inode.c revision db78b877f7744bec4a9d9f9e7d10da3931d7cd39
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5#include <linux/time.h>
6#include <linux/fs.h>
7#include <linux/reiserfs_fs.h>
8#include <linux/reiserfs_acl.h>
9#include <linux/reiserfs_xattr.h>
10#include <linux/exportfs.h>
11#include <linux/smp_lock.h>
12#include <linux/pagemap.h>
13#include <linux/highmem.h>
14#include <linux/slab.h>
15#include <asm/uaccess.h>
16#include <asm/unaligned.h>
17#include <linux/buffer_head.h>
18#include <linux/mpage.h>
19#include <linux/writeback.h>
20#include <linux/quotaops.h>
21#include <linux/swap.h>
22
23int reiserfs_commit_write(struct file *f, struct page *page,
24			  unsigned from, unsigned to);
25int reiserfs_prepare_write(struct file *f, struct page *page,
26			   unsigned from, unsigned to);
27
28void reiserfs_delete_inode(struct inode *inode)
29{
30	/* We need blocks for transaction + (user+group) quota update (possibly delete) */
31	int jbegin_count =
32	    JOURNAL_PER_BALANCE_CNT * 2 +
33	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
34	struct reiserfs_transaction_handle th;
35	int depth;
36	int err;
37
38	if (!is_bad_inode(inode))
39		dquot_initialize(inode);
40
41	truncate_inode_pages(&inode->i_data, 0);
42
43	depth = reiserfs_write_lock_once(inode->i_sb);
44
45	/* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
46	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {	/* also handles bad_inode case */
47		reiserfs_delete_xattrs(inode);
48
49		if (journal_begin(&th, inode->i_sb, jbegin_count))
50			goto out;
51		reiserfs_update_inode_transaction(inode);
52
53		reiserfs_discard_prealloc(&th, inode);
54
55		err = reiserfs_delete_object(&th, inode);
56
57		/* Do quota update inside a transaction for journaled quotas. We must do that
58		 * after delete_object so that quota updates go into the same transaction as
59		 * stat data deletion */
60		if (!err)
61			dquot_free_inode(inode);
62
63		if (journal_end(&th, inode->i_sb, jbegin_count))
64			goto out;
65
66		/* check return value from reiserfs_delete_object after
67		 * ending the transaction
68		 */
69		if (err)
70		    goto out;
71
72		/* all items of file are deleted, so we can remove "save" link */
73		remove_save_link(inode, 0 /* not truncate */ );	/* we can't do anything
74								 * about an error here */
75	} else {
76		/* no object items are in the tree */
77		;
78	}
79      out:
80	clear_inode(inode);	/* note this must go after the journal_end to prevent deadlock */
81	inode->i_blocks = 0;
82	reiserfs_write_unlock_once(inode->i_sb, depth);
83}
84
85static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
86			  __u32 objectid, loff_t offset, int type, int length)
87{
88	key->version = version;
89
90	key->on_disk_key.k_dir_id = dirid;
91	key->on_disk_key.k_objectid = objectid;
92	set_cpu_key_k_offset(key, offset);
93	set_cpu_key_k_type(key, type);
94	key->key_length = length;
95}
96
97/* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
98   offset and type of key */
99void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
100		  int type, int length)
101{
102	_make_cpu_key(key, get_inode_item_key_version(inode),
103		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
104		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
105		      length);
106}
107
108//
109// when key is 0, do not set version and short key
110//
111inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
112			      int version,
113			      loff_t offset, int type, int length,
114			      int entry_count /*or ih_free_space */ )
115{
116	if (key) {
117		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
118		ih->ih_key.k_objectid =
119		    cpu_to_le32(key->on_disk_key.k_objectid);
120	}
121	put_ih_version(ih, version);
122	set_le_ih_k_offset(ih, offset);
123	set_le_ih_k_type(ih, type);
124	put_ih_item_len(ih, length);
125	/*    set_ih_free_space (ih, 0); */
126	// for directory items it is entry count, for directs and stat
127	// datas - 0xffff, for indirects - 0
128	put_ih_entry_count(ih, entry_count);
129}
130
131//
132// FIXME: we might cache recently accessed indirect item
133
134// Ugh.  Not too eager for that....
135//  I cut the code until such time as I see a convincing argument (benchmark).
136// I don't want a bloated inode struct..., and I don't like code complexity....
137
138/* cutting the code is fine, since it really isn't in use yet and is easy
139** to add back in.  But, Vladimir has a really good idea here.  Think
140** about what happens for reading a file.  For each page,
141** The VFS layer calls reiserfs_readpage, who searches the tree to find
142** an indirect item.  This indirect item has X number of pointers, where
143** X is a big number if we've done the block allocation right.  But,
144** we only use one or two of these pointers during each call to readpage,
145** needlessly researching again later on.
146**
147** The size of the cache could be dynamic based on the size of the file.
148**
149** I'd also like to see us cache the location the stat data item, since
150** we are needlessly researching for that frequently.
151**
152** --chris
153*/
154
155/* If this page has a file tail in it, and
156** it was read in by get_block_create_0, the page data is valid,
157** but tail is still sitting in a direct item, and we can't write to
158** it.  So, look through this page, and check all the mapped buffers
159** to make sure they have valid block numbers.  Any that don't need
160** to be unmapped, so that block_prepare_write will correctly call
161** reiserfs_get_block to convert the tail into an unformatted node
162*/
163static inline void fix_tail_page_for_writing(struct page *page)
164{
165	struct buffer_head *head, *next, *bh;
166
167	if (page && page_has_buffers(page)) {
168		head = page_buffers(page);
169		bh = head;
170		do {
171			next = bh->b_this_page;
172			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
173				reiserfs_unmap_buffer(bh);
174			}
175			bh = next;
176		} while (bh != head);
177	}
178}
179
180/* reiserfs_get_block does not need to allocate a block only if it has been
181   done already or non-hole position has been found in the indirect item */
182static inline int allocation_needed(int retval, b_blocknr_t allocated,
183				    struct item_head *ih,
184				    __le32 * item, int pos_in_item)
185{
186	if (allocated)
187		return 0;
188	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
189	    get_block_num(item, pos_in_item))
190		return 0;
191	return 1;
192}
193
194static inline int indirect_item_found(int retval, struct item_head *ih)
195{
196	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
197}
198
199static inline void set_block_dev_mapped(struct buffer_head *bh,
200					b_blocknr_t block, struct inode *inode)
201{
202	map_bh(bh, inode->i_sb, block);
203}
204
205//
206// files which were created in the earlier version can not be longer,
207// than 2 gb
208//
209static int file_capable(struct inode *inode, sector_t block)
210{
211	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||	// it is new file.
212	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))	// old file, but 'block' is inside of 2gb
213		return 1;
214
215	return 0;
216}
217
218static int restart_transaction(struct reiserfs_transaction_handle *th,
219			       struct inode *inode, struct treepath *path)
220{
221	struct super_block *s = th->t_super;
222	int len = th->t_blocks_allocated;
223	int err;
224
225	BUG_ON(!th->t_trans_id);
226	BUG_ON(!th->t_refcount);
227
228	pathrelse(path);
229
230	/* we cannot restart while nested */
231	if (th->t_refcount > 1) {
232		return 0;
233	}
234	reiserfs_update_sd(th, inode);
235	err = journal_end(th, s, len);
236	if (!err) {
237		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
238		if (!err)
239			reiserfs_update_inode_transaction(inode);
240	}
241	return err;
242}
243
244// it is called by get_block when create == 0. Returns block number
245// for 'block'-th logical block of file. When it hits direct item it
246// returns 0 (being called from bmap) or read direct item into piece
247// of page (bh_result)
248
249// Please improve the english/clarity in the comment above, as it is
250// hard to understand.
251
252static int _get_block_create_0(struct inode *inode, sector_t block,
253			       struct buffer_head *bh_result, int args)
254{
255	INITIALIZE_PATH(path);
256	struct cpu_key key;
257	struct buffer_head *bh;
258	struct item_head *ih, tmp_ih;
259	b_blocknr_t blocknr;
260	char *p = NULL;
261	int chars;
262	int ret;
263	int result;
264	int done = 0;
265	unsigned long offset;
266
267	// prepare the key to look for the 'block'-th block of file
268	make_cpu_key(&key, inode,
269		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
270		     3);
271
272	result = search_for_position_by_key(inode->i_sb, &key, &path);
273	if (result != POSITION_FOUND) {
274		pathrelse(&path);
275		if (p)
276			kunmap(bh_result->b_page);
277		if (result == IO_ERROR)
278			return -EIO;
279		// We do not return -ENOENT if there is a hole but page is uptodate, because it means
280		// That there is some MMAPED data associated with it that is yet to be written to disk.
281		if ((args & GET_BLOCK_NO_HOLE)
282		    && !PageUptodate(bh_result->b_page)) {
283			return -ENOENT;
284		}
285		return 0;
286	}
287	//
288	bh = get_last_bh(&path);
289	ih = get_ih(&path);
290	if (is_indirect_le_ih(ih)) {
291		__le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
292
293		/* FIXME: here we could cache indirect item or part of it in
294		   the inode to avoid search_by_key in case of subsequent
295		   access to file */
296		blocknr = get_block_num(ind_item, path.pos_in_item);
297		ret = 0;
298		if (blocknr) {
299			map_bh(bh_result, inode->i_sb, blocknr);
300			if (path.pos_in_item ==
301			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
302				set_buffer_boundary(bh_result);
303			}
304		} else
305			// We do not return -ENOENT if there is a hole but page is uptodate, because it means
306			// That there is some MMAPED data associated with it that is yet to  be written to disk.
307		if ((args & GET_BLOCK_NO_HOLE)
308			    && !PageUptodate(bh_result->b_page)) {
309			ret = -ENOENT;
310		}
311
312		pathrelse(&path);
313		if (p)
314			kunmap(bh_result->b_page);
315		return ret;
316	}
317	// requested data are in direct item(s)
318	if (!(args & GET_BLOCK_READ_DIRECT)) {
319		// we are called by bmap. FIXME: we can not map block of file
320		// when it is stored in direct item(s)
321		pathrelse(&path);
322		if (p)
323			kunmap(bh_result->b_page);
324		return -ENOENT;
325	}
326
327	/* if we've got a direct item, and the buffer or page was uptodate,
328	 ** we don't want to pull data off disk again.  skip to the
329	 ** end, where we map the buffer and return
330	 */
331	if (buffer_uptodate(bh_result)) {
332		goto finished;
333	} else
334		/*
335		 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
336		 ** pages without any buffers.  If the page is up to date, we don't want
337		 ** read old data off disk.  Set the up to date bit on the buffer instead
338		 ** and jump to the end
339		 */
340	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
341		set_buffer_uptodate(bh_result);
342		goto finished;
343	}
344	// read file tail into part of page
345	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
346	copy_item_head(&tmp_ih, ih);
347
348	/* we only want to kmap if we are reading the tail into the page.
349	 ** this is not the common case, so we don't kmap until we are
350	 ** sure we need to.  But, this means the item might move if
351	 ** kmap schedules
352	 */
353	if (!p)
354		p = (char *)kmap(bh_result->b_page);
355
356	p += offset;
357	memset(p, 0, inode->i_sb->s_blocksize);
358	do {
359		if (!is_direct_le_ih(ih)) {
360			BUG();
361		}
362		/* make sure we don't read more bytes than actually exist in
363		 ** the file.  This can happen in odd cases where i_size isn't
364		 ** correct, and when direct item padding results in a few
365		 ** extra bytes at the end of the direct item
366		 */
367		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
368			break;
369		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
370			chars =
371			    inode->i_size - (le_ih_k_offset(ih) - 1) -
372			    path.pos_in_item;
373			done = 1;
374		} else {
375			chars = ih_item_len(ih) - path.pos_in_item;
376		}
377		memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
378
379		if (done)
380			break;
381
382		p += chars;
383
384		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
385			// we done, if read direct item is not the last item of
386			// node FIXME: we could try to check right delimiting key
387			// to see whether direct item continues in the right
388			// neighbor or rely on i_size
389			break;
390
391		// update key to look for the next piece
392		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
393		result = search_for_position_by_key(inode->i_sb, &key, &path);
394		if (result != POSITION_FOUND)
395			// i/o error most likely
396			break;
397		bh = get_last_bh(&path);
398		ih = get_ih(&path);
399	} while (1);
400
401	flush_dcache_page(bh_result->b_page);
402	kunmap(bh_result->b_page);
403
404      finished:
405	pathrelse(&path);
406
407	if (result == IO_ERROR)
408		return -EIO;
409
410	/* this buffer has valid data, but isn't valid for io.  mapping it to
411	 * block #0 tells the rest of reiserfs it just has a tail in it
412	 */
413	map_bh(bh_result, inode->i_sb, 0);
414	set_buffer_uptodate(bh_result);
415	return 0;
416}
417
418// this is called to create file map. So, _get_block_create_0 will not
419// read direct item
420static int reiserfs_bmap(struct inode *inode, sector_t block,
421			 struct buffer_head *bh_result, int create)
422{
423	if (!file_capable(inode, block))
424		return -EFBIG;
425
426	reiserfs_write_lock(inode->i_sb);
427	/* do not read the direct item */
428	_get_block_create_0(inode, block, bh_result, 0);
429	reiserfs_write_unlock(inode->i_sb);
430	return 0;
431}
432
433/* special version of get_block that is only used by grab_tail_page right
434** now.  It is sent to block_prepare_write, and when you try to get a
435** block past the end of the file (or a block from a hole) it returns
436** -ENOENT instead of a valid buffer.  block_prepare_write expects to
437** be able to do i/o on the buffers returned, unless an error value
438** is also returned.
439**
440** So, this allows block_prepare_write to be used for reading a single block
441** in a page.  Where it does not produce a valid page for holes, or past the
442** end of the file.  This turns out to be exactly what we need for reading
443** tails for conversion.
444**
445** The point of the wrapper is forcing a certain value for create, even
446** though the VFS layer is calling this function with create==1.  If you
447** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
448** don't use this function.
449*/
450static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
451				       struct buffer_head *bh_result,
452				       int create)
453{
454	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
455}
456
457/* This is special helper for reiserfs_get_block in case we are executing
458   direct_IO request. */
459static int reiserfs_get_blocks_direct_io(struct inode *inode,
460					 sector_t iblock,
461					 struct buffer_head *bh_result,
462					 int create)
463{
464	int ret;
465
466	bh_result->b_page = NULL;
467
468	/* We set the b_size before reiserfs_get_block call since it is
469	   referenced in convert_tail_for_hole() that may be called from
470	   reiserfs_get_block() */
471	bh_result->b_size = (1 << inode->i_blkbits);
472
473	ret = reiserfs_get_block(inode, iblock, bh_result,
474				 create | GET_BLOCK_NO_DANGLE);
475	if (ret)
476		goto out;
477
478	/* don't allow direct io onto tail pages */
479	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
480		/* make sure future calls to the direct io funcs for this offset
481		 ** in the file fail by unmapping the buffer
482		 */
483		clear_buffer_mapped(bh_result);
484		ret = -EINVAL;
485	}
486	/* Possible unpacked tail. Flush the data before pages have
487	   disappeared */
488	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
489		int err;
490
491		reiserfs_write_lock(inode->i_sb);
492
493		err = reiserfs_commit_for_inode(inode);
494		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
495
496		reiserfs_write_unlock(inode->i_sb);
497
498		if (err < 0)
499			ret = err;
500	}
501      out:
502	return ret;
503}
504
505/*
506** helper function for when reiserfs_get_block is called for a hole
507** but the file tail is still in a direct item
508** bh_result is the buffer head for the hole
509** tail_offset is the offset of the start of the tail in the file
510**
511** This calls prepare_write, which will start a new transaction
512** you should not be in a transaction, or have any paths held when you
513** call this.
514*/
515static int convert_tail_for_hole(struct inode *inode,
516				 struct buffer_head *bh_result,
517				 loff_t tail_offset)
518{
519	unsigned long index;
520	unsigned long tail_end;
521	unsigned long tail_start;
522	struct page *tail_page;
523	struct page *hole_page = bh_result->b_page;
524	int retval = 0;
525
526	if ((tail_offset & (bh_result->b_size - 1)) != 1)
527		return -EIO;
528
529	/* always try to read until the end of the block */
530	tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
531	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
532
533	index = tail_offset >> PAGE_CACHE_SHIFT;
534	/* hole_page can be zero in case of direct_io, we are sure
535	   that we cannot get here if we write with O_DIRECT into
536	   tail page */
537	if (!hole_page || index != hole_page->index) {
538		tail_page = grab_cache_page(inode->i_mapping, index);
539		retval = -ENOMEM;
540		if (!tail_page) {
541			goto out;
542		}
543	} else {
544		tail_page = hole_page;
545	}
546
547	/* we don't have to make sure the conversion did not happen while
548	 ** we were locking the page because anyone that could convert
549	 ** must first take i_mutex.
550	 **
551	 ** We must fix the tail page for writing because it might have buffers
552	 ** that are mapped, but have a block number of 0.  This indicates tail
553	 ** data that has been read directly into the page, and block_prepare_write
554	 ** won't trigger a get_block in this case.
555	 */
556	fix_tail_page_for_writing(tail_page);
557	retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
558	if (retval)
559		goto unlock;
560
561	/* tail conversion might change the data in the page */
562	flush_dcache_page(tail_page);
563
564	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
565
566      unlock:
567	if (tail_page != hole_page) {
568		unlock_page(tail_page);
569		page_cache_release(tail_page);
570	}
571      out:
572	return retval;
573}
574
575static inline int _allocate_block(struct reiserfs_transaction_handle *th,
576				  sector_t block,
577				  struct inode *inode,
578				  b_blocknr_t * allocated_block_nr,
579				  struct treepath *path, int flags)
580{
581	BUG_ON(!th->t_trans_id);
582
583#ifdef REISERFS_PREALLOCATE
584	if (!(flags & GET_BLOCK_NO_IMUX)) {
585		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
586						  path, block);
587	}
588#endif
589	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
590					 block);
591}
592
593int reiserfs_get_block(struct inode *inode, sector_t block,
594		       struct buffer_head *bh_result, int create)
595{
596	int repeat, retval = 0;
597	b_blocknr_t allocated_block_nr = 0;	// b_blocknr_t is (unsigned) 32 bit int
598	INITIALIZE_PATH(path);
599	int pos_in_item;
600	struct cpu_key key;
601	struct buffer_head *bh, *unbh = NULL;
602	struct item_head *ih, tmp_ih;
603	__le32 *item;
604	int done;
605	int fs_gen;
606	int lock_depth;
607	struct reiserfs_transaction_handle *th = NULL;
608	/* space reserved in transaction batch:
609	   . 3 balancings in direct->indirect conversion
610	   . 1 block involved into reiserfs_update_sd()
611	   XXX in practically impossible worst case direct2indirect()
612	   can incur (much) more than 3 balancings.
613	   quota update for user, group */
614	int jbegin_count =
615	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
616	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
617	int version;
618	int dangle = 1;
619	loff_t new_offset =
620	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
621
622	lock_depth = reiserfs_write_lock_once(inode->i_sb);
623	version = get_inode_item_key_version(inode);
624
625	if (!file_capable(inode, block)) {
626		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
627		return -EFBIG;
628	}
629
630	/* if !create, we aren't changing the FS, so we don't need to
631	 ** log anything, so we don't need to start a transaction
632	 */
633	if (!(create & GET_BLOCK_CREATE)) {
634		int ret;
635		/* find number of block-th logical block of the file */
636		ret = _get_block_create_0(inode, block, bh_result,
637					  create | GET_BLOCK_READ_DIRECT);
638		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
639		return ret;
640	}
641	/*
642	 * if we're already in a transaction, make sure to close
643	 * any new transactions we start in this func
644	 */
645	if ((create & GET_BLOCK_NO_DANGLE) ||
646	    reiserfs_transaction_running(inode->i_sb))
647		dangle = 0;
648
649	/* If file is of such a size, that it might have a tail and tails are enabled
650	 ** we should mark it as possibly needing tail packing on close
651	 */
652	if ((have_large_tails(inode->i_sb)
653	     && inode->i_size < i_block_size(inode) * 4)
654	    || (have_small_tails(inode->i_sb)
655		&& inode->i_size < i_block_size(inode)))
656		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
657
658	/* set the key of the first byte in the 'block'-th block of file */
659	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
660	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
661	      start_trans:
662		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
663		if (!th) {
664			retval = -ENOMEM;
665			goto failure;
666		}
667		reiserfs_update_inode_transaction(inode);
668	}
669      research:
670
671	retval = search_for_position_by_key(inode->i_sb, &key, &path);
672	if (retval == IO_ERROR) {
673		retval = -EIO;
674		goto failure;
675	}
676
677	bh = get_last_bh(&path);
678	ih = get_ih(&path);
679	item = get_item(&path);
680	pos_in_item = path.pos_in_item;
681
682	fs_gen = get_generation(inode->i_sb);
683	copy_item_head(&tmp_ih, ih);
684
685	if (allocation_needed
686	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
687		/* we have to allocate block for the unformatted node */
688		if (!th) {
689			pathrelse(&path);
690			goto start_trans;
691		}
692
693		repeat =
694		    _allocate_block(th, block, inode, &allocated_block_nr,
695				    &path, create);
696
697		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
698			/* restart the transaction to give the journal a chance to free
699			 ** some blocks.  releases the path, so we have to go back to
700			 ** research if we succeed on the second try
701			 */
702			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
703			retval = restart_transaction(th, inode, &path);
704			if (retval)
705				goto failure;
706			repeat =
707			    _allocate_block(th, block, inode,
708					    &allocated_block_nr, NULL, create);
709
710			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
711				goto research;
712			}
713			if (repeat == QUOTA_EXCEEDED)
714				retval = -EDQUOT;
715			else
716				retval = -ENOSPC;
717			goto failure;
718		}
719
720		if (fs_changed(fs_gen, inode->i_sb)
721		    && item_moved(&tmp_ih, &path)) {
722			goto research;
723		}
724	}
725
726	if (indirect_item_found(retval, ih)) {
727		b_blocknr_t unfm_ptr;
728		/* 'block'-th block is in the file already (there is
729		   corresponding cell in some indirect item). But it may be
730		   zero unformatted node pointer (hole) */
731		unfm_ptr = get_block_num(item, pos_in_item);
732		if (unfm_ptr == 0) {
733			/* use allocated block to plug the hole */
734			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
735			if (fs_changed(fs_gen, inode->i_sb)
736			    && item_moved(&tmp_ih, &path)) {
737				reiserfs_restore_prepared_buffer(inode->i_sb,
738								 bh);
739				goto research;
740			}
741			set_buffer_new(bh_result);
742			if (buffer_dirty(bh_result)
743			    && reiserfs_data_ordered(inode->i_sb))
744				reiserfs_add_ordered_list(inode, bh_result);
745			put_block_num(item, pos_in_item, allocated_block_nr);
746			unfm_ptr = allocated_block_nr;
747			journal_mark_dirty(th, inode->i_sb, bh);
748			reiserfs_update_sd(th, inode);
749		}
750		set_block_dev_mapped(bh_result, unfm_ptr, inode);
751		pathrelse(&path);
752		retval = 0;
753		if (!dangle && th)
754			retval = reiserfs_end_persistent_transaction(th);
755
756		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
757
758		/* the item was found, so new blocks were not added to the file
759		 ** there is no need to make sure the inode is updated with this
760		 ** transaction
761		 */
762		return retval;
763	}
764
765	if (!th) {
766		pathrelse(&path);
767		goto start_trans;
768	}
769
770	/* desired position is not found or is in the direct item. We have
771	   to append file with holes up to 'block'-th block converting
772	   direct items to indirect one if necessary */
773	done = 0;
774	do {
775		if (is_statdata_le_ih(ih)) {
776			__le32 unp = 0;
777			struct cpu_key tmp_key;
778
779			/* indirect item has to be inserted */
780			make_le_item_head(&tmp_ih, &key, version, 1,
781					  TYPE_INDIRECT, UNFM_P_SIZE,
782					  0 /* free_space */ );
783
784			if (cpu_key_k_offset(&key) == 1) {
785				/* we are going to add 'block'-th block to the file. Use
786				   allocated block for that */
787				unp = cpu_to_le32(allocated_block_nr);
788				set_block_dev_mapped(bh_result,
789						     allocated_block_nr, inode);
790				set_buffer_new(bh_result);
791				done = 1;
792			}
793			tmp_key = key;	// ;)
794			set_cpu_key_k_offset(&tmp_key, 1);
795			PATH_LAST_POSITION(&path)++;
796
797			retval =
798			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
799						 inode, (char *)&unp);
800			if (retval) {
801				reiserfs_free_block(th, inode,
802						    allocated_block_nr, 1);
803				goto failure;	// retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
804			}
805			//mark_tail_converted (inode);
806		} else if (is_direct_le_ih(ih)) {
807			/* direct item has to be converted */
808			loff_t tail_offset;
809
810			tail_offset =
811			    ((le_ih_k_offset(ih) -
812			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
813			if (tail_offset == cpu_key_k_offset(&key)) {
814				/* direct item we just found fits into block we have
815				   to map. Convert it into unformatted node: use
816				   bh_result for the conversion */
817				set_block_dev_mapped(bh_result,
818						     allocated_block_nr, inode);
819				unbh = bh_result;
820				done = 1;
821			} else {
822				/* we have to padd file tail stored in direct item(s)
823				   up to block size and convert it to unformatted
824				   node. FIXME: this should also get into page cache */
825
826				pathrelse(&path);
827				/*
828				 * ugly, but we can only end the transaction if
829				 * we aren't nested
830				 */
831				BUG_ON(!th->t_refcount);
832				if (th->t_refcount == 1) {
833					retval =
834					    reiserfs_end_persistent_transaction
835					    (th);
836					th = NULL;
837					if (retval)
838						goto failure;
839				}
840
841				retval =
842				    convert_tail_for_hole(inode, bh_result,
843							  tail_offset);
844				if (retval) {
845					if (retval != -ENOSPC)
846						reiserfs_error(inode->i_sb,
847							"clm-6004",
848							"convert tail failed "
849							"inode %lu, error %d",
850							inode->i_ino,
851							retval);
852					if (allocated_block_nr) {
853						/* the bitmap, the super, and the stat data == 3 */
854						if (!th)
855							th = reiserfs_persistent_transaction(inode->i_sb, 3);
856						if (th)
857							reiserfs_free_block(th,
858									    inode,
859									    allocated_block_nr,
860									    1);
861					}
862					goto failure;
863				}
864				goto research;
865			}
866			retval =
867			    direct2indirect(th, inode, &path, unbh,
868					    tail_offset);
869			if (retval) {
870				reiserfs_unmap_buffer(unbh);
871				reiserfs_free_block(th, inode,
872						    allocated_block_nr, 1);
873				goto failure;
874			}
875			/* it is important the set_buffer_uptodate is done after
876			 ** the direct2indirect.  The buffer might contain valid
877			 ** data newer than the data on disk (read by readpage, changed,
878			 ** and then sent here by writepage).  direct2indirect needs
879			 ** to know if unbh was already up to date, so it can decide
880			 ** if the data in unbh needs to be replaced with data from
881			 ** the disk
882			 */
883			set_buffer_uptodate(unbh);
884
885			/* unbh->b_page == NULL in case of DIRECT_IO request, this means
886			   buffer will disappear shortly, so it should not be added to
887			 */
888			if (unbh->b_page) {
889				/* we've converted the tail, so we must
890				 ** flush unbh before the transaction commits
891				 */
892				reiserfs_add_tail_list(inode, unbh);
893
894				/* mark it dirty now to prevent commit_write from adding
895				 ** this buffer to the inode's dirty buffer list
896				 */
897				/*
898				 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
899				 * It's still atomic, but it sets the page dirty too,
900				 * which makes it eligible for writeback at any time by the
901				 * VM (which was also the case with __mark_buffer_dirty())
902				 */
903				mark_buffer_dirty(unbh);
904			}
905		} else {
906			/* append indirect item with holes if needed, when appending
907			   pointer to 'block'-th block use block, which is already
908			   allocated */
909			struct cpu_key tmp_key;
910			unp_t unf_single = 0;	// We use this in case we need to allocate only
911			// one block which is a fastpath
912			unp_t *un;
913			__u64 max_to_insert =
914			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
915			    UNFM_P_SIZE;
916			__u64 blocks_needed;
917
918			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
919			       "vs-804: invalid position for append");
920			/* indirect item has to be appended, set up key of that position */
921			make_cpu_key(&tmp_key, inode,
922				     le_key_k_offset(version,
923						     &(ih->ih_key)) +
924				     op_bytes_number(ih,
925						     inode->i_sb->s_blocksize),
926				     //pos_in_item * inode->i_sb->s_blocksize,
927				     TYPE_INDIRECT, 3);	// key type is unimportant
928
929			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
930			       "green-805: invalid offset");
931			blocks_needed =
932			    1 +
933			    ((cpu_key_k_offset(&key) -
934			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
935			     s_blocksize_bits);
936
937			if (blocks_needed == 1) {
938				un = &unf_single;
939			} else {
940				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
941				if (!un) {
942					un = &unf_single;
943					blocks_needed = 1;
944					max_to_insert = 0;
945				}
946			}
947			if (blocks_needed <= max_to_insert) {
948				/* we are going to add target block to the file. Use allocated
949				   block for that */
950				un[blocks_needed - 1] =
951				    cpu_to_le32(allocated_block_nr);
952				set_block_dev_mapped(bh_result,
953						     allocated_block_nr, inode);
954				set_buffer_new(bh_result);
955				done = 1;
956			} else {
957				/* paste hole to the indirect item */
958				/* If kmalloc failed, max_to_insert becomes zero and it means we
959				   only have space for one block */
960				blocks_needed =
961				    max_to_insert ? max_to_insert : 1;
962			}
963			retval =
964			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
965						     (char *)un,
966						     UNFM_P_SIZE *
967						     blocks_needed);
968
969			if (blocks_needed != 1)
970				kfree(un);
971
972			if (retval) {
973				reiserfs_free_block(th, inode,
974						    allocated_block_nr, 1);
975				goto failure;
976			}
977			if (!done) {
978				/* We need to mark new file size in case this function will be
979				   interrupted/aborted later on. And we may do this only for
980				   holes. */
981				inode->i_size +=
982				    inode->i_sb->s_blocksize * blocks_needed;
983			}
984		}
985
986		if (done == 1)
987			break;
988
989		/* this loop could log more blocks than we had originally asked
990		 ** for.  So, we have to allow the transaction to end if it is
991		 ** too big or too full.  Update the inode so things are
992		 ** consistent if we crash before the function returns
993		 **
994		 ** release the path so that anybody waiting on the path before
995		 ** ending their transaction will be able to continue.
996		 */
997		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
998			retval = restart_transaction(th, inode, &path);
999			if (retval)
1000				goto failure;
1001		}
1002		/*
1003		 * inserting indirect pointers for a hole can take a
1004		 * long time.  reschedule if needed and also release the write
1005		 * lock for others.
1006		 */
1007		if (need_resched()) {
1008			reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1009			schedule();
1010			lock_depth = reiserfs_write_lock_once(inode->i_sb);
1011		}
1012
1013		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1014		if (retval == IO_ERROR) {
1015			retval = -EIO;
1016			goto failure;
1017		}
1018		if (retval == POSITION_FOUND) {
1019			reiserfs_warning(inode->i_sb, "vs-825",
1020					 "%K should not be found", &key);
1021			retval = -EEXIST;
1022			if (allocated_block_nr)
1023				reiserfs_free_block(th, inode,
1024						    allocated_block_nr, 1);
1025			pathrelse(&path);
1026			goto failure;
1027		}
1028		bh = get_last_bh(&path);
1029		ih = get_ih(&path);
1030		item = get_item(&path);
1031		pos_in_item = path.pos_in_item;
1032	} while (1);
1033
1034	retval = 0;
1035
1036      failure:
1037	if (th && (!dangle || (retval && !th->t_trans_id))) {
1038		int err;
1039		if (th->t_trans_id)
1040			reiserfs_update_sd(th, inode);
1041		err = reiserfs_end_persistent_transaction(th);
1042		if (err)
1043			retval = err;
1044	}
1045
1046	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1047	reiserfs_check_path(&path);
1048	return retval;
1049}
1050
1051static int
1052reiserfs_readpages(struct file *file, struct address_space *mapping,
1053		   struct list_head *pages, unsigned nr_pages)
1054{
1055	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1056}
1057
1058/* Compute real number of used bytes by file
1059 * Following three functions can go away when we'll have enough space in stat item
1060 */
1061static int real_space_diff(struct inode *inode, int sd_size)
1062{
1063	int bytes;
1064	loff_t blocksize = inode->i_sb->s_blocksize;
1065
1066	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1067		return sd_size;
1068
1069	/* End of file is also in full block with indirect reference, so round
1070	 ** up to the next block.
1071	 **
1072	 ** there is just no way to know if the tail is actually packed
1073	 ** on the file, so we have to assume it isn't.  When we pack the
1074	 ** tail, we add 4 bytes to pretend there really is an unformatted
1075	 ** node pointer
1076	 */
1077	bytes =
1078	    ((inode->i_size +
1079	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1080	    sd_size;
1081	return bytes;
1082}
1083
1084static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1085					int sd_size)
1086{
1087	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1088		return inode->i_size +
1089		    (loff_t) (real_space_diff(inode, sd_size));
1090	}
1091	return ((loff_t) real_space_diff(inode, sd_size)) +
1092	    (((loff_t) blocks) << 9);
1093}
1094
1095/* Compute number of blocks used by file in ReiserFS counting */
1096static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1097{
1098	loff_t bytes = inode_get_bytes(inode);
1099	loff_t real_space = real_space_diff(inode, sd_size);
1100
1101	/* keeps fsck and non-quota versions of reiserfs happy */
1102	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1103		bytes += (loff_t) 511;
1104	}
1105
1106	/* files from before the quota patch might i_blocks such that
1107	 ** bytes < real_space.  Deal with that here to prevent it from
1108	 ** going negative.
1109	 */
1110	if (bytes < real_space)
1111		return 0;
1112	return (bytes - real_space) >> 9;
1113}
1114
1115//
1116// BAD: new directories have stat data of new type and all other items
1117// of old type. Version stored in the inode says about body items, so
1118// in update_stat_data we can not rely on inode, but have to check
1119// item version directly
1120//
1121
1122// called by read_locked_inode
1123static void init_inode(struct inode *inode, struct treepath *path)
1124{
1125	struct buffer_head *bh;
1126	struct item_head *ih;
1127	__u32 rdev;
1128	//int version = ITEM_VERSION_1;
1129
1130	bh = PATH_PLAST_BUFFER(path);
1131	ih = PATH_PITEM_HEAD(path);
1132
1133	copy_key(INODE_PKEY(inode), &(ih->ih_key));
1134
1135	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1136	REISERFS_I(inode)->i_flags = 0;
1137	REISERFS_I(inode)->i_prealloc_block = 0;
1138	REISERFS_I(inode)->i_prealloc_count = 0;
1139	REISERFS_I(inode)->i_trans_id = 0;
1140	REISERFS_I(inode)->i_jl = NULL;
1141	reiserfs_init_xattr_rwsem(inode);
1142
1143	if (stat_data_v1(ih)) {
1144		struct stat_data_v1 *sd =
1145		    (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1146		unsigned long blocks;
1147
1148		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1149		set_inode_sd_version(inode, STAT_DATA_V1);
1150		inode->i_mode = sd_v1_mode(sd);
1151		inode->i_nlink = sd_v1_nlink(sd);
1152		inode->i_uid = sd_v1_uid(sd);
1153		inode->i_gid = sd_v1_gid(sd);
1154		inode->i_size = sd_v1_size(sd);
1155		inode->i_atime.tv_sec = sd_v1_atime(sd);
1156		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1157		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1158		inode->i_atime.tv_nsec = 0;
1159		inode->i_ctime.tv_nsec = 0;
1160		inode->i_mtime.tv_nsec = 0;
1161
1162		inode->i_blocks = sd_v1_blocks(sd);
1163		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1164		blocks = (inode->i_size + 511) >> 9;
1165		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1166		if (inode->i_blocks > blocks) {
1167			// there was a bug in <=3.5.23 when i_blocks could take negative
1168			// values. Starting from 3.5.17 this value could even be stored in
1169			// stat data. For such files we set i_blocks based on file
1170			// size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1171			// only updated if file's inode will ever change
1172			inode->i_blocks = blocks;
1173		}
1174
1175		rdev = sd_v1_rdev(sd);
1176		REISERFS_I(inode)->i_first_direct_byte =
1177		    sd_v1_first_direct_byte(sd);
1178		/* an early bug in the quota code can give us an odd number for the
1179		 ** block count.  This is incorrect, fix it here.
1180		 */
1181		if (inode->i_blocks & 1) {
1182			inode->i_blocks++;
1183		}
1184		inode_set_bytes(inode,
1185				to_real_used_space(inode, inode->i_blocks,
1186						   SD_V1_SIZE));
1187		/* nopack is initially zero for v1 objects. For v2 objects,
1188		   nopack is initialised from sd_attrs */
1189		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1190	} else {
1191		// new stat data found, but object may have old items
1192		// (directories and symlinks)
1193		struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1194
1195		inode->i_mode = sd_v2_mode(sd);
1196		inode->i_nlink = sd_v2_nlink(sd);
1197		inode->i_uid = sd_v2_uid(sd);
1198		inode->i_size = sd_v2_size(sd);
1199		inode->i_gid = sd_v2_gid(sd);
1200		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1201		inode->i_atime.tv_sec = sd_v2_atime(sd);
1202		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1203		inode->i_ctime.tv_nsec = 0;
1204		inode->i_mtime.tv_nsec = 0;
1205		inode->i_atime.tv_nsec = 0;
1206		inode->i_blocks = sd_v2_blocks(sd);
1207		rdev = sd_v2_rdev(sd);
1208		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1209			inode->i_generation =
1210			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1211		else
1212			inode->i_generation = sd_v2_generation(sd);
1213
1214		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1215			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1216		else
1217			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1218		REISERFS_I(inode)->i_first_direct_byte = 0;
1219		set_inode_sd_version(inode, STAT_DATA_V2);
1220		inode_set_bytes(inode,
1221				to_real_used_space(inode, inode->i_blocks,
1222						   SD_V2_SIZE));
1223		/* read persistent inode attributes from sd and initalise
1224		   generic inode flags from them */
1225		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1226		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1227	}
1228
1229	pathrelse(path);
1230	if (S_ISREG(inode->i_mode)) {
1231		inode->i_op = &reiserfs_file_inode_operations;
1232		inode->i_fop = &reiserfs_file_operations;
1233		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1234	} else if (S_ISDIR(inode->i_mode)) {
1235		inode->i_op = &reiserfs_dir_inode_operations;
1236		inode->i_fop = &reiserfs_dir_operations;
1237	} else if (S_ISLNK(inode->i_mode)) {
1238		inode->i_op = &reiserfs_symlink_inode_operations;
1239		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1240	} else {
1241		inode->i_blocks = 0;
1242		inode->i_op = &reiserfs_special_inode_operations;
1243		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1244	}
1245}
1246
1247// update new stat data with inode fields
1248static void inode2sd(void *sd, struct inode *inode, loff_t size)
1249{
1250	struct stat_data *sd_v2 = (struct stat_data *)sd;
1251	__u16 flags;
1252
1253	set_sd_v2_mode(sd_v2, inode->i_mode);
1254	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1255	set_sd_v2_uid(sd_v2, inode->i_uid);
1256	set_sd_v2_size(sd_v2, size);
1257	set_sd_v2_gid(sd_v2, inode->i_gid);
1258	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1259	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1260	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1261	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1262	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1263		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1264	else
1265		set_sd_v2_generation(sd_v2, inode->i_generation);
1266	flags = REISERFS_I(inode)->i_attrs;
1267	i_attrs_to_sd_attrs(inode, &flags);
1268	set_sd_v2_attrs(sd_v2, flags);
1269}
1270
1271// used to copy inode's fields to old stat data
1272static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1273{
1274	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1275
1276	set_sd_v1_mode(sd_v1, inode->i_mode);
1277	set_sd_v1_uid(sd_v1, inode->i_uid);
1278	set_sd_v1_gid(sd_v1, inode->i_gid);
1279	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1280	set_sd_v1_size(sd_v1, size);
1281	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1282	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1283	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1284
1285	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1286		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1287	else
1288		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1289
1290	// Sigh. i_first_direct_byte is back
1291	set_sd_v1_first_direct_byte(sd_v1,
1292				    REISERFS_I(inode)->i_first_direct_byte);
1293}
1294
1295/* NOTE, you must prepare the buffer head before sending it here,
1296** and then log it after the call
1297*/
1298static void update_stat_data(struct treepath *path, struct inode *inode,
1299			     loff_t size)
1300{
1301	struct buffer_head *bh;
1302	struct item_head *ih;
1303
1304	bh = PATH_PLAST_BUFFER(path);
1305	ih = PATH_PITEM_HEAD(path);
1306
1307	if (!is_statdata_le_ih(ih))
1308		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1309			       INODE_PKEY(inode), ih);
1310
1311	if (stat_data_v1(ih)) {
1312		// path points to old stat data
1313		inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1314	} else {
1315		inode2sd(B_I_PITEM(bh, ih), inode, size);
1316	}
1317
1318	return;
1319}
1320
1321void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1322			     struct inode *inode, loff_t size)
1323{
1324	struct cpu_key key;
1325	INITIALIZE_PATH(path);
1326	struct buffer_head *bh;
1327	int fs_gen;
1328	struct item_head *ih, tmp_ih;
1329	int retval;
1330
1331	BUG_ON(!th->t_trans_id);
1332
1333	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);	//key type is unimportant
1334
1335	for (;;) {
1336		int pos;
1337		/* look for the object's stat data */
1338		retval = search_item(inode->i_sb, &key, &path);
1339		if (retval == IO_ERROR) {
1340			reiserfs_error(inode->i_sb, "vs-13050",
1341				       "i/o failure occurred trying to "
1342				       "update %K stat data", &key);
1343			return;
1344		}
1345		if (retval == ITEM_NOT_FOUND) {
1346			pos = PATH_LAST_POSITION(&path);
1347			pathrelse(&path);
1348			if (inode->i_nlink == 0) {
1349				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1350				return;
1351			}
1352			reiserfs_warning(inode->i_sb, "vs-13060",
1353					 "stat data of object %k (nlink == %d) "
1354					 "not found (pos %d)",
1355					 INODE_PKEY(inode), inode->i_nlink,
1356					 pos);
1357			reiserfs_check_path(&path);
1358			return;
1359		}
1360
1361		/* sigh, prepare_for_journal might schedule.  When it schedules the
1362		 ** FS might change.  We have to detect that, and loop back to the
1363		 ** search if the stat data item has moved
1364		 */
1365		bh = get_last_bh(&path);
1366		ih = get_ih(&path);
1367		copy_item_head(&tmp_ih, ih);
1368		fs_gen = get_generation(inode->i_sb);
1369		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1370		if (fs_changed(fs_gen, inode->i_sb)
1371		    && item_moved(&tmp_ih, &path)) {
1372			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1373			continue;	/* Stat_data item has been moved after scheduling. */
1374		}
1375		break;
1376	}
1377	update_stat_data(&path, inode, size);
1378	journal_mark_dirty(th, th->t_super, bh);
1379	pathrelse(&path);
1380	return;
1381}
1382
1383/* reiserfs_read_locked_inode is called to read the inode off disk, and it
1384** does a make_bad_inode when things go wrong.  But, we need to make sure
1385** and clear the key in the private portion of the inode, otherwise a
1386** corresponding iput might try to delete whatever object the inode last
1387** represented.
1388*/
1389static void reiserfs_make_bad_inode(struct inode *inode)
1390{
1391	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1392	make_bad_inode(inode);
1393}
1394
1395//
1396// initially this function was derived from minix or ext2's analog and
1397// evolved as the prototype did
1398//
1399
1400int reiserfs_init_locked_inode(struct inode *inode, void *p)
1401{
1402	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1403	inode->i_ino = args->objectid;
1404	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1405	return 0;
1406}
1407
1408/* looks for stat data in the tree, and fills up the fields of in-core
1409   inode stat data fields */
1410void reiserfs_read_locked_inode(struct inode *inode,
1411				struct reiserfs_iget_args *args)
1412{
1413	INITIALIZE_PATH(path_to_sd);
1414	struct cpu_key key;
1415	unsigned long dirino;
1416	int retval;
1417
1418	dirino = args->dirid;
1419
1420	/* set version 1, version 2 could be used too, because stat data
1421	   key is the same in both versions */
1422	key.version = KEY_FORMAT_3_5;
1423	key.on_disk_key.k_dir_id = dirino;
1424	key.on_disk_key.k_objectid = inode->i_ino;
1425	key.on_disk_key.k_offset = 0;
1426	key.on_disk_key.k_type = 0;
1427
1428	/* look for the object's stat data */
1429	retval = search_item(inode->i_sb, &key, &path_to_sd);
1430	if (retval == IO_ERROR) {
1431		reiserfs_error(inode->i_sb, "vs-13070",
1432			       "i/o failure occurred trying to find "
1433			       "stat data of %K", &key);
1434		reiserfs_make_bad_inode(inode);
1435		return;
1436	}
1437	if (retval != ITEM_FOUND) {
1438		/* a stale NFS handle can trigger this without it being an error */
1439		pathrelse(&path_to_sd);
1440		reiserfs_make_bad_inode(inode);
1441		inode->i_nlink = 0;
1442		return;
1443	}
1444
1445	init_inode(inode, &path_to_sd);
1446
1447	/* It is possible that knfsd is trying to access inode of a file
1448	   that is being removed from the disk by some other thread. As we
1449	   update sd on unlink all that is required is to check for nlink
1450	   here. This bug was first found by Sizif when debugging
1451	   SquidNG/Butterfly, forgotten, and found again after Philippe
1452	   Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1453
1454	   More logical fix would require changes in fs/inode.c:iput() to
1455	   remove inode from hash-table _after_ fs cleaned disk stuff up and
1456	   in iget() to return NULL if I_FREEING inode is found in
1457	   hash-table. */
1458	/* Currently there is one place where it's ok to meet inode with
1459	   nlink==0: processing of open-unlinked and half-truncated files
1460	   during mount (fs/reiserfs/super.c:finish_unfinished()). */
1461	if ((inode->i_nlink == 0) &&
1462	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1463		reiserfs_warning(inode->i_sb, "vs-13075",
1464				 "dead inode read from disk %K. "
1465				 "This is likely to be race with knfsd. Ignore",
1466				 &key);
1467		reiserfs_make_bad_inode(inode);
1468	}
1469
1470	reiserfs_check_path(&path_to_sd);	/* init inode should be relsing */
1471
1472}
1473
1474/**
1475 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1476 *
1477 * @inode:    inode from hash table to check
1478 * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1479 *
1480 * This function is called by iget5_locked() to distinguish reiserfs inodes
1481 * having the same inode numbers. Such inodes can only exist due to some
1482 * error condition. One of them should be bad. Inodes with identical
1483 * inode numbers (objectids) are distinguished by parent directory ids.
1484 *
1485 */
1486int reiserfs_find_actor(struct inode *inode, void *opaque)
1487{
1488	struct reiserfs_iget_args *args;
1489
1490	args = opaque;
1491	/* args is already in CPU order */
1492	return (inode->i_ino == args->objectid) &&
1493	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1494}
1495
1496struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1497{
1498	struct inode *inode;
1499	struct reiserfs_iget_args args;
1500
1501	args.objectid = key->on_disk_key.k_objectid;
1502	args.dirid = key->on_disk_key.k_dir_id;
1503	reiserfs_write_unlock(s);
1504	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1505			     reiserfs_find_actor, reiserfs_init_locked_inode,
1506			     (void *)(&args));
1507	reiserfs_write_lock(s);
1508	if (!inode)
1509		return ERR_PTR(-ENOMEM);
1510
1511	if (inode->i_state & I_NEW) {
1512		reiserfs_read_locked_inode(inode, &args);
1513		unlock_new_inode(inode);
1514	}
1515
1516	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1517		/* either due to i/o error or a stale NFS handle */
1518		iput(inode);
1519		inode = NULL;
1520	}
1521	return inode;
1522}
1523
1524static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1525	u32 objectid, u32 dir_id, u32 generation)
1526
1527{
1528	struct cpu_key key;
1529	struct inode *inode;
1530
1531	key.on_disk_key.k_objectid = objectid;
1532	key.on_disk_key.k_dir_id = dir_id;
1533	reiserfs_write_lock(sb);
1534	inode = reiserfs_iget(sb, &key);
1535	if (inode && !IS_ERR(inode) && generation != 0 &&
1536	    generation != inode->i_generation) {
1537		iput(inode);
1538		inode = NULL;
1539	}
1540	reiserfs_write_unlock(sb);
1541
1542	return d_obtain_alias(inode);
1543}
1544
1545struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1546		int fh_len, int fh_type)
1547{
1548	/* fhtype happens to reflect the number of u32s encoded.
1549	 * due to a bug in earlier code, fhtype might indicate there
1550	 * are more u32s then actually fitted.
1551	 * so if fhtype seems to be more than len, reduce fhtype.
1552	 * Valid types are:
1553	 *   2 - objectid + dir_id - legacy support
1554	 *   3 - objectid + dir_id + generation
1555	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1556	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1557	 *   6 - as above plus generation of directory
1558	 * 6 does not fit in NFSv2 handles
1559	 */
1560	if (fh_type > fh_len) {
1561		if (fh_type != 6 || fh_len != 5)
1562			reiserfs_warning(sb, "reiserfs-13077",
1563				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1564				fh_type, fh_len);
1565		fh_type = 5;
1566	}
1567
1568	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1569		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1570}
1571
1572struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1573		int fh_len, int fh_type)
1574{
1575	if (fh_type < 4)
1576		return NULL;
1577
1578	return reiserfs_get_dentry(sb,
1579		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1580		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1581		(fh_type == 6) ? fid->raw[5] : 0);
1582}
1583
1584int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1585		       int need_parent)
1586{
1587	struct inode *inode = dentry->d_inode;
1588	int maxlen = *lenp;
1589
1590	if (maxlen < 3)
1591		return 255;
1592
1593	data[0] = inode->i_ino;
1594	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1595	data[2] = inode->i_generation;
1596	*lenp = 3;
1597	/* no room for directory info? return what we've stored so far */
1598	if (maxlen < 5 || !need_parent)
1599		return 3;
1600
1601	spin_lock(&dentry->d_lock);
1602	inode = dentry->d_parent->d_inode;
1603	data[3] = inode->i_ino;
1604	data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1605	*lenp = 5;
1606	if (maxlen >= 6) {
1607		data[5] = inode->i_generation;
1608		*lenp = 6;
1609	}
1610	spin_unlock(&dentry->d_lock);
1611	return *lenp;
1612}
1613
1614/* looks for stat data, then copies fields to it, marks the buffer
1615   containing stat data as dirty */
1616/* reiserfs inodes are never really dirty, since the dirty inode call
1617** always logs them.  This call allows the VFS inode marking routines
1618** to properly mark inodes for datasync and such, but only actually
1619** does something when called for a synchronous update.
1620*/
1621int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1622{
1623	struct reiserfs_transaction_handle th;
1624	int jbegin_count = 1;
1625
1626	if (inode->i_sb->s_flags & MS_RDONLY)
1627		return -EROFS;
1628	/* memory pressure can sometimes initiate write_inode calls with sync == 1,
1629	 ** these cases are just when the system needs ram, not when the
1630	 ** inode needs to reach disk for safety, and they can safely be
1631	 ** ignored because the altered inode has already been logged.
1632	 */
1633	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1634		reiserfs_write_lock(inode->i_sb);
1635		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1636			reiserfs_update_sd(&th, inode);
1637			journal_end_sync(&th, inode->i_sb, jbegin_count);
1638		}
1639		reiserfs_write_unlock(inode->i_sb);
1640	}
1641	return 0;
1642}
1643
1644/* stat data of new object is inserted already, this inserts the item
1645   containing "." and ".." entries */
1646static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1647				  struct inode *inode,
1648				  struct item_head *ih, struct treepath *path,
1649				  struct inode *dir)
1650{
1651	struct super_block *sb = th->t_super;
1652	char empty_dir[EMPTY_DIR_SIZE];
1653	char *body = empty_dir;
1654	struct cpu_key key;
1655	int retval;
1656
1657	BUG_ON(!th->t_trans_id);
1658
1659	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1660		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1661		      TYPE_DIRENTRY, 3 /*key length */ );
1662
1663	/* compose item head for new item. Directories consist of items of
1664	   old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1665	   is done by reiserfs_new_inode */
1666	if (old_format_only(sb)) {
1667		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1668				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1669
1670		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1671				       ih->ih_key.k_objectid,
1672				       INODE_PKEY(dir)->k_dir_id,
1673				       INODE_PKEY(dir)->k_objectid);
1674	} else {
1675		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1676				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1677
1678		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1679				    ih->ih_key.k_objectid,
1680				    INODE_PKEY(dir)->k_dir_id,
1681				    INODE_PKEY(dir)->k_objectid);
1682	}
1683
1684	/* look for place in the tree for new item */
1685	retval = search_item(sb, &key, path);
1686	if (retval == IO_ERROR) {
1687		reiserfs_error(sb, "vs-13080",
1688			       "i/o failure occurred creating new directory");
1689		return -EIO;
1690	}
1691	if (retval == ITEM_FOUND) {
1692		pathrelse(path);
1693		reiserfs_warning(sb, "vs-13070",
1694				 "object with this key exists (%k)",
1695				 &(ih->ih_key));
1696		return -EEXIST;
1697	}
1698
1699	/* insert item, that is empty directory item */
1700	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1701}
1702
1703/* stat data of object has been inserted, this inserts the item
1704   containing the body of symlink */
1705static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode,	/* Inode of symlink */
1706				struct item_head *ih,
1707				struct treepath *path, const char *symname,
1708				int item_len)
1709{
1710	struct super_block *sb = th->t_super;
1711	struct cpu_key key;
1712	int retval;
1713
1714	BUG_ON(!th->t_trans_id);
1715
1716	_make_cpu_key(&key, KEY_FORMAT_3_5,
1717		      le32_to_cpu(ih->ih_key.k_dir_id),
1718		      le32_to_cpu(ih->ih_key.k_objectid),
1719		      1, TYPE_DIRECT, 3 /*key length */ );
1720
1721	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1722			  0 /*free_space */ );
1723
1724	/* look for place in the tree for new item */
1725	retval = search_item(sb, &key, path);
1726	if (retval == IO_ERROR) {
1727		reiserfs_error(sb, "vs-13080",
1728			       "i/o failure occurred creating new symlink");
1729		return -EIO;
1730	}
1731	if (retval == ITEM_FOUND) {
1732		pathrelse(path);
1733		reiserfs_warning(sb, "vs-13080",
1734				 "object with this key exists (%k)",
1735				 &(ih->ih_key));
1736		return -EEXIST;
1737	}
1738
1739	/* insert item, that is body of symlink */
1740	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1741}
1742
1743/* inserts the stat data into the tree, and then calls
1744   reiserfs_new_directory (to insert ".", ".." item if new object is
1745   directory) or reiserfs_new_symlink (to insert symlink body if new
1746   object is symlink) or nothing (if new object is regular file)
1747
1748   NOTE! uid and gid must already be set in the inode.  If we return
1749   non-zero due to an error, we have to drop the quota previously allocated
1750   for the fresh inode.  This can only be done outside a transaction, so
1751   if we return non-zero, we also end the transaction.  */
1752int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1753		       struct inode *dir, int mode, const char *symname,
1754		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1755		          strlen (symname) for symlinks) */
1756		       loff_t i_size, struct dentry *dentry,
1757		       struct inode *inode,
1758		       struct reiserfs_security_handle *security)
1759{
1760	struct super_block *sb;
1761	struct reiserfs_iget_args args;
1762	INITIALIZE_PATH(path_to_key);
1763	struct cpu_key key;
1764	struct item_head ih;
1765	struct stat_data sd;
1766	int retval;
1767	int err;
1768
1769	BUG_ON(!th->t_trans_id);
1770
1771	dquot_initialize(inode);
1772	err = dquot_alloc_inode(inode);
1773	if (err)
1774		goto out_end_trans;
1775	if (!dir->i_nlink) {
1776		err = -EPERM;
1777		goto out_bad_inode;
1778	}
1779
1780	sb = dir->i_sb;
1781
1782	/* item head of new item */
1783	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1784	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1785	if (!ih.ih_key.k_objectid) {
1786		err = -ENOMEM;
1787		goto out_bad_inode;
1788	}
1789	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1790	if (old_format_only(sb))
1791		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1792				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1793	else
1794		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1795				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1796	memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1797	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1798	if (insert_inode_locked4(inode, args.objectid,
1799			     reiserfs_find_actor, &args) < 0) {
1800		err = -EINVAL;
1801		goto out_bad_inode;
1802	}
1803	if (old_format_only(sb))
1804		/* not a perfect generation count, as object ids can be reused, but
1805		 ** this is as good as reiserfs can do right now.
1806		 ** note that the private part of inode isn't filled in yet, we have
1807		 ** to use the directory.
1808		 */
1809		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1810	else
1811#if defined( USE_INODE_GENERATION_COUNTER )
1812		inode->i_generation =
1813		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1814#else
1815		inode->i_generation = ++event;
1816#endif
1817
1818	/* fill stat data */
1819	inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1820
1821	/* uid and gid must already be set by the caller for quota init */
1822
1823	/* symlink cannot be immutable or append only, right? */
1824	if (S_ISLNK(inode->i_mode))
1825		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1826
1827	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1828	inode->i_size = i_size;
1829	inode->i_blocks = 0;
1830	inode->i_bytes = 0;
1831	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1832	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1833
1834	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1835	REISERFS_I(inode)->i_flags = 0;
1836	REISERFS_I(inode)->i_prealloc_block = 0;
1837	REISERFS_I(inode)->i_prealloc_count = 0;
1838	REISERFS_I(inode)->i_trans_id = 0;
1839	REISERFS_I(inode)->i_jl = NULL;
1840	REISERFS_I(inode)->i_attrs =
1841	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1842	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1843	reiserfs_init_xattr_rwsem(inode);
1844
1845	/* key to search for correct place for new stat data */
1846	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1847		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1848		      TYPE_STAT_DATA, 3 /*key length */ );
1849
1850	/* find proper place for inserting of stat data */
1851	retval = search_item(sb, &key, &path_to_key);
1852	if (retval == IO_ERROR) {
1853		err = -EIO;
1854		goto out_bad_inode;
1855	}
1856	if (retval == ITEM_FOUND) {
1857		pathrelse(&path_to_key);
1858		err = -EEXIST;
1859		goto out_bad_inode;
1860	}
1861	if (old_format_only(sb)) {
1862		if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1863			pathrelse(&path_to_key);
1864			/* i_uid or i_gid is too big to be stored in stat data v3.5 */
1865			err = -EINVAL;
1866			goto out_bad_inode;
1867		}
1868		inode2sd_v1(&sd, inode, inode->i_size);
1869	} else {
1870		inode2sd(&sd, inode, inode->i_size);
1871	}
1872	// store in in-core inode the key of stat data and version all
1873	// object items will have (directory items will have old offset
1874	// format, other new objects will consist of new items)
1875	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1876		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1877	else
1878		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1879	if (old_format_only(sb))
1880		set_inode_sd_version(inode, STAT_DATA_V1);
1881	else
1882		set_inode_sd_version(inode, STAT_DATA_V2);
1883
1884	/* insert the stat data into the tree */
1885#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1886	if (REISERFS_I(dir)->new_packing_locality)
1887		th->displace_new_blocks = 1;
1888#endif
1889	retval =
1890	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1891				 (char *)(&sd));
1892	if (retval) {
1893		err = retval;
1894		reiserfs_check_path(&path_to_key);
1895		goto out_bad_inode;
1896	}
1897#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1898	if (!th->displace_new_blocks)
1899		REISERFS_I(dir)->new_packing_locality = 0;
1900#endif
1901	if (S_ISDIR(mode)) {
1902		/* insert item with "." and ".." */
1903		retval =
1904		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1905	}
1906
1907	if (S_ISLNK(mode)) {
1908		/* insert body of symlink */
1909		if (!old_format_only(sb))
1910			i_size = ROUND_UP(i_size);
1911		retval =
1912		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1913					 i_size);
1914	}
1915	if (retval) {
1916		err = retval;
1917		reiserfs_check_path(&path_to_key);
1918		journal_end(th, th->t_super, th->t_blocks_allocated);
1919		goto out_inserted_sd;
1920	}
1921
1922	if (reiserfs_posixacl(inode->i_sb)) {
1923		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1924		if (retval) {
1925			err = retval;
1926			reiserfs_check_path(&path_to_key);
1927			journal_end(th, th->t_super, th->t_blocks_allocated);
1928			goto out_inserted_sd;
1929		}
1930	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
1931		reiserfs_warning(inode->i_sb, "jdm-13090",
1932				 "ACLs aren't enabled in the fs, "
1933				 "but vfs thinks they are!");
1934	} else if (IS_PRIVATE(dir))
1935		inode->i_flags |= S_PRIVATE;
1936
1937	if (security->name) {
1938		retval = reiserfs_security_write(th, inode, security);
1939		if (retval) {
1940			err = retval;
1941			reiserfs_check_path(&path_to_key);
1942			retval = journal_end(th, th->t_super,
1943					     th->t_blocks_allocated);
1944			if (retval)
1945				err = retval;
1946			goto out_inserted_sd;
1947		}
1948	}
1949
1950	reiserfs_update_sd(th, inode);
1951	reiserfs_check_path(&path_to_key);
1952
1953	return 0;
1954
1955/* it looks like you can easily compress these two goto targets into
1956 * one.  Keeping it like this doesn't actually hurt anything, and they
1957 * are place holders for what the quota code actually needs.
1958 */
1959      out_bad_inode:
1960	/* Invalidate the object, nothing was inserted yet */
1961	INODE_PKEY(inode)->k_objectid = 0;
1962
1963	/* Quota change must be inside a transaction for journaling */
1964	dquot_free_inode(inode);
1965
1966      out_end_trans:
1967	journal_end(th, th->t_super, th->t_blocks_allocated);
1968	/* Drop can be outside and it needs more credits so it's better to have it outside */
1969	dquot_drop(inode);
1970	inode->i_flags |= S_NOQUOTA;
1971	make_bad_inode(inode);
1972
1973      out_inserted_sd:
1974	inode->i_nlink = 0;
1975	th->t_trans_id = 0;	/* so the caller can't use this handle later */
1976	unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
1977	iput(inode);
1978	return err;
1979}
1980
1981/*
1982** finds the tail page in the page cache,
1983** reads the last block in.
1984**
1985** On success, page_result is set to a locked, pinned page, and bh_result
1986** is set to an up to date buffer for the last block in the file.  returns 0.
1987**
1988** tail conversion is not done, so bh_result might not be valid for writing
1989** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1990** trying to write the block.
1991**
1992** on failure, nonzero is returned, page_result and bh_result are untouched.
1993*/
1994static int grab_tail_page(struct inode *inode,
1995			  struct page **page_result,
1996			  struct buffer_head **bh_result)
1997{
1998
1999	/* we want the page with the last byte in the file,
2000	 ** not the page that will hold the next byte for appending
2001	 */
2002	unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2003	unsigned long pos = 0;
2004	unsigned long start = 0;
2005	unsigned long blocksize = inode->i_sb->s_blocksize;
2006	unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2007	struct buffer_head *bh;
2008	struct buffer_head *head;
2009	struct page *page;
2010	int error;
2011
2012	/* we know that we are only called with inode->i_size > 0.
2013	 ** we also know that a file tail can never be as big as a block
2014	 ** If i_size % blocksize == 0, our file is currently block aligned
2015	 ** and it won't need converting or zeroing after a truncate.
2016	 */
2017	if ((offset & (blocksize - 1)) == 0) {
2018		return -ENOENT;
2019	}
2020	page = grab_cache_page(inode->i_mapping, index);
2021	error = -ENOMEM;
2022	if (!page) {
2023		goto out;
2024	}
2025	/* start within the page of the last block in the file */
2026	start = (offset / blocksize) * blocksize;
2027
2028	error = block_prepare_write(page, start, offset,
2029				    reiserfs_get_block_create_0);
2030	if (error)
2031		goto unlock;
2032
2033	head = page_buffers(page);
2034	bh = head;
2035	do {
2036		if (pos >= start) {
2037			break;
2038		}
2039		bh = bh->b_this_page;
2040		pos += blocksize;
2041	} while (bh != head);
2042
2043	if (!buffer_uptodate(bh)) {
2044		/* note, this should never happen, prepare_write should
2045		 ** be taking care of this for us.  If the buffer isn't up to date,
2046		 ** I've screwed up the code to find the buffer, or the code to
2047		 ** call prepare_write
2048		 */
2049		reiserfs_error(inode->i_sb, "clm-6000",
2050			       "error reading block %lu", bh->b_blocknr);
2051		error = -EIO;
2052		goto unlock;
2053	}
2054	*bh_result = bh;
2055	*page_result = page;
2056
2057      out:
2058	return error;
2059
2060      unlock:
2061	unlock_page(page);
2062	page_cache_release(page);
2063	return error;
2064}
2065
2066/*
2067** vfs version of truncate file.  Must NOT be called with
2068** a transaction already started.
2069**
2070** some code taken from block_truncate_page
2071*/
2072int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2073{
2074	struct reiserfs_transaction_handle th;
2075	/* we want the offset for the first byte after the end of the file */
2076	unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2077	unsigned blocksize = inode->i_sb->s_blocksize;
2078	unsigned length;
2079	struct page *page = NULL;
2080	int error;
2081	struct buffer_head *bh = NULL;
2082	int err2;
2083	int lock_depth;
2084
2085	lock_depth = reiserfs_write_lock_once(inode->i_sb);
2086
2087	if (inode->i_size > 0) {
2088		error = grab_tail_page(inode, &page, &bh);
2089		if (error) {
2090			// -ENOENT means we truncated past the end of the file,
2091			// and get_block_create_0 could not find a block to read in,
2092			// which is ok.
2093			if (error != -ENOENT)
2094				reiserfs_error(inode->i_sb, "clm-6001",
2095					       "grab_tail_page failed %d",
2096					       error);
2097			page = NULL;
2098			bh = NULL;
2099		}
2100	}
2101
2102	/* so, if page != NULL, we have a buffer head for the offset at
2103	 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2104	 ** then we have an unformatted node.  Otherwise, we have a direct item,
2105	 ** and no zeroing is required on disk.  We zero after the truncate,
2106	 ** because the truncate might pack the item anyway
2107	 ** (it will unmap bh if it packs).
2108	 */
2109	/* it is enough to reserve space in transaction for 2 balancings:
2110	   one for "save" link adding and another for the first
2111	   cut_from_item. 1 is for update_sd */
2112	error = journal_begin(&th, inode->i_sb,
2113			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2114	if (error)
2115		goto out;
2116	reiserfs_update_inode_transaction(inode);
2117	if (update_timestamps)
2118		/* we are doing real truncate: if the system crashes before the last
2119		   transaction of truncating gets committed - on reboot the file
2120		   either appears truncated properly or not truncated at all */
2121		add_save_link(&th, inode, 1);
2122	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2123	error =
2124	    journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2125	if (error)
2126		goto out;
2127
2128	/* check reiserfs_do_truncate after ending the transaction */
2129	if (err2) {
2130		error = err2;
2131  		goto out;
2132	}
2133
2134	if (update_timestamps) {
2135		error = remove_save_link(inode, 1 /* truncate */);
2136		if (error)
2137			goto out;
2138	}
2139
2140	if (page) {
2141		length = offset & (blocksize - 1);
2142		/* if we are not on a block boundary */
2143		if (length) {
2144			length = blocksize - length;
2145			zero_user(page, offset, length);
2146			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2147				mark_buffer_dirty(bh);
2148			}
2149		}
2150		unlock_page(page);
2151		page_cache_release(page);
2152	}
2153
2154	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2155
2156	return 0;
2157      out:
2158	if (page) {
2159		unlock_page(page);
2160		page_cache_release(page);
2161	}
2162
2163	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2164
2165	return error;
2166}
2167
2168static int map_block_for_writepage(struct inode *inode,
2169				   struct buffer_head *bh_result,
2170				   unsigned long block)
2171{
2172	struct reiserfs_transaction_handle th;
2173	int fs_gen;
2174	struct item_head tmp_ih;
2175	struct item_head *ih;
2176	struct buffer_head *bh;
2177	__le32 *item;
2178	struct cpu_key key;
2179	INITIALIZE_PATH(path);
2180	int pos_in_item;
2181	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2182	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2183	int retval;
2184	int use_get_block = 0;
2185	int bytes_copied = 0;
2186	int copy_size;
2187	int trans_running = 0;
2188
2189	/* catch places below that try to log something without starting a trans */
2190	th.t_trans_id = 0;
2191
2192	if (!buffer_uptodate(bh_result)) {
2193		return -EIO;
2194	}
2195
2196	kmap(bh_result->b_page);
2197      start_over:
2198	reiserfs_write_lock(inode->i_sb);
2199	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2200
2201      research:
2202	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2203	if (retval != POSITION_FOUND) {
2204		use_get_block = 1;
2205		goto out;
2206	}
2207
2208	bh = get_last_bh(&path);
2209	ih = get_ih(&path);
2210	item = get_item(&path);
2211	pos_in_item = path.pos_in_item;
2212
2213	/* we've found an unformatted node */
2214	if (indirect_item_found(retval, ih)) {
2215		if (bytes_copied > 0) {
2216			reiserfs_warning(inode->i_sb, "clm-6002",
2217					 "bytes_copied %d", bytes_copied);
2218		}
2219		if (!get_block_num(item, pos_in_item)) {
2220			/* crap, we are writing to a hole */
2221			use_get_block = 1;
2222			goto out;
2223		}
2224		set_block_dev_mapped(bh_result,
2225				     get_block_num(item, pos_in_item), inode);
2226	} else if (is_direct_le_ih(ih)) {
2227		char *p;
2228		p = page_address(bh_result->b_page);
2229		p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2230		copy_size = ih_item_len(ih) - pos_in_item;
2231
2232		fs_gen = get_generation(inode->i_sb);
2233		copy_item_head(&tmp_ih, ih);
2234
2235		if (!trans_running) {
2236			/* vs-3050 is gone, no need to drop the path */
2237			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2238			if (retval)
2239				goto out;
2240			reiserfs_update_inode_transaction(inode);
2241			trans_running = 1;
2242			if (fs_changed(fs_gen, inode->i_sb)
2243			    && item_moved(&tmp_ih, &path)) {
2244				reiserfs_restore_prepared_buffer(inode->i_sb,
2245								 bh);
2246				goto research;
2247			}
2248		}
2249
2250		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2251
2252		if (fs_changed(fs_gen, inode->i_sb)
2253		    && item_moved(&tmp_ih, &path)) {
2254			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2255			goto research;
2256		}
2257
2258		memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2259		       copy_size);
2260
2261		journal_mark_dirty(&th, inode->i_sb, bh);
2262		bytes_copied += copy_size;
2263		set_block_dev_mapped(bh_result, 0, inode);
2264
2265		/* are there still bytes left? */
2266		if (bytes_copied < bh_result->b_size &&
2267		    (byte_offset + bytes_copied) < inode->i_size) {
2268			set_cpu_key_k_offset(&key,
2269					     cpu_key_k_offset(&key) +
2270					     copy_size);
2271			goto research;
2272		}
2273	} else {
2274		reiserfs_warning(inode->i_sb, "clm-6003",
2275				 "bad item inode %lu", inode->i_ino);
2276		retval = -EIO;
2277		goto out;
2278	}
2279	retval = 0;
2280
2281      out:
2282	pathrelse(&path);
2283	if (trans_running) {
2284		int err = journal_end(&th, inode->i_sb, jbegin_count);
2285		if (err)
2286			retval = err;
2287		trans_running = 0;
2288	}
2289	reiserfs_write_unlock(inode->i_sb);
2290
2291	/* this is where we fill in holes in the file. */
2292	if (use_get_block) {
2293		retval = reiserfs_get_block(inode, block, bh_result,
2294					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2295					    | GET_BLOCK_NO_DANGLE);
2296		if (!retval) {
2297			if (!buffer_mapped(bh_result)
2298			    || bh_result->b_blocknr == 0) {
2299				/* get_block failed to find a mapped unformatted node. */
2300				use_get_block = 0;
2301				goto start_over;
2302			}
2303		}
2304	}
2305	kunmap(bh_result->b_page);
2306
2307	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2308		/* we've copied data from the page into the direct item, so the
2309		 * buffer in the page is now clean, mark it to reflect that.
2310		 */
2311		lock_buffer(bh_result);
2312		clear_buffer_dirty(bh_result);
2313		unlock_buffer(bh_result);
2314	}
2315	return retval;
2316}
2317
2318/*
2319 * mason@suse.com: updated in 2.5.54 to follow the same general io
2320 * start/recovery path as __block_write_full_page, along with special
2321 * code to handle reiserfs tails.
2322 */
2323static int reiserfs_write_full_page(struct page *page,
2324				    struct writeback_control *wbc)
2325{
2326	struct inode *inode = page->mapping->host;
2327	unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2328	int error = 0;
2329	unsigned long block;
2330	sector_t last_block;
2331	struct buffer_head *head, *bh;
2332	int partial = 0;
2333	int nr = 0;
2334	int checked = PageChecked(page);
2335	struct reiserfs_transaction_handle th;
2336	struct super_block *s = inode->i_sb;
2337	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2338	th.t_trans_id = 0;
2339
2340	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2341	if (checked && (current->flags & PF_MEMALLOC)) {
2342		redirty_page_for_writepage(wbc, page);
2343		unlock_page(page);
2344		return 0;
2345	}
2346
2347	/* The page dirty bit is cleared before writepage is called, which
2348	 * means we have to tell create_empty_buffers to make dirty buffers
2349	 * The page really should be up to date at this point, so tossing
2350	 * in the BH_Uptodate is just a sanity check.
2351	 */
2352	if (!page_has_buffers(page)) {
2353		create_empty_buffers(page, s->s_blocksize,
2354				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2355	}
2356	head = page_buffers(page);
2357
2358	/* last page in the file, zero out any contents past the
2359	 ** last byte in the file
2360	 */
2361	if (page->index >= end_index) {
2362		unsigned last_offset;
2363
2364		last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2365		/* no file contents in this page */
2366		if (page->index >= end_index + 1 || !last_offset) {
2367			unlock_page(page);
2368			return 0;
2369		}
2370		zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2371	}
2372	bh = head;
2373	block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2374	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2375	/* first map all the buffers, logging any direct items we find */
2376	do {
2377		if (block > last_block) {
2378			/*
2379			 * This can happen when the block size is less than
2380			 * the page size.  The corresponding bytes in the page
2381			 * were zero filled above
2382			 */
2383			clear_buffer_dirty(bh);
2384			set_buffer_uptodate(bh);
2385		} else if ((checked || buffer_dirty(bh)) &&
2386		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2387						       && bh->b_blocknr ==
2388						       0))) {
2389			/* not mapped yet, or it points to a direct item, search
2390			 * the btree for the mapping info, and log any direct
2391			 * items found
2392			 */
2393			if ((error = map_block_for_writepage(inode, bh, block))) {
2394				goto fail;
2395			}
2396		}
2397		bh = bh->b_this_page;
2398		block++;
2399	} while (bh != head);
2400
2401	/*
2402	 * we start the transaction after map_block_for_writepage,
2403	 * because it can create holes in the file (an unbounded operation).
2404	 * starting it here, we can make a reliable estimate for how many
2405	 * blocks we're going to log
2406	 */
2407	if (checked) {
2408		ClearPageChecked(page);
2409		reiserfs_write_lock(s);
2410		error = journal_begin(&th, s, bh_per_page + 1);
2411		if (error) {
2412			reiserfs_write_unlock(s);
2413			goto fail;
2414		}
2415		reiserfs_update_inode_transaction(inode);
2416	}
2417	/* now go through and lock any dirty buffers on the page */
2418	do {
2419		get_bh(bh);
2420		if (!buffer_mapped(bh))
2421			continue;
2422		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2423			continue;
2424
2425		if (checked) {
2426			reiserfs_prepare_for_journal(s, bh, 1);
2427			journal_mark_dirty(&th, s, bh);
2428			continue;
2429		}
2430		/* from this point on, we know the buffer is mapped to a
2431		 * real block and not a direct item
2432		 */
2433		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2434			lock_buffer(bh);
2435		} else {
2436			if (!trylock_buffer(bh)) {
2437				redirty_page_for_writepage(wbc, page);
2438				continue;
2439			}
2440		}
2441		if (test_clear_buffer_dirty(bh)) {
2442			mark_buffer_async_write(bh);
2443		} else {
2444			unlock_buffer(bh);
2445		}
2446	} while ((bh = bh->b_this_page) != head);
2447
2448	if (checked) {
2449		error = journal_end(&th, s, bh_per_page + 1);
2450		reiserfs_write_unlock(s);
2451		if (error)
2452			goto fail;
2453	}
2454	BUG_ON(PageWriteback(page));
2455	set_page_writeback(page);
2456	unlock_page(page);
2457
2458	/*
2459	 * since any buffer might be the only dirty buffer on the page,
2460	 * the first submit_bh can bring the page out of writeback.
2461	 * be careful with the buffers.
2462	 */
2463	do {
2464		struct buffer_head *next = bh->b_this_page;
2465		if (buffer_async_write(bh)) {
2466			submit_bh(WRITE, bh);
2467			nr++;
2468		}
2469		put_bh(bh);
2470		bh = next;
2471	} while (bh != head);
2472
2473	error = 0;
2474      done:
2475	if (nr == 0) {
2476		/*
2477		 * if this page only had a direct item, it is very possible for
2478		 * no io to be required without there being an error.  Or,
2479		 * someone else could have locked them and sent them down the
2480		 * pipe without locking the page
2481		 */
2482		bh = head;
2483		do {
2484			if (!buffer_uptodate(bh)) {
2485				partial = 1;
2486				break;
2487			}
2488			bh = bh->b_this_page;
2489		} while (bh != head);
2490		if (!partial)
2491			SetPageUptodate(page);
2492		end_page_writeback(page);
2493	}
2494	return error;
2495
2496      fail:
2497	/* catches various errors, we need to make sure any valid dirty blocks
2498	 * get to the media.  The page is currently locked and not marked for
2499	 * writeback
2500	 */
2501	ClearPageUptodate(page);
2502	bh = head;
2503	do {
2504		get_bh(bh);
2505		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2506			lock_buffer(bh);
2507			mark_buffer_async_write(bh);
2508		} else {
2509			/*
2510			 * clear any dirty bits that might have come from getting
2511			 * attached to a dirty page
2512			 */
2513			clear_buffer_dirty(bh);
2514		}
2515		bh = bh->b_this_page;
2516	} while (bh != head);
2517	SetPageError(page);
2518	BUG_ON(PageWriteback(page));
2519	set_page_writeback(page);
2520	unlock_page(page);
2521	do {
2522		struct buffer_head *next = bh->b_this_page;
2523		if (buffer_async_write(bh)) {
2524			clear_buffer_dirty(bh);
2525			submit_bh(WRITE, bh);
2526			nr++;
2527		}
2528		put_bh(bh);
2529		bh = next;
2530	} while (bh != head);
2531	goto done;
2532}
2533
2534static int reiserfs_readpage(struct file *f, struct page *page)
2535{
2536	return block_read_full_page(page, reiserfs_get_block);
2537}
2538
2539static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2540{
2541	struct inode *inode = page->mapping->host;
2542	reiserfs_wait_on_write_block(inode->i_sb);
2543	return reiserfs_write_full_page(page, wbc);
2544}
2545
2546static void reiserfs_truncate_failed_write(struct inode *inode)
2547{
2548	truncate_inode_pages(inode->i_mapping, inode->i_size);
2549	reiserfs_truncate_file(inode, 0);
2550}
2551
2552static int reiserfs_write_begin(struct file *file,
2553				struct address_space *mapping,
2554				loff_t pos, unsigned len, unsigned flags,
2555				struct page **pagep, void **fsdata)
2556{
2557	struct inode *inode;
2558	struct page *page;
2559	pgoff_t index;
2560	int ret;
2561	int old_ref = 0;
2562
2563 	inode = mapping->host;
2564	*fsdata = 0;
2565 	if (flags & AOP_FLAG_CONT_EXPAND &&
2566 	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2567 		pos ++;
2568		*fsdata = (void *)(unsigned long)flags;
2569	}
2570
2571	index = pos >> PAGE_CACHE_SHIFT;
2572	page = grab_cache_page_write_begin(mapping, index, flags);
2573	if (!page)
2574		return -ENOMEM;
2575	*pagep = page;
2576
2577	reiserfs_wait_on_write_block(inode->i_sb);
2578	fix_tail_page_for_writing(page);
2579	if (reiserfs_transaction_running(inode->i_sb)) {
2580		struct reiserfs_transaction_handle *th;
2581		th = (struct reiserfs_transaction_handle *)current->
2582		    journal_info;
2583		BUG_ON(!th->t_refcount);
2584		BUG_ON(!th->t_trans_id);
2585		old_ref = th->t_refcount;
2586		th->t_refcount++;
2587	}
2588	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2589	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2590		struct reiserfs_transaction_handle *th = current->journal_info;
2591		/* this gets a little ugly.  If reiserfs_get_block returned an
2592		 * error and left a transacstion running, we've got to close it,
2593		 * and we've got to free handle if it was a persistent transaction.
2594		 *
2595		 * But, if we had nested into an existing transaction, we need
2596		 * to just drop the ref count on the handle.
2597		 *
2598		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2599		 * and it was a persistent trans.  Otherwise, it was nested above.
2600		 */
2601		if (th->t_refcount > old_ref) {
2602			if (old_ref)
2603				th->t_refcount--;
2604			else {
2605				int err;
2606				reiserfs_write_lock(inode->i_sb);
2607				err = reiserfs_end_persistent_transaction(th);
2608				reiserfs_write_unlock(inode->i_sb);
2609				if (err)
2610					ret = err;
2611			}
2612		}
2613	}
2614	if (ret) {
2615		unlock_page(page);
2616		page_cache_release(page);
2617		/* Truncate allocated blocks */
2618		reiserfs_truncate_failed_write(inode);
2619	}
2620	return ret;
2621}
2622
2623int reiserfs_prepare_write(struct file *f, struct page *page,
2624			   unsigned from, unsigned to)
2625{
2626	struct inode *inode = page->mapping->host;
2627	int ret;
2628	int old_ref = 0;
2629
2630	reiserfs_write_unlock(inode->i_sb);
2631	reiserfs_wait_on_write_block(inode->i_sb);
2632	reiserfs_write_lock(inode->i_sb);
2633
2634	fix_tail_page_for_writing(page);
2635	if (reiserfs_transaction_running(inode->i_sb)) {
2636		struct reiserfs_transaction_handle *th;
2637		th = (struct reiserfs_transaction_handle *)current->
2638		    journal_info;
2639		BUG_ON(!th->t_refcount);
2640		BUG_ON(!th->t_trans_id);
2641		old_ref = th->t_refcount;
2642		th->t_refcount++;
2643	}
2644
2645	ret = block_prepare_write(page, from, to, reiserfs_get_block);
2646	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2647		struct reiserfs_transaction_handle *th = current->journal_info;
2648		/* this gets a little ugly.  If reiserfs_get_block returned an
2649		 * error and left a transacstion running, we've got to close it,
2650		 * and we've got to free handle if it was a persistent transaction.
2651		 *
2652		 * But, if we had nested into an existing transaction, we need
2653		 * to just drop the ref count on the handle.
2654		 *
2655		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2656		 * and it was a persistent trans.  Otherwise, it was nested above.
2657		 */
2658		if (th->t_refcount > old_ref) {
2659			if (old_ref)
2660				th->t_refcount--;
2661			else {
2662				int err;
2663				reiserfs_write_lock(inode->i_sb);
2664				err = reiserfs_end_persistent_transaction(th);
2665				reiserfs_write_unlock(inode->i_sb);
2666				if (err)
2667					ret = err;
2668			}
2669		}
2670	}
2671	return ret;
2672
2673}
2674
2675static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2676{
2677	return generic_block_bmap(as, block, reiserfs_bmap);
2678}
2679
2680static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2681			      loff_t pos, unsigned len, unsigned copied,
2682			      struct page *page, void *fsdata)
2683{
2684	struct inode *inode = page->mapping->host;
2685	int ret = 0;
2686	int update_sd = 0;
2687	struct reiserfs_transaction_handle *th;
2688	unsigned start;
2689	int lock_depth = 0;
2690	bool locked = false;
2691
2692	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2693		pos ++;
2694
2695	reiserfs_wait_on_write_block(inode->i_sb);
2696	if (reiserfs_transaction_running(inode->i_sb))
2697		th = current->journal_info;
2698	else
2699		th = NULL;
2700
2701	start = pos & (PAGE_CACHE_SIZE - 1);
2702	if (unlikely(copied < len)) {
2703		if (!PageUptodate(page))
2704			copied = 0;
2705
2706		page_zero_new_buffers(page, start + copied, start + len);
2707	}
2708	flush_dcache_page(page);
2709
2710	reiserfs_commit_page(inode, page, start, start + copied);
2711
2712	/* generic_commit_write does this for us, but does not update the
2713	 ** transaction tracking stuff when the size changes.  So, we have
2714	 ** to do the i_size updates here.
2715	 */
2716	if (pos + copied > inode->i_size) {
2717		struct reiserfs_transaction_handle myth;
2718		lock_depth = reiserfs_write_lock_once(inode->i_sb);
2719		locked = true;
2720		/* If the file have grown beyond the border where it
2721		   can have a tail, unmark it as needing a tail
2722		   packing */
2723		if ((have_large_tails(inode->i_sb)
2724		     && inode->i_size > i_block_size(inode) * 4)
2725		    || (have_small_tails(inode->i_sb)
2726			&& inode->i_size > i_block_size(inode)))
2727			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2728
2729		ret = journal_begin(&myth, inode->i_sb, 1);
2730		if (ret)
2731			goto journal_error;
2732
2733		reiserfs_update_inode_transaction(inode);
2734		inode->i_size = pos + copied;
2735		/*
2736		 * this will just nest into our transaction.  It's important
2737		 * to use mark_inode_dirty so the inode gets pushed around on the
2738		 * dirty lists, and so that O_SYNC works as expected
2739		 */
2740		mark_inode_dirty(inode);
2741		reiserfs_update_sd(&myth, inode);
2742		update_sd = 1;
2743		ret = journal_end(&myth, inode->i_sb, 1);
2744		if (ret)
2745			goto journal_error;
2746	}
2747	if (th) {
2748		if (!locked) {
2749			lock_depth = reiserfs_write_lock_once(inode->i_sb);
2750			locked = true;
2751		}
2752		if (!update_sd)
2753			mark_inode_dirty(inode);
2754		ret = reiserfs_end_persistent_transaction(th);
2755		if (ret)
2756			goto out;
2757	}
2758
2759      out:
2760	if (locked)
2761		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2762	unlock_page(page);
2763	page_cache_release(page);
2764
2765	if (pos + len > inode->i_size)
2766		reiserfs_truncate_failed_write(inode);
2767
2768	return ret == 0 ? copied : ret;
2769
2770      journal_error:
2771	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2772	locked = false;
2773	if (th) {
2774		if (!update_sd)
2775			reiserfs_update_sd(th, inode);
2776		ret = reiserfs_end_persistent_transaction(th);
2777	}
2778	goto out;
2779}
2780
2781int reiserfs_commit_write(struct file *f, struct page *page,
2782			  unsigned from, unsigned to)
2783{
2784	struct inode *inode = page->mapping->host;
2785	loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2786	int ret = 0;
2787	int update_sd = 0;
2788	struct reiserfs_transaction_handle *th = NULL;
2789
2790	reiserfs_write_unlock(inode->i_sb);
2791	reiserfs_wait_on_write_block(inode->i_sb);
2792	reiserfs_write_lock(inode->i_sb);
2793
2794	if (reiserfs_transaction_running(inode->i_sb)) {
2795		th = current->journal_info;
2796	}
2797	reiserfs_commit_page(inode, page, from, to);
2798
2799	/* generic_commit_write does this for us, but does not update the
2800	 ** transaction tracking stuff when the size changes.  So, we have
2801	 ** to do the i_size updates here.
2802	 */
2803	if (pos > inode->i_size) {
2804		struct reiserfs_transaction_handle myth;
2805		/* If the file have grown beyond the border where it
2806		   can have a tail, unmark it as needing a tail
2807		   packing */
2808		if ((have_large_tails(inode->i_sb)
2809		     && inode->i_size > i_block_size(inode) * 4)
2810		    || (have_small_tails(inode->i_sb)
2811			&& inode->i_size > i_block_size(inode)))
2812			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2813
2814		ret = journal_begin(&myth, inode->i_sb, 1);
2815		if (ret)
2816			goto journal_error;
2817
2818		reiserfs_update_inode_transaction(inode);
2819		inode->i_size = pos;
2820		/*
2821		 * this will just nest into our transaction.  It's important
2822		 * to use mark_inode_dirty so the inode gets pushed around on the
2823		 * dirty lists, and so that O_SYNC works as expected
2824		 */
2825		mark_inode_dirty(inode);
2826		reiserfs_update_sd(&myth, inode);
2827		update_sd = 1;
2828		ret = journal_end(&myth, inode->i_sb, 1);
2829		if (ret)
2830			goto journal_error;
2831	}
2832	if (th) {
2833		if (!update_sd)
2834			mark_inode_dirty(inode);
2835		ret = reiserfs_end_persistent_transaction(th);
2836		if (ret)
2837			goto out;
2838	}
2839
2840      out:
2841	return ret;
2842
2843      journal_error:
2844	if (th) {
2845		if (!update_sd)
2846			reiserfs_update_sd(th, inode);
2847		ret = reiserfs_end_persistent_transaction(th);
2848	}
2849
2850	return ret;
2851}
2852
2853void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2854{
2855	if (reiserfs_attrs(inode->i_sb)) {
2856		if (sd_attrs & REISERFS_SYNC_FL)
2857			inode->i_flags |= S_SYNC;
2858		else
2859			inode->i_flags &= ~S_SYNC;
2860		if (sd_attrs & REISERFS_IMMUTABLE_FL)
2861			inode->i_flags |= S_IMMUTABLE;
2862		else
2863			inode->i_flags &= ~S_IMMUTABLE;
2864		if (sd_attrs & REISERFS_APPEND_FL)
2865			inode->i_flags |= S_APPEND;
2866		else
2867			inode->i_flags &= ~S_APPEND;
2868		if (sd_attrs & REISERFS_NOATIME_FL)
2869			inode->i_flags |= S_NOATIME;
2870		else
2871			inode->i_flags &= ~S_NOATIME;
2872		if (sd_attrs & REISERFS_NOTAIL_FL)
2873			REISERFS_I(inode)->i_flags |= i_nopack_mask;
2874		else
2875			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2876	}
2877}
2878
2879void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2880{
2881	if (reiserfs_attrs(inode->i_sb)) {
2882		if (inode->i_flags & S_IMMUTABLE)
2883			*sd_attrs |= REISERFS_IMMUTABLE_FL;
2884		else
2885			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2886		if (inode->i_flags & S_SYNC)
2887			*sd_attrs |= REISERFS_SYNC_FL;
2888		else
2889			*sd_attrs &= ~REISERFS_SYNC_FL;
2890		if (inode->i_flags & S_NOATIME)
2891			*sd_attrs |= REISERFS_NOATIME_FL;
2892		else
2893			*sd_attrs &= ~REISERFS_NOATIME_FL;
2894		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2895			*sd_attrs |= REISERFS_NOTAIL_FL;
2896		else
2897			*sd_attrs &= ~REISERFS_NOTAIL_FL;
2898	}
2899}
2900
2901/* decide if this buffer needs to stay around for data logging or ordered
2902** write purposes
2903*/
2904static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2905{
2906	int ret = 1;
2907	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2908
2909	lock_buffer(bh);
2910	spin_lock(&j->j_dirty_buffers_lock);
2911	if (!buffer_mapped(bh)) {
2912		goto free_jh;
2913	}
2914	/* the page is locked, and the only places that log a data buffer
2915	 * also lock the page.
2916	 */
2917	if (reiserfs_file_data_log(inode)) {
2918		/*
2919		 * very conservative, leave the buffer pinned if
2920		 * anyone might need it.
2921		 */
2922		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2923			ret = 0;
2924		}
2925	} else  if (buffer_dirty(bh)) {
2926		struct reiserfs_journal_list *jl;
2927		struct reiserfs_jh *jh = bh->b_private;
2928
2929		/* why is this safe?
2930		 * reiserfs_setattr updates i_size in the on disk
2931		 * stat data before allowing vmtruncate to be called.
2932		 *
2933		 * If buffer was put onto the ordered list for this
2934		 * transaction, we know for sure either this transaction
2935		 * or an older one already has updated i_size on disk,
2936		 * and this ordered data won't be referenced in the file
2937		 * if we crash.
2938		 *
2939		 * if the buffer was put onto the ordered list for an older
2940		 * transaction, we need to leave it around
2941		 */
2942		if (jh && (jl = jh->jl)
2943		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2944			ret = 0;
2945	}
2946      free_jh:
2947	if (ret && bh->b_private) {
2948		reiserfs_free_jh(bh);
2949	}
2950	spin_unlock(&j->j_dirty_buffers_lock);
2951	unlock_buffer(bh);
2952	return ret;
2953}
2954
2955/* clm -- taken from fs/buffer.c:block_invalidate_page */
2956static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2957{
2958	struct buffer_head *head, *bh, *next;
2959	struct inode *inode = page->mapping->host;
2960	unsigned int curr_off = 0;
2961	int ret = 1;
2962
2963	BUG_ON(!PageLocked(page));
2964
2965	if (offset == 0)
2966		ClearPageChecked(page);
2967
2968	if (!page_has_buffers(page))
2969		goto out;
2970
2971	head = page_buffers(page);
2972	bh = head;
2973	do {
2974		unsigned int next_off = curr_off + bh->b_size;
2975		next = bh->b_this_page;
2976
2977		/*
2978		 * is this block fully invalidated?
2979		 */
2980		if (offset <= curr_off) {
2981			if (invalidatepage_can_drop(inode, bh))
2982				reiserfs_unmap_buffer(bh);
2983			else
2984				ret = 0;
2985		}
2986		curr_off = next_off;
2987		bh = next;
2988	} while (bh != head);
2989
2990	/*
2991	 * We release buffers only if the entire page is being invalidated.
2992	 * The get_block cached value has been unconditionally invalidated,
2993	 * so real IO is not possible anymore.
2994	 */
2995	if (!offset && ret) {
2996		ret = try_to_release_page(page, 0);
2997		/* maybe should BUG_ON(!ret); - neilb */
2998	}
2999      out:
3000	return;
3001}
3002
3003static int reiserfs_set_page_dirty(struct page *page)
3004{
3005	struct inode *inode = page->mapping->host;
3006	if (reiserfs_file_data_log(inode)) {
3007		SetPageChecked(page);
3008		return __set_page_dirty_nobuffers(page);
3009	}
3010	return __set_page_dirty_buffers(page);
3011}
3012
3013/*
3014 * Returns 1 if the page's buffers were dropped.  The page is locked.
3015 *
3016 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3017 * in the buffers at page_buffers(page).
3018 *
3019 * even in -o notail mode, we can't be sure an old mount without -o notail
3020 * didn't create files with tails.
3021 */
3022static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3023{
3024	struct inode *inode = page->mapping->host;
3025	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3026	struct buffer_head *head;
3027	struct buffer_head *bh;
3028	int ret = 1;
3029
3030	WARN_ON(PageChecked(page));
3031	spin_lock(&j->j_dirty_buffers_lock);
3032	head = page_buffers(page);
3033	bh = head;
3034	do {
3035		if (bh->b_private) {
3036			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3037				reiserfs_free_jh(bh);
3038			} else {
3039				ret = 0;
3040				break;
3041			}
3042		}
3043		bh = bh->b_this_page;
3044	} while (bh != head);
3045	if (ret)
3046		ret = try_to_free_buffers(page);
3047	spin_unlock(&j->j_dirty_buffers_lock);
3048	return ret;
3049}
3050
3051/* We thank Mingming Cao for helping us understand in great detail what
3052   to do in this section of the code. */
3053static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3054				  const struct iovec *iov, loff_t offset,
3055				  unsigned long nr_segs)
3056{
3057	struct file *file = iocb->ki_filp;
3058	struct inode *inode = file->f_mapping->host;
3059	ssize_t ret;
3060
3061	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3062				  offset, nr_segs,
3063				  reiserfs_get_blocks_direct_io, NULL);
3064
3065	/*
3066	 * In case of error extending write may have instantiated a few
3067	 * blocks outside i_size. Trim these off again.
3068	 */
3069	if (unlikely((rw & WRITE) && ret < 0)) {
3070		loff_t isize = i_size_read(inode);
3071		loff_t end = offset + iov_length(iov, nr_segs);
3072
3073		if (end > isize)
3074			vmtruncate(inode, isize);
3075	}
3076
3077	return ret;
3078}
3079
3080int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3081{
3082	struct inode *inode = dentry->d_inode;
3083	unsigned int ia_valid;
3084	int depth;
3085	int error;
3086
3087	error = inode_change_ok(inode, attr);
3088	if (error)
3089		return error;
3090
3091	/* must be turned off for recursive notify_change calls */
3092	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3093
3094	depth = reiserfs_write_lock_once(inode->i_sb);
3095	if (is_quota_modification(inode, attr))
3096		dquot_initialize(inode);
3097
3098	if (attr->ia_valid & ATTR_SIZE) {
3099		/* version 2 items will be caught by the s_maxbytes check
3100		 ** done for us in vmtruncate
3101		 */
3102		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3103		    attr->ia_size > MAX_NON_LFS) {
3104			error = -EFBIG;
3105			goto out;
3106		}
3107		/* fill in hole pointers in the expanding truncate case. */
3108		if (attr->ia_size > inode->i_size) {
3109			error = generic_cont_expand_simple(inode, attr->ia_size);
3110			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3111				int err;
3112				struct reiserfs_transaction_handle th;
3113				/* we're changing at most 2 bitmaps, inode + super */
3114				err = journal_begin(&th, inode->i_sb, 4);
3115				if (!err) {
3116					reiserfs_discard_prealloc(&th, inode);
3117					err = journal_end(&th, inode->i_sb, 4);
3118				}
3119				if (err)
3120					error = err;
3121			}
3122			if (error)
3123				goto out;
3124			/*
3125			 * file size is changed, ctime and mtime are
3126			 * to be updated
3127			 */
3128			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3129		}
3130	}
3131
3132	if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
3133	     ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
3134	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3135		/* stat data of format v3.5 has 16 bit uid and gid */
3136		error = -EINVAL;
3137		goto out;
3138	}
3139
3140	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3141	    (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3142		struct reiserfs_transaction_handle th;
3143		int jbegin_count =
3144		    2 *
3145		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3146		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3147		    2;
3148
3149		error = reiserfs_chown_xattrs(inode, attr);
3150
3151		if (error)
3152			return error;
3153
3154		/* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3155		error = journal_begin(&th, inode->i_sb, jbegin_count);
3156		if (error)
3157			goto out;
3158		error = dquot_transfer(inode, attr);
3159		if (error) {
3160			journal_end(&th, inode->i_sb, jbegin_count);
3161			goto out;
3162		}
3163
3164		/* Update corresponding info in inode so that everything is in
3165		 * one transaction */
3166		if (attr->ia_valid & ATTR_UID)
3167			inode->i_uid = attr->ia_uid;
3168		if (attr->ia_valid & ATTR_GID)
3169			inode->i_gid = attr->ia_gid;
3170		mark_inode_dirty(inode);
3171		error = journal_end(&th, inode->i_sb, jbegin_count);
3172		if (error)
3173			goto out;
3174	}
3175
3176	/*
3177	 * Relax the lock here, as it might truncate the
3178	 * inode pages and wait for inode pages locks.
3179	 * To release such page lock, the owner needs the
3180	 * reiserfs lock
3181	 */
3182	reiserfs_write_unlock_once(inode->i_sb, depth);
3183	if ((attr->ia_valid & ATTR_SIZE) &&
3184	    attr->ia_size != i_size_read(inode))
3185		error = vmtruncate(inode, attr->ia_size);
3186
3187	if (!error) {
3188		setattr_copy(inode, attr);
3189		mark_inode_dirty(inode);
3190	}
3191	depth = reiserfs_write_lock_once(inode->i_sb);
3192
3193	if (!error && reiserfs_posixacl(inode->i_sb)) {
3194		if (attr->ia_valid & ATTR_MODE)
3195			error = reiserfs_acl_chmod(inode);
3196	}
3197
3198      out:
3199	reiserfs_write_unlock_once(inode->i_sb, depth);
3200
3201	return error;
3202}
3203
3204const struct address_space_operations reiserfs_address_space_operations = {
3205	.writepage = reiserfs_writepage,
3206	.readpage = reiserfs_readpage,
3207	.readpages = reiserfs_readpages,
3208	.releasepage = reiserfs_releasepage,
3209	.invalidatepage = reiserfs_invalidatepage,
3210	.sync_page = block_sync_page,
3211	.write_begin = reiserfs_write_begin,
3212	.write_end = reiserfs_write_end,
3213	.bmap = reiserfs_aop_bmap,
3214	.direct_IO = reiserfs_direct_IO,
3215	.set_page_dirty = reiserfs_set_page_dirty,
3216};
3217