inode.c revision b43fa8284d7790d9cca32c9c55e24f29be2fa33b
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5#include <linux/time.h>
6#include <linux/fs.h>
7#include <linux/reiserfs_fs.h>
8#include <linux/reiserfs_acl.h>
9#include <linux/reiserfs_xattr.h>
10#include <linux/exportfs.h>
11#include <linux/smp_lock.h>
12#include <linux/pagemap.h>
13#include <linux/highmem.h>
14#include <asm/uaccess.h>
15#include <asm/unaligned.h>
16#include <linux/buffer_head.h>
17#include <linux/mpage.h>
18#include <linux/writeback.h>
19#include <linux/quotaops.h>
20#include <linux/swap.h>
21
22int reiserfs_commit_write(struct file *f, struct page *page,
23			  unsigned from, unsigned to);
24int reiserfs_prepare_write(struct file *f, struct page *page,
25			   unsigned from, unsigned to);
26
27void reiserfs_delete_inode(struct inode *inode)
28{
29	/* We need blocks for transaction + (user+group) quota update (possibly delete) */
30	int jbegin_count =
31	    JOURNAL_PER_BALANCE_CNT * 2 +
32	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
33	struct reiserfs_transaction_handle th;
34	int depth;
35	int err;
36
37	truncate_inode_pages(&inode->i_data, 0);
38
39	depth = reiserfs_write_lock_once(inode->i_sb);
40
41	/* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
42	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {	/* also handles bad_inode case */
43		reiserfs_delete_xattrs(inode);
44
45		if (journal_begin(&th, inode->i_sb, jbegin_count))
46			goto out;
47		reiserfs_update_inode_transaction(inode);
48
49		reiserfs_discard_prealloc(&th, inode);
50
51		err = reiserfs_delete_object(&th, inode);
52
53		/* Do quota update inside a transaction for journaled quotas. We must do that
54		 * after delete_object so that quota updates go into the same transaction as
55		 * stat data deletion */
56		if (!err)
57			dquot_free_inode(inode);
58
59		if (journal_end(&th, inode->i_sb, jbegin_count))
60			goto out;
61
62		/* check return value from reiserfs_delete_object after
63		 * ending the transaction
64		 */
65		if (err)
66		    goto out;
67
68		/* all items of file are deleted, so we can remove "save" link */
69		remove_save_link(inode, 0 /* not truncate */ );	/* we can't do anything
70								 * about an error here */
71	} else {
72		/* no object items are in the tree */
73		;
74	}
75      out:
76	clear_inode(inode);	/* note this must go after the journal_end to prevent deadlock */
77	inode->i_blocks = 0;
78	reiserfs_write_unlock_once(inode->i_sb, depth);
79}
80
81static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
82			  __u32 objectid, loff_t offset, int type, int length)
83{
84	key->version = version;
85
86	key->on_disk_key.k_dir_id = dirid;
87	key->on_disk_key.k_objectid = objectid;
88	set_cpu_key_k_offset(key, offset);
89	set_cpu_key_k_type(key, type);
90	key->key_length = length;
91}
92
93/* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
94   offset and type of key */
95void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
96		  int type, int length)
97{
98	_make_cpu_key(key, get_inode_item_key_version(inode),
99		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
100		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
101		      length);
102}
103
104//
105// when key is 0, do not set version and short key
106//
107inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
108			      int version,
109			      loff_t offset, int type, int length,
110			      int entry_count /*or ih_free_space */ )
111{
112	if (key) {
113		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
114		ih->ih_key.k_objectid =
115		    cpu_to_le32(key->on_disk_key.k_objectid);
116	}
117	put_ih_version(ih, version);
118	set_le_ih_k_offset(ih, offset);
119	set_le_ih_k_type(ih, type);
120	put_ih_item_len(ih, length);
121	/*    set_ih_free_space (ih, 0); */
122	// for directory items it is entry count, for directs and stat
123	// datas - 0xffff, for indirects - 0
124	put_ih_entry_count(ih, entry_count);
125}
126
127//
128// FIXME: we might cache recently accessed indirect item
129
130// Ugh.  Not too eager for that....
131//  I cut the code until such time as I see a convincing argument (benchmark).
132// I don't want a bloated inode struct..., and I don't like code complexity....
133
134/* cutting the code is fine, since it really isn't in use yet and is easy
135** to add back in.  But, Vladimir has a really good idea here.  Think
136** about what happens for reading a file.  For each page,
137** The VFS layer calls reiserfs_readpage, who searches the tree to find
138** an indirect item.  This indirect item has X number of pointers, where
139** X is a big number if we've done the block allocation right.  But,
140** we only use one or two of these pointers during each call to readpage,
141** needlessly researching again later on.
142**
143** The size of the cache could be dynamic based on the size of the file.
144**
145** I'd also like to see us cache the location the stat data item, since
146** we are needlessly researching for that frequently.
147**
148** --chris
149*/
150
151/* If this page has a file tail in it, and
152** it was read in by get_block_create_0, the page data is valid,
153** but tail is still sitting in a direct item, and we can't write to
154** it.  So, look through this page, and check all the mapped buffers
155** to make sure they have valid block numbers.  Any that don't need
156** to be unmapped, so that block_prepare_write will correctly call
157** reiserfs_get_block to convert the tail into an unformatted node
158*/
159static inline void fix_tail_page_for_writing(struct page *page)
160{
161	struct buffer_head *head, *next, *bh;
162
163	if (page && page_has_buffers(page)) {
164		head = page_buffers(page);
165		bh = head;
166		do {
167			next = bh->b_this_page;
168			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
169				reiserfs_unmap_buffer(bh);
170			}
171			bh = next;
172		} while (bh != head);
173	}
174}
175
176/* reiserfs_get_block does not need to allocate a block only if it has been
177   done already or non-hole position has been found in the indirect item */
178static inline int allocation_needed(int retval, b_blocknr_t allocated,
179				    struct item_head *ih,
180				    __le32 * item, int pos_in_item)
181{
182	if (allocated)
183		return 0;
184	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
185	    get_block_num(item, pos_in_item))
186		return 0;
187	return 1;
188}
189
190static inline int indirect_item_found(int retval, struct item_head *ih)
191{
192	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
193}
194
195static inline void set_block_dev_mapped(struct buffer_head *bh,
196					b_blocknr_t block, struct inode *inode)
197{
198	map_bh(bh, inode->i_sb, block);
199}
200
201//
202// files which were created in the earlier version can not be longer,
203// than 2 gb
204//
205static int file_capable(struct inode *inode, sector_t block)
206{
207	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||	// it is new file.
208	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))	// old file, but 'block' is inside of 2gb
209		return 1;
210
211	return 0;
212}
213
214static int restart_transaction(struct reiserfs_transaction_handle *th,
215			       struct inode *inode, struct treepath *path)
216{
217	struct super_block *s = th->t_super;
218	int len = th->t_blocks_allocated;
219	int err;
220
221	BUG_ON(!th->t_trans_id);
222	BUG_ON(!th->t_refcount);
223
224	pathrelse(path);
225
226	/* we cannot restart while nested */
227	if (th->t_refcount > 1) {
228		return 0;
229	}
230	reiserfs_update_sd(th, inode);
231	err = journal_end(th, s, len);
232	if (!err) {
233		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
234		if (!err)
235			reiserfs_update_inode_transaction(inode);
236	}
237	return err;
238}
239
240// it is called by get_block when create == 0. Returns block number
241// for 'block'-th logical block of file. When it hits direct item it
242// returns 0 (being called from bmap) or read direct item into piece
243// of page (bh_result)
244
245// Please improve the english/clarity in the comment above, as it is
246// hard to understand.
247
248static int _get_block_create_0(struct inode *inode, sector_t block,
249			       struct buffer_head *bh_result, int args)
250{
251	INITIALIZE_PATH(path);
252	struct cpu_key key;
253	struct buffer_head *bh;
254	struct item_head *ih, tmp_ih;
255	b_blocknr_t blocknr;
256	char *p = NULL;
257	int chars;
258	int ret;
259	int result;
260	int done = 0;
261	unsigned long offset;
262
263	// prepare the key to look for the 'block'-th block of file
264	make_cpu_key(&key, inode,
265		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
266		     3);
267
268	result = search_for_position_by_key(inode->i_sb, &key, &path);
269	if (result != POSITION_FOUND) {
270		pathrelse(&path);
271		if (p)
272			kunmap(bh_result->b_page);
273		if (result == IO_ERROR)
274			return -EIO;
275		// We do not return -ENOENT if there is a hole but page is uptodate, because it means
276		// That there is some MMAPED data associated with it that is yet to be written to disk.
277		if ((args & GET_BLOCK_NO_HOLE)
278		    && !PageUptodate(bh_result->b_page)) {
279			return -ENOENT;
280		}
281		return 0;
282	}
283	//
284	bh = get_last_bh(&path);
285	ih = get_ih(&path);
286	if (is_indirect_le_ih(ih)) {
287		__le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
288
289		/* FIXME: here we could cache indirect item or part of it in
290		   the inode to avoid search_by_key in case of subsequent
291		   access to file */
292		blocknr = get_block_num(ind_item, path.pos_in_item);
293		ret = 0;
294		if (blocknr) {
295			map_bh(bh_result, inode->i_sb, blocknr);
296			if (path.pos_in_item ==
297			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
298				set_buffer_boundary(bh_result);
299			}
300		} else
301			// We do not return -ENOENT if there is a hole but page is uptodate, because it means
302			// That there is some MMAPED data associated with it that is yet to  be written to disk.
303		if ((args & GET_BLOCK_NO_HOLE)
304			    && !PageUptodate(bh_result->b_page)) {
305			ret = -ENOENT;
306		}
307
308		pathrelse(&path);
309		if (p)
310			kunmap(bh_result->b_page);
311		return ret;
312	}
313	// requested data are in direct item(s)
314	if (!(args & GET_BLOCK_READ_DIRECT)) {
315		// we are called by bmap. FIXME: we can not map block of file
316		// when it is stored in direct item(s)
317		pathrelse(&path);
318		if (p)
319			kunmap(bh_result->b_page);
320		return -ENOENT;
321	}
322
323	/* if we've got a direct item, and the buffer or page was uptodate,
324	 ** we don't want to pull data off disk again.  skip to the
325	 ** end, where we map the buffer and return
326	 */
327	if (buffer_uptodate(bh_result)) {
328		goto finished;
329	} else
330		/*
331		 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
332		 ** pages without any buffers.  If the page is up to date, we don't want
333		 ** read old data off disk.  Set the up to date bit on the buffer instead
334		 ** and jump to the end
335		 */
336	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
337		set_buffer_uptodate(bh_result);
338		goto finished;
339	}
340	// read file tail into part of page
341	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
342	copy_item_head(&tmp_ih, ih);
343
344	/* we only want to kmap if we are reading the tail into the page.
345	 ** this is not the common case, so we don't kmap until we are
346	 ** sure we need to.  But, this means the item might move if
347	 ** kmap schedules
348	 */
349	if (!p)
350		p = (char *)kmap(bh_result->b_page);
351
352	p += offset;
353	memset(p, 0, inode->i_sb->s_blocksize);
354	do {
355		if (!is_direct_le_ih(ih)) {
356			BUG();
357		}
358		/* make sure we don't read more bytes than actually exist in
359		 ** the file.  This can happen in odd cases where i_size isn't
360		 ** correct, and when direct item padding results in a few
361		 ** extra bytes at the end of the direct item
362		 */
363		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
364			break;
365		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
366			chars =
367			    inode->i_size - (le_ih_k_offset(ih) - 1) -
368			    path.pos_in_item;
369			done = 1;
370		} else {
371			chars = ih_item_len(ih) - path.pos_in_item;
372		}
373		memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
374
375		if (done)
376			break;
377
378		p += chars;
379
380		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
381			// we done, if read direct item is not the last item of
382			// node FIXME: we could try to check right delimiting key
383			// to see whether direct item continues in the right
384			// neighbor or rely on i_size
385			break;
386
387		// update key to look for the next piece
388		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
389		result = search_for_position_by_key(inode->i_sb, &key, &path);
390		if (result != POSITION_FOUND)
391			// i/o error most likely
392			break;
393		bh = get_last_bh(&path);
394		ih = get_ih(&path);
395	} while (1);
396
397	flush_dcache_page(bh_result->b_page);
398	kunmap(bh_result->b_page);
399
400      finished:
401	pathrelse(&path);
402
403	if (result == IO_ERROR)
404		return -EIO;
405
406	/* this buffer has valid data, but isn't valid for io.  mapping it to
407	 * block #0 tells the rest of reiserfs it just has a tail in it
408	 */
409	map_bh(bh_result, inode->i_sb, 0);
410	set_buffer_uptodate(bh_result);
411	return 0;
412}
413
414// this is called to create file map. So, _get_block_create_0 will not
415// read direct item
416static int reiserfs_bmap(struct inode *inode, sector_t block,
417			 struct buffer_head *bh_result, int create)
418{
419	if (!file_capable(inode, block))
420		return -EFBIG;
421
422	reiserfs_write_lock(inode->i_sb);
423	/* do not read the direct item */
424	_get_block_create_0(inode, block, bh_result, 0);
425	reiserfs_write_unlock(inode->i_sb);
426	return 0;
427}
428
429/* special version of get_block that is only used by grab_tail_page right
430** now.  It is sent to block_prepare_write, and when you try to get a
431** block past the end of the file (or a block from a hole) it returns
432** -ENOENT instead of a valid buffer.  block_prepare_write expects to
433** be able to do i/o on the buffers returned, unless an error value
434** is also returned.
435**
436** So, this allows block_prepare_write to be used for reading a single block
437** in a page.  Where it does not produce a valid page for holes, or past the
438** end of the file.  This turns out to be exactly what we need for reading
439** tails for conversion.
440**
441** The point of the wrapper is forcing a certain value for create, even
442** though the VFS layer is calling this function with create==1.  If you
443** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
444** don't use this function.
445*/
446static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
447				       struct buffer_head *bh_result,
448				       int create)
449{
450	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
451}
452
453/* This is special helper for reiserfs_get_block in case we are executing
454   direct_IO request. */
455static int reiserfs_get_blocks_direct_io(struct inode *inode,
456					 sector_t iblock,
457					 struct buffer_head *bh_result,
458					 int create)
459{
460	int ret;
461
462	bh_result->b_page = NULL;
463
464	/* We set the b_size before reiserfs_get_block call since it is
465	   referenced in convert_tail_for_hole() that may be called from
466	   reiserfs_get_block() */
467	bh_result->b_size = (1 << inode->i_blkbits);
468
469	ret = reiserfs_get_block(inode, iblock, bh_result,
470				 create | GET_BLOCK_NO_DANGLE);
471	if (ret)
472		goto out;
473
474	/* don't allow direct io onto tail pages */
475	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
476		/* make sure future calls to the direct io funcs for this offset
477		 ** in the file fail by unmapping the buffer
478		 */
479		clear_buffer_mapped(bh_result);
480		ret = -EINVAL;
481	}
482	/* Possible unpacked tail. Flush the data before pages have
483	   disappeared */
484	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
485		int err;
486
487		reiserfs_write_lock(inode->i_sb);
488
489		err = reiserfs_commit_for_inode(inode);
490		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
491
492		reiserfs_write_unlock(inode->i_sb);
493
494		if (err < 0)
495			ret = err;
496	}
497      out:
498	return ret;
499}
500
501/*
502** helper function for when reiserfs_get_block is called for a hole
503** but the file tail is still in a direct item
504** bh_result is the buffer head for the hole
505** tail_offset is the offset of the start of the tail in the file
506**
507** This calls prepare_write, which will start a new transaction
508** you should not be in a transaction, or have any paths held when you
509** call this.
510*/
511static int convert_tail_for_hole(struct inode *inode,
512				 struct buffer_head *bh_result,
513				 loff_t tail_offset)
514{
515	unsigned long index;
516	unsigned long tail_end;
517	unsigned long tail_start;
518	struct page *tail_page;
519	struct page *hole_page = bh_result->b_page;
520	int retval = 0;
521
522	if ((tail_offset & (bh_result->b_size - 1)) != 1)
523		return -EIO;
524
525	/* always try to read until the end of the block */
526	tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
527	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
528
529	index = tail_offset >> PAGE_CACHE_SHIFT;
530	/* hole_page can be zero in case of direct_io, we are sure
531	   that we cannot get here if we write with O_DIRECT into
532	   tail page */
533	if (!hole_page || index != hole_page->index) {
534		tail_page = grab_cache_page(inode->i_mapping, index);
535		retval = -ENOMEM;
536		if (!tail_page) {
537			goto out;
538		}
539	} else {
540		tail_page = hole_page;
541	}
542
543	/* we don't have to make sure the conversion did not happen while
544	 ** we were locking the page because anyone that could convert
545	 ** must first take i_mutex.
546	 **
547	 ** We must fix the tail page for writing because it might have buffers
548	 ** that are mapped, but have a block number of 0.  This indicates tail
549	 ** data that has been read directly into the page, and block_prepare_write
550	 ** won't trigger a get_block in this case.
551	 */
552	fix_tail_page_for_writing(tail_page);
553	retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
554	if (retval)
555		goto unlock;
556
557	/* tail conversion might change the data in the page */
558	flush_dcache_page(tail_page);
559
560	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
561
562      unlock:
563	if (tail_page != hole_page) {
564		unlock_page(tail_page);
565		page_cache_release(tail_page);
566	}
567      out:
568	return retval;
569}
570
571static inline int _allocate_block(struct reiserfs_transaction_handle *th,
572				  sector_t block,
573				  struct inode *inode,
574				  b_blocknr_t * allocated_block_nr,
575				  struct treepath *path, int flags)
576{
577	BUG_ON(!th->t_trans_id);
578
579#ifdef REISERFS_PREALLOCATE
580	if (!(flags & GET_BLOCK_NO_IMUX)) {
581		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
582						  path, block);
583	}
584#endif
585	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
586					 block);
587}
588
589int reiserfs_get_block(struct inode *inode, sector_t block,
590		       struct buffer_head *bh_result, int create)
591{
592	int repeat, retval = 0;
593	b_blocknr_t allocated_block_nr = 0;	// b_blocknr_t is (unsigned) 32 bit int
594	INITIALIZE_PATH(path);
595	int pos_in_item;
596	struct cpu_key key;
597	struct buffer_head *bh, *unbh = NULL;
598	struct item_head *ih, tmp_ih;
599	__le32 *item;
600	int done;
601	int fs_gen;
602	int lock_depth;
603	struct reiserfs_transaction_handle *th = NULL;
604	/* space reserved in transaction batch:
605	   . 3 balancings in direct->indirect conversion
606	   . 1 block involved into reiserfs_update_sd()
607	   XXX in practically impossible worst case direct2indirect()
608	   can incur (much) more than 3 balancings.
609	   quota update for user, group */
610	int jbegin_count =
611	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
612	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
613	int version;
614	int dangle = 1;
615	loff_t new_offset =
616	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
617
618	lock_depth = reiserfs_write_lock_once(inode->i_sb);
619	version = get_inode_item_key_version(inode);
620
621	if (!file_capable(inode, block)) {
622		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
623		return -EFBIG;
624	}
625
626	/* if !create, we aren't changing the FS, so we don't need to
627	 ** log anything, so we don't need to start a transaction
628	 */
629	if (!(create & GET_BLOCK_CREATE)) {
630		int ret;
631		/* find number of block-th logical block of the file */
632		ret = _get_block_create_0(inode, block, bh_result,
633					  create | GET_BLOCK_READ_DIRECT);
634		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
635		return ret;
636	}
637	/*
638	 * if we're already in a transaction, make sure to close
639	 * any new transactions we start in this func
640	 */
641	if ((create & GET_BLOCK_NO_DANGLE) ||
642	    reiserfs_transaction_running(inode->i_sb))
643		dangle = 0;
644
645	/* If file is of such a size, that it might have a tail and tails are enabled
646	 ** we should mark it as possibly needing tail packing on close
647	 */
648	if ((have_large_tails(inode->i_sb)
649	     && inode->i_size < i_block_size(inode) * 4)
650	    || (have_small_tails(inode->i_sb)
651		&& inode->i_size < i_block_size(inode)))
652		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
653
654	/* set the key of the first byte in the 'block'-th block of file */
655	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
656	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
657	      start_trans:
658		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
659		if (!th) {
660			retval = -ENOMEM;
661			goto failure;
662		}
663		reiserfs_update_inode_transaction(inode);
664	}
665      research:
666
667	retval = search_for_position_by_key(inode->i_sb, &key, &path);
668	if (retval == IO_ERROR) {
669		retval = -EIO;
670		goto failure;
671	}
672
673	bh = get_last_bh(&path);
674	ih = get_ih(&path);
675	item = get_item(&path);
676	pos_in_item = path.pos_in_item;
677
678	fs_gen = get_generation(inode->i_sb);
679	copy_item_head(&tmp_ih, ih);
680
681	if (allocation_needed
682	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
683		/* we have to allocate block for the unformatted node */
684		if (!th) {
685			pathrelse(&path);
686			goto start_trans;
687		}
688
689		repeat =
690		    _allocate_block(th, block, inode, &allocated_block_nr,
691				    &path, create);
692
693		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
694			/* restart the transaction to give the journal a chance to free
695			 ** some blocks.  releases the path, so we have to go back to
696			 ** research if we succeed on the second try
697			 */
698			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
699			retval = restart_transaction(th, inode, &path);
700			if (retval)
701				goto failure;
702			repeat =
703			    _allocate_block(th, block, inode,
704					    &allocated_block_nr, NULL, create);
705
706			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
707				goto research;
708			}
709			if (repeat == QUOTA_EXCEEDED)
710				retval = -EDQUOT;
711			else
712				retval = -ENOSPC;
713			goto failure;
714		}
715
716		if (fs_changed(fs_gen, inode->i_sb)
717		    && item_moved(&tmp_ih, &path)) {
718			goto research;
719		}
720	}
721
722	if (indirect_item_found(retval, ih)) {
723		b_blocknr_t unfm_ptr;
724		/* 'block'-th block is in the file already (there is
725		   corresponding cell in some indirect item). But it may be
726		   zero unformatted node pointer (hole) */
727		unfm_ptr = get_block_num(item, pos_in_item);
728		if (unfm_ptr == 0) {
729			/* use allocated block to plug the hole */
730			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
731			if (fs_changed(fs_gen, inode->i_sb)
732			    && item_moved(&tmp_ih, &path)) {
733				reiserfs_restore_prepared_buffer(inode->i_sb,
734								 bh);
735				goto research;
736			}
737			set_buffer_new(bh_result);
738			if (buffer_dirty(bh_result)
739			    && reiserfs_data_ordered(inode->i_sb))
740				reiserfs_add_ordered_list(inode, bh_result);
741			put_block_num(item, pos_in_item, allocated_block_nr);
742			unfm_ptr = allocated_block_nr;
743			journal_mark_dirty(th, inode->i_sb, bh);
744			reiserfs_update_sd(th, inode);
745		}
746		set_block_dev_mapped(bh_result, unfm_ptr, inode);
747		pathrelse(&path);
748		retval = 0;
749		if (!dangle && th)
750			retval = reiserfs_end_persistent_transaction(th);
751
752		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
753
754		/* the item was found, so new blocks were not added to the file
755		 ** there is no need to make sure the inode is updated with this
756		 ** transaction
757		 */
758		return retval;
759	}
760
761	if (!th) {
762		pathrelse(&path);
763		goto start_trans;
764	}
765
766	/* desired position is not found or is in the direct item. We have
767	   to append file with holes up to 'block'-th block converting
768	   direct items to indirect one if necessary */
769	done = 0;
770	do {
771		if (is_statdata_le_ih(ih)) {
772			__le32 unp = 0;
773			struct cpu_key tmp_key;
774
775			/* indirect item has to be inserted */
776			make_le_item_head(&tmp_ih, &key, version, 1,
777					  TYPE_INDIRECT, UNFM_P_SIZE,
778					  0 /* free_space */ );
779
780			if (cpu_key_k_offset(&key) == 1) {
781				/* we are going to add 'block'-th block to the file. Use
782				   allocated block for that */
783				unp = cpu_to_le32(allocated_block_nr);
784				set_block_dev_mapped(bh_result,
785						     allocated_block_nr, inode);
786				set_buffer_new(bh_result);
787				done = 1;
788			}
789			tmp_key = key;	// ;)
790			set_cpu_key_k_offset(&tmp_key, 1);
791			PATH_LAST_POSITION(&path)++;
792
793			retval =
794			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
795						 inode, (char *)&unp);
796			if (retval) {
797				reiserfs_free_block(th, inode,
798						    allocated_block_nr, 1);
799				goto failure;	// retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
800			}
801			//mark_tail_converted (inode);
802		} else if (is_direct_le_ih(ih)) {
803			/* direct item has to be converted */
804			loff_t tail_offset;
805
806			tail_offset =
807			    ((le_ih_k_offset(ih) -
808			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
809			if (tail_offset == cpu_key_k_offset(&key)) {
810				/* direct item we just found fits into block we have
811				   to map. Convert it into unformatted node: use
812				   bh_result for the conversion */
813				set_block_dev_mapped(bh_result,
814						     allocated_block_nr, inode);
815				unbh = bh_result;
816				done = 1;
817			} else {
818				/* we have to padd file tail stored in direct item(s)
819				   up to block size and convert it to unformatted
820				   node. FIXME: this should also get into page cache */
821
822				pathrelse(&path);
823				/*
824				 * ugly, but we can only end the transaction if
825				 * we aren't nested
826				 */
827				BUG_ON(!th->t_refcount);
828				if (th->t_refcount == 1) {
829					retval =
830					    reiserfs_end_persistent_transaction
831					    (th);
832					th = NULL;
833					if (retval)
834						goto failure;
835				}
836
837				retval =
838				    convert_tail_for_hole(inode, bh_result,
839							  tail_offset);
840				if (retval) {
841					if (retval != -ENOSPC)
842						reiserfs_error(inode->i_sb,
843							"clm-6004",
844							"convert tail failed "
845							"inode %lu, error %d",
846							inode->i_ino,
847							retval);
848					if (allocated_block_nr) {
849						/* the bitmap, the super, and the stat data == 3 */
850						if (!th)
851							th = reiserfs_persistent_transaction(inode->i_sb, 3);
852						if (th)
853							reiserfs_free_block(th,
854									    inode,
855									    allocated_block_nr,
856									    1);
857					}
858					goto failure;
859				}
860				goto research;
861			}
862			retval =
863			    direct2indirect(th, inode, &path, unbh,
864					    tail_offset);
865			if (retval) {
866				reiserfs_unmap_buffer(unbh);
867				reiserfs_free_block(th, inode,
868						    allocated_block_nr, 1);
869				goto failure;
870			}
871			/* it is important the set_buffer_uptodate is done after
872			 ** the direct2indirect.  The buffer might contain valid
873			 ** data newer than the data on disk (read by readpage, changed,
874			 ** and then sent here by writepage).  direct2indirect needs
875			 ** to know if unbh was already up to date, so it can decide
876			 ** if the data in unbh needs to be replaced with data from
877			 ** the disk
878			 */
879			set_buffer_uptodate(unbh);
880
881			/* unbh->b_page == NULL in case of DIRECT_IO request, this means
882			   buffer will disappear shortly, so it should not be added to
883			 */
884			if (unbh->b_page) {
885				/* we've converted the tail, so we must
886				 ** flush unbh before the transaction commits
887				 */
888				reiserfs_add_tail_list(inode, unbh);
889
890				/* mark it dirty now to prevent commit_write from adding
891				 ** this buffer to the inode's dirty buffer list
892				 */
893				/*
894				 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
895				 * It's still atomic, but it sets the page dirty too,
896				 * which makes it eligible for writeback at any time by the
897				 * VM (which was also the case with __mark_buffer_dirty())
898				 */
899				mark_buffer_dirty(unbh);
900			}
901		} else {
902			/* append indirect item with holes if needed, when appending
903			   pointer to 'block'-th block use block, which is already
904			   allocated */
905			struct cpu_key tmp_key;
906			unp_t unf_single = 0;	// We use this in case we need to allocate only
907			// one block which is a fastpath
908			unp_t *un;
909			__u64 max_to_insert =
910			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
911			    UNFM_P_SIZE;
912			__u64 blocks_needed;
913
914			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
915			       "vs-804: invalid position for append");
916			/* indirect item has to be appended, set up key of that position */
917			make_cpu_key(&tmp_key, inode,
918				     le_key_k_offset(version,
919						     &(ih->ih_key)) +
920				     op_bytes_number(ih,
921						     inode->i_sb->s_blocksize),
922				     //pos_in_item * inode->i_sb->s_blocksize,
923				     TYPE_INDIRECT, 3);	// key type is unimportant
924
925			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
926			       "green-805: invalid offset");
927			blocks_needed =
928			    1 +
929			    ((cpu_key_k_offset(&key) -
930			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
931			     s_blocksize_bits);
932
933			if (blocks_needed == 1) {
934				un = &unf_single;
935			} else {
936				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
937				if (!un) {
938					un = &unf_single;
939					blocks_needed = 1;
940					max_to_insert = 0;
941				}
942			}
943			if (blocks_needed <= max_to_insert) {
944				/* we are going to add target block to the file. Use allocated
945				   block for that */
946				un[blocks_needed - 1] =
947				    cpu_to_le32(allocated_block_nr);
948				set_block_dev_mapped(bh_result,
949						     allocated_block_nr, inode);
950				set_buffer_new(bh_result);
951				done = 1;
952			} else {
953				/* paste hole to the indirect item */
954				/* If kmalloc failed, max_to_insert becomes zero and it means we
955				   only have space for one block */
956				blocks_needed =
957				    max_to_insert ? max_to_insert : 1;
958			}
959			retval =
960			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
961						     (char *)un,
962						     UNFM_P_SIZE *
963						     blocks_needed);
964
965			if (blocks_needed != 1)
966				kfree(un);
967
968			if (retval) {
969				reiserfs_free_block(th, inode,
970						    allocated_block_nr, 1);
971				goto failure;
972			}
973			if (!done) {
974				/* We need to mark new file size in case this function will be
975				   interrupted/aborted later on. And we may do this only for
976				   holes. */
977				inode->i_size +=
978				    inode->i_sb->s_blocksize * blocks_needed;
979			}
980		}
981
982		if (done == 1)
983			break;
984
985		/* this loop could log more blocks than we had originally asked
986		 ** for.  So, we have to allow the transaction to end if it is
987		 ** too big or too full.  Update the inode so things are
988		 ** consistent if we crash before the function returns
989		 **
990		 ** release the path so that anybody waiting on the path before
991		 ** ending their transaction will be able to continue.
992		 */
993		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
994			retval = restart_transaction(th, inode, &path);
995			if (retval)
996				goto failure;
997		}
998		/*
999		 * inserting indirect pointers for a hole can take a
1000		 * long time.  reschedule if needed and also release the write
1001		 * lock for others.
1002		 */
1003		if (need_resched()) {
1004			reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1005			schedule();
1006			lock_depth = reiserfs_write_lock_once(inode->i_sb);
1007		}
1008
1009		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1010		if (retval == IO_ERROR) {
1011			retval = -EIO;
1012			goto failure;
1013		}
1014		if (retval == POSITION_FOUND) {
1015			reiserfs_warning(inode->i_sb, "vs-825",
1016					 "%K should not be found", &key);
1017			retval = -EEXIST;
1018			if (allocated_block_nr)
1019				reiserfs_free_block(th, inode,
1020						    allocated_block_nr, 1);
1021			pathrelse(&path);
1022			goto failure;
1023		}
1024		bh = get_last_bh(&path);
1025		ih = get_ih(&path);
1026		item = get_item(&path);
1027		pos_in_item = path.pos_in_item;
1028	} while (1);
1029
1030	retval = 0;
1031
1032      failure:
1033	if (th && (!dangle || (retval && !th->t_trans_id))) {
1034		int err;
1035		if (th->t_trans_id)
1036			reiserfs_update_sd(th, inode);
1037		err = reiserfs_end_persistent_transaction(th);
1038		if (err)
1039			retval = err;
1040	}
1041
1042	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1043	reiserfs_check_path(&path);
1044	return retval;
1045}
1046
1047static int
1048reiserfs_readpages(struct file *file, struct address_space *mapping,
1049		   struct list_head *pages, unsigned nr_pages)
1050{
1051	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1052}
1053
1054/* Compute real number of used bytes by file
1055 * Following three functions can go away when we'll have enough space in stat item
1056 */
1057static int real_space_diff(struct inode *inode, int sd_size)
1058{
1059	int bytes;
1060	loff_t blocksize = inode->i_sb->s_blocksize;
1061
1062	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1063		return sd_size;
1064
1065	/* End of file is also in full block with indirect reference, so round
1066	 ** up to the next block.
1067	 **
1068	 ** there is just no way to know if the tail is actually packed
1069	 ** on the file, so we have to assume it isn't.  When we pack the
1070	 ** tail, we add 4 bytes to pretend there really is an unformatted
1071	 ** node pointer
1072	 */
1073	bytes =
1074	    ((inode->i_size +
1075	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1076	    sd_size;
1077	return bytes;
1078}
1079
1080static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1081					int sd_size)
1082{
1083	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1084		return inode->i_size +
1085		    (loff_t) (real_space_diff(inode, sd_size));
1086	}
1087	return ((loff_t) real_space_diff(inode, sd_size)) +
1088	    (((loff_t) blocks) << 9);
1089}
1090
1091/* Compute number of blocks used by file in ReiserFS counting */
1092static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1093{
1094	loff_t bytes = inode_get_bytes(inode);
1095	loff_t real_space = real_space_diff(inode, sd_size);
1096
1097	/* keeps fsck and non-quota versions of reiserfs happy */
1098	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1099		bytes += (loff_t) 511;
1100	}
1101
1102	/* files from before the quota patch might i_blocks such that
1103	 ** bytes < real_space.  Deal with that here to prevent it from
1104	 ** going negative.
1105	 */
1106	if (bytes < real_space)
1107		return 0;
1108	return (bytes - real_space) >> 9;
1109}
1110
1111//
1112// BAD: new directories have stat data of new type and all other items
1113// of old type. Version stored in the inode says about body items, so
1114// in update_stat_data we can not rely on inode, but have to check
1115// item version directly
1116//
1117
1118// called by read_locked_inode
1119static void init_inode(struct inode *inode, struct treepath *path)
1120{
1121	struct buffer_head *bh;
1122	struct item_head *ih;
1123	__u32 rdev;
1124	//int version = ITEM_VERSION_1;
1125
1126	bh = PATH_PLAST_BUFFER(path);
1127	ih = PATH_PITEM_HEAD(path);
1128
1129	copy_key(INODE_PKEY(inode), &(ih->ih_key));
1130
1131	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1132	REISERFS_I(inode)->i_flags = 0;
1133	REISERFS_I(inode)->i_prealloc_block = 0;
1134	REISERFS_I(inode)->i_prealloc_count = 0;
1135	REISERFS_I(inode)->i_trans_id = 0;
1136	REISERFS_I(inode)->i_jl = NULL;
1137	mutex_init(&(REISERFS_I(inode)->i_mmap));
1138	reiserfs_init_xattr_rwsem(inode);
1139
1140	if (stat_data_v1(ih)) {
1141		struct stat_data_v1 *sd =
1142		    (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1143		unsigned long blocks;
1144
1145		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1146		set_inode_sd_version(inode, STAT_DATA_V1);
1147		inode->i_mode = sd_v1_mode(sd);
1148		inode->i_nlink = sd_v1_nlink(sd);
1149		inode->i_uid = sd_v1_uid(sd);
1150		inode->i_gid = sd_v1_gid(sd);
1151		inode->i_size = sd_v1_size(sd);
1152		inode->i_atime.tv_sec = sd_v1_atime(sd);
1153		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1154		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1155		inode->i_atime.tv_nsec = 0;
1156		inode->i_ctime.tv_nsec = 0;
1157		inode->i_mtime.tv_nsec = 0;
1158
1159		inode->i_blocks = sd_v1_blocks(sd);
1160		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1161		blocks = (inode->i_size + 511) >> 9;
1162		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1163		if (inode->i_blocks > blocks) {
1164			// there was a bug in <=3.5.23 when i_blocks could take negative
1165			// values. Starting from 3.5.17 this value could even be stored in
1166			// stat data. For such files we set i_blocks based on file
1167			// size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1168			// only updated if file's inode will ever change
1169			inode->i_blocks = blocks;
1170		}
1171
1172		rdev = sd_v1_rdev(sd);
1173		REISERFS_I(inode)->i_first_direct_byte =
1174		    sd_v1_first_direct_byte(sd);
1175		/* an early bug in the quota code can give us an odd number for the
1176		 ** block count.  This is incorrect, fix it here.
1177		 */
1178		if (inode->i_blocks & 1) {
1179			inode->i_blocks++;
1180		}
1181		inode_set_bytes(inode,
1182				to_real_used_space(inode, inode->i_blocks,
1183						   SD_V1_SIZE));
1184		/* nopack is initially zero for v1 objects. For v2 objects,
1185		   nopack is initialised from sd_attrs */
1186		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1187	} else {
1188		// new stat data found, but object may have old items
1189		// (directories and symlinks)
1190		struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1191
1192		inode->i_mode = sd_v2_mode(sd);
1193		inode->i_nlink = sd_v2_nlink(sd);
1194		inode->i_uid = sd_v2_uid(sd);
1195		inode->i_size = sd_v2_size(sd);
1196		inode->i_gid = sd_v2_gid(sd);
1197		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1198		inode->i_atime.tv_sec = sd_v2_atime(sd);
1199		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1200		inode->i_ctime.tv_nsec = 0;
1201		inode->i_mtime.tv_nsec = 0;
1202		inode->i_atime.tv_nsec = 0;
1203		inode->i_blocks = sd_v2_blocks(sd);
1204		rdev = sd_v2_rdev(sd);
1205		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1206			inode->i_generation =
1207			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1208		else
1209			inode->i_generation = sd_v2_generation(sd);
1210
1211		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1212			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1213		else
1214			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1215		REISERFS_I(inode)->i_first_direct_byte = 0;
1216		set_inode_sd_version(inode, STAT_DATA_V2);
1217		inode_set_bytes(inode,
1218				to_real_used_space(inode, inode->i_blocks,
1219						   SD_V2_SIZE));
1220		/* read persistent inode attributes from sd and initalise
1221		   generic inode flags from them */
1222		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1223		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1224	}
1225
1226	pathrelse(path);
1227	if (S_ISREG(inode->i_mode)) {
1228		inode->i_op = &reiserfs_file_inode_operations;
1229		inode->i_fop = &reiserfs_file_operations;
1230		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1231	} else if (S_ISDIR(inode->i_mode)) {
1232		inode->i_op = &reiserfs_dir_inode_operations;
1233		inode->i_fop = &reiserfs_dir_operations;
1234	} else if (S_ISLNK(inode->i_mode)) {
1235		inode->i_op = &reiserfs_symlink_inode_operations;
1236		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1237	} else {
1238		inode->i_blocks = 0;
1239		inode->i_op = &reiserfs_special_inode_operations;
1240		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1241	}
1242}
1243
1244// update new stat data with inode fields
1245static void inode2sd(void *sd, struct inode *inode, loff_t size)
1246{
1247	struct stat_data *sd_v2 = (struct stat_data *)sd;
1248	__u16 flags;
1249
1250	set_sd_v2_mode(sd_v2, inode->i_mode);
1251	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1252	set_sd_v2_uid(sd_v2, inode->i_uid);
1253	set_sd_v2_size(sd_v2, size);
1254	set_sd_v2_gid(sd_v2, inode->i_gid);
1255	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1256	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1257	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1258	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1259	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1260		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1261	else
1262		set_sd_v2_generation(sd_v2, inode->i_generation);
1263	flags = REISERFS_I(inode)->i_attrs;
1264	i_attrs_to_sd_attrs(inode, &flags);
1265	set_sd_v2_attrs(sd_v2, flags);
1266}
1267
1268// used to copy inode's fields to old stat data
1269static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1270{
1271	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1272
1273	set_sd_v1_mode(sd_v1, inode->i_mode);
1274	set_sd_v1_uid(sd_v1, inode->i_uid);
1275	set_sd_v1_gid(sd_v1, inode->i_gid);
1276	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1277	set_sd_v1_size(sd_v1, size);
1278	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1279	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1280	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1281
1282	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1283		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1284	else
1285		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1286
1287	// Sigh. i_first_direct_byte is back
1288	set_sd_v1_first_direct_byte(sd_v1,
1289				    REISERFS_I(inode)->i_first_direct_byte);
1290}
1291
1292/* NOTE, you must prepare the buffer head before sending it here,
1293** and then log it after the call
1294*/
1295static void update_stat_data(struct treepath *path, struct inode *inode,
1296			     loff_t size)
1297{
1298	struct buffer_head *bh;
1299	struct item_head *ih;
1300
1301	bh = PATH_PLAST_BUFFER(path);
1302	ih = PATH_PITEM_HEAD(path);
1303
1304	if (!is_statdata_le_ih(ih))
1305		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1306			       INODE_PKEY(inode), ih);
1307
1308	if (stat_data_v1(ih)) {
1309		// path points to old stat data
1310		inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1311	} else {
1312		inode2sd(B_I_PITEM(bh, ih), inode, size);
1313	}
1314
1315	return;
1316}
1317
1318void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1319			     struct inode *inode, loff_t size)
1320{
1321	struct cpu_key key;
1322	INITIALIZE_PATH(path);
1323	struct buffer_head *bh;
1324	int fs_gen;
1325	struct item_head *ih, tmp_ih;
1326	int retval;
1327
1328	BUG_ON(!th->t_trans_id);
1329
1330	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);	//key type is unimportant
1331
1332	for (;;) {
1333		int pos;
1334		/* look for the object's stat data */
1335		retval = search_item(inode->i_sb, &key, &path);
1336		if (retval == IO_ERROR) {
1337			reiserfs_error(inode->i_sb, "vs-13050",
1338				       "i/o failure occurred trying to "
1339				       "update %K stat data", &key);
1340			return;
1341		}
1342		if (retval == ITEM_NOT_FOUND) {
1343			pos = PATH_LAST_POSITION(&path);
1344			pathrelse(&path);
1345			if (inode->i_nlink == 0) {
1346				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1347				return;
1348			}
1349			reiserfs_warning(inode->i_sb, "vs-13060",
1350					 "stat data of object %k (nlink == %d) "
1351					 "not found (pos %d)",
1352					 INODE_PKEY(inode), inode->i_nlink,
1353					 pos);
1354			reiserfs_check_path(&path);
1355			return;
1356		}
1357
1358		/* sigh, prepare_for_journal might schedule.  When it schedules the
1359		 ** FS might change.  We have to detect that, and loop back to the
1360		 ** search if the stat data item has moved
1361		 */
1362		bh = get_last_bh(&path);
1363		ih = get_ih(&path);
1364		copy_item_head(&tmp_ih, ih);
1365		fs_gen = get_generation(inode->i_sb);
1366		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1367		if (fs_changed(fs_gen, inode->i_sb)
1368		    && item_moved(&tmp_ih, &path)) {
1369			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1370			continue;	/* Stat_data item has been moved after scheduling. */
1371		}
1372		break;
1373	}
1374	update_stat_data(&path, inode, size);
1375	journal_mark_dirty(th, th->t_super, bh);
1376	pathrelse(&path);
1377	return;
1378}
1379
1380/* reiserfs_read_locked_inode is called to read the inode off disk, and it
1381** does a make_bad_inode when things go wrong.  But, we need to make sure
1382** and clear the key in the private portion of the inode, otherwise a
1383** corresponding iput might try to delete whatever object the inode last
1384** represented.
1385*/
1386static void reiserfs_make_bad_inode(struct inode *inode)
1387{
1388	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1389	make_bad_inode(inode);
1390}
1391
1392//
1393// initially this function was derived from minix or ext2's analog and
1394// evolved as the prototype did
1395//
1396
1397int reiserfs_init_locked_inode(struct inode *inode, void *p)
1398{
1399	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1400	inode->i_ino = args->objectid;
1401	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1402	return 0;
1403}
1404
1405/* looks for stat data in the tree, and fills up the fields of in-core
1406   inode stat data fields */
1407void reiserfs_read_locked_inode(struct inode *inode,
1408				struct reiserfs_iget_args *args)
1409{
1410	INITIALIZE_PATH(path_to_sd);
1411	struct cpu_key key;
1412	unsigned long dirino;
1413	int retval;
1414
1415	dirino = args->dirid;
1416
1417	/* set version 1, version 2 could be used too, because stat data
1418	   key is the same in both versions */
1419	key.version = KEY_FORMAT_3_5;
1420	key.on_disk_key.k_dir_id = dirino;
1421	key.on_disk_key.k_objectid = inode->i_ino;
1422	key.on_disk_key.k_offset = 0;
1423	key.on_disk_key.k_type = 0;
1424
1425	/* look for the object's stat data */
1426	retval = search_item(inode->i_sb, &key, &path_to_sd);
1427	if (retval == IO_ERROR) {
1428		reiserfs_error(inode->i_sb, "vs-13070",
1429			       "i/o failure occurred trying to find "
1430			       "stat data of %K", &key);
1431		reiserfs_make_bad_inode(inode);
1432		return;
1433	}
1434	if (retval != ITEM_FOUND) {
1435		/* a stale NFS handle can trigger this without it being an error */
1436		pathrelse(&path_to_sd);
1437		reiserfs_make_bad_inode(inode);
1438		inode->i_nlink = 0;
1439		return;
1440	}
1441
1442	init_inode(inode, &path_to_sd);
1443
1444	/* It is possible that knfsd is trying to access inode of a file
1445	   that is being removed from the disk by some other thread. As we
1446	   update sd on unlink all that is required is to check for nlink
1447	   here. This bug was first found by Sizif when debugging
1448	   SquidNG/Butterfly, forgotten, and found again after Philippe
1449	   Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1450
1451	   More logical fix would require changes in fs/inode.c:iput() to
1452	   remove inode from hash-table _after_ fs cleaned disk stuff up and
1453	   in iget() to return NULL if I_FREEING inode is found in
1454	   hash-table. */
1455	/* Currently there is one place where it's ok to meet inode with
1456	   nlink==0: processing of open-unlinked and half-truncated files
1457	   during mount (fs/reiserfs/super.c:finish_unfinished()). */
1458	if ((inode->i_nlink == 0) &&
1459	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1460		reiserfs_warning(inode->i_sb, "vs-13075",
1461				 "dead inode read from disk %K. "
1462				 "This is likely to be race with knfsd. Ignore",
1463				 &key);
1464		reiserfs_make_bad_inode(inode);
1465	}
1466
1467	reiserfs_check_path(&path_to_sd);	/* init inode should be relsing */
1468
1469}
1470
1471/**
1472 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1473 *
1474 * @inode:    inode from hash table to check
1475 * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1476 *
1477 * This function is called by iget5_locked() to distinguish reiserfs inodes
1478 * having the same inode numbers. Such inodes can only exist due to some
1479 * error condition. One of them should be bad. Inodes with identical
1480 * inode numbers (objectids) are distinguished by parent directory ids.
1481 *
1482 */
1483int reiserfs_find_actor(struct inode *inode, void *opaque)
1484{
1485	struct reiserfs_iget_args *args;
1486
1487	args = opaque;
1488	/* args is already in CPU order */
1489	return (inode->i_ino == args->objectid) &&
1490	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1491}
1492
1493struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1494{
1495	struct inode *inode;
1496	struct reiserfs_iget_args args;
1497
1498	args.objectid = key->on_disk_key.k_objectid;
1499	args.dirid = key->on_disk_key.k_dir_id;
1500	reiserfs_write_unlock(s);
1501	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1502			     reiserfs_find_actor, reiserfs_init_locked_inode,
1503			     (void *)(&args));
1504	reiserfs_write_lock(s);
1505	if (!inode)
1506		return ERR_PTR(-ENOMEM);
1507
1508	if (inode->i_state & I_NEW) {
1509		reiserfs_read_locked_inode(inode, &args);
1510		unlock_new_inode(inode);
1511	}
1512
1513	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1514		/* either due to i/o error or a stale NFS handle */
1515		iput(inode);
1516		inode = NULL;
1517	}
1518	return inode;
1519}
1520
1521static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1522	u32 objectid, u32 dir_id, u32 generation)
1523
1524{
1525	struct cpu_key key;
1526	struct inode *inode;
1527
1528	key.on_disk_key.k_objectid = objectid;
1529	key.on_disk_key.k_dir_id = dir_id;
1530	reiserfs_write_lock(sb);
1531	inode = reiserfs_iget(sb, &key);
1532	if (inode && !IS_ERR(inode) && generation != 0 &&
1533	    generation != inode->i_generation) {
1534		iput(inode);
1535		inode = NULL;
1536	}
1537	reiserfs_write_unlock(sb);
1538
1539	return d_obtain_alias(inode);
1540}
1541
1542struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1543		int fh_len, int fh_type)
1544{
1545	/* fhtype happens to reflect the number of u32s encoded.
1546	 * due to a bug in earlier code, fhtype might indicate there
1547	 * are more u32s then actually fitted.
1548	 * so if fhtype seems to be more than len, reduce fhtype.
1549	 * Valid types are:
1550	 *   2 - objectid + dir_id - legacy support
1551	 *   3 - objectid + dir_id + generation
1552	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1553	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1554	 *   6 - as above plus generation of directory
1555	 * 6 does not fit in NFSv2 handles
1556	 */
1557	if (fh_type > fh_len) {
1558		if (fh_type != 6 || fh_len != 5)
1559			reiserfs_warning(sb, "reiserfs-13077",
1560				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1561				fh_type, fh_len);
1562		fh_type = 5;
1563	}
1564
1565	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1566		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1567}
1568
1569struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1570		int fh_len, int fh_type)
1571{
1572	if (fh_type < 4)
1573		return NULL;
1574
1575	return reiserfs_get_dentry(sb,
1576		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1577		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1578		(fh_type == 6) ? fid->raw[5] : 0);
1579}
1580
1581int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1582		       int need_parent)
1583{
1584	struct inode *inode = dentry->d_inode;
1585	int maxlen = *lenp;
1586
1587	if (maxlen < 3)
1588		return 255;
1589
1590	data[0] = inode->i_ino;
1591	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1592	data[2] = inode->i_generation;
1593	*lenp = 3;
1594	/* no room for directory info? return what we've stored so far */
1595	if (maxlen < 5 || !need_parent)
1596		return 3;
1597
1598	spin_lock(&dentry->d_lock);
1599	inode = dentry->d_parent->d_inode;
1600	data[3] = inode->i_ino;
1601	data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1602	*lenp = 5;
1603	if (maxlen >= 6) {
1604		data[5] = inode->i_generation;
1605		*lenp = 6;
1606	}
1607	spin_unlock(&dentry->d_lock);
1608	return *lenp;
1609}
1610
1611/* looks for stat data, then copies fields to it, marks the buffer
1612   containing stat data as dirty */
1613/* reiserfs inodes are never really dirty, since the dirty inode call
1614** always logs them.  This call allows the VFS inode marking routines
1615** to properly mark inodes for datasync and such, but only actually
1616** does something when called for a synchronous update.
1617*/
1618int reiserfs_write_inode(struct inode *inode, int do_sync)
1619{
1620	struct reiserfs_transaction_handle th;
1621	int jbegin_count = 1;
1622
1623	if (inode->i_sb->s_flags & MS_RDONLY)
1624		return -EROFS;
1625	/* memory pressure can sometimes initiate write_inode calls with sync == 1,
1626	 ** these cases are just when the system needs ram, not when the
1627	 ** inode needs to reach disk for safety, and they can safely be
1628	 ** ignored because the altered inode has already been logged.
1629	 */
1630	if (do_sync && !(current->flags & PF_MEMALLOC)) {
1631		reiserfs_write_lock(inode->i_sb);
1632		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1633			reiserfs_update_sd(&th, inode);
1634			journal_end_sync(&th, inode->i_sb, jbegin_count);
1635		}
1636		reiserfs_write_unlock(inode->i_sb);
1637	}
1638	return 0;
1639}
1640
1641/* stat data of new object is inserted already, this inserts the item
1642   containing "." and ".." entries */
1643static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1644				  struct inode *inode,
1645				  struct item_head *ih, struct treepath *path,
1646				  struct inode *dir)
1647{
1648	struct super_block *sb = th->t_super;
1649	char empty_dir[EMPTY_DIR_SIZE];
1650	char *body = empty_dir;
1651	struct cpu_key key;
1652	int retval;
1653
1654	BUG_ON(!th->t_trans_id);
1655
1656	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1657		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1658		      TYPE_DIRENTRY, 3 /*key length */ );
1659
1660	/* compose item head for new item. Directories consist of items of
1661	   old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1662	   is done by reiserfs_new_inode */
1663	if (old_format_only(sb)) {
1664		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1665				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1666
1667		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1668				       ih->ih_key.k_objectid,
1669				       INODE_PKEY(dir)->k_dir_id,
1670				       INODE_PKEY(dir)->k_objectid);
1671	} else {
1672		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1673				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1674
1675		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1676				    ih->ih_key.k_objectid,
1677				    INODE_PKEY(dir)->k_dir_id,
1678				    INODE_PKEY(dir)->k_objectid);
1679	}
1680
1681	/* look for place in the tree for new item */
1682	retval = search_item(sb, &key, path);
1683	if (retval == IO_ERROR) {
1684		reiserfs_error(sb, "vs-13080",
1685			       "i/o failure occurred creating new directory");
1686		return -EIO;
1687	}
1688	if (retval == ITEM_FOUND) {
1689		pathrelse(path);
1690		reiserfs_warning(sb, "vs-13070",
1691				 "object with this key exists (%k)",
1692				 &(ih->ih_key));
1693		return -EEXIST;
1694	}
1695
1696	/* insert item, that is empty directory item */
1697	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1698}
1699
1700/* stat data of object has been inserted, this inserts the item
1701   containing the body of symlink */
1702static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode,	/* Inode of symlink */
1703				struct item_head *ih,
1704				struct treepath *path, const char *symname,
1705				int item_len)
1706{
1707	struct super_block *sb = th->t_super;
1708	struct cpu_key key;
1709	int retval;
1710
1711	BUG_ON(!th->t_trans_id);
1712
1713	_make_cpu_key(&key, KEY_FORMAT_3_5,
1714		      le32_to_cpu(ih->ih_key.k_dir_id),
1715		      le32_to_cpu(ih->ih_key.k_objectid),
1716		      1, TYPE_DIRECT, 3 /*key length */ );
1717
1718	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1719			  0 /*free_space */ );
1720
1721	/* look for place in the tree for new item */
1722	retval = search_item(sb, &key, path);
1723	if (retval == IO_ERROR) {
1724		reiserfs_error(sb, "vs-13080",
1725			       "i/o failure occurred creating new symlink");
1726		return -EIO;
1727	}
1728	if (retval == ITEM_FOUND) {
1729		pathrelse(path);
1730		reiserfs_warning(sb, "vs-13080",
1731				 "object with this key exists (%k)",
1732				 &(ih->ih_key));
1733		return -EEXIST;
1734	}
1735
1736	/* insert item, that is body of symlink */
1737	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1738}
1739
1740/* inserts the stat data into the tree, and then calls
1741   reiserfs_new_directory (to insert ".", ".." item if new object is
1742   directory) or reiserfs_new_symlink (to insert symlink body if new
1743   object is symlink) or nothing (if new object is regular file)
1744
1745   NOTE! uid and gid must already be set in the inode.  If we return
1746   non-zero due to an error, we have to drop the quota previously allocated
1747   for the fresh inode.  This can only be done outside a transaction, so
1748   if we return non-zero, we also end the transaction.  */
1749int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1750		       struct inode *dir, int mode, const char *symname,
1751		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1752		          strlen (symname) for symlinks) */
1753		       loff_t i_size, struct dentry *dentry,
1754		       struct inode *inode,
1755		       struct reiserfs_security_handle *security)
1756{
1757	struct super_block *sb;
1758	struct reiserfs_iget_args args;
1759	INITIALIZE_PATH(path_to_key);
1760	struct cpu_key key;
1761	struct item_head ih;
1762	struct stat_data sd;
1763	int retval;
1764	int err;
1765
1766	BUG_ON(!th->t_trans_id);
1767
1768	vfs_dq_init(inode);
1769	err = dquot_alloc_inode(inode);
1770	if (err)
1771		goto out_end_trans;
1772	if (!dir->i_nlink) {
1773		err = -EPERM;
1774		goto out_bad_inode;
1775	}
1776
1777	sb = dir->i_sb;
1778
1779	/* item head of new item */
1780	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1781	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1782	if (!ih.ih_key.k_objectid) {
1783		err = -ENOMEM;
1784		goto out_bad_inode;
1785	}
1786	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1787	if (old_format_only(sb))
1788		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1789				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1790	else
1791		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1792				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1793	memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1794	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1795	if (insert_inode_locked4(inode, args.objectid,
1796			     reiserfs_find_actor, &args) < 0) {
1797		err = -EINVAL;
1798		goto out_bad_inode;
1799	}
1800	if (old_format_only(sb))
1801		/* not a perfect generation count, as object ids can be reused, but
1802		 ** this is as good as reiserfs can do right now.
1803		 ** note that the private part of inode isn't filled in yet, we have
1804		 ** to use the directory.
1805		 */
1806		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1807	else
1808#if defined( USE_INODE_GENERATION_COUNTER )
1809		inode->i_generation =
1810		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1811#else
1812		inode->i_generation = ++event;
1813#endif
1814
1815	/* fill stat data */
1816	inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1817
1818	/* uid and gid must already be set by the caller for quota init */
1819
1820	/* symlink cannot be immutable or append only, right? */
1821	if (S_ISLNK(inode->i_mode))
1822		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1823
1824	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1825	inode->i_size = i_size;
1826	inode->i_blocks = 0;
1827	inode->i_bytes = 0;
1828	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1829	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1830
1831	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1832	REISERFS_I(inode)->i_flags = 0;
1833	REISERFS_I(inode)->i_prealloc_block = 0;
1834	REISERFS_I(inode)->i_prealloc_count = 0;
1835	REISERFS_I(inode)->i_trans_id = 0;
1836	REISERFS_I(inode)->i_jl = NULL;
1837	REISERFS_I(inode)->i_attrs =
1838	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1839	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1840	mutex_init(&(REISERFS_I(inode)->i_mmap));
1841	reiserfs_init_xattr_rwsem(inode);
1842
1843	/* key to search for correct place for new stat data */
1844	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1845		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1846		      TYPE_STAT_DATA, 3 /*key length */ );
1847
1848	/* find proper place for inserting of stat data */
1849	retval = search_item(sb, &key, &path_to_key);
1850	if (retval == IO_ERROR) {
1851		err = -EIO;
1852		goto out_bad_inode;
1853	}
1854	if (retval == ITEM_FOUND) {
1855		pathrelse(&path_to_key);
1856		err = -EEXIST;
1857		goto out_bad_inode;
1858	}
1859	if (old_format_only(sb)) {
1860		if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1861			pathrelse(&path_to_key);
1862			/* i_uid or i_gid is too big to be stored in stat data v3.5 */
1863			err = -EINVAL;
1864			goto out_bad_inode;
1865		}
1866		inode2sd_v1(&sd, inode, inode->i_size);
1867	} else {
1868		inode2sd(&sd, inode, inode->i_size);
1869	}
1870	// store in in-core inode the key of stat data and version all
1871	// object items will have (directory items will have old offset
1872	// format, other new objects will consist of new items)
1873	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1874		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1875	else
1876		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1877	if (old_format_only(sb))
1878		set_inode_sd_version(inode, STAT_DATA_V1);
1879	else
1880		set_inode_sd_version(inode, STAT_DATA_V2);
1881
1882	/* insert the stat data into the tree */
1883#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1884	if (REISERFS_I(dir)->new_packing_locality)
1885		th->displace_new_blocks = 1;
1886#endif
1887	retval =
1888	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1889				 (char *)(&sd));
1890	if (retval) {
1891		err = retval;
1892		reiserfs_check_path(&path_to_key);
1893		goto out_bad_inode;
1894	}
1895#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1896	if (!th->displace_new_blocks)
1897		REISERFS_I(dir)->new_packing_locality = 0;
1898#endif
1899	if (S_ISDIR(mode)) {
1900		/* insert item with "." and ".." */
1901		retval =
1902		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1903	}
1904
1905	if (S_ISLNK(mode)) {
1906		/* insert body of symlink */
1907		if (!old_format_only(sb))
1908			i_size = ROUND_UP(i_size);
1909		retval =
1910		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1911					 i_size);
1912	}
1913	if (retval) {
1914		err = retval;
1915		reiserfs_check_path(&path_to_key);
1916		journal_end(th, th->t_super, th->t_blocks_allocated);
1917		goto out_inserted_sd;
1918	}
1919
1920	if (reiserfs_posixacl(inode->i_sb)) {
1921		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1922		if (retval) {
1923			err = retval;
1924			reiserfs_check_path(&path_to_key);
1925			journal_end(th, th->t_super, th->t_blocks_allocated);
1926			goto out_inserted_sd;
1927		}
1928	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
1929		reiserfs_warning(inode->i_sb, "jdm-13090",
1930				 "ACLs aren't enabled in the fs, "
1931				 "but vfs thinks they are!");
1932	} else if (IS_PRIVATE(dir))
1933		inode->i_flags |= S_PRIVATE;
1934
1935	if (security->name) {
1936		retval = reiserfs_security_write(th, inode, security);
1937		if (retval) {
1938			err = retval;
1939			reiserfs_check_path(&path_to_key);
1940			retval = journal_end(th, th->t_super,
1941					     th->t_blocks_allocated);
1942			if (retval)
1943				err = retval;
1944			goto out_inserted_sd;
1945		}
1946	}
1947
1948	reiserfs_update_sd(th, inode);
1949	reiserfs_check_path(&path_to_key);
1950
1951	return 0;
1952
1953/* it looks like you can easily compress these two goto targets into
1954 * one.  Keeping it like this doesn't actually hurt anything, and they
1955 * are place holders for what the quota code actually needs.
1956 */
1957      out_bad_inode:
1958	/* Invalidate the object, nothing was inserted yet */
1959	INODE_PKEY(inode)->k_objectid = 0;
1960
1961	/* Quota change must be inside a transaction for journaling */
1962	dquot_free_inode(inode);
1963
1964      out_end_trans:
1965	journal_end(th, th->t_super, th->t_blocks_allocated);
1966	/* Drop can be outside and it needs more credits so it's better to have it outside */
1967	vfs_dq_drop(inode);
1968	inode->i_flags |= S_NOQUOTA;
1969	make_bad_inode(inode);
1970
1971      out_inserted_sd:
1972	inode->i_nlink = 0;
1973	th->t_trans_id = 0;	/* so the caller can't use this handle later */
1974	unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
1975	iput(inode);
1976	return err;
1977}
1978
1979/*
1980** finds the tail page in the page cache,
1981** reads the last block in.
1982**
1983** On success, page_result is set to a locked, pinned page, and bh_result
1984** is set to an up to date buffer for the last block in the file.  returns 0.
1985**
1986** tail conversion is not done, so bh_result might not be valid for writing
1987** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1988** trying to write the block.
1989**
1990** on failure, nonzero is returned, page_result and bh_result are untouched.
1991*/
1992static int grab_tail_page(struct inode *inode,
1993			  struct page **page_result,
1994			  struct buffer_head **bh_result)
1995{
1996
1997	/* we want the page with the last byte in the file,
1998	 ** not the page that will hold the next byte for appending
1999	 */
2000	unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2001	unsigned long pos = 0;
2002	unsigned long start = 0;
2003	unsigned long blocksize = inode->i_sb->s_blocksize;
2004	unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2005	struct buffer_head *bh;
2006	struct buffer_head *head;
2007	struct page *page;
2008	int error;
2009
2010	/* we know that we are only called with inode->i_size > 0.
2011	 ** we also know that a file tail can never be as big as a block
2012	 ** If i_size % blocksize == 0, our file is currently block aligned
2013	 ** and it won't need converting or zeroing after a truncate.
2014	 */
2015	if ((offset & (blocksize - 1)) == 0) {
2016		return -ENOENT;
2017	}
2018	page = grab_cache_page(inode->i_mapping, index);
2019	error = -ENOMEM;
2020	if (!page) {
2021		goto out;
2022	}
2023	/* start within the page of the last block in the file */
2024	start = (offset / blocksize) * blocksize;
2025
2026	error = block_prepare_write(page, start, offset,
2027				    reiserfs_get_block_create_0);
2028	if (error)
2029		goto unlock;
2030
2031	head = page_buffers(page);
2032	bh = head;
2033	do {
2034		if (pos >= start) {
2035			break;
2036		}
2037		bh = bh->b_this_page;
2038		pos += blocksize;
2039	} while (bh != head);
2040
2041	if (!buffer_uptodate(bh)) {
2042		/* note, this should never happen, prepare_write should
2043		 ** be taking care of this for us.  If the buffer isn't up to date,
2044		 ** I've screwed up the code to find the buffer, or the code to
2045		 ** call prepare_write
2046		 */
2047		reiserfs_error(inode->i_sb, "clm-6000",
2048			       "error reading block %lu", bh->b_blocknr);
2049		error = -EIO;
2050		goto unlock;
2051	}
2052	*bh_result = bh;
2053	*page_result = page;
2054
2055      out:
2056	return error;
2057
2058      unlock:
2059	unlock_page(page);
2060	page_cache_release(page);
2061	return error;
2062}
2063
2064/*
2065** vfs version of truncate file.  Must NOT be called with
2066** a transaction already started.
2067**
2068** some code taken from block_truncate_page
2069*/
2070int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2071{
2072	struct reiserfs_transaction_handle th;
2073	/* we want the offset for the first byte after the end of the file */
2074	unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2075	unsigned blocksize = inode->i_sb->s_blocksize;
2076	unsigned length;
2077	struct page *page = NULL;
2078	int error;
2079	struct buffer_head *bh = NULL;
2080	int err2;
2081	int lock_depth;
2082
2083	lock_depth = reiserfs_write_lock_once(inode->i_sb);
2084
2085	if (inode->i_size > 0) {
2086		error = grab_tail_page(inode, &page, &bh);
2087		if (error) {
2088			// -ENOENT means we truncated past the end of the file,
2089			// and get_block_create_0 could not find a block to read in,
2090			// which is ok.
2091			if (error != -ENOENT)
2092				reiserfs_error(inode->i_sb, "clm-6001",
2093					       "grab_tail_page failed %d",
2094					       error);
2095			page = NULL;
2096			bh = NULL;
2097		}
2098	}
2099
2100	/* so, if page != NULL, we have a buffer head for the offset at
2101	 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2102	 ** then we have an unformatted node.  Otherwise, we have a direct item,
2103	 ** and no zeroing is required on disk.  We zero after the truncate,
2104	 ** because the truncate might pack the item anyway
2105	 ** (it will unmap bh if it packs).
2106	 */
2107	/* it is enough to reserve space in transaction for 2 balancings:
2108	   one for "save" link adding and another for the first
2109	   cut_from_item. 1 is for update_sd */
2110	error = journal_begin(&th, inode->i_sb,
2111			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2112	if (error)
2113		goto out;
2114	reiserfs_update_inode_transaction(inode);
2115	if (update_timestamps)
2116		/* we are doing real truncate: if the system crashes before the last
2117		   transaction of truncating gets committed - on reboot the file
2118		   either appears truncated properly or not truncated at all */
2119		add_save_link(&th, inode, 1);
2120	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2121	error =
2122	    journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2123	if (error)
2124		goto out;
2125
2126	/* check reiserfs_do_truncate after ending the transaction */
2127	if (err2) {
2128		error = err2;
2129  		goto out;
2130	}
2131
2132	if (update_timestamps) {
2133		error = remove_save_link(inode, 1 /* truncate */);
2134		if (error)
2135			goto out;
2136	}
2137
2138	if (page) {
2139		length = offset & (blocksize - 1);
2140		/* if we are not on a block boundary */
2141		if (length) {
2142			length = blocksize - length;
2143			zero_user(page, offset, length);
2144			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2145				mark_buffer_dirty(bh);
2146			}
2147		}
2148		unlock_page(page);
2149		page_cache_release(page);
2150	}
2151
2152	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2153
2154	return 0;
2155      out:
2156	if (page) {
2157		unlock_page(page);
2158		page_cache_release(page);
2159	}
2160
2161	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2162
2163	return error;
2164}
2165
2166static int map_block_for_writepage(struct inode *inode,
2167				   struct buffer_head *bh_result,
2168				   unsigned long block)
2169{
2170	struct reiserfs_transaction_handle th;
2171	int fs_gen;
2172	struct item_head tmp_ih;
2173	struct item_head *ih;
2174	struct buffer_head *bh;
2175	__le32 *item;
2176	struct cpu_key key;
2177	INITIALIZE_PATH(path);
2178	int pos_in_item;
2179	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2180	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2181	int retval;
2182	int use_get_block = 0;
2183	int bytes_copied = 0;
2184	int copy_size;
2185	int trans_running = 0;
2186
2187	/* catch places below that try to log something without starting a trans */
2188	th.t_trans_id = 0;
2189
2190	if (!buffer_uptodate(bh_result)) {
2191		return -EIO;
2192	}
2193
2194	kmap(bh_result->b_page);
2195      start_over:
2196	reiserfs_write_lock(inode->i_sb);
2197	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2198
2199      research:
2200	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2201	if (retval != POSITION_FOUND) {
2202		use_get_block = 1;
2203		goto out;
2204	}
2205
2206	bh = get_last_bh(&path);
2207	ih = get_ih(&path);
2208	item = get_item(&path);
2209	pos_in_item = path.pos_in_item;
2210
2211	/* we've found an unformatted node */
2212	if (indirect_item_found(retval, ih)) {
2213		if (bytes_copied > 0) {
2214			reiserfs_warning(inode->i_sb, "clm-6002",
2215					 "bytes_copied %d", bytes_copied);
2216		}
2217		if (!get_block_num(item, pos_in_item)) {
2218			/* crap, we are writing to a hole */
2219			use_get_block = 1;
2220			goto out;
2221		}
2222		set_block_dev_mapped(bh_result,
2223				     get_block_num(item, pos_in_item), inode);
2224	} else if (is_direct_le_ih(ih)) {
2225		char *p;
2226		p = page_address(bh_result->b_page);
2227		p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2228		copy_size = ih_item_len(ih) - pos_in_item;
2229
2230		fs_gen = get_generation(inode->i_sb);
2231		copy_item_head(&tmp_ih, ih);
2232
2233		if (!trans_running) {
2234			/* vs-3050 is gone, no need to drop the path */
2235			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2236			if (retval)
2237				goto out;
2238			reiserfs_update_inode_transaction(inode);
2239			trans_running = 1;
2240			if (fs_changed(fs_gen, inode->i_sb)
2241			    && item_moved(&tmp_ih, &path)) {
2242				reiserfs_restore_prepared_buffer(inode->i_sb,
2243								 bh);
2244				goto research;
2245			}
2246		}
2247
2248		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2249
2250		if (fs_changed(fs_gen, inode->i_sb)
2251		    && item_moved(&tmp_ih, &path)) {
2252			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2253			goto research;
2254		}
2255
2256		memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2257		       copy_size);
2258
2259		journal_mark_dirty(&th, inode->i_sb, bh);
2260		bytes_copied += copy_size;
2261		set_block_dev_mapped(bh_result, 0, inode);
2262
2263		/* are there still bytes left? */
2264		if (bytes_copied < bh_result->b_size &&
2265		    (byte_offset + bytes_copied) < inode->i_size) {
2266			set_cpu_key_k_offset(&key,
2267					     cpu_key_k_offset(&key) +
2268					     copy_size);
2269			goto research;
2270		}
2271	} else {
2272		reiserfs_warning(inode->i_sb, "clm-6003",
2273				 "bad item inode %lu", inode->i_ino);
2274		retval = -EIO;
2275		goto out;
2276	}
2277	retval = 0;
2278
2279      out:
2280	pathrelse(&path);
2281	if (trans_running) {
2282		int err = journal_end(&th, inode->i_sb, jbegin_count);
2283		if (err)
2284			retval = err;
2285		trans_running = 0;
2286	}
2287	reiserfs_write_unlock(inode->i_sb);
2288
2289	/* this is where we fill in holes in the file. */
2290	if (use_get_block) {
2291		retval = reiserfs_get_block(inode, block, bh_result,
2292					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2293					    | GET_BLOCK_NO_DANGLE);
2294		if (!retval) {
2295			if (!buffer_mapped(bh_result)
2296			    || bh_result->b_blocknr == 0) {
2297				/* get_block failed to find a mapped unformatted node. */
2298				use_get_block = 0;
2299				goto start_over;
2300			}
2301		}
2302	}
2303	kunmap(bh_result->b_page);
2304
2305	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2306		/* we've copied data from the page into the direct item, so the
2307		 * buffer in the page is now clean, mark it to reflect that.
2308		 */
2309		lock_buffer(bh_result);
2310		clear_buffer_dirty(bh_result);
2311		unlock_buffer(bh_result);
2312	}
2313	return retval;
2314}
2315
2316/*
2317 * mason@suse.com: updated in 2.5.54 to follow the same general io
2318 * start/recovery path as __block_write_full_page, along with special
2319 * code to handle reiserfs tails.
2320 */
2321static int reiserfs_write_full_page(struct page *page,
2322				    struct writeback_control *wbc)
2323{
2324	struct inode *inode = page->mapping->host;
2325	unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2326	int error = 0;
2327	unsigned long block;
2328	sector_t last_block;
2329	struct buffer_head *head, *bh;
2330	int partial = 0;
2331	int nr = 0;
2332	int checked = PageChecked(page);
2333	struct reiserfs_transaction_handle th;
2334	struct super_block *s = inode->i_sb;
2335	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2336	th.t_trans_id = 0;
2337
2338	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2339	if (checked && (current->flags & PF_MEMALLOC)) {
2340		redirty_page_for_writepage(wbc, page);
2341		unlock_page(page);
2342		return 0;
2343	}
2344
2345	/* The page dirty bit is cleared before writepage is called, which
2346	 * means we have to tell create_empty_buffers to make dirty buffers
2347	 * The page really should be up to date at this point, so tossing
2348	 * in the BH_Uptodate is just a sanity check.
2349	 */
2350	if (!page_has_buffers(page)) {
2351		create_empty_buffers(page, s->s_blocksize,
2352				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2353	}
2354	head = page_buffers(page);
2355
2356	/* last page in the file, zero out any contents past the
2357	 ** last byte in the file
2358	 */
2359	if (page->index >= end_index) {
2360		unsigned last_offset;
2361
2362		last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2363		/* no file contents in this page */
2364		if (page->index >= end_index + 1 || !last_offset) {
2365			unlock_page(page);
2366			return 0;
2367		}
2368		zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2369	}
2370	bh = head;
2371	block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2372	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2373	/* first map all the buffers, logging any direct items we find */
2374	do {
2375		if (block > last_block) {
2376			/*
2377			 * This can happen when the block size is less than
2378			 * the page size.  The corresponding bytes in the page
2379			 * were zero filled above
2380			 */
2381			clear_buffer_dirty(bh);
2382			set_buffer_uptodate(bh);
2383		} else if ((checked || buffer_dirty(bh)) &&
2384		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2385						       && bh->b_blocknr ==
2386						       0))) {
2387			/* not mapped yet, or it points to a direct item, search
2388			 * the btree for the mapping info, and log any direct
2389			 * items found
2390			 */
2391			if ((error = map_block_for_writepage(inode, bh, block))) {
2392				goto fail;
2393			}
2394		}
2395		bh = bh->b_this_page;
2396		block++;
2397	} while (bh != head);
2398
2399	/*
2400	 * we start the transaction after map_block_for_writepage,
2401	 * because it can create holes in the file (an unbounded operation).
2402	 * starting it here, we can make a reliable estimate for how many
2403	 * blocks we're going to log
2404	 */
2405	if (checked) {
2406		ClearPageChecked(page);
2407		reiserfs_write_lock(s);
2408		error = journal_begin(&th, s, bh_per_page + 1);
2409		if (error) {
2410			reiserfs_write_unlock(s);
2411			goto fail;
2412		}
2413		reiserfs_update_inode_transaction(inode);
2414	}
2415	/* now go through and lock any dirty buffers on the page */
2416	do {
2417		get_bh(bh);
2418		if (!buffer_mapped(bh))
2419			continue;
2420		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2421			continue;
2422
2423		if (checked) {
2424			reiserfs_prepare_for_journal(s, bh, 1);
2425			journal_mark_dirty(&th, s, bh);
2426			continue;
2427		}
2428		/* from this point on, we know the buffer is mapped to a
2429		 * real block and not a direct item
2430		 */
2431		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2432			lock_buffer(bh);
2433		} else {
2434			if (!trylock_buffer(bh)) {
2435				redirty_page_for_writepage(wbc, page);
2436				continue;
2437			}
2438		}
2439		if (test_clear_buffer_dirty(bh)) {
2440			mark_buffer_async_write(bh);
2441		} else {
2442			unlock_buffer(bh);
2443		}
2444	} while ((bh = bh->b_this_page) != head);
2445
2446	if (checked) {
2447		error = journal_end(&th, s, bh_per_page + 1);
2448		reiserfs_write_unlock(s);
2449		if (error)
2450			goto fail;
2451	}
2452	BUG_ON(PageWriteback(page));
2453	set_page_writeback(page);
2454	unlock_page(page);
2455
2456	/*
2457	 * since any buffer might be the only dirty buffer on the page,
2458	 * the first submit_bh can bring the page out of writeback.
2459	 * be careful with the buffers.
2460	 */
2461	do {
2462		struct buffer_head *next = bh->b_this_page;
2463		if (buffer_async_write(bh)) {
2464			submit_bh(WRITE, bh);
2465			nr++;
2466		}
2467		put_bh(bh);
2468		bh = next;
2469	} while (bh != head);
2470
2471	error = 0;
2472      done:
2473	if (nr == 0) {
2474		/*
2475		 * if this page only had a direct item, it is very possible for
2476		 * no io to be required without there being an error.  Or,
2477		 * someone else could have locked them and sent them down the
2478		 * pipe without locking the page
2479		 */
2480		bh = head;
2481		do {
2482			if (!buffer_uptodate(bh)) {
2483				partial = 1;
2484				break;
2485			}
2486			bh = bh->b_this_page;
2487		} while (bh != head);
2488		if (!partial)
2489			SetPageUptodate(page);
2490		end_page_writeback(page);
2491	}
2492	return error;
2493
2494      fail:
2495	/* catches various errors, we need to make sure any valid dirty blocks
2496	 * get to the media.  The page is currently locked and not marked for
2497	 * writeback
2498	 */
2499	ClearPageUptodate(page);
2500	bh = head;
2501	do {
2502		get_bh(bh);
2503		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2504			lock_buffer(bh);
2505			mark_buffer_async_write(bh);
2506		} else {
2507			/*
2508			 * clear any dirty bits that might have come from getting
2509			 * attached to a dirty page
2510			 */
2511			clear_buffer_dirty(bh);
2512		}
2513		bh = bh->b_this_page;
2514	} while (bh != head);
2515	SetPageError(page);
2516	BUG_ON(PageWriteback(page));
2517	set_page_writeback(page);
2518	unlock_page(page);
2519	do {
2520		struct buffer_head *next = bh->b_this_page;
2521		if (buffer_async_write(bh)) {
2522			clear_buffer_dirty(bh);
2523			submit_bh(WRITE, bh);
2524			nr++;
2525		}
2526		put_bh(bh);
2527		bh = next;
2528	} while (bh != head);
2529	goto done;
2530}
2531
2532static int reiserfs_readpage(struct file *f, struct page *page)
2533{
2534	return block_read_full_page(page, reiserfs_get_block);
2535}
2536
2537static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2538{
2539	struct inode *inode = page->mapping->host;
2540	reiserfs_wait_on_write_block(inode->i_sb);
2541	return reiserfs_write_full_page(page, wbc);
2542}
2543
2544static void reiserfs_truncate_failed_write(struct inode *inode)
2545{
2546	truncate_inode_pages(inode->i_mapping, inode->i_size);
2547	reiserfs_truncate_file(inode, 0);
2548}
2549
2550static int reiserfs_write_begin(struct file *file,
2551				struct address_space *mapping,
2552				loff_t pos, unsigned len, unsigned flags,
2553				struct page **pagep, void **fsdata)
2554{
2555	struct inode *inode;
2556	struct page *page;
2557	pgoff_t index;
2558	int ret;
2559	int old_ref = 0;
2560
2561 	inode = mapping->host;
2562	*fsdata = 0;
2563 	if (flags & AOP_FLAG_CONT_EXPAND &&
2564 	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2565 		pos ++;
2566		*fsdata = (void *)(unsigned long)flags;
2567	}
2568
2569	index = pos >> PAGE_CACHE_SHIFT;
2570	page = grab_cache_page_write_begin(mapping, index, flags);
2571	if (!page)
2572		return -ENOMEM;
2573	*pagep = page;
2574
2575	reiserfs_wait_on_write_block(inode->i_sb);
2576	fix_tail_page_for_writing(page);
2577	if (reiserfs_transaction_running(inode->i_sb)) {
2578		struct reiserfs_transaction_handle *th;
2579		th = (struct reiserfs_transaction_handle *)current->
2580		    journal_info;
2581		BUG_ON(!th->t_refcount);
2582		BUG_ON(!th->t_trans_id);
2583		old_ref = th->t_refcount;
2584		th->t_refcount++;
2585	}
2586	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2587				reiserfs_get_block);
2588	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2589		struct reiserfs_transaction_handle *th = current->journal_info;
2590		/* this gets a little ugly.  If reiserfs_get_block returned an
2591		 * error and left a transacstion running, we've got to close it,
2592		 * and we've got to free handle if it was a persistent transaction.
2593		 *
2594		 * But, if we had nested into an existing transaction, we need
2595		 * to just drop the ref count on the handle.
2596		 *
2597		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2598		 * and it was a persistent trans.  Otherwise, it was nested above.
2599		 */
2600		if (th->t_refcount > old_ref) {
2601			if (old_ref)
2602				th->t_refcount--;
2603			else {
2604				int err;
2605				reiserfs_write_lock(inode->i_sb);
2606				err = reiserfs_end_persistent_transaction(th);
2607				reiserfs_write_unlock(inode->i_sb);
2608				if (err)
2609					ret = err;
2610			}
2611		}
2612	}
2613	if (ret) {
2614		unlock_page(page);
2615		page_cache_release(page);
2616		/* Truncate allocated blocks */
2617		reiserfs_truncate_failed_write(inode);
2618	}
2619	return ret;
2620}
2621
2622int reiserfs_prepare_write(struct file *f, struct page *page,
2623			   unsigned from, unsigned to)
2624{
2625	struct inode *inode = page->mapping->host;
2626	int ret;
2627	int old_ref = 0;
2628
2629	reiserfs_write_unlock(inode->i_sb);
2630	reiserfs_wait_on_write_block(inode->i_sb);
2631	reiserfs_write_lock(inode->i_sb);
2632
2633	fix_tail_page_for_writing(page);
2634	if (reiserfs_transaction_running(inode->i_sb)) {
2635		struct reiserfs_transaction_handle *th;
2636		th = (struct reiserfs_transaction_handle *)current->
2637		    journal_info;
2638		BUG_ON(!th->t_refcount);
2639		BUG_ON(!th->t_trans_id);
2640		old_ref = th->t_refcount;
2641		th->t_refcount++;
2642	}
2643
2644	ret = block_prepare_write(page, from, to, reiserfs_get_block);
2645	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2646		struct reiserfs_transaction_handle *th = current->journal_info;
2647		/* this gets a little ugly.  If reiserfs_get_block returned an
2648		 * error and left a transacstion running, we've got to close it,
2649		 * and we've got to free handle if it was a persistent transaction.
2650		 *
2651		 * But, if we had nested into an existing transaction, we need
2652		 * to just drop the ref count on the handle.
2653		 *
2654		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2655		 * and it was a persistent trans.  Otherwise, it was nested above.
2656		 */
2657		if (th->t_refcount > old_ref) {
2658			if (old_ref)
2659				th->t_refcount--;
2660			else {
2661				int err;
2662				reiserfs_write_lock(inode->i_sb);
2663				err = reiserfs_end_persistent_transaction(th);
2664				reiserfs_write_unlock(inode->i_sb);
2665				if (err)
2666					ret = err;
2667			}
2668		}
2669	}
2670	return ret;
2671
2672}
2673
2674static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2675{
2676	return generic_block_bmap(as, block, reiserfs_bmap);
2677}
2678
2679static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2680			      loff_t pos, unsigned len, unsigned copied,
2681			      struct page *page, void *fsdata)
2682{
2683	struct inode *inode = page->mapping->host;
2684	int ret = 0;
2685	int update_sd = 0;
2686	struct reiserfs_transaction_handle *th;
2687	unsigned start;
2688	int lock_depth = 0;
2689	bool locked = false;
2690
2691	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2692		pos ++;
2693
2694	reiserfs_wait_on_write_block(inode->i_sb);
2695	if (reiserfs_transaction_running(inode->i_sb))
2696		th = current->journal_info;
2697	else
2698		th = NULL;
2699
2700	start = pos & (PAGE_CACHE_SIZE - 1);
2701	if (unlikely(copied < len)) {
2702		if (!PageUptodate(page))
2703			copied = 0;
2704
2705		page_zero_new_buffers(page, start + copied, start + len);
2706	}
2707	flush_dcache_page(page);
2708
2709	reiserfs_commit_page(inode, page, start, start + copied);
2710
2711	/* generic_commit_write does this for us, but does not update the
2712	 ** transaction tracking stuff when the size changes.  So, we have
2713	 ** to do the i_size updates here.
2714	 */
2715	if (pos + copied > inode->i_size) {
2716		struct reiserfs_transaction_handle myth;
2717		lock_depth = reiserfs_write_lock_once(inode->i_sb);
2718		locked = true;
2719		/* If the file have grown beyond the border where it
2720		   can have a tail, unmark it as needing a tail
2721		   packing */
2722		if ((have_large_tails(inode->i_sb)
2723		     && inode->i_size > i_block_size(inode) * 4)
2724		    || (have_small_tails(inode->i_sb)
2725			&& inode->i_size > i_block_size(inode)))
2726			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2727
2728		ret = journal_begin(&myth, inode->i_sb, 1);
2729		if (ret)
2730			goto journal_error;
2731
2732		reiserfs_update_inode_transaction(inode);
2733		inode->i_size = pos + copied;
2734		/*
2735		 * this will just nest into our transaction.  It's important
2736		 * to use mark_inode_dirty so the inode gets pushed around on the
2737		 * dirty lists, and so that O_SYNC works as expected
2738		 */
2739		mark_inode_dirty(inode);
2740		reiserfs_update_sd(&myth, inode);
2741		update_sd = 1;
2742		ret = journal_end(&myth, inode->i_sb, 1);
2743		if (ret)
2744			goto journal_error;
2745	}
2746	if (th) {
2747		if (!locked) {
2748			lock_depth = reiserfs_write_lock_once(inode->i_sb);
2749			locked = true;
2750		}
2751		if (!update_sd)
2752			mark_inode_dirty(inode);
2753		ret = reiserfs_end_persistent_transaction(th);
2754		if (ret)
2755			goto out;
2756	}
2757
2758      out:
2759	if (locked)
2760		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2761	unlock_page(page);
2762	page_cache_release(page);
2763
2764	if (pos + len > inode->i_size)
2765		reiserfs_truncate_failed_write(inode);
2766
2767	return ret == 0 ? copied : ret;
2768
2769      journal_error:
2770	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2771	locked = false;
2772	if (th) {
2773		if (!update_sd)
2774			reiserfs_update_sd(th, inode);
2775		ret = reiserfs_end_persistent_transaction(th);
2776	}
2777	goto out;
2778}
2779
2780int reiserfs_commit_write(struct file *f, struct page *page,
2781			  unsigned from, unsigned to)
2782{
2783	struct inode *inode = page->mapping->host;
2784	loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2785	int ret = 0;
2786	int update_sd = 0;
2787	struct reiserfs_transaction_handle *th = NULL;
2788
2789	reiserfs_write_unlock(inode->i_sb);
2790	reiserfs_wait_on_write_block(inode->i_sb);
2791	reiserfs_write_lock(inode->i_sb);
2792
2793	if (reiserfs_transaction_running(inode->i_sb)) {
2794		th = current->journal_info;
2795	}
2796	reiserfs_commit_page(inode, page, from, to);
2797
2798	/* generic_commit_write does this for us, but does not update the
2799	 ** transaction tracking stuff when the size changes.  So, we have
2800	 ** to do the i_size updates here.
2801	 */
2802	if (pos > inode->i_size) {
2803		struct reiserfs_transaction_handle myth;
2804		/* If the file have grown beyond the border where it
2805		   can have a tail, unmark it as needing a tail
2806		   packing */
2807		if ((have_large_tails(inode->i_sb)
2808		     && inode->i_size > i_block_size(inode) * 4)
2809		    || (have_small_tails(inode->i_sb)
2810			&& inode->i_size > i_block_size(inode)))
2811			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2812
2813		ret = journal_begin(&myth, inode->i_sb, 1);
2814		if (ret)
2815			goto journal_error;
2816
2817		reiserfs_update_inode_transaction(inode);
2818		inode->i_size = pos;
2819		/*
2820		 * this will just nest into our transaction.  It's important
2821		 * to use mark_inode_dirty so the inode gets pushed around on the
2822		 * dirty lists, and so that O_SYNC works as expected
2823		 */
2824		mark_inode_dirty(inode);
2825		reiserfs_update_sd(&myth, inode);
2826		update_sd = 1;
2827		ret = journal_end(&myth, inode->i_sb, 1);
2828		if (ret)
2829			goto journal_error;
2830	}
2831	if (th) {
2832		if (!update_sd)
2833			mark_inode_dirty(inode);
2834		ret = reiserfs_end_persistent_transaction(th);
2835		if (ret)
2836			goto out;
2837	}
2838
2839      out:
2840	return ret;
2841
2842      journal_error:
2843	if (th) {
2844		if (!update_sd)
2845			reiserfs_update_sd(th, inode);
2846		ret = reiserfs_end_persistent_transaction(th);
2847	}
2848
2849	return ret;
2850}
2851
2852void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2853{
2854	if (reiserfs_attrs(inode->i_sb)) {
2855		if (sd_attrs & REISERFS_SYNC_FL)
2856			inode->i_flags |= S_SYNC;
2857		else
2858			inode->i_flags &= ~S_SYNC;
2859		if (sd_attrs & REISERFS_IMMUTABLE_FL)
2860			inode->i_flags |= S_IMMUTABLE;
2861		else
2862			inode->i_flags &= ~S_IMMUTABLE;
2863		if (sd_attrs & REISERFS_APPEND_FL)
2864			inode->i_flags |= S_APPEND;
2865		else
2866			inode->i_flags &= ~S_APPEND;
2867		if (sd_attrs & REISERFS_NOATIME_FL)
2868			inode->i_flags |= S_NOATIME;
2869		else
2870			inode->i_flags &= ~S_NOATIME;
2871		if (sd_attrs & REISERFS_NOTAIL_FL)
2872			REISERFS_I(inode)->i_flags |= i_nopack_mask;
2873		else
2874			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2875	}
2876}
2877
2878void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2879{
2880	if (reiserfs_attrs(inode->i_sb)) {
2881		if (inode->i_flags & S_IMMUTABLE)
2882			*sd_attrs |= REISERFS_IMMUTABLE_FL;
2883		else
2884			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2885		if (inode->i_flags & S_SYNC)
2886			*sd_attrs |= REISERFS_SYNC_FL;
2887		else
2888			*sd_attrs &= ~REISERFS_SYNC_FL;
2889		if (inode->i_flags & S_NOATIME)
2890			*sd_attrs |= REISERFS_NOATIME_FL;
2891		else
2892			*sd_attrs &= ~REISERFS_NOATIME_FL;
2893		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2894			*sd_attrs |= REISERFS_NOTAIL_FL;
2895		else
2896			*sd_attrs &= ~REISERFS_NOTAIL_FL;
2897	}
2898}
2899
2900/* decide if this buffer needs to stay around for data logging or ordered
2901** write purposes
2902*/
2903static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2904{
2905	int ret = 1;
2906	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2907
2908	lock_buffer(bh);
2909	spin_lock(&j->j_dirty_buffers_lock);
2910	if (!buffer_mapped(bh)) {
2911		goto free_jh;
2912	}
2913	/* the page is locked, and the only places that log a data buffer
2914	 * also lock the page.
2915	 */
2916	if (reiserfs_file_data_log(inode)) {
2917		/*
2918		 * very conservative, leave the buffer pinned if
2919		 * anyone might need it.
2920		 */
2921		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2922			ret = 0;
2923		}
2924	} else  if (buffer_dirty(bh)) {
2925		struct reiserfs_journal_list *jl;
2926		struct reiserfs_jh *jh = bh->b_private;
2927
2928		/* why is this safe?
2929		 * reiserfs_setattr updates i_size in the on disk
2930		 * stat data before allowing vmtruncate to be called.
2931		 *
2932		 * If buffer was put onto the ordered list for this
2933		 * transaction, we know for sure either this transaction
2934		 * or an older one already has updated i_size on disk,
2935		 * and this ordered data won't be referenced in the file
2936		 * if we crash.
2937		 *
2938		 * if the buffer was put onto the ordered list for an older
2939		 * transaction, we need to leave it around
2940		 */
2941		if (jh && (jl = jh->jl)
2942		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2943			ret = 0;
2944	}
2945      free_jh:
2946	if (ret && bh->b_private) {
2947		reiserfs_free_jh(bh);
2948	}
2949	spin_unlock(&j->j_dirty_buffers_lock);
2950	unlock_buffer(bh);
2951	return ret;
2952}
2953
2954/* clm -- taken from fs/buffer.c:block_invalidate_page */
2955static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2956{
2957	struct buffer_head *head, *bh, *next;
2958	struct inode *inode = page->mapping->host;
2959	unsigned int curr_off = 0;
2960	int ret = 1;
2961
2962	BUG_ON(!PageLocked(page));
2963
2964	if (offset == 0)
2965		ClearPageChecked(page);
2966
2967	if (!page_has_buffers(page))
2968		goto out;
2969
2970	head = page_buffers(page);
2971	bh = head;
2972	do {
2973		unsigned int next_off = curr_off + bh->b_size;
2974		next = bh->b_this_page;
2975
2976		/*
2977		 * is this block fully invalidated?
2978		 */
2979		if (offset <= curr_off) {
2980			if (invalidatepage_can_drop(inode, bh))
2981				reiserfs_unmap_buffer(bh);
2982			else
2983				ret = 0;
2984		}
2985		curr_off = next_off;
2986		bh = next;
2987	} while (bh != head);
2988
2989	/*
2990	 * We release buffers only if the entire page is being invalidated.
2991	 * The get_block cached value has been unconditionally invalidated,
2992	 * so real IO is not possible anymore.
2993	 */
2994	if (!offset && ret) {
2995		ret = try_to_release_page(page, 0);
2996		/* maybe should BUG_ON(!ret); - neilb */
2997	}
2998      out:
2999	return;
3000}
3001
3002static int reiserfs_set_page_dirty(struct page *page)
3003{
3004	struct inode *inode = page->mapping->host;
3005	if (reiserfs_file_data_log(inode)) {
3006		SetPageChecked(page);
3007		return __set_page_dirty_nobuffers(page);
3008	}
3009	return __set_page_dirty_buffers(page);
3010}
3011
3012/*
3013 * Returns 1 if the page's buffers were dropped.  The page is locked.
3014 *
3015 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3016 * in the buffers at page_buffers(page).
3017 *
3018 * even in -o notail mode, we can't be sure an old mount without -o notail
3019 * didn't create files with tails.
3020 */
3021static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3022{
3023	struct inode *inode = page->mapping->host;
3024	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3025	struct buffer_head *head;
3026	struct buffer_head *bh;
3027	int ret = 1;
3028
3029	WARN_ON(PageChecked(page));
3030	spin_lock(&j->j_dirty_buffers_lock);
3031	head = page_buffers(page);
3032	bh = head;
3033	do {
3034		if (bh->b_private) {
3035			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3036				reiserfs_free_jh(bh);
3037			} else {
3038				ret = 0;
3039				break;
3040			}
3041		}
3042		bh = bh->b_this_page;
3043	} while (bh != head);
3044	if (ret)
3045		ret = try_to_free_buffers(page);
3046	spin_unlock(&j->j_dirty_buffers_lock);
3047	return ret;
3048}
3049
3050/* We thank Mingming Cao for helping us understand in great detail what
3051   to do in this section of the code. */
3052static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3053				  const struct iovec *iov, loff_t offset,
3054				  unsigned long nr_segs)
3055{
3056	struct file *file = iocb->ki_filp;
3057	struct inode *inode = file->f_mapping->host;
3058
3059	return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3060				  offset, nr_segs,
3061				  reiserfs_get_blocks_direct_io, NULL);
3062}
3063
3064int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3065{
3066	struct inode *inode = dentry->d_inode;
3067	unsigned int ia_valid;
3068	int depth;
3069	int error;
3070
3071	/* must be turned off for recursive notify_change calls */
3072	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3073
3074	depth = reiserfs_write_lock_once(inode->i_sb);
3075	if (attr->ia_valid & ATTR_SIZE) {
3076		/* version 2 items will be caught by the s_maxbytes check
3077		 ** done for us in vmtruncate
3078		 */
3079		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3080		    attr->ia_size > MAX_NON_LFS) {
3081			error = -EFBIG;
3082			goto out;
3083		}
3084		/* fill in hole pointers in the expanding truncate case. */
3085		if (attr->ia_size > inode->i_size) {
3086			error = generic_cont_expand_simple(inode, attr->ia_size);
3087			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3088				int err;
3089				struct reiserfs_transaction_handle th;
3090				/* we're changing at most 2 bitmaps, inode + super */
3091				err = journal_begin(&th, inode->i_sb, 4);
3092				if (!err) {
3093					reiserfs_discard_prealloc(&th, inode);
3094					err = journal_end(&th, inode->i_sb, 4);
3095				}
3096				if (err)
3097					error = err;
3098			}
3099			if (error)
3100				goto out;
3101			/*
3102			 * file size is changed, ctime and mtime are
3103			 * to be updated
3104			 */
3105			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3106		}
3107	}
3108
3109	if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
3110	     ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
3111	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3112		/* stat data of format v3.5 has 16 bit uid and gid */
3113		error = -EINVAL;
3114		goto out;
3115	}
3116
3117	error = inode_change_ok(inode, attr);
3118	if (!error) {
3119		if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3120		    (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3121			error = reiserfs_chown_xattrs(inode, attr);
3122
3123			if (!error) {
3124				struct reiserfs_transaction_handle th;
3125				int jbegin_count =
3126				    2 *
3127				    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3128				     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3129				    2;
3130
3131				/* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3132				error =
3133				    journal_begin(&th, inode->i_sb,
3134						  jbegin_count);
3135				if (error)
3136					goto out;
3137				error = dquot_transfer(inode, attr);
3138				if (error) {
3139					journal_end(&th, inode->i_sb,
3140						    jbegin_count);
3141					goto out;
3142				}
3143				/* Update corresponding info in inode so that everything is in
3144				 * one transaction */
3145				if (attr->ia_valid & ATTR_UID)
3146					inode->i_uid = attr->ia_uid;
3147				if (attr->ia_valid & ATTR_GID)
3148					inode->i_gid = attr->ia_gid;
3149				mark_inode_dirty(inode);
3150				error =
3151				    journal_end(&th, inode->i_sb, jbegin_count);
3152			}
3153		}
3154		if (!error) {
3155			/*
3156			 * Relax the lock here, as it might truncate the
3157			 * inode pages and wait for inode pages locks.
3158			 * To release such page lock, the owner needs the
3159			 * reiserfs lock
3160			 */
3161			reiserfs_write_unlock_once(inode->i_sb, depth);
3162			error = inode_setattr(inode, attr);
3163			depth = reiserfs_write_lock_once(inode->i_sb);
3164		}
3165	}
3166
3167	if (!error && reiserfs_posixacl(inode->i_sb)) {
3168		if (attr->ia_valid & ATTR_MODE)
3169			error = reiserfs_acl_chmod(inode);
3170	}
3171
3172      out:
3173	reiserfs_write_unlock_once(inode->i_sb, depth);
3174
3175	return error;
3176}
3177
3178const struct address_space_operations reiserfs_address_space_operations = {
3179	.writepage = reiserfs_writepage,
3180	.readpage = reiserfs_readpage,
3181	.readpages = reiserfs_readpages,
3182	.releasepage = reiserfs_releasepage,
3183	.invalidatepage = reiserfs_invalidatepage,
3184	.sync_page = block_sync_page,
3185	.write_begin = reiserfs_write_begin,
3186	.write_end = reiserfs_write_end,
3187	.bmap = reiserfs_aop_bmap,
3188	.direct_IO = reiserfs_direct_IO,
3189	.set_page_dirty = reiserfs_set_page_dirty,
3190};
3191