inode.c revision 5fe0c2378884e68beb532f5890cc0e3539ac747b
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5#include <linux/time.h>
6#include <linux/fs.h>
7#include <linux/reiserfs_fs.h>
8#include <linux/reiserfs_acl.h>
9#include <linux/reiserfs_xattr.h>
10#include <linux/exportfs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/slab.h>
14#include <asm/uaccess.h>
15#include <asm/unaligned.h>
16#include <linux/buffer_head.h>
17#include <linux/mpage.h>
18#include <linux/writeback.h>
19#include <linux/quotaops.h>
20#include <linux/swap.h>
21
22int reiserfs_commit_write(struct file *f, struct page *page,
23			  unsigned from, unsigned to);
24
25void reiserfs_evict_inode(struct inode *inode)
26{
27	/* We need blocks for transaction + (user+group) quota update (possibly delete) */
28	int jbegin_count =
29	    JOURNAL_PER_BALANCE_CNT * 2 +
30	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
31	struct reiserfs_transaction_handle th;
32	int depth;
33	int err;
34
35	if (!inode->i_nlink && !is_bad_inode(inode))
36		dquot_initialize(inode);
37
38	truncate_inode_pages(&inode->i_data, 0);
39	if (inode->i_nlink)
40		goto no_delete;
41
42	depth = reiserfs_write_lock_once(inode->i_sb);
43
44	/* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
45	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {	/* also handles bad_inode case */
46		reiserfs_delete_xattrs(inode);
47
48		if (journal_begin(&th, inode->i_sb, jbegin_count))
49			goto out;
50		reiserfs_update_inode_transaction(inode);
51
52		reiserfs_discard_prealloc(&th, inode);
53
54		err = reiserfs_delete_object(&th, inode);
55
56		/* Do quota update inside a transaction for journaled quotas. We must do that
57		 * after delete_object so that quota updates go into the same transaction as
58		 * stat data deletion */
59		if (!err)
60			dquot_free_inode(inode);
61
62		if (journal_end(&th, inode->i_sb, jbegin_count))
63			goto out;
64
65		/* check return value from reiserfs_delete_object after
66		 * ending the transaction
67		 */
68		if (err)
69		    goto out;
70
71		/* all items of file are deleted, so we can remove "save" link */
72		remove_save_link(inode, 0 /* not truncate */ );	/* we can't do anything
73								 * about an error here */
74	} else {
75		/* no object items are in the tree */
76		;
77	}
78      out:
79	end_writeback(inode);	/* note this must go after the journal_end to prevent deadlock */
80	dquot_drop(inode);
81	inode->i_blocks = 0;
82	reiserfs_write_unlock_once(inode->i_sb, depth);
83	return;
84
85no_delete:
86	end_writeback(inode);
87	dquot_drop(inode);
88}
89
90static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
91			  __u32 objectid, loff_t offset, int type, int length)
92{
93	key->version = version;
94
95	key->on_disk_key.k_dir_id = dirid;
96	key->on_disk_key.k_objectid = objectid;
97	set_cpu_key_k_offset(key, offset);
98	set_cpu_key_k_type(key, type);
99	key->key_length = length;
100}
101
102/* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
103   offset and type of key */
104void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
105		  int type, int length)
106{
107	_make_cpu_key(key, get_inode_item_key_version(inode),
108		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
109		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
110		      length);
111}
112
113//
114// when key is 0, do not set version and short key
115//
116inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
117			      int version,
118			      loff_t offset, int type, int length,
119			      int entry_count /*or ih_free_space */ )
120{
121	if (key) {
122		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
123		ih->ih_key.k_objectid =
124		    cpu_to_le32(key->on_disk_key.k_objectid);
125	}
126	put_ih_version(ih, version);
127	set_le_ih_k_offset(ih, offset);
128	set_le_ih_k_type(ih, type);
129	put_ih_item_len(ih, length);
130	/*    set_ih_free_space (ih, 0); */
131	// for directory items it is entry count, for directs and stat
132	// datas - 0xffff, for indirects - 0
133	put_ih_entry_count(ih, entry_count);
134}
135
136//
137// FIXME: we might cache recently accessed indirect item
138
139// Ugh.  Not too eager for that....
140//  I cut the code until such time as I see a convincing argument (benchmark).
141// I don't want a bloated inode struct..., and I don't like code complexity....
142
143/* cutting the code is fine, since it really isn't in use yet and is easy
144** to add back in.  But, Vladimir has a really good idea here.  Think
145** about what happens for reading a file.  For each page,
146** The VFS layer calls reiserfs_readpage, who searches the tree to find
147** an indirect item.  This indirect item has X number of pointers, where
148** X is a big number if we've done the block allocation right.  But,
149** we only use one or two of these pointers during each call to readpage,
150** needlessly researching again later on.
151**
152** The size of the cache could be dynamic based on the size of the file.
153**
154** I'd also like to see us cache the location the stat data item, since
155** we are needlessly researching for that frequently.
156**
157** --chris
158*/
159
160/* If this page has a file tail in it, and
161** it was read in by get_block_create_0, the page data is valid,
162** but tail is still sitting in a direct item, and we can't write to
163** it.  So, look through this page, and check all the mapped buffers
164** to make sure they have valid block numbers.  Any that don't need
165** to be unmapped, so that __block_write_begin will correctly call
166** reiserfs_get_block to convert the tail into an unformatted node
167*/
168static inline void fix_tail_page_for_writing(struct page *page)
169{
170	struct buffer_head *head, *next, *bh;
171
172	if (page && page_has_buffers(page)) {
173		head = page_buffers(page);
174		bh = head;
175		do {
176			next = bh->b_this_page;
177			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
178				reiserfs_unmap_buffer(bh);
179			}
180			bh = next;
181		} while (bh != head);
182	}
183}
184
185/* reiserfs_get_block does not need to allocate a block only if it has been
186   done already or non-hole position has been found in the indirect item */
187static inline int allocation_needed(int retval, b_blocknr_t allocated,
188				    struct item_head *ih,
189				    __le32 * item, int pos_in_item)
190{
191	if (allocated)
192		return 0;
193	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
194	    get_block_num(item, pos_in_item))
195		return 0;
196	return 1;
197}
198
199static inline int indirect_item_found(int retval, struct item_head *ih)
200{
201	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
202}
203
204static inline void set_block_dev_mapped(struct buffer_head *bh,
205					b_blocknr_t block, struct inode *inode)
206{
207	map_bh(bh, inode->i_sb, block);
208}
209
210//
211// files which were created in the earlier version can not be longer,
212// than 2 gb
213//
214static int file_capable(struct inode *inode, sector_t block)
215{
216	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||	// it is new file.
217	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))	// old file, but 'block' is inside of 2gb
218		return 1;
219
220	return 0;
221}
222
223static int restart_transaction(struct reiserfs_transaction_handle *th,
224			       struct inode *inode, struct treepath *path)
225{
226	struct super_block *s = th->t_super;
227	int len = th->t_blocks_allocated;
228	int err;
229
230	BUG_ON(!th->t_trans_id);
231	BUG_ON(!th->t_refcount);
232
233	pathrelse(path);
234
235	/* we cannot restart while nested */
236	if (th->t_refcount > 1) {
237		return 0;
238	}
239	reiserfs_update_sd(th, inode);
240	err = journal_end(th, s, len);
241	if (!err) {
242		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
243		if (!err)
244			reiserfs_update_inode_transaction(inode);
245	}
246	return err;
247}
248
249// it is called by get_block when create == 0. Returns block number
250// for 'block'-th logical block of file. When it hits direct item it
251// returns 0 (being called from bmap) or read direct item into piece
252// of page (bh_result)
253
254// Please improve the english/clarity in the comment above, as it is
255// hard to understand.
256
257static int _get_block_create_0(struct inode *inode, sector_t block,
258			       struct buffer_head *bh_result, int args)
259{
260	INITIALIZE_PATH(path);
261	struct cpu_key key;
262	struct buffer_head *bh;
263	struct item_head *ih, tmp_ih;
264	b_blocknr_t blocknr;
265	char *p = NULL;
266	int chars;
267	int ret;
268	int result;
269	int done = 0;
270	unsigned long offset;
271
272	// prepare the key to look for the 'block'-th block of file
273	make_cpu_key(&key, inode,
274		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
275		     3);
276
277	result = search_for_position_by_key(inode->i_sb, &key, &path);
278	if (result != POSITION_FOUND) {
279		pathrelse(&path);
280		if (p)
281			kunmap(bh_result->b_page);
282		if (result == IO_ERROR)
283			return -EIO;
284		// We do not return -ENOENT if there is a hole but page is uptodate, because it means
285		// That there is some MMAPED data associated with it that is yet to be written to disk.
286		if ((args & GET_BLOCK_NO_HOLE)
287		    && !PageUptodate(bh_result->b_page)) {
288			return -ENOENT;
289		}
290		return 0;
291	}
292	//
293	bh = get_last_bh(&path);
294	ih = get_ih(&path);
295	if (is_indirect_le_ih(ih)) {
296		__le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
297
298		/* FIXME: here we could cache indirect item or part of it in
299		   the inode to avoid search_by_key in case of subsequent
300		   access to file */
301		blocknr = get_block_num(ind_item, path.pos_in_item);
302		ret = 0;
303		if (blocknr) {
304			map_bh(bh_result, inode->i_sb, blocknr);
305			if (path.pos_in_item ==
306			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
307				set_buffer_boundary(bh_result);
308			}
309		} else
310			// We do not return -ENOENT if there is a hole but page is uptodate, because it means
311			// That there is some MMAPED data associated with it that is yet to  be written to disk.
312		if ((args & GET_BLOCK_NO_HOLE)
313			    && !PageUptodate(bh_result->b_page)) {
314			ret = -ENOENT;
315		}
316
317		pathrelse(&path);
318		if (p)
319			kunmap(bh_result->b_page);
320		return ret;
321	}
322	// requested data are in direct item(s)
323	if (!(args & GET_BLOCK_READ_DIRECT)) {
324		// we are called by bmap. FIXME: we can not map block of file
325		// when it is stored in direct item(s)
326		pathrelse(&path);
327		if (p)
328			kunmap(bh_result->b_page);
329		return -ENOENT;
330	}
331
332	/* if we've got a direct item, and the buffer or page was uptodate,
333	 ** we don't want to pull data off disk again.  skip to the
334	 ** end, where we map the buffer and return
335	 */
336	if (buffer_uptodate(bh_result)) {
337		goto finished;
338	} else
339		/*
340		 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
341		 ** pages without any buffers.  If the page is up to date, we don't want
342		 ** read old data off disk.  Set the up to date bit on the buffer instead
343		 ** and jump to the end
344		 */
345	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
346		set_buffer_uptodate(bh_result);
347		goto finished;
348	}
349	// read file tail into part of page
350	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
351	copy_item_head(&tmp_ih, ih);
352
353	/* we only want to kmap if we are reading the tail into the page.
354	 ** this is not the common case, so we don't kmap until we are
355	 ** sure we need to.  But, this means the item might move if
356	 ** kmap schedules
357	 */
358	if (!p)
359		p = (char *)kmap(bh_result->b_page);
360
361	p += offset;
362	memset(p, 0, inode->i_sb->s_blocksize);
363	do {
364		if (!is_direct_le_ih(ih)) {
365			BUG();
366		}
367		/* make sure we don't read more bytes than actually exist in
368		 ** the file.  This can happen in odd cases where i_size isn't
369		 ** correct, and when direct item padding results in a few
370		 ** extra bytes at the end of the direct item
371		 */
372		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
373			break;
374		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
375			chars =
376			    inode->i_size - (le_ih_k_offset(ih) - 1) -
377			    path.pos_in_item;
378			done = 1;
379		} else {
380			chars = ih_item_len(ih) - path.pos_in_item;
381		}
382		memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
383
384		if (done)
385			break;
386
387		p += chars;
388
389		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
390			// we done, if read direct item is not the last item of
391			// node FIXME: we could try to check right delimiting key
392			// to see whether direct item continues in the right
393			// neighbor or rely on i_size
394			break;
395
396		// update key to look for the next piece
397		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
398		result = search_for_position_by_key(inode->i_sb, &key, &path);
399		if (result != POSITION_FOUND)
400			// i/o error most likely
401			break;
402		bh = get_last_bh(&path);
403		ih = get_ih(&path);
404	} while (1);
405
406	flush_dcache_page(bh_result->b_page);
407	kunmap(bh_result->b_page);
408
409      finished:
410	pathrelse(&path);
411
412	if (result == IO_ERROR)
413		return -EIO;
414
415	/* this buffer has valid data, but isn't valid for io.  mapping it to
416	 * block #0 tells the rest of reiserfs it just has a tail in it
417	 */
418	map_bh(bh_result, inode->i_sb, 0);
419	set_buffer_uptodate(bh_result);
420	return 0;
421}
422
423// this is called to create file map. So, _get_block_create_0 will not
424// read direct item
425static int reiserfs_bmap(struct inode *inode, sector_t block,
426			 struct buffer_head *bh_result, int create)
427{
428	if (!file_capable(inode, block))
429		return -EFBIG;
430
431	reiserfs_write_lock(inode->i_sb);
432	/* do not read the direct item */
433	_get_block_create_0(inode, block, bh_result, 0);
434	reiserfs_write_unlock(inode->i_sb);
435	return 0;
436}
437
438/* special version of get_block that is only used by grab_tail_page right
439** now.  It is sent to __block_write_begin, and when you try to get a
440** block past the end of the file (or a block from a hole) it returns
441** -ENOENT instead of a valid buffer.  __block_write_begin expects to
442** be able to do i/o on the buffers returned, unless an error value
443** is also returned.
444**
445** So, this allows __block_write_begin to be used for reading a single block
446** in a page.  Where it does not produce a valid page for holes, or past the
447** end of the file.  This turns out to be exactly what we need for reading
448** tails for conversion.
449**
450** The point of the wrapper is forcing a certain value for create, even
451** though the VFS layer is calling this function with create==1.  If you
452** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
453** don't use this function.
454*/
455static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
456				       struct buffer_head *bh_result,
457				       int create)
458{
459	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
460}
461
462/* This is special helper for reiserfs_get_block in case we are executing
463   direct_IO request. */
464static int reiserfs_get_blocks_direct_io(struct inode *inode,
465					 sector_t iblock,
466					 struct buffer_head *bh_result,
467					 int create)
468{
469	int ret;
470
471	bh_result->b_page = NULL;
472
473	/* We set the b_size before reiserfs_get_block call since it is
474	   referenced in convert_tail_for_hole() that may be called from
475	   reiserfs_get_block() */
476	bh_result->b_size = (1 << inode->i_blkbits);
477
478	ret = reiserfs_get_block(inode, iblock, bh_result,
479				 create | GET_BLOCK_NO_DANGLE);
480	if (ret)
481		goto out;
482
483	/* don't allow direct io onto tail pages */
484	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
485		/* make sure future calls to the direct io funcs for this offset
486		 ** in the file fail by unmapping the buffer
487		 */
488		clear_buffer_mapped(bh_result);
489		ret = -EINVAL;
490	}
491	/* Possible unpacked tail. Flush the data before pages have
492	   disappeared */
493	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
494		int err;
495
496		reiserfs_write_lock(inode->i_sb);
497
498		err = reiserfs_commit_for_inode(inode);
499		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
500
501		reiserfs_write_unlock(inode->i_sb);
502
503		if (err < 0)
504			ret = err;
505	}
506      out:
507	return ret;
508}
509
510/*
511** helper function for when reiserfs_get_block is called for a hole
512** but the file tail is still in a direct item
513** bh_result is the buffer head for the hole
514** tail_offset is the offset of the start of the tail in the file
515**
516** This calls prepare_write, which will start a new transaction
517** you should not be in a transaction, or have any paths held when you
518** call this.
519*/
520static int convert_tail_for_hole(struct inode *inode,
521				 struct buffer_head *bh_result,
522				 loff_t tail_offset)
523{
524	unsigned long index;
525	unsigned long tail_end;
526	unsigned long tail_start;
527	struct page *tail_page;
528	struct page *hole_page = bh_result->b_page;
529	int retval = 0;
530
531	if ((tail_offset & (bh_result->b_size - 1)) != 1)
532		return -EIO;
533
534	/* always try to read until the end of the block */
535	tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
536	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
537
538	index = tail_offset >> PAGE_CACHE_SHIFT;
539	/* hole_page can be zero in case of direct_io, we are sure
540	   that we cannot get here if we write with O_DIRECT into
541	   tail page */
542	if (!hole_page || index != hole_page->index) {
543		tail_page = grab_cache_page(inode->i_mapping, index);
544		retval = -ENOMEM;
545		if (!tail_page) {
546			goto out;
547		}
548	} else {
549		tail_page = hole_page;
550	}
551
552	/* we don't have to make sure the conversion did not happen while
553	 ** we were locking the page because anyone that could convert
554	 ** must first take i_mutex.
555	 **
556	 ** We must fix the tail page for writing because it might have buffers
557	 ** that are mapped, but have a block number of 0.  This indicates tail
558	 ** data that has been read directly into the page, and
559	 ** __block_write_begin won't trigger a get_block in this case.
560	 */
561	fix_tail_page_for_writing(tail_page);
562	retval = __reiserfs_write_begin(tail_page, tail_start,
563				      tail_end - tail_start);
564	if (retval)
565		goto unlock;
566
567	/* tail conversion might change the data in the page */
568	flush_dcache_page(tail_page);
569
570	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
571
572      unlock:
573	if (tail_page != hole_page) {
574		unlock_page(tail_page);
575		page_cache_release(tail_page);
576	}
577      out:
578	return retval;
579}
580
581static inline int _allocate_block(struct reiserfs_transaction_handle *th,
582				  sector_t block,
583				  struct inode *inode,
584				  b_blocknr_t * allocated_block_nr,
585				  struct treepath *path, int flags)
586{
587	BUG_ON(!th->t_trans_id);
588
589#ifdef REISERFS_PREALLOCATE
590	if (!(flags & GET_BLOCK_NO_IMUX)) {
591		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
592						  path, block);
593	}
594#endif
595	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
596					 block);
597}
598
599int reiserfs_get_block(struct inode *inode, sector_t block,
600		       struct buffer_head *bh_result, int create)
601{
602	int repeat, retval = 0;
603	b_blocknr_t allocated_block_nr = 0;	// b_blocknr_t is (unsigned) 32 bit int
604	INITIALIZE_PATH(path);
605	int pos_in_item;
606	struct cpu_key key;
607	struct buffer_head *bh, *unbh = NULL;
608	struct item_head *ih, tmp_ih;
609	__le32 *item;
610	int done;
611	int fs_gen;
612	int lock_depth;
613	struct reiserfs_transaction_handle *th = NULL;
614	/* space reserved in transaction batch:
615	   . 3 balancings in direct->indirect conversion
616	   . 1 block involved into reiserfs_update_sd()
617	   XXX in practically impossible worst case direct2indirect()
618	   can incur (much) more than 3 balancings.
619	   quota update for user, group */
620	int jbegin_count =
621	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
622	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
623	int version;
624	int dangle = 1;
625	loff_t new_offset =
626	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
627
628	lock_depth = reiserfs_write_lock_once(inode->i_sb);
629	version = get_inode_item_key_version(inode);
630
631	if (!file_capable(inode, block)) {
632		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
633		return -EFBIG;
634	}
635
636	/* if !create, we aren't changing the FS, so we don't need to
637	 ** log anything, so we don't need to start a transaction
638	 */
639	if (!(create & GET_BLOCK_CREATE)) {
640		int ret;
641		/* find number of block-th logical block of the file */
642		ret = _get_block_create_0(inode, block, bh_result,
643					  create | GET_BLOCK_READ_DIRECT);
644		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
645		return ret;
646	}
647	/*
648	 * if we're already in a transaction, make sure to close
649	 * any new transactions we start in this func
650	 */
651	if ((create & GET_BLOCK_NO_DANGLE) ||
652	    reiserfs_transaction_running(inode->i_sb))
653		dangle = 0;
654
655	/* If file is of such a size, that it might have a tail and tails are enabled
656	 ** we should mark it as possibly needing tail packing on close
657	 */
658	if ((have_large_tails(inode->i_sb)
659	     && inode->i_size < i_block_size(inode) * 4)
660	    || (have_small_tails(inode->i_sb)
661		&& inode->i_size < i_block_size(inode)))
662		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
663
664	/* set the key of the first byte in the 'block'-th block of file */
665	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
666	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
667	      start_trans:
668		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
669		if (!th) {
670			retval = -ENOMEM;
671			goto failure;
672		}
673		reiserfs_update_inode_transaction(inode);
674	}
675      research:
676
677	retval = search_for_position_by_key(inode->i_sb, &key, &path);
678	if (retval == IO_ERROR) {
679		retval = -EIO;
680		goto failure;
681	}
682
683	bh = get_last_bh(&path);
684	ih = get_ih(&path);
685	item = get_item(&path);
686	pos_in_item = path.pos_in_item;
687
688	fs_gen = get_generation(inode->i_sb);
689	copy_item_head(&tmp_ih, ih);
690
691	if (allocation_needed
692	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
693		/* we have to allocate block for the unformatted node */
694		if (!th) {
695			pathrelse(&path);
696			goto start_trans;
697		}
698
699		repeat =
700		    _allocate_block(th, block, inode, &allocated_block_nr,
701				    &path, create);
702
703		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
704			/* restart the transaction to give the journal a chance to free
705			 ** some blocks.  releases the path, so we have to go back to
706			 ** research if we succeed on the second try
707			 */
708			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
709			retval = restart_transaction(th, inode, &path);
710			if (retval)
711				goto failure;
712			repeat =
713			    _allocate_block(th, block, inode,
714					    &allocated_block_nr, NULL, create);
715
716			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
717				goto research;
718			}
719			if (repeat == QUOTA_EXCEEDED)
720				retval = -EDQUOT;
721			else
722				retval = -ENOSPC;
723			goto failure;
724		}
725
726		if (fs_changed(fs_gen, inode->i_sb)
727		    && item_moved(&tmp_ih, &path)) {
728			goto research;
729		}
730	}
731
732	if (indirect_item_found(retval, ih)) {
733		b_blocknr_t unfm_ptr;
734		/* 'block'-th block is in the file already (there is
735		   corresponding cell in some indirect item). But it may be
736		   zero unformatted node pointer (hole) */
737		unfm_ptr = get_block_num(item, pos_in_item);
738		if (unfm_ptr == 0) {
739			/* use allocated block to plug the hole */
740			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
741			if (fs_changed(fs_gen, inode->i_sb)
742			    && item_moved(&tmp_ih, &path)) {
743				reiserfs_restore_prepared_buffer(inode->i_sb,
744								 bh);
745				goto research;
746			}
747			set_buffer_new(bh_result);
748			if (buffer_dirty(bh_result)
749			    && reiserfs_data_ordered(inode->i_sb))
750				reiserfs_add_ordered_list(inode, bh_result);
751			put_block_num(item, pos_in_item, allocated_block_nr);
752			unfm_ptr = allocated_block_nr;
753			journal_mark_dirty(th, inode->i_sb, bh);
754			reiserfs_update_sd(th, inode);
755		}
756		set_block_dev_mapped(bh_result, unfm_ptr, inode);
757		pathrelse(&path);
758		retval = 0;
759		if (!dangle && th)
760			retval = reiserfs_end_persistent_transaction(th);
761
762		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
763
764		/* the item was found, so new blocks were not added to the file
765		 ** there is no need to make sure the inode is updated with this
766		 ** transaction
767		 */
768		return retval;
769	}
770
771	if (!th) {
772		pathrelse(&path);
773		goto start_trans;
774	}
775
776	/* desired position is not found or is in the direct item. We have
777	   to append file with holes up to 'block'-th block converting
778	   direct items to indirect one if necessary */
779	done = 0;
780	do {
781		if (is_statdata_le_ih(ih)) {
782			__le32 unp = 0;
783			struct cpu_key tmp_key;
784
785			/* indirect item has to be inserted */
786			make_le_item_head(&tmp_ih, &key, version, 1,
787					  TYPE_INDIRECT, UNFM_P_SIZE,
788					  0 /* free_space */ );
789
790			if (cpu_key_k_offset(&key) == 1) {
791				/* we are going to add 'block'-th block to the file. Use
792				   allocated block for that */
793				unp = cpu_to_le32(allocated_block_nr);
794				set_block_dev_mapped(bh_result,
795						     allocated_block_nr, inode);
796				set_buffer_new(bh_result);
797				done = 1;
798			}
799			tmp_key = key;	// ;)
800			set_cpu_key_k_offset(&tmp_key, 1);
801			PATH_LAST_POSITION(&path)++;
802
803			retval =
804			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
805						 inode, (char *)&unp);
806			if (retval) {
807				reiserfs_free_block(th, inode,
808						    allocated_block_nr, 1);
809				goto failure;	// retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
810			}
811			//mark_tail_converted (inode);
812		} else if (is_direct_le_ih(ih)) {
813			/* direct item has to be converted */
814			loff_t tail_offset;
815
816			tail_offset =
817			    ((le_ih_k_offset(ih) -
818			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
819			if (tail_offset == cpu_key_k_offset(&key)) {
820				/* direct item we just found fits into block we have
821				   to map. Convert it into unformatted node: use
822				   bh_result for the conversion */
823				set_block_dev_mapped(bh_result,
824						     allocated_block_nr, inode);
825				unbh = bh_result;
826				done = 1;
827			} else {
828				/* we have to padd file tail stored in direct item(s)
829				   up to block size and convert it to unformatted
830				   node. FIXME: this should also get into page cache */
831
832				pathrelse(&path);
833				/*
834				 * ugly, but we can only end the transaction if
835				 * we aren't nested
836				 */
837				BUG_ON(!th->t_refcount);
838				if (th->t_refcount == 1) {
839					retval =
840					    reiserfs_end_persistent_transaction
841					    (th);
842					th = NULL;
843					if (retval)
844						goto failure;
845				}
846
847				retval =
848				    convert_tail_for_hole(inode, bh_result,
849							  tail_offset);
850				if (retval) {
851					if (retval != -ENOSPC)
852						reiserfs_error(inode->i_sb,
853							"clm-6004",
854							"convert tail failed "
855							"inode %lu, error %d",
856							inode->i_ino,
857							retval);
858					if (allocated_block_nr) {
859						/* the bitmap, the super, and the stat data == 3 */
860						if (!th)
861							th = reiserfs_persistent_transaction(inode->i_sb, 3);
862						if (th)
863							reiserfs_free_block(th,
864									    inode,
865									    allocated_block_nr,
866									    1);
867					}
868					goto failure;
869				}
870				goto research;
871			}
872			retval =
873			    direct2indirect(th, inode, &path, unbh,
874					    tail_offset);
875			if (retval) {
876				reiserfs_unmap_buffer(unbh);
877				reiserfs_free_block(th, inode,
878						    allocated_block_nr, 1);
879				goto failure;
880			}
881			/* it is important the set_buffer_uptodate is done after
882			 ** the direct2indirect.  The buffer might contain valid
883			 ** data newer than the data on disk (read by readpage, changed,
884			 ** and then sent here by writepage).  direct2indirect needs
885			 ** to know if unbh was already up to date, so it can decide
886			 ** if the data in unbh needs to be replaced with data from
887			 ** the disk
888			 */
889			set_buffer_uptodate(unbh);
890
891			/* unbh->b_page == NULL in case of DIRECT_IO request, this means
892			   buffer will disappear shortly, so it should not be added to
893			 */
894			if (unbh->b_page) {
895				/* we've converted the tail, so we must
896				 ** flush unbh before the transaction commits
897				 */
898				reiserfs_add_tail_list(inode, unbh);
899
900				/* mark it dirty now to prevent commit_write from adding
901				 ** this buffer to the inode's dirty buffer list
902				 */
903				/*
904				 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
905				 * It's still atomic, but it sets the page dirty too,
906				 * which makes it eligible for writeback at any time by the
907				 * VM (which was also the case with __mark_buffer_dirty())
908				 */
909				mark_buffer_dirty(unbh);
910			}
911		} else {
912			/* append indirect item with holes if needed, when appending
913			   pointer to 'block'-th block use block, which is already
914			   allocated */
915			struct cpu_key tmp_key;
916			unp_t unf_single = 0;	// We use this in case we need to allocate only
917			// one block which is a fastpath
918			unp_t *un;
919			__u64 max_to_insert =
920			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
921			    UNFM_P_SIZE;
922			__u64 blocks_needed;
923
924			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
925			       "vs-804: invalid position for append");
926			/* indirect item has to be appended, set up key of that position */
927			make_cpu_key(&tmp_key, inode,
928				     le_key_k_offset(version,
929						     &(ih->ih_key)) +
930				     op_bytes_number(ih,
931						     inode->i_sb->s_blocksize),
932				     //pos_in_item * inode->i_sb->s_blocksize,
933				     TYPE_INDIRECT, 3);	// key type is unimportant
934
935			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
936			       "green-805: invalid offset");
937			blocks_needed =
938			    1 +
939			    ((cpu_key_k_offset(&key) -
940			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
941			     s_blocksize_bits);
942
943			if (blocks_needed == 1) {
944				un = &unf_single;
945			} else {
946				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
947				if (!un) {
948					un = &unf_single;
949					blocks_needed = 1;
950					max_to_insert = 0;
951				}
952			}
953			if (blocks_needed <= max_to_insert) {
954				/* we are going to add target block to the file. Use allocated
955				   block for that */
956				un[blocks_needed - 1] =
957				    cpu_to_le32(allocated_block_nr);
958				set_block_dev_mapped(bh_result,
959						     allocated_block_nr, inode);
960				set_buffer_new(bh_result);
961				done = 1;
962			} else {
963				/* paste hole to the indirect item */
964				/* If kmalloc failed, max_to_insert becomes zero and it means we
965				   only have space for one block */
966				blocks_needed =
967				    max_to_insert ? max_to_insert : 1;
968			}
969			retval =
970			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
971						     (char *)un,
972						     UNFM_P_SIZE *
973						     blocks_needed);
974
975			if (blocks_needed != 1)
976				kfree(un);
977
978			if (retval) {
979				reiserfs_free_block(th, inode,
980						    allocated_block_nr, 1);
981				goto failure;
982			}
983			if (!done) {
984				/* We need to mark new file size in case this function will be
985				   interrupted/aborted later on. And we may do this only for
986				   holes. */
987				inode->i_size +=
988				    inode->i_sb->s_blocksize * blocks_needed;
989			}
990		}
991
992		if (done == 1)
993			break;
994
995		/* this loop could log more blocks than we had originally asked
996		 ** for.  So, we have to allow the transaction to end if it is
997		 ** too big or too full.  Update the inode so things are
998		 ** consistent if we crash before the function returns
999		 **
1000		 ** release the path so that anybody waiting on the path before
1001		 ** ending their transaction will be able to continue.
1002		 */
1003		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1004			retval = restart_transaction(th, inode, &path);
1005			if (retval)
1006				goto failure;
1007		}
1008		/*
1009		 * inserting indirect pointers for a hole can take a
1010		 * long time.  reschedule if needed and also release the write
1011		 * lock for others.
1012		 */
1013		if (need_resched()) {
1014			reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1015			schedule();
1016			lock_depth = reiserfs_write_lock_once(inode->i_sb);
1017		}
1018
1019		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1020		if (retval == IO_ERROR) {
1021			retval = -EIO;
1022			goto failure;
1023		}
1024		if (retval == POSITION_FOUND) {
1025			reiserfs_warning(inode->i_sb, "vs-825",
1026					 "%K should not be found", &key);
1027			retval = -EEXIST;
1028			if (allocated_block_nr)
1029				reiserfs_free_block(th, inode,
1030						    allocated_block_nr, 1);
1031			pathrelse(&path);
1032			goto failure;
1033		}
1034		bh = get_last_bh(&path);
1035		ih = get_ih(&path);
1036		item = get_item(&path);
1037		pos_in_item = path.pos_in_item;
1038	} while (1);
1039
1040	retval = 0;
1041
1042      failure:
1043	if (th && (!dangle || (retval && !th->t_trans_id))) {
1044		int err;
1045		if (th->t_trans_id)
1046			reiserfs_update_sd(th, inode);
1047		err = reiserfs_end_persistent_transaction(th);
1048		if (err)
1049			retval = err;
1050	}
1051
1052	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1053	reiserfs_check_path(&path);
1054	return retval;
1055}
1056
1057static int
1058reiserfs_readpages(struct file *file, struct address_space *mapping,
1059		   struct list_head *pages, unsigned nr_pages)
1060{
1061	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1062}
1063
1064/* Compute real number of used bytes by file
1065 * Following three functions can go away when we'll have enough space in stat item
1066 */
1067static int real_space_diff(struct inode *inode, int sd_size)
1068{
1069	int bytes;
1070	loff_t blocksize = inode->i_sb->s_blocksize;
1071
1072	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1073		return sd_size;
1074
1075	/* End of file is also in full block with indirect reference, so round
1076	 ** up to the next block.
1077	 **
1078	 ** there is just no way to know if the tail is actually packed
1079	 ** on the file, so we have to assume it isn't.  When we pack the
1080	 ** tail, we add 4 bytes to pretend there really is an unformatted
1081	 ** node pointer
1082	 */
1083	bytes =
1084	    ((inode->i_size +
1085	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1086	    sd_size;
1087	return bytes;
1088}
1089
1090static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1091					int sd_size)
1092{
1093	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1094		return inode->i_size +
1095		    (loff_t) (real_space_diff(inode, sd_size));
1096	}
1097	return ((loff_t) real_space_diff(inode, sd_size)) +
1098	    (((loff_t) blocks) << 9);
1099}
1100
1101/* Compute number of blocks used by file in ReiserFS counting */
1102static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1103{
1104	loff_t bytes = inode_get_bytes(inode);
1105	loff_t real_space = real_space_diff(inode, sd_size);
1106
1107	/* keeps fsck and non-quota versions of reiserfs happy */
1108	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1109		bytes += (loff_t) 511;
1110	}
1111
1112	/* files from before the quota patch might i_blocks such that
1113	 ** bytes < real_space.  Deal with that here to prevent it from
1114	 ** going negative.
1115	 */
1116	if (bytes < real_space)
1117		return 0;
1118	return (bytes - real_space) >> 9;
1119}
1120
1121//
1122// BAD: new directories have stat data of new type and all other items
1123// of old type. Version stored in the inode says about body items, so
1124// in update_stat_data we can not rely on inode, but have to check
1125// item version directly
1126//
1127
1128// called by read_locked_inode
1129static void init_inode(struct inode *inode, struct treepath *path)
1130{
1131	struct buffer_head *bh;
1132	struct item_head *ih;
1133	__u32 rdev;
1134	//int version = ITEM_VERSION_1;
1135
1136	bh = PATH_PLAST_BUFFER(path);
1137	ih = PATH_PITEM_HEAD(path);
1138
1139	copy_key(INODE_PKEY(inode), &(ih->ih_key));
1140
1141	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1142	REISERFS_I(inode)->i_flags = 0;
1143	REISERFS_I(inode)->i_prealloc_block = 0;
1144	REISERFS_I(inode)->i_prealloc_count = 0;
1145	REISERFS_I(inode)->i_trans_id = 0;
1146	REISERFS_I(inode)->i_jl = NULL;
1147	reiserfs_init_xattr_rwsem(inode);
1148
1149	if (stat_data_v1(ih)) {
1150		struct stat_data_v1 *sd =
1151		    (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1152		unsigned long blocks;
1153
1154		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1155		set_inode_sd_version(inode, STAT_DATA_V1);
1156		inode->i_mode = sd_v1_mode(sd);
1157		inode->i_nlink = sd_v1_nlink(sd);
1158		inode->i_uid = sd_v1_uid(sd);
1159		inode->i_gid = sd_v1_gid(sd);
1160		inode->i_size = sd_v1_size(sd);
1161		inode->i_atime.tv_sec = sd_v1_atime(sd);
1162		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1163		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1164		inode->i_atime.tv_nsec = 0;
1165		inode->i_ctime.tv_nsec = 0;
1166		inode->i_mtime.tv_nsec = 0;
1167
1168		inode->i_blocks = sd_v1_blocks(sd);
1169		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1170		blocks = (inode->i_size + 511) >> 9;
1171		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1172		if (inode->i_blocks > blocks) {
1173			// there was a bug in <=3.5.23 when i_blocks could take negative
1174			// values. Starting from 3.5.17 this value could even be stored in
1175			// stat data. For such files we set i_blocks based on file
1176			// size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1177			// only updated if file's inode will ever change
1178			inode->i_blocks = blocks;
1179		}
1180
1181		rdev = sd_v1_rdev(sd);
1182		REISERFS_I(inode)->i_first_direct_byte =
1183		    sd_v1_first_direct_byte(sd);
1184		/* an early bug in the quota code can give us an odd number for the
1185		 ** block count.  This is incorrect, fix it here.
1186		 */
1187		if (inode->i_blocks & 1) {
1188			inode->i_blocks++;
1189		}
1190		inode_set_bytes(inode,
1191				to_real_used_space(inode, inode->i_blocks,
1192						   SD_V1_SIZE));
1193		/* nopack is initially zero for v1 objects. For v2 objects,
1194		   nopack is initialised from sd_attrs */
1195		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1196	} else {
1197		// new stat data found, but object may have old items
1198		// (directories and symlinks)
1199		struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1200
1201		inode->i_mode = sd_v2_mode(sd);
1202		inode->i_nlink = sd_v2_nlink(sd);
1203		inode->i_uid = sd_v2_uid(sd);
1204		inode->i_size = sd_v2_size(sd);
1205		inode->i_gid = sd_v2_gid(sd);
1206		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1207		inode->i_atime.tv_sec = sd_v2_atime(sd);
1208		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1209		inode->i_ctime.tv_nsec = 0;
1210		inode->i_mtime.tv_nsec = 0;
1211		inode->i_atime.tv_nsec = 0;
1212		inode->i_blocks = sd_v2_blocks(sd);
1213		rdev = sd_v2_rdev(sd);
1214		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1215			inode->i_generation =
1216			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1217		else
1218			inode->i_generation = sd_v2_generation(sd);
1219
1220		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1221			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1222		else
1223			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1224		REISERFS_I(inode)->i_first_direct_byte = 0;
1225		set_inode_sd_version(inode, STAT_DATA_V2);
1226		inode_set_bytes(inode,
1227				to_real_used_space(inode, inode->i_blocks,
1228						   SD_V2_SIZE));
1229		/* read persistent inode attributes from sd and initialise
1230		   generic inode flags from them */
1231		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1232		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1233	}
1234
1235	pathrelse(path);
1236	if (S_ISREG(inode->i_mode)) {
1237		inode->i_op = &reiserfs_file_inode_operations;
1238		inode->i_fop = &reiserfs_file_operations;
1239		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1240	} else if (S_ISDIR(inode->i_mode)) {
1241		inode->i_op = &reiserfs_dir_inode_operations;
1242		inode->i_fop = &reiserfs_dir_operations;
1243	} else if (S_ISLNK(inode->i_mode)) {
1244		inode->i_op = &reiserfs_symlink_inode_operations;
1245		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1246	} else {
1247		inode->i_blocks = 0;
1248		inode->i_op = &reiserfs_special_inode_operations;
1249		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1250	}
1251}
1252
1253// update new stat data with inode fields
1254static void inode2sd(void *sd, struct inode *inode, loff_t size)
1255{
1256	struct stat_data *sd_v2 = (struct stat_data *)sd;
1257	__u16 flags;
1258
1259	set_sd_v2_mode(sd_v2, inode->i_mode);
1260	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1261	set_sd_v2_uid(sd_v2, inode->i_uid);
1262	set_sd_v2_size(sd_v2, size);
1263	set_sd_v2_gid(sd_v2, inode->i_gid);
1264	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1265	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1266	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1267	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1268	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1269		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1270	else
1271		set_sd_v2_generation(sd_v2, inode->i_generation);
1272	flags = REISERFS_I(inode)->i_attrs;
1273	i_attrs_to_sd_attrs(inode, &flags);
1274	set_sd_v2_attrs(sd_v2, flags);
1275}
1276
1277// used to copy inode's fields to old stat data
1278static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1279{
1280	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1281
1282	set_sd_v1_mode(sd_v1, inode->i_mode);
1283	set_sd_v1_uid(sd_v1, inode->i_uid);
1284	set_sd_v1_gid(sd_v1, inode->i_gid);
1285	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1286	set_sd_v1_size(sd_v1, size);
1287	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1288	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1289	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1290
1291	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1292		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1293	else
1294		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1295
1296	// Sigh. i_first_direct_byte is back
1297	set_sd_v1_first_direct_byte(sd_v1,
1298				    REISERFS_I(inode)->i_first_direct_byte);
1299}
1300
1301/* NOTE, you must prepare the buffer head before sending it here,
1302** and then log it after the call
1303*/
1304static void update_stat_data(struct treepath *path, struct inode *inode,
1305			     loff_t size)
1306{
1307	struct buffer_head *bh;
1308	struct item_head *ih;
1309
1310	bh = PATH_PLAST_BUFFER(path);
1311	ih = PATH_PITEM_HEAD(path);
1312
1313	if (!is_statdata_le_ih(ih))
1314		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1315			       INODE_PKEY(inode), ih);
1316
1317	if (stat_data_v1(ih)) {
1318		// path points to old stat data
1319		inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1320	} else {
1321		inode2sd(B_I_PITEM(bh, ih), inode, size);
1322	}
1323
1324	return;
1325}
1326
1327void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1328			     struct inode *inode, loff_t size)
1329{
1330	struct cpu_key key;
1331	INITIALIZE_PATH(path);
1332	struct buffer_head *bh;
1333	int fs_gen;
1334	struct item_head *ih, tmp_ih;
1335	int retval;
1336
1337	BUG_ON(!th->t_trans_id);
1338
1339	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);	//key type is unimportant
1340
1341	for (;;) {
1342		int pos;
1343		/* look for the object's stat data */
1344		retval = search_item(inode->i_sb, &key, &path);
1345		if (retval == IO_ERROR) {
1346			reiserfs_error(inode->i_sb, "vs-13050",
1347				       "i/o failure occurred trying to "
1348				       "update %K stat data", &key);
1349			return;
1350		}
1351		if (retval == ITEM_NOT_FOUND) {
1352			pos = PATH_LAST_POSITION(&path);
1353			pathrelse(&path);
1354			if (inode->i_nlink == 0) {
1355				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1356				return;
1357			}
1358			reiserfs_warning(inode->i_sb, "vs-13060",
1359					 "stat data of object %k (nlink == %d) "
1360					 "not found (pos %d)",
1361					 INODE_PKEY(inode), inode->i_nlink,
1362					 pos);
1363			reiserfs_check_path(&path);
1364			return;
1365		}
1366
1367		/* sigh, prepare_for_journal might schedule.  When it schedules the
1368		 ** FS might change.  We have to detect that, and loop back to the
1369		 ** search if the stat data item has moved
1370		 */
1371		bh = get_last_bh(&path);
1372		ih = get_ih(&path);
1373		copy_item_head(&tmp_ih, ih);
1374		fs_gen = get_generation(inode->i_sb);
1375		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1376		if (fs_changed(fs_gen, inode->i_sb)
1377		    && item_moved(&tmp_ih, &path)) {
1378			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1379			continue;	/* Stat_data item has been moved after scheduling. */
1380		}
1381		break;
1382	}
1383	update_stat_data(&path, inode, size);
1384	journal_mark_dirty(th, th->t_super, bh);
1385	pathrelse(&path);
1386	return;
1387}
1388
1389/* reiserfs_read_locked_inode is called to read the inode off disk, and it
1390** does a make_bad_inode when things go wrong.  But, we need to make sure
1391** and clear the key in the private portion of the inode, otherwise a
1392** corresponding iput might try to delete whatever object the inode last
1393** represented.
1394*/
1395static void reiserfs_make_bad_inode(struct inode *inode)
1396{
1397	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1398	make_bad_inode(inode);
1399}
1400
1401//
1402// initially this function was derived from minix or ext2's analog and
1403// evolved as the prototype did
1404//
1405
1406int reiserfs_init_locked_inode(struct inode *inode, void *p)
1407{
1408	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1409	inode->i_ino = args->objectid;
1410	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1411	return 0;
1412}
1413
1414/* looks for stat data in the tree, and fills up the fields of in-core
1415   inode stat data fields */
1416void reiserfs_read_locked_inode(struct inode *inode,
1417				struct reiserfs_iget_args *args)
1418{
1419	INITIALIZE_PATH(path_to_sd);
1420	struct cpu_key key;
1421	unsigned long dirino;
1422	int retval;
1423
1424	dirino = args->dirid;
1425
1426	/* set version 1, version 2 could be used too, because stat data
1427	   key is the same in both versions */
1428	key.version = KEY_FORMAT_3_5;
1429	key.on_disk_key.k_dir_id = dirino;
1430	key.on_disk_key.k_objectid = inode->i_ino;
1431	key.on_disk_key.k_offset = 0;
1432	key.on_disk_key.k_type = 0;
1433
1434	/* look for the object's stat data */
1435	retval = search_item(inode->i_sb, &key, &path_to_sd);
1436	if (retval == IO_ERROR) {
1437		reiserfs_error(inode->i_sb, "vs-13070",
1438			       "i/o failure occurred trying to find "
1439			       "stat data of %K", &key);
1440		reiserfs_make_bad_inode(inode);
1441		return;
1442	}
1443	if (retval != ITEM_FOUND) {
1444		/* a stale NFS handle can trigger this without it being an error */
1445		pathrelse(&path_to_sd);
1446		reiserfs_make_bad_inode(inode);
1447		inode->i_nlink = 0;
1448		return;
1449	}
1450
1451	init_inode(inode, &path_to_sd);
1452
1453	/* It is possible that knfsd is trying to access inode of a file
1454	   that is being removed from the disk by some other thread. As we
1455	   update sd on unlink all that is required is to check for nlink
1456	   here. This bug was first found by Sizif when debugging
1457	   SquidNG/Butterfly, forgotten, and found again after Philippe
1458	   Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1459
1460	   More logical fix would require changes in fs/inode.c:iput() to
1461	   remove inode from hash-table _after_ fs cleaned disk stuff up and
1462	   in iget() to return NULL if I_FREEING inode is found in
1463	   hash-table. */
1464	/* Currently there is one place where it's ok to meet inode with
1465	   nlink==0: processing of open-unlinked and half-truncated files
1466	   during mount (fs/reiserfs/super.c:finish_unfinished()). */
1467	if ((inode->i_nlink == 0) &&
1468	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1469		reiserfs_warning(inode->i_sb, "vs-13075",
1470				 "dead inode read from disk %K. "
1471				 "This is likely to be race with knfsd. Ignore",
1472				 &key);
1473		reiserfs_make_bad_inode(inode);
1474	}
1475
1476	reiserfs_check_path(&path_to_sd);	/* init inode should be relsing */
1477
1478}
1479
1480/**
1481 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1482 *
1483 * @inode:    inode from hash table to check
1484 * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1485 *
1486 * This function is called by iget5_locked() to distinguish reiserfs inodes
1487 * having the same inode numbers. Such inodes can only exist due to some
1488 * error condition. One of them should be bad. Inodes with identical
1489 * inode numbers (objectids) are distinguished by parent directory ids.
1490 *
1491 */
1492int reiserfs_find_actor(struct inode *inode, void *opaque)
1493{
1494	struct reiserfs_iget_args *args;
1495
1496	args = opaque;
1497	/* args is already in CPU order */
1498	return (inode->i_ino == args->objectid) &&
1499	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1500}
1501
1502struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1503{
1504	struct inode *inode;
1505	struct reiserfs_iget_args args;
1506
1507	args.objectid = key->on_disk_key.k_objectid;
1508	args.dirid = key->on_disk_key.k_dir_id;
1509	reiserfs_write_unlock(s);
1510	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1511			     reiserfs_find_actor, reiserfs_init_locked_inode,
1512			     (void *)(&args));
1513	reiserfs_write_lock(s);
1514	if (!inode)
1515		return ERR_PTR(-ENOMEM);
1516
1517	if (inode->i_state & I_NEW) {
1518		reiserfs_read_locked_inode(inode, &args);
1519		unlock_new_inode(inode);
1520	}
1521
1522	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1523		/* either due to i/o error or a stale NFS handle */
1524		iput(inode);
1525		inode = NULL;
1526	}
1527	return inode;
1528}
1529
1530static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1531	u32 objectid, u32 dir_id, u32 generation)
1532
1533{
1534	struct cpu_key key;
1535	struct inode *inode;
1536
1537	key.on_disk_key.k_objectid = objectid;
1538	key.on_disk_key.k_dir_id = dir_id;
1539	reiserfs_write_lock(sb);
1540	inode = reiserfs_iget(sb, &key);
1541	if (inode && !IS_ERR(inode) && generation != 0 &&
1542	    generation != inode->i_generation) {
1543		iput(inode);
1544		inode = NULL;
1545	}
1546	reiserfs_write_unlock(sb);
1547
1548	return d_obtain_alias(inode);
1549}
1550
1551struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1552		int fh_len, int fh_type)
1553{
1554	/* fhtype happens to reflect the number of u32s encoded.
1555	 * due to a bug in earlier code, fhtype might indicate there
1556	 * are more u32s then actually fitted.
1557	 * so if fhtype seems to be more than len, reduce fhtype.
1558	 * Valid types are:
1559	 *   2 - objectid + dir_id - legacy support
1560	 *   3 - objectid + dir_id + generation
1561	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1562	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1563	 *   6 - as above plus generation of directory
1564	 * 6 does not fit in NFSv2 handles
1565	 */
1566	if (fh_type > fh_len) {
1567		if (fh_type != 6 || fh_len != 5)
1568			reiserfs_warning(sb, "reiserfs-13077",
1569				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1570				fh_type, fh_len);
1571		fh_type = 5;
1572	}
1573
1574	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1575		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1576}
1577
1578struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1579		int fh_len, int fh_type)
1580{
1581	if (fh_type < 4)
1582		return NULL;
1583
1584	return reiserfs_get_dentry(sb,
1585		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1586		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1587		(fh_type == 6) ? fid->raw[5] : 0);
1588}
1589
1590int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1591		       int need_parent)
1592{
1593	struct inode *inode = dentry->d_inode;
1594	int maxlen = *lenp;
1595
1596	if (need_parent && (maxlen < 5)) {
1597		*lenp = 5;
1598		return 255;
1599	} else if (maxlen < 3) {
1600		*lenp = 3;
1601		return 255;
1602	}
1603
1604	data[0] = inode->i_ino;
1605	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1606	data[2] = inode->i_generation;
1607	*lenp = 3;
1608	/* no room for directory info? return what we've stored so far */
1609	if (maxlen < 5 || !need_parent)
1610		return 3;
1611
1612	spin_lock(&dentry->d_lock);
1613	inode = dentry->d_parent->d_inode;
1614	data[3] = inode->i_ino;
1615	data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1616	*lenp = 5;
1617	if (maxlen >= 6) {
1618		data[5] = inode->i_generation;
1619		*lenp = 6;
1620	}
1621	spin_unlock(&dentry->d_lock);
1622	return *lenp;
1623}
1624
1625/* looks for stat data, then copies fields to it, marks the buffer
1626   containing stat data as dirty */
1627/* reiserfs inodes are never really dirty, since the dirty inode call
1628** always logs them.  This call allows the VFS inode marking routines
1629** to properly mark inodes for datasync and such, but only actually
1630** does something when called for a synchronous update.
1631*/
1632int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1633{
1634	struct reiserfs_transaction_handle th;
1635	int jbegin_count = 1;
1636
1637	if (inode->i_sb->s_flags & MS_RDONLY)
1638		return -EROFS;
1639	/* memory pressure can sometimes initiate write_inode calls with sync == 1,
1640	 ** these cases are just when the system needs ram, not when the
1641	 ** inode needs to reach disk for safety, and they can safely be
1642	 ** ignored because the altered inode has already been logged.
1643	 */
1644	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1645		reiserfs_write_lock(inode->i_sb);
1646		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1647			reiserfs_update_sd(&th, inode);
1648			journal_end_sync(&th, inode->i_sb, jbegin_count);
1649		}
1650		reiserfs_write_unlock(inode->i_sb);
1651	}
1652	return 0;
1653}
1654
1655/* stat data of new object is inserted already, this inserts the item
1656   containing "." and ".." entries */
1657static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1658				  struct inode *inode,
1659				  struct item_head *ih, struct treepath *path,
1660				  struct inode *dir)
1661{
1662	struct super_block *sb = th->t_super;
1663	char empty_dir[EMPTY_DIR_SIZE];
1664	char *body = empty_dir;
1665	struct cpu_key key;
1666	int retval;
1667
1668	BUG_ON(!th->t_trans_id);
1669
1670	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1671		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1672		      TYPE_DIRENTRY, 3 /*key length */ );
1673
1674	/* compose item head for new item. Directories consist of items of
1675	   old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1676	   is done by reiserfs_new_inode */
1677	if (old_format_only(sb)) {
1678		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1679				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1680
1681		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1682				       ih->ih_key.k_objectid,
1683				       INODE_PKEY(dir)->k_dir_id,
1684				       INODE_PKEY(dir)->k_objectid);
1685	} else {
1686		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1687				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1688
1689		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1690				    ih->ih_key.k_objectid,
1691				    INODE_PKEY(dir)->k_dir_id,
1692				    INODE_PKEY(dir)->k_objectid);
1693	}
1694
1695	/* look for place in the tree for new item */
1696	retval = search_item(sb, &key, path);
1697	if (retval == IO_ERROR) {
1698		reiserfs_error(sb, "vs-13080",
1699			       "i/o failure occurred creating new directory");
1700		return -EIO;
1701	}
1702	if (retval == ITEM_FOUND) {
1703		pathrelse(path);
1704		reiserfs_warning(sb, "vs-13070",
1705				 "object with this key exists (%k)",
1706				 &(ih->ih_key));
1707		return -EEXIST;
1708	}
1709
1710	/* insert item, that is empty directory item */
1711	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1712}
1713
1714/* stat data of object has been inserted, this inserts the item
1715   containing the body of symlink */
1716static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode,	/* Inode of symlink */
1717				struct item_head *ih,
1718				struct treepath *path, const char *symname,
1719				int item_len)
1720{
1721	struct super_block *sb = th->t_super;
1722	struct cpu_key key;
1723	int retval;
1724
1725	BUG_ON(!th->t_trans_id);
1726
1727	_make_cpu_key(&key, KEY_FORMAT_3_5,
1728		      le32_to_cpu(ih->ih_key.k_dir_id),
1729		      le32_to_cpu(ih->ih_key.k_objectid),
1730		      1, TYPE_DIRECT, 3 /*key length */ );
1731
1732	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1733			  0 /*free_space */ );
1734
1735	/* look for place in the tree for new item */
1736	retval = search_item(sb, &key, path);
1737	if (retval == IO_ERROR) {
1738		reiserfs_error(sb, "vs-13080",
1739			       "i/o failure occurred creating new symlink");
1740		return -EIO;
1741	}
1742	if (retval == ITEM_FOUND) {
1743		pathrelse(path);
1744		reiserfs_warning(sb, "vs-13080",
1745				 "object with this key exists (%k)",
1746				 &(ih->ih_key));
1747		return -EEXIST;
1748	}
1749
1750	/* insert item, that is body of symlink */
1751	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1752}
1753
1754/* inserts the stat data into the tree, and then calls
1755   reiserfs_new_directory (to insert ".", ".." item if new object is
1756   directory) or reiserfs_new_symlink (to insert symlink body if new
1757   object is symlink) or nothing (if new object is regular file)
1758
1759   NOTE! uid and gid must already be set in the inode.  If we return
1760   non-zero due to an error, we have to drop the quota previously allocated
1761   for the fresh inode.  This can only be done outside a transaction, so
1762   if we return non-zero, we also end the transaction.  */
1763int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1764		       struct inode *dir, int mode, const char *symname,
1765		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1766		          strlen (symname) for symlinks) */
1767		       loff_t i_size, struct dentry *dentry,
1768		       struct inode *inode,
1769		       struct reiserfs_security_handle *security)
1770{
1771	struct super_block *sb;
1772	struct reiserfs_iget_args args;
1773	INITIALIZE_PATH(path_to_key);
1774	struct cpu_key key;
1775	struct item_head ih;
1776	struct stat_data sd;
1777	int retval;
1778	int err;
1779
1780	BUG_ON(!th->t_trans_id);
1781
1782	dquot_initialize(inode);
1783	err = dquot_alloc_inode(inode);
1784	if (err)
1785		goto out_end_trans;
1786	if (!dir->i_nlink) {
1787		err = -EPERM;
1788		goto out_bad_inode;
1789	}
1790
1791	sb = dir->i_sb;
1792
1793	/* item head of new item */
1794	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1795	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1796	if (!ih.ih_key.k_objectid) {
1797		err = -ENOMEM;
1798		goto out_bad_inode;
1799	}
1800	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1801	if (old_format_only(sb))
1802		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1803				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1804	else
1805		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1806				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1807	memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1808	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1809	if (insert_inode_locked4(inode, args.objectid,
1810			     reiserfs_find_actor, &args) < 0) {
1811		err = -EINVAL;
1812		goto out_bad_inode;
1813	}
1814	if (old_format_only(sb))
1815		/* not a perfect generation count, as object ids can be reused, but
1816		 ** this is as good as reiserfs can do right now.
1817		 ** note that the private part of inode isn't filled in yet, we have
1818		 ** to use the directory.
1819		 */
1820		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1821	else
1822#if defined( USE_INODE_GENERATION_COUNTER )
1823		inode->i_generation =
1824		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1825#else
1826		inode->i_generation = ++event;
1827#endif
1828
1829	/* fill stat data */
1830	inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1831
1832	/* uid and gid must already be set by the caller for quota init */
1833
1834	/* symlink cannot be immutable or append only, right? */
1835	if (S_ISLNK(inode->i_mode))
1836		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1837
1838	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1839	inode->i_size = i_size;
1840	inode->i_blocks = 0;
1841	inode->i_bytes = 0;
1842	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1843	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1844
1845	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1846	REISERFS_I(inode)->i_flags = 0;
1847	REISERFS_I(inode)->i_prealloc_block = 0;
1848	REISERFS_I(inode)->i_prealloc_count = 0;
1849	REISERFS_I(inode)->i_trans_id = 0;
1850	REISERFS_I(inode)->i_jl = NULL;
1851	REISERFS_I(inode)->i_attrs =
1852	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1853	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1854	reiserfs_init_xattr_rwsem(inode);
1855
1856	/* key to search for correct place for new stat data */
1857	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1858		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1859		      TYPE_STAT_DATA, 3 /*key length */ );
1860
1861	/* find proper place for inserting of stat data */
1862	retval = search_item(sb, &key, &path_to_key);
1863	if (retval == IO_ERROR) {
1864		err = -EIO;
1865		goto out_bad_inode;
1866	}
1867	if (retval == ITEM_FOUND) {
1868		pathrelse(&path_to_key);
1869		err = -EEXIST;
1870		goto out_bad_inode;
1871	}
1872	if (old_format_only(sb)) {
1873		if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1874			pathrelse(&path_to_key);
1875			/* i_uid or i_gid is too big to be stored in stat data v3.5 */
1876			err = -EINVAL;
1877			goto out_bad_inode;
1878		}
1879		inode2sd_v1(&sd, inode, inode->i_size);
1880	} else {
1881		inode2sd(&sd, inode, inode->i_size);
1882	}
1883	// store in in-core inode the key of stat data and version all
1884	// object items will have (directory items will have old offset
1885	// format, other new objects will consist of new items)
1886	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1887		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1888	else
1889		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1890	if (old_format_only(sb))
1891		set_inode_sd_version(inode, STAT_DATA_V1);
1892	else
1893		set_inode_sd_version(inode, STAT_DATA_V2);
1894
1895	/* insert the stat data into the tree */
1896#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1897	if (REISERFS_I(dir)->new_packing_locality)
1898		th->displace_new_blocks = 1;
1899#endif
1900	retval =
1901	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1902				 (char *)(&sd));
1903	if (retval) {
1904		err = retval;
1905		reiserfs_check_path(&path_to_key);
1906		goto out_bad_inode;
1907	}
1908#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1909	if (!th->displace_new_blocks)
1910		REISERFS_I(dir)->new_packing_locality = 0;
1911#endif
1912	if (S_ISDIR(mode)) {
1913		/* insert item with "." and ".." */
1914		retval =
1915		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1916	}
1917
1918	if (S_ISLNK(mode)) {
1919		/* insert body of symlink */
1920		if (!old_format_only(sb))
1921			i_size = ROUND_UP(i_size);
1922		retval =
1923		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1924					 i_size);
1925	}
1926	if (retval) {
1927		err = retval;
1928		reiserfs_check_path(&path_to_key);
1929		journal_end(th, th->t_super, th->t_blocks_allocated);
1930		goto out_inserted_sd;
1931	}
1932
1933	if (reiserfs_posixacl(inode->i_sb)) {
1934		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1935		if (retval) {
1936			err = retval;
1937			reiserfs_check_path(&path_to_key);
1938			journal_end(th, th->t_super, th->t_blocks_allocated);
1939			goto out_inserted_sd;
1940		}
1941	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
1942		reiserfs_warning(inode->i_sb, "jdm-13090",
1943				 "ACLs aren't enabled in the fs, "
1944				 "but vfs thinks they are!");
1945	} else if (IS_PRIVATE(dir))
1946		inode->i_flags |= S_PRIVATE;
1947
1948	if (security->name) {
1949		retval = reiserfs_security_write(th, inode, security);
1950		if (retval) {
1951			err = retval;
1952			reiserfs_check_path(&path_to_key);
1953			retval = journal_end(th, th->t_super,
1954					     th->t_blocks_allocated);
1955			if (retval)
1956				err = retval;
1957			goto out_inserted_sd;
1958		}
1959	}
1960
1961	reiserfs_update_sd(th, inode);
1962	reiserfs_check_path(&path_to_key);
1963
1964	return 0;
1965
1966/* it looks like you can easily compress these two goto targets into
1967 * one.  Keeping it like this doesn't actually hurt anything, and they
1968 * are place holders for what the quota code actually needs.
1969 */
1970      out_bad_inode:
1971	/* Invalidate the object, nothing was inserted yet */
1972	INODE_PKEY(inode)->k_objectid = 0;
1973
1974	/* Quota change must be inside a transaction for journaling */
1975	dquot_free_inode(inode);
1976
1977      out_end_trans:
1978	journal_end(th, th->t_super, th->t_blocks_allocated);
1979	/* Drop can be outside and it needs more credits so it's better to have it outside */
1980	dquot_drop(inode);
1981	inode->i_flags |= S_NOQUOTA;
1982	make_bad_inode(inode);
1983
1984      out_inserted_sd:
1985	inode->i_nlink = 0;
1986	th->t_trans_id = 0;	/* so the caller can't use this handle later */
1987	unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
1988	iput(inode);
1989	return err;
1990}
1991
1992/*
1993** finds the tail page in the page cache,
1994** reads the last block in.
1995**
1996** On success, page_result is set to a locked, pinned page, and bh_result
1997** is set to an up to date buffer for the last block in the file.  returns 0.
1998**
1999** tail conversion is not done, so bh_result might not be valid for writing
2000** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2001** trying to write the block.
2002**
2003** on failure, nonzero is returned, page_result and bh_result are untouched.
2004*/
2005static int grab_tail_page(struct inode *inode,
2006			  struct page **page_result,
2007			  struct buffer_head **bh_result)
2008{
2009
2010	/* we want the page with the last byte in the file,
2011	 ** not the page that will hold the next byte for appending
2012	 */
2013	unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2014	unsigned long pos = 0;
2015	unsigned long start = 0;
2016	unsigned long blocksize = inode->i_sb->s_blocksize;
2017	unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2018	struct buffer_head *bh;
2019	struct buffer_head *head;
2020	struct page *page;
2021	int error;
2022
2023	/* we know that we are only called with inode->i_size > 0.
2024	 ** we also know that a file tail can never be as big as a block
2025	 ** If i_size % blocksize == 0, our file is currently block aligned
2026	 ** and it won't need converting or zeroing after a truncate.
2027	 */
2028	if ((offset & (blocksize - 1)) == 0) {
2029		return -ENOENT;
2030	}
2031	page = grab_cache_page(inode->i_mapping, index);
2032	error = -ENOMEM;
2033	if (!page) {
2034		goto out;
2035	}
2036	/* start within the page of the last block in the file */
2037	start = (offset / blocksize) * blocksize;
2038
2039	error = __block_write_begin(page, start, offset - start,
2040				    reiserfs_get_block_create_0);
2041	if (error)
2042		goto unlock;
2043
2044	head = page_buffers(page);
2045	bh = head;
2046	do {
2047		if (pos >= start) {
2048			break;
2049		}
2050		bh = bh->b_this_page;
2051		pos += blocksize;
2052	} while (bh != head);
2053
2054	if (!buffer_uptodate(bh)) {
2055		/* note, this should never happen, prepare_write should
2056		 ** be taking care of this for us.  If the buffer isn't up to date,
2057		 ** I've screwed up the code to find the buffer, or the code to
2058		 ** call prepare_write
2059		 */
2060		reiserfs_error(inode->i_sb, "clm-6000",
2061			       "error reading block %lu", bh->b_blocknr);
2062		error = -EIO;
2063		goto unlock;
2064	}
2065	*bh_result = bh;
2066	*page_result = page;
2067
2068      out:
2069	return error;
2070
2071      unlock:
2072	unlock_page(page);
2073	page_cache_release(page);
2074	return error;
2075}
2076
2077/*
2078** vfs version of truncate file.  Must NOT be called with
2079** a transaction already started.
2080**
2081** some code taken from block_truncate_page
2082*/
2083int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2084{
2085	struct reiserfs_transaction_handle th;
2086	/* we want the offset for the first byte after the end of the file */
2087	unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2088	unsigned blocksize = inode->i_sb->s_blocksize;
2089	unsigned length;
2090	struct page *page = NULL;
2091	int error;
2092	struct buffer_head *bh = NULL;
2093	int err2;
2094	int lock_depth;
2095
2096	lock_depth = reiserfs_write_lock_once(inode->i_sb);
2097
2098	if (inode->i_size > 0) {
2099		error = grab_tail_page(inode, &page, &bh);
2100		if (error) {
2101			// -ENOENT means we truncated past the end of the file,
2102			// and get_block_create_0 could not find a block to read in,
2103			// which is ok.
2104			if (error != -ENOENT)
2105				reiserfs_error(inode->i_sb, "clm-6001",
2106					       "grab_tail_page failed %d",
2107					       error);
2108			page = NULL;
2109			bh = NULL;
2110		}
2111	}
2112
2113	/* so, if page != NULL, we have a buffer head for the offset at
2114	 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2115	 ** then we have an unformatted node.  Otherwise, we have a direct item,
2116	 ** and no zeroing is required on disk.  We zero after the truncate,
2117	 ** because the truncate might pack the item anyway
2118	 ** (it will unmap bh if it packs).
2119	 */
2120	/* it is enough to reserve space in transaction for 2 balancings:
2121	   one for "save" link adding and another for the first
2122	   cut_from_item. 1 is for update_sd */
2123	error = journal_begin(&th, inode->i_sb,
2124			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2125	if (error)
2126		goto out;
2127	reiserfs_update_inode_transaction(inode);
2128	if (update_timestamps)
2129		/* we are doing real truncate: if the system crashes before the last
2130		   transaction of truncating gets committed - on reboot the file
2131		   either appears truncated properly or not truncated at all */
2132		add_save_link(&th, inode, 1);
2133	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2134	error =
2135	    journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2136	if (error)
2137		goto out;
2138
2139	/* check reiserfs_do_truncate after ending the transaction */
2140	if (err2) {
2141		error = err2;
2142  		goto out;
2143	}
2144
2145	if (update_timestamps) {
2146		error = remove_save_link(inode, 1 /* truncate */);
2147		if (error)
2148			goto out;
2149	}
2150
2151	if (page) {
2152		length = offset & (blocksize - 1);
2153		/* if we are not on a block boundary */
2154		if (length) {
2155			length = blocksize - length;
2156			zero_user(page, offset, length);
2157			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2158				mark_buffer_dirty(bh);
2159			}
2160		}
2161		unlock_page(page);
2162		page_cache_release(page);
2163	}
2164
2165	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2166
2167	return 0;
2168      out:
2169	if (page) {
2170		unlock_page(page);
2171		page_cache_release(page);
2172	}
2173
2174	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2175
2176	return error;
2177}
2178
2179static int map_block_for_writepage(struct inode *inode,
2180				   struct buffer_head *bh_result,
2181				   unsigned long block)
2182{
2183	struct reiserfs_transaction_handle th;
2184	int fs_gen;
2185	struct item_head tmp_ih;
2186	struct item_head *ih;
2187	struct buffer_head *bh;
2188	__le32 *item;
2189	struct cpu_key key;
2190	INITIALIZE_PATH(path);
2191	int pos_in_item;
2192	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2193	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2194	int retval;
2195	int use_get_block = 0;
2196	int bytes_copied = 0;
2197	int copy_size;
2198	int trans_running = 0;
2199
2200	/* catch places below that try to log something without starting a trans */
2201	th.t_trans_id = 0;
2202
2203	if (!buffer_uptodate(bh_result)) {
2204		return -EIO;
2205	}
2206
2207	kmap(bh_result->b_page);
2208      start_over:
2209	reiserfs_write_lock(inode->i_sb);
2210	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2211
2212      research:
2213	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2214	if (retval != POSITION_FOUND) {
2215		use_get_block = 1;
2216		goto out;
2217	}
2218
2219	bh = get_last_bh(&path);
2220	ih = get_ih(&path);
2221	item = get_item(&path);
2222	pos_in_item = path.pos_in_item;
2223
2224	/* we've found an unformatted node */
2225	if (indirect_item_found(retval, ih)) {
2226		if (bytes_copied > 0) {
2227			reiserfs_warning(inode->i_sb, "clm-6002",
2228					 "bytes_copied %d", bytes_copied);
2229		}
2230		if (!get_block_num(item, pos_in_item)) {
2231			/* crap, we are writing to a hole */
2232			use_get_block = 1;
2233			goto out;
2234		}
2235		set_block_dev_mapped(bh_result,
2236				     get_block_num(item, pos_in_item), inode);
2237	} else if (is_direct_le_ih(ih)) {
2238		char *p;
2239		p = page_address(bh_result->b_page);
2240		p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2241		copy_size = ih_item_len(ih) - pos_in_item;
2242
2243		fs_gen = get_generation(inode->i_sb);
2244		copy_item_head(&tmp_ih, ih);
2245
2246		if (!trans_running) {
2247			/* vs-3050 is gone, no need to drop the path */
2248			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2249			if (retval)
2250				goto out;
2251			reiserfs_update_inode_transaction(inode);
2252			trans_running = 1;
2253			if (fs_changed(fs_gen, inode->i_sb)
2254			    && item_moved(&tmp_ih, &path)) {
2255				reiserfs_restore_prepared_buffer(inode->i_sb,
2256								 bh);
2257				goto research;
2258			}
2259		}
2260
2261		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2262
2263		if (fs_changed(fs_gen, inode->i_sb)
2264		    && item_moved(&tmp_ih, &path)) {
2265			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2266			goto research;
2267		}
2268
2269		memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2270		       copy_size);
2271
2272		journal_mark_dirty(&th, inode->i_sb, bh);
2273		bytes_copied += copy_size;
2274		set_block_dev_mapped(bh_result, 0, inode);
2275
2276		/* are there still bytes left? */
2277		if (bytes_copied < bh_result->b_size &&
2278		    (byte_offset + bytes_copied) < inode->i_size) {
2279			set_cpu_key_k_offset(&key,
2280					     cpu_key_k_offset(&key) +
2281					     copy_size);
2282			goto research;
2283		}
2284	} else {
2285		reiserfs_warning(inode->i_sb, "clm-6003",
2286				 "bad item inode %lu", inode->i_ino);
2287		retval = -EIO;
2288		goto out;
2289	}
2290	retval = 0;
2291
2292      out:
2293	pathrelse(&path);
2294	if (trans_running) {
2295		int err = journal_end(&th, inode->i_sb, jbegin_count);
2296		if (err)
2297			retval = err;
2298		trans_running = 0;
2299	}
2300	reiserfs_write_unlock(inode->i_sb);
2301
2302	/* this is where we fill in holes in the file. */
2303	if (use_get_block) {
2304		retval = reiserfs_get_block(inode, block, bh_result,
2305					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2306					    | GET_BLOCK_NO_DANGLE);
2307		if (!retval) {
2308			if (!buffer_mapped(bh_result)
2309			    || bh_result->b_blocknr == 0) {
2310				/* get_block failed to find a mapped unformatted node. */
2311				use_get_block = 0;
2312				goto start_over;
2313			}
2314		}
2315	}
2316	kunmap(bh_result->b_page);
2317
2318	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2319		/* we've copied data from the page into the direct item, so the
2320		 * buffer in the page is now clean, mark it to reflect that.
2321		 */
2322		lock_buffer(bh_result);
2323		clear_buffer_dirty(bh_result);
2324		unlock_buffer(bh_result);
2325	}
2326	return retval;
2327}
2328
2329/*
2330 * mason@suse.com: updated in 2.5.54 to follow the same general io
2331 * start/recovery path as __block_write_full_page, along with special
2332 * code to handle reiserfs tails.
2333 */
2334static int reiserfs_write_full_page(struct page *page,
2335				    struct writeback_control *wbc)
2336{
2337	struct inode *inode = page->mapping->host;
2338	unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2339	int error = 0;
2340	unsigned long block;
2341	sector_t last_block;
2342	struct buffer_head *head, *bh;
2343	int partial = 0;
2344	int nr = 0;
2345	int checked = PageChecked(page);
2346	struct reiserfs_transaction_handle th;
2347	struct super_block *s = inode->i_sb;
2348	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2349	th.t_trans_id = 0;
2350
2351	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2352	if (checked && (current->flags & PF_MEMALLOC)) {
2353		redirty_page_for_writepage(wbc, page);
2354		unlock_page(page);
2355		return 0;
2356	}
2357
2358	/* The page dirty bit is cleared before writepage is called, which
2359	 * means we have to tell create_empty_buffers to make dirty buffers
2360	 * The page really should be up to date at this point, so tossing
2361	 * in the BH_Uptodate is just a sanity check.
2362	 */
2363	if (!page_has_buffers(page)) {
2364		create_empty_buffers(page, s->s_blocksize,
2365				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2366	}
2367	head = page_buffers(page);
2368
2369	/* last page in the file, zero out any contents past the
2370	 ** last byte in the file
2371	 */
2372	if (page->index >= end_index) {
2373		unsigned last_offset;
2374
2375		last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2376		/* no file contents in this page */
2377		if (page->index >= end_index + 1 || !last_offset) {
2378			unlock_page(page);
2379			return 0;
2380		}
2381		zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2382	}
2383	bh = head;
2384	block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2385	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2386	/* first map all the buffers, logging any direct items we find */
2387	do {
2388		if (block > last_block) {
2389			/*
2390			 * This can happen when the block size is less than
2391			 * the page size.  The corresponding bytes in the page
2392			 * were zero filled above
2393			 */
2394			clear_buffer_dirty(bh);
2395			set_buffer_uptodate(bh);
2396		} else if ((checked || buffer_dirty(bh)) &&
2397		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2398						       && bh->b_blocknr ==
2399						       0))) {
2400			/* not mapped yet, or it points to a direct item, search
2401			 * the btree for the mapping info, and log any direct
2402			 * items found
2403			 */
2404			if ((error = map_block_for_writepage(inode, bh, block))) {
2405				goto fail;
2406			}
2407		}
2408		bh = bh->b_this_page;
2409		block++;
2410	} while (bh != head);
2411
2412	/*
2413	 * we start the transaction after map_block_for_writepage,
2414	 * because it can create holes in the file (an unbounded operation).
2415	 * starting it here, we can make a reliable estimate for how many
2416	 * blocks we're going to log
2417	 */
2418	if (checked) {
2419		ClearPageChecked(page);
2420		reiserfs_write_lock(s);
2421		error = journal_begin(&th, s, bh_per_page + 1);
2422		if (error) {
2423			reiserfs_write_unlock(s);
2424			goto fail;
2425		}
2426		reiserfs_update_inode_transaction(inode);
2427	}
2428	/* now go through and lock any dirty buffers on the page */
2429	do {
2430		get_bh(bh);
2431		if (!buffer_mapped(bh))
2432			continue;
2433		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2434			continue;
2435
2436		if (checked) {
2437			reiserfs_prepare_for_journal(s, bh, 1);
2438			journal_mark_dirty(&th, s, bh);
2439			continue;
2440		}
2441		/* from this point on, we know the buffer is mapped to a
2442		 * real block and not a direct item
2443		 */
2444		if (wbc->sync_mode != WB_SYNC_NONE) {
2445			lock_buffer(bh);
2446		} else {
2447			if (!trylock_buffer(bh)) {
2448				redirty_page_for_writepage(wbc, page);
2449				continue;
2450			}
2451		}
2452		if (test_clear_buffer_dirty(bh)) {
2453			mark_buffer_async_write(bh);
2454		} else {
2455			unlock_buffer(bh);
2456		}
2457	} while ((bh = bh->b_this_page) != head);
2458
2459	if (checked) {
2460		error = journal_end(&th, s, bh_per_page + 1);
2461		reiserfs_write_unlock(s);
2462		if (error)
2463			goto fail;
2464	}
2465	BUG_ON(PageWriteback(page));
2466	set_page_writeback(page);
2467	unlock_page(page);
2468
2469	/*
2470	 * since any buffer might be the only dirty buffer on the page,
2471	 * the first submit_bh can bring the page out of writeback.
2472	 * be careful with the buffers.
2473	 */
2474	do {
2475		struct buffer_head *next = bh->b_this_page;
2476		if (buffer_async_write(bh)) {
2477			submit_bh(WRITE, bh);
2478			nr++;
2479		}
2480		put_bh(bh);
2481		bh = next;
2482	} while (bh != head);
2483
2484	error = 0;
2485      done:
2486	if (nr == 0) {
2487		/*
2488		 * if this page only had a direct item, it is very possible for
2489		 * no io to be required without there being an error.  Or,
2490		 * someone else could have locked them and sent them down the
2491		 * pipe without locking the page
2492		 */
2493		bh = head;
2494		do {
2495			if (!buffer_uptodate(bh)) {
2496				partial = 1;
2497				break;
2498			}
2499			bh = bh->b_this_page;
2500		} while (bh != head);
2501		if (!partial)
2502			SetPageUptodate(page);
2503		end_page_writeback(page);
2504	}
2505	return error;
2506
2507      fail:
2508	/* catches various errors, we need to make sure any valid dirty blocks
2509	 * get to the media.  The page is currently locked and not marked for
2510	 * writeback
2511	 */
2512	ClearPageUptodate(page);
2513	bh = head;
2514	do {
2515		get_bh(bh);
2516		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2517			lock_buffer(bh);
2518			mark_buffer_async_write(bh);
2519		} else {
2520			/*
2521			 * clear any dirty bits that might have come from getting
2522			 * attached to a dirty page
2523			 */
2524			clear_buffer_dirty(bh);
2525		}
2526		bh = bh->b_this_page;
2527	} while (bh != head);
2528	SetPageError(page);
2529	BUG_ON(PageWriteback(page));
2530	set_page_writeback(page);
2531	unlock_page(page);
2532	do {
2533		struct buffer_head *next = bh->b_this_page;
2534		if (buffer_async_write(bh)) {
2535			clear_buffer_dirty(bh);
2536			submit_bh(WRITE, bh);
2537			nr++;
2538		}
2539		put_bh(bh);
2540		bh = next;
2541	} while (bh != head);
2542	goto done;
2543}
2544
2545static int reiserfs_readpage(struct file *f, struct page *page)
2546{
2547	return block_read_full_page(page, reiserfs_get_block);
2548}
2549
2550static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2551{
2552	struct inode *inode = page->mapping->host;
2553	reiserfs_wait_on_write_block(inode->i_sb);
2554	return reiserfs_write_full_page(page, wbc);
2555}
2556
2557static void reiserfs_truncate_failed_write(struct inode *inode)
2558{
2559	truncate_inode_pages(inode->i_mapping, inode->i_size);
2560	reiserfs_truncate_file(inode, 0);
2561}
2562
2563static int reiserfs_write_begin(struct file *file,
2564				struct address_space *mapping,
2565				loff_t pos, unsigned len, unsigned flags,
2566				struct page **pagep, void **fsdata)
2567{
2568	struct inode *inode;
2569	struct page *page;
2570	pgoff_t index;
2571	int ret;
2572	int old_ref = 0;
2573
2574 	inode = mapping->host;
2575	*fsdata = 0;
2576 	if (flags & AOP_FLAG_CONT_EXPAND &&
2577 	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2578 		pos ++;
2579		*fsdata = (void *)(unsigned long)flags;
2580	}
2581
2582	index = pos >> PAGE_CACHE_SHIFT;
2583	page = grab_cache_page_write_begin(mapping, index, flags);
2584	if (!page)
2585		return -ENOMEM;
2586	*pagep = page;
2587
2588	reiserfs_wait_on_write_block(inode->i_sb);
2589	fix_tail_page_for_writing(page);
2590	if (reiserfs_transaction_running(inode->i_sb)) {
2591		struct reiserfs_transaction_handle *th;
2592		th = (struct reiserfs_transaction_handle *)current->
2593		    journal_info;
2594		BUG_ON(!th->t_refcount);
2595		BUG_ON(!th->t_trans_id);
2596		old_ref = th->t_refcount;
2597		th->t_refcount++;
2598	}
2599	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2600	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2601		struct reiserfs_transaction_handle *th = current->journal_info;
2602		/* this gets a little ugly.  If reiserfs_get_block returned an
2603		 * error and left a transacstion running, we've got to close it,
2604		 * and we've got to free handle if it was a persistent transaction.
2605		 *
2606		 * But, if we had nested into an existing transaction, we need
2607		 * to just drop the ref count on the handle.
2608		 *
2609		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2610		 * and it was a persistent trans.  Otherwise, it was nested above.
2611		 */
2612		if (th->t_refcount > old_ref) {
2613			if (old_ref)
2614				th->t_refcount--;
2615			else {
2616				int err;
2617				reiserfs_write_lock(inode->i_sb);
2618				err = reiserfs_end_persistent_transaction(th);
2619				reiserfs_write_unlock(inode->i_sb);
2620				if (err)
2621					ret = err;
2622			}
2623		}
2624	}
2625	if (ret) {
2626		unlock_page(page);
2627		page_cache_release(page);
2628		/* Truncate allocated blocks */
2629		reiserfs_truncate_failed_write(inode);
2630	}
2631	return ret;
2632}
2633
2634int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2635{
2636	struct inode *inode = page->mapping->host;
2637	int ret;
2638	int old_ref = 0;
2639
2640	reiserfs_write_unlock(inode->i_sb);
2641	reiserfs_wait_on_write_block(inode->i_sb);
2642	reiserfs_write_lock(inode->i_sb);
2643
2644	fix_tail_page_for_writing(page);
2645	if (reiserfs_transaction_running(inode->i_sb)) {
2646		struct reiserfs_transaction_handle *th;
2647		th = (struct reiserfs_transaction_handle *)current->
2648		    journal_info;
2649		BUG_ON(!th->t_refcount);
2650		BUG_ON(!th->t_trans_id);
2651		old_ref = th->t_refcount;
2652		th->t_refcount++;
2653	}
2654
2655	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2656	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2657		struct reiserfs_transaction_handle *th = current->journal_info;
2658		/* this gets a little ugly.  If reiserfs_get_block returned an
2659		 * error and left a transacstion running, we've got to close it,
2660		 * and we've got to free handle if it was a persistent transaction.
2661		 *
2662		 * But, if we had nested into an existing transaction, we need
2663		 * to just drop the ref count on the handle.
2664		 *
2665		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2666		 * and it was a persistent trans.  Otherwise, it was nested above.
2667		 */
2668		if (th->t_refcount > old_ref) {
2669			if (old_ref)
2670				th->t_refcount--;
2671			else {
2672				int err;
2673				reiserfs_write_lock(inode->i_sb);
2674				err = reiserfs_end_persistent_transaction(th);
2675				reiserfs_write_unlock(inode->i_sb);
2676				if (err)
2677					ret = err;
2678			}
2679		}
2680	}
2681	return ret;
2682
2683}
2684
2685static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2686{
2687	return generic_block_bmap(as, block, reiserfs_bmap);
2688}
2689
2690static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2691			      loff_t pos, unsigned len, unsigned copied,
2692			      struct page *page, void *fsdata)
2693{
2694	struct inode *inode = page->mapping->host;
2695	int ret = 0;
2696	int update_sd = 0;
2697	struct reiserfs_transaction_handle *th;
2698	unsigned start;
2699	int lock_depth = 0;
2700	bool locked = false;
2701
2702	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2703		pos ++;
2704
2705	reiserfs_wait_on_write_block(inode->i_sb);
2706	if (reiserfs_transaction_running(inode->i_sb))
2707		th = current->journal_info;
2708	else
2709		th = NULL;
2710
2711	start = pos & (PAGE_CACHE_SIZE - 1);
2712	if (unlikely(copied < len)) {
2713		if (!PageUptodate(page))
2714			copied = 0;
2715
2716		page_zero_new_buffers(page, start + copied, start + len);
2717	}
2718	flush_dcache_page(page);
2719
2720	reiserfs_commit_page(inode, page, start, start + copied);
2721
2722	/* generic_commit_write does this for us, but does not update the
2723	 ** transaction tracking stuff when the size changes.  So, we have
2724	 ** to do the i_size updates here.
2725	 */
2726	if (pos + copied > inode->i_size) {
2727		struct reiserfs_transaction_handle myth;
2728		lock_depth = reiserfs_write_lock_once(inode->i_sb);
2729		locked = true;
2730		/* If the file have grown beyond the border where it
2731		   can have a tail, unmark it as needing a tail
2732		   packing */
2733		if ((have_large_tails(inode->i_sb)
2734		     && inode->i_size > i_block_size(inode) * 4)
2735		    || (have_small_tails(inode->i_sb)
2736			&& inode->i_size > i_block_size(inode)))
2737			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2738
2739		ret = journal_begin(&myth, inode->i_sb, 1);
2740		if (ret)
2741			goto journal_error;
2742
2743		reiserfs_update_inode_transaction(inode);
2744		inode->i_size = pos + copied;
2745		/*
2746		 * this will just nest into our transaction.  It's important
2747		 * to use mark_inode_dirty so the inode gets pushed around on the
2748		 * dirty lists, and so that O_SYNC works as expected
2749		 */
2750		mark_inode_dirty(inode);
2751		reiserfs_update_sd(&myth, inode);
2752		update_sd = 1;
2753		ret = journal_end(&myth, inode->i_sb, 1);
2754		if (ret)
2755			goto journal_error;
2756	}
2757	if (th) {
2758		if (!locked) {
2759			lock_depth = reiserfs_write_lock_once(inode->i_sb);
2760			locked = true;
2761		}
2762		if (!update_sd)
2763			mark_inode_dirty(inode);
2764		ret = reiserfs_end_persistent_transaction(th);
2765		if (ret)
2766			goto out;
2767	}
2768
2769      out:
2770	if (locked)
2771		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2772	unlock_page(page);
2773	page_cache_release(page);
2774
2775	if (pos + len > inode->i_size)
2776		reiserfs_truncate_failed_write(inode);
2777
2778	return ret == 0 ? copied : ret;
2779
2780      journal_error:
2781	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2782	locked = false;
2783	if (th) {
2784		if (!update_sd)
2785			reiserfs_update_sd(th, inode);
2786		ret = reiserfs_end_persistent_transaction(th);
2787	}
2788	goto out;
2789}
2790
2791int reiserfs_commit_write(struct file *f, struct page *page,
2792			  unsigned from, unsigned to)
2793{
2794	struct inode *inode = page->mapping->host;
2795	loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2796	int ret = 0;
2797	int update_sd = 0;
2798	struct reiserfs_transaction_handle *th = NULL;
2799
2800	reiserfs_write_unlock(inode->i_sb);
2801	reiserfs_wait_on_write_block(inode->i_sb);
2802	reiserfs_write_lock(inode->i_sb);
2803
2804	if (reiserfs_transaction_running(inode->i_sb)) {
2805		th = current->journal_info;
2806	}
2807	reiserfs_commit_page(inode, page, from, to);
2808
2809	/* generic_commit_write does this for us, but does not update the
2810	 ** transaction tracking stuff when the size changes.  So, we have
2811	 ** to do the i_size updates here.
2812	 */
2813	if (pos > inode->i_size) {
2814		struct reiserfs_transaction_handle myth;
2815		/* If the file have grown beyond the border where it
2816		   can have a tail, unmark it as needing a tail
2817		   packing */
2818		if ((have_large_tails(inode->i_sb)
2819		     && inode->i_size > i_block_size(inode) * 4)
2820		    || (have_small_tails(inode->i_sb)
2821			&& inode->i_size > i_block_size(inode)))
2822			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2823
2824		ret = journal_begin(&myth, inode->i_sb, 1);
2825		if (ret)
2826			goto journal_error;
2827
2828		reiserfs_update_inode_transaction(inode);
2829		inode->i_size = pos;
2830		/*
2831		 * this will just nest into our transaction.  It's important
2832		 * to use mark_inode_dirty so the inode gets pushed around on the
2833		 * dirty lists, and so that O_SYNC works as expected
2834		 */
2835		mark_inode_dirty(inode);
2836		reiserfs_update_sd(&myth, inode);
2837		update_sd = 1;
2838		ret = journal_end(&myth, inode->i_sb, 1);
2839		if (ret)
2840			goto journal_error;
2841	}
2842	if (th) {
2843		if (!update_sd)
2844			mark_inode_dirty(inode);
2845		ret = reiserfs_end_persistent_transaction(th);
2846		if (ret)
2847			goto out;
2848	}
2849
2850      out:
2851	return ret;
2852
2853      journal_error:
2854	if (th) {
2855		if (!update_sd)
2856			reiserfs_update_sd(th, inode);
2857		ret = reiserfs_end_persistent_transaction(th);
2858	}
2859
2860	return ret;
2861}
2862
2863void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2864{
2865	if (reiserfs_attrs(inode->i_sb)) {
2866		if (sd_attrs & REISERFS_SYNC_FL)
2867			inode->i_flags |= S_SYNC;
2868		else
2869			inode->i_flags &= ~S_SYNC;
2870		if (sd_attrs & REISERFS_IMMUTABLE_FL)
2871			inode->i_flags |= S_IMMUTABLE;
2872		else
2873			inode->i_flags &= ~S_IMMUTABLE;
2874		if (sd_attrs & REISERFS_APPEND_FL)
2875			inode->i_flags |= S_APPEND;
2876		else
2877			inode->i_flags &= ~S_APPEND;
2878		if (sd_attrs & REISERFS_NOATIME_FL)
2879			inode->i_flags |= S_NOATIME;
2880		else
2881			inode->i_flags &= ~S_NOATIME;
2882		if (sd_attrs & REISERFS_NOTAIL_FL)
2883			REISERFS_I(inode)->i_flags |= i_nopack_mask;
2884		else
2885			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2886	}
2887}
2888
2889void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2890{
2891	if (reiserfs_attrs(inode->i_sb)) {
2892		if (inode->i_flags & S_IMMUTABLE)
2893			*sd_attrs |= REISERFS_IMMUTABLE_FL;
2894		else
2895			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2896		if (inode->i_flags & S_SYNC)
2897			*sd_attrs |= REISERFS_SYNC_FL;
2898		else
2899			*sd_attrs &= ~REISERFS_SYNC_FL;
2900		if (inode->i_flags & S_NOATIME)
2901			*sd_attrs |= REISERFS_NOATIME_FL;
2902		else
2903			*sd_attrs &= ~REISERFS_NOATIME_FL;
2904		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2905			*sd_attrs |= REISERFS_NOTAIL_FL;
2906		else
2907			*sd_attrs &= ~REISERFS_NOTAIL_FL;
2908	}
2909}
2910
2911/* decide if this buffer needs to stay around for data logging or ordered
2912** write purposes
2913*/
2914static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2915{
2916	int ret = 1;
2917	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2918
2919	lock_buffer(bh);
2920	spin_lock(&j->j_dirty_buffers_lock);
2921	if (!buffer_mapped(bh)) {
2922		goto free_jh;
2923	}
2924	/* the page is locked, and the only places that log a data buffer
2925	 * also lock the page.
2926	 */
2927	if (reiserfs_file_data_log(inode)) {
2928		/*
2929		 * very conservative, leave the buffer pinned if
2930		 * anyone might need it.
2931		 */
2932		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2933			ret = 0;
2934		}
2935	} else  if (buffer_dirty(bh)) {
2936		struct reiserfs_journal_list *jl;
2937		struct reiserfs_jh *jh = bh->b_private;
2938
2939		/* why is this safe?
2940		 * reiserfs_setattr updates i_size in the on disk
2941		 * stat data before allowing vmtruncate to be called.
2942		 *
2943		 * If buffer was put onto the ordered list for this
2944		 * transaction, we know for sure either this transaction
2945		 * or an older one already has updated i_size on disk,
2946		 * and this ordered data won't be referenced in the file
2947		 * if we crash.
2948		 *
2949		 * if the buffer was put onto the ordered list for an older
2950		 * transaction, we need to leave it around
2951		 */
2952		if (jh && (jl = jh->jl)
2953		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2954			ret = 0;
2955	}
2956      free_jh:
2957	if (ret && bh->b_private) {
2958		reiserfs_free_jh(bh);
2959	}
2960	spin_unlock(&j->j_dirty_buffers_lock);
2961	unlock_buffer(bh);
2962	return ret;
2963}
2964
2965/* clm -- taken from fs/buffer.c:block_invalidate_page */
2966static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2967{
2968	struct buffer_head *head, *bh, *next;
2969	struct inode *inode = page->mapping->host;
2970	unsigned int curr_off = 0;
2971	int ret = 1;
2972
2973	BUG_ON(!PageLocked(page));
2974
2975	if (offset == 0)
2976		ClearPageChecked(page);
2977
2978	if (!page_has_buffers(page))
2979		goto out;
2980
2981	head = page_buffers(page);
2982	bh = head;
2983	do {
2984		unsigned int next_off = curr_off + bh->b_size;
2985		next = bh->b_this_page;
2986
2987		/*
2988		 * is this block fully invalidated?
2989		 */
2990		if (offset <= curr_off) {
2991			if (invalidatepage_can_drop(inode, bh))
2992				reiserfs_unmap_buffer(bh);
2993			else
2994				ret = 0;
2995		}
2996		curr_off = next_off;
2997		bh = next;
2998	} while (bh != head);
2999
3000	/*
3001	 * We release buffers only if the entire page is being invalidated.
3002	 * The get_block cached value has been unconditionally invalidated,
3003	 * so real IO is not possible anymore.
3004	 */
3005	if (!offset && ret) {
3006		ret = try_to_release_page(page, 0);
3007		/* maybe should BUG_ON(!ret); - neilb */
3008	}
3009      out:
3010	return;
3011}
3012
3013static int reiserfs_set_page_dirty(struct page *page)
3014{
3015	struct inode *inode = page->mapping->host;
3016	if (reiserfs_file_data_log(inode)) {
3017		SetPageChecked(page);
3018		return __set_page_dirty_nobuffers(page);
3019	}
3020	return __set_page_dirty_buffers(page);
3021}
3022
3023/*
3024 * Returns 1 if the page's buffers were dropped.  The page is locked.
3025 *
3026 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3027 * in the buffers at page_buffers(page).
3028 *
3029 * even in -o notail mode, we can't be sure an old mount without -o notail
3030 * didn't create files with tails.
3031 */
3032static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3033{
3034	struct inode *inode = page->mapping->host;
3035	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3036	struct buffer_head *head;
3037	struct buffer_head *bh;
3038	int ret = 1;
3039
3040	WARN_ON(PageChecked(page));
3041	spin_lock(&j->j_dirty_buffers_lock);
3042	head = page_buffers(page);
3043	bh = head;
3044	do {
3045		if (bh->b_private) {
3046			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3047				reiserfs_free_jh(bh);
3048			} else {
3049				ret = 0;
3050				break;
3051			}
3052		}
3053		bh = bh->b_this_page;
3054	} while (bh != head);
3055	if (ret)
3056		ret = try_to_free_buffers(page);
3057	spin_unlock(&j->j_dirty_buffers_lock);
3058	return ret;
3059}
3060
3061/* We thank Mingming Cao for helping us understand in great detail what
3062   to do in this section of the code. */
3063static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3064				  const struct iovec *iov, loff_t offset,
3065				  unsigned long nr_segs)
3066{
3067	struct file *file = iocb->ki_filp;
3068	struct inode *inode = file->f_mapping->host;
3069	ssize_t ret;
3070
3071	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3072				  offset, nr_segs,
3073				  reiserfs_get_blocks_direct_io, NULL);
3074
3075	/*
3076	 * In case of error extending write may have instantiated a few
3077	 * blocks outside i_size. Trim these off again.
3078	 */
3079	if (unlikely((rw & WRITE) && ret < 0)) {
3080		loff_t isize = i_size_read(inode);
3081		loff_t end = offset + iov_length(iov, nr_segs);
3082
3083		if (end > isize)
3084			vmtruncate(inode, isize);
3085	}
3086
3087	return ret;
3088}
3089
3090int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3091{
3092	struct inode *inode = dentry->d_inode;
3093	unsigned int ia_valid;
3094	int depth;
3095	int error;
3096
3097	error = inode_change_ok(inode, attr);
3098	if (error)
3099		return error;
3100
3101	/* must be turned off for recursive notify_change calls */
3102	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3103
3104	depth = reiserfs_write_lock_once(inode->i_sb);
3105	if (is_quota_modification(inode, attr))
3106		dquot_initialize(inode);
3107
3108	if (attr->ia_valid & ATTR_SIZE) {
3109		/* version 2 items will be caught by the s_maxbytes check
3110		 ** done for us in vmtruncate
3111		 */
3112		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3113		    attr->ia_size > MAX_NON_LFS) {
3114			error = -EFBIG;
3115			goto out;
3116		}
3117		/* fill in hole pointers in the expanding truncate case. */
3118		if (attr->ia_size > inode->i_size) {
3119			error = generic_cont_expand_simple(inode, attr->ia_size);
3120			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3121				int err;
3122				struct reiserfs_transaction_handle th;
3123				/* we're changing at most 2 bitmaps, inode + super */
3124				err = journal_begin(&th, inode->i_sb, 4);
3125				if (!err) {
3126					reiserfs_discard_prealloc(&th, inode);
3127					err = journal_end(&th, inode->i_sb, 4);
3128				}
3129				if (err)
3130					error = err;
3131			}
3132			if (error)
3133				goto out;
3134			/*
3135			 * file size is changed, ctime and mtime are
3136			 * to be updated
3137			 */
3138			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3139		}
3140	}
3141
3142	if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
3143	     ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
3144	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3145		/* stat data of format v3.5 has 16 bit uid and gid */
3146		error = -EINVAL;
3147		goto out;
3148	}
3149
3150	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3151	    (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3152		struct reiserfs_transaction_handle th;
3153		int jbegin_count =
3154		    2 *
3155		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3156		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3157		    2;
3158
3159		error = reiserfs_chown_xattrs(inode, attr);
3160
3161		if (error)
3162			return error;
3163
3164		/* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3165		error = journal_begin(&th, inode->i_sb, jbegin_count);
3166		if (error)
3167			goto out;
3168		error = dquot_transfer(inode, attr);
3169		if (error) {
3170			journal_end(&th, inode->i_sb, jbegin_count);
3171			goto out;
3172		}
3173
3174		/* Update corresponding info in inode so that everything is in
3175		 * one transaction */
3176		if (attr->ia_valid & ATTR_UID)
3177			inode->i_uid = attr->ia_uid;
3178		if (attr->ia_valid & ATTR_GID)
3179			inode->i_gid = attr->ia_gid;
3180		mark_inode_dirty(inode);
3181		error = journal_end(&th, inode->i_sb, jbegin_count);
3182		if (error)
3183			goto out;
3184	}
3185
3186	/*
3187	 * Relax the lock here, as it might truncate the
3188	 * inode pages and wait for inode pages locks.
3189	 * To release such page lock, the owner needs the
3190	 * reiserfs lock
3191	 */
3192	reiserfs_write_unlock_once(inode->i_sb, depth);
3193	if ((attr->ia_valid & ATTR_SIZE) &&
3194	    attr->ia_size != i_size_read(inode))
3195		error = vmtruncate(inode, attr->ia_size);
3196
3197	if (!error) {
3198		setattr_copy(inode, attr);
3199		mark_inode_dirty(inode);
3200	}
3201	depth = reiserfs_write_lock_once(inode->i_sb);
3202
3203	if (!error && reiserfs_posixacl(inode->i_sb)) {
3204		if (attr->ia_valid & ATTR_MODE)
3205			error = reiserfs_acl_chmod(inode);
3206	}
3207
3208      out:
3209	reiserfs_write_unlock_once(inode->i_sb, depth);
3210
3211	return error;
3212}
3213
3214const struct address_space_operations reiserfs_address_space_operations = {
3215	.writepage = reiserfs_writepage,
3216	.readpage = reiserfs_readpage,
3217	.readpages = reiserfs_readpages,
3218	.releasepage = reiserfs_releasepage,
3219	.invalidatepage = reiserfs_invalidatepage,
3220	.sync_page = block_sync_page,
3221	.write_begin = reiserfs_write_begin,
3222	.write_end = reiserfs_write_end,
3223	.bmap = reiserfs_aop_bmap,
3224	.direct_IO = reiserfs_direct_IO,
3225	.set_page_dirty = reiserfs_set_page_dirty,
3226};
3227