inode.c revision 7729ac5efe156129d172784fedeaddb2167a1914
1/* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5#include <linux/config.h> 6#include <linux/time.h> 7#include <linux/fs.h> 8#include <linux/reiserfs_fs.h> 9#include <linux/reiserfs_acl.h> 10#include <linux/reiserfs_xattr.h> 11#include <linux/smp_lock.h> 12#include <linux/pagemap.h> 13#include <linux/highmem.h> 14#include <asm/uaccess.h> 15#include <asm/unaligned.h> 16#include <linux/buffer_head.h> 17#include <linux/mpage.h> 18#include <linux/writeback.h> 19#include <linux/quotaops.h> 20 21extern int reiserfs_default_io_size; /* default io size devuned in super.c */ 22 23static int reiserfs_commit_write(struct file *f, struct page *page, 24 unsigned from, unsigned to); 25static int reiserfs_prepare_write(struct file *f, struct page *page, 26 unsigned from, unsigned to); 27 28void reiserfs_delete_inode(struct inode *inode) 29{ 30 /* We need blocks for transaction + (user+group) quota update (possibly delete) */ 31 int jbegin_count = 32 JOURNAL_PER_BALANCE_CNT * 2 + 33 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb); 34 struct reiserfs_transaction_handle th; 35 36 truncate_inode_pages(&inode->i_data, 0); 37 38 reiserfs_write_lock(inode->i_sb); 39 40 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */ 41 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */ 42 down(&inode->i_sem); 43 44 reiserfs_delete_xattrs(inode); 45 46 if (journal_begin(&th, inode->i_sb, jbegin_count)) { 47 up(&inode->i_sem); 48 goto out; 49 } 50 reiserfs_update_inode_transaction(inode); 51 52 if (reiserfs_delete_object(&th, inode)) { 53 up(&inode->i_sem); 54 goto out; 55 } 56 57 /* Do quota update inside a transaction for journaled quotas. We must do that 58 * after delete_object so that quota updates go into the same transaction as 59 * stat data deletion */ 60 DQUOT_FREE_INODE(inode); 61 62 if (journal_end(&th, inode->i_sb, jbegin_count)) { 63 up(&inode->i_sem); 64 goto out; 65 } 66 67 up(&inode->i_sem); 68 69 /* all items of file are deleted, so we can remove "save" link */ 70 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything 71 * about an error here */ 72 } else { 73 /* no object items are in the tree */ 74 ; 75 } 76 out: 77 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */ 78 inode->i_blocks = 0; 79 reiserfs_write_unlock(inode->i_sb); 80} 81 82static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid, 83 __u32 objectid, loff_t offset, int type, int length) 84{ 85 key->version = version; 86 87 key->on_disk_key.k_dir_id = dirid; 88 key->on_disk_key.k_objectid = objectid; 89 set_cpu_key_k_offset(key, offset); 90 set_cpu_key_k_type(key, type); 91 key->key_length = length; 92} 93 94/* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set 95 offset and type of key */ 96void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset, 97 int type, int length) 98{ 99 _make_cpu_key(key, get_inode_item_key_version(inode), 100 le32_to_cpu(INODE_PKEY(inode)->k_dir_id), 101 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type, 102 length); 103} 104 105// 106// when key is 0, do not set version and short key 107// 108inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 109 int version, 110 loff_t offset, int type, int length, 111 int entry_count /*or ih_free_space */ ) 112{ 113 if (key) { 114 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id); 115 ih->ih_key.k_objectid = 116 cpu_to_le32(key->on_disk_key.k_objectid); 117 } 118 put_ih_version(ih, version); 119 set_le_ih_k_offset(ih, offset); 120 set_le_ih_k_type(ih, type); 121 put_ih_item_len(ih, length); 122 /* set_ih_free_space (ih, 0); */ 123 // for directory items it is entry count, for directs and stat 124 // datas - 0xffff, for indirects - 0 125 put_ih_entry_count(ih, entry_count); 126} 127 128// 129// FIXME: we might cache recently accessed indirect item 130 131// Ugh. Not too eager for that.... 132// I cut the code until such time as I see a convincing argument (benchmark). 133// I don't want a bloated inode struct..., and I don't like code complexity.... 134 135/* cutting the code is fine, since it really isn't in use yet and is easy 136** to add back in. But, Vladimir has a really good idea here. Think 137** about what happens for reading a file. For each page, 138** The VFS layer calls reiserfs_readpage, who searches the tree to find 139** an indirect item. This indirect item has X number of pointers, where 140** X is a big number if we've done the block allocation right. But, 141** we only use one or two of these pointers during each call to readpage, 142** needlessly researching again later on. 143** 144** The size of the cache could be dynamic based on the size of the file. 145** 146** I'd also like to see us cache the location the stat data item, since 147** we are needlessly researching for that frequently. 148** 149** --chris 150*/ 151 152/* If this page has a file tail in it, and 153** it was read in by get_block_create_0, the page data is valid, 154** but tail is still sitting in a direct item, and we can't write to 155** it. So, look through this page, and check all the mapped buffers 156** to make sure they have valid block numbers. Any that don't need 157** to be unmapped, so that block_prepare_write will correctly call 158** reiserfs_get_block to convert the tail into an unformatted node 159*/ 160static inline void fix_tail_page_for_writing(struct page *page) 161{ 162 struct buffer_head *head, *next, *bh; 163 164 if (page && page_has_buffers(page)) { 165 head = page_buffers(page); 166 bh = head; 167 do { 168 next = bh->b_this_page; 169 if (buffer_mapped(bh) && bh->b_blocknr == 0) { 170 reiserfs_unmap_buffer(bh); 171 } 172 bh = next; 173 } while (bh != head); 174 } 175} 176 177/* reiserfs_get_block does not need to allocate a block only if it has been 178 done already or non-hole position has been found in the indirect item */ 179static inline int allocation_needed(int retval, b_blocknr_t allocated, 180 struct item_head *ih, 181 __le32 * item, int pos_in_item) 182{ 183 if (allocated) 184 return 0; 185 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) && 186 get_block_num(item, pos_in_item)) 187 return 0; 188 return 1; 189} 190 191static inline int indirect_item_found(int retval, struct item_head *ih) 192{ 193 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih); 194} 195 196static inline void set_block_dev_mapped(struct buffer_head *bh, 197 b_blocknr_t block, struct inode *inode) 198{ 199 map_bh(bh, inode->i_sb, block); 200} 201 202// 203// files which were created in the earlier version can not be longer, 204// than 2 gb 205// 206static int file_capable(struct inode *inode, long block) 207{ 208 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file. 209 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb 210 return 1; 211 212 return 0; 213} 214 215/*static*/ int restart_transaction(struct reiserfs_transaction_handle *th, 216 struct inode *inode, struct path *path) 217{ 218 struct super_block *s = th->t_super; 219 int len = th->t_blocks_allocated; 220 int err; 221 222 BUG_ON(!th->t_trans_id); 223 BUG_ON(!th->t_refcount); 224 225 /* we cannot restart while nested */ 226 if (th->t_refcount > 1) { 227 return 0; 228 } 229 pathrelse(path); 230 reiserfs_update_sd(th, inode); 231 err = journal_end(th, s, len); 232 if (!err) { 233 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6); 234 if (!err) 235 reiserfs_update_inode_transaction(inode); 236 } 237 return err; 238} 239 240// it is called by get_block when create == 0. Returns block number 241// for 'block'-th logical block of file. When it hits direct item it 242// returns 0 (being called from bmap) or read direct item into piece 243// of page (bh_result) 244 245// Please improve the english/clarity in the comment above, as it is 246// hard to understand. 247 248static int _get_block_create_0(struct inode *inode, long block, 249 struct buffer_head *bh_result, int args) 250{ 251 INITIALIZE_PATH(path); 252 struct cpu_key key; 253 struct buffer_head *bh; 254 struct item_head *ih, tmp_ih; 255 int fs_gen; 256 int blocknr; 257 char *p = NULL; 258 int chars; 259 int ret; 260 int result; 261 int done = 0; 262 unsigned long offset; 263 264 // prepare the key to look for the 'block'-th block of file 265 make_cpu_key(&key, inode, 266 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY, 267 3); 268 269 research: 270 result = search_for_position_by_key(inode->i_sb, &key, &path); 271 if (result != POSITION_FOUND) { 272 pathrelse(&path); 273 if (p) 274 kunmap(bh_result->b_page); 275 if (result == IO_ERROR) 276 return -EIO; 277 // We do not return -ENOENT if there is a hole but page is uptodate, because it means 278 // That there is some MMAPED data associated with it that is yet to be written to disk. 279 if ((args & GET_BLOCK_NO_HOLE) 280 && !PageUptodate(bh_result->b_page)) { 281 return -ENOENT; 282 } 283 return 0; 284 } 285 // 286 bh = get_last_bh(&path); 287 ih = get_ih(&path); 288 if (is_indirect_le_ih(ih)) { 289 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih); 290 291 /* FIXME: here we could cache indirect item or part of it in 292 the inode to avoid search_by_key in case of subsequent 293 access to file */ 294 blocknr = get_block_num(ind_item, path.pos_in_item); 295 ret = 0; 296 if (blocknr) { 297 map_bh(bh_result, inode->i_sb, blocknr); 298 if (path.pos_in_item == 299 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) { 300 set_buffer_boundary(bh_result); 301 } 302 } else 303 // We do not return -ENOENT if there is a hole but page is uptodate, because it means 304 // That there is some MMAPED data associated with it that is yet to be written to disk. 305 if ((args & GET_BLOCK_NO_HOLE) 306 && !PageUptodate(bh_result->b_page)) { 307 ret = -ENOENT; 308 } 309 310 pathrelse(&path); 311 if (p) 312 kunmap(bh_result->b_page); 313 return ret; 314 } 315 // requested data are in direct item(s) 316 if (!(args & GET_BLOCK_READ_DIRECT)) { 317 // we are called by bmap. FIXME: we can not map block of file 318 // when it is stored in direct item(s) 319 pathrelse(&path); 320 if (p) 321 kunmap(bh_result->b_page); 322 return -ENOENT; 323 } 324 325 /* if we've got a direct item, and the buffer or page was uptodate, 326 ** we don't want to pull data off disk again. skip to the 327 ** end, where we map the buffer and return 328 */ 329 if (buffer_uptodate(bh_result)) { 330 goto finished; 331 } else 332 /* 333 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date 334 ** pages without any buffers. If the page is up to date, we don't want 335 ** read old data off disk. Set the up to date bit on the buffer instead 336 ** and jump to the end 337 */ 338 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) { 339 set_buffer_uptodate(bh_result); 340 goto finished; 341 } 342 // read file tail into part of page 343 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1); 344 fs_gen = get_generation(inode->i_sb); 345 copy_item_head(&tmp_ih, ih); 346 347 /* we only want to kmap if we are reading the tail into the page. 348 ** this is not the common case, so we don't kmap until we are 349 ** sure we need to. But, this means the item might move if 350 ** kmap schedules 351 */ 352 if (!p) { 353 p = (char *)kmap(bh_result->b_page); 354 if (fs_changed(fs_gen, inode->i_sb) 355 && item_moved(&tmp_ih, &path)) { 356 goto research; 357 } 358 } 359 p += offset; 360 memset(p, 0, inode->i_sb->s_blocksize); 361 do { 362 if (!is_direct_le_ih(ih)) { 363 BUG(); 364 } 365 /* make sure we don't read more bytes than actually exist in 366 ** the file. This can happen in odd cases where i_size isn't 367 ** correct, and when direct item padding results in a few 368 ** extra bytes at the end of the direct item 369 */ 370 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size) 371 break; 372 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) { 373 chars = 374 inode->i_size - (le_ih_k_offset(ih) - 1) - 375 path.pos_in_item; 376 done = 1; 377 } else { 378 chars = ih_item_len(ih) - path.pos_in_item; 379 } 380 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars); 381 382 if (done) 383 break; 384 385 p += chars; 386 387 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1)) 388 // we done, if read direct item is not the last item of 389 // node FIXME: we could try to check right delimiting key 390 // to see whether direct item continues in the right 391 // neighbor or rely on i_size 392 break; 393 394 // update key to look for the next piece 395 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars); 396 result = search_for_position_by_key(inode->i_sb, &key, &path); 397 if (result != POSITION_FOUND) 398 // i/o error most likely 399 break; 400 bh = get_last_bh(&path); 401 ih = get_ih(&path); 402 } while (1); 403 404 flush_dcache_page(bh_result->b_page); 405 kunmap(bh_result->b_page); 406 407 finished: 408 pathrelse(&path); 409 410 if (result == IO_ERROR) 411 return -EIO; 412 413 /* this buffer has valid data, but isn't valid for io. mapping it to 414 * block #0 tells the rest of reiserfs it just has a tail in it 415 */ 416 map_bh(bh_result, inode->i_sb, 0); 417 set_buffer_uptodate(bh_result); 418 return 0; 419} 420 421// this is called to create file map. So, _get_block_create_0 will not 422// read direct item 423static int reiserfs_bmap(struct inode *inode, sector_t block, 424 struct buffer_head *bh_result, int create) 425{ 426 if (!file_capable(inode, block)) 427 return -EFBIG; 428 429 reiserfs_write_lock(inode->i_sb); 430 /* do not read the direct item */ 431 _get_block_create_0(inode, block, bh_result, 0); 432 reiserfs_write_unlock(inode->i_sb); 433 return 0; 434} 435 436/* special version of get_block that is only used by grab_tail_page right 437** now. It is sent to block_prepare_write, and when you try to get a 438** block past the end of the file (or a block from a hole) it returns 439** -ENOENT instead of a valid buffer. block_prepare_write expects to 440** be able to do i/o on the buffers returned, unless an error value 441** is also returned. 442** 443** So, this allows block_prepare_write to be used for reading a single block 444** in a page. Where it does not produce a valid page for holes, or past the 445** end of the file. This turns out to be exactly what we need for reading 446** tails for conversion. 447** 448** The point of the wrapper is forcing a certain value for create, even 449** though the VFS layer is calling this function with create==1. If you 450** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block, 451** don't use this function. 452*/ 453static int reiserfs_get_block_create_0(struct inode *inode, sector_t block, 454 struct buffer_head *bh_result, 455 int create) 456{ 457 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE); 458} 459 460/* This is special helper for reiserfs_get_block in case we are executing 461 direct_IO request. */ 462static int reiserfs_get_blocks_direct_io(struct inode *inode, 463 sector_t iblock, 464 unsigned long max_blocks, 465 struct buffer_head *bh_result, 466 int create) 467{ 468 int ret; 469 470 bh_result->b_page = NULL; 471 472 /* We set the b_size before reiserfs_get_block call since it is 473 referenced in convert_tail_for_hole() that may be called from 474 reiserfs_get_block() */ 475 bh_result->b_size = (1 << inode->i_blkbits); 476 477 ret = reiserfs_get_block(inode, iblock, bh_result, 478 create | GET_BLOCK_NO_DANGLE); 479 if (ret) 480 goto out; 481 482 /* don't allow direct io onto tail pages */ 483 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 484 /* make sure future calls to the direct io funcs for this offset 485 ** in the file fail by unmapping the buffer 486 */ 487 clear_buffer_mapped(bh_result); 488 ret = -EINVAL; 489 } 490 /* Possible unpacked tail. Flush the data before pages have 491 disappeared */ 492 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) { 493 int err; 494 lock_kernel(); 495 err = reiserfs_commit_for_inode(inode); 496 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 497 unlock_kernel(); 498 if (err < 0) 499 ret = err; 500 } 501 out: 502 return ret; 503} 504 505/* 506** helper function for when reiserfs_get_block is called for a hole 507** but the file tail is still in a direct item 508** bh_result is the buffer head for the hole 509** tail_offset is the offset of the start of the tail in the file 510** 511** This calls prepare_write, which will start a new transaction 512** you should not be in a transaction, or have any paths held when you 513** call this. 514*/ 515static int convert_tail_for_hole(struct inode *inode, 516 struct buffer_head *bh_result, 517 loff_t tail_offset) 518{ 519 unsigned long index; 520 unsigned long tail_end; 521 unsigned long tail_start; 522 struct page *tail_page; 523 struct page *hole_page = bh_result->b_page; 524 int retval = 0; 525 526 if ((tail_offset & (bh_result->b_size - 1)) != 1) 527 return -EIO; 528 529 /* always try to read until the end of the block */ 530 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1); 531 tail_end = (tail_start | (bh_result->b_size - 1)) + 1; 532 533 index = tail_offset >> PAGE_CACHE_SHIFT; 534 /* hole_page can be zero in case of direct_io, we are sure 535 that we cannot get here if we write with O_DIRECT into 536 tail page */ 537 if (!hole_page || index != hole_page->index) { 538 tail_page = grab_cache_page(inode->i_mapping, index); 539 retval = -ENOMEM; 540 if (!tail_page) { 541 goto out; 542 } 543 } else { 544 tail_page = hole_page; 545 } 546 547 /* we don't have to make sure the conversion did not happen while 548 ** we were locking the page because anyone that could convert 549 ** must first take i_sem. 550 ** 551 ** We must fix the tail page for writing because it might have buffers 552 ** that are mapped, but have a block number of 0. This indicates tail 553 ** data that has been read directly into the page, and block_prepare_write 554 ** won't trigger a get_block in this case. 555 */ 556 fix_tail_page_for_writing(tail_page); 557 retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end); 558 if (retval) 559 goto unlock; 560 561 /* tail conversion might change the data in the page */ 562 flush_dcache_page(tail_page); 563 564 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end); 565 566 unlock: 567 if (tail_page != hole_page) { 568 unlock_page(tail_page); 569 page_cache_release(tail_page); 570 } 571 out: 572 return retval; 573} 574 575static inline int _allocate_block(struct reiserfs_transaction_handle *th, 576 long block, 577 struct inode *inode, 578 b_blocknr_t * allocated_block_nr, 579 struct path *path, int flags) 580{ 581 BUG_ON(!th->t_trans_id); 582 583#ifdef REISERFS_PREALLOCATE 584 if (!(flags & GET_BLOCK_NO_ISEM)) { 585 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr, 586 path, block); 587 } 588#endif 589 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path, 590 block); 591} 592 593int reiserfs_get_block(struct inode *inode, sector_t block, 594 struct buffer_head *bh_result, int create) 595{ 596 int repeat, retval = 0; 597 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int 598 INITIALIZE_PATH(path); 599 int pos_in_item; 600 struct cpu_key key; 601 struct buffer_head *bh, *unbh = NULL; 602 struct item_head *ih, tmp_ih; 603 __le32 *item; 604 int done; 605 int fs_gen; 606 struct reiserfs_transaction_handle *th = NULL; 607 /* space reserved in transaction batch: 608 . 3 balancings in direct->indirect conversion 609 . 1 block involved into reiserfs_update_sd() 610 XXX in practically impossible worst case direct2indirect() 611 can incur (much) more than 3 balancings. 612 quota update for user, group */ 613 int jbegin_count = 614 JOURNAL_PER_BALANCE_CNT * 3 + 1 + 615 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb); 616 int version; 617 int dangle = 1; 618 loff_t new_offset = 619 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1; 620 621 /* bad.... */ 622 reiserfs_write_lock(inode->i_sb); 623 version = get_inode_item_key_version(inode); 624 625 if (block < 0) { 626 reiserfs_write_unlock(inode->i_sb); 627 return -EIO; 628 } 629 630 if (!file_capable(inode, block)) { 631 reiserfs_write_unlock(inode->i_sb); 632 return -EFBIG; 633 } 634 635 /* if !create, we aren't changing the FS, so we don't need to 636 ** log anything, so we don't need to start a transaction 637 */ 638 if (!(create & GET_BLOCK_CREATE)) { 639 int ret; 640 /* find number of block-th logical block of the file */ 641 ret = _get_block_create_0(inode, block, bh_result, 642 create | GET_BLOCK_READ_DIRECT); 643 reiserfs_write_unlock(inode->i_sb); 644 return ret; 645 } 646 /* 647 * if we're already in a transaction, make sure to close 648 * any new transactions we start in this func 649 */ 650 if ((create & GET_BLOCK_NO_DANGLE) || 651 reiserfs_transaction_running(inode->i_sb)) 652 dangle = 0; 653 654 /* If file is of such a size, that it might have a tail and tails are enabled 655 ** we should mark it as possibly needing tail packing on close 656 */ 657 if ((have_large_tails(inode->i_sb) 658 && inode->i_size < i_block_size(inode) * 4) 659 || (have_small_tails(inode->i_sb) 660 && inode->i_size < i_block_size(inode))) 661 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; 662 663 /* set the key of the first byte in the 'block'-th block of file */ 664 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ ); 665 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) { 666 start_trans: 667 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count); 668 if (!th) { 669 retval = -ENOMEM; 670 goto failure; 671 } 672 reiserfs_update_inode_transaction(inode); 673 } 674 research: 675 676 retval = search_for_position_by_key(inode->i_sb, &key, &path); 677 if (retval == IO_ERROR) { 678 retval = -EIO; 679 goto failure; 680 } 681 682 bh = get_last_bh(&path); 683 ih = get_ih(&path); 684 item = get_item(&path); 685 pos_in_item = path.pos_in_item; 686 687 fs_gen = get_generation(inode->i_sb); 688 copy_item_head(&tmp_ih, ih); 689 690 if (allocation_needed 691 (retval, allocated_block_nr, ih, item, pos_in_item)) { 692 /* we have to allocate block for the unformatted node */ 693 if (!th) { 694 pathrelse(&path); 695 goto start_trans; 696 } 697 698 repeat = 699 _allocate_block(th, block, inode, &allocated_block_nr, 700 &path, create); 701 702 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) { 703 /* restart the transaction to give the journal a chance to free 704 ** some blocks. releases the path, so we have to go back to 705 ** research if we succeed on the second try 706 */ 707 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1; 708 retval = restart_transaction(th, inode, &path); 709 if (retval) 710 goto failure; 711 repeat = 712 _allocate_block(th, block, inode, 713 &allocated_block_nr, NULL, create); 714 715 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) { 716 goto research; 717 } 718 if (repeat == QUOTA_EXCEEDED) 719 retval = -EDQUOT; 720 else 721 retval = -ENOSPC; 722 goto failure; 723 } 724 725 if (fs_changed(fs_gen, inode->i_sb) 726 && item_moved(&tmp_ih, &path)) { 727 goto research; 728 } 729 } 730 731 if (indirect_item_found(retval, ih)) { 732 b_blocknr_t unfm_ptr; 733 /* 'block'-th block is in the file already (there is 734 corresponding cell in some indirect item). But it may be 735 zero unformatted node pointer (hole) */ 736 unfm_ptr = get_block_num(item, pos_in_item); 737 if (unfm_ptr == 0) { 738 /* use allocated block to plug the hole */ 739 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 740 if (fs_changed(fs_gen, inode->i_sb) 741 && item_moved(&tmp_ih, &path)) { 742 reiserfs_restore_prepared_buffer(inode->i_sb, 743 bh); 744 goto research; 745 } 746 set_buffer_new(bh_result); 747 if (buffer_dirty(bh_result) 748 && reiserfs_data_ordered(inode->i_sb)) 749 reiserfs_add_ordered_list(inode, bh_result); 750 put_block_num(item, pos_in_item, allocated_block_nr); 751 unfm_ptr = allocated_block_nr; 752 journal_mark_dirty(th, inode->i_sb, bh); 753 reiserfs_update_sd(th, inode); 754 } 755 set_block_dev_mapped(bh_result, unfm_ptr, inode); 756 pathrelse(&path); 757 retval = 0; 758 if (!dangle && th) 759 retval = reiserfs_end_persistent_transaction(th); 760 761 reiserfs_write_unlock(inode->i_sb); 762 763 /* the item was found, so new blocks were not added to the file 764 ** there is no need to make sure the inode is updated with this 765 ** transaction 766 */ 767 return retval; 768 } 769 770 if (!th) { 771 pathrelse(&path); 772 goto start_trans; 773 } 774 775 /* desired position is not found or is in the direct item. We have 776 to append file with holes up to 'block'-th block converting 777 direct items to indirect one if necessary */ 778 done = 0; 779 do { 780 if (is_statdata_le_ih(ih)) { 781 __le32 unp = 0; 782 struct cpu_key tmp_key; 783 784 /* indirect item has to be inserted */ 785 make_le_item_head(&tmp_ih, &key, version, 1, 786 TYPE_INDIRECT, UNFM_P_SIZE, 787 0 /* free_space */ ); 788 789 if (cpu_key_k_offset(&key) == 1) { 790 /* we are going to add 'block'-th block to the file. Use 791 allocated block for that */ 792 unp = cpu_to_le32(allocated_block_nr); 793 set_block_dev_mapped(bh_result, 794 allocated_block_nr, inode); 795 set_buffer_new(bh_result); 796 done = 1; 797 } 798 tmp_key = key; // ;) 799 set_cpu_key_k_offset(&tmp_key, 1); 800 PATH_LAST_POSITION(&path)++; 801 802 retval = 803 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih, 804 inode, (char *)&unp); 805 if (retval) { 806 reiserfs_free_block(th, inode, 807 allocated_block_nr, 1); 808 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST 809 } 810 //mark_tail_converted (inode); 811 } else if (is_direct_le_ih(ih)) { 812 /* direct item has to be converted */ 813 loff_t tail_offset; 814 815 tail_offset = 816 ((le_ih_k_offset(ih) - 817 1) & ~(inode->i_sb->s_blocksize - 1)) + 1; 818 if (tail_offset == cpu_key_k_offset(&key)) { 819 /* direct item we just found fits into block we have 820 to map. Convert it into unformatted node: use 821 bh_result for the conversion */ 822 set_block_dev_mapped(bh_result, 823 allocated_block_nr, inode); 824 unbh = bh_result; 825 done = 1; 826 } else { 827 /* we have to padd file tail stored in direct item(s) 828 up to block size and convert it to unformatted 829 node. FIXME: this should also get into page cache */ 830 831 pathrelse(&path); 832 /* 833 * ugly, but we can only end the transaction if 834 * we aren't nested 835 */ 836 BUG_ON(!th->t_refcount); 837 if (th->t_refcount == 1) { 838 retval = 839 reiserfs_end_persistent_transaction 840 (th); 841 th = NULL; 842 if (retval) 843 goto failure; 844 } 845 846 retval = 847 convert_tail_for_hole(inode, bh_result, 848 tail_offset); 849 if (retval) { 850 if (retval != -ENOSPC) 851 reiserfs_warning(inode->i_sb, 852 "clm-6004: convert tail failed inode %lu, error %d", 853 inode->i_ino, 854 retval); 855 if (allocated_block_nr) { 856 /* the bitmap, the super, and the stat data == 3 */ 857 if (!th) 858 th = reiserfs_persistent_transaction(inode->i_sb, 3); 859 if (th) 860 reiserfs_free_block(th, 861 inode, 862 allocated_block_nr, 863 1); 864 } 865 goto failure; 866 } 867 goto research; 868 } 869 retval = 870 direct2indirect(th, inode, &path, unbh, 871 tail_offset); 872 if (retval) { 873 reiserfs_unmap_buffer(unbh); 874 reiserfs_free_block(th, inode, 875 allocated_block_nr, 1); 876 goto failure; 877 } 878 /* it is important the set_buffer_uptodate is done after 879 ** the direct2indirect. The buffer might contain valid 880 ** data newer than the data on disk (read by readpage, changed, 881 ** and then sent here by writepage). direct2indirect needs 882 ** to know if unbh was already up to date, so it can decide 883 ** if the data in unbh needs to be replaced with data from 884 ** the disk 885 */ 886 set_buffer_uptodate(unbh); 887 888 /* unbh->b_page == NULL in case of DIRECT_IO request, this means 889 buffer will disappear shortly, so it should not be added to 890 */ 891 if (unbh->b_page) { 892 /* we've converted the tail, so we must 893 ** flush unbh before the transaction commits 894 */ 895 reiserfs_add_tail_list(inode, unbh); 896 897 /* mark it dirty now to prevent commit_write from adding 898 ** this buffer to the inode's dirty buffer list 899 */ 900 /* 901 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty(). 902 * It's still atomic, but it sets the page dirty too, 903 * which makes it eligible for writeback at any time by the 904 * VM (which was also the case with __mark_buffer_dirty()) 905 */ 906 mark_buffer_dirty(unbh); 907 } 908 } else { 909 /* append indirect item with holes if needed, when appending 910 pointer to 'block'-th block use block, which is already 911 allocated */ 912 struct cpu_key tmp_key; 913 unp_t unf_single = 0; // We use this in case we need to allocate only 914 // one block which is a fastpath 915 unp_t *un; 916 __u64 max_to_insert = 917 MAX_ITEM_LEN(inode->i_sb->s_blocksize) / 918 UNFM_P_SIZE; 919 __u64 blocks_needed; 920 921 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE, 922 "vs-804: invalid position for append"); 923 /* indirect item has to be appended, set up key of that position */ 924 make_cpu_key(&tmp_key, inode, 925 le_key_k_offset(version, 926 &(ih->ih_key)) + 927 op_bytes_number(ih, 928 inode->i_sb->s_blocksize), 929 //pos_in_item * inode->i_sb->s_blocksize, 930 TYPE_INDIRECT, 3); // key type is unimportant 931 932 blocks_needed = 933 1 + 934 ((cpu_key_k_offset(&key) - 935 cpu_key_k_offset(&tmp_key)) >> inode->i_sb-> 936 s_blocksize_bits); 937 RFALSE(blocks_needed < 0, "green-805: invalid offset"); 938 939 if (blocks_needed == 1) { 940 un = &unf_single; 941 } else { 942 un = kmalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_ATOMIC); // We need to avoid scheduling. 943 if (!un) { 944 un = &unf_single; 945 blocks_needed = 1; 946 max_to_insert = 0; 947 } else 948 memset(un, 0, 949 UNFM_P_SIZE * min(blocks_needed, 950 max_to_insert)); 951 } 952 if (blocks_needed <= max_to_insert) { 953 /* we are going to add target block to the file. Use allocated 954 block for that */ 955 un[blocks_needed - 1] = 956 cpu_to_le32(allocated_block_nr); 957 set_block_dev_mapped(bh_result, 958 allocated_block_nr, inode); 959 set_buffer_new(bh_result); 960 done = 1; 961 } else { 962 /* paste hole to the indirect item */ 963 /* If kmalloc failed, max_to_insert becomes zero and it means we 964 only have space for one block */ 965 blocks_needed = 966 max_to_insert ? max_to_insert : 1; 967 } 968 retval = 969 reiserfs_paste_into_item(th, &path, &tmp_key, inode, 970 (char *)un, 971 UNFM_P_SIZE * 972 blocks_needed); 973 974 if (blocks_needed != 1) 975 kfree(un); 976 977 if (retval) { 978 reiserfs_free_block(th, inode, 979 allocated_block_nr, 1); 980 goto failure; 981 } 982 if (!done) { 983 /* We need to mark new file size in case this function will be 984 interrupted/aborted later on. And we may do this only for 985 holes. */ 986 inode->i_size += 987 inode->i_sb->s_blocksize * blocks_needed; 988 } 989 } 990 991 if (done == 1) 992 break; 993 994 /* this loop could log more blocks than we had originally asked 995 ** for. So, we have to allow the transaction to end if it is 996 ** too big or too full. Update the inode so things are 997 ** consistent if we crash before the function returns 998 ** 999 ** release the path so that anybody waiting on the path before 1000 ** ending their transaction will be able to continue. 1001 */ 1002 if (journal_transaction_should_end(th, th->t_blocks_allocated)) { 1003 retval = restart_transaction(th, inode, &path); 1004 if (retval) 1005 goto failure; 1006 } 1007 /* inserting indirect pointers for a hole can take a 1008 ** long time. reschedule if needed 1009 */ 1010 cond_resched(); 1011 1012 retval = search_for_position_by_key(inode->i_sb, &key, &path); 1013 if (retval == IO_ERROR) { 1014 retval = -EIO; 1015 goto failure; 1016 } 1017 if (retval == POSITION_FOUND) { 1018 reiserfs_warning(inode->i_sb, 1019 "vs-825: reiserfs_get_block: " 1020 "%K should not be found", &key); 1021 retval = -EEXIST; 1022 if (allocated_block_nr) 1023 reiserfs_free_block(th, inode, 1024 allocated_block_nr, 1); 1025 pathrelse(&path); 1026 goto failure; 1027 } 1028 bh = get_last_bh(&path); 1029 ih = get_ih(&path); 1030 item = get_item(&path); 1031 pos_in_item = path.pos_in_item; 1032 } while (1); 1033 1034 retval = 0; 1035 1036 failure: 1037 if (th && (!dangle || (retval && !th->t_trans_id))) { 1038 int err; 1039 if (th->t_trans_id) 1040 reiserfs_update_sd(th, inode); 1041 err = reiserfs_end_persistent_transaction(th); 1042 if (err) 1043 retval = err; 1044 } 1045 1046 reiserfs_write_unlock(inode->i_sb); 1047 reiserfs_check_path(&path); 1048 return retval; 1049} 1050 1051static int 1052reiserfs_readpages(struct file *file, struct address_space *mapping, 1053 struct list_head *pages, unsigned nr_pages) 1054{ 1055 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block); 1056} 1057 1058/* Compute real number of used bytes by file 1059 * Following three functions can go away when we'll have enough space in stat item 1060 */ 1061static int real_space_diff(struct inode *inode, int sd_size) 1062{ 1063 int bytes; 1064 loff_t blocksize = inode->i_sb->s_blocksize; 1065 1066 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) 1067 return sd_size; 1068 1069 /* End of file is also in full block with indirect reference, so round 1070 ** up to the next block. 1071 ** 1072 ** there is just no way to know if the tail is actually packed 1073 ** on the file, so we have to assume it isn't. When we pack the 1074 ** tail, we add 4 bytes to pretend there really is an unformatted 1075 ** node pointer 1076 */ 1077 bytes = 1078 ((inode->i_size + 1079 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE + 1080 sd_size; 1081 return bytes; 1082} 1083 1084static inline loff_t to_real_used_space(struct inode *inode, ulong blocks, 1085 int sd_size) 1086{ 1087 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1088 return inode->i_size + 1089 (loff_t) (real_space_diff(inode, sd_size)); 1090 } 1091 return ((loff_t) real_space_diff(inode, sd_size)) + 1092 (((loff_t) blocks) << 9); 1093} 1094 1095/* Compute number of blocks used by file in ReiserFS counting */ 1096static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size) 1097{ 1098 loff_t bytes = inode_get_bytes(inode); 1099 loff_t real_space = real_space_diff(inode, sd_size); 1100 1101 /* keeps fsck and non-quota versions of reiserfs happy */ 1102 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1103 bytes += (loff_t) 511; 1104 } 1105 1106 /* files from before the quota patch might i_blocks such that 1107 ** bytes < real_space. Deal with that here to prevent it from 1108 ** going negative. 1109 */ 1110 if (bytes < real_space) 1111 return 0; 1112 return (bytes - real_space) >> 9; 1113} 1114 1115// 1116// BAD: new directories have stat data of new type and all other items 1117// of old type. Version stored in the inode says about body items, so 1118// in update_stat_data we can not rely on inode, but have to check 1119// item version directly 1120// 1121 1122// called by read_locked_inode 1123static void init_inode(struct inode *inode, struct path *path) 1124{ 1125 struct buffer_head *bh; 1126 struct item_head *ih; 1127 __u32 rdev; 1128 //int version = ITEM_VERSION_1; 1129 1130 bh = PATH_PLAST_BUFFER(path); 1131 ih = PATH_PITEM_HEAD(path); 1132 1133 copy_key(INODE_PKEY(inode), &(ih->ih_key)); 1134 inode->i_blksize = reiserfs_default_io_size; 1135 1136 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list)); 1137 REISERFS_I(inode)->i_flags = 0; 1138 REISERFS_I(inode)->i_prealloc_block = 0; 1139 REISERFS_I(inode)->i_prealloc_count = 0; 1140 REISERFS_I(inode)->i_trans_id = 0; 1141 REISERFS_I(inode)->i_jl = NULL; 1142 REISERFS_I(inode)->i_acl_access = NULL; 1143 REISERFS_I(inode)->i_acl_default = NULL; 1144 init_rwsem(&REISERFS_I(inode)->xattr_sem); 1145 1146 if (stat_data_v1(ih)) { 1147 struct stat_data_v1 *sd = 1148 (struct stat_data_v1 *)B_I_PITEM(bh, ih); 1149 unsigned long blocks; 1150 1151 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1152 set_inode_sd_version(inode, STAT_DATA_V1); 1153 inode->i_mode = sd_v1_mode(sd); 1154 inode->i_nlink = sd_v1_nlink(sd); 1155 inode->i_uid = sd_v1_uid(sd); 1156 inode->i_gid = sd_v1_gid(sd); 1157 inode->i_size = sd_v1_size(sd); 1158 inode->i_atime.tv_sec = sd_v1_atime(sd); 1159 inode->i_mtime.tv_sec = sd_v1_mtime(sd); 1160 inode->i_ctime.tv_sec = sd_v1_ctime(sd); 1161 inode->i_atime.tv_nsec = 0; 1162 inode->i_ctime.tv_nsec = 0; 1163 inode->i_mtime.tv_nsec = 0; 1164 1165 inode->i_blocks = sd_v1_blocks(sd); 1166 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1167 blocks = (inode->i_size + 511) >> 9; 1168 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9); 1169 if (inode->i_blocks > blocks) { 1170 // there was a bug in <=3.5.23 when i_blocks could take negative 1171 // values. Starting from 3.5.17 this value could even be stored in 1172 // stat data. For such files we set i_blocks based on file 1173 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be 1174 // only updated if file's inode will ever change 1175 inode->i_blocks = blocks; 1176 } 1177 1178 rdev = sd_v1_rdev(sd); 1179 REISERFS_I(inode)->i_first_direct_byte = 1180 sd_v1_first_direct_byte(sd); 1181 /* an early bug in the quota code can give us an odd number for the 1182 ** block count. This is incorrect, fix it here. 1183 */ 1184 if (inode->i_blocks & 1) { 1185 inode->i_blocks++; 1186 } 1187 inode_set_bytes(inode, 1188 to_real_used_space(inode, inode->i_blocks, 1189 SD_V1_SIZE)); 1190 /* nopack is initially zero for v1 objects. For v2 objects, 1191 nopack is initialised from sd_attrs */ 1192 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 1193 } else { 1194 // new stat data found, but object may have old items 1195 // (directories and symlinks) 1196 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih); 1197 1198 inode->i_mode = sd_v2_mode(sd); 1199 inode->i_nlink = sd_v2_nlink(sd); 1200 inode->i_uid = sd_v2_uid(sd); 1201 inode->i_size = sd_v2_size(sd); 1202 inode->i_gid = sd_v2_gid(sd); 1203 inode->i_mtime.tv_sec = sd_v2_mtime(sd); 1204 inode->i_atime.tv_sec = sd_v2_atime(sd); 1205 inode->i_ctime.tv_sec = sd_v2_ctime(sd); 1206 inode->i_ctime.tv_nsec = 0; 1207 inode->i_mtime.tv_nsec = 0; 1208 inode->i_atime.tv_nsec = 0; 1209 inode->i_blocks = sd_v2_blocks(sd); 1210 rdev = sd_v2_rdev(sd); 1211 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1212 inode->i_generation = 1213 le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1214 else 1215 inode->i_generation = sd_v2_generation(sd); 1216 1217 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1218 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1219 else 1220 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1221 REISERFS_I(inode)->i_first_direct_byte = 0; 1222 set_inode_sd_version(inode, STAT_DATA_V2); 1223 inode_set_bytes(inode, 1224 to_real_used_space(inode, inode->i_blocks, 1225 SD_V2_SIZE)); 1226 /* read persistent inode attributes from sd and initalise 1227 generic inode flags from them */ 1228 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd); 1229 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode); 1230 } 1231 1232 pathrelse(path); 1233 if (S_ISREG(inode->i_mode)) { 1234 inode->i_op = &reiserfs_file_inode_operations; 1235 inode->i_fop = &reiserfs_file_operations; 1236 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1237 } else if (S_ISDIR(inode->i_mode)) { 1238 inode->i_op = &reiserfs_dir_inode_operations; 1239 inode->i_fop = &reiserfs_dir_operations; 1240 } else if (S_ISLNK(inode->i_mode)) { 1241 inode->i_op = &reiserfs_symlink_inode_operations; 1242 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1243 } else { 1244 inode->i_blocks = 0; 1245 inode->i_op = &reiserfs_special_inode_operations; 1246 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev)); 1247 } 1248} 1249 1250// update new stat data with inode fields 1251static void inode2sd(void *sd, struct inode *inode, loff_t size) 1252{ 1253 struct stat_data *sd_v2 = (struct stat_data *)sd; 1254 __u16 flags; 1255 1256 set_sd_v2_mode(sd_v2, inode->i_mode); 1257 set_sd_v2_nlink(sd_v2, inode->i_nlink); 1258 set_sd_v2_uid(sd_v2, inode->i_uid); 1259 set_sd_v2_size(sd_v2, size); 1260 set_sd_v2_gid(sd_v2, inode->i_gid); 1261 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec); 1262 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec); 1263 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec); 1264 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE)); 1265 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1266 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev)); 1267 else 1268 set_sd_v2_generation(sd_v2, inode->i_generation); 1269 flags = REISERFS_I(inode)->i_attrs; 1270 i_attrs_to_sd_attrs(inode, &flags); 1271 set_sd_v2_attrs(sd_v2, flags); 1272} 1273 1274// used to copy inode's fields to old stat data 1275static void inode2sd_v1(void *sd, struct inode *inode, loff_t size) 1276{ 1277 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd; 1278 1279 set_sd_v1_mode(sd_v1, inode->i_mode); 1280 set_sd_v1_uid(sd_v1, inode->i_uid); 1281 set_sd_v1_gid(sd_v1, inode->i_gid); 1282 set_sd_v1_nlink(sd_v1, inode->i_nlink); 1283 set_sd_v1_size(sd_v1, size); 1284 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec); 1285 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec); 1286 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec); 1287 1288 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1289 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev)); 1290 else 1291 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE)); 1292 1293 // Sigh. i_first_direct_byte is back 1294 set_sd_v1_first_direct_byte(sd_v1, 1295 REISERFS_I(inode)->i_first_direct_byte); 1296} 1297 1298/* NOTE, you must prepare the buffer head before sending it here, 1299** and then log it after the call 1300*/ 1301static void update_stat_data(struct path *path, struct inode *inode, 1302 loff_t size) 1303{ 1304 struct buffer_head *bh; 1305 struct item_head *ih; 1306 1307 bh = PATH_PLAST_BUFFER(path); 1308 ih = PATH_PITEM_HEAD(path); 1309 1310 if (!is_statdata_le_ih(ih)) 1311 reiserfs_panic(inode->i_sb, 1312 "vs-13065: update_stat_data: key %k, found item %h", 1313 INODE_PKEY(inode), ih); 1314 1315 if (stat_data_v1(ih)) { 1316 // path points to old stat data 1317 inode2sd_v1(B_I_PITEM(bh, ih), inode, size); 1318 } else { 1319 inode2sd(B_I_PITEM(bh, ih), inode, size); 1320 } 1321 1322 return; 1323} 1324 1325void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 1326 struct inode *inode, loff_t size) 1327{ 1328 struct cpu_key key; 1329 INITIALIZE_PATH(path); 1330 struct buffer_head *bh; 1331 int fs_gen; 1332 struct item_head *ih, tmp_ih; 1333 int retval; 1334 1335 BUG_ON(!th->t_trans_id); 1336 1337 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant 1338 1339 for (;;) { 1340 int pos; 1341 /* look for the object's stat data */ 1342 retval = search_item(inode->i_sb, &key, &path); 1343 if (retval == IO_ERROR) { 1344 reiserfs_warning(inode->i_sb, 1345 "vs-13050: reiserfs_update_sd: " 1346 "i/o failure occurred trying to update %K stat data", 1347 &key); 1348 return; 1349 } 1350 if (retval == ITEM_NOT_FOUND) { 1351 pos = PATH_LAST_POSITION(&path); 1352 pathrelse(&path); 1353 if (inode->i_nlink == 0) { 1354 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */ 1355 return; 1356 } 1357 reiserfs_warning(inode->i_sb, 1358 "vs-13060: reiserfs_update_sd: " 1359 "stat data of object %k (nlink == %d) not found (pos %d)", 1360 INODE_PKEY(inode), inode->i_nlink, 1361 pos); 1362 reiserfs_check_path(&path); 1363 return; 1364 } 1365 1366 /* sigh, prepare_for_journal might schedule. When it schedules the 1367 ** FS might change. We have to detect that, and loop back to the 1368 ** search if the stat data item has moved 1369 */ 1370 bh = get_last_bh(&path); 1371 ih = get_ih(&path); 1372 copy_item_head(&tmp_ih, ih); 1373 fs_gen = get_generation(inode->i_sb); 1374 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 1375 if (fs_changed(fs_gen, inode->i_sb) 1376 && item_moved(&tmp_ih, &path)) { 1377 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 1378 continue; /* Stat_data item has been moved after scheduling. */ 1379 } 1380 break; 1381 } 1382 update_stat_data(&path, inode, size); 1383 journal_mark_dirty(th, th->t_super, bh); 1384 pathrelse(&path); 1385 return; 1386} 1387 1388/* reiserfs_read_locked_inode is called to read the inode off disk, and it 1389** does a make_bad_inode when things go wrong. But, we need to make sure 1390** and clear the key in the private portion of the inode, otherwise a 1391** corresponding iput might try to delete whatever object the inode last 1392** represented. 1393*/ 1394static void reiserfs_make_bad_inode(struct inode *inode) 1395{ 1396 memset(INODE_PKEY(inode), 0, KEY_SIZE); 1397 make_bad_inode(inode); 1398} 1399 1400// 1401// initially this function was derived from minix or ext2's analog and 1402// evolved as the prototype did 1403// 1404 1405int reiserfs_init_locked_inode(struct inode *inode, void *p) 1406{ 1407 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p; 1408 inode->i_ino = args->objectid; 1409 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid); 1410 return 0; 1411} 1412 1413/* looks for stat data in the tree, and fills up the fields of in-core 1414 inode stat data fields */ 1415void reiserfs_read_locked_inode(struct inode *inode, 1416 struct reiserfs_iget_args *args) 1417{ 1418 INITIALIZE_PATH(path_to_sd); 1419 struct cpu_key key; 1420 unsigned long dirino; 1421 int retval; 1422 1423 dirino = args->dirid; 1424 1425 /* set version 1, version 2 could be used too, because stat data 1426 key is the same in both versions */ 1427 key.version = KEY_FORMAT_3_5; 1428 key.on_disk_key.k_dir_id = dirino; 1429 key.on_disk_key.k_objectid = inode->i_ino; 1430 key.on_disk_key.k_offset = 0; 1431 key.on_disk_key.k_type = 0; 1432 1433 /* look for the object's stat data */ 1434 retval = search_item(inode->i_sb, &key, &path_to_sd); 1435 if (retval == IO_ERROR) { 1436 reiserfs_warning(inode->i_sb, 1437 "vs-13070: reiserfs_read_locked_inode: " 1438 "i/o failure occurred trying to find stat data of %K", 1439 &key); 1440 reiserfs_make_bad_inode(inode); 1441 return; 1442 } 1443 if (retval != ITEM_FOUND) { 1444 /* a stale NFS handle can trigger this without it being an error */ 1445 pathrelse(&path_to_sd); 1446 reiserfs_make_bad_inode(inode); 1447 inode->i_nlink = 0; 1448 return; 1449 } 1450 1451 init_inode(inode, &path_to_sd); 1452 1453 /* It is possible that knfsd is trying to access inode of a file 1454 that is being removed from the disk by some other thread. As we 1455 update sd on unlink all that is required is to check for nlink 1456 here. This bug was first found by Sizif when debugging 1457 SquidNG/Butterfly, forgotten, and found again after Philippe 1458 Gramoulle <philippe.gramoulle@mmania.com> reproduced it. 1459 1460 More logical fix would require changes in fs/inode.c:iput() to 1461 remove inode from hash-table _after_ fs cleaned disk stuff up and 1462 in iget() to return NULL if I_FREEING inode is found in 1463 hash-table. */ 1464 /* Currently there is one place where it's ok to meet inode with 1465 nlink==0: processing of open-unlinked and half-truncated files 1466 during mount (fs/reiserfs/super.c:finish_unfinished()). */ 1467 if ((inode->i_nlink == 0) && 1468 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) { 1469 reiserfs_warning(inode->i_sb, 1470 "vs-13075: reiserfs_read_locked_inode: " 1471 "dead inode read from disk %K. " 1472 "This is likely to be race with knfsd. Ignore", 1473 &key); 1474 reiserfs_make_bad_inode(inode); 1475 } 1476 1477 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */ 1478 1479} 1480 1481/** 1482 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked(). 1483 * 1484 * @inode: inode from hash table to check 1485 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args. 1486 * 1487 * This function is called by iget5_locked() to distinguish reiserfs inodes 1488 * having the same inode numbers. Such inodes can only exist due to some 1489 * error condition. One of them should be bad. Inodes with identical 1490 * inode numbers (objectids) are distinguished by parent directory ids. 1491 * 1492 */ 1493int reiserfs_find_actor(struct inode *inode, void *opaque) 1494{ 1495 struct reiserfs_iget_args *args; 1496 1497 args = opaque; 1498 /* args is already in CPU order */ 1499 return (inode->i_ino == args->objectid) && 1500 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid); 1501} 1502 1503struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key) 1504{ 1505 struct inode *inode; 1506 struct reiserfs_iget_args args; 1507 1508 args.objectid = key->on_disk_key.k_objectid; 1509 args.dirid = key->on_disk_key.k_dir_id; 1510 inode = iget5_locked(s, key->on_disk_key.k_objectid, 1511 reiserfs_find_actor, reiserfs_init_locked_inode, 1512 (void *)(&args)); 1513 if (!inode) 1514 return ERR_PTR(-ENOMEM); 1515 1516 if (inode->i_state & I_NEW) { 1517 reiserfs_read_locked_inode(inode, &args); 1518 unlock_new_inode(inode); 1519 } 1520 1521 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) { 1522 /* either due to i/o error or a stale NFS handle */ 1523 iput(inode); 1524 inode = NULL; 1525 } 1526 return inode; 1527} 1528 1529struct dentry *reiserfs_get_dentry(struct super_block *sb, void *vobjp) 1530{ 1531 __u32 *data = vobjp; 1532 struct cpu_key key; 1533 struct dentry *result; 1534 struct inode *inode; 1535 1536 key.on_disk_key.k_objectid = data[0]; 1537 key.on_disk_key.k_dir_id = data[1]; 1538 reiserfs_write_lock(sb); 1539 inode = reiserfs_iget(sb, &key); 1540 if (inode && !IS_ERR(inode) && data[2] != 0 && 1541 data[2] != inode->i_generation) { 1542 iput(inode); 1543 inode = NULL; 1544 } 1545 reiserfs_write_unlock(sb); 1546 if (!inode) 1547 inode = ERR_PTR(-ESTALE); 1548 if (IS_ERR(inode)) 1549 return ERR_PTR(PTR_ERR(inode)); 1550 result = d_alloc_anon(inode); 1551 if (!result) { 1552 iput(inode); 1553 return ERR_PTR(-ENOMEM); 1554 } 1555 return result; 1556} 1557 1558struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 * data, 1559 int len, int fhtype, 1560 int (*acceptable) (void *contect, 1561 struct dentry * de), 1562 void *context) 1563{ 1564 __u32 obj[3], parent[3]; 1565 1566 /* fhtype happens to reflect the number of u32s encoded. 1567 * due to a bug in earlier code, fhtype might indicate there 1568 * are more u32s then actually fitted. 1569 * so if fhtype seems to be more than len, reduce fhtype. 1570 * Valid types are: 1571 * 2 - objectid + dir_id - legacy support 1572 * 3 - objectid + dir_id + generation 1573 * 4 - objectid + dir_id + objectid and dirid of parent - legacy 1574 * 5 - objectid + dir_id + generation + objectid and dirid of parent 1575 * 6 - as above plus generation of directory 1576 * 6 does not fit in NFSv2 handles 1577 */ 1578 if (fhtype > len) { 1579 if (fhtype != 6 || len != 5) 1580 reiserfs_warning(sb, 1581 "nfsd/reiserfs, fhtype=%d, len=%d - odd", 1582 fhtype, len); 1583 fhtype = 5; 1584 } 1585 1586 obj[0] = data[0]; 1587 obj[1] = data[1]; 1588 if (fhtype == 3 || fhtype >= 5) 1589 obj[2] = data[2]; 1590 else 1591 obj[2] = 0; /* generation number */ 1592 1593 if (fhtype >= 4) { 1594 parent[0] = data[fhtype >= 5 ? 3 : 2]; 1595 parent[1] = data[fhtype >= 5 ? 4 : 3]; 1596 if (fhtype == 6) 1597 parent[2] = data[5]; 1598 else 1599 parent[2] = 0; 1600 } 1601 return sb->s_export_op->find_exported_dentry(sb, obj, 1602 fhtype < 4 ? NULL : parent, 1603 acceptable, context); 1604} 1605 1606int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp, 1607 int need_parent) 1608{ 1609 struct inode *inode = dentry->d_inode; 1610 int maxlen = *lenp; 1611 1612 if (maxlen < 3) 1613 return 255; 1614 1615 data[0] = inode->i_ino; 1616 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1617 data[2] = inode->i_generation; 1618 *lenp = 3; 1619 /* no room for directory info? return what we've stored so far */ 1620 if (maxlen < 5 || !need_parent) 1621 return 3; 1622 1623 spin_lock(&dentry->d_lock); 1624 inode = dentry->d_parent->d_inode; 1625 data[3] = inode->i_ino; 1626 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1627 *lenp = 5; 1628 if (maxlen >= 6) { 1629 data[5] = inode->i_generation; 1630 *lenp = 6; 1631 } 1632 spin_unlock(&dentry->d_lock); 1633 return *lenp; 1634} 1635 1636/* looks for stat data, then copies fields to it, marks the buffer 1637 containing stat data as dirty */ 1638/* reiserfs inodes are never really dirty, since the dirty inode call 1639** always logs them. This call allows the VFS inode marking routines 1640** to properly mark inodes for datasync and such, but only actually 1641** does something when called for a synchronous update. 1642*/ 1643int reiserfs_write_inode(struct inode *inode, int do_sync) 1644{ 1645 struct reiserfs_transaction_handle th; 1646 int jbegin_count = 1; 1647 1648 if (inode->i_sb->s_flags & MS_RDONLY) 1649 return -EROFS; 1650 /* memory pressure can sometimes initiate write_inode calls with sync == 1, 1651 ** these cases are just when the system needs ram, not when the 1652 ** inode needs to reach disk for safety, and they can safely be 1653 ** ignored because the altered inode has already been logged. 1654 */ 1655 if (do_sync && !(current->flags & PF_MEMALLOC)) { 1656 reiserfs_write_lock(inode->i_sb); 1657 if (!journal_begin(&th, inode->i_sb, jbegin_count)) { 1658 reiserfs_update_sd(&th, inode); 1659 journal_end_sync(&th, inode->i_sb, jbegin_count); 1660 } 1661 reiserfs_write_unlock(inode->i_sb); 1662 } 1663 return 0; 1664} 1665 1666/* stat data of new object is inserted already, this inserts the item 1667 containing "." and ".." entries */ 1668static int reiserfs_new_directory(struct reiserfs_transaction_handle *th, 1669 struct inode *inode, 1670 struct item_head *ih, struct path *path, 1671 struct inode *dir) 1672{ 1673 struct super_block *sb = th->t_super; 1674 char empty_dir[EMPTY_DIR_SIZE]; 1675 char *body = empty_dir; 1676 struct cpu_key key; 1677 int retval; 1678 1679 BUG_ON(!th->t_trans_id); 1680 1681 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id), 1682 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET, 1683 TYPE_DIRENTRY, 3 /*key length */ ); 1684 1685 /* compose item head for new item. Directories consist of items of 1686 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it 1687 is done by reiserfs_new_inode */ 1688 if (old_format_only(sb)) { 1689 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1690 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2); 1691 1692 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id, 1693 ih->ih_key.k_objectid, 1694 INODE_PKEY(dir)->k_dir_id, 1695 INODE_PKEY(dir)->k_objectid); 1696 } else { 1697 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1698 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2); 1699 1700 make_empty_dir_item(body, ih->ih_key.k_dir_id, 1701 ih->ih_key.k_objectid, 1702 INODE_PKEY(dir)->k_dir_id, 1703 INODE_PKEY(dir)->k_objectid); 1704 } 1705 1706 /* look for place in the tree for new item */ 1707 retval = search_item(sb, &key, path); 1708 if (retval == IO_ERROR) { 1709 reiserfs_warning(sb, "vs-13080: reiserfs_new_directory: " 1710 "i/o failure occurred creating new directory"); 1711 return -EIO; 1712 } 1713 if (retval == ITEM_FOUND) { 1714 pathrelse(path); 1715 reiserfs_warning(sb, "vs-13070: reiserfs_new_directory: " 1716 "object with this key exists (%k)", 1717 &(ih->ih_key)); 1718 return -EEXIST; 1719 } 1720 1721 /* insert item, that is empty directory item */ 1722 return reiserfs_insert_item(th, path, &key, ih, inode, body); 1723} 1724 1725/* stat data of object has been inserted, this inserts the item 1726 containing the body of symlink */ 1727static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */ 1728 struct item_head *ih, 1729 struct path *path, const char *symname, 1730 int item_len) 1731{ 1732 struct super_block *sb = th->t_super; 1733 struct cpu_key key; 1734 int retval; 1735 1736 BUG_ON(!th->t_trans_id); 1737 1738 _make_cpu_key(&key, KEY_FORMAT_3_5, 1739 le32_to_cpu(ih->ih_key.k_dir_id), 1740 le32_to_cpu(ih->ih_key.k_objectid), 1741 1, TYPE_DIRECT, 3 /*key length */ ); 1742 1743 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len, 1744 0 /*free_space */ ); 1745 1746 /* look for place in the tree for new item */ 1747 retval = search_item(sb, &key, path); 1748 if (retval == IO_ERROR) { 1749 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlinik: " 1750 "i/o failure occurred creating new symlink"); 1751 return -EIO; 1752 } 1753 if (retval == ITEM_FOUND) { 1754 pathrelse(path); 1755 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlink: " 1756 "object with this key exists (%k)", 1757 &(ih->ih_key)); 1758 return -EEXIST; 1759 } 1760 1761 /* insert item, that is body of symlink */ 1762 return reiserfs_insert_item(th, path, &key, ih, inode, symname); 1763} 1764 1765/* inserts the stat data into the tree, and then calls 1766 reiserfs_new_directory (to insert ".", ".." item if new object is 1767 directory) or reiserfs_new_symlink (to insert symlink body if new 1768 object is symlink) or nothing (if new object is regular file) 1769 1770 NOTE! uid and gid must already be set in the inode. If we return 1771 non-zero due to an error, we have to drop the quota previously allocated 1772 for the fresh inode. This can only be done outside a transaction, so 1773 if we return non-zero, we also end the transaction. */ 1774int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 1775 struct inode *dir, int mode, const char *symname, 1776 /* 0 for regular, EMTRY_DIR_SIZE for dirs, 1777 strlen (symname) for symlinks) */ 1778 loff_t i_size, struct dentry *dentry, 1779 struct inode *inode) 1780{ 1781 struct super_block *sb; 1782 INITIALIZE_PATH(path_to_key); 1783 struct cpu_key key; 1784 struct item_head ih; 1785 struct stat_data sd; 1786 int retval; 1787 int err; 1788 1789 BUG_ON(!th->t_trans_id); 1790 1791 if (DQUOT_ALLOC_INODE(inode)) { 1792 err = -EDQUOT; 1793 goto out_end_trans; 1794 } 1795 if (!dir || !dir->i_nlink) { 1796 err = -EPERM; 1797 goto out_bad_inode; 1798 } 1799 1800 sb = dir->i_sb; 1801 1802 /* item head of new item */ 1803 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir); 1804 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th)); 1805 if (!ih.ih_key.k_objectid) { 1806 err = -ENOMEM; 1807 goto out_bad_inode; 1808 } 1809 if (old_format_only(sb)) 1810 /* not a perfect generation count, as object ids can be reused, but 1811 ** this is as good as reiserfs can do right now. 1812 ** note that the private part of inode isn't filled in yet, we have 1813 ** to use the directory. 1814 */ 1815 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid); 1816 else 1817#if defined( USE_INODE_GENERATION_COUNTER ) 1818 inode->i_generation = 1819 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation); 1820#else 1821 inode->i_generation = ++event; 1822#endif 1823 1824 /* fill stat data */ 1825 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1); 1826 1827 /* uid and gid must already be set by the caller for quota init */ 1828 1829 /* symlink cannot be immutable or append only, right? */ 1830 if (S_ISLNK(inode->i_mode)) 1831 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND); 1832 1833 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC; 1834 inode->i_size = i_size; 1835 inode->i_blocks = 0; 1836 inode->i_bytes = 0; 1837 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 : 1838 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ; 1839 1840 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list)); 1841 REISERFS_I(inode)->i_flags = 0; 1842 REISERFS_I(inode)->i_prealloc_block = 0; 1843 REISERFS_I(inode)->i_prealloc_count = 0; 1844 REISERFS_I(inode)->i_trans_id = 0; 1845 REISERFS_I(inode)->i_jl = NULL; 1846 REISERFS_I(inode)->i_attrs = 1847 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK; 1848 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode); 1849 REISERFS_I(inode)->i_acl_access = NULL; 1850 REISERFS_I(inode)->i_acl_default = NULL; 1851 init_rwsem(&REISERFS_I(inode)->xattr_sem); 1852 1853 if (old_format_only(sb)) 1854 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET, 1855 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT); 1856 else 1857 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET, 1858 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT); 1859 1860 /* key to search for correct place for new stat data */ 1861 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id), 1862 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET, 1863 TYPE_STAT_DATA, 3 /*key length */ ); 1864 1865 /* find proper place for inserting of stat data */ 1866 retval = search_item(sb, &key, &path_to_key); 1867 if (retval == IO_ERROR) { 1868 err = -EIO; 1869 goto out_bad_inode; 1870 } 1871 if (retval == ITEM_FOUND) { 1872 pathrelse(&path_to_key); 1873 err = -EEXIST; 1874 goto out_bad_inode; 1875 } 1876 if (old_format_only(sb)) { 1877 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) { 1878 pathrelse(&path_to_key); 1879 /* i_uid or i_gid is too big to be stored in stat data v3.5 */ 1880 err = -EINVAL; 1881 goto out_bad_inode; 1882 } 1883 inode2sd_v1(&sd, inode, inode->i_size); 1884 } else { 1885 inode2sd(&sd, inode, inode->i_size); 1886 } 1887 // these do not go to on-disk stat data 1888 inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid); 1889 inode->i_blksize = reiserfs_default_io_size; 1890 1891 // store in in-core inode the key of stat data and version all 1892 // object items will have (directory items will have old offset 1893 // format, other new objects will consist of new items) 1894 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE); 1895 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode)) 1896 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1897 else 1898 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1899 if (old_format_only(sb)) 1900 set_inode_sd_version(inode, STAT_DATA_V1); 1901 else 1902 set_inode_sd_version(inode, STAT_DATA_V2); 1903 1904 /* insert the stat data into the tree */ 1905#ifdef DISPLACE_NEW_PACKING_LOCALITIES 1906 if (REISERFS_I(dir)->new_packing_locality) 1907 th->displace_new_blocks = 1; 1908#endif 1909 retval = 1910 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode, 1911 (char *)(&sd)); 1912 if (retval) { 1913 err = retval; 1914 reiserfs_check_path(&path_to_key); 1915 goto out_bad_inode; 1916 } 1917#ifdef DISPLACE_NEW_PACKING_LOCALITIES 1918 if (!th->displace_new_blocks) 1919 REISERFS_I(dir)->new_packing_locality = 0; 1920#endif 1921 if (S_ISDIR(mode)) { 1922 /* insert item with "." and ".." */ 1923 retval = 1924 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir); 1925 } 1926 1927 if (S_ISLNK(mode)) { 1928 /* insert body of symlink */ 1929 if (!old_format_only(sb)) 1930 i_size = ROUND_UP(i_size); 1931 retval = 1932 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname, 1933 i_size); 1934 } 1935 if (retval) { 1936 err = retval; 1937 reiserfs_check_path(&path_to_key); 1938 journal_end(th, th->t_super, th->t_blocks_allocated); 1939 goto out_inserted_sd; 1940 } 1941 1942 /* XXX CHECK THIS */ 1943 if (reiserfs_posixacl(inode->i_sb)) { 1944 retval = reiserfs_inherit_default_acl(dir, dentry, inode); 1945 if (retval) { 1946 err = retval; 1947 reiserfs_check_path(&path_to_key); 1948 journal_end(th, th->t_super, th->t_blocks_allocated); 1949 goto out_inserted_sd; 1950 } 1951 } else if (inode->i_sb->s_flags & MS_POSIXACL) { 1952 reiserfs_warning(inode->i_sb, "ACLs aren't enabled in the fs, " 1953 "but vfs thinks they are!"); 1954 } else if (is_reiserfs_priv_object(dir)) { 1955 reiserfs_mark_inode_private(inode); 1956 } 1957 1958 insert_inode_hash(inode); 1959 reiserfs_update_sd(th, inode); 1960 reiserfs_check_path(&path_to_key); 1961 1962 return 0; 1963 1964/* it looks like you can easily compress these two goto targets into 1965 * one. Keeping it like this doesn't actually hurt anything, and they 1966 * are place holders for what the quota code actually needs. 1967 */ 1968 out_bad_inode: 1969 /* Invalidate the object, nothing was inserted yet */ 1970 INODE_PKEY(inode)->k_objectid = 0; 1971 1972 /* Quota change must be inside a transaction for journaling */ 1973 DQUOT_FREE_INODE(inode); 1974 1975 out_end_trans: 1976 journal_end(th, th->t_super, th->t_blocks_allocated); 1977 /* Drop can be outside and it needs more credits so it's better to have it outside */ 1978 DQUOT_DROP(inode); 1979 inode->i_flags |= S_NOQUOTA; 1980 make_bad_inode(inode); 1981 1982 out_inserted_sd: 1983 inode->i_nlink = 0; 1984 th->t_trans_id = 0; /* so the caller can't use this handle later */ 1985 1986 /* If we were inheriting an ACL, we need to release the lock so that 1987 * iput doesn't deadlock in reiserfs_delete_xattrs. The locking 1988 * code really needs to be reworked, but this will take care of it 1989 * for now. -jeffm */ 1990 if (REISERFS_I(dir)->i_acl_default && !IS_ERR(REISERFS_I(dir)->i_acl_default)) { 1991 reiserfs_write_unlock_xattrs(dir->i_sb); 1992 iput(inode); 1993 reiserfs_write_lock_xattrs(dir->i_sb); 1994 } else 1995 iput(inode); 1996 return err; 1997} 1998 1999/* 2000** finds the tail page in the page cache, 2001** reads the last block in. 2002** 2003** On success, page_result is set to a locked, pinned page, and bh_result 2004** is set to an up to date buffer for the last block in the file. returns 0. 2005** 2006** tail conversion is not done, so bh_result might not be valid for writing 2007** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before 2008** trying to write the block. 2009** 2010** on failure, nonzero is returned, page_result and bh_result are untouched. 2011*/ 2012static int grab_tail_page(struct inode *p_s_inode, 2013 struct page **page_result, 2014 struct buffer_head **bh_result) 2015{ 2016 2017 /* we want the page with the last byte in the file, 2018 ** not the page that will hold the next byte for appending 2019 */ 2020 unsigned long index = (p_s_inode->i_size - 1) >> PAGE_CACHE_SHIFT; 2021 unsigned long pos = 0; 2022 unsigned long start = 0; 2023 unsigned long blocksize = p_s_inode->i_sb->s_blocksize; 2024 unsigned long offset = (p_s_inode->i_size) & (PAGE_CACHE_SIZE - 1); 2025 struct buffer_head *bh; 2026 struct buffer_head *head; 2027 struct page *page; 2028 int error; 2029 2030 /* we know that we are only called with inode->i_size > 0. 2031 ** we also know that a file tail can never be as big as a block 2032 ** If i_size % blocksize == 0, our file is currently block aligned 2033 ** and it won't need converting or zeroing after a truncate. 2034 */ 2035 if ((offset & (blocksize - 1)) == 0) { 2036 return -ENOENT; 2037 } 2038 page = grab_cache_page(p_s_inode->i_mapping, index); 2039 error = -ENOMEM; 2040 if (!page) { 2041 goto out; 2042 } 2043 /* start within the page of the last block in the file */ 2044 start = (offset / blocksize) * blocksize; 2045 2046 error = block_prepare_write(page, start, offset, 2047 reiserfs_get_block_create_0); 2048 if (error) 2049 goto unlock; 2050 2051 head = page_buffers(page); 2052 bh = head; 2053 do { 2054 if (pos >= start) { 2055 break; 2056 } 2057 bh = bh->b_this_page; 2058 pos += blocksize; 2059 } while (bh != head); 2060 2061 if (!buffer_uptodate(bh)) { 2062 /* note, this should never happen, prepare_write should 2063 ** be taking care of this for us. If the buffer isn't up to date, 2064 ** I've screwed up the code to find the buffer, or the code to 2065 ** call prepare_write 2066 */ 2067 reiserfs_warning(p_s_inode->i_sb, 2068 "clm-6000: error reading block %lu on dev %s", 2069 bh->b_blocknr, 2070 reiserfs_bdevname(p_s_inode->i_sb)); 2071 error = -EIO; 2072 goto unlock; 2073 } 2074 *bh_result = bh; 2075 *page_result = page; 2076 2077 out: 2078 return error; 2079 2080 unlock: 2081 unlock_page(page); 2082 page_cache_release(page); 2083 return error; 2084} 2085 2086/* 2087** vfs version of truncate file. Must NOT be called with 2088** a transaction already started. 2089** 2090** some code taken from block_truncate_page 2091*/ 2092int reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps) 2093{ 2094 struct reiserfs_transaction_handle th; 2095 /* we want the offset for the first byte after the end of the file */ 2096 unsigned long offset = p_s_inode->i_size & (PAGE_CACHE_SIZE - 1); 2097 unsigned blocksize = p_s_inode->i_sb->s_blocksize; 2098 unsigned length; 2099 struct page *page = NULL; 2100 int error; 2101 struct buffer_head *bh = NULL; 2102 2103 reiserfs_write_lock(p_s_inode->i_sb); 2104 2105 if (p_s_inode->i_size > 0) { 2106 if ((error = grab_tail_page(p_s_inode, &page, &bh))) { 2107 // -ENOENT means we truncated past the end of the file, 2108 // and get_block_create_0 could not find a block to read in, 2109 // which is ok. 2110 if (error != -ENOENT) 2111 reiserfs_warning(p_s_inode->i_sb, 2112 "clm-6001: grab_tail_page failed %d", 2113 error); 2114 page = NULL; 2115 bh = NULL; 2116 } 2117 } 2118 2119 /* so, if page != NULL, we have a buffer head for the offset at 2120 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0, 2121 ** then we have an unformatted node. Otherwise, we have a direct item, 2122 ** and no zeroing is required on disk. We zero after the truncate, 2123 ** because the truncate might pack the item anyway 2124 ** (it will unmap bh if it packs). 2125 */ 2126 /* it is enough to reserve space in transaction for 2 balancings: 2127 one for "save" link adding and another for the first 2128 cut_from_item. 1 is for update_sd */ 2129 error = journal_begin(&th, p_s_inode->i_sb, 2130 JOURNAL_PER_BALANCE_CNT * 2 + 1); 2131 if (error) 2132 goto out; 2133 reiserfs_update_inode_transaction(p_s_inode); 2134 if (update_timestamps) 2135 /* we are doing real truncate: if the system crashes before the last 2136 transaction of truncating gets committed - on reboot the file 2137 either appears truncated properly or not truncated at all */ 2138 add_save_link(&th, p_s_inode, 1); 2139 error = reiserfs_do_truncate(&th, p_s_inode, page, update_timestamps); 2140 if (error) 2141 goto out; 2142 error = 2143 journal_end(&th, p_s_inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1); 2144 if (error) 2145 goto out; 2146 2147 if (update_timestamps) { 2148 error = remove_save_link(p_s_inode, 1 /* truncate */ ); 2149 if (error) 2150 goto out; 2151 } 2152 2153 if (page) { 2154 length = offset & (blocksize - 1); 2155 /* if we are not on a block boundary */ 2156 if (length) { 2157 char *kaddr; 2158 2159 length = blocksize - length; 2160 kaddr = kmap_atomic(page, KM_USER0); 2161 memset(kaddr + offset, 0, length); 2162 flush_dcache_page(page); 2163 kunmap_atomic(kaddr, KM_USER0); 2164 if (buffer_mapped(bh) && bh->b_blocknr != 0) { 2165 mark_buffer_dirty(bh); 2166 } 2167 } 2168 unlock_page(page); 2169 page_cache_release(page); 2170 } 2171 2172 reiserfs_write_unlock(p_s_inode->i_sb); 2173 return 0; 2174 out: 2175 if (page) { 2176 unlock_page(page); 2177 page_cache_release(page); 2178 } 2179 reiserfs_write_unlock(p_s_inode->i_sb); 2180 return error; 2181} 2182 2183static int map_block_for_writepage(struct inode *inode, 2184 struct buffer_head *bh_result, 2185 unsigned long block) 2186{ 2187 struct reiserfs_transaction_handle th; 2188 int fs_gen; 2189 struct item_head tmp_ih; 2190 struct item_head *ih; 2191 struct buffer_head *bh; 2192 __le32 *item; 2193 struct cpu_key key; 2194 INITIALIZE_PATH(path); 2195 int pos_in_item; 2196 int jbegin_count = JOURNAL_PER_BALANCE_CNT; 2197 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1; 2198 int retval; 2199 int use_get_block = 0; 2200 int bytes_copied = 0; 2201 int copy_size; 2202 int trans_running = 0; 2203 2204 /* catch places below that try to log something without starting a trans */ 2205 th.t_trans_id = 0; 2206 2207 if (!buffer_uptodate(bh_result)) { 2208 return -EIO; 2209 } 2210 2211 kmap(bh_result->b_page); 2212 start_over: 2213 reiserfs_write_lock(inode->i_sb); 2214 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3); 2215 2216 research: 2217 retval = search_for_position_by_key(inode->i_sb, &key, &path); 2218 if (retval != POSITION_FOUND) { 2219 use_get_block = 1; 2220 goto out; 2221 } 2222 2223 bh = get_last_bh(&path); 2224 ih = get_ih(&path); 2225 item = get_item(&path); 2226 pos_in_item = path.pos_in_item; 2227 2228 /* we've found an unformatted node */ 2229 if (indirect_item_found(retval, ih)) { 2230 if (bytes_copied > 0) { 2231 reiserfs_warning(inode->i_sb, 2232 "clm-6002: bytes_copied %d", 2233 bytes_copied); 2234 } 2235 if (!get_block_num(item, pos_in_item)) { 2236 /* crap, we are writing to a hole */ 2237 use_get_block = 1; 2238 goto out; 2239 } 2240 set_block_dev_mapped(bh_result, 2241 get_block_num(item, pos_in_item), inode); 2242 } else if (is_direct_le_ih(ih)) { 2243 char *p; 2244 p = page_address(bh_result->b_page); 2245 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1); 2246 copy_size = ih_item_len(ih) - pos_in_item; 2247 2248 fs_gen = get_generation(inode->i_sb); 2249 copy_item_head(&tmp_ih, ih); 2250 2251 if (!trans_running) { 2252 /* vs-3050 is gone, no need to drop the path */ 2253 retval = journal_begin(&th, inode->i_sb, jbegin_count); 2254 if (retval) 2255 goto out; 2256 reiserfs_update_inode_transaction(inode); 2257 trans_running = 1; 2258 if (fs_changed(fs_gen, inode->i_sb) 2259 && item_moved(&tmp_ih, &path)) { 2260 reiserfs_restore_prepared_buffer(inode->i_sb, 2261 bh); 2262 goto research; 2263 } 2264 } 2265 2266 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 2267 2268 if (fs_changed(fs_gen, inode->i_sb) 2269 && item_moved(&tmp_ih, &path)) { 2270 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 2271 goto research; 2272 } 2273 2274 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied, 2275 copy_size); 2276 2277 journal_mark_dirty(&th, inode->i_sb, bh); 2278 bytes_copied += copy_size; 2279 set_block_dev_mapped(bh_result, 0, inode); 2280 2281 /* are there still bytes left? */ 2282 if (bytes_copied < bh_result->b_size && 2283 (byte_offset + bytes_copied) < inode->i_size) { 2284 set_cpu_key_k_offset(&key, 2285 cpu_key_k_offset(&key) + 2286 copy_size); 2287 goto research; 2288 } 2289 } else { 2290 reiserfs_warning(inode->i_sb, 2291 "clm-6003: bad item inode %lu, device %s", 2292 inode->i_ino, reiserfs_bdevname(inode->i_sb)); 2293 retval = -EIO; 2294 goto out; 2295 } 2296 retval = 0; 2297 2298 out: 2299 pathrelse(&path); 2300 if (trans_running) { 2301 int err = journal_end(&th, inode->i_sb, jbegin_count); 2302 if (err) 2303 retval = err; 2304 trans_running = 0; 2305 } 2306 reiserfs_write_unlock(inode->i_sb); 2307 2308 /* this is where we fill in holes in the file. */ 2309 if (use_get_block) { 2310 retval = reiserfs_get_block(inode, block, bh_result, 2311 GET_BLOCK_CREATE | GET_BLOCK_NO_ISEM 2312 | GET_BLOCK_NO_DANGLE); 2313 if (!retval) { 2314 if (!buffer_mapped(bh_result) 2315 || bh_result->b_blocknr == 0) { 2316 /* get_block failed to find a mapped unformatted node. */ 2317 use_get_block = 0; 2318 goto start_over; 2319 } 2320 } 2321 } 2322 kunmap(bh_result->b_page); 2323 2324 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 2325 /* we've copied data from the page into the direct item, so the 2326 * buffer in the page is now clean, mark it to reflect that. 2327 */ 2328 lock_buffer(bh_result); 2329 clear_buffer_dirty(bh_result); 2330 unlock_buffer(bh_result); 2331 } 2332 return retval; 2333} 2334 2335/* 2336 * mason@suse.com: updated in 2.5.54 to follow the same general io 2337 * start/recovery path as __block_write_full_page, along with special 2338 * code to handle reiserfs tails. 2339 */ 2340static int reiserfs_write_full_page(struct page *page, 2341 struct writeback_control *wbc) 2342{ 2343 struct inode *inode = page->mapping->host; 2344 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT; 2345 int error = 0; 2346 unsigned long block; 2347 struct buffer_head *head, *bh; 2348 int partial = 0; 2349 int nr = 0; 2350 int checked = PageChecked(page); 2351 struct reiserfs_transaction_handle th; 2352 struct super_block *s = inode->i_sb; 2353 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize; 2354 th.t_trans_id = 0; 2355 2356 /* The page dirty bit is cleared before writepage is called, which 2357 * means we have to tell create_empty_buffers to make dirty buffers 2358 * The page really should be up to date at this point, so tossing 2359 * in the BH_Uptodate is just a sanity check. 2360 */ 2361 if (!page_has_buffers(page)) { 2362 create_empty_buffers(page, s->s_blocksize, 2363 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2364 } 2365 head = page_buffers(page); 2366 2367 /* last page in the file, zero out any contents past the 2368 ** last byte in the file 2369 */ 2370 if (page->index >= end_index) { 2371 char *kaddr; 2372 unsigned last_offset; 2373 2374 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 2375 /* no file contents in this page */ 2376 if (page->index >= end_index + 1 || !last_offset) { 2377 unlock_page(page); 2378 return 0; 2379 } 2380 kaddr = kmap_atomic(page, KM_USER0); 2381 memset(kaddr + last_offset, 0, PAGE_CACHE_SIZE - last_offset); 2382 flush_dcache_page(page); 2383 kunmap_atomic(kaddr, KM_USER0); 2384 } 2385 bh = head; 2386 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits); 2387 /* first map all the buffers, logging any direct items we find */ 2388 do { 2389 if ((checked || buffer_dirty(bh)) && (!buffer_mapped(bh) || 2390 (buffer_mapped(bh) 2391 && bh->b_blocknr == 2392 0))) { 2393 /* not mapped yet, or it points to a direct item, search 2394 * the btree for the mapping info, and log any direct 2395 * items found 2396 */ 2397 if ((error = map_block_for_writepage(inode, bh, block))) { 2398 goto fail; 2399 } 2400 } 2401 bh = bh->b_this_page; 2402 block++; 2403 } while (bh != head); 2404 2405 /* 2406 * we start the transaction after map_block_for_writepage, 2407 * because it can create holes in the file (an unbounded operation). 2408 * starting it here, we can make a reliable estimate for how many 2409 * blocks we're going to log 2410 */ 2411 if (checked) { 2412 ClearPageChecked(page); 2413 reiserfs_write_lock(s); 2414 error = journal_begin(&th, s, bh_per_page + 1); 2415 if (error) { 2416 reiserfs_write_unlock(s); 2417 goto fail; 2418 } 2419 reiserfs_update_inode_transaction(inode); 2420 } 2421 /* now go through and lock any dirty buffers on the page */ 2422 do { 2423 get_bh(bh); 2424 if (!buffer_mapped(bh)) 2425 continue; 2426 if (buffer_mapped(bh) && bh->b_blocknr == 0) 2427 continue; 2428 2429 if (checked) { 2430 reiserfs_prepare_for_journal(s, bh, 1); 2431 journal_mark_dirty(&th, s, bh); 2432 continue; 2433 } 2434 /* from this point on, we know the buffer is mapped to a 2435 * real block and not a direct item 2436 */ 2437 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 2438 lock_buffer(bh); 2439 } else { 2440 if (test_set_buffer_locked(bh)) { 2441 redirty_page_for_writepage(wbc, page); 2442 continue; 2443 } 2444 } 2445 if (test_clear_buffer_dirty(bh)) { 2446 mark_buffer_async_write(bh); 2447 } else { 2448 unlock_buffer(bh); 2449 } 2450 } while ((bh = bh->b_this_page) != head); 2451 2452 if (checked) { 2453 error = journal_end(&th, s, bh_per_page + 1); 2454 reiserfs_write_unlock(s); 2455 if (error) 2456 goto fail; 2457 } 2458 BUG_ON(PageWriteback(page)); 2459 set_page_writeback(page); 2460 unlock_page(page); 2461 2462 /* 2463 * since any buffer might be the only dirty buffer on the page, 2464 * the first submit_bh can bring the page out of writeback. 2465 * be careful with the buffers. 2466 */ 2467 do { 2468 struct buffer_head *next = bh->b_this_page; 2469 if (buffer_async_write(bh)) { 2470 submit_bh(WRITE, bh); 2471 nr++; 2472 } 2473 put_bh(bh); 2474 bh = next; 2475 } while (bh != head); 2476 2477 error = 0; 2478 done: 2479 if (nr == 0) { 2480 /* 2481 * if this page only had a direct item, it is very possible for 2482 * no io to be required without there being an error. Or, 2483 * someone else could have locked them and sent them down the 2484 * pipe without locking the page 2485 */ 2486 bh = head; 2487 do { 2488 if (!buffer_uptodate(bh)) { 2489 partial = 1; 2490 break; 2491 } 2492 bh = bh->b_this_page; 2493 } while (bh != head); 2494 if (!partial) 2495 SetPageUptodate(page); 2496 end_page_writeback(page); 2497 } 2498 return error; 2499 2500 fail: 2501 /* catches various errors, we need to make sure any valid dirty blocks 2502 * get to the media. The page is currently locked and not marked for 2503 * writeback 2504 */ 2505 ClearPageUptodate(page); 2506 bh = head; 2507 do { 2508 get_bh(bh); 2509 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) { 2510 lock_buffer(bh); 2511 mark_buffer_async_write(bh); 2512 } else { 2513 /* 2514 * clear any dirty bits that might have come from getting 2515 * attached to a dirty page 2516 */ 2517 clear_buffer_dirty(bh); 2518 } 2519 bh = bh->b_this_page; 2520 } while (bh != head); 2521 SetPageError(page); 2522 BUG_ON(PageWriteback(page)); 2523 set_page_writeback(page); 2524 unlock_page(page); 2525 do { 2526 struct buffer_head *next = bh->b_this_page; 2527 if (buffer_async_write(bh)) { 2528 clear_buffer_dirty(bh); 2529 submit_bh(WRITE, bh); 2530 nr++; 2531 } 2532 put_bh(bh); 2533 bh = next; 2534 } while (bh != head); 2535 goto done; 2536} 2537 2538static int reiserfs_readpage(struct file *f, struct page *page) 2539{ 2540 return block_read_full_page(page, reiserfs_get_block); 2541} 2542 2543static int reiserfs_writepage(struct page *page, struct writeback_control *wbc) 2544{ 2545 struct inode *inode = page->mapping->host; 2546 reiserfs_wait_on_write_block(inode->i_sb); 2547 return reiserfs_write_full_page(page, wbc); 2548} 2549 2550static int reiserfs_prepare_write(struct file *f, struct page *page, 2551 unsigned from, unsigned to) 2552{ 2553 struct inode *inode = page->mapping->host; 2554 int ret; 2555 int old_ref = 0; 2556 2557 reiserfs_wait_on_write_block(inode->i_sb); 2558 fix_tail_page_for_writing(page); 2559 if (reiserfs_transaction_running(inode->i_sb)) { 2560 struct reiserfs_transaction_handle *th; 2561 th = (struct reiserfs_transaction_handle *)current-> 2562 journal_info; 2563 BUG_ON(!th->t_refcount); 2564 BUG_ON(!th->t_trans_id); 2565 old_ref = th->t_refcount; 2566 th->t_refcount++; 2567 } 2568 2569 ret = block_prepare_write(page, from, to, reiserfs_get_block); 2570 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2571 struct reiserfs_transaction_handle *th = current->journal_info; 2572 /* this gets a little ugly. If reiserfs_get_block returned an 2573 * error and left a transacstion running, we've got to close it, 2574 * and we've got to free handle if it was a persistent transaction. 2575 * 2576 * But, if we had nested into an existing transaction, we need 2577 * to just drop the ref count on the handle. 2578 * 2579 * If old_ref == 0, the transaction is from reiserfs_get_block, 2580 * and it was a persistent trans. Otherwise, it was nested above. 2581 */ 2582 if (th->t_refcount > old_ref) { 2583 if (old_ref) 2584 th->t_refcount--; 2585 else { 2586 int err; 2587 reiserfs_write_lock(inode->i_sb); 2588 err = reiserfs_end_persistent_transaction(th); 2589 reiserfs_write_unlock(inode->i_sb); 2590 if (err) 2591 ret = err; 2592 } 2593 } 2594 } 2595 return ret; 2596 2597} 2598 2599static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block) 2600{ 2601 return generic_block_bmap(as, block, reiserfs_bmap); 2602} 2603 2604static int reiserfs_commit_write(struct file *f, struct page *page, 2605 unsigned from, unsigned to) 2606{ 2607 struct inode *inode = page->mapping->host; 2608 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to; 2609 int ret = 0; 2610 int update_sd = 0; 2611 struct reiserfs_transaction_handle *th = NULL; 2612 2613 reiserfs_wait_on_write_block(inode->i_sb); 2614 if (reiserfs_transaction_running(inode->i_sb)) { 2615 th = current->journal_info; 2616 } 2617 reiserfs_commit_page(inode, page, from, to); 2618 2619 /* generic_commit_write does this for us, but does not update the 2620 ** transaction tracking stuff when the size changes. So, we have 2621 ** to do the i_size updates here. 2622 */ 2623 if (pos > inode->i_size) { 2624 struct reiserfs_transaction_handle myth; 2625 reiserfs_write_lock(inode->i_sb); 2626 /* If the file have grown beyond the border where it 2627 can have a tail, unmark it as needing a tail 2628 packing */ 2629 if ((have_large_tails(inode->i_sb) 2630 && inode->i_size > i_block_size(inode) * 4) 2631 || (have_small_tails(inode->i_sb) 2632 && inode->i_size > i_block_size(inode))) 2633 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2634 2635 ret = journal_begin(&myth, inode->i_sb, 1); 2636 if (ret) { 2637 reiserfs_write_unlock(inode->i_sb); 2638 goto journal_error; 2639 } 2640 reiserfs_update_inode_transaction(inode); 2641 inode->i_size = pos; 2642 /* 2643 * this will just nest into our transaction. It's important 2644 * to use mark_inode_dirty so the inode gets pushed around on the 2645 * dirty lists, and so that O_SYNC works as expected 2646 */ 2647 mark_inode_dirty(inode); 2648 reiserfs_update_sd(&myth, inode); 2649 update_sd = 1; 2650 ret = journal_end(&myth, inode->i_sb, 1); 2651 reiserfs_write_unlock(inode->i_sb); 2652 if (ret) 2653 goto journal_error; 2654 } 2655 if (th) { 2656 reiserfs_write_lock(inode->i_sb); 2657 if (!update_sd) 2658 mark_inode_dirty(inode); 2659 ret = reiserfs_end_persistent_transaction(th); 2660 reiserfs_write_unlock(inode->i_sb); 2661 if (ret) 2662 goto out; 2663 } 2664 2665 out: 2666 return ret; 2667 2668 journal_error: 2669 if (th) { 2670 reiserfs_write_lock(inode->i_sb); 2671 if (!update_sd) 2672 reiserfs_update_sd(th, inode); 2673 ret = reiserfs_end_persistent_transaction(th); 2674 reiserfs_write_unlock(inode->i_sb); 2675 } 2676 2677 return ret; 2678} 2679 2680void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode) 2681{ 2682 if (reiserfs_attrs(inode->i_sb)) { 2683 if (sd_attrs & REISERFS_SYNC_FL) 2684 inode->i_flags |= S_SYNC; 2685 else 2686 inode->i_flags &= ~S_SYNC; 2687 if (sd_attrs & REISERFS_IMMUTABLE_FL) 2688 inode->i_flags |= S_IMMUTABLE; 2689 else 2690 inode->i_flags &= ~S_IMMUTABLE; 2691 if (sd_attrs & REISERFS_APPEND_FL) 2692 inode->i_flags |= S_APPEND; 2693 else 2694 inode->i_flags &= ~S_APPEND; 2695 if (sd_attrs & REISERFS_NOATIME_FL) 2696 inode->i_flags |= S_NOATIME; 2697 else 2698 inode->i_flags &= ~S_NOATIME; 2699 if (sd_attrs & REISERFS_NOTAIL_FL) 2700 REISERFS_I(inode)->i_flags |= i_nopack_mask; 2701 else 2702 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 2703 } 2704} 2705 2706void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs) 2707{ 2708 if (reiserfs_attrs(inode->i_sb)) { 2709 if (inode->i_flags & S_IMMUTABLE) 2710 *sd_attrs |= REISERFS_IMMUTABLE_FL; 2711 else 2712 *sd_attrs &= ~REISERFS_IMMUTABLE_FL; 2713 if (inode->i_flags & S_SYNC) 2714 *sd_attrs |= REISERFS_SYNC_FL; 2715 else 2716 *sd_attrs &= ~REISERFS_SYNC_FL; 2717 if (inode->i_flags & S_NOATIME) 2718 *sd_attrs |= REISERFS_NOATIME_FL; 2719 else 2720 *sd_attrs &= ~REISERFS_NOATIME_FL; 2721 if (REISERFS_I(inode)->i_flags & i_nopack_mask) 2722 *sd_attrs |= REISERFS_NOTAIL_FL; 2723 else 2724 *sd_attrs &= ~REISERFS_NOTAIL_FL; 2725 } 2726} 2727 2728/* decide if this buffer needs to stay around for data logging or ordered 2729** write purposes 2730*/ 2731static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh) 2732{ 2733 int ret = 1; 2734 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 2735 2736 spin_lock(&j->j_dirty_buffers_lock); 2737 if (!buffer_mapped(bh)) { 2738 goto free_jh; 2739 } 2740 /* the page is locked, and the only places that log a data buffer 2741 * also lock the page. 2742 */ 2743 if (reiserfs_file_data_log(inode)) { 2744 /* 2745 * very conservative, leave the buffer pinned if 2746 * anyone might need it. 2747 */ 2748 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) { 2749 ret = 0; 2750 } 2751 } else if (buffer_dirty(bh) || buffer_locked(bh)) { 2752 struct reiserfs_journal_list *jl; 2753 struct reiserfs_jh *jh = bh->b_private; 2754 2755 /* why is this safe? 2756 * reiserfs_setattr updates i_size in the on disk 2757 * stat data before allowing vmtruncate to be called. 2758 * 2759 * If buffer was put onto the ordered list for this 2760 * transaction, we know for sure either this transaction 2761 * or an older one already has updated i_size on disk, 2762 * and this ordered data won't be referenced in the file 2763 * if we crash. 2764 * 2765 * if the buffer was put onto the ordered list for an older 2766 * transaction, we need to leave it around 2767 */ 2768 if (jh && (jl = jh->jl) 2769 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl) 2770 ret = 0; 2771 } 2772 free_jh: 2773 if (ret && bh->b_private) { 2774 reiserfs_free_jh(bh); 2775 } 2776 spin_unlock(&j->j_dirty_buffers_lock); 2777 return ret; 2778} 2779 2780/* clm -- taken from fs/buffer.c:block_invalidate_page */ 2781static int reiserfs_invalidatepage(struct page *page, unsigned long offset) 2782{ 2783 struct buffer_head *head, *bh, *next; 2784 struct inode *inode = page->mapping->host; 2785 unsigned int curr_off = 0; 2786 int ret = 1; 2787 2788 BUG_ON(!PageLocked(page)); 2789 2790 if (offset == 0) 2791 ClearPageChecked(page); 2792 2793 if (!page_has_buffers(page)) 2794 goto out; 2795 2796 head = page_buffers(page); 2797 bh = head; 2798 do { 2799 unsigned int next_off = curr_off + bh->b_size; 2800 next = bh->b_this_page; 2801 2802 /* 2803 * is this block fully invalidated? 2804 */ 2805 if (offset <= curr_off) { 2806 if (invalidatepage_can_drop(inode, bh)) 2807 reiserfs_unmap_buffer(bh); 2808 else 2809 ret = 0; 2810 } 2811 curr_off = next_off; 2812 bh = next; 2813 } while (bh != head); 2814 2815 /* 2816 * We release buffers only if the entire page is being invalidated. 2817 * The get_block cached value has been unconditionally invalidated, 2818 * so real IO is not possible anymore. 2819 */ 2820 if (!offset && ret) 2821 ret = try_to_release_page(page, 0); 2822 out: 2823 return ret; 2824} 2825 2826static int reiserfs_set_page_dirty(struct page *page) 2827{ 2828 struct inode *inode = page->mapping->host; 2829 if (reiserfs_file_data_log(inode)) { 2830 SetPageChecked(page); 2831 return __set_page_dirty_nobuffers(page); 2832 } 2833 return __set_page_dirty_buffers(page); 2834} 2835 2836/* 2837 * Returns 1 if the page's buffers were dropped. The page is locked. 2838 * 2839 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads 2840 * in the buffers at page_buffers(page). 2841 * 2842 * even in -o notail mode, we can't be sure an old mount without -o notail 2843 * didn't create files with tails. 2844 */ 2845static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags) 2846{ 2847 struct inode *inode = page->mapping->host; 2848 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 2849 struct buffer_head *head; 2850 struct buffer_head *bh; 2851 int ret = 1; 2852 2853 WARN_ON(PageChecked(page)); 2854 spin_lock(&j->j_dirty_buffers_lock); 2855 head = page_buffers(page); 2856 bh = head; 2857 do { 2858 if (bh->b_private) { 2859 if (!buffer_dirty(bh) && !buffer_locked(bh)) { 2860 reiserfs_free_jh(bh); 2861 } else { 2862 ret = 0; 2863 break; 2864 } 2865 } 2866 bh = bh->b_this_page; 2867 } while (bh != head); 2868 if (ret) 2869 ret = try_to_free_buffers(page); 2870 spin_unlock(&j->j_dirty_buffers_lock); 2871 return ret; 2872} 2873 2874/* We thank Mingming Cao for helping us understand in great detail what 2875 to do in this section of the code. */ 2876static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb, 2877 const struct iovec *iov, loff_t offset, 2878 unsigned long nr_segs) 2879{ 2880 struct file *file = iocb->ki_filp; 2881 struct inode *inode = file->f_mapping->host; 2882 2883 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 2884 offset, nr_segs, 2885 reiserfs_get_blocks_direct_io, NULL); 2886} 2887 2888int reiserfs_setattr(struct dentry *dentry, struct iattr *attr) 2889{ 2890 struct inode *inode = dentry->d_inode; 2891 int error; 2892 unsigned int ia_valid = attr->ia_valid; 2893 reiserfs_write_lock(inode->i_sb); 2894 if (attr->ia_valid & ATTR_SIZE) { 2895 /* version 2 items will be caught by the s_maxbytes check 2896 ** done for us in vmtruncate 2897 */ 2898 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 && 2899 attr->ia_size > MAX_NON_LFS) { 2900 error = -EFBIG; 2901 goto out; 2902 } 2903 /* fill in hole pointers in the expanding truncate case. */ 2904 if (attr->ia_size > inode->i_size) { 2905 error = generic_cont_expand(inode, attr->ia_size); 2906 if (REISERFS_I(inode)->i_prealloc_count > 0) { 2907 int err; 2908 struct reiserfs_transaction_handle th; 2909 /* we're changing at most 2 bitmaps, inode + super */ 2910 err = journal_begin(&th, inode->i_sb, 4); 2911 if (!err) { 2912 reiserfs_discard_prealloc(&th, inode); 2913 err = journal_end(&th, inode->i_sb, 4); 2914 } 2915 if (err) 2916 error = err; 2917 } 2918 if (error) 2919 goto out; 2920 } 2921 } 2922 2923 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) || 2924 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) && 2925 (get_inode_sd_version(inode) == STAT_DATA_V1)) { 2926 /* stat data of format v3.5 has 16 bit uid and gid */ 2927 error = -EINVAL; 2928 goto out; 2929 } 2930 2931 error = inode_change_ok(inode, attr); 2932 if (!error) { 2933 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 2934 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 2935 error = reiserfs_chown_xattrs(inode, attr); 2936 2937 if (!error) { 2938 struct reiserfs_transaction_handle th; 2939 int jbegin_count = 2940 2 * 2941 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) + 2942 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) + 2943 2; 2944 2945 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */ 2946 error = 2947 journal_begin(&th, inode->i_sb, 2948 jbegin_count); 2949 if (error) 2950 goto out; 2951 error = 2952 DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0; 2953 if (error) { 2954 journal_end(&th, inode->i_sb, 2955 jbegin_count); 2956 goto out; 2957 } 2958 /* Update corresponding info in inode so that everything is in 2959 * one transaction */ 2960 if (attr->ia_valid & ATTR_UID) 2961 inode->i_uid = attr->ia_uid; 2962 if (attr->ia_valid & ATTR_GID) 2963 inode->i_gid = attr->ia_gid; 2964 mark_inode_dirty(inode); 2965 error = 2966 journal_end(&th, inode->i_sb, jbegin_count); 2967 } 2968 } 2969 if (!error) 2970 error = inode_setattr(inode, attr); 2971 } 2972 2973 if (!error && reiserfs_posixacl(inode->i_sb)) { 2974 if (attr->ia_valid & ATTR_MODE) 2975 error = reiserfs_acl_chmod(inode); 2976 } 2977 2978 out: 2979 reiserfs_write_unlock(inode->i_sb); 2980 return error; 2981} 2982 2983struct address_space_operations reiserfs_address_space_operations = { 2984 .writepage = reiserfs_writepage, 2985 .readpage = reiserfs_readpage, 2986 .readpages = reiserfs_readpages, 2987 .releasepage = reiserfs_releasepage, 2988 .invalidatepage = reiserfs_invalidatepage, 2989 .sync_page = block_sync_page, 2990 .prepare_write = reiserfs_prepare_write, 2991 .commit_write = reiserfs_commit_write, 2992 .bmap = reiserfs_aop_bmap, 2993 .direct_IO = reiserfs_direct_IO, 2994 .set_page_dirty = reiserfs_set_page_dirty, 2995}; 2996