inode.c revision 48d1788493f874e5d32dccb2911a7bc91c248b4b
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5#include <linux/time.h>
6#include <linux/fs.h>
7#include "reiserfs.h"
8#include "acl.h"
9#include "xattr.h"
10#include <linux/exportfs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/slab.h>
14#include <asm/uaccess.h>
15#include <asm/unaligned.h>
16#include <linux/buffer_head.h>
17#include <linux/mpage.h>
18#include <linux/writeback.h>
19#include <linux/quotaops.h>
20#include <linux/swap.h>
21
22int reiserfs_commit_write(struct file *f, struct page *page,
23			  unsigned from, unsigned to);
24
25void reiserfs_evict_inode(struct inode *inode)
26{
27	/* We need blocks for transaction + (user+group) quota update (possibly delete) */
28	int jbegin_count =
29	    JOURNAL_PER_BALANCE_CNT * 2 +
30	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
31	struct reiserfs_transaction_handle th;
32	int depth;
33	int err;
34
35	if (!inode->i_nlink && !is_bad_inode(inode))
36		dquot_initialize(inode);
37
38	truncate_inode_pages(&inode->i_data, 0);
39	if (inode->i_nlink)
40		goto no_delete;
41
42	depth = reiserfs_write_lock_once(inode->i_sb);
43
44	/* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
45	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {	/* also handles bad_inode case */
46		reiserfs_delete_xattrs(inode);
47
48		if (journal_begin(&th, inode->i_sb, jbegin_count))
49			goto out;
50		reiserfs_update_inode_transaction(inode);
51
52		reiserfs_discard_prealloc(&th, inode);
53
54		err = reiserfs_delete_object(&th, inode);
55
56		/* Do quota update inside a transaction for journaled quotas. We must do that
57		 * after delete_object so that quota updates go into the same transaction as
58		 * stat data deletion */
59		if (!err)
60			dquot_free_inode(inode);
61
62		if (journal_end(&th, inode->i_sb, jbegin_count))
63			goto out;
64
65		/* check return value from reiserfs_delete_object after
66		 * ending the transaction
67		 */
68		if (err)
69		    goto out;
70
71		/* all items of file are deleted, so we can remove "save" link */
72		remove_save_link(inode, 0 /* not truncate */ );	/* we can't do anything
73								 * about an error here */
74	} else {
75		/* no object items are in the tree */
76		;
77	}
78      out:
79	reiserfs_write_unlock_once(inode->i_sb, depth);
80	clear_inode(inode);	/* note this must go after the journal_end to prevent deadlock */
81	dquot_drop(inode);
82	inode->i_blocks = 0;
83	return;
84
85no_delete:
86	clear_inode(inode);
87	dquot_drop(inode);
88}
89
90static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
91			  __u32 objectid, loff_t offset, int type, int length)
92{
93	key->version = version;
94
95	key->on_disk_key.k_dir_id = dirid;
96	key->on_disk_key.k_objectid = objectid;
97	set_cpu_key_k_offset(key, offset);
98	set_cpu_key_k_type(key, type);
99	key->key_length = length;
100}
101
102/* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
103   offset and type of key */
104void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
105		  int type, int length)
106{
107	_make_cpu_key(key, get_inode_item_key_version(inode),
108		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
109		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
110		      length);
111}
112
113//
114// when key is 0, do not set version and short key
115//
116inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
117			      int version,
118			      loff_t offset, int type, int length,
119			      int entry_count /*or ih_free_space */ )
120{
121	if (key) {
122		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
123		ih->ih_key.k_objectid =
124		    cpu_to_le32(key->on_disk_key.k_objectid);
125	}
126	put_ih_version(ih, version);
127	set_le_ih_k_offset(ih, offset);
128	set_le_ih_k_type(ih, type);
129	put_ih_item_len(ih, length);
130	/*    set_ih_free_space (ih, 0); */
131	// for directory items it is entry count, for directs and stat
132	// datas - 0xffff, for indirects - 0
133	put_ih_entry_count(ih, entry_count);
134}
135
136//
137// FIXME: we might cache recently accessed indirect item
138
139// Ugh.  Not too eager for that....
140//  I cut the code until such time as I see a convincing argument (benchmark).
141// I don't want a bloated inode struct..., and I don't like code complexity....
142
143/* cutting the code is fine, since it really isn't in use yet and is easy
144** to add back in.  But, Vladimir has a really good idea here.  Think
145** about what happens for reading a file.  For each page,
146** The VFS layer calls reiserfs_readpage, who searches the tree to find
147** an indirect item.  This indirect item has X number of pointers, where
148** X is a big number if we've done the block allocation right.  But,
149** we only use one or two of these pointers during each call to readpage,
150** needlessly researching again later on.
151**
152** The size of the cache could be dynamic based on the size of the file.
153**
154** I'd also like to see us cache the location the stat data item, since
155** we are needlessly researching for that frequently.
156**
157** --chris
158*/
159
160/* If this page has a file tail in it, and
161** it was read in by get_block_create_0, the page data is valid,
162** but tail is still sitting in a direct item, and we can't write to
163** it.  So, look through this page, and check all the mapped buffers
164** to make sure they have valid block numbers.  Any that don't need
165** to be unmapped, so that __block_write_begin will correctly call
166** reiserfs_get_block to convert the tail into an unformatted node
167*/
168static inline void fix_tail_page_for_writing(struct page *page)
169{
170	struct buffer_head *head, *next, *bh;
171
172	if (page && page_has_buffers(page)) {
173		head = page_buffers(page);
174		bh = head;
175		do {
176			next = bh->b_this_page;
177			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
178				reiserfs_unmap_buffer(bh);
179			}
180			bh = next;
181		} while (bh != head);
182	}
183}
184
185/* reiserfs_get_block does not need to allocate a block only if it has been
186   done already or non-hole position has been found in the indirect item */
187static inline int allocation_needed(int retval, b_blocknr_t allocated,
188				    struct item_head *ih,
189				    __le32 * item, int pos_in_item)
190{
191	if (allocated)
192		return 0;
193	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
194	    get_block_num(item, pos_in_item))
195		return 0;
196	return 1;
197}
198
199static inline int indirect_item_found(int retval, struct item_head *ih)
200{
201	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
202}
203
204static inline void set_block_dev_mapped(struct buffer_head *bh,
205					b_blocknr_t block, struct inode *inode)
206{
207	map_bh(bh, inode->i_sb, block);
208}
209
210//
211// files which were created in the earlier version can not be longer,
212// than 2 gb
213//
214static int file_capable(struct inode *inode, sector_t block)
215{
216	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||	// it is new file.
217	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))	// old file, but 'block' is inside of 2gb
218		return 1;
219
220	return 0;
221}
222
223static int restart_transaction(struct reiserfs_transaction_handle *th,
224			       struct inode *inode, struct treepath *path)
225{
226	struct super_block *s = th->t_super;
227	int len = th->t_blocks_allocated;
228	int err;
229
230	BUG_ON(!th->t_trans_id);
231	BUG_ON(!th->t_refcount);
232
233	pathrelse(path);
234
235	/* we cannot restart while nested */
236	if (th->t_refcount > 1) {
237		return 0;
238	}
239	reiserfs_update_sd(th, inode);
240	err = journal_end(th, s, len);
241	if (!err) {
242		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
243		if (!err)
244			reiserfs_update_inode_transaction(inode);
245	}
246	return err;
247}
248
249// it is called by get_block when create == 0. Returns block number
250// for 'block'-th logical block of file. When it hits direct item it
251// returns 0 (being called from bmap) or read direct item into piece
252// of page (bh_result)
253
254// Please improve the english/clarity in the comment above, as it is
255// hard to understand.
256
257static int _get_block_create_0(struct inode *inode, sector_t block,
258			       struct buffer_head *bh_result, int args)
259{
260	INITIALIZE_PATH(path);
261	struct cpu_key key;
262	struct buffer_head *bh;
263	struct item_head *ih, tmp_ih;
264	b_blocknr_t blocknr;
265	char *p = NULL;
266	int chars;
267	int ret;
268	int result;
269	int done = 0;
270	unsigned long offset;
271
272	// prepare the key to look for the 'block'-th block of file
273	make_cpu_key(&key, inode,
274		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
275		     3);
276
277	result = search_for_position_by_key(inode->i_sb, &key, &path);
278	if (result != POSITION_FOUND) {
279		pathrelse(&path);
280		if (p)
281			kunmap(bh_result->b_page);
282		if (result == IO_ERROR)
283			return -EIO;
284		// We do not return -ENOENT if there is a hole but page is uptodate, because it means
285		// That there is some MMAPED data associated with it that is yet to be written to disk.
286		if ((args & GET_BLOCK_NO_HOLE)
287		    && !PageUptodate(bh_result->b_page)) {
288			return -ENOENT;
289		}
290		return 0;
291	}
292	//
293	bh = get_last_bh(&path);
294	ih = get_ih(&path);
295	if (is_indirect_le_ih(ih)) {
296		__le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
297
298		/* FIXME: here we could cache indirect item or part of it in
299		   the inode to avoid search_by_key in case of subsequent
300		   access to file */
301		blocknr = get_block_num(ind_item, path.pos_in_item);
302		ret = 0;
303		if (blocknr) {
304			map_bh(bh_result, inode->i_sb, blocknr);
305			if (path.pos_in_item ==
306			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
307				set_buffer_boundary(bh_result);
308			}
309		} else
310			// We do not return -ENOENT if there is a hole but page is uptodate, because it means
311			// That there is some MMAPED data associated with it that is yet to  be written to disk.
312		if ((args & GET_BLOCK_NO_HOLE)
313			    && !PageUptodate(bh_result->b_page)) {
314			ret = -ENOENT;
315		}
316
317		pathrelse(&path);
318		if (p)
319			kunmap(bh_result->b_page);
320		return ret;
321	}
322	// requested data are in direct item(s)
323	if (!(args & GET_BLOCK_READ_DIRECT)) {
324		// we are called by bmap. FIXME: we can not map block of file
325		// when it is stored in direct item(s)
326		pathrelse(&path);
327		if (p)
328			kunmap(bh_result->b_page);
329		return -ENOENT;
330	}
331
332	/* if we've got a direct item, and the buffer or page was uptodate,
333	 ** we don't want to pull data off disk again.  skip to the
334	 ** end, where we map the buffer and return
335	 */
336	if (buffer_uptodate(bh_result)) {
337		goto finished;
338	} else
339		/*
340		 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
341		 ** pages without any buffers.  If the page is up to date, we don't want
342		 ** read old data off disk.  Set the up to date bit on the buffer instead
343		 ** and jump to the end
344		 */
345	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
346		set_buffer_uptodate(bh_result);
347		goto finished;
348	}
349	// read file tail into part of page
350	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
351	copy_item_head(&tmp_ih, ih);
352
353	/* we only want to kmap if we are reading the tail into the page.
354	 ** this is not the common case, so we don't kmap until we are
355	 ** sure we need to.  But, this means the item might move if
356	 ** kmap schedules
357	 */
358	if (!p)
359		p = (char *)kmap(bh_result->b_page);
360
361	p += offset;
362	memset(p, 0, inode->i_sb->s_blocksize);
363	do {
364		if (!is_direct_le_ih(ih)) {
365			BUG();
366		}
367		/* make sure we don't read more bytes than actually exist in
368		 ** the file.  This can happen in odd cases where i_size isn't
369		 ** correct, and when direct item padding results in a few
370		 ** extra bytes at the end of the direct item
371		 */
372		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
373			break;
374		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
375			chars =
376			    inode->i_size - (le_ih_k_offset(ih) - 1) -
377			    path.pos_in_item;
378			done = 1;
379		} else {
380			chars = ih_item_len(ih) - path.pos_in_item;
381		}
382		memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
383
384		if (done)
385			break;
386
387		p += chars;
388
389		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
390			// we done, if read direct item is not the last item of
391			// node FIXME: we could try to check right delimiting key
392			// to see whether direct item continues in the right
393			// neighbor or rely on i_size
394			break;
395
396		// update key to look for the next piece
397		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
398		result = search_for_position_by_key(inode->i_sb, &key, &path);
399		if (result != POSITION_FOUND)
400			// i/o error most likely
401			break;
402		bh = get_last_bh(&path);
403		ih = get_ih(&path);
404	} while (1);
405
406	flush_dcache_page(bh_result->b_page);
407	kunmap(bh_result->b_page);
408
409      finished:
410	pathrelse(&path);
411
412	if (result == IO_ERROR)
413		return -EIO;
414
415	/* this buffer has valid data, but isn't valid for io.  mapping it to
416	 * block #0 tells the rest of reiserfs it just has a tail in it
417	 */
418	map_bh(bh_result, inode->i_sb, 0);
419	set_buffer_uptodate(bh_result);
420	return 0;
421}
422
423// this is called to create file map. So, _get_block_create_0 will not
424// read direct item
425static int reiserfs_bmap(struct inode *inode, sector_t block,
426			 struct buffer_head *bh_result, int create)
427{
428	if (!file_capable(inode, block))
429		return -EFBIG;
430
431	reiserfs_write_lock(inode->i_sb);
432	/* do not read the direct item */
433	_get_block_create_0(inode, block, bh_result, 0);
434	reiserfs_write_unlock(inode->i_sb);
435	return 0;
436}
437
438/* special version of get_block that is only used by grab_tail_page right
439** now.  It is sent to __block_write_begin, and when you try to get a
440** block past the end of the file (or a block from a hole) it returns
441** -ENOENT instead of a valid buffer.  __block_write_begin expects to
442** be able to do i/o on the buffers returned, unless an error value
443** is also returned.
444**
445** So, this allows __block_write_begin to be used for reading a single block
446** in a page.  Where it does not produce a valid page for holes, or past the
447** end of the file.  This turns out to be exactly what we need for reading
448** tails for conversion.
449**
450** The point of the wrapper is forcing a certain value for create, even
451** though the VFS layer is calling this function with create==1.  If you
452** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
453** don't use this function.
454*/
455static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
456				       struct buffer_head *bh_result,
457				       int create)
458{
459	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
460}
461
462/* This is special helper for reiserfs_get_block in case we are executing
463   direct_IO request. */
464static int reiserfs_get_blocks_direct_io(struct inode *inode,
465					 sector_t iblock,
466					 struct buffer_head *bh_result,
467					 int create)
468{
469	int ret;
470
471	bh_result->b_page = NULL;
472
473	/* We set the b_size before reiserfs_get_block call since it is
474	   referenced in convert_tail_for_hole() that may be called from
475	   reiserfs_get_block() */
476	bh_result->b_size = (1 << inode->i_blkbits);
477
478	ret = reiserfs_get_block(inode, iblock, bh_result,
479				 create | GET_BLOCK_NO_DANGLE);
480	if (ret)
481		goto out;
482
483	/* don't allow direct io onto tail pages */
484	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
485		/* make sure future calls to the direct io funcs for this offset
486		 ** in the file fail by unmapping the buffer
487		 */
488		clear_buffer_mapped(bh_result);
489		ret = -EINVAL;
490	}
491	/* Possible unpacked tail. Flush the data before pages have
492	   disappeared */
493	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
494		int err;
495
496		reiserfs_write_lock(inode->i_sb);
497
498		err = reiserfs_commit_for_inode(inode);
499		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
500
501		reiserfs_write_unlock(inode->i_sb);
502
503		if (err < 0)
504			ret = err;
505	}
506      out:
507	return ret;
508}
509
510/*
511** helper function for when reiserfs_get_block is called for a hole
512** but the file tail is still in a direct item
513** bh_result is the buffer head for the hole
514** tail_offset is the offset of the start of the tail in the file
515**
516** This calls prepare_write, which will start a new transaction
517** you should not be in a transaction, or have any paths held when you
518** call this.
519*/
520static int convert_tail_for_hole(struct inode *inode,
521				 struct buffer_head *bh_result,
522				 loff_t tail_offset)
523{
524	unsigned long index;
525	unsigned long tail_end;
526	unsigned long tail_start;
527	struct page *tail_page;
528	struct page *hole_page = bh_result->b_page;
529	int retval = 0;
530
531	if ((tail_offset & (bh_result->b_size - 1)) != 1)
532		return -EIO;
533
534	/* always try to read until the end of the block */
535	tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
536	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
537
538	index = tail_offset >> PAGE_CACHE_SHIFT;
539	/* hole_page can be zero in case of direct_io, we are sure
540	   that we cannot get here if we write with O_DIRECT into
541	   tail page */
542	if (!hole_page || index != hole_page->index) {
543		tail_page = grab_cache_page(inode->i_mapping, index);
544		retval = -ENOMEM;
545		if (!tail_page) {
546			goto out;
547		}
548	} else {
549		tail_page = hole_page;
550	}
551
552	/* we don't have to make sure the conversion did not happen while
553	 ** we were locking the page because anyone that could convert
554	 ** must first take i_mutex.
555	 **
556	 ** We must fix the tail page for writing because it might have buffers
557	 ** that are mapped, but have a block number of 0.  This indicates tail
558	 ** data that has been read directly into the page, and
559	 ** __block_write_begin won't trigger a get_block in this case.
560	 */
561	fix_tail_page_for_writing(tail_page);
562	retval = __reiserfs_write_begin(tail_page, tail_start,
563				      tail_end - tail_start);
564	if (retval)
565		goto unlock;
566
567	/* tail conversion might change the data in the page */
568	flush_dcache_page(tail_page);
569
570	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
571
572      unlock:
573	if (tail_page != hole_page) {
574		unlock_page(tail_page);
575		page_cache_release(tail_page);
576	}
577      out:
578	return retval;
579}
580
581static inline int _allocate_block(struct reiserfs_transaction_handle *th,
582				  sector_t block,
583				  struct inode *inode,
584				  b_blocknr_t * allocated_block_nr,
585				  struct treepath *path, int flags)
586{
587	BUG_ON(!th->t_trans_id);
588
589#ifdef REISERFS_PREALLOCATE
590	if (!(flags & GET_BLOCK_NO_IMUX)) {
591		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
592						  path, block);
593	}
594#endif
595	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
596					 block);
597}
598
599int reiserfs_get_block(struct inode *inode, sector_t block,
600		       struct buffer_head *bh_result, int create)
601{
602	int repeat, retval = 0;
603	b_blocknr_t allocated_block_nr = 0;	// b_blocknr_t is (unsigned) 32 bit int
604	INITIALIZE_PATH(path);
605	int pos_in_item;
606	struct cpu_key key;
607	struct buffer_head *bh, *unbh = NULL;
608	struct item_head *ih, tmp_ih;
609	__le32 *item;
610	int done;
611	int fs_gen;
612	int lock_depth;
613	struct reiserfs_transaction_handle *th = NULL;
614	/* space reserved in transaction batch:
615	   . 3 balancings in direct->indirect conversion
616	   . 1 block involved into reiserfs_update_sd()
617	   XXX in practically impossible worst case direct2indirect()
618	   can incur (much) more than 3 balancings.
619	   quota update for user, group */
620	int jbegin_count =
621	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
622	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
623	int version;
624	int dangle = 1;
625	loff_t new_offset =
626	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
627
628	lock_depth = reiserfs_write_lock_once(inode->i_sb);
629	version = get_inode_item_key_version(inode);
630
631	if (!file_capable(inode, block)) {
632		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
633		return -EFBIG;
634	}
635
636	/* if !create, we aren't changing the FS, so we don't need to
637	 ** log anything, so we don't need to start a transaction
638	 */
639	if (!(create & GET_BLOCK_CREATE)) {
640		int ret;
641		/* find number of block-th logical block of the file */
642		ret = _get_block_create_0(inode, block, bh_result,
643					  create | GET_BLOCK_READ_DIRECT);
644		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
645		return ret;
646	}
647	/*
648	 * if we're already in a transaction, make sure to close
649	 * any new transactions we start in this func
650	 */
651	if ((create & GET_BLOCK_NO_DANGLE) ||
652	    reiserfs_transaction_running(inode->i_sb))
653		dangle = 0;
654
655	/* If file is of such a size, that it might have a tail and tails are enabled
656	 ** we should mark it as possibly needing tail packing on close
657	 */
658	if ((have_large_tails(inode->i_sb)
659	     && inode->i_size < i_block_size(inode) * 4)
660	    || (have_small_tails(inode->i_sb)
661		&& inode->i_size < i_block_size(inode)))
662		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
663
664	/* set the key of the first byte in the 'block'-th block of file */
665	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
666	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
667	      start_trans:
668		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
669		if (!th) {
670			retval = -ENOMEM;
671			goto failure;
672		}
673		reiserfs_update_inode_transaction(inode);
674	}
675      research:
676
677	retval = search_for_position_by_key(inode->i_sb, &key, &path);
678	if (retval == IO_ERROR) {
679		retval = -EIO;
680		goto failure;
681	}
682
683	bh = get_last_bh(&path);
684	ih = get_ih(&path);
685	item = get_item(&path);
686	pos_in_item = path.pos_in_item;
687
688	fs_gen = get_generation(inode->i_sb);
689	copy_item_head(&tmp_ih, ih);
690
691	if (allocation_needed
692	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
693		/* we have to allocate block for the unformatted node */
694		if (!th) {
695			pathrelse(&path);
696			goto start_trans;
697		}
698
699		repeat =
700		    _allocate_block(th, block, inode, &allocated_block_nr,
701				    &path, create);
702
703		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
704			/* restart the transaction to give the journal a chance to free
705			 ** some blocks.  releases the path, so we have to go back to
706			 ** research if we succeed on the second try
707			 */
708			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
709			retval = restart_transaction(th, inode, &path);
710			if (retval)
711				goto failure;
712			repeat =
713			    _allocate_block(th, block, inode,
714					    &allocated_block_nr, NULL, create);
715
716			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
717				goto research;
718			}
719			if (repeat == QUOTA_EXCEEDED)
720				retval = -EDQUOT;
721			else
722				retval = -ENOSPC;
723			goto failure;
724		}
725
726		if (fs_changed(fs_gen, inode->i_sb)
727		    && item_moved(&tmp_ih, &path)) {
728			goto research;
729		}
730	}
731
732	if (indirect_item_found(retval, ih)) {
733		b_blocknr_t unfm_ptr;
734		/* 'block'-th block is in the file already (there is
735		   corresponding cell in some indirect item). But it may be
736		   zero unformatted node pointer (hole) */
737		unfm_ptr = get_block_num(item, pos_in_item);
738		if (unfm_ptr == 0) {
739			/* use allocated block to plug the hole */
740			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
741			if (fs_changed(fs_gen, inode->i_sb)
742			    && item_moved(&tmp_ih, &path)) {
743				reiserfs_restore_prepared_buffer(inode->i_sb,
744								 bh);
745				goto research;
746			}
747			set_buffer_new(bh_result);
748			if (buffer_dirty(bh_result)
749			    && reiserfs_data_ordered(inode->i_sb))
750				reiserfs_add_ordered_list(inode, bh_result);
751			put_block_num(item, pos_in_item, allocated_block_nr);
752			unfm_ptr = allocated_block_nr;
753			journal_mark_dirty(th, inode->i_sb, bh);
754			reiserfs_update_sd(th, inode);
755		}
756		set_block_dev_mapped(bh_result, unfm_ptr, inode);
757		pathrelse(&path);
758		retval = 0;
759		if (!dangle && th)
760			retval = reiserfs_end_persistent_transaction(th);
761
762		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
763
764		/* the item was found, so new blocks were not added to the file
765		 ** there is no need to make sure the inode is updated with this
766		 ** transaction
767		 */
768		return retval;
769	}
770
771	if (!th) {
772		pathrelse(&path);
773		goto start_trans;
774	}
775
776	/* desired position is not found or is in the direct item. We have
777	   to append file with holes up to 'block'-th block converting
778	   direct items to indirect one if necessary */
779	done = 0;
780	do {
781		if (is_statdata_le_ih(ih)) {
782			__le32 unp = 0;
783			struct cpu_key tmp_key;
784
785			/* indirect item has to be inserted */
786			make_le_item_head(&tmp_ih, &key, version, 1,
787					  TYPE_INDIRECT, UNFM_P_SIZE,
788					  0 /* free_space */ );
789
790			if (cpu_key_k_offset(&key) == 1) {
791				/* we are going to add 'block'-th block to the file. Use
792				   allocated block for that */
793				unp = cpu_to_le32(allocated_block_nr);
794				set_block_dev_mapped(bh_result,
795						     allocated_block_nr, inode);
796				set_buffer_new(bh_result);
797				done = 1;
798			}
799			tmp_key = key;	// ;)
800			set_cpu_key_k_offset(&tmp_key, 1);
801			PATH_LAST_POSITION(&path)++;
802
803			retval =
804			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
805						 inode, (char *)&unp);
806			if (retval) {
807				reiserfs_free_block(th, inode,
808						    allocated_block_nr, 1);
809				goto failure;	// retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
810			}
811			//mark_tail_converted (inode);
812		} else if (is_direct_le_ih(ih)) {
813			/* direct item has to be converted */
814			loff_t tail_offset;
815
816			tail_offset =
817			    ((le_ih_k_offset(ih) -
818			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
819			if (tail_offset == cpu_key_k_offset(&key)) {
820				/* direct item we just found fits into block we have
821				   to map. Convert it into unformatted node: use
822				   bh_result for the conversion */
823				set_block_dev_mapped(bh_result,
824						     allocated_block_nr, inode);
825				unbh = bh_result;
826				done = 1;
827			} else {
828				/* we have to padd file tail stored in direct item(s)
829				   up to block size and convert it to unformatted
830				   node. FIXME: this should also get into page cache */
831
832				pathrelse(&path);
833				/*
834				 * ugly, but we can only end the transaction if
835				 * we aren't nested
836				 */
837				BUG_ON(!th->t_refcount);
838				if (th->t_refcount == 1) {
839					retval =
840					    reiserfs_end_persistent_transaction
841					    (th);
842					th = NULL;
843					if (retval)
844						goto failure;
845				}
846
847				retval =
848				    convert_tail_for_hole(inode, bh_result,
849							  tail_offset);
850				if (retval) {
851					if (retval != -ENOSPC)
852						reiserfs_error(inode->i_sb,
853							"clm-6004",
854							"convert tail failed "
855							"inode %lu, error %d",
856							inode->i_ino,
857							retval);
858					if (allocated_block_nr) {
859						/* the bitmap, the super, and the stat data == 3 */
860						if (!th)
861							th = reiserfs_persistent_transaction(inode->i_sb, 3);
862						if (th)
863							reiserfs_free_block(th,
864									    inode,
865									    allocated_block_nr,
866									    1);
867					}
868					goto failure;
869				}
870				goto research;
871			}
872			retval =
873			    direct2indirect(th, inode, &path, unbh,
874					    tail_offset);
875			if (retval) {
876				reiserfs_unmap_buffer(unbh);
877				reiserfs_free_block(th, inode,
878						    allocated_block_nr, 1);
879				goto failure;
880			}
881			/* it is important the set_buffer_uptodate is done after
882			 ** the direct2indirect.  The buffer might contain valid
883			 ** data newer than the data on disk (read by readpage, changed,
884			 ** and then sent here by writepage).  direct2indirect needs
885			 ** to know if unbh was already up to date, so it can decide
886			 ** if the data in unbh needs to be replaced with data from
887			 ** the disk
888			 */
889			set_buffer_uptodate(unbh);
890
891			/* unbh->b_page == NULL in case of DIRECT_IO request, this means
892			   buffer will disappear shortly, so it should not be added to
893			 */
894			if (unbh->b_page) {
895				/* we've converted the tail, so we must
896				 ** flush unbh before the transaction commits
897				 */
898				reiserfs_add_tail_list(inode, unbh);
899
900				/* mark it dirty now to prevent commit_write from adding
901				 ** this buffer to the inode's dirty buffer list
902				 */
903				/*
904				 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
905				 * It's still atomic, but it sets the page dirty too,
906				 * which makes it eligible for writeback at any time by the
907				 * VM (which was also the case with __mark_buffer_dirty())
908				 */
909				mark_buffer_dirty(unbh);
910			}
911		} else {
912			/* append indirect item with holes if needed, when appending
913			   pointer to 'block'-th block use block, which is already
914			   allocated */
915			struct cpu_key tmp_key;
916			unp_t unf_single = 0;	// We use this in case we need to allocate only
917			// one block which is a fastpath
918			unp_t *un;
919			__u64 max_to_insert =
920			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
921			    UNFM_P_SIZE;
922			__u64 blocks_needed;
923
924			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
925			       "vs-804: invalid position for append");
926			/* indirect item has to be appended, set up key of that position */
927			make_cpu_key(&tmp_key, inode,
928				     le_key_k_offset(version,
929						     &(ih->ih_key)) +
930				     op_bytes_number(ih,
931						     inode->i_sb->s_blocksize),
932				     //pos_in_item * inode->i_sb->s_blocksize,
933				     TYPE_INDIRECT, 3);	// key type is unimportant
934
935			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
936			       "green-805: invalid offset");
937			blocks_needed =
938			    1 +
939			    ((cpu_key_k_offset(&key) -
940			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
941			     s_blocksize_bits);
942
943			if (blocks_needed == 1) {
944				un = &unf_single;
945			} else {
946				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
947				if (!un) {
948					un = &unf_single;
949					blocks_needed = 1;
950					max_to_insert = 0;
951				}
952			}
953			if (blocks_needed <= max_to_insert) {
954				/* we are going to add target block to the file. Use allocated
955				   block for that */
956				un[blocks_needed - 1] =
957				    cpu_to_le32(allocated_block_nr);
958				set_block_dev_mapped(bh_result,
959						     allocated_block_nr, inode);
960				set_buffer_new(bh_result);
961				done = 1;
962			} else {
963				/* paste hole to the indirect item */
964				/* If kmalloc failed, max_to_insert becomes zero and it means we
965				   only have space for one block */
966				blocks_needed =
967				    max_to_insert ? max_to_insert : 1;
968			}
969			retval =
970			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
971						     (char *)un,
972						     UNFM_P_SIZE *
973						     blocks_needed);
974
975			if (blocks_needed != 1)
976				kfree(un);
977
978			if (retval) {
979				reiserfs_free_block(th, inode,
980						    allocated_block_nr, 1);
981				goto failure;
982			}
983			if (!done) {
984				/* We need to mark new file size in case this function will be
985				   interrupted/aborted later on. And we may do this only for
986				   holes. */
987				inode->i_size +=
988				    inode->i_sb->s_blocksize * blocks_needed;
989			}
990		}
991
992		if (done == 1)
993			break;
994
995		/* this loop could log more blocks than we had originally asked
996		 ** for.  So, we have to allow the transaction to end if it is
997		 ** too big or too full.  Update the inode so things are
998		 ** consistent if we crash before the function returns
999		 **
1000		 ** release the path so that anybody waiting on the path before
1001		 ** ending their transaction will be able to continue.
1002		 */
1003		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1004			retval = restart_transaction(th, inode, &path);
1005			if (retval)
1006				goto failure;
1007		}
1008		/*
1009		 * inserting indirect pointers for a hole can take a
1010		 * long time.  reschedule if needed and also release the write
1011		 * lock for others.
1012		 */
1013		if (need_resched()) {
1014			reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1015			schedule();
1016			lock_depth = reiserfs_write_lock_once(inode->i_sb);
1017		}
1018
1019		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1020		if (retval == IO_ERROR) {
1021			retval = -EIO;
1022			goto failure;
1023		}
1024		if (retval == POSITION_FOUND) {
1025			reiserfs_warning(inode->i_sb, "vs-825",
1026					 "%K should not be found", &key);
1027			retval = -EEXIST;
1028			if (allocated_block_nr)
1029				reiserfs_free_block(th, inode,
1030						    allocated_block_nr, 1);
1031			pathrelse(&path);
1032			goto failure;
1033		}
1034		bh = get_last_bh(&path);
1035		ih = get_ih(&path);
1036		item = get_item(&path);
1037		pos_in_item = path.pos_in_item;
1038	} while (1);
1039
1040	retval = 0;
1041
1042      failure:
1043	if (th && (!dangle || (retval && !th->t_trans_id))) {
1044		int err;
1045		if (th->t_trans_id)
1046			reiserfs_update_sd(th, inode);
1047		err = reiserfs_end_persistent_transaction(th);
1048		if (err)
1049			retval = err;
1050	}
1051
1052	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1053	reiserfs_check_path(&path);
1054	return retval;
1055}
1056
1057static int
1058reiserfs_readpages(struct file *file, struct address_space *mapping,
1059		   struct list_head *pages, unsigned nr_pages)
1060{
1061	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1062}
1063
1064/* Compute real number of used bytes by file
1065 * Following three functions can go away when we'll have enough space in stat item
1066 */
1067static int real_space_diff(struct inode *inode, int sd_size)
1068{
1069	int bytes;
1070	loff_t blocksize = inode->i_sb->s_blocksize;
1071
1072	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1073		return sd_size;
1074
1075	/* End of file is also in full block with indirect reference, so round
1076	 ** up to the next block.
1077	 **
1078	 ** there is just no way to know if the tail is actually packed
1079	 ** on the file, so we have to assume it isn't.  When we pack the
1080	 ** tail, we add 4 bytes to pretend there really is an unformatted
1081	 ** node pointer
1082	 */
1083	bytes =
1084	    ((inode->i_size +
1085	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1086	    sd_size;
1087	return bytes;
1088}
1089
1090static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1091					int sd_size)
1092{
1093	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1094		return inode->i_size +
1095		    (loff_t) (real_space_diff(inode, sd_size));
1096	}
1097	return ((loff_t) real_space_diff(inode, sd_size)) +
1098	    (((loff_t) blocks) << 9);
1099}
1100
1101/* Compute number of blocks used by file in ReiserFS counting */
1102static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1103{
1104	loff_t bytes = inode_get_bytes(inode);
1105	loff_t real_space = real_space_diff(inode, sd_size);
1106
1107	/* keeps fsck and non-quota versions of reiserfs happy */
1108	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1109		bytes += (loff_t) 511;
1110	}
1111
1112	/* files from before the quota patch might i_blocks such that
1113	 ** bytes < real_space.  Deal with that here to prevent it from
1114	 ** going negative.
1115	 */
1116	if (bytes < real_space)
1117		return 0;
1118	return (bytes - real_space) >> 9;
1119}
1120
1121//
1122// BAD: new directories have stat data of new type and all other items
1123// of old type. Version stored in the inode says about body items, so
1124// in update_stat_data we can not rely on inode, but have to check
1125// item version directly
1126//
1127
1128// called by read_locked_inode
1129static void init_inode(struct inode *inode, struct treepath *path)
1130{
1131	struct buffer_head *bh;
1132	struct item_head *ih;
1133	__u32 rdev;
1134	//int version = ITEM_VERSION_1;
1135
1136	bh = PATH_PLAST_BUFFER(path);
1137	ih = PATH_PITEM_HEAD(path);
1138
1139	copy_key(INODE_PKEY(inode), &(ih->ih_key));
1140
1141	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1142	REISERFS_I(inode)->i_flags = 0;
1143	REISERFS_I(inode)->i_prealloc_block = 0;
1144	REISERFS_I(inode)->i_prealloc_count = 0;
1145	REISERFS_I(inode)->i_trans_id = 0;
1146	REISERFS_I(inode)->i_jl = NULL;
1147	reiserfs_init_xattr_rwsem(inode);
1148
1149	if (stat_data_v1(ih)) {
1150		struct stat_data_v1 *sd =
1151		    (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1152		unsigned long blocks;
1153
1154		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1155		set_inode_sd_version(inode, STAT_DATA_V1);
1156		inode->i_mode = sd_v1_mode(sd);
1157		set_nlink(inode, sd_v1_nlink(sd));
1158		inode->i_uid = sd_v1_uid(sd);
1159		inode->i_gid = sd_v1_gid(sd);
1160		inode->i_size = sd_v1_size(sd);
1161		inode->i_atime.tv_sec = sd_v1_atime(sd);
1162		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1163		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1164		inode->i_atime.tv_nsec = 0;
1165		inode->i_ctime.tv_nsec = 0;
1166		inode->i_mtime.tv_nsec = 0;
1167
1168		inode->i_blocks = sd_v1_blocks(sd);
1169		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1170		blocks = (inode->i_size + 511) >> 9;
1171		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1172		if (inode->i_blocks > blocks) {
1173			// there was a bug in <=3.5.23 when i_blocks could take negative
1174			// values. Starting from 3.5.17 this value could even be stored in
1175			// stat data. For such files we set i_blocks based on file
1176			// size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1177			// only updated if file's inode will ever change
1178			inode->i_blocks = blocks;
1179		}
1180
1181		rdev = sd_v1_rdev(sd);
1182		REISERFS_I(inode)->i_first_direct_byte =
1183		    sd_v1_first_direct_byte(sd);
1184		/* an early bug in the quota code can give us an odd number for the
1185		 ** block count.  This is incorrect, fix it here.
1186		 */
1187		if (inode->i_blocks & 1) {
1188			inode->i_blocks++;
1189		}
1190		inode_set_bytes(inode,
1191				to_real_used_space(inode, inode->i_blocks,
1192						   SD_V1_SIZE));
1193		/* nopack is initially zero for v1 objects. For v2 objects,
1194		   nopack is initialised from sd_attrs */
1195		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1196	} else {
1197		// new stat data found, but object may have old items
1198		// (directories and symlinks)
1199		struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1200
1201		inode->i_mode = sd_v2_mode(sd);
1202		set_nlink(inode, sd_v2_nlink(sd));
1203		inode->i_uid = sd_v2_uid(sd);
1204		inode->i_size = sd_v2_size(sd);
1205		inode->i_gid = sd_v2_gid(sd);
1206		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1207		inode->i_atime.tv_sec = sd_v2_atime(sd);
1208		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1209		inode->i_ctime.tv_nsec = 0;
1210		inode->i_mtime.tv_nsec = 0;
1211		inode->i_atime.tv_nsec = 0;
1212		inode->i_blocks = sd_v2_blocks(sd);
1213		rdev = sd_v2_rdev(sd);
1214		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1215			inode->i_generation =
1216			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1217		else
1218			inode->i_generation = sd_v2_generation(sd);
1219
1220		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1221			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1222		else
1223			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1224		REISERFS_I(inode)->i_first_direct_byte = 0;
1225		set_inode_sd_version(inode, STAT_DATA_V2);
1226		inode_set_bytes(inode,
1227				to_real_used_space(inode, inode->i_blocks,
1228						   SD_V2_SIZE));
1229		/* read persistent inode attributes from sd and initialise
1230		   generic inode flags from them */
1231		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1232		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1233	}
1234
1235	pathrelse(path);
1236	if (S_ISREG(inode->i_mode)) {
1237		inode->i_op = &reiserfs_file_inode_operations;
1238		inode->i_fop = &reiserfs_file_operations;
1239		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1240	} else if (S_ISDIR(inode->i_mode)) {
1241		inode->i_op = &reiserfs_dir_inode_operations;
1242		inode->i_fop = &reiserfs_dir_operations;
1243	} else if (S_ISLNK(inode->i_mode)) {
1244		inode->i_op = &reiserfs_symlink_inode_operations;
1245		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1246	} else {
1247		inode->i_blocks = 0;
1248		inode->i_op = &reiserfs_special_inode_operations;
1249		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1250	}
1251}
1252
1253// update new stat data with inode fields
1254static void inode2sd(void *sd, struct inode *inode, loff_t size)
1255{
1256	struct stat_data *sd_v2 = (struct stat_data *)sd;
1257	__u16 flags;
1258
1259	set_sd_v2_mode(sd_v2, inode->i_mode);
1260	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1261	set_sd_v2_uid(sd_v2, inode->i_uid);
1262	set_sd_v2_size(sd_v2, size);
1263	set_sd_v2_gid(sd_v2, inode->i_gid);
1264	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1265	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1266	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1267	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1268	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1269		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1270	else
1271		set_sd_v2_generation(sd_v2, inode->i_generation);
1272	flags = REISERFS_I(inode)->i_attrs;
1273	i_attrs_to_sd_attrs(inode, &flags);
1274	set_sd_v2_attrs(sd_v2, flags);
1275}
1276
1277// used to copy inode's fields to old stat data
1278static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1279{
1280	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1281
1282	set_sd_v1_mode(sd_v1, inode->i_mode);
1283	set_sd_v1_uid(sd_v1, inode->i_uid);
1284	set_sd_v1_gid(sd_v1, inode->i_gid);
1285	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1286	set_sd_v1_size(sd_v1, size);
1287	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1288	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1289	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1290
1291	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1292		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1293	else
1294		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1295
1296	// Sigh. i_first_direct_byte is back
1297	set_sd_v1_first_direct_byte(sd_v1,
1298				    REISERFS_I(inode)->i_first_direct_byte);
1299}
1300
1301/* NOTE, you must prepare the buffer head before sending it here,
1302** and then log it after the call
1303*/
1304static void update_stat_data(struct treepath *path, struct inode *inode,
1305			     loff_t size)
1306{
1307	struct buffer_head *bh;
1308	struct item_head *ih;
1309
1310	bh = PATH_PLAST_BUFFER(path);
1311	ih = PATH_PITEM_HEAD(path);
1312
1313	if (!is_statdata_le_ih(ih))
1314		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1315			       INODE_PKEY(inode), ih);
1316
1317	if (stat_data_v1(ih)) {
1318		// path points to old stat data
1319		inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1320	} else {
1321		inode2sd(B_I_PITEM(bh, ih), inode, size);
1322	}
1323
1324	return;
1325}
1326
1327void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1328			     struct inode *inode, loff_t size)
1329{
1330	struct cpu_key key;
1331	INITIALIZE_PATH(path);
1332	struct buffer_head *bh;
1333	int fs_gen;
1334	struct item_head *ih, tmp_ih;
1335	int retval;
1336
1337	BUG_ON(!th->t_trans_id);
1338
1339	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);	//key type is unimportant
1340
1341	for (;;) {
1342		int pos;
1343		/* look for the object's stat data */
1344		retval = search_item(inode->i_sb, &key, &path);
1345		if (retval == IO_ERROR) {
1346			reiserfs_error(inode->i_sb, "vs-13050",
1347				       "i/o failure occurred trying to "
1348				       "update %K stat data", &key);
1349			return;
1350		}
1351		if (retval == ITEM_NOT_FOUND) {
1352			pos = PATH_LAST_POSITION(&path);
1353			pathrelse(&path);
1354			if (inode->i_nlink == 0) {
1355				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1356				return;
1357			}
1358			reiserfs_warning(inode->i_sb, "vs-13060",
1359					 "stat data of object %k (nlink == %d) "
1360					 "not found (pos %d)",
1361					 INODE_PKEY(inode), inode->i_nlink,
1362					 pos);
1363			reiserfs_check_path(&path);
1364			return;
1365		}
1366
1367		/* sigh, prepare_for_journal might schedule.  When it schedules the
1368		 ** FS might change.  We have to detect that, and loop back to the
1369		 ** search if the stat data item has moved
1370		 */
1371		bh = get_last_bh(&path);
1372		ih = get_ih(&path);
1373		copy_item_head(&tmp_ih, ih);
1374		fs_gen = get_generation(inode->i_sb);
1375		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1376		if (fs_changed(fs_gen, inode->i_sb)
1377		    && item_moved(&tmp_ih, &path)) {
1378			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1379			continue;	/* Stat_data item has been moved after scheduling. */
1380		}
1381		break;
1382	}
1383	update_stat_data(&path, inode, size);
1384	journal_mark_dirty(th, th->t_super, bh);
1385	pathrelse(&path);
1386	return;
1387}
1388
1389/* reiserfs_read_locked_inode is called to read the inode off disk, and it
1390** does a make_bad_inode when things go wrong.  But, we need to make sure
1391** and clear the key in the private portion of the inode, otherwise a
1392** corresponding iput might try to delete whatever object the inode last
1393** represented.
1394*/
1395static void reiserfs_make_bad_inode(struct inode *inode)
1396{
1397	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1398	make_bad_inode(inode);
1399}
1400
1401//
1402// initially this function was derived from minix or ext2's analog and
1403// evolved as the prototype did
1404//
1405
1406int reiserfs_init_locked_inode(struct inode *inode, void *p)
1407{
1408	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1409	inode->i_ino = args->objectid;
1410	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1411	return 0;
1412}
1413
1414/* looks for stat data in the tree, and fills up the fields of in-core
1415   inode stat data fields */
1416void reiserfs_read_locked_inode(struct inode *inode,
1417				struct reiserfs_iget_args *args)
1418{
1419	INITIALIZE_PATH(path_to_sd);
1420	struct cpu_key key;
1421	unsigned long dirino;
1422	int retval;
1423
1424	dirino = args->dirid;
1425
1426	/* set version 1, version 2 could be used too, because stat data
1427	   key is the same in both versions */
1428	key.version = KEY_FORMAT_3_5;
1429	key.on_disk_key.k_dir_id = dirino;
1430	key.on_disk_key.k_objectid = inode->i_ino;
1431	key.on_disk_key.k_offset = 0;
1432	key.on_disk_key.k_type = 0;
1433
1434	/* look for the object's stat data */
1435	retval = search_item(inode->i_sb, &key, &path_to_sd);
1436	if (retval == IO_ERROR) {
1437		reiserfs_error(inode->i_sb, "vs-13070",
1438			       "i/o failure occurred trying to find "
1439			       "stat data of %K", &key);
1440		reiserfs_make_bad_inode(inode);
1441		return;
1442	}
1443	if (retval != ITEM_FOUND) {
1444		/* a stale NFS handle can trigger this without it being an error */
1445		pathrelse(&path_to_sd);
1446		reiserfs_make_bad_inode(inode);
1447		clear_nlink(inode);
1448		return;
1449	}
1450
1451	init_inode(inode, &path_to_sd);
1452
1453	/* It is possible that knfsd is trying to access inode of a file
1454	   that is being removed from the disk by some other thread. As we
1455	   update sd on unlink all that is required is to check for nlink
1456	   here. This bug was first found by Sizif when debugging
1457	   SquidNG/Butterfly, forgotten, and found again after Philippe
1458	   Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1459
1460	   More logical fix would require changes in fs/inode.c:iput() to
1461	   remove inode from hash-table _after_ fs cleaned disk stuff up and
1462	   in iget() to return NULL if I_FREEING inode is found in
1463	   hash-table. */
1464	/* Currently there is one place where it's ok to meet inode with
1465	   nlink==0: processing of open-unlinked and half-truncated files
1466	   during mount (fs/reiserfs/super.c:finish_unfinished()). */
1467	if ((inode->i_nlink == 0) &&
1468	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1469		reiserfs_warning(inode->i_sb, "vs-13075",
1470				 "dead inode read from disk %K. "
1471				 "This is likely to be race with knfsd. Ignore",
1472				 &key);
1473		reiserfs_make_bad_inode(inode);
1474	}
1475
1476	reiserfs_check_path(&path_to_sd);	/* init inode should be relsing */
1477
1478	/*
1479	 * Stat data v1 doesn't support ACLs.
1480	 */
1481	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1482		cache_no_acl(inode);
1483}
1484
1485/**
1486 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1487 *
1488 * @inode:    inode from hash table to check
1489 * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1490 *
1491 * This function is called by iget5_locked() to distinguish reiserfs inodes
1492 * having the same inode numbers. Such inodes can only exist due to some
1493 * error condition. One of them should be bad. Inodes with identical
1494 * inode numbers (objectids) are distinguished by parent directory ids.
1495 *
1496 */
1497int reiserfs_find_actor(struct inode *inode, void *opaque)
1498{
1499	struct reiserfs_iget_args *args;
1500
1501	args = opaque;
1502	/* args is already in CPU order */
1503	return (inode->i_ino == args->objectid) &&
1504	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1505}
1506
1507struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1508{
1509	struct inode *inode;
1510	struct reiserfs_iget_args args;
1511
1512	args.objectid = key->on_disk_key.k_objectid;
1513	args.dirid = key->on_disk_key.k_dir_id;
1514	reiserfs_write_unlock(s);
1515	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1516			     reiserfs_find_actor, reiserfs_init_locked_inode,
1517			     (void *)(&args));
1518	reiserfs_write_lock(s);
1519	if (!inode)
1520		return ERR_PTR(-ENOMEM);
1521
1522	if (inode->i_state & I_NEW) {
1523		reiserfs_read_locked_inode(inode, &args);
1524		unlock_new_inode(inode);
1525	}
1526
1527	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1528		/* either due to i/o error or a stale NFS handle */
1529		iput(inode);
1530		inode = NULL;
1531	}
1532	return inode;
1533}
1534
1535static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1536	u32 objectid, u32 dir_id, u32 generation)
1537
1538{
1539	struct cpu_key key;
1540	struct inode *inode;
1541
1542	key.on_disk_key.k_objectid = objectid;
1543	key.on_disk_key.k_dir_id = dir_id;
1544	reiserfs_write_lock(sb);
1545	inode = reiserfs_iget(sb, &key);
1546	if (inode && !IS_ERR(inode) && generation != 0 &&
1547	    generation != inode->i_generation) {
1548		iput(inode);
1549		inode = NULL;
1550	}
1551	reiserfs_write_unlock(sb);
1552
1553	return d_obtain_alias(inode);
1554}
1555
1556struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1557		int fh_len, int fh_type)
1558{
1559	/* fhtype happens to reflect the number of u32s encoded.
1560	 * due to a bug in earlier code, fhtype might indicate there
1561	 * are more u32s then actually fitted.
1562	 * so if fhtype seems to be more than len, reduce fhtype.
1563	 * Valid types are:
1564	 *   2 - objectid + dir_id - legacy support
1565	 *   3 - objectid + dir_id + generation
1566	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1567	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1568	 *   6 - as above plus generation of directory
1569	 * 6 does not fit in NFSv2 handles
1570	 */
1571	if (fh_type > fh_len) {
1572		if (fh_type != 6 || fh_len != 5)
1573			reiserfs_warning(sb, "reiserfs-13077",
1574				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1575				fh_type, fh_len);
1576		fh_type = 5;
1577	}
1578
1579	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1580		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1581}
1582
1583struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1584		int fh_len, int fh_type)
1585{
1586	if (fh_type < 4)
1587		return NULL;
1588
1589	return reiserfs_get_dentry(sb,
1590		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1591		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1592		(fh_type == 6) ? fid->raw[5] : 0);
1593}
1594
1595int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1596		       struct inode *parent)
1597{
1598	int maxlen = *lenp;
1599
1600	if (parent && (maxlen < 5)) {
1601		*lenp = 5;
1602		return 255;
1603	} else if (maxlen < 3) {
1604		*lenp = 3;
1605		return 255;
1606	}
1607
1608	data[0] = inode->i_ino;
1609	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1610	data[2] = inode->i_generation;
1611	*lenp = 3;
1612	if (parent) {
1613		data[3] = parent->i_ino;
1614		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1615		*lenp = 5;
1616		if (maxlen >= 6) {
1617			data[5] = parent->i_generation;
1618			*lenp = 6;
1619		}
1620	}
1621	return *lenp;
1622}
1623
1624/* looks for stat data, then copies fields to it, marks the buffer
1625   containing stat data as dirty */
1626/* reiserfs inodes are never really dirty, since the dirty inode call
1627** always logs them.  This call allows the VFS inode marking routines
1628** to properly mark inodes for datasync and such, but only actually
1629** does something when called for a synchronous update.
1630*/
1631int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1632{
1633	struct reiserfs_transaction_handle th;
1634	int jbegin_count = 1;
1635
1636	if (inode->i_sb->s_flags & MS_RDONLY)
1637		return -EROFS;
1638	/* memory pressure can sometimes initiate write_inode calls with sync == 1,
1639	 ** these cases are just when the system needs ram, not when the
1640	 ** inode needs to reach disk for safety, and they can safely be
1641	 ** ignored because the altered inode has already been logged.
1642	 */
1643	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1644		reiserfs_write_lock(inode->i_sb);
1645		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1646			reiserfs_update_sd(&th, inode);
1647			journal_end_sync(&th, inode->i_sb, jbegin_count);
1648		}
1649		reiserfs_write_unlock(inode->i_sb);
1650	}
1651	return 0;
1652}
1653
1654/* stat data of new object is inserted already, this inserts the item
1655   containing "." and ".." entries */
1656static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1657				  struct inode *inode,
1658				  struct item_head *ih, struct treepath *path,
1659				  struct inode *dir)
1660{
1661	struct super_block *sb = th->t_super;
1662	char empty_dir[EMPTY_DIR_SIZE];
1663	char *body = empty_dir;
1664	struct cpu_key key;
1665	int retval;
1666
1667	BUG_ON(!th->t_trans_id);
1668
1669	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1670		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1671		      TYPE_DIRENTRY, 3 /*key length */ );
1672
1673	/* compose item head for new item. Directories consist of items of
1674	   old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1675	   is done by reiserfs_new_inode */
1676	if (old_format_only(sb)) {
1677		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1678				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1679
1680		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1681				       ih->ih_key.k_objectid,
1682				       INODE_PKEY(dir)->k_dir_id,
1683				       INODE_PKEY(dir)->k_objectid);
1684	} else {
1685		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1686				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1687
1688		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1689				    ih->ih_key.k_objectid,
1690				    INODE_PKEY(dir)->k_dir_id,
1691				    INODE_PKEY(dir)->k_objectid);
1692	}
1693
1694	/* look for place in the tree for new item */
1695	retval = search_item(sb, &key, path);
1696	if (retval == IO_ERROR) {
1697		reiserfs_error(sb, "vs-13080",
1698			       "i/o failure occurred creating new directory");
1699		return -EIO;
1700	}
1701	if (retval == ITEM_FOUND) {
1702		pathrelse(path);
1703		reiserfs_warning(sb, "vs-13070",
1704				 "object with this key exists (%k)",
1705				 &(ih->ih_key));
1706		return -EEXIST;
1707	}
1708
1709	/* insert item, that is empty directory item */
1710	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1711}
1712
1713/* stat data of object has been inserted, this inserts the item
1714   containing the body of symlink */
1715static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode,	/* Inode of symlink */
1716				struct item_head *ih,
1717				struct treepath *path, const char *symname,
1718				int item_len)
1719{
1720	struct super_block *sb = th->t_super;
1721	struct cpu_key key;
1722	int retval;
1723
1724	BUG_ON(!th->t_trans_id);
1725
1726	_make_cpu_key(&key, KEY_FORMAT_3_5,
1727		      le32_to_cpu(ih->ih_key.k_dir_id),
1728		      le32_to_cpu(ih->ih_key.k_objectid),
1729		      1, TYPE_DIRECT, 3 /*key length */ );
1730
1731	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1732			  0 /*free_space */ );
1733
1734	/* look for place in the tree for new item */
1735	retval = search_item(sb, &key, path);
1736	if (retval == IO_ERROR) {
1737		reiserfs_error(sb, "vs-13080",
1738			       "i/o failure occurred creating new symlink");
1739		return -EIO;
1740	}
1741	if (retval == ITEM_FOUND) {
1742		pathrelse(path);
1743		reiserfs_warning(sb, "vs-13080",
1744				 "object with this key exists (%k)",
1745				 &(ih->ih_key));
1746		return -EEXIST;
1747	}
1748
1749	/* insert item, that is body of symlink */
1750	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1751}
1752
1753/* inserts the stat data into the tree, and then calls
1754   reiserfs_new_directory (to insert ".", ".." item if new object is
1755   directory) or reiserfs_new_symlink (to insert symlink body if new
1756   object is symlink) or nothing (if new object is regular file)
1757
1758   NOTE! uid and gid must already be set in the inode.  If we return
1759   non-zero due to an error, we have to drop the quota previously allocated
1760   for the fresh inode.  This can only be done outside a transaction, so
1761   if we return non-zero, we also end the transaction.  */
1762int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1763		       struct inode *dir, umode_t mode, const char *symname,
1764		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1765		          strlen (symname) for symlinks) */
1766		       loff_t i_size, struct dentry *dentry,
1767		       struct inode *inode,
1768		       struct reiserfs_security_handle *security)
1769{
1770	struct super_block *sb;
1771	struct reiserfs_iget_args args;
1772	INITIALIZE_PATH(path_to_key);
1773	struct cpu_key key;
1774	struct item_head ih;
1775	struct stat_data sd;
1776	int retval;
1777	int err;
1778
1779	BUG_ON(!th->t_trans_id);
1780
1781	dquot_initialize(inode);
1782	err = dquot_alloc_inode(inode);
1783	if (err)
1784		goto out_end_trans;
1785	if (!dir->i_nlink) {
1786		err = -EPERM;
1787		goto out_bad_inode;
1788	}
1789
1790	sb = dir->i_sb;
1791
1792	/* item head of new item */
1793	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1794	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1795	if (!ih.ih_key.k_objectid) {
1796		err = -ENOMEM;
1797		goto out_bad_inode;
1798	}
1799	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1800	if (old_format_only(sb))
1801		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1802				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1803	else
1804		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1805				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1806	memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1807	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1808	if (insert_inode_locked4(inode, args.objectid,
1809			     reiserfs_find_actor, &args) < 0) {
1810		err = -EINVAL;
1811		goto out_bad_inode;
1812	}
1813	if (old_format_only(sb))
1814		/* not a perfect generation count, as object ids can be reused, but
1815		 ** this is as good as reiserfs can do right now.
1816		 ** note that the private part of inode isn't filled in yet, we have
1817		 ** to use the directory.
1818		 */
1819		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1820	else
1821#if defined( USE_INODE_GENERATION_COUNTER )
1822		inode->i_generation =
1823		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1824#else
1825		inode->i_generation = ++event;
1826#endif
1827
1828	/* fill stat data */
1829	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1830
1831	/* uid and gid must already be set by the caller for quota init */
1832
1833	/* symlink cannot be immutable or append only, right? */
1834	if (S_ISLNK(inode->i_mode))
1835		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1836
1837	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1838	inode->i_size = i_size;
1839	inode->i_blocks = 0;
1840	inode->i_bytes = 0;
1841	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1842	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1843
1844	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1845	REISERFS_I(inode)->i_flags = 0;
1846	REISERFS_I(inode)->i_prealloc_block = 0;
1847	REISERFS_I(inode)->i_prealloc_count = 0;
1848	REISERFS_I(inode)->i_trans_id = 0;
1849	REISERFS_I(inode)->i_jl = NULL;
1850	REISERFS_I(inode)->i_attrs =
1851	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1852	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1853	reiserfs_init_xattr_rwsem(inode);
1854
1855	/* key to search for correct place for new stat data */
1856	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1857		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1858		      TYPE_STAT_DATA, 3 /*key length */ );
1859
1860	/* find proper place for inserting of stat data */
1861	retval = search_item(sb, &key, &path_to_key);
1862	if (retval == IO_ERROR) {
1863		err = -EIO;
1864		goto out_bad_inode;
1865	}
1866	if (retval == ITEM_FOUND) {
1867		pathrelse(&path_to_key);
1868		err = -EEXIST;
1869		goto out_bad_inode;
1870	}
1871	if (old_format_only(sb)) {
1872		if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1873			pathrelse(&path_to_key);
1874			/* i_uid or i_gid is too big to be stored in stat data v3.5 */
1875			err = -EINVAL;
1876			goto out_bad_inode;
1877		}
1878		inode2sd_v1(&sd, inode, inode->i_size);
1879	} else {
1880		inode2sd(&sd, inode, inode->i_size);
1881	}
1882	// store in in-core inode the key of stat data and version all
1883	// object items will have (directory items will have old offset
1884	// format, other new objects will consist of new items)
1885	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1886		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1887	else
1888		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1889	if (old_format_only(sb))
1890		set_inode_sd_version(inode, STAT_DATA_V1);
1891	else
1892		set_inode_sd_version(inode, STAT_DATA_V2);
1893
1894	/* insert the stat data into the tree */
1895#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1896	if (REISERFS_I(dir)->new_packing_locality)
1897		th->displace_new_blocks = 1;
1898#endif
1899	retval =
1900	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1901				 (char *)(&sd));
1902	if (retval) {
1903		err = retval;
1904		reiserfs_check_path(&path_to_key);
1905		goto out_bad_inode;
1906	}
1907#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1908	if (!th->displace_new_blocks)
1909		REISERFS_I(dir)->new_packing_locality = 0;
1910#endif
1911	if (S_ISDIR(mode)) {
1912		/* insert item with "." and ".." */
1913		retval =
1914		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1915	}
1916
1917	if (S_ISLNK(mode)) {
1918		/* insert body of symlink */
1919		if (!old_format_only(sb))
1920			i_size = ROUND_UP(i_size);
1921		retval =
1922		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1923					 i_size);
1924	}
1925	if (retval) {
1926		err = retval;
1927		reiserfs_check_path(&path_to_key);
1928		journal_end(th, th->t_super, th->t_blocks_allocated);
1929		goto out_inserted_sd;
1930	}
1931
1932	if (reiserfs_posixacl(inode->i_sb)) {
1933		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1934		if (retval) {
1935			err = retval;
1936			reiserfs_check_path(&path_to_key);
1937			journal_end(th, th->t_super, th->t_blocks_allocated);
1938			goto out_inserted_sd;
1939		}
1940	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
1941		reiserfs_warning(inode->i_sb, "jdm-13090",
1942				 "ACLs aren't enabled in the fs, "
1943				 "but vfs thinks they are!");
1944	} else if (IS_PRIVATE(dir))
1945		inode->i_flags |= S_PRIVATE;
1946
1947	if (security->name) {
1948		retval = reiserfs_security_write(th, inode, security);
1949		if (retval) {
1950			err = retval;
1951			reiserfs_check_path(&path_to_key);
1952			retval = journal_end(th, th->t_super,
1953					     th->t_blocks_allocated);
1954			if (retval)
1955				err = retval;
1956			goto out_inserted_sd;
1957		}
1958	}
1959
1960	reiserfs_update_sd(th, inode);
1961	reiserfs_check_path(&path_to_key);
1962
1963	return 0;
1964
1965/* it looks like you can easily compress these two goto targets into
1966 * one.  Keeping it like this doesn't actually hurt anything, and they
1967 * are place holders for what the quota code actually needs.
1968 */
1969      out_bad_inode:
1970	/* Invalidate the object, nothing was inserted yet */
1971	INODE_PKEY(inode)->k_objectid = 0;
1972
1973	/* Quota change must be inside a transaction for journaling */
1974	dquot_free_inode(inode);
1975
1976      out_end_trans:
1977	journal_end(th, th->t_super, th->t_blocks_allocated);
1978	/* Drop can be outside and it needs more credits so it's better to have it outside */
1979	dquot_drop(inode);
1980	inode->i_flags |= S_NOQUOTA;
1981	make_bad_inode(inode);
1982
1983      out_inserted_sd:
1984	clear_nlink(inode);
1985	th->t_trans_id = 0;	/* so the caller can't use this handle later */
1986	unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
1987	iput(inode);
1988	return err;
1989}
1990
1991/*
1992** finds the tail page in the page cache,
1993** reads the last block in.
1994**
1995** On success, page_result is set to a locked, pinned page, and bh_result
1996** is set to an up to date buffer for the last block in the file.  returns 0.
1997**
1998** tail conversion is not done, so bh_result might not be valid for writing
1999** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2000** trying to write the block.
2001**
2002** on failure, nonzero is returned, page_result and bh_result are untouched.
2003*/
2004static int grab_tail_page(struct inode *inode,
2005			  struct page **page_result,
2006			  struct buffer_head **bh_result)
2007{
2008
2009	/* we want the page with the last byte in the file,
2010	 ** not the page that will hold the next byte for appending
2011	 */
2012	unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2013	unsigned long pos = 0;
2014	unsigned long start = 0;
2015	unsigned long blocksize = inode->i_sb->s_blocksize;
2016	unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2017	struct buffer_head *bh;
2018	struct buffer_head *head;
2019	struct page *page;
2020	int error;
2021
2022	/* we know that we are only called with inode->i_size > 0.
2023	 ** we also know that a file tail can never be as big as a block
2024	 ** If i_size % blocksize == 0, our file is currently block aligned
2025	 ** and it won't need converting or zeroing after a truncate.
2026	 */
2027	if ((offset & (blocksize - 1)) == 0) {
2028		return -ENOENT;
2029	}
2030	page = grab_cache_page(inode->i_mapping, index);
2031	error = -ENOMEM;
2032	if (!page) {
2033		goto out;
2034	}
2035	/* start within the page of the last block in the file */
2036	start = (offset / blocksize) * blocksize;
2037
2038	error = __block_write_begin(page, start, offset - start,
2039				    reiserfs_get_block_create_0);
2040	if (error)
2041		goto unlock;
2042
2043	head = page_buffers(page);
2044	bh = head;
2045	do {
2046		if (pos >= start) {
2047			break;
2048		}
2049		bh = bh->b_this_page;
2050		pos += blocksize;
2051	} while (bh != head);
2052
2053	if (!buffer_uptodate(bh)) {
2054		/* note, this should never happen, prepare_write should
2055		 ** be taking care of this for us.  If the buffer isn't up to date,
2056		 ** I've screwed up the code to find the buffer, or the code to
2057		 ** call prepare_write
2058		 */
2059		reiserfs_error(inode->i_sb, "clm-6000",
2060			       "error reading block %lu", bh->b_blocknr);
2061		error = -EIO;
2062		goto unlock;
2063	}
2064	*bh_result = bh;
2065	*page_result = page;
2066
2067      out:
2068	return error;
2069
2070      unlock:
2071	unlock_page(page);
2072	page_cache_release(page);
2073	return error;
2074}
2075
2076/*
2077** vfs version of truncate file.  Must NOT be called with
2078** a transaction already started.
2079**
2080** some code taken from block_truncate_page
2081*/
2082int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2083{
2084	struct reiserfs_transaction_handle th;
2085	/* we want the offset for the first byte after the end of the file */
2086	unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2087	unsigned blocksize = inode->i_sb->s_blocksize;
2088	unsigned length;
2089	struct page *page = NULL;
2090	int error;
2091	struct buffer_head *bh = NULL;
2092	int err2;
2093	int lock_depth;
2094
2095	lock_depth = reiserfs_write_lock_once(inode->i_sb);
2096
2097	if (inode->i_size > 0) {
2098		error = grab_tail_page(inode, &page, &bh);
2099		if (error) {
2100			// -ENOENT means we truncated past the end of the file,
2101			// and get_block_create_0 could not find a block to read in,
2102			// which is ok.
2103			if (error != -ENOENT)
2104				reiserfs_error(inode->i_sb, "clm-6001",
2105					       "grab_tail_page failed %d",
2106					       error);
2107			page = NULL;
2108			bh = NULL;
2109		}
2110	}
2111
2112	/* so, if page != NULL, we have a buffer head for the offset at
2113	 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2114	 ** then we have an unformatted node.  Otherwise, we have a direct item,
2115	 ** and no zeroing is required on disk.  We zero after the truncate,
2116	 ** because the truncate might pack the item anyway
2117	 ** (it will unmap bh if it packs).
2118	 */
2119	/* it is enough to reserve space in transaction for 2 balancings:
2120	   one for "save" link adding and another for the first
2121	   cut_from_item. 1 is for update_sd */
2122	error = journal_begin(&th, inode->i_sb,
2123			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2124	if (error)
2125		goto out;
2126	reiserfs_update_inode_transaction(inode);
2127	if (update_timestamps)
2128		/* we are doing real truncate: if the system crashes before the last
2129		   transaction of truncating gets committed - on reboot the file
2130		   either appears truncated properly or not truncated at all */
2131		add_save_link(&th, inode, 1);
2132	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2133	error =
2134	    journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2135	if (error)
2136		goto out;
2137
2138	/* check reiserfs_do_truncate after ending the transaction */
2139	if (err2) {
2140		error = err2;
2141  		goto out;
2142	}
2143
2144	if (update_timestamps) {
2145		error = remove_save_link(inode, 1 /* truncate */);
2146		if (error)
2147			goto out;
2148	}
2149
2150	if (page) {
2151		length = offset & (blocksize - 1);
2152		/* if we are not on a block boundary */
2153		if (length) {
2154			length = blocksize - length;
2155			zero_user(page, offset, length);
2156			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2157				mark_buffer_dirty(bh);
2158			}
2159		}
2160		unlock_page(page);
2161		page_cache_release(page);
2162	}
2163
2164	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2165
2166	return 0;
2167      out:
2168	if (page) {
2169		unlock_page(page);
2170		page_cache_release(page);
2171	}
2172
2173	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2174
2175	return error;
2176}
2177
2178static int map_block_for_writepage(struct inode *inode,
2179				   struct buffer_head *bh_result,
2180				   unsigned long block)
2181{
2182	struct reiserfs_transaction_handle th;
2183	int fs_gen;
2184	struct item_head tmp_ih;
2185	struct item_head *ih;
2186	struct buffer_head *bh;
2187	__le32 *item;
2188	struct cpu_key key;
2189	INITIALIZE_PATH(path);
2190	int pos_in_item;
2191	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2192	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2193	int retval;
2194	int use_get_block = 0;
2195	int bytes_copied = 0;
2196	int copy_size;
2197	int trans_running = 0;
2198
2199	/* catch places below that try to log something without starting a trans */
2200	th.t_trans_id = 0;
2201
2202	if (!buffer_uptodate(bh_result)) {
2203		return -EIO;
2204	}
2205
2206	kmap(bh_result->b_page);
2207      start_over:
2208	reiserfs_write_lock(inode->i_sb);
2209	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2210
2211      research:
2212	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2213	if (retval != POSITION_FOUND) {
2214		use_get_block = 1;
2215		goto out;
2216	}
2217
2218	bh = get_last_bh(&path);
2219	ih = get_ih(&path);
2220	item = get_item(&path);
2221	pos_in_item = path.pos_in_item;
2222
2223	/* we've found an unformatted node */
2224	if (indirect_item_found(retval, ih)) {
2225		if (bytes_copied > 0) {
2226			reiserfs_warning(inode->i_sb, "clm-6002",
2227					 "bytes_copied %d", bytes_copied);
2228		}
2229		if (!get_block_num(item, pos_in_item)) {
2230			/* crap, we are writing to a hole */
2231			use_get_block = 1;
2232			goto out;
2233		}
2234		set_block_dev_mapped(bh_result,
2235				     get_block_num(item, pos_in_item), inode);
2236	} else if (is_direct_le_ih(ih)) {
2237		char *p;
2238		p = page_address(bh_result->b_page);
2239		p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2240		copy_size = ih_item_len(ih) - pos_in_item;
2241
2242		fs_gen = get_generation(inode->i_sb);
2243		copy_item_head(&tmp_ih, ih);
2244
2245		if (!trans_running) {
2246			/* vs-3050 is gone, no need to drop the path */
2247			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2248			if (retval)
2249				goto out;
2250			reiserfs_update_inode_transaction(inode);
2251			trans_running = 1;
2252			if (fs_changed(fs_gen, inode->i_sb)
2253			    && item_moved(&tmp_ih, &path)) {
2254				reiserfs_restore_prepared_buffer(inode->i_sb,
2255								 bh);
2256				goto research;
2257			}
2258		}
2259
2260		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2261
2262		if (fs_changed(fs_gen, inode->i_sb)
2263		    && item_moved(&tmp_ih, &path)) {
2264			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2265			goto research;
2266		}
2267
2268		memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2269		       copy_size);
2270
2271		journal_mark_dirty(&th, inode->i_sb, bh);
2272		bytes_copied += copy_size;
2273		set_block_dev_mapped(bh_result, 0, inode);
2274
2275		/* are there still bytes left? */
2276		if (bytes_copied < bh_result->b_size &&
2277		    (byte_offset + bytes_copied) < inode->i_size) {
2278			set_cpu_key_k_offset(&key,
2279					     cpu_key_k_offset(&key) +
2280					     copy_size);
2281			goto research;
2282		}
2283	} else {
2284		reiserfs_warning(inode->i_sb, "clm-6003",
2285				 "bad item inode %lu", inode->i_ino);
2286		retval = -EIO;
2287		goto out;
2288	}
2289	retval = 0;
2290
2291      out:
2292	pathrelse(&path);
2293	if (trans_running) {
2294		int err = journal_end(&th, inode->i_sb, jbegin_count);
2295		if (err)
2296			retval = err;
2297		trans_running = 0;
2298	}
2299	reiserfs_write_unlock(inode->i_sb);
2300
2301	/* this is where we fill in holes in the file. */
2302	if (use_get_block) {
2303		retval = reiserfs_get_block(inode, block, bh_result,
2304					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2305					    | GET_BLOCK_NO_DANGLE);
2306		if (!retval) {
2307			if (!buffer_mapped(bh_result)
2308			    || bh_result->b_blocknr == 0) {
2309				/* get_block failed to find a mapped unformatted node. */
2310				use_get_block = 0;
2311				goto start_over;
2312			}
2313		}
2314	}
2315	kunmap(bh_result->b_page);
2316
2317	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2318		/* we've copied data from the page into the direct item, so the
2319		 * buffer in the page is now clean, mark it to reflect that.
2320		 */
2321		lock_buffer(bh_result);
2322		clear_buffer_dirty(bh_result);
2323		unlock_buffer(bh_result);
2324	}
2325	return retval;
2326}
2327
2328/*
2329 * mason@suse.com: updated in 2.5.54 to follow the same general io
2330 * start/recovery path as __block_write_full_page, along with special
2331 * code to handle reiserfs tails.
2332 */
2333static int reiserfs_write_full_page(struct page *page,
2334				    struct writeback_control *wbc)
2335{
2336	struct inode *inode = page->mapping->host;
2337	unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2338	int error = 0;
2339	unsigned long block;
2340	sector_t last_block;
2341	struct buffer_head *head, *bh;
2342	int partial = 0;
2343	int nr = 0;
2344	int checked = PageChecked(page);
2345	struct reiserfs_transaction_handle th;
2346	struct super_block *s = inode->i_sb;
2347	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2348	th.t_trans_id = 0;
2349
2350	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2351	if (checked && (current->flags & PF_MEMALLOC)) {
2352		redirty_page_for_writepage(wbc, page);
2353		unlock_page(page);
2354		return 0;
2355	}
2356
2357	/* The page dirty bit is cleared before writepage is called, which
2358	 * means we have to tell create_empty_buffers to make dirty buffers
2359	 * The page really should be up to date at this point, so tossing
2360	 * in the BH_Uptodate is just a sanity check.
2361	 */
2362	if (!page_has_buffers(page)) {
2363		create_empty_buffers(page, s->s_blocksize,
2364				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2365	}
2366	head = page_buffers(page);
2367
2368	/* last page in the file, zero out any contents past the
2369	 ** last byte in the file
2370	 */
2371	if (page->index >= end_index) {
2372		unsigned last_offset;
2373
2374		last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2375		/* no file contents in this page */
2376		if (page->index >= end_index + 1 || !last_offset) {
2377			unlock_page(page);
2378			return 0;
2379		}
2380		zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2381	}
2382	bh = head;
2383	block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2384	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2385	/* first map all the buffers, logging any direct items we find */
2386	do {
2387		if (block > last_block) {
2388			/*
2389			 * This can happen when the block size is less than
2390			 * the page size.  The corresponding bytes in the page
2391			 * were zero filled above
2392			 */
2393			clear_buffer_dirty(bh);
2394			set_buffer_uptodate(bh);
2395		} else if ((checked || buffer_dirty(bh)) &&
2396		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2397						       && bh->b_blocknr ==
2398						       0))) {
2399			/* not mapped yet, or it points to a direct item, search
2400			 * the btree for the mapping info, and log any direct
2401			 * items found
2402			 */
2403			if ((error = map_block_for_writepage(inode, bh, block))) {
2404				goto fail;
2405			}
2406		}
2407		bh = bh->b_this_page;
2408		block++;
2409	} while (bh != head);
2410
2411	/*
2412	 * we start the transaction after map_block_for_writepage,
2413	 * because it can create holes in the file (an unbounded operation).
2414	 * starting it here, we can make a reliable estimate for how many
2415	 * blocks we're going to log
2416	 */
2417	if (checked) {
2418		ClearPageChecked(page);
2419		reiserfs_write_lock(s);
2420		error = journal_begin(&th, s, bh_per_page + 1);
2421		if (error) {
2422			reiserfs_write_unlock(s);
2423			goto fail;
2424		}
2425		reiserfs_update_inode_transaction(inode);
2426	}
2427	/* now go through and lock any dirty buffers on the page */
2428	do {
2429		get_bh(bh);
2430		if (!buffer_mapped(bh))
2431			continue;
2432		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2433			continue;
2434
2435		if (checked) {
2436			reiserfs_prepare_for_journal(s, bh, 1);
2437			journal_mark_dirty(&th, s, bh);
2438			continue;
2439		}
2440		/* from this point on, we know the buffer is mapped to a
2441		 * real block and not a direct item
2442		 */
2443		if (wbc->sync_mode != WB_SYNC_NONE) {
2444			lock_buffer(bh);
2445		} else {
2446			if (!trylock_buffer(bh)) {
2447				redirty_page_for_writepage(wbc, page);
2448				continue;
2449			}
2450		}
2451		if (test_clear_buffer_dirty(bh)) {
2452			mark_buffer_async_write(bh);
2453		} else {
2454			unlock_buffer(bh);
2455		}
2456	} while ((bh = bh->b_this_page) != head);
2457
2458	if (checked) {
2459		error = journal_end(&th, s, bh_per_page + 1);
2460		reiserfs_write_unlock(s);
2461		if (error)
2462			goto fail;
2463	}
2464	BUG_ON(PageWriteback(page));
2465	set_page_writeback(page);
2466	unlock_page(page);
2467
2468	/*
2469	 * since any buffer might be the only dirty buffer on the page,
2470	 * the first submit_bh can bring the page out of writeback.
2471	 * be careful with the buffers.
2472	 */
2473	do {
2474		struct buffer_head *next = bh->b_this_page;
2475		if (buffer_async_write(bh)) {
2476			submit_bh(WRITE, bh);
2477			nr++;
2478		}
2479		put_bh(bh);
2480		bh = next;
2481	} while (bh != head);
2482
2483	error = 0;
2484      done:
2485	if (nr == 0) {
2486		/*
2487		 * if this page only had a direct item, it is very possible for
2488		 * no io to be required without there being an error.  Or,
2489		 * someone else could have locked them and sent them down the
2490		 * pipe without locking the page
2491		 */
2492		bh = head;
2493		do {
2494			if (!buffer_uptodate(bh)) {
2495				partial = 1;
2496				break;
2497			}
2498			bh = bh->b_this_page;
2499		} while (bh != head);
2500		if (!partial)
2501			SetPageUptodate(page);
2502		end_page_writeback(page);
2503	}
2504	return error;
2505
2506      fail:
2507	/* catches various errors, we need to make sure any valid dirty blocks
2508	 * get to the media.  The page is currently locked and not marked for
2509	 * writeback
2510	 */
2511	ClearPageUptodate(page);
2512	bh = head;
2513	do {
2514		get_bh(bh);
2515		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2516			lock_buffer(bh);
2517			mark_buffer_async_write(bh);
2518		} else {
2519			/*
2520			 * clear any dirty bits that might have come from getting
2521			 * attached to a dirty page
2522			 */
2523			clear_buffer_dirty(bh);
2524		}
2525		bh = bh->b_this_page;
2526	} while (bh != head);
2527	SetPageError(page);
2528	BUG_ON(PageWriteback(page));
2529	set_page_writeback(page);
2530	unlock_page(page);
2531	do {
2532		struct buffer_head *next = bh->b_this_page;
2533		if (buffer_async_write(bh)) {
2534			clear_buffer_dirty(bh);
2535			submit_bh(WRITE, bh);
2536			nr++;
2537		}
2538		put_bh(bh);
2539		bh = next;
2540	} while (bh != head);
2541	goto done;
2542}
2543
2544static int reiserfs_readpage(struct file *f, struct page *page)
2545{
2546	return block_read_full_page(page, reiserfs_get_block);
2547}
2548
2549static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2550{
2551	struct inode *inode = page->mapping->host;
2552	reiserfs_wait_on_write_block(inode->i_sb);
2553	return reiserfs_write_full_page(page, wbc);
2554}
2555
2556static void reiserfs_truncate_failed_write(struct inode *inode)
2557{
2558	truncate_inode_pages(inode->i_mapping, inode->i_size);
2559	reiserfs_truncate_file(inode, 0);
2560}
2561
2562static int reiserfs_write_begin(struct file *file,
2563				struct address_space *mapping,
2564				loff_t pos, unsigned len, unsigned flags,
2565				struct page **pagep, void **fsdata)
2566{
2567	struct inode *inode;
2568	struct page *page;
2569	pgoff_t index;
2570	int ret;
2571	int old_ref = 0;
2572
2573 	inode = mapping->host;
2574	*fsdata = 0;
2575 	if (flags & AOP_FLAG_CONT_EXPAND &&
2576 	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2577 		pos ++;
2578		*fsdata = (void *)(unsigned long)flags;
2579	}
2580
2581	index = pos >> PAGE_CACHE_SHIFT;
2582	page = grab_cache_page_write_begin(mapping, index, flags);
2583	if (!page)
2584		return -ENOMEM;
2585	*pagep = page;
2586
2587	reiserfs_wait_on_write_block(inode->i_sb);
2588	fix_tail_page_for_writing(page);
2589	if (reiserfs_transaction_running(inode->i_sb)) {
2590		struct reiserfs_transaction_handle *th;
2591		th = (struct reiserfs_transaction_handle *)current->
2592		    journal_info;
2593		BUG_ON(!th->t_refcount);
2594		BUG_ON(!th->t_trans_id);
2595		old_ref = th->t_refcount;
2596		th->t_refcount++;
2597	}
2598	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2599	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2600		struct reiserfs_transaction_handle *th = current->journal_info;
2601		/* this gets a little ugly.  If reiserfs_get_block returned an
2602		 * error and left a transacstion running, we've got to close it,
2603		 * and we've got to free handle if it was a persistent transaction.
2604		 *
2605		 * But, if we had nested into an existing transaction, we need
2606		 * to just drop the ref count on the handle.
2607		 *
2608		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2609		 * and it was a persistent trans.  Otherwise, it was nested above.
2610		 */
2611		if (th->t_refcount > old_ref) {
2612			if (old_ref)
2613				th->t_refcount--;
2614			else {
2615				int err;
2616				reiserfs_write_lock(inode->i_sb);
2617				err = reiserfs_end_persistent_transaction(th);
2618				reiserfs_write_unlock(inode->i_sb);
2619				if (err)
2620					ret = err;
2621			}
2622		}
2623	}
2624	if (ret) {
2625		unlock_page(page);
2626		page_cache_release(page);
2627		/* Truncate allocated blocks */
2628		reiserfs_truncate_failed_write(inode);
2629	}
2630	return ret;
2631}
2632
2633int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2634{
2635	struct inode *inode = page->mapping->host;
2636	int ret;
2637	int old_ref = 0;
2638
2639	reiserfs_write_unlock(inode->i_sb);
2640	reiserfs_wait_on_write_block(inode->i_sb);
2641	reiserfs_write_lock(inode->i_sb);
2642
2643	fix_tail_page_for_writing(page);
2644	if (reiserfs_transaction_running(inode->i_sb)) {
2645		struct reiserfs_transaction_handle *th;
2646		th = (struct reiserfs_transaction_handle *)current->
2647		    journal_info;
2648		BUG_ON(!th->t_refcount);
2649		BUG_ON(!th->t_trans_id);
2650		old_ref = th->t_refcount;
2651		th->t_refcount++;
2652	}
2653
2654	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2655	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2656		struct reiserfs_transaction_handle *th = current->journal_info;
2657		/* this gets a little ugly.  If reiserfs_get_block returned an
2658		 * error and left a transacstion running, we've got to close it,
2659		 * and we've got to free handle if it was a persistent transaction.
2660		 *
2661		 * But, if we had nested into an existing transaction, we need
2662		 * to just drop the ref count on the handle.
2663		 *
2664		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2665		 * and it was a persistent trans.  Otherwise, it was nested above.
2666		 */
2667		if (th->t_refcount > old_ref) {
2668			if (old_ref)
2669				th->t_refcount--;
2670			else {
2671				int err;
2672				reiserfs_write_lock(inode->i_sb);
2673				err = reiserfs_end_persistent_transaction(th);
2674				reiserfs_write_unlock(inode->i_sb);
2675				if (err)
2676					ret = err;
2677			}
2678		}
2679	}
2680	return ret;
2681
2682}
2683
2684static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2685{
2686	return generic_block_bmap(as, block, reiserfs_bmap);
2687}
2688
2689static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2690			      loff_t pos, unsigned len, unsigned copied,
2691			      struct page *page, void *fsdata)
2692{
2693	struct inode *inode = page->mapping->host;
2694	int ret = 0;
2695	int update_sd = 0;
2696	struct reiserfs_transaction_handle *th;
2697	unsigned start;
2698	int lock_depth = 0;
2699	bool locked = false;
2700
2701	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2702		pos ++;
2703
2704	reiserfs_wait_on_write_block(inode->i_sb);
2705	if (reiserfs_transaction_running(inode->i_sb))
2706		th = current->journal_info;
2707	else
2708		th = NULL;
2709
2710	start = pos & (PAGE_CACHE_SIZE - 1);
2711	if (unlikely(copied < len)) {
2712		if (!PageUptodate(page))
2713			copied = 0;
2714
2715		page_zero_new_buffers(page, start + copied, start + len);
2716	}
2717	flush_dcache_page(page);
2718
2719	reiserfs_commit_page(inode, page, start, start + copied);
2720
2721	/* generic_commit_write does this for us, but does not update the
2722	 ** transaction tracking stuff when the size changes.  So, we have
2723	 ** to do the i_size updates here.
2724	 */
2725	if (pos + copied > inode->i_size) {
2726		struct reiserfs_transaction_handle myth;
2727		lock_depth = reiserfs_write_lock_once(inode->i_sb);
2728		locked = true;
2729		/* If the file have grown beyond the border where it
2730		   can have a tail, unmark it as needing a tail
2731		   packing */
2732		if ((have_large_tails(inode->i_sb)
2733		     && inode->i_size > i_block_size(inode) * 4)
2734		    || (have_small_tails(inode->i_sb)
2735			&& inode->i_size > i_block_size(inode)))
2736			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2737
2738		ret = journal_begin(&myth, inode->i_sb, 1);
2739		if (ret)
2740			goto journal_error;
2741
2742		reiserfs_update_inode_transaction(inode);
2743		inode->i_size = pos + copied;
2744		/*
2745		 * this will just nest into our transaction.  It's important
2746		 * to use mark_inode_dirty so the inode gets pushed around on the
2747		 * dirty lists, and so that O_SYNC works as expected
2748		 */
2749		mark_inode_dirty(inode);
2750		reiserfs_update_sd(&myth, inode);
2751		update_sd = 1;
2752		ret = journal_end(&myth, inode->i_sb, 1);
2753		if (ret)
2754			goto journal_error;
2755	}
2756	if (th) {
2757		if (!locked) {
2758			lock_depth = reiserfs_write_lock_once(inode->i_sb);
2759			locked = true;
2760		}
2761		if (!update_sd)
2762			mark_inode_dirty(inode);
2763		ret = reiserfs_end_persistent_transaction(th);
2764		if (ret)
2765			goto out;
2766	}
2767
2768      out:
2769	if (locked)
2770		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2771	unlock_page(page);
2772	page_cache_release(page);
2773
2774	if (pos + len > inode->i_size)
2775		reiserfs_truncate_failed_write(inode);
2776
2777	return ret == 0 ? copied : ret;
2778
2779      journal_error:
2780	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2781	locked = false;
2782	if (th) {
2783		if (!update_sd)
2784			reiserfs_update_sd(th, inode);
2785		ret = reiserfs_end_persistent_transaction(th);
2786	}
2787	goto out;
2788}
2789
2790int reiserfs_commit_write(struct file *f, struct page *page,
2791			  unsigned from, unsigned to)
2792{
2793	struct inode *inode = page->mapping->host;
2794	loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2795	int ret = 0;
2796	int update_sd = 0;
2797	struct reiserfs_transaction_handle *th = NULL;
2798
2799	reiserfs_write_unlock(inode->i_sb);
2800	reiserfs_wait_on_write_block(inode->i_sb);
2801	reiserfs_write_lock(inode->i_sb);
2802
2803	if (reiserfs_transaction_running(inode->i_sb)) {
2804		th = current->journal_info;
2805	}
2806	reiserfs_commit_page(inode, page, from, to);
2807
2808	/* generic_commit_write does this for us, but does not update the
2809	 ** transaction tracking stuff when the size changes.  So, we have
2810	 ** to do the i_size updates here.
2811	 */
2812	if (pos > inode->i_size) {
2813		struct reiserfs_transaction_handle myth;
2814		/* If the file have grown beyond the border where it
2815		   can have a tail, unmark it as needing a tail
2816		   packing */
2817		if ((have_large_tails(inode->i_sb)
2818		     && inode->i_size > i_block_size(inode) * 4)
2819		    || (have_small_tails(inode->i_sb)
2820			&& inode->i_size > i_block_size(inode)))
2821			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2822
2823		ret = journal_begin(&myth, inode->i_sb, 1);
2824		if (ret)
2825			goto journal_error;
2826
2827		reiserfs_update_inode_transaction(inode);
2828		inode->i_size = pos;
2829		/*
2830		 * this will just nest into our transaction.  It's important
2831		 * to use mark_inode_dirty so the inode gets pushed around on the
2832		 * dirty lists, and so that O_SYNC works as expected
2833		 */
2834		mark_inode_dirty(inode);
2835		reiserfs_update_sd(&myth, inode);
2836		update_sd = 1;
2837		ret = journal_end(&myth, inode->i_sb, 1);
2838		if (ret)
2839			goto journal_error;
2840	}
2841	if (th) {
2842		if (!update_sd)
2843			mark_inode_dirty(inode);
2844		ret = reiserfs_end_persistent_transaction(th);
2845		if (ret)
2846			goto out;
2847	}
2848
2849      out:
2850	return ret;
2851
2852      journal_error:
2853	if (th) {
2854		if (!update_sd)
2855			reiserfs_update_sd(th, inode);
2856		ret = reiserfs_end_persistent_transaction(th);
2857	}
2858
2859	return ret;
2860}
2861
2862void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2863{
2864	if (reiserfs_attrs(inode->i_sb)) {
2865		if (sd_attrs & REISERFS_SYNC_FL)
2866			inode->i_flags |= S_SYNC;
2867		else
2868			inode->i_flags &= ~S_SYNC;
2869		if (sd_attrs & REISERFS_IMMUTABLE_FL)
2870			inode->i_flags |= S_IMMUTABLE;
2871		else
2872			inode->i_flags &= ~S_IMMUTABLE;
2873		if (sd_attrs & REISERFS_APPEND_FL)
2874			inode->i_flags |= S_APPEND;
2875		else
2876			inode->i_flags &= ~S_APPEND;
2877		if (sd_attrs & REISERFS_NOATIME_FL)
2878			inode->i_flags |= S_NOATIME;
2879		else
2880			inode->i_flags &= ~S_NOATIME;
2881		if (sd_attrs & REISERFS_NOTAIL_FL)
2882			REISERFS_I(inode)->i_flags |= i_nopack_mask;
2883		else
2884			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2885	}
2886}
2887
2888void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2889{
2890	if (reiserfs_attrs(inode->i_sb)) {
2891		if (inode->i_flags & S_IMMUTABLE)
2892			*sd_attrs |= REISERFS_IMMUTABLE_FL;
2893		else
2894			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2895		if (inode->i_flags & S_SYNC)
2896			*sd_attrs |= REISERFS_SYNC_FL;
2897		else
2898			*sd_attrs &= ~REISERFS_SYNC_FL;
2899		if (inode->i_flags & S_NOATIME)
2900			*sd_attrs |= REISERFS_NOATIME_FL;
2901		else
2902			*sd_attrs &= ~REISERFS_NOATIME_FL;
2903		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2904			*sd_attrs |= REISERFS_NOTAIL_FL;
2905		else
2906			*sd_attrs &= ~REISERFS_NOTAIL_FL;
2907	}
2908}
2909
2910/* decide if this buffer needs to stay around for data logging or ordered
2911** write purposes
2912*/
2913static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2914{
2915	int ret = 1;
2916	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2917
2918	lock_buffer(bh);
2919	spin_lock(&j->j_dirty_buffers_lock);
2920	if (!buffer_mapped(bh)) {
2921		goto free_jh;
2922	}
2923	/* the page is locked, and the only places that log a data buffer
2924	 * also lock the page.
2925	 */
2926	if (reiserfs_file_data_log(inode)) {
2927		/*
2928		 * very conservative, leave the buffer pinned if
2929		 * anyone might need it.
2930		 */
2931		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2932			ret = 0;
2933		}
2934	} else  if (buffer_dirty(bh)) {
2935		struct reiserfs_journal_list *jl;
2936		struct reiserfs_jh *jh = bh->b_private;
2937
2938		/* why is this safe?
2939		 * reiserfs_setattr updates i_size in the on disk
2940		 * stat data before allowing vmtruncate to be called.
2941		 *
2942		 * If buffer was put onto the ordered list for this
2943		 * transaction, we know for sure either this transaction
2944		 * or an older one already has updated i_size on disk,
2945		 * and this ordered data won't be referenced in the file
2946		 * if we crash.
2947		 *
2948		 * if the buffer was put onto the ordered list for an older
2949		 * transaction, we need to leave it around
2950		 */
2951		if (jh && (jl = jh->jl)
2952		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2953			ret = 0;
2954	}
2955      free_jh:
2956	if (ret && bh->b_private) {
2957		reiserfs_free_jh(bh);
2958	}
2959	spin_unlock(&j->j_dirty_buffers_lock);
2960	unlock_buffer(bh);
2961	return ret;
2962}
2963
2964/* clm -- taken from fs/buffer.c:block_invalidate_page */
2965static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2966{
2967	struct buffer_head *head, *bh, *next;
2968	struct inode *inode = page->mapping->host;
2969	unsigned int curr_off = 0;
2970	int ret = 1;
2971
2972	BUG_ON(!PageLocked(page));
2973
2974	if (offset == 0)
2975		ClearPageChecked(page);
2976
2977	if (!page_has_buffers(page))
2978		goto out;
2979
2980	head = page_buffers(page);
2981	bh = head;
2982	do {
2983		unsigned int next_off = curr_off + bh->b_size;
2984		next = bh->b_this_page;
2985
2986		/*
2987		 * is this block fully invalidated?
2988		 */
2989		if (offset <= curr_off) {
2990			if (invalidatepage_can_drop(inode, bh))
2991				reiserfs_unmap_buffer(bh);
2992			else
2993				ret = 0;
2994		}
2995		curr_off = next_off;
2996		bh = next;
2997	} while (bh != head);
2998
2999	/*
3000	 * We release buffers only if the entire page is being invalidated.
3001	 * The get_block cached value has been unconditionally invalidated,
3002	 * so real IO is not possible anymore.
3003	 */
3004	if (!offset && ret) {
3005		ret = try_to_release_page(page, 0);
3006		/* maybe should BUG_ON(!ret); - neilb */
3007	}
3008      out:
3009	return;
3010}
3011
3012static int reiserfs_set_page_dirty(struct page *page)
3013{
3014	struct inode *inode = page->mapping->host;
3015	if (reiserfs_file_data_log(inode)) {
3016		SetPageChecked(page);
3017		return __set_page_dirty_nobuffers(page);
3018	}
3019	return __set_page_dirty_buffers(page);
3020}
3021
3022/*
3023 * Returns 1 if the page's buffers were dropped.  The page is locked.
3024 *
3025 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3026 * in the buffers at page_buffers(page).
3027 *
3028 * even in -o notail mode, we can't be sure an old mount without -o notail
3029 * didn't create files with tails.
3030 */
3031static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3032{
3033	struct inode *inode = page->mapping->host;
3034	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3035	struct buffer_head *head;
3036	struct buffer_head *bh;
3037	int ret = 1;
3038
3039	WARN_ON(PageChecked(page));
3040	spin_lock(&j->j_dirty_buffers_lock);
3041	head = page_buffers(page);
3042	bh = head;
3043	do {
3044		if (bh->b_private) {
3045			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3046				reiserfs_free_jh(bh);
3047			} else {
3048				ret = 0;
3049				break;
3050			}
3051		}
3052		bh = bh->b_this_page;
3053	} while (bh != head);
3054	if (ret)
3055		ret = try_to_free_buffers(page);
3056	spin_unlock(&j->j_dirty_buffers_lock);
3057	return ret;
3058}
3059
3060/* We thank Mingming Cao for helping us understand in great detail what
3061   to do in this section of the code. */
3062static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3063				  const struct iovec *iov, loff_t offset,
3064				  unsigned long nr_segs)
3065{
3066	struct file *file = iocb->ki_filp;
3067	struct inode *inode = file->f_mapping->host;
3068	ssize_t ret;
3069
3070	ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
3071				  reiserfs_get_blocks_direct_io);
3072
3073	/*
3074	 * In case of error extending write may have instantiated a few
3075	 * blocks outside i_size. Trim these off again.
3076	 */
3077	if (unlikely((rw & WRITE) && ret < 0)) {
3078		loff_t isize = i_size_read(inode);
3079		loff_t end = offset + iov_length(iov, nr_segs);
3080
3081		if (end > isize)
3082			vmtruncate(inode, isize);
3083	}
3084
3085	return ret;
3086}
3087
3088int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3089{
3090	struct inode *inode = dentry->d_inode;
3091	unsigned int ia_valid;
3092	int depth;
3093	int error;
3094
3095	error = inode_change_ok(inode, attr);
3096	if (error)
3097		return error;
3098
3099	/* must be turned off for recursive notify_change calls */
3100	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3101
3102	depth = reiserfs_write_lock_once(inode->i_sb);
3103	if (is_quota_modification(inode, attr))
3104		dquot_initialize(inode);
3105
3106	if (attr->ia_valid & ATTR_SIZE) {
3107		/* version 2 items will be caught by the s_maxbytes check
3108		 ** done for us in vmtruncate
3109		 */
3110		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3111		    attr->ia_size > MAX_NON_LFS) {
3112			error = -EFBIG;
3113			goto out;
3114		}
3115
3116		inode_dio_wait(inode);
3117
3118		/* fill in hole pointers in the expanding truncate case. */
3119		if (attr->ia_size > inode->i_size) {
3120			error = generic_cont_expand_simple(inode, attr->ia_size);
3121			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3122				int err;
3123				struct reiserfs_transaction_handle th;
3124				/* we're changing at most 2 bitmaps, inode + super */
3125				err = journal_begin(&th, inode->i_sb, 4);
3126				if (!err) {
3127					reiserfs_discard_prealloc(&th, inode);
3128					err = journal_end(&th, inode->i_sb, 4);
3129				}
3130				if (err)
3131					error = err;
3132			}
3133			if (error)
3134				goto out;
3135			/*
3136			 * file size is changed, ctime and mtime are
3137			 * to be updated
3138			 */
3139			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3140		}
3141	}
3142
3143	if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
3144	     ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
3145	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3146		/* stat data of format v3.5 has 16 bit uid and gid */
3147		error = -EINVAL;
3148		goto out;
3149	}
3150
3151	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3152	    (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3153		struct reiserfs_transaction_handle th;
3154		int jbegin_count =
3155		    2 *
3156		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3157		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3158		    2;
3159
3160		error = reiserfs_chown_xattrs(inode, attr);
3161
3162		if (error)
3163			return error;
3164
3165		/* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3166		error = journal_begin(&th, inode->i_sb, jbegin_count);
3167		if (error)
3168			goto out;
3169		error = dquot_transfer(inode, attr);
3170		if (error) {
3171			journal_end(&th, inode->i_sb, jbegin_count);
3172			goto out;
3173		}
3174
3175		/* Update corresponding info in inode so that everything is in
3176		 * one transaction */
3177		if (attr->ia_valid & ATTR_UID)
3178			inode->i_uid = attr->ia_uid;
3179		if (attr->ia_valid & ATTR_GID)
3180			inode->i_gid = attr->ia_gid;
3181		mark_inode_dirty(inode);
3182		error = journal_end(&th, inode->i_sb, jbegin_count);
3183		if (error)
3184			goto out;
3185	}
3186
3187	/*
3188	 * Relax the lock here, as it might truncate the
3189	 * inode pages and wait for inode pages locks.
3190	 * To release such page lock, the owner needs the
3191	 * reiserfs lock
3192	 */
3193	reiserfs_write_unlock_once(inode->i_sb, depth);
3194	if ((attr->ia_valid & ATTR_SIZE) &&
3195	    attr->ia_size != i_size_read(inode))
3196		error = vmtruncate(inode, attr->ia_size);
3197
3198	if (!error) {
3199		setattr_copy(inode, attr);
3200		mark_inode_dirty(inode);
3201	}
3202	depth = reiserfs_write_lock_once(inode->i_sb);
3203
3204	if (!error && reiserfs_posixacl(inode->i_sb)) {
3205		if (attr->ia_valid & ATTR_MODE)
3206			error = reiserfs_acl_chmod(inode);
3207	}
3208
3209      out:
3210	reiserfs_write_unlock_once(inode->i_sb, depth);
3211
3212	return error;
3213}
3214
3215const struct address_space_operations reiserfs_address_space_operations = {
3216	.writepage = reiserfs_writepage,
3217	.readpage = reiserfs_readpage,
3218	.readpages = reiserfs_readpages,
3219	.releasepage = reiserfs_releasepage,
3220	.invalidatepage = reiserfs_invalidatepage,
3221	.write_begin = reiserfs_write_begin,
3222	.write_end = reiserfs_write_end,
3223	.bmap = reiserfs_aop_bmap,
3224	.direct_IO = reiserfs_direct_IO,
3225	.set_page_dirty = reiserfs_set_page_dirty,
3226};
3227