 2390 * the page size. The corresponding bytes in the page 2391 * were zero filled above 2392 */ 2393 clear_buffer_dirty(bh); 2394 set_buffer_uptodate(bh); 2395 } else if ((checked || buffer_dirty(bh)) && 2396 (!buffer_mapped(bh) || (buffer_mapped(bh) 2397 && bh->b_blocknr == 2398 0))) { 2399 /* not mapped yet, or it points to a direct item, search 2400 * the btree for the mapping info, and log any direct 2401 * items found 2402 */ 2403 if ((error = map_block_for_writepage(inode, bh, block))) { 2404 goto fail; 2405 } 2406 } 2407 bh = bh->b_this_page; 2408 block++; 2409 } while (bh != head); 2410 2411 /* 2412 * we start the transaction after map_block_for_writepage, 2413 * because it can create holes in the file (an unbounded operation). 2414 * starting it here, we can make a reliable estimate for how many 2415 * blocks we're going to log 2416 */ 2417 if (checked) { 2418 ClearPageChecked(page); 2419 reiserfs_write_lock(s); 2420 error = journal_begin(&th, s, bh_per_page + 1); 2421 if (error) { 2422 reiserfs_write_unlock(s); 2423 goto fail; 2424 } 2425 reiserfs_update_inode_transaction(inode); 2426 } 2427 /* now go through and lock any dirty buffers on the page */ 2428 do { 2429 get_bh(bh); 2430 if (!buffer_mapped(bh)) 2431 continue; 2432 if (buffer_mapped(bh) && bh->b_blocknr == 0) 2433 continue; 2434 2435 if (checked) { 2436 reiserfs_prepare_for_journal(s, bh, 1); 2437 journal_mark_dirty(&th, s, bh); 2438 continue; 2439 } 2440 /* from this point on, we know the buffer is mapped to a 2441 * real block and not a direct item 2442 */ 2443 if (wbc->sync_mode != WB_SYNC_NONE) { 2444 lock_buffer(bh); 2445 } else { 2446 if (!trylock_buffer(bh)) { 2447 redirty_page_for_writepage(wbc, page); 2448 continue; 2449 } 2450 } 2451 if (test_clear_buffer_dirty(bh)) { 2452 mark_buffer_async_write(bh); 2453 } else { 2454 unlock_buffer(bh); 2455 } 2456 } while ((bh = bh->b_this_page) != head); 2457 2458 if (checked) { 2459 error = journal_end(&th, s, bh_per_page + 1); 2460 reiserfs_write_unlock(s); 2461 if (error) 2462 goto fail; 2463 } 2464 BUG_ON(PageWriteback(page)); 2465 set_page_writeback(page); 2466 unlock_page(page); 2467 2468 /* 2469 * since any buffer might be the only dirty buffer on the page, 2470 * the first submit_bh can bring the page out of writeback. 2471 * be careful with the buffers. 2472 */ 2473 do { 2474 struct buffer_head *next = bh->b_this_page; 2475 if (buffer_async_write(bh)) { 2476 submit_bh(WRITE, bh); 2477 nr++; 2478 } 2479 put_bh(bh); 2480 bh = next; 2481 } while (bh != head); 2482 2483 error = 0; 2484 done: 2485 if (nr == 0) { 2486 /* 2487 * if this page only had a direct item, it is very possible for 2488 * no io to be required without there being an error. Or, 2489 * someone else could have locked them and sent them down the 2490 * pipe without locking the page 2491 */ 2492 bh = head; 2493 do { 2494 if (!buffer_uptodate(bh)) { 2495 partial = 1; 2496 break; 2497 } 2498 bh = bh->b_this_page; 2499 } while (bh != head); 2500 if (!partial) 2501 SetPageUptodate(page); 2502 end_page_writeback(page); 2503 } 2504 return error; 2505 2506 fail: 2507 /* catches various errors, we need to make sure any valid dirty blocks 2508 * get to the media. The page is currently locked and not marked for 2509 * writeback 2510 */ 2511 ClearPageUptodate(page); 2512 bh = head; 2513 do { 2514 get_bh(bh); 2515 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) { 2516 lock_buffer(bh); 2517 mark_buffer_async_write(bh); 2518 } else { 2519 /* 2520 * clear any dirty bits that might have come from getting 2521 * attached to a dirty page 2522 */ 2523 clear_buffer_dirty(bh); 2524 } 2525 bh = bh->b_this_page; 2526 } while (bh != head); 2527 SetPageError(page); 2528 BUG_ON(PageWriteback(page)); 2529 set_page_writeback(page); 2530 unlock_page(page); 2531 do { 2532 struct buffer_head *next = bh->b_this_page; 2533 if (buffer_async_write(bh)) { 2534 clear_buffer_dirty(bh); 2535 submit_bh(WRITE, bh); 2536 nr++; 2537 } 2538 put_bh(bh); 2539 bh = next; 2540 } while (bh != head); 2541 goto done; 2542} 2543 2544static int reiserfs_readpage(struct file *f, struct page *page) 2545{ 2546 return block_read_full_page(page, reiserfs_get_block); 2547} 2548 2549static int reiserfs_writepage(struct page *page, struct writeback_control *wbc) 2550{ 2551 struct inode *inode = page->mapping->host; 2552 reiserfs_wait_on_write_block(inode->i_sb); 2553 return reiserfs_write_full_page(page, wbc); 2554} 2555 2556static void reiserfs_truncate_failed_write(struct inode *inode) 2557{ 2558 truncate_inode_pages(inode->i_mapping, inode->i_size); 2559 reiserfs_truncate_file(inode, 0); 2560} 2561 2562static int reiserfs_write_begin(struct file *file, 2563 struct address_space *mapping, 2564 loff_t pos, unsigned len, unsigned flags, 2565 struct page **pagep, void **fsdata) 2566{ 2567 struct inode *inode; 2568 struct page *page; 2569 pgoff_t index; 2570 int ret; 2571 int old_ref = 0; 2572 2573 inode = mapping->host; 2574 *fsdata = 0; 2575 if (flags & AOP_FLAG_CONT_EXPAND && 2576 (pos & (inode->i_sb->s_blocksize - 1)) == 0) { 2577 pos ++; 2578 *fsdata = (void *)(unsigned long)flags; 2579 } 2580 2581 index = pos >> PAGE_CACHE_SHIFT; 2582 page = grab_cache_page_write_begin(mapping, index, flags); 2583 if (!page) 2584 return -ENOMEM; 2585 *pagep = page; 2586 2587 reiserfs_wait_on_write_block(inode->i_sb); 2588 fix_tail_page_for_writing(page); 2589 if (reiserfs_transaction_running(inode->i_sb)) { 2590 struct reiserfs_transaction_handle *th; 2591 th = (struct reiserfs_transaction_handle *)current-> 2592 journal_info; 2593 BUG_ON(!th->t_refcount); 2594 BUG_ON(!th->t_trans_id); 2595 old_ref = th->t_refcount; 2596 th->t_refcount++; 2597 } 2598 ret = __block_write_begin(page, pos, len, reiserfs_get_block); 2599 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2600 struct reiserfs_transaction_handle *th = current->journal_info; 2601 /* this gets a little ugly. If reiserfs_get_block returned an 2602 * error and left a transacstion running, we've got to close it, 2603 * and we've got to free handle if it was a persistent transaction. 2604 * 2605 * But, if we had nested into an existing transaction, we need 2606 * to just drop the ref count on the handle. 2607 * 2608 * If old_ref == 0, the transaction is from reiserfs_get_block, 2609 * and it was a persistent trans. Otherwise, it was nested above. 2610 */ 2611 if (th->t_refcount > old_ref) { 2612 if (old_ref) 2613 th->t_refcount--; 2614 else { 2615 int err; 2616 reiserfs_write_lock(inode->i_sb); 2617 err = reiserfs_end_persistent_transaction(th); 2618 reiserfs_write_unlock(inode->i_sb); 2619 if (err) 2620 ret = err; 2621 } 2622 } 2623 } 2624 if (ret) { 2625 unlock_page(page); 2626 page_cache_release(page); 2627 /* Truncate allocated blocks */ 2628 reiserfs_truncate_failed_write(inode); 2629 } 2630 return ret; 2631} 2632 2633int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len) 2634{ 2635 struct inode *inode = page->mapping->host; 2636 int ret; 2637 int old_ref = 0; 2638 2639 reiserfs_write_unlock(inode->i_sb); 2640 reiserfs_wait_on_write_block(inode->i_sb); 2641 reiserfs_write_lock(inode->i_sb); 2642 2643 fix_tail_page_for_writing(page); 2644 if (reiserfs_transaction_running(inode->i_sb)) { 2645 struct reiserfs_transaction_handle *th; 2646 th = (struct reiserfs_transaction_handle *)current-> 2647 journal_info; 2648 BUG_ON(!th->t_refcount); 2649 BUG_ON(!th->t_trans_id); 2650 old_ref = th->t_refcount; 2651 th->t_refcount++; 2652 } 2653 2654 ret = __block_write_begin(page, from, len, reiserfs_get_block); 2655 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2656 struct reiserfs_transaction_handle *th = current->journal_info; 2657 /* this gets a little ugly. If reiserfs_get_block returned an 2658 * error and left a transacstion running, we've got to close it, 2659 * and we've got to free handle if it was a persistent transaction. 2660 * 2661 * But, if we had nested into an existing transaction, we need 2662 * to just drop the ref count on the handle. 2663 * 2664 * If old_ref == 0, the transaction is from reiserfs_get_block, 2665 * and it was a persistent trans. Otherwise, it was nested above. 2666 */ 2667 if (th->t_refcount > old_ref) { 2668 if (old_ref) 2669 th->t_refcount--; 2670 else { 2671 int err; 2672 reiserfs_write_lock(inode->i_sb); 2673 err = reiserfs_end_persistent_transaction(th); 2674 reiserfs_write_unlock(inode->i_sb); 2675 if (err) 2676 ret = err; 2677 } 2678 } 2679 } 2680 return ret; 2681 2682} 2683 2684static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block) 2685{ 2686 return generic_block_bmap(as, block, reiserfs_bmap); 2687} 2688 2689static int reiserfs_write_end(struct file *file, struct address_space *mapping, 2690 loff_t pos, unsigned len, unsigned copied, 2691 struct page *page, void *fsdata) 2692{ 2693 struct inode *inode = page->mapping->host; 2694 int ret = 0; 2695 int update_sd = 0; 2696 struct reiserfs_transaction_handle *th; 2697 unsigned start; 2698 int lock_depth = 0; 2699 bool locked = false; 2700 2701 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND) 2702 pos ++; 2703 2704 reiserfs_wait_on_write_block(inode->i_sb); 2705 if (reiserfs_transaction_running(inode->i_sb)) 2706 th = current->journal_info; 2707 else 2708 th = NULL; 2709 2710 start = pos & (PAGE_CACHE_SIZE - 1); 2711 if (unlikely(copied < len)) { 2712 if (!PageUptodate(page)) 2713 copied = 0; 2714 2715 page_zero_new_buffers(page, start + copied, start + len); 2716 } 2717 flush_dcache_page(page); 2718 2719 reiserfs_commit_page(inode, page, start, start + copied); 2720 2721 /* generic_commit_write does this for us, but does not update the 2722 ** transaction tracking stuff when the size changes. So, we have 2723 ** to do the i_size updates here. 2724 */ 2725 if (pos + copied > inode->i_size) { 2726 struct reiserfs_transaction_handle myth; 2727 lock_depth = reiserfs_write_lock_once(inode->i_sb); 2728 locked = true; 2729 /* If the file have grown beyond the border where it 2730 can have a tail, unmark it as needing a tail 2731 packing */ 2732 if ((have_large_tails(inode->i_sb) 2733 && inode->i_size > i_block_size(inode) * 4) 2734 || (have_small_tails(inode->i_sb) 2735 && inode->i_size > i_block_size(inode))) 2736 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2737 2738 ret = journal_begin(&myth, inode->i_sb, 1); 2739 if (ret) 2740 goto journal_error; 2741 2742 reiserfs_update_inode_transaction(inode); 2743 inode->i_size = pos + copied; 2744 /* 2745 * this will just nest into our transaction. It's important 2746 * to use mark_inode_dirty so the inode gets pushed around on the 2747 * dirty lists, and so that O_SYNC works as expected 2748 */ 2749 mark_inode_dirty(inode); 2750 reiserfs_update_sd(&myth, inode); 2751 update_sd = 1; 2752 ret = journal_end(&myth, inode->i_sb, 1); 2753 if (ret) 2754 goto journal_error; 2755 } 2756 if (th) { 2757 if (!locked) { 2758 lock_depth = reiserfs_write_lock_once(inode->i_sb); 2759 locked = true; 2760 } 2761 if (!update_sd) 2762 mark_inode_dirty(inode); 2763 ret = reiserfs_end_persistent_transaction(th); 2764 if (ret) 2765 goto out; 2766 } 2767 2768 out: 2769 if (locked) 2770 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 2771 unlock_page(page); 2772 page_cache_release(page); 2773 2774 if (pos + len > inode->i_size) 2775 reiserfs_truncate_failed_write(inode); 2776 2777 return ret == 0 ? copied : ret; 2778 2779 journal_error: 2780 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 2781 locked = false; 2782 if (th) { 2783 if (!update_sd) 2784 reiserfs_update_sd(th, inode); 2785 ret = reiserfs_end_persistent_transaction(th); 2786 } 2787 goto out; 2788} 2789 2790int reiserfs_commit_write(struct file *f, struct page *page, 2791 unsigned from, unsigned to) 2792{ 2793 struct inode *inode = page->mapping->host; 2794 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to; 2795 int ret = 0; 2796 int update_sd = 0; 2797 struct reiserfs_transaction_handle *th = NULL; 2798 2799 reiserfs_write_unlock(inode->i_sb); 2800 reiserfs_wait_on_write_block(inode->i_sb); 2801 reiserfs_write_lock(inode->i_sb); 2802 2803 if (reiserfs_transaction_running(inode->i_sb)) { 2804 th = current->journal_info; 2805 } 2806 reiserfs_commit_page(inode, page, from, to); 2807 2808 /* generic_commit_write does this for us, but does not update the 2809 ** transaction tracking stuff when the size changes. So, we have 2810 ** to do the i_size updates here. 2811 */ 2812 if (pos > inode->i_size) { 2813 struct reiserfs_transaction_handle myth; 2814 /* If the file have grown beyond the border where it 2815 can have a tail, unmark it as needing a tail 2816 packing */ 2817 if ((have_large_tails(inode->i_sb) 2818 && inode->i_size > i_block_size(inode) * 4) 2819 || (have_small_tails(inode->i_sb) 2820 && inode->i_size > i_block_size(inode))) 2821 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2822 2823 ret = journal_begin(&myth, inode->i_sb, 1); 2824 if (ret) 2825 goto journal_error; 2826 2827 reiserfs_update_inode_transaction(inode); 2828 inode->i_size = pos; 2829 /* 2830 * this will just nest into our transaction. It's important 2831 * to use mark_inode_dirty so the inode gets pushed around on the 2832 * dirty lists, and so that O_SYNC works as expected 2833 */ 2834 mark_inode_dirty(inode); 2835 reiserfs_update_sd(&myth, inode); 2836 update_sd = 1; 2837 ret = journal_end(&myth, inode->i_sb, 1); 2838 if (ret) 2839 goto journal_error; 2840 } 2841 if (th) { 2842 if (!update_sd) 2843 mark_inode_dirty(inode); 2844 ret = reiserfs_end_persistent_transaction(th); 2845 if (ret) 2846 goto out; 2847 } 2848 2849 out: 2850 return ret; 2851 2852 journal_error: 2853 if (th) { 2854 if (!update_sd) 2855 reiserfs_update_sd(th, inode); 2856 ret = reiserfs_end_persistent_transaction(th); 2857 } 2858 2859 return ret; 2860} 2861 2862void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode) 2863{ 2864 if (reiserfs_attrs(inode->i_sb)) { 2865 if (sd_attrs & REISERFS_SYNC_FL) 2866 inode->i_flags |= S_SYNC; 2867 else 2868 inode->i_flags &= ~S_SYNC; 2869 if (sd_attrs & REISERFS_IMMUTABLE_FL) 2870 inode->i_flags |= S_IMMUTABLE; 2871 else 2872 inode->i_flags &= ~S_IMMUTABLE; 2873 if (sd_attrs & REISERFS_APPEND_FL) 2874 inode->i_flags |= S_APPEND; 2875 else 2876 inode->i_flags &= ~S_APPEND; 2877 if (sd_attrs & REISERFS_NOATIME_FL) 2878 inode->i_flags |= S_NOATIME; 2879 else 2880 inode->i_flags &= ~S_NOATIME; 2881 if (sd_attrs & REISERFS_NOTAIL_FL) 2882 REISERFS_I(inode)->i_flags |= i_nopack_mask; 2883 else 2884 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 2885 } 2886} 2887 2888void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs) 2889{ 2890 if (reiserfs_attrs(inode->i_sb)) { 2891 if (inode->i_flags & S_IMMUTABLE) 2892 *sd_attrs |= REISERFS_IMMUTABLE_FL; 2893 else 2894 *sd_attrs &= ~REISERFS_IMMUTABLE_FL; 2895 if (inode->i_flags & S_SYNC) 2896 *sd_attrs |= REISERFS_SYNC_FL; 2897 else 2898 *sd_attrs &= ~REISERFS_SYNC_FL; 2899 if (inode->i_flags & S_NOATIME) 2900 *sd_attrs |= REISERFS_NOATIME_FL; 2901 else 2902 *sd_attrs &= ~REISERFS_NOATIME_FL; 2903 if (REISERFS_I(inode)->i_flags & i_nopack_mask) 2904 *sd_attrs |= REISERFS_NOTAIL_FL; 2905 else 2906 *sd_attrs &= ~REISERFS_NOTAIL_FL; 2907 } 2908} 2909 2910/* decide if this buffer needs to stay around for data logging or ordered 2911** write purposes 2912*/ 2913static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh) 2914{ 2915 int ret = 1; 2916 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 2917 2918 lock_buffer(bh); 2919 spin_lock(&j->j_dirty_buffers_lock); 2920 if (!buffer_mapped(bh)) { 2921 goto free_jh; 2922 } 2923 /* the page is locked, and the only places that log a data buffer 2924 * also lock the page. 2925 */ 2926 if (reiserfs_file_data_log(inode)) { 2927 /* 2928 * very conservative, leave the buffer pinned if 2929 * anyone might need it. 2930 */ 2931 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) { 2932 ret = 0; 2933 } 2934 } else if (buffer_dirty(bh)) { 2935 struct reiserfs_journal_list *jl; 2936 struct reiserfs_jh *jh = bh->b_private; 2937 2938 /* why is this safe? 2939 * reiserfs_setattr updates i_size in the on disk 2940 * stat data before allowing vmtruncate to be called. 2941 * 2942 * If buffer was put onto the ordered list for this 2943 * transaction, we know for sure either this transaction 2944 * or an older one already has updated i_size on disk, 2945 * and this ordered data won't be referenced in the file 2946 * if we crash. 2947 * 2948 * if the buffer was put onto the ordered list for an older 2949 * transaction, we need to leave it around 2950 */ 2951 if (jh && (jl = jh->jl) 2952 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl) 2953 ret = 0; 2954 } 2955 free_jh: 2956 if (ret && bh->b_private) { 2957 reiserfs_free_jh(bh); 2958 } 2959 spin_unlock(&j->j_dirty_buffers_lock); 2960 unlock_buffer(bh); 2961 return ret; 2962} 2963 2964/* clm -- taken from fs/buffer.c:block_invalidate_page */ 2965static void reiserfs_invalidatepage(struct page *page, unsigned long offset) 2966{ 2967 struct buffer_head *head, *bh, *next; 2968 struct inode *inode = page->mapping->host; 2969 unsigned int curr_off = 0; 2970 int ret = 1; 2971 2972 BUG_ON(!PageLocked(page)); 2973 2974 if (offset == 0) 2975 ClearPageChecked(page); 2976 2977 if (!page_has_buffers(page)) 2978 goto out; 2979 2980 head = page_buffers(page); 2981 bh = head; 2982 do { 2983 unsigned int next_off = curr_off + bh->b_size; 2984 next = bh->b_this_page; 2985 2986 /* 2987 * is this block fully invalidated? 2988 */ 2989 if (offset <= curr_off) { 2990 if (invalidatepage_can_drop(inode, bh)) 2991 reiserfs_unmap_buffer(bh); 2992 else 2993 ret = 0; 2994 } 2995 curr_off = next_off; 2996 bh = next; 2997 } while (bh != head); 2998 2999 /* 3000 * We release buffers only if the entire page is being invalidated. 3001 * The get_block cached value has been unconditionally invalidated, 3002 * so real IO is not possible anymore. 3003 */ 3004 if (!offset && ret) { 3005 ret = try_to_release_page(page, 0); 3006 /* maybe should BUG_ON(!ret); - neilb */ 3007 } 3008 out: 3009 return; 3010} 3011 3012static int reiserfs_set_page_dirty(struct page *page) 3013{ 3014 struct inode *inode = page->mapping->host; 3015 if (reiserfs_file_data_log(inode)) { 3016 SetPageChecked(page); 3017 return __set_page_dirty_nobuffers(page); 3018 } 3019 return __set_page_dirty_buffers(page); 3020} 3021 3022/* 3023 * Returns 1 if the page's buffers were dropped. The page is locked. 3024 * 3025 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads 3026 * in the buffers at page_buffers(page). 3027 * 3028 * even in -o notail mode, we can't be sure an old mount without -o notail 3029 * didn't create files with tails. 3030 */ 3031static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags) 3032{ 3033 struct inode *inode = page->mapping->host; 3034 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3035 struct buffer_head *head; 3036 struct buffer_head *bh; 3037 int ret = 1; 3038 3039 WARN_ON(PageChecked(page)); 3040 spin_lock(&j->j_dirty_buffers_lock); 3041 head = page_buffers(page); 3042 bh = head; 3043 do { 3044 if (bh->b_private) { 3045 if (!buffer_dirty(bh) && !buffer_locked(bh)) { 3046 reiserfs_free_jh(bh); 3047 } else { 3048 ret = 0; 3049 break; 3050 } 3051 } 3052 bh = bh->b_this_page; 3053 } while (bh != head); 3054 if (ret) 3055 ret = try_to_free_buffers(page); 3056 spin_unlock(&j->j_dirty_buffers_lock); 3057 return ret; 3058} 3059 3060/* We thank Mingming Cao for helping us understand in great detail what 3061 to do in this section of the code. */ 3062static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb, 3063 const struct iovec *iov, loff_t offset, 3064 unsigned long nr_segs) 3065{ 3066 struct file *file = iocb->ki_filp; 3067 struct inode *inode = file->f_mapping->host; 3068 ssize_t ret; 3069 3070 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs, 3071 reiserfs_get_blocks_direct_io); 3072 3073 /* 3074 * In case of error extending write may have instantiated a few 3075 * blocks outside i_size. Trim these off again. 3076 */ 3077 if (unlikely((rw & WRITE) && ret < 0)) { 3078 loff_t isize = i_size_read(inode); 3079 loff_t end = offset + iov_length(iov, nr_segs); 3080 3081 if (end > isize) 3082 vmtruncate(inode, isize); 3083 } 3084 3085 return ret; 3086} 3087 3088int reiserfs_setattr(struct dentry *dentry, struct iattr *attr) 3089{ 3090 struct inode *inode = dentry->d_inode; 3091 unsigned int ia_valid; 3092 int depth; 3093 int error; 3094 3095 error = inode_change_ok(inode, attr); 3096 if (error) 3097 return error; 3098 3099 /* must be turned off for recursive notify_change calls */ 3100 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID); 3101 3102 depth = reiserfs_write_lock_once(inode->i_sb); 3103 if (is_quota_modification(inode, attr)) 3104 dquot_initialize(inode); 3105 3106 if (attr->ia_valid & ATTR_SIZE) { 3107 /* version 2 items will be caught by the s_maxbytes check 3108 ** done for us in vmtruncate 3109 */ 3110 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 && 3111 attr->ia_size > MAX_NON_LFS) { 3112 error = -EFBIG; 3113 goto out; 3114 } 3115 3116 inode_dio_wait(inode); 3117 3118 /* fill in hole pointers in the expanding truncate case. */ 3119 if (attr->ia_size > inode->i_size) { 3120 error = generic_cont_expand_simple(inode, attr->ia_size); 3121 if (REISERFS_I(inode)->i_prealloc_count > 0) { 3122 int err; 3123 struct reiserfs_transaction_handle th; 3124 /* we're changing at most 2 bitmaps, inode + super */ 3125 err = journal_begin(&th, inode->i_sb, 4); 3126 if (!err) { 3127 reiserfs_discard_prealloc(&th, inode); 3128 err = journal_end(&th, inode->i_sb, 4); 3129 } 3130 if (err) 3131 error = err; 3132 } 3133 if (error) 3134 goto out; 3135 /* 3136 * file size is changed, ctime and mtime are 3137 * to be updated 3138 */ 3139 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME); 3140 } 3141 } 3142 3143 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) || 3144 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) && 3145 (get_inode_sd_version(inode) == STAT_DATA_V1)) { 3146 /* stat data of format v3.5 has 16 bit uid and gid */ 3147 error = -EINVAL; 3148 goto out; 3149 } 3150 3151 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 3152 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 3153 struct reiserfs_transaction_handle th; 3154 int jbegin_count = 3155 2 * 3156 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) + 3157 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) + 3158 2; 3159 3160 error = reiserfs_chown_xattrs(inode, attr); 3161 3162 if (error) 3163 return error; 3164 3165 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */ 3166 error = journal_begin(&th, inode->i_sb, jbegin_count); 3167 if (error) 3168 goto out; 3169 error = dquot_transfer(inode, attr); 3170 if (error) { 3171 journal_end(&th, inode->i_sb, jbegin_count); 3172 goto out; 3173 } 3174 3175 /* Update corresponding info in inode so that everything is in 3176 * one transaction */ 3177 if (attr->ia_valid & ATTR_UID) 3178 inode->i_uid = attr->ia_uid; 3179 if (attr->ia_valid & ATTR_GID) 3180 inode->i_gid = attr->ia_gid; 3181 mark_inode_dirty(inode); 3182 error = journal_end(&th, inode->i_sb, jbegin_count); 3183 if (error) 3184 goto out; 3185 } 3186 3187 /* 3188 * Relax the lock here, as it might truncate the 3189 * inode pages and wait for inode pages locks. 3190 * To release such page lock, the owner needs the 3191 * reiserfs lock 3192 */ 3193 reiserfs_write_unlock_once(inode->i_sb, depth); 3194 if ((attr->ia_valid & ATTR_SIZE) && 3195 attr->ia_size != i_size_read(inode)) 3196 error = vmtruncate(inode, attr->ia_size); 3197 3198 if (!error) { 3199 setattr_copy(inode, attr); 3200 mark_inode_dirty(inode); 3201 } 3202 depth = reiserfs_write_lock_once(inode->i_sb); 3203 3204 if (!error && reiserfs_posixacl(inode->i_sb)) { 3205 if (attr->ia_valid & ATTR_MODE) 3206 error = reiserfs_acl_chmod(inode); 3207 } 3208 3209 out: 3210 reiserfs_write_unlock_once(inode->i_sb, depth); 3211 3212 return error; 3213} 3214 3215const struct address_space_operations reiserfs_address_space_operations = { 3216 .writepage = reiserfs_writepage, 3217 .readpage = reiserfs_readpage, 3218 .readpages = reiserfs_readpages, 3219 .releasepage = reiserfs_releasepage, 3220 .invalidatepage = reiserfs_invalidatepage, 3221 .write_begin = reiserfs_write_begin, 3222 .write_end = reiserfs_write_end, 3223 .bmap = reiserfs_aop_bmap, 3224 .direct_IO = reiserfs_direct_IO, 3225 .set_page_dirty = reiserfs_set_page_dirty, 3226}; 3227