inode.c revision db78b877f7744bec4a9d9f9e7d10da3931d7cd39
1/* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5#include <linux/time.h> 6#include <linux/fs.h> 7#include <linux/reiserfs_fs.h> 8#include <linux/reiserfs_acl.h> 9#include <linux/reiserfs_xattr.h> 10#include <linux/exportfs.h> 11#include <linux/smp_lock.h> 12#include <linux/pagemap.h> 13#include <linux/highmem.h> 14#include <linux/slab.h> 15#include <asm/uaccess.h> 16#include <asm/unaligned.h> 17#include <linux/buffer_head.h> 18#include <linux/mpage.h> 19#include <linux/writeback.h> 20#include <linux/quotaops.h> 21#include <linux/swap.h> 22 23int reiserfs_commit_write(struct file *f, struct page *page, 24 unsigned from, unsigned to); 25int reiserfs_prepare_write(struct file *f, struct page *page, 26 unsigned from, unsigned to); 27 28void reiserfs_delete_inode(struct inode *inode) 29{ 30 /* We need blocks for transaction + (user+group) quota update (possibly delete) */ 31 int jbegin_count = 32 JOURNAL_PER_BALANCE_CNT * 2 + 33 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb); 34 struct reiserfs_transaction_handle th; 35 int depth; 36 int err; 37 38 if (!is_bad_inode(inode)) 39 dquot_initialize(inode); 40 41 truncate_inode_pages(&inode->i_data, 0); 42 43 depth = reiserfs_write_lock_once(inode->i_sb); 44 45 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */ 46 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */ 47 reiserfs_delete_xattrs(inode); 48 49 if (journal_begin(&th, inode->i_sb, jbegin_count)) 50 goto out; 51 reiserfs_update_inode_transaction(inode); 52 53 reiserfs_discard_prealloc(&th, inode); 54 55 err = reiserfs_delete_object(&th, inode); 56 57 /* Do quota update inside a transaction for journaled quotas. We must do that 58 * after delete_object so that quota updates go into the same transaction as 59 * stat data deletion */ 60 if (!err) 61 dquot_free_inode(inode); 62 63 if (journal_end(&th, inode->i_sb, jbegin_count)) 64 goto out; 65 66 /* check return value from reiserfs_delete_object after 67 * ending the transaction 68 */ 69 if (err) 70 goto out; 71 72 /* all items of file are deleted, so we can remove "save" link */ 73 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything 74 * about an error here */ 75 } else { 76 /* no object items are in the tree */ 77 ; 78 } 79 out: 80 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */ 81 inode->i_blocks = 0; 82 reiserfs_write_unlock_once(inode->i_sb, depth); 83} 84 85static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid, 86 __u32 objectid, loff_t offset, int type, int length) 87{ 88 key->version = version; 89 90 key->on_disk_key.k_dir_id = dirid; 91 key->on_disk_key.k_objectid = objectid; 92 set_cpu_key_k_offset(key, offset); 93 set_cpu_key_k_type(key, type); 94 key->key_length = length; 95} 96 97/* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set 98 offset and type of key */ 99void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset, 100 int type, int length) 101{ 102 _make_cpu_key(key, get_inode_item_key_version(inode), 103 le32_to_cpu(INODE_PKEY(inode)->k_dir_id), 104 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type, 105 length); 106} 107 108// 109// when key is 0, do not set version and short key 110// 111inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 112 int version, 113 loff_t offset, int type, int length, 114 int entry_count /*or ih_free_space */ ) 115{ 116 if (key) { 117 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id); 118 ih->ih_key.k_objectid = 119 cpu_to_le32(key->on_disk_key.k_objectid); 120 } 121 put_ih_version(ih, version); 122 set_le_ih_k_offset(ih, offset); 123 set_le_ih_k_type(ih, type); 124 put_ih_item_len(ih, length); 125 /* set_ih_free_space (ih, 0); */ 126 // for directory items it is entry count, for directs and stat 127 // datas - 0xffff, for indirects - 0 128 put_ih_entry_count(ih, entry_count); 129} 130 131// 132// FIXME: we might cache recently accessed indirect item 133 134// Ugh. Not too eager for that.... 135// I cut the code until such time as I see a convincing argument (benchmark). 136// I don't want a bloated inode struct..., and I don't like code complexity.... 137 138/* cutting the code is fine, since it really isn't in use yet and is easy 139** to add back in. But, Vladimir has a really good idea here. Think 140** about what happens for reading a file. For each page, 141** The VFS layer calls reiserfs_readpage, who searches the tree to find 142** an indirect item. This indirect item has X number of pointers, where 143** X is a big number if we've done the block allocation right. But, 144** we only use one or two of these pointers during each call to readpage, 145** needlessly researching again later on. 146** 147** The size of the cache could be dynamic based on the size of the file. 148** 149** I'd also like to see us cache the location the stat data item, since 150** we are needlessly researching for that frequently. 151** 152** --chris 153*/ 154 155/* If this page has a file tail in it, and 156** it was read in by get_block_create_0, the page data is valid, 157** but tail is still sitting in a direct item, and we can't write to 158** it. So, look through this page, and check all the mapped buffers 159** to make sure they have valid block numbers. Any that don't need 160** to be unmapped, so that block_prepare_write will correctly call 161** reiserfs_get_block to convert the tail into an unformatted node 162*/ 163static inline void fix_tail_page_for_writing(struct page *page) 164{ 165 struct buffer_head *head, *next, *bh; 166 167 if (page && page_has_buffers(page)) { 168 head = page_buffers(page); 169 bh = head; 170 do { 171 next = bh->b_this_page; 172 if (buffer_mapped(bh) && bh->b_blocknr == 0) { 173 reiserfs_unmap_buffer(bh); 174 } 175 bh = next; 176 } while (bh != head); 177 } 178} 179 180/* reiserfs_get_block does not need to allocate a block only if it has been 181 done already or non-hole position has been found in the indirect item */ 182static inline int allocation_needed(int retval, b_blocknr_t allocated, 183 struct item_head *ih, 184 __le32 * item, int pos_in_item) 185{ 186 if (allocated) 187 return 0; 188 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) && 189 get_block_num(item, pos_in_item)) 190 return 0; 191 return 1; 192} 193 194static inline int indirect_item_found(int retval, struct item_head *ih) 195{ 196 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih); 197} 198 199static inline void set_block_dev_mapped(struct buffer_head *bh, 200 b_blocknr_t block, struct inode *inode) 201{ 202 map_bh(bh, inode->i_sb, block); 203} 204 205// 206// files which were created in the earlier version can not be longer, 207// than 2 gb 208// 209static int file_capable(struct inode *inode, sector_t block) 210{ 211 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file. 212 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb 213 return 1; 214 215 return 0; 216} 217 218static int restart_transaction(struct reiserfs_transaction_handle *th, 219 struct inode *inode, struct treepath *path) 220{ 221 struct super_block *s = th->t_super; 222 int len = th->t_blocks_allocated; 223 int err; 224 225 BUG_ON(!th->t_trans_id); 226 BUG_ON(!th->t_refcount); 227 228 pathrelse(path); 229 230 /* we cannot restart while nested */ 231 if (th->t_refcount > 1) { 232 return 0; 233 } 234 reiserfs_update_sd(th, inode); 235 err = journal_end(th, s, len); 236 if (!err) { 237 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6); 238 if (!err) 239 reiserfs_update_inode_transaction(inode); 240 } 241 return err; 242} 243 244// it is called by get_block when create == 0. Returns block number 245// for 'block'-th logical block of file. When it hits direct item it 246// returns 0 (being called from bmap) or read direct item into piece 247// of page (bh_result) 248 249// Please improve the english/clarity in the comment above, as it is 250// hard to understand. 251 252static int _get_block_create_0(struct inode *inode, sector_t block, 253 struct buffer_head *bh_result, int args) 254{ 255 INITIALIZE_PATH(path); 256 struct cpu_key key; 257 struct buffer_head *bh; 258 struct item_head *ih, tmp_ih; 259 b_blocknr_t blocknr; 260 char *p = NULL; 261 int chars; 262 int ret; 263 int result; 264 int done = 0; 265 unsigned long offset; 266 267 // prepare the key to look for the 'block'-th block of file 268 make_cpu_key(&key, inode, 269 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY, 270 3); 271 272 result = search_for_position_by_key(inode->i_sb, &key, &path); 273 if (result != POSITION_FOUND) { 274 pathrelse(&path); 275 if (p) 276 kunmap(bh_result->b_page); 277 if (result == IO_ERROR) 278 return -EIO; 279 // We do not return -ENOENT if there is a hole but page is uptodate, because it means 280 // That there is some MMAPED data associated with it that is yet to be written to disk. 281 if ((args & GET_BLOCK_NO_HOLE) 282 && !PageUptodate(bh_result->b_page)) { 283 return -ENOENT; 284 } 285 return 0; 286 } 287 // 288 bh = get_last_bh(&path); 289 ih = get_ih(&path); 290 if (is_indirect_le_ih(ih)) { 291 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih); 292 293 /* FIXME: here we could cache indirect item or part of it in 294 the inode to avoid search_by_key in case of subsequent 295 access to file */ 296 blocknr = get_block_num(ind_item, path.pos_in_item); 297 ret = 0; 298 if (blocknr) { 299 map_bh(bh_result, inode->i_sb, blocknr); 300 if (path.pos_in_item == 301 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) { 302 set_buffer_boundary(bh_result); 303 } 304 } else 305 // We do not return -ENOENT if there is a hole but page is uptodate, because it means 306 // That there is some MMAPED data associated with it that is yet to be written to disk. 307 if ((args & GET_BLOCK_NO_HOLE) 308 && !PageUptodate(bh_result->b_page)) { 309 ret = -ENOENT; 310 } 311 312 pathrelse(&path); 313 if (p) 314 kunmap(bh_result->b_page); 315 return ret; 316 } 317 // requested data are in direct item(s) 318 if (!(args & GET_BLOCK_READ_DIRECT)) { 319 // we are called by bmap. FIXME: we can not map block of file 320 // when it is stored in direct item(s) 321 pathrelse(&path); 322 if (p) 323 kunmap(bh_result->b_page); 324 return -ENOENT; 325 } 326 327 /* if we've got a direct item, and the buffer or page was uptodate, 328 ** we don't want to pull data off disk again. skip to the 329 ** end, where we map the buffer and return 330 */ 331 if (buffer_uptodate(bh_result)) { 332 goto finished; 333 } else 334 /* 335 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date 336 ** pages without any buffers. If the page is up to date, we don't want 337 ** read old data off disk. Set the up to date bit on the buffer instead 338 ** and jump to the end 339 */ 340 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) { 341 set_buffer_uptodate(bh_result); 342 goto finished; 343 } 344 // read file tail into part of page 345 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1); 346 copy_item_head(&tmp_ih, ih); 347 348 /* we only want to kmap if we are reading the tail into the page. 349 ** this is not the common case, so we don't kmap until we are 350 ** sure we need to. But, this means the item might move if 351 ** kmap schedules 352 */ 353 if (!p) 354 p = (char *)kmap(bh_result->b_page); 355 356 p += offset; 357 memset(p, 0, inode->i_sb->s_blocksize); 358 do { 359 if (!is_direct_le_ih(ih)) { 360 BUG(); 361 } 362 /* make sure we don't read more bytes than actually exist in 363 ** the file. This can happen in odd cases where i_size isn't 364 ** correct, and when direct item padding results in a few 365 ** extra bytes at the end of the direct item 366 */ 367 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size) 368 break; 369 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) { 370 chars = 371 inode->i_size - (le_ih_k_offset(ih) - 1) - 372 path.pos_in_item; 373 done = 1; 374 } else { 375 chars = ih_item_len(ih) - path.pos_in_item; 376 } 377 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars); 378 379 if (done) 380 break; 381 382 p += chars; 383 384 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1)) 385 // we done, if read direct item is not the last item of 386 // node FIXME: we could try to check right delimiting key 387 // to see whether direct item continues in the right 388 // neighbor or rely on i_size 389 break; 390 391 // update key to look for the next piece 392 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars); 393 result = search_for_position_by_key(inode->i_sb, &key, &path); 394 if (result != POSITION_FOUND) 395 // i/o error most likely 396 break; 397 bh = get_last_bh(&path); 398 ih = get_ih(&path); 399 } while (1); 400 401 flush_dcache_page(bh_result->b_page); 402 kunmap(bh_result->b_page); 403 404 finished: 405 pathrelse(&path); 406 407 if (result == IO_ERROR) 408 return -EIO; 409 410 /* this buffer has valid data, but isn't valid for io. mapping it to 411 * block #0 tells the rest of reiserfs it just has a tail in it 412 */ 413 map_bh(bh_result, inode->i_sb, 0); 414 set_buffer_uptodate(bh_result); 415 return 0; 416} 417 418// this is called to create file map. So, _get_block_create_0 will not 419// read direct item 420static int reiserfs_bmap(struct inode *inode, sector_t block, 421 struct buffer_head *bh_result, int create) 422{ 423 if (!file_capable(inode, block)) 424 return -EFBIG; 425 426 reiserfs_write_lock(inode->i_sb); 427 /* do not read the direct item */ 428 _get_block_create_0(inode, block, bh_result, 0); 429 reiserfs_write_unlock(inode->i_sb); 430 return 0; 431} 432 433/* special version of get_block that is only used by grab_tail_page right 434** now. It is sent to block_prepare_write, and when you try to get a 435** block past the end of the file (or a block from a hole) it returns 436** -ENOENT instead of a valid buffer. block_prepare_write expects to 437** be able to do i/o on the buffers returned, unless an error value 438** is also returned. 439** 440** So, this allows block_prepare_write to be used for reading a single block 441** in a page. Where it does not produce a valid page for holes, or past the 442** end of the file. This turns out to be exactly what we need for reading 443** tails for conversion. 444** 445** The point of the wrapper is forcing a certain value for create, even 446** though the VFS layer is calling this function with create==1. If you 447** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block, 448** don't use this function. 449*/ 450static int reiserfs_get_block_create_0(struct inode *inode, sector_t block, 451 struct buffer_head *bh_result, 452 int create) 453{ 454 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE); 455} 456 457/* This is special helper for reiserfs_get_block in case we are executing 458 direct_IO request. */ 459static int reiserfs_get_blocks_direct_io(struct inode *inode, 460 sector_t iblock, 461 struct buffer_head *bh_result, 462 int create) 463{ 464 int ret; 465 466 bh_result->b_page = NULL; 467 468 /* We set the b_size before reiserfs_get_block call since it is 469 referenced in convert_tail_for_hole() that may be called from 470 reiserfs_get_block() */ 471 bh_result->b_size = (1 << inode->i_blkbits); 472 473 ret = reiserfs_get_block(inode, iblock, bh_result, 474 create | GET_BLOCK_NO_DANGLE); 475 if (ret) 476 goto out; 477 478 /* don't allow direct io onto tail pages */ 479 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 480 /* make sure future calls to the direct io funcs for this offset 481 ** in the file fail by unmapping the buffer 482 */ 483 clear_buffer_mapped(bh_result); 484 ret = -EINVAL; 485 } 486 /* Possible unpacked tail. Flush the data before pages have 487 disappeared */ 488 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) { 489 int err; 490 491 reiserfs_write_lock(inode->i_sb); 492 493 err = reiserfs_commit_for_inode(inode); 494 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 495 496 reiserfs_write_unlock(inode->i_sb); 497 498 if (err < 0) 499 ret = err; 500 } 501 out: 502 return ret; 503} 504 505/* 506** helper function for when reiserfs_get_block is called for a hole 507** but the file tail is still in a direct item 508** bh_result is the buffer head for the hole 509** tail_offset is the offset of the start of the tail in the file 510** 511** This calls prepare_write, which will start a new transaction 512** you should not be in a transaction, or have any paths held when you 513** call this. 514*/ 515static int convert_tail_for_hole(struct inode *inode, 516 struct buffer_head *bh_result, 517 loff_t tail_offset) 518{ 519 unsigned long index; 520 unsigned long tail_end; 521 unsigned long tail_start; 522 struct page *tail_page; 523 struct page *hole_page = bh_result->b_page; 524 int retval = 0; 525 526 if ((tail_offset & (bh_result->b_size - 1)) != 1) 527 return -EIO; 528 529 /* always try to read until the end of the block */ 530 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1); 531 tail_end = (tail_start | (bh_result->b_size - 1)) + 1; 532 533 index = tail_offset >> PAGE_CACHE_SHIFT; 534 /* hole_page can be zero in case of direct_io, we are sure 535 that we cannot get here if we write with O_DIRECT into 536 tail page */ 537 if (!hole_page || index != hole_page->index) { 538 tail_page = grab_cache_page(inode->i_mapping, index); 539 retval = -ENOMEM; 540 if (!tail_page) { 541 goto out; 542 } 543 } else { 544 tail_page = hole_page; 545 } 546 547 /* we don't have to make sure the conversion did not happen while 548 ** we were locking the page because anyone that could convert 549 ** must first take i_mutex. 550 ** 551 ** We must fix the tail page for writing because it might have buffers 552 ** that are mapped, but have a block number of 0. This indicates tail 553 ** data that has been read directly into the page, and block_prepare_write 554 ** won't trigger a get_block in this case. 555 */ 556 fix_tail_page_for_writing(tail_page); 557 retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end); 558 if (retval) 559 goto unlock; 560 561 /* tail conversion might change the data in the page */ 562 flush_dcache_page(tail_page); 563 564 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end); 565 566 unlock: 567 if (tail_page != hole_page) { 568 unlock_page(tail_page); 569 page_cache_release(tail_page); 570 } 571 out: 572 return retval; 573} 574 575static inline int _allocate_block(struct reiserfs_transaction_handle *th, 576 sector_t block, 577 struct inode *inode, 578 b_blocknr_t * allocated_block_nr, 579 struct treepath *path, int flags) 580{ 581 BUG_ON(!th->t_trans_id); 582 583#ifdef REISERFS_PREALLOCATE 584 if (!(flags & GET_BLOCK_NO_IMUX)) { 585 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr, 586 path, block); 587 } 588#endif 589 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path, 590 block); 591} 592 593int reiserfs_get_block(struct inode *inode, sector_t block, 594 struct buffer_head *bh_result, int create) 595{ 596 int repeat, retval = 0; 597 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int 598 INITIALIZE_PATH(path); 599 int pos_in_item; 600 struct cpu_key key; 601 struct buffer_head *bh, *unbh = NULL; 602 struct item_head *ih, tmp_ih; 603 __le32 *item; 604 int done; 605 int fs_gen; 606 int lock_depth; 607 struct reiserfs_transaction_handle *th = NULL; 608 /* space reserved in transaction batch: 609 . 3 balancings in direct->indirect conversion 610 . 1 block involved into reiserfs_update_sd() 611 XXX in practically impossible worst case direct2indirect() 612 can incur (much) more than 3 balancings. 613 quota update for user, group */ 614 int jbegin_count = 615 JOURNAL_PER_BALANCE_CNT * 3 + 1 + 616 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb); 617 int version; 618 int dangle = 1; 619 loff_t new_offset = 620 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1; 621 622 lock_depth = reiserfs_write_lock_once(inode->i_sb); 623 version = get_inode_item_key_version(inode); 624 625 if (!file_capable(inode, block)) { 626 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 627 return -EFBIG; 628 } 629 630 /* if !create, we aren't changing the FS, so we don't need to 631 ** log anything, so we don't need to start a transaction 632 */ 633 if (!(create & GET_BLOCK_CREATE)) { 634 int ret; 635 /* find number of block-th logical block of the file */ 636 ret = _get_block_create_0(inode, block, bh_result, 637 create | GET_BLOCK_READ_DIRECT); 638 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 639 return ret; 640 } 641 /* 642 * if we're already in a transaction, make sure to close 643 * any new transactions we start in this func 644 */ 645 if ((create & GET_BLOCK_NO_DANGLE) || 646 reiserfs_transaction_running(inode->i_sb)) 647 dangle = 0; 648 649 /* If file is of such a size, that it might have a tail and tails are enabled 650 ** we should mark it as possibly needing tail packing on close 651 */ 652 if ((have_large_tails(inode->i_sb) 653 && inode->i_size < i_block_size(inode) * 4) 654 || (have_small_tails(inode->i_sb) 655 && inode->i_size < i_block_size(inode))) 656 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; 657 658 /* set the key of the first byte in the 'block'-th block of file */ 659 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ ); 660 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) { 661 start_trans: 662 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count); 663 if (!th) { 664 retval = -ENOMEM; 665 goto failure; 666 } 667 reiserfs_update_inode_transaction(inode); 668 } 669 research: 670 671 retval = search_for_position_by_key(inode->i_sb, &key, &path); 672 if (retval == IO_ERROR) { 673 retval = -EIO; 674 goto failure; 675 } 676 677 bh = get_last_bh(&path); 678 ih = get_ih(&path); 679 item = get_item(&path); 680 pos_in_item = path.pos_in_item; 681 682 fs_gen = get_generation(inode->i_sb); 683 copy_item_head(&tmp_ih, ih); 684 685 if (allocation_needed 686 (retval, allocated_block_nr, ih, item, pos_in_item)) { 687 /* we have to allocate block for the unformatted node */ 688 if (!th) { 689 pathrelse(&path); 690 goto start_trans; 691 } 692 693 repeat = 694 _allocate_block(th, block, inode, &allocated_block_nr, 695 &path, create); 696 697 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) { 698 /* restart the transaction to give the journal a chance to free 699 ** some blocks. releases the path, so we have to go back to 700 ** research if we succeed on the second try 701 */ 702 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1; 703 retval = restart_transaction(th, inode, &path); 704 if (retval) 705 goto failure; 706 repeat = 707 _allocate_block(th, block, inode, 708 &allocated_block_nr, NULL, create); 709 710 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) { 711 goto research; 712 } 713 if (repeat == QUOTA_EXCEEDED) 714 retval = -EDQUOT; 715 else 716 retval = -ENOSPC; 717 goto failure; 718 } 719 720 if (fs_changed(fs_gen, inode->i_sb) 721 && item_moved(&tmp_ih, &path)) { 722 goto research; 723 } 724 } 725 726 if (indirect_item_found(retval, ih)) { 727 b_blocknr_t unfm_ptr; 728 /* 'block'-th block is in the file already (there is 729 corresponding cell in some indirect item). But it may be 730 zero unformatted node pointer (hole) */ 731 unfm_ptr = get_block_num(item, pos_in_item); 732 if (unfm_ptr == 0) { 733 /* use allocated block to plug the hole */ 734 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 735 if (fs_changed(fs_gen, inode->i_sb) 736 && item_moved(&tmp_ih, &path)) { 737 reiserfs_restore_prepared_buffer(inode->i_sb, 738 bh); 739 goto research; 740 } 741 set_buffer_new(bh_result); 742 if (buffer_dirty(bh_result) 743 && reiserfs_data_ordered(inode->i_sb)) 744 reiserfs_add_ordered_list(inode, bh_result); 745 put_block_num(item, pos_in_item, allocated_block_nr); 746 unfm_ptr = allocated_block_nr; 747 journal_mark_dirty(th, inode->i_sb, bh); 748 reiserfs_update_sd(th, inode); 749 } 750 set_block_dev_mapped(bh_result, unfm_ptr, inode); 751 pathrelse(&path); 752 retval = 0; 753 if (!dangle && th) 754 retval = reiserfs_end_persistent_transaction(th); 755 756 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 757 758 /* the item was found, so new blocks were not added to the file 759 ** there is no need to make sure the inode is updated with this 760 ** transaction 761 */ 762 return retval; 763 } 764 765 if (!th) { 766 pathrelse(&path); 767 goto start_trans; 768 } 769 770 /* desired position is not found or is in the direct item. We have 771 to append file with holes up to 'block'-th block converting 772 direct items to indirect one if necessary */ 773 done = 0; 774 do { 775 if (is_statdata_le_ih(ih)) { 776 __le32 unp = 0; 777 struct cpu_key tmp_key; 778 779 /* indirect item has to be inserted */ 780 make_le_item_head(&tmp_ih, &key, version, 1, 781 TYPE_INDIRECT, UNFM_P_SIZE, 782 0 /* free_space */ ); 783 784 if (cpu_key_k_offset(&key) == 1) { 785 /* we are going to add 'block'-th block to the file. Use 786 allocated block for that */ 787 unp = cpu_to_le32(allocated_block_nr); 788 set_block_dev_mapped(bh_result, 789 allocated_block_nr, inode); 790 set_buffer_new(bh_result); 791 done = 1; 792 } 793 tmp_key = key; // ;) 794 set_cpu_key_k_offset(&tmp_key, 1); 795 PATH_LAST_POSITION(&path)++; 796 797 retval = 798 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih, 799 inode, (char *)&unp); 800 if (retval) { 801 reiserfs_free_block(th, inode, 802 allocated_block_nr, 1); 803 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST 804 } 805 //mark_tail_converted (inode); 806 } else if (is_direct_le_ih(ih)) { 807 /* direct item has to be converted */ 808 loff_t tail_offset; 809 810 tail_offset = 811 ((le_ih_k_offset(ih) - 812 1) & ~(inode->i_sb->s_blocksize - 1)) + 1; 813 if (tail_offset == cpu_key_k_offset(&key)) { 814 /* direct item we just found fits into block we have 815 to map. Convert it into unformatted node: use 816 bh_result for the conversion */ 817 set_block_dev_mapped(bh_result, 818 allocated_block_nr, inode); 819 unbh = bh_result; 820 done = 1; 821 } else { 822 /* we have to padd file tail stored in direct item(s) 823 up to block size and convert it to unformatted 824 node. FIXME: this should also get into page cache */ 825 826 pathrelse(&path); 827 /* 828 * ugly, but we can only end the transaction if 829 * we aren't nested 830 */ 831 BUG_ON(!th->t_refcount); 832 if (th->t_refcount == 1) { 833 retval = 834 reiserfs_end_persistent_transaction 835 (th); 836 th = NULL; 837 if (retval) 838 goto failure; 839 } 840 841 retval = 842 convert_tail_for_hole(inode, bh_result, 843 tail_offset); 844 if (retval) { 845 if (retval != -ENOSPC) 846 reiserfs_error(inode->i_sb, 847 "clm-6004", 848 "convert tail failed " 849 "inode %lu, error %d", 850 inode->i_ino, 851 retval); 852 if (allocated_block_nr) { 853 /* the bitmap, the super, and the stat data == 3 */ 854 if (!th) 855 th = reiserfs_persistent_transaction(inode->i_sb, 3); 856 if (th) 857 reiserfs_free_block(th, 858 inode, 859 allocated_block_nr, 860 1); 861 } 862 goto failure; 863 } 864 goto research; 865 } 866 retval = 867 direct2indirect(th, inode, &path, unbh, 868 tail_offset); 869 if (retval) { 870 reiserfs_unmap_buffer(unbh); 871 reiserfs_free_block(th, inode, 872 allocated_block_nr, 1); 873 goto failure; 874 } 875 /* it is important the set_buffer_uptodate is done after 876 ** the direct2indirect. The buffer might contain valid 877 ** data newer than the data on disk (read by readpage, changed, 878 ** and then sent here by writepage). direct2indirect needs 879 ** to know if unbh was already up to date, so it can decide 880 ** if the data in unbh needs to be replaced with data from 881 ** the disk 882 */ 883 set_buffer_uptodate(unbh); 884 885 /* unbh->b_page == NULL in case of DIRECT_IO request, this means 886 buffer will disappear shortly, so it should not be added to 887 */ 888 if (unbh->b_page) { 889 /* we've converted the tail, so we must 890 ** flush unbh before the transaction commits 891 */ 892 reiserfs_add_tail_list(inode, unbh); 893 894 /* mark it dirty now to prevent commit_write from adding 895 ** this buffer to the inode's dirty buffer list 896 */ 897 /* 898 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty(). 899 * It's still atomic, but it sets the page dirty too, 900 * which makes it eligible for writeback at any time by the 901 * VM (which was also the case with __mark_buffer_dirty()) 902 */ 903 mark_buffer_dirty(unbh); 904 } 905 } else { 906 /* append indirect item with holes if needed, when appending 907 pointer to 'block'-th block use block, which is already 908 allocated */ 909 struct cpu_key tmp_key; 910 unp_t unf_single = 0; // We use this in case we need to allocate only 911 // one block which is a fastpath 912 unp_t *un; 913 __u64 max_to_insert = 914 MAX_ITEM_LEN(inode->i_sb->s_blocksize) / 915 UNFM_P_SIZE; 916 __u64 blocks_needed; 917 918 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE, 919 "vs-804: invalid position for append"); 920 /* indirect item has to be appended, set up key of that position */ 921 make_cpu_key(&tmp_key, inode, 922 le_key_k_offset(version, 923 &(ih->ih_key)) + 924 op_bytes_number(ih, 925 inode->i_sb->s_blocksize), 926 //pos_in_item * inode->i_sb->s_blocksize, 927 TYPE_INDIRECT, 3); // key type is unimportant 928 929 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key), 930 "green-805: invalid offset"); 931 blocks_needed = 932 1 + 933 ((cpu_key_k_offset(&key) - 934 cpu_key_k_offset(&tmp_key)) >> inode->i_sb-> 935 s_blocksize_bits); 936 937 if (blocks_needed == 1) { 938 un = &unf_single; 939 } else { 940 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS); 941 if (!un) { 942 un = &unf_single; 943 blocks_needed = 1; 944 max_to_insert = 0; 945 } 946 } 947 if (blocks_needed <= max_to_insert) { 948 /* we are going to add target block to the file. Use allocated 949 block for that */ 950 un[blocks_needed - 1] = 951 cpu_to_le32(allocated_block_nr); 952 set_block_dev_mapped(bh_result, 953 allocated_block_nr, inode); 954 set_buffer_new(bh_result); 955 done = 1; 956 } else { 957 /* paste hole to the indirect item */ 958 /* If kmalloc failed, max_to_insert becomes zero and it means we 959 only have space for one block */ 960 blocks_needed = 961 max_to_insert ? max_to_insert : 1; 962 } 963 retval = 964 reiserfs_paste_into_item(th, &path, &tmp_key, inode, 965 (char *)un, 966 UNFM_P_SIZE * 967 blocks_needed); 968 969 if (blocks_needed != 1) 970 kfree(un); 971 972 if (retval) { 973 reiserfs_free_block(th, inode, 974 allocated_block_nr, 1); 975 goto failure; 976 } 977 if (!done) { 978 /* We need to mark new file size in case this function will be 979 interrupted/aborted later on. And we may do this only for 980 holes. */ 981 inode->i_size += 982 inode->i_sb->s_blocksize * blocks_needed; 983 } 984 } 985 986 if (done == 1) 987 break; 988 989 /* this loop could log more blocks than we had originally asked 990 ** for. So, we have to allow the transaction to end if it is 991 ** too big or too full. Update the inode so things are 992 ** consistent if we crash before the function returns 993 ** 994 ** release the path so that anybody waiting on the path before 995 ** ending their transaction will be able to continue. 996 */ 997 if (journal_transaction_should_end(th, th->t_blocks_allocated)) { 998 retval = restart_transaction(th, inode, &path); 999 if (retval) 1000 goto failure; 1001 } 1002 /* 1003 * inserting indirect pointers for a hole can take a 1004 * long time. reschedule if needed and also release the write 1005 * lock for others. 1006 */ 1007 if (need_resched()) { 1008 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 1009 schedule(); 1010 lock_depth = reiserfs_write_lock_once(inode->i_sb); 1011 } 1012 1013 retval = search_for_position_by_key(inode->i_sb, &key, &path); 1014 if (retval == IO_ERROR) { 1015 retval = -EIO; 1016 goto failure; 1017 } 1018 if (retval == POSITION_FOUND) { 1019 reiserfs_warning(inode->i_sb, "vs-825", 1020 "%K should not be found", &key); 1021 retval = -EEXIST; 1022 if (allocated_block_nr) 1023 reiserfs_free_block(th, inode, 1024 allocated_block_nr, 1); 1025 pathrelse(&path); 1026 goto failure; 1027 } 1028 bh = get_last_bh(&path); 1029 ih = get_ih(&path); 1030 item = get_item(&path); 1031 pos_in_item = path.pos_in_item; 1032 } while (1); 1033 1034 retval = 0; 1035 1036 failure: 1037 if (th && (!dangle || (retval && !th->t_trans_id))) { 1038 int err; 1039 if (th->t_trans_id) 1040 reiserfs_update_sd(th, inode); 1041 err = reiserfs_end_persistent_transaction(th); 1042 if (err) 1043 retval = err; 1044 } 1045 1046 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 1047 reiserfs_check_path(&path); 1048 return retval; 1049} 1050 1051static int 1052reiserfs_readpages(struct file *file, struct address_space *mapping, 1053 struct list_head *pages, unsigned nr_pages) 1054{ 1055 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block); 1056} 1057 1058/* Compute real number of used bytes by file 1059 * Following three functions can go away when we'll have enough space in stat item 1060 */ 1061static int real_space_diff(struct inode *inode, int sd_size) 1062{ 1063 int bytes; 1064 loff_t blocksize = inode->i_sb->s_blocksize; 1065 1066 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) 1067 return sd_size; 1068 1069 /* End of file is also in full block with indirect reference, so round 1070 ** up to the next block. 1071 ** 1072 ** there is just no way to know if the tail is actually packed 1073 ** on the file, so we have to assume it isn't. When we pack the 1074 ** tail, we add 4 bytes to pretend there really is an unformatted 1075 ** node pointer 1076 */ 1077 bytes = 1078 ((inode->i_size + 1079 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE + 1080 sd_size; 1081 return bytes; 1082} 1083 1084static inline loff_t to_real_used_space(struct inode *inode, ulong blocks, 1085 int sd_size) 1086{ 1087 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1088 return inode->i_size + 1089 (loff_t) (real_space_diff(inode, sd_size)); 1090 } 1091 return ((loff_t) real_space_diff(inode, sd_size)) + 1092 (((loff_t) blocks) << 9); 1093} 1094 1095/* Compute number of blocks used by file in ReiserFS counting */ 1096static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size) 1097{ 1098 loff_t bytes = inode_get_bytes(inode); 1099 loff_t real_space = real_space_diff(inode, sd_size); 1100 1101 /* keeps fsck and non-quota versions of reiserfs happy */ 1102 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1103 bytes += (loff_t) 511; 1104 } 1105 1106 /* files from before the quota patch might i_blocks such that 1107 ** bytes < real_space. Deal with that here to prevent it from 1108 ** going negative. 1109 */ 1110 if (bytes < real_space) 1111 return 0; 1112 return (bytes - real_space) >> 9; 1113} 1114 1115// 1116// BAD: new directories have stat data of new type and all other items 1117// of old type. Version stored in the inode says about body items, so 1118// in update_stat_data we can not rely on inode, but have to check 1119// item version directly 1120// 1121 1122// called by read_locked_inode 1123static void init_inode(struct inode *inode, struct treepath *path) 1124{ 1125 struct buffer_head *bh; 1126 struct item_head *ih; 1127 __u32 rdev; 1128 //int version = ITEM_VERSION_1; 1129 1130 bh = PATH_PLAST_BUFFER(path); 1131 ih = PATH_PITEM_HEAD(path); 1132 1133 copy_key(INODE_PKEY(inode), &(ih->ih_key)); 1134 1135 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list)); 1136 REISERFS_I(inode)->i_flags = 0; 1137 REISERFS_I(inode)->i_prealloc_block = 0; 1138 REISERFS_I(inode)->i_prealloc_count = 0; 1139 REISERFS_I(inode)->i_trans_id = 0; 1140 REISERFS_I(inode)->i_jl = NULL; 1141 reiserfs_init_xattr_rwsem(inode); 1142 1143 if (stat_data_v1(ih)) { 1144 struct stat_data_v1 *sd = 1145 (struct stat_data_v1 *)B_I_PITEM(bh, ih); 1146 unsigned long blocks; 1147 1148 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1149 set_inode_sd_version(inode, STAT_DATA_V1); 1150 inode->i_mode = sd_v1_mode(sd); 1151 inode->i_nlink = sd_v1_nlink(sd); 1152 inode->i_uid = sd_v1_uid(sd); 1153 inode->i_gid = sd_v1_gid(sd); 1154 inode->i_size = sd_v1_size(sd); 1155 inode->i_atime.tv_sec = sd_v1_atime(sd); 1156 inode->i_mtime.tv_sec = sd_v1_mtime(sd); 1157 inode->i_ctime.tv_sec = sd_v1_ctime(sd); 1158 inode->i_atime.tv_nsec = 0; 1159 inode->i_ctime.tv_nsec = 0; 1160 inode->i_mtime.tv_nsec = 0; 1161 1162 inode->i_blocks = sd_v1_blocks(sd); 1163 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1164 blocks = (inode->i_size + 511) >> 9; 1165 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9); 1166 if (inode->i_blocks > blocks) { 1167 // there was a bug in <=3.5.23 when i_blocks could take negative 1168 // values. Starting from 3.5.17 this value could even be stored in 1169 // stat data. For such files we set i_blocks based on file 1170 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be 1171 // only updated if file's inode will ever change 1172 inode->i_blocks = blocks; 1173 } 1174 1175 rdev = sd_v1_rdev(sd); 1176 REISERFS_I(inode)->i_first_direct_byte = 1177 sd_v1_first_direct_byte(sd); 1178 /* an early bug in the quota code can give us an odd number for the 1179 ** block count. This is incorrect, fix it here. 1180 */ 1181 if (inode->i_blocks & 1) { 1182 inode->i_blocks++; 1183 } 1184 inode_set_bytes(inode, 1185 to_real_used_space(inode, inode->i_blocks, 1186 SD_V1_SIZE)); 1187 /* nopack is initially zero for v1 objects. For v2 objects, 1188 nopack is initialised from sd_attrs */ 1189 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 1190 } else { 1191 // new stat data found, but object may have old items 1192 // (directories and symlinks) 1193 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih); 1194 1195 inode->i_mode = sd_v2_mode(sd); 1196 inode->i_nlink = sd_v2_nlink(sd); 1197 inode->i_uid = sd_v2_uid(sd); 1198 inode->i_size = sd_v2_size(sd); 1199 inode->i_gid = sd_v2_gid(sd); 1200 inode->i_mtime.tv_sec = sd_v2_mtime(sd); 1201 inode->i_atime.tv_sec = sd_v2_atime(sd); 1202 inode->i_ctime.tv_sec = sd_v2_ctime(sd); 1203 inode->i_ctime.tv_nsec = 0; 1204 inode->i_mtime.tv_nsec = 0; 1205 inode->i_atime.tv_nsec = 0; 1206 inode->i_blocks = sd_v2_blocks(sd); 1207 rdev = sd_v2_rdev(sd); 1208 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1209 inode->i_generation = 1210 le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1211 else 1212 inode->i_generation = sd_v2_generation(sd); 1213 1214 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1215 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1216 else 1217 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1218 REISERFS_I(inode)->i_first_direct_byte = 0; 1219 set_inode_sd_version(inode, STAT_DATA_V2); 1220 inode_set_bytes(inode, 1221 to_real_used_space(inode, inode->i_blocks, 1222 SD_V2_SIZE)); 1223 /* read persistent inode attributes from sd and initalise 1224 generic inode flags from them */ 1225 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd); 1226 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode); 1227 } 1228 1229 pathrelse(path); 1230 if (S_ISREG(inode->i_mode)) { 1231 inode->i_op = &reiserfs_file_inode_operations; 1232 inode->i_fop = &reiserfs_file_operations; 1233 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1234 } else if (S_ISDIR(inode->i_mode)) { 1235 inode->i_op = &reiserfs_dir_inode_operations; 1236 inode->i_fop = &reiserfs_dir_operations; 1237 } else if (S_ISLNK(inode->i_mode)) { 1238 inode->i_op = &reiserfs_symlink_inode_operations; 1239 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1240 } else { 1241 inode->i_blocks = 0; 1242 inode->i_op = &reiserfs_special_inode_operations; 1243 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev)); 1244 } 1245} 1246 1247// update new stat data with inode fields 1248static void inode2sd(void *sd, struct inode *inode, loff_t size) 1249{ 1250 struct stat_data *sd_v2 = (struct stat_data *)sd; 1251 __u16 flags; 1252 1253 set_sd_v2_mode(sd_v2, inode->i_mode); 1254 set_sd_v2_nlink(sd_v2, inode->i_nlink); 1255 set_sd_v2_uid(sd_v2, inode->i_uid); 1256 set_sd_v2_size(sd_v2, size); 1257 set_sd_v2_gid(sd_v2, inode->i_gid); 1258 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec); 1259 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec); 1260 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec); 1261 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE)); 1262 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1263 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev)); 1264 else 1265 set_sd_v2_generation(sd_v2, inode->i_generation); 1266 flags = REISERFS_I(inode)->i_attrs; 1267 i_attrs_to_sd_attrs(inode, &flags); 1268 set_sd_v2_attrs(sd_v2, flags); 1269} 1270 1271// used to copy inode's fields to old stat data 1272static void inode2sd_v1(void *sd, struct inode *inode, loff_t size) 1273{ 1274 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd; 1275 1276 set_sd_v1_mode(sd_v1, inode->i_mode); 1277 set_sd_v1_uid(sd_v1, inode->i_uid); 1278 set_sd_v1_gid(sd_v1, inode->i_gid); 1279 set_sd_v1_nlink(sd_v1, inode->i_nlink); 1280 set_sd_v1_size(sd_v1, size); 1281 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec); 1282 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec); 1283 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec); 1284 1285 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1286 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev)); 1287 else 1288 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE)); 1289 1290 // Sigh. i_first_direct_byte is back 1291 set_sd_v1_first_direct_byte(sd_v1, 1292 REISERFS_I(inode)->i_first_direct_byte); 1293} 1294 1295/* NOTE, you must prepare the buffer head before sending it here, 1296** and then log it after the call 1297*/ 1298static void update_stat_data(struct treepath *path, struct inode *inode, 1299 loff_t size) 1300{ 1301 struct buffer_head *bh; 1302 struct item_head *ih; 1303 1304 bh = PATH_PLAST_BUFFER(path); 1305 ih = PATH_PITEM_HEAD(path); 1306 1307 if (!is_statdata_le_ih(ih)) 1308 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h", 1309 INODE_PKEY(inode), ih); 1310 1311 if (stat_data_v1(ih)) { 1312 // path points to old stat data 1313 inode2sd_v1(B_I_PITEM(bh, ih), inode, size); 1314 } else { 1315 inode2sd(B_I_PITEM(bh, ih), inode, size); 1316 } 1317 1318 return; 1319} 1320 1321void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 1322 struct inode *inode, loff_t size) 1323{ 1324 struct cpu_key key; 1325 INITIALIZE_PATH(path); 1326 struct buffer_head *bh; 1327 int fs_gen; 1328 struct item_head *ih, tmp_ih; 1329 int retval; 1330 1331 BUG_ON(!th->t_trans_id); 1332 1333 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant 1334 1335 for (;;) { 1336 int pos; 1337 /* look for the object's stat data */ 1338 retval = search_item(inode->i_sb, &key, &path); 1339 if (retval == IO_ERROR) { 1340 reiserfs_error(inode->i_sb, "vs-13050", 1341 "i/o failure occurred trying to " 1342 "update %K stat data", &key); 1343 return; 1344 } 1345 if (retval == ITEM_NOT_FOUND) { 1346 pos = PATH_LAST_POSITION(&path); 1347 pathrelse(&path); 1348 if (inode->i_nlink == 0) { 1349 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */ 1350 return; 1351 } 1352 reiserfs_warning(inode->i_sb, "vs-13060", 1353 "stat data of object %k (nlink == %d) " 1354 "not found (pos %d)", 1355 INODE_PKEY(inode), inode->i_nlink, 1356 pos); 1357 reiserfs_check_path(&path); 1358 return; 1359 } 1360 1361 /* sigh, prepare_for_journal might schedule. When it schedules the 1362 ** FS might change. We have to detect that, and loop back to the 1363 ** search if the stat data item has moved 1364 */ 1365 bh = get_last_bh(&path); 1366 ih = get_ih(&path); 1367 copy_item_head(&tmp_ih, ih); 1368 fs_gen = get_generation(inode->i_sb); 1369 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 1370 if (fs_changed(fs_gen, inode->i_sb) 1371 && item_moved(&tmp_ih, &path)) { 1372 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 1373 continue; /* Stat_data item has been moved after scheduling. */ 1374 } 1375 break; 1376 } 1377 update_stat_data(&path, inode, size); 1378 journal_mark_dirty(th, th->t_super, bh); 1379 pathrelse(&path); 1380 return; 1381} 1382 1383/* reiserfs_read_locked_inode is called to read the inode off disk, and it 1384** does a make_bad_inode when things go wrong. But, we need to make sure 1385** and clear the key in the private portion of the inode, otherwise a 1386** corresponding iput might try to delete whatever object the inode last 1387** represented. 1388*/ 1389static void reiserfs_make_bad_inode(struct inode *inode) 1390{ 1391 memset(INODE_PKEY(inode), 0, KEY_SIZE); 1392 make_bad_inode(inode); 1393} 1394 1395// 1396// initially this function was derived from minix or ext2's analog and 1397// evolved as the prototype did 1398// 1399 1400int reiserfs_init_locked_inode(struct inode *inode, void *p) 1401{ 1402 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p; 1403 inode->i_ino = args->objectid; 1404 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid); 1405 return 0; 1406} 1407 1408/* looks for stat data in the tree, and fills up the fields of in-core 1409 inode stat data fields */ 1410void reiserfs_read_locked_inode(struct inode *inode, 1411 struct reiserfs_iget_args *args) 1412{ 1413 INITIALIZE_PATH(path_to_sd); 1414 struct cpu_key key; 1415 unsigned long dirino; 1416 int retval; 1417 1418 dirino = args->dirid; 1419 1420 /* set version 1, version 2 could be used too, because stat data 1421 key is the same in both versions */ 1422 key.version = KEY_FORMAT_3_5; 1423 key.on_disk_key.k_dir_id = dirino; 1424 key.on_disk_key.k_objectid = inode->i_ino; 1425 key.on_disk_key.k_offset = 0; 1426 key.on_disk_key.k_type = 0; 1427 1428 /* look for the object's stat data */ 1429 retval = search_item(inode->i_sb, &key, &path_to_sd); 1430 if (retval == IO_ERROR) { 1431 reiserfs_error(inode->i_sb, "vs-13070", 1432 "i/o failure occurred trying to find " 1433 "stat data of %K", &key); 1434 reiserfs_make_bad_inode(inode); 1435 return; 1436 } 1437 if (retval != ITEM_FOUND) { 1438 /* a stale NFS handle can trigger this without it being an error */ 1439 pathrelse(&path_to_sd); 1440 reiserfs_make_bad_inode(inode); 1441 inode->i_nlink = 0; 1442 return; 1443 } 1444 1445 init_inode(inode, &path_to_sd); 1446 1447 /* It is possible that knfsd is trying to access inode of a file 1448 that is being removed from the disk by some other thread. As we 1449 update sd on unlink all that is required is to check for nlink 1450 here. This bug was first found by Sizif when debugging 1451 SquidNG/Butterfly, forgotten, and found again after Philippe 1452 Gramoulle <philippe.gramoulle@mmania.com> reproduced it. 1453 1454 More logical fix would require changes in fs/inode.c:iput() to 1455 remove inode from hash-table _after_ fs cleaned disk stuff up and 1456 in iget() to return NULL if I_FREEING inode is found in 1457 hash-table. */ 1458 /* Currently there is one place where it's ok to meet inode with 1459 nlink==0: processing of open-unlinked and half-truncated files 1460 during mount (fs/reiserfs/super.c:finish_unfinished()). */ 1461 if ((inode->i_nlink == 0) && 1462 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) { 1463 reiserfs_warning(inode->i_sb, "vs-13075", 1464 "dead inode read from disk %K. " 1465 "This is likely to be race with knfsd. Ignore", 1466 &key); 1467 reiserfs_make_bad_inode(inode); 1468 } 1469 1470 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */ 1471 1472} 1473 1474/** 1475 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked(). 1476 * 1477 * @inode: inode from hash table to check 1478 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args. 1479 * 1480 * This function is called by iget5_locked() to distinguish reiserfs inodes 1481 * having the same inode numbers. Such inodes can only exist due to some 1482 * error condition. One of them should be bad. Inodes with identical 1483 * inode numbers (objectids) are distinguished by parent directory ids. 1484 * 1485 */ 1486int reiserfs_find_actor(struct inode *inode, void *opaque) 1487{ 1488 struct reiserfs_iget_args *args; 1489 1490 args = opaque; 1491 /* args is already in CPU order */ 1492 return (inode->i_ino == args->objectid) && 1493 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid); 1494} 1495 1496struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key) 1497{ 1498 struct inode *inode; 1499 struct reiserfs_iget_args args; 1500 1501 args.objectid = key->on_disk_key.k_objectid; 1502 args.dirid = key->on_disk_key.k_dir_id; 1503 reiserfs_write_unlock(s); 1504 inode = iget5_locked(s, key->on_disk_key.k_objectid, 1505 reiserfs_find_actor, reiserfs_init_locked_inode, 1506 (void *)(&args)); 1507 reiserfs_write_lock(s); 1508 if (!inode) 1509 return ERR_PTR(-ENOMEM); 1510 1511 if (inode->i_state & I_NEW) { 1512 reiserfs_read_locked_inode(inode, &args); 1513 unlock_new_inode(inode); 1514 } 1515 1516 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) { 1517 /* either due to i/o error or a stale NFS handle */ 1518 iput(inode); 1519 inode = NULL; 1520 } 1521 return inode; 1522} 1523 1524static struct dentry *reiserfs_get_dentry(struct super_block *sb, 1525 u32 objectid, u32 dir_id, u32 generation) 1526 1527{ 1528 struct cpu_key key; 1529 struct inode *inode; 1530 1531 key.on_disk_key.k_objectid = objectid; 1532 key.on_disk_key.k_dir_id = dir_id; 1533 reiserfs_write_lock(sb); 1534 inode = reiserfs_iget(sb, &key); 1535 if (inode && !IS_ERR(inode) && generation != 0 && 1536 generation != inode->i_generation) { 1537 iput(inode); 1538 inode = NULL; 1539 } 1540 reiserfs_write_unlock(sb); 1541 1542 return d_obtain_alias(inode); 1543} 1544 1545struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1546 int fh_len, int fh_type) 1547{ 1548 /* fhtype happens to reflect the number of u32s encoded. 1549 * due to a bug in earlier code, fhtype might indicate there 1550 * are more u32s then actually fitted. 1551 * so if fhtype seems to be more than len, reduce fhtype. 1552 * Valid types are: 1553 * 2 - objectid + dir_id - legacy support 1554 * 3 - objectid + dir_id + generation 1555 * 4 - objectid + dir_id + objectid and dirid of parent - legacy 1556 * 5 - objectid + dir_id + generation + objectid and dirid of parent 1557 * 6 - as above plus generation of directory 1558 * 6 does not fit in NFSv2 handles 1559 */ 1560 if (fh_type > fh_len) { 1561 if (fh_type != 6 || fh_len != 5) 1562 reiserfs_warning(sb, "reiserfs-13077", 1563 "nfsd/reiserfs, fhtype=%d, len=%d - odd", 1564 fh_type, fh_len); 1565 fh_type = 5; 1566 } 1567 1568 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1], 1569 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0); 1570} 1571 1572struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, 1573 int fh_len, int fh_type) 1574{ 1575 if (fh_type < 4) 1576 return NULL; 1577 1578 return reiserfs_get_dentry(sb, 1579 (fh_type >= 5) ? fid->raw[3] : fid->raw[2], 1580 (fh_type >= 5) ? fid->raw[4] : fid->raw[3], 1581 (fh_type == 6) ? fid->raw[5] : 0); 1582} 1583 1584int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp, 1585 int need_parent) 1586{ 1587 struct inode *inode = dentry->d_inode; 1588 int maxlen = *lenp; 1589 1590 if (maxlen < 3) 1591 return 255; 1592 1593 data[0] = inode->i_ino; 1594 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1595 data[2] = inode->i_generation; 1596 *lenp = 3; 1597 /* no room for directory info? return what we've stored so far */ 1598 if (maxlen < 5 || !need_parent) 1599 return 3; 1600 1601 spin_lock(&dentry->d_lock); 1602 inode = dentry->d_parent->d_inode; 1603 data[3] = inode->i_ino; 1604 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1605 *lenp = 5; 1606 if (maxlen >= 6) { 1607 data[5] = inode->i_generation; 1608 *lenp = 6; 1609 } 1610 spin_unlock(&dentry->d_lock); 1611 return *lenp; 1612} 1613 1614/* looks for stat data, then copies fields to it, marks the buffer 1615 containing stat data as dirty */ 1616/* reiserfs inodes are never really dirty, since the dirty inode call 1617** always logs them. This call allows the VFS inode marking routines 1618** to properly mark inodes for datasync and such, but only actually 1619** does something when called for a synchronous update. 1620*/ 1621int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1622{ 1623 struct reiserfs_transaction_handle th; 1624 int jbegin_count = 1; 1625 1626 if (inode->i_sb->s_flags & MS_RDONLY) 1627 return -EROFS; 1628 /* memory pressure can sometimes initiate write_inode calls with sync == 1, 1629 ** these cases are just when the system needs ram, not when the 1630 ** inode needs to reach disk for safety, and they can safely be 1631 ** ignored because the altered inode has already been logged. 1632 */ 1633 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) { 1634 reiserfs_write_lock(inode->i_sb); 1635 if (!journal_begin(&th, inode->i_sb, jbegin_count)) { 1636 reiserfs_update_sd(&th, inode); 1637 journal_end_sync(&th, inode->i_sb, jbegin_count); 1638 } 1639 reiserfs_write_unlock(inode->i_sb); 1640 } 1641 return 0; 1642} 1643 1644/* stat data of new object is inserted already, this inserts the item 1645 containing "." and ".." entries */ 1646static int reiserfs_new_directory(struct reiserfs_transaction_handle *th, 1647 struct inode *inode, 1648 struct item_head *ih, struct treepath *path, 1649 struct inode *dir) 1650{ 1651 struct super_block *sb = th->t_super; 1652 char empty_dir[EMPTY_DIR_SIZE]; 1653 char *body = empty_dir; 1654 struct cpu_key key; 1655 int retval; 1656 1657 BUG_ON(!th->t_trans_id); 1658 1659 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id), 1660 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET, 1661 TYPE_DIRENTRY, 3 /*key length */ ); 1662 1663 /* compose item head for new item. Directories consist of items of 1664 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it 1665 is done by reiserfs_new_inode */ 1666 if (old_format_only(sb)) { 1667 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1668 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2); 1669 1670 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id, 1671 ih->ih_key.k_objectid, 1672 INODE_PKEY(dir)->k_dir_id, 1673 INODE_PKEY(dir)->k_objectid); 1674 } else { 1675 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1676 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2); 1677 1678 make_empty_dir_item(body, ih->ih_key.k_dir_id, 1679 ih->ih_key.k_objectid, 1680 INODE_PKEY(dir)->k_dir_id, 1681 INODE_PKEY(dir)->k_objectid); 1682 } 1683 1684 /* look for place in the tree for new item */ 1685 retval = search_item(sb, &key, path); 1686 if (retval == IO_ERROR) { 1687 reiserfs_error(sb, "vs-13080", 1688 "i/o failure occurred creating new directory"); 1689 return -EIO; 1690 } 1691 if (retval == ITEM_FOUND) { 1692 pathrelse(path); 1693 reiserfs_warning(sb, "vs-13070", 1694 "object with this key exists (%k)", 1695 &(ih->ih_key)); 1696 return -EEXIST; 1697 } 1698 1699 /* insert item, that is empty directory item */ 1700 return reiserfs_insert_item(th, path, &key, ih, inode, body); 1701} 1702 1703/* stat data of object has been inserted, this inserts the item 1704 containing the body of symlink */ 1705static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */ 1706 struct item_head *ih, 1707 struct treepath *path, const char *symname, 1708 int item_len) 1709{ 1710 struct super_block *sb = th->t_super; 1711 struct cpu_key key; 1712 int retval; 1713 1714 BUG_ON(!th->t_trans_id); 1715 1716 _make_cpu_key(&key, KEY_FORMAT_3_5, 1717 le32_to_cpu(ih->ih_key.k_dir_id), 1718 le32_to_cpu(ih->ih_key.k_objectid), 1719 1, TYPE_DIRECT, 3 /*key length */ ); 1720 1721 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len, 1722 0 /*free_space */ ); 1723 1724 /* look for place in the tree for new item */ 1725 retval = search_item(sb, &key, path); 1726 if (retval == IO_ERROR) { 1727 reiserfs_error(sb, "vs-13080", 1728 "i/o failure occurred creating new symlink"); 1729 return -EIO; 1730 } 1731 if (retval == ITEM_FOUND) { 1732 pathrelse(path); 1733 reiserfs_warning(sb, "vs-13080", 1734 "object with this key exists (%k)", 1735 &(ih->ih_key)); 1736 return -EEXIST; 1737 } 1738 1739 /* insert item, that is body of symlink */ 1740 return reiserfs_insert_item(th, path, &key, ih, inode, symname); 1741} 1742 1743/* inserts the stat data into the tree, and then calls 1744 reiserfs_new_directory (to insert ".", ".." item if new object is 1745 directory) or reiserfs_new_symlink (to insert symlink body if new 1746 object is symlink) or nothing (if new object is regular file) 1747 1748 NOTE! uid and gid must already be set in the inode. If we return 1749 non-zero due to an error, we have to drop the quota previously allocated 1750 for the fresh inode. This can only be done outside a transaction, so 1751 if we return non-zero, we also end the transaction. */ 1752int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 1753 struct inode *dir, int mode, const char *symname, 1754 /* 0 for regular, EMTRY_DIR_SIZE for dirs, 1755 strlen (symname) for symlinks) */ 1756 loff_t i_size, struct dentry *dentry, 1757 struct inode *inode, 1758 struct reiserfs_security_handle *security) 1759{ 1760 struct super_block *sb; 1761 struct reiserfs_iget_args args; 1762 INITIALIZE_PATH(path_to_key); 1763 struct cpu_key key; 1764 struct item_head ih; 1765 struct stat_data sd; 1766 int retval; 1767 int err; 1768 1769 BUG_ON(!th->t_trans_id); 1770 1771 dquot_initialize(inode); 1772 err = dquot_alloc_inode(inode); 1773 if (err) 1774 goto out_end_trans; 1775 if (!dir->i_nlink) { 1776 err = -EPERM; 1777 goto out_bad_inode; 1778 } 1779 1780 sb = dir->i_sb; 1781 1782 /* item head of new item */ 1783 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir); 1784 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th)); 1785 if (!ih.ih_key.k_objectid) { 1786 err = -ENOMEM; 1787 goto out_bad_inode; 1788 } 1789 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid); 1790 if (old_format_only(sb)) 1791 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET, 1792 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT); 1793 else 1794 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET, 1795 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT); 1796 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE); 1797 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id); 1798 if (insert_inode_locked4(inode, args.objectid, 1799 reiserfs_find_actor, &args) < 0) { 1800 err = -EINVAL; 1801 goto out_bad_inode; 1802 } 1803 if (old_format_only(sb)) 1804 /* not a perfect generation count, as object ids can be reused, but 1805 ** this is as good as reiserfs can do right now. 1806 ** note that the private part of inode isn't filled in yet, we have 1807 ** to use the directory. 1808 */ 1809 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid); 1810 else 1811#if defined( USE_INODE_GENERATION_COUNTER ) 1812 inode->i_generation = 1813 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation); 1814#else 1815 inode->i_generation = ++event; 1816#endif 1817 1818 /* fill stat data */ 1819 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1); 1820 1821 /* uid and gid must already be set by the caller for quota init */ 1822 1823 /* symlink cannot be immutable or append only, right? */ 1824 if (S_ISLNK(inode->i_mode)) 1825 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND); 1826 1827 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC; 1828 inode->i_size = i_size; 1829 inode->i_blocks = 0; 1830 inode->i_bytes = 0; 1831 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 : 1832 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ; 1833 1834 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list)); 1835 REISERFS_I(inode)->i_flags = 0; 1836 REISERFS_I(inode)->i_prealloc_block = 0; 1837 REISERFS_I(inode)->i_prealloc_count = 0; 1838 REISERFS_I(inode)->i_trans_id = 0; 1839 REISERFS_I(inode)->i_jl = NULL; 1840 REISERFS_I(inode)->i_attrs = 1841 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK; 1842 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode); 1843 reiserfs_init_xattr_rwsem(inode); 1844 1845 /* key to search for correct place for new stat data */ 1846 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id), 1847 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET, 1848 TYPE_STAT_DATA, 3 /*key length */ ); 1849 1850 /* find proper place for inserting of stat data */ 1851 retval = search_item(sb, &key, &path_to_key); 1852 if (retval == IO_ERROR) { 1853 err = -EIO; 1854 goto out_bad_inode; 1855 } 1856 if (retval == ITEM_FOUND) { 1857 pathrelse(&path_to_key); 1858 err = -EEXIST; 1859 goto out_bad_inode; 1860 } 1861 if (old_format_only(sb)) { 1862 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) { 1863 pathrelse(&path_to_key); 1864 /* i_uid or i_gid is too big to be stored in stat data v3.5 */ 1865 err = -EINVAL; 1866 goto out_bad_inode; 1867 } 1868 inode2sd_v1(&sd, inode, inode->i_size); 1869 } else { 1870 inode2sd(&sd, inode, inode->i_size); 1871 } 1872 // store in in-core inode the key of stat data and version all 1873 // object items will have (directory items will have old offset 1874 // format, other new objects will consist of new items) 1875 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode)) 1876 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1877 else 1878 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1879 if (old_format_only(sb)) 1880 set_inode_sd_version(inode, STAT_DATA_V1); 1881 else 1882 set_inode_sd_version(inode, STAT_DATA_V2); 1883 1884 /* insert the stat data into the tree */ 1885#ifdef DISPLACE_NEW_PACKING_LOCALITIES 1886 if (REISERFS_I(dir)->new_packing_locality) 1887 th->displace_new_blocks = 1; 1888#endif 1889 retval = 1890 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode, 1891 (char *)(&sd)); 1892 if (retval) { 1893 err = retval; 1894 reiserfs_check_path(&path_to_key); 1895 goto out_bad_inode; 1896 } 1897#ifdef DISPLACE_NEW_PACKING_LOCALITIES 1898 if (!th->displace_new_blocks) 1899 REISERFS_I(dir)->new_packing_locality = 0; 1900#endif 1901 if (S_ISDIR(mode)) { 1902 /* insert item with "." and ".." */ 1903 retval = 1904 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir); 1905 } 1906 1907 if (S_ISLNK(mode)) { 1908 /* insert body of symlink */ 1909 if (!old_format_only(sb)) 1910 i_size = ROUND_UP(i_size); 1911 retval = 1912 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname, 1913 i_size); 1914 } 1915 if (retval) { 1916 err = retval; 1917 reiserfs_check_path(&path_to_key); 1918 journal_end(th, th->t_super, th->t_blocks_allocated); 1919 goto out_inserted_sd; 1920 } 1921 1922 if (reiserfs_posixacl(inode->i_sb)) { 1923 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode); 1924 if (retval) { 1925 err = retval; 1926 reiserfs_check_path(&path_to_key); 1927 journal_end(th, th->t_super, th->t_blocks_allocated); 1928 goto out_inserted_sd; 1929 } 1930 } else if (inode->i_sb->s_flags & MS_POSIXACL) { 1931 reiserfs_warning(inode->i_sb, "jdm-13090", 1932 "ACLs aren't enabled in the fs, " 1933 "but vfs thinks they are!"); 1934 } else if (IS_PRIVATE(dir)) 1935 inode->i_flags |= S_PRIVATE; 1936 1937 if (security->name) { 1938 retval = reiserfs_security_write(th, inode, security); 1939 if (retval) { 1940 err = retval; 1941 reiserfs_check_path(&path_to_key); 1942 retval = journal_end(th, th->t_super, 1943 th->t_blocks_allocated); 1944 if (retval) 1945 err = retval; 1946 goto out_inserted_sd; 1947 } 1948 } 1949 1950 reiserfs_update_sd(th, inode); 1951 reiserfs_check_path(&path_to_key); 1952 1953 return 0; 1954 1955/* it looks like you can easily compress these two goto targets into 1956 * one. Keeping it like this doesn't actually hurt anything, and they 1957 * are place holders for what the quota code actually needs. 1958 */ 1959 out_bad_inode: 1960 /* Invalidate the object, nothing was inserted yet */ 1961 INODE_PKEY(inode)->k_objectid = 0; 1962 1963 /* Quota change must be inside a transaction for journaling */ 1964 dquot_free_inode(inode); 1965 1966 out_end_trans: 1967 journal_end(th, th->t_super, th->t_blocks_allocated); 1968 /* Drop can be outside and it needs more credits so it's better to have it outside */ 1969 dquot_drop(inode); 1970 inode->i_flags |= S_NOQUOTA; 1971 make_bad_inode(inode); 1972 1973 out_inserted_sd: 1974 inode->i_nlink = 0; 1975 th->t_trans_id = 0; /* so the caller can't use this handle later */ 1976 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */ 1977 iput(inode); 1978 return err; 1979} 1980 1981/* 1982** finds the tail page in the page cache, 1983** reads the last block in. 1984** 1985** On success, page_result is set to a locked, pinned page, and bh_result 1986** is set to an up to date buffer for the last block in the file. returns 0. 1987** 1988** tail conversion is not done, so bh_result might not be valid for writing 1989** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before 1990** trying to write the block. 1991** 1992** on failure, nonzero is returned, page_result and bh_result are untouched. 1993*/ 1994static int grab_tail_page(struct inode *inode, 1995 struct page **page_result, 1996 struct buffer_head **bh_result) 1997{ 1998 1999 /* we want the page with the last byte in the file, 2000 ** not the page that will hold the next byte for appending 2001 */ 2002 unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT; 2003 unsigned long pos = 0; 2004 unsigned long start = 0; 2005 unsigned long blocksize = inode->i_sb->s_blocksize; 2006 unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1); 2007 struct buffer_head *bh; 2008 struct buffer_head *head; 2009 struct page *page; 2010 int error; 2011 2012 /* we know that we are only called with inode->i_size > 0. 2013 ** we also know that a file tail can never be as big as a block 2014 ** If i_size % blocksize == 0, our file is currently block aligned 2015 ** and it won't need converting or zeroing after a truncate. 2016 */ 2017 if ((offset & (blocksize - 1)) == 0) { 2018 return -ENOENT; 2019 } 2020 page = grab_cache_page(inode->i_mapping, index); 2021 error = -ENOMEM; 2022 if (!page) { 2023 goto out; 2024 } 2025 /* start within the page of the last block in the file */ 2026 start = (offset / blocksize) * blocksize; 2027 2028 error = block_prepare_write(page, start, offset, 2029 reiserfs_get_block_create_0); 2030 if (error) 2031 goto unlock; 2032 2033 head = page_buffers(page); 2034 bh = head; 2035 do { 2036 if (pos >= start) { 2037 break; 2038 } 2039 bh = bh->b_this_page; 2040 pos += blocksize; 2041 } while (bh != head); 2042 2043 if (!buffer_uptodate(bh)) { 2044 /* note, this should never happen, prepare_write should 2045 ** be taking care of this for us. If the buffer isn't up to date, 2046 ** I've screwed up the code to find the buffer, or the code to 2047 ** call prepare_write 2048 */ 2049 reiserfs_error(inode->i_sb, "clm-6000", 2050 "error reading block %lu", bh->b_blocknr); 2051 error = -EIO; 2052 goto unlock; 2053 } 2054 *bh_result = bh; 2055 *page_result = page; 2056 2057 out: 2058 return error; 2059 2060 unlock: 2061 unlock_page(page); 2062 page_cache_release(page); 2063 return error; 2064} 2065 2066/* 2067** vfs version of truncate file. Must NOT be called with 2068** a transaction already started. 2069** 2070** some code taken from block_truncate_page 2071*/ 2072int reiserfs_truncate_file(struct inode *inode, int update_timestamps) 2073{ 2074 struct reiserfs_transaction_handle th; 2075 /* we want the offset for the first byte after the end of the file */ 2076 unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 2077 unsigned blocksize = inode->i_sb->s_blocksize; 2078 unsigned length; 2079 struct page *page = NULL; 2080 int error; 2081 struct buffer_head *bh = NULL; 2082 int err2; 2083 int lock_depth; 2084 2085 lock_depth = reiserfs_write_lock_once(inode->i_sb); 2086 2087 if (inode->i_size > 0) { 2088 error = grab_tail_page(inode, &page, &bh); 2089 if (error) { 2090 // -ENOENT means we truncated past the end of the file, 2091 // and get_block_create_0 could not find a block to read in, 2092 // which is ok. 2093 if (error != -ENOENT) 2094 reiserfs_error(inode->i_sb, "clm-6001", 2095 "grab_tail_page failed %d", 2096 error); 2097 page = NULL; 2098 bh = NULL; 2099 } 2100 } 2101 2102 /* so, if page != NULL, we have a buffer head for the offset at 2103 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0, 2104 ** then we have an unformatted node. Otherwise, we have a direct item, 2105 ** and no zeroing is required on disk. We zero after the truncate, 2106 ** because the truncate might pack the item anyway 2107 ** (it will unmap bh if it packs). 2108 */ 2109 /* it is enough to reserve space in transaction for 2 balancings: 2110 one for "save" link adding and another for the first 2111 cut_from_item. 1 is for update_sd */ 2112 error = journal_begin(&th, inode->i_sb, 2113 JOURNAL_PER_BALANCE_CNT * 2 + 1); 2114 if (error) 2115 goto out; 2116 reiserfs_update_inode_transaction(inode); 2117 if (update_timestamps) 2118 /* we are doing real truncate: if the system crashes before the last 2119 transaction of truncating gets committed - on reboot the file 2120 either appears truncated properly or not truncated at all */ 2121 add_save_link(&th, inode, 1); 2122 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps); 2123 error = 2124 journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1); 2125 if (error) 2126 goto out; 2127 2128 /* check reiserfs_do_truncate after ending the transaction */ 2129 if (err2) { 2130 error = err2; 2131 goto out; 2132 } 2133 2134 if (update_timestamps) { 2135 error = remove_save_link(inode, 1 /* truncate */); 2136 if (error) 2137 goto out; 2138 } 2139 2140 if (page) { 2141 length = offset & (blocksize - 1); 2142 /* if we are not on a block boundary */ 2143 if (length) { 2144 length = blocksize - length; 2145 zero_user(page, offset, length); 2146 if (buffer_mapped(bh) && bh->b_blocknr != 0) { 2147 mark_buffer_dirty(bh); 2148 } 2149 } 2150 unlock_page(page); 2151 page_cache_release(page); 2152 } 2153 2154 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 2155 2156 return 0; 2157 out: 2158 if (page) { 2159 unlock_page(page); 2160 page_cache_release(page); 2161 } 2162 2163 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 2164 2165 return error; 2166} 2167 2168static int map_block_for_writepage(struct inode *inode, 2169 struct buffer_head *bh_result, 2170 unsigned long block) 2171{ 2172 struct reiserfs_transaction_handle th; 2173 int fs_gen; 2174 struct item_head tmp_ih; 2175 struct item_head *ih; 2176 struct buffer_head *bh; 2177 __le32 *item; 2178 struct cpu_key key; 2179 INITIALIZE_PATH(path); 2180 int pos_in_item; 2181 int jbegin_count = JOURNAL_PER_BALANCE_CNT; 2182 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1; 2183 int retval; 2184 int use_get_block = 0; 2185 int bytes_copied = 0; 2186 int copy_size; 2187 int trans_running = 0; 2188 2189 /* catch places below that try to log something without starting a trans */ 2190 th.t_trans_id = 0; 2191 2192 if (!buffer_uptodate(bh_result)) { 2193 return -EIO; 2194 } 2195 2196 kmap(bh_result->b_page); 2197 start_over: 2198 reiserfs_write_lock(inode->i_sb); 2199 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3); 2200 2201 research: 2202 retval = search_for_position_by_key(inode->i_sb, &key, &path); 2203 if (retval != POSITION_FOUND) { 2204 use_get_block = 1; 2205 goto out; 2206 } 2207 2208 bh = get_last_bh(&path); 2209 ih = get_ih(&path); 2210 item = get_item(&path); 2211 pos_in_item = path.pos_in_item; 2212 2213 /* we've found an unformatted node */ 2214 if (indirect_item_found(retval, ih)) { 2215 if (bytes_copied > 0) { 2216 reiserfs_warning(inode->i_sb, "clm-6002", 2217 "bytes_copied %d", bytes_copied); 2218 } 2219 if (!get_block_num(item, pos_in_item)) { 2220 /* crap, we are writing to a hole */ 2221 use_get_block = 1; 2222 goto out; 2223 } 2224 set_block_dev_mapped(bh_result, 2225 get_block_num(item, pos_in_item), inode); 2226 } else if (is_direct_le_ih(ih)) { 2227 char *p; 2228 p = page_address(bh_result->b_page); 2229 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1); 2230 copy_size = ih_item_len(ih) - pos_in_item; 2231 2232 fs_gen = get_generation(inode->i_sb); 2233 copy_item_head(&tmp_ih, ih); 2234 2235 if (!trans_running) { 2236 /* vs-3050 is gone, no need to drop the path */ 2237 retval = journal_begin(&th, inode->i_sb, jbegin_count); 2238 if (retval) 2239 goto out; 2240 reiserfs_update_inode_transaction(inode); 2241 trans_running = 1; 2242 if (fs_changed(fs_gen, inode->i_sb) 2243 && item_moved(&tmp_ih, &path)) { 2244 reiserfs_restore_prepared_buffer(inode->i_sb, 2245 bh); 2246 goto research; 2247 } 2248 } 2249 2250 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 2251 2252 if (fs_changed(fs_gen, inode->i_sb) 2253 && item_moved(&tmp_ih, &path)) { 2254 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 2255 goto research; 2256 } 2257 2258 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied, 2259 copy_size); 2260 2261 journal_mark_dirty(&th, inode->i_sb, bh); 2262 bytes_copied += copy_size; 2263 set_block_dev_mapped(bh_result, 0, inode); 2264 2265 /* are there still bytes left? */ 2266 if (bytes_copied < bh_result->b_size && 2267 (byte_offset + bytes_copied) < inode->i_size) { 2268 set_cpu_key_k_offset(&key, 2269 cpu_key_k_offset(&key) + 2270 copy_size); 2271 goto research; 2272 } 2273 } else { 2274 reiserfs_warning(inode->i_sb, "clm-6003", 2275 "bad item inode %lu", inode->i_ino); 2276 retval = -EIO; 2277 goto out; 2278 } 2279 retval = 0; 2280 2281 out: 2282 pathrelse(&path); 2283 if (trans_running) { 2284 int err = journal_end(&th, inode->i_sb, jbegin_count); 2285 if (err) 2286 retval = err; 2287 trans_running = 0; 2288 } 2289 reiserfs_write_unlock(inode->i_sb); 2290 2291 /* this is where we fill in holes in the file. */ 2292 if (use_get_block) { 2293 retval = reiserfs_get_block(inode, block, bh_result, 2294 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX 2295 | GET_BLOCK_NO_DANGLE); 2296 if (!retval) { 2297 if (!buffer_mapped(bh_result) 2298 || bh_result->b_blocknr == 0) { 2299 /* get_block failed to find a mapped unformatted node. */ 2300 use_get_block = 0; 2301 goto start_over; 2302 } 2303 } 2304 } 2305 kunmap(bh_result->b_page); 2306 2307 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 2308 /* we've copied data from the page into the direct item, so the 2309 * buffer in the page is now clean, mark it to reflect that. 2310 */ 2311 lock_buffer(bh_result); 2312 clear_buffer_dirty(bh_result); 2313 unlock_buffer(bh_result); 2314 } 2315 return retval; 2316} 2317 2318/* 2319 * mason@suse.com: updated in 2.5.54 to follow the same general io 2320 * start/recovery path as __block_write_full_page, along with special 2321 * code to handle reiserfs tails. 2322 */ 2323static int reiserfs_write_full_page(struct page *page, 2324 struct writeback_control *wbc) 2325{ 2326 struct inode *inode = page->mapping->host; 2327 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT; 2328 int error = 0; 2329 unsigned long block; 2330 sector_t last_block; 2331 struct buffer_head *head, *bh; 2332 int partial = 0; 2333 int nr = 0; 2334 int checked = PageChecked(page); 2335 struct reiserfs_transaction_handle th; 2336 struct super_block *s = inode->i_sb; 2337 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize; 2338 th.t_trans_id = 0; 2339 2340 /* no logging allowed when nonblocking or from PF_MEMALLOC */ 2341 if (checked && (current->flags & PF_MEMALLOC)) { 2342 redirty_page_for_writepage(wbc, page); 2343 unlock_page(page); 2344 return 0; 2345 } 2346 2347 /* The page dirty bit is cleared before writepage is called, which 2348 * means we have to tell create_empty_buffers to make dirty buffers 2349 * The page really should be up to date at this point, so tossing 2350 * in the BH_Uptodate is just a sanity check. 2351 */ 2352 if (!page_has_buffers(page)) { 2353 create_empty_buffers(page, s->s_blocksize, 2354 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2355 } 2356 head = page_buffers(page); 2357 2358 /* last page in the file, zero out any contents past the 2359 ** last byte in the file 2360 */ 2361 if (page->index >= end_index) { 2362 unsigned last_offset; 2363 2364 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 2365 /* no file contents in this page */ 2366 if (page->index >= end_index + 1 || !last_offset) { 2367 unlock_page(page); 2368 return 0; 2369 } 2370 zero_user_segment(page, last_offset, PAGE_CACHE_SIZE); 2371 } 2372 bh = head; 2373 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits); 2374 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 2375 /* first map all the buffers, logging any direct items we find */ 2376 do { 2377 if (block > last_block) { 2378 /* 2379 * This can happen when the block size is less than 2380 * the page size. The corresponding bytes in the page 2381 * were zero filled above 2382 */ 2383 clear_buffer_dirty(bh); 2384 set_buffer_uptodate(bh); 2385 } else if ((checked || buffer_dirty(bh)) && 2386 (!buffer_mapped(bh) || (buffer_mapped(bh) 2387 && bh->b_blocknr == 2388 0))) { 2389 /* not mapped yet, or it points to a direct item, search 2390 * the btree for the mapping info, and log any direct 2391 * items found 2392 */ 2393 if ((error = map_block_for_writepage(inode, bh, block))) { 2394 goto fail; 2395 } 2396 } 2397 bh = bh->b_this_page; 2398 block++; 2399 } while (bh != head); 2400 2401 /* 2402 * we start the transaction after map_block_for_writepage, 2403 * because it can create holes in the file (an unbounded operation). 2404 * starting it here, we can make a reliable estimate for how many 2405 * blocks we're going to log 2406 */ 2407 if (checked) { 2408 ClearPageChecked(page); 2409 reiserfs_write_lock(s); 2410 error = journal_begin(&th, s, bh_per_page + 1); 2411 if (error) { 2412 reiserfs_write_unlock(s); 2413 goto fail; 2414 } 2415 reiserfs_update_inode_transaction(inode); 2416 } 2417 /* now go through and lock any dirty buffers on the page */ 2418 do { 2419 get_bh(bh); 2420 if (!buffer_mapped(bh)) 2421 continue; 2422 if (buffer_mapped(bh) && bh->b_blocknr == 0) 2423 continue; 2424 2425 if (checked) { 2426 reiserfs_prepare_for_journal(s, bh, 1); 2427 journal_mark_dirty(&th, s, bh); 2428 continue; 2429 } 2430 /* from this point on, we know the buffer is mapped to a 2431 * real block and not a direct item 2432 */ 2433 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 2434 lock_buffer(bh); 2435 } else { 2436 if (!trylock_buffer(bh)) { 2437 redirty_page_for_writepage(wbc, page); 2438 continue; 2439 } 2440 } 2441 if (test_clear_buffer_dirty(bh)) { 2442 mark_buffer_async_write(bh); 2443 } else { 2444 unlock_buffer(bh); 2445 } 2446 } while ((bh = bh->b_this_page) != head); 2447 2448 if (checked) { 2449 error = journal_end(&th, s, bh_per_page + 1); 2450 reiserfs_write_unlock(s); 2451 if (error) 2452 goto fail; 2453 } 2454 BUG_ON(PageWriteback(page)); 2455 set_page_writeback(page); 2456 unlock_page(page); 2457 2458 /* 2459 * since any buffer might be the only dirty buffer on the page, 2460 * the first submit_bh can bring the page out of writeback. 2461 * be careful with the buffers. 2462 */ 2463 do { 2464 struct buffer_head *next = bh->b_this_page; 2465 if (buffer_async_write(bh)) { 2466 submit_bh(WRITE, bh); 2467 nr++; 2468 } 2469 put_bh(bh); 2470 bh = next; 2471 } while (bh != head); 2472 2473 error = 0; 2474 done: 2475 if (nr == 0) { 2476 /* 2477 * if this page only had a direct item, it is very possible for 2478 * no io to be required without there being an error. Or, 2479 * someone else could have locked them and sent them down the 2480 * pipe without locking the page 2481 */ 2482 bh = head; 2483 do { 2484 if (!buffer_uptodate(bh)) { 2485 partial = 1; 2486 break; 2487 } 2488 bh = bh->b_this_page; 2489 } while (bh != head); 2490 if (!partial) 2491 SetPageUptodate(page); 2492 end_page_writeback(page); 2493 } 2494 return error; 2495 2496 fail: 2497 /* catches various errors, we need to make sure any valid dirty blocks 2498 * get to the media. The page is currently locked and not marked for 2499 * writeback 2500 */ 2501 ClearPageUptodate(page); 2502 bh = head; 2503 do { 2504 get_bh(bh); 2505 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) { 2506 lock_buffer(bh); 2507 mark_buffer_async_write(bh); 2508 } else { 2509 /* 2510 * clear any dirty bits that might have come from getting 2511 * attached to a dirty page 2512 */ 2513 clear_buffer_dirty(bh); 2514 } 2515 bh = bh->b_this_page; 2516 } while (bh != head); 2517 SetPageError(page); 2518 BUG_ON(PageWriteback(page)); 2519 set_page_writeback(page); 2520 unlock_page(page); 2521 do { 2522 struct buffer_head *next = bh->b_this_page; 2523 if (buffer_async_write(bh)) { 2524 clear_buffer_dirty(bh); 2525 submit_bh(WRITE, bh); 2526 nr++; 2527 } 2528 put_bh(bh); 2529 bh = next; 2530 } while (bh != head); 2531 goto done; 2532} 2533 2534static int reiserfs_readpage(struct file *f, struct page *page) 2535{ 2536 return block_read_full_page(page, reiserfs_get_block); 2537} 2538 2539static int reiserfs_writepage(struct page *page, struct writeback_control *wbc) 2540{ 2541 struct inode *inode = page->mapping->host; 2542 reiserfs_wait_on_write_block(inode->i_sb); 2543 return reiserfs_write_full_page(page, wbc); 2544} 2545 2546static void reiserfs_truncate_failed_write(struct inode *inode) 2547{ 2548 truncate_inode_pages(inode->i_mapping, inode->i_size); 2549 reiserfs_truncate_file(inode, 0); 2550} 2551 2552static int reiserfs_write_begin(struct file *file, 2553 struct address_space *mapping, 2554 loff_t pos, unsigned len, unsigned flags, 2555 struct page **pagep, void **fsdata) 2556{ 2557 struct inode *inode; 2558 struct page *page; 2559 pgoff_t index; 2560 int ret; 2561 int old_ref = 0; 2562 2563 inode = mapping->host; 2564 *fsdata = 0; 2565 if (flags & AOP_FLAG_CONT_EXPAND && 2566 (pos & (inode->i_sb->s_blocksize - 1)) == 0) { 2567 pos ++; 2568 *fsdata = (void *)(unsigned long)flags; 2569 } 2570 2571 index = pos >> PAGE_CACHE_SHIFT; 2572 page = grab_cache_page_write_begin(mapping, index, flags); 2573 if (!page) 2574 return -ENOMEM; 2575 *pagep = page; 2576 2577 reiserfs_wait_on_write_block(inode->i_sb); 2578 fix_tail_page_for_writing(page); 2579 if (reiserfs_transaction_running(inode->i_sb)) { 2580 struct reiserfs_transaction_handle *th; 2581 th = (struct reiserfs_transaction_handle *)current-> 2582 journal_info; 2583 BUG_ON(!th->t_refcount); 2584 BUG_ON(!th->t_trans_id); 2585 old_ref = th->t_refcount; 2586 th->t_refcount++; 2587 } 2588 ret = __block_write_begin(page, pos, len, reiserfs_get_block); 2589 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2590 struct reiserfs_transaction_handle *th = current->journal_info; 2591 /* this gets a little ugly. If reiserfs_get_block returned an 2592 * error and left a transacstion running, we've got to close it, 2593 * and we've got to free handle if it was a persistent transaction. 2594 * 2595 * But, if we had nested into an existing transaction, we need 2596 * to just drop the ref count on the handle. 2597 * 2598 * If old_ref == 0, the transaction is from reiserfs_get_block, 2599 * and it was a persistent trans. Otherwise, it was nested above. 2600 */ 2601 if (th->t_refcount > old_ref) { 2602 if (old_ref) 2603 th->t_refcount--; 2604 else { 2605 int err; 2606 reiserfs_write_lock(inode->i_sb); 2607 err = reiserfs_end_persistent_transaction(th); 2608 reiserfs_write_unlock(inode->i_sb); 2609 if (err) 2610 ret = err; 2611 } 2612 } 2613 } 2614 if (ret) { 2615 unlock_page(page); 2616 page_cache_release(page); 2617 /* Truncate allocated blocks */ 2618 reiserfs_truncate_failed_write(inode); 2619 } 2620 return ret; 2621} 2622 2623int reiserfs_prepare_write(struct file *f, struct page *page, 2624 unsigned from, unsigned to) 2625{ 2626 struct inode *inode = page->mapping->host; 2627 int ret; 2628 int old_ref = 0; 2629 2630 reiserfs_write_unlock(inode->i_sb); 2631 reiserfs_wait_on_write_block(inode->i_sb); 2632 reiserfs_write_lock(inode->i_sb); 2633 2634 fix_tail_page_for_writing(page); 2635 if (reiserfs_transaction_running(inode->i_sb)) { 2636 struct reiserfs_transaction_handle *th; 2637 th = (struct reiserfs_transaction_handle *)current-> 2638 journal_info; 2639 BUG_ON(!th->t_refcount); 2640 BUG_ON(!th->t_trans_id); 2641 old_ref = th->t_refcount; 2642 th->t_refcount++; 2643 } 2644 2645 ret = block_prepare_write(page, from, to, reiserfs_get_block); 2646 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2647 struct reiserfs_transaction_handle *th = current->journal_info; 2648 /* this gets a little ugly. If reiserfs_get_block returned an 2649 * error and left a transacstion running, we've got to close it, 2650 * and we've got to free handle if it was a persistent transaction. 2651 * 2652 * But, if we had nested into an existing transaction, we need 2653 * to just drop the ref count on the handle. 2654 * 2655 * If old_ref == 0, the transaction is from reiserfs_get_block, 2656 * and it was a persistent trans. Otherwise, it was nested above. 2657 */ 2658 if (th->t_refcount > old_ref) { 2659 if (old_ref) 2660 th->t_refcount--; 2661 else { 2662 int err; 2663 reiserfs_write_lock(inode->i_sb); 2664 err = reiserfs_end_persistent_transaction(th); 2665 reiserfs_write_unlock(inode->i_sb); 2666 if (err) 2667 ret = err; 2668 } 2669 } 2670 } 2671 return ret; 2672 2673} 2674 2675static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block) 2676{ 2677 return generic_block_bmap(as, block, reiserfs_bmap); 2678} 2679 2680static int reiserfs_write_end(struct file *file, struct address_space *mapping, 2681 loff_t pos, unsigned len, unsigned copied, 2682 struct page *page, void *fsdata) 2683{ 2684 struct inode *inode = page->mapping->host; 2685 int ret = 0; 2686 int update_sd = 0; 2687 struct reiserfs_transaction_handle *th; 2688 unsigned start; 2689 int lock_depth = 0; 2690 bool locked = false; 2691 2692 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND) 2693 pos ++; 2694 2695 reiserfs_wait_on_write_block(inode->i_sb); 2696 if (reiserfs_transaction_running(inode->i_sb)) 2697 th = current->journal_info; 2698 else 2699 th = NULL; 2700 2701 start = pos & (PAGE_CACHE_SIZE - 1); 2702 if (unlikely(copied < len)) { 2703 if (!PageUptodate(page)) 2704 copied = 0; 2705 2706 page_zero_new_buffers(page, start + copied, start + len); 2707 } 2708 flush_dcache_page(page); 2709 2710 reiserfs_commit_page(inode, page, start, start + copied); 2711 2712 /* generic_commit_write does this for us, but does not update the 2713 ** transaction tracking stuff when the size changes. So, we have 2714 ** to do the i_size updates here. 2715 */ 2716 if (pos + copied > inode->i_size) { 2717 struct reiserfs_transaction_handle myth; 2718 lock_depth = reiserfs_write_lock_once(inode->i_sb); 2719 locked = true; 2720 /* If the file have grown beyond the border where it 2721 can have a tail, unmark it as needing a tail 2722 packing */ 2723 if ((have_large_tails(inode->i_sb) 2724 && inode->i_size > i_block_size(inode) * 4) 2725 || (have_small_tails(inode->i_sb) 2726 && inode->i_size > i_block_size(inode))) 2727 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2728 2729 ret = journal_begin(&myth, inode->i_sb, 1); 2730 if (ret) 2731 goto journal_error; 2732 2733 reiserfs_update_inode_transaction(inode); 2734 inode->i_size = pos + copied; 2735 /* 2736 * this will just nest into our transaction. It's important 2737 * to use mark_inode_dirty so the inode gets pushed around on the 2738 * dirty lists, and so that O_SYNC works as expected 2739 */ 2740 mark_inode_dirty(inode); 2741 reiserfs_update_sd(&myth, inode); 2742 update_sd = 1; 2743 ret = journal_end(&myth, inode->i_sb, 1); 2744 if (ret) 2745 goto journal_error; 2746 } 2747 if (th) { 2748 if (!locked) { 2749 lock_depth = reiserfs_write_lock_once(inode->i_sb); 2750 locked = true; 2751 } 2752 if (!update_sd) 2753 mark_inode_dirty(inode); 2754 ret = reiserfs_end_persistent_transaction(th); 2755 if (ret) 2756 goto out; 2757 } 2758 2759 out: 2760 if (locked) 2761 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 2762 unlock_page(page); 2763 page_cache_release(page); 2764 2765 if (pos + len > inode->i_size) 2766 reiserfs_truncate_failed_write(inode); 2767 2768 return ret == 0 ? copied : ret; 2769 2770 journal_error: 2771 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 2772 locked = false; 2773 if (th) { 2774 if (!update_sd) 2775 reiserfs_update_sd(th, inode); 2776 ret = reiserfs_end_persistent_transaction(th); 2777 } 2778 goto out; 2779} 2780 2781int reiserfs_commit_write(struct file *f, struct page *page, 2782 unsigned from, unsigned to) 2783{ 2784 struct inode *inode = page->mapping->host; 2785 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to; 2786 int ret = 0; 2787 int update_sd = 0; 2788 struct reiserfs_transaction_handle *th = NULL; 2789 2790 reiserfs_write_unlock(inode->i_sb); 2791 reiserfs_wait_on_write_block(inode->i_sb); 2792 reiserfs_write_lock(inode->i_sb); 2793 2794 if (reiserfs_transaction_running(inode->i_sb)) { 2795 th = current->journal_info; 2796 } 2797 reiserfs_commit_page(inode, page, from, to); 2798 2799 /* generic_commit_write does this for us, but does not update the 2800 ** transaction tracking stuff when the size changes. So, we have 2801 ** to do the i_size updates here. 2802 */ 2803 if (pos > inode->i_size) { 2804 struct reiserfs_transaction_handle myth; 2805 /* If the file have grown beyond the border where it 2806 can have a tail, unmark it as needing a tail 2807 packing */ 2808 if ((have_large_tails(inode->i_sb) 2809 && inode->i_size > i_block_size(inode) * 4) 2810 || (have_small_tails(inode->i_sb) 2811 && inode->i_size > i_block_size(inode))) 2812 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2813 2814 ret = journal_begin(&myth, inode->i_sb, 1); 2815 if (ret) 2816 goto journal_error; 2817 2818 reiserfs_update_inode_transaction(inode); 2819 inode->i_size = pos; 2820 /* 2821 * this will just nest into our transaction. It's important 2822 * to use mark_inode_dirty so the inode gets pushed around on the 2823 * dirty lists, and so that O_SYNC works as expected 2824 */ 2825 mark_inode_dirty(inode); 2826 reiserfs_update_sd(&myth, inode); 2827 update_sd = 1; 2828 ret = journal_end(&myth, inode->i_sb, 1); 2829 if (ret) 2830 goto journal_error; 2831 } 2832 if (th) { 2833 if (!update_sd) 2834 mark_inode_dirty(inode); 2835 ret = reiserfs_end_persistent_transaction(th); 2836 if (ret) 2837 goto out; 2838 } 2839 2840 out: 2841 return ret; 2842 2843 journal_error: 2844 if (th) { 2845 if (!update_sd) 2846 reiserfs_update_sd(th, inode); 2847 ret = reiserfs_end_persistent_transaction(th); 2848 } 2849 2850 return ret; 2851} 2852 2853void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode) 2854{ 2855 if (reiserfs_attrs(inode->i_sb)) { 2856 if (sd_attrs & REISERFS_SYNC_FL) 2857 inode->i_flags |= S_SYNC; 2858 else 2859 inode->i_flags &= ~S_SYNC; 2860 if (sd_attrs & REISERFS_IMMUTABLE_FL) 2861 inode->i_flags |= S_IMMUTABLE; 2862 else 2863 inode->i_flags &= ~S_IMMUTABLE; 2864 if (sd_attrs & REISERFS_APPEND_FL) 2865 inode->i_flags |= S_APPEND; 2866 else 2867 inode->i_flags &= ~S_APPEND; 2868 if (sd_attrs & REISERFS_NOATIME_FL) 2869 inode->i_flags |= S_NOATIME; 2870 else 2871 inode->i_flags &= ~S_NOATIME; 2872 if (sd_attrs & REISERFS_NOTAIL_FL) 2873 REISERFS_I(inode)->i_flags |= i_nopack_mask; 2874 else 2875 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 2876 } 2877} 2878 2879void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs) 2880{ 2881 if (reiserfs_attrs(inode->i_sb)) { 2882 if (inode->i_flags & S_IMMUTABLE) 2883 *sd_attrs |= REISERFS_IMMUTABLE_FL; 2884 else 2885 *sd_attrs &= ~REISERFS_IMMUTABLE_FL; 2886 if (inode->i_flags & S_SYNC) 2887 *sd_attrs |= REISERFS_SYNC_FL; 2888 else 2889 *sd_attrs &= ~REISERFS_SYNC_FL; 2890 if (inode->i_flags & S_NOATIME) 2891 *sd_attrs |= REISERFS_NOATIME_FL; 2892 else 2893 *sd_attrs &= ~REISERFS_NOATIME_FL; 2894 if (REISERFS_I(inode)->i_flags & i_nopack_mask) 2895 *sd_attrs |= REISERFS_NOTAIL_FL; 2896 else 2897 *sd_attrs &= ~REISERFS_NOTAIL_FL; 2898 } 2899} 2900 2901/* decide if this buffer needs to stay around for data logging or ordered 2902** write purposes 2903*/ 2904static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh) 2905{ 2906 int ret = 1; 2907 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 2908 2909 lock_buffer(bh); 2910 spin_lock(&j->j_dirty_buffers_lock); 2911 if (!buffer_mapped(bh)) { 2912 goto free_jh; 2913 } 2914 /* the page is locked, and the only places that log a data buffer 2915 * also lock the page. 2916 */ 2917 if (reiserfs_file_data_log(inode)) { 2918 /* 2919 * very conservative, leave the buffer pinned if 2920 * anyone might need it. 2921 */ 2922 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) { 2923 ret = 0; 2924 } 2925 } else if (buffer_dirty(bh)) { 2926 struct reiserfs_journal_list *jl; 2927 struct reiserfs_jh *jh = bh->b_private; 2928 2929 /* why is this safe? 2930 * reiserfs_setattr updates i_size in the on disk 2931 * stat data before allowing vmtruncate to be called. 2932 * 2933 * If buffer was put onto the ordered list for this 2934 * transaction, we know for sure either this transaction 2935 * or an older one already has updated i_size on disk, 2936 * and this ordered data won't be referenced in the file 2937 * if we crash. 2938 * 2939 * if the buffer was put onto the ordered list for an older 2940 * transaction, we need to leave it around 2941 */ 2942 if (jh && (jl = jh->jl) 2943 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl) 2944 ret = 0; 2945 } 2946 free_jh: 2947 if (ret && bh->b_private) { 2948 reiserfs_free_jh(bh); 2949 } 2950 spin_unlock(&j->j_dirty_buffers_lock); 2951 unlock_buffer(bh); 2952 return ret; 2953} 2954 2955/* clm -- taken from fs/buffer.c:block_invalidate_page */ 2956static void reiserfs_invalidatepage(struct page *page, unsigned long offset) 2957{ 2958 struct buffer_head *head, *bh, *next; 2959 struct inode *inode = page->mapping->host; 2960 unsigned int curr_off = 0; 2961 int ret = 1; 2962 2963 BUG_ON(!PageLocked(page)); 2964 2965 if (offset == 0) 2966 ClearPageChecked(page); 2967 2968 if (!page_has_buffers(page)) 2969 goto out; 2970 2971 head = page_buffers(page); 2972 bh = head; 2973 do { 2974 unsigned int next_off = curr_off + bh->b_size; 2975 next = bh->b_this_page; 2976 2977 /* 2978 * is this block fully invalidated? 2979 */ 2980 if (offset <= curr_off) { 2981 if (invalidatepage_can_drop(inode, bh)) 2982 reiserfs_unmap_buffer(bh); 2983 else 2984 ret = 0; 2985 } 2986 curr_off = next_off; 2987 bh = next; 2988 } while (bh != head); 2989 2990 /* 2991 * We release buffers only if the entire page is being invalidated. 2992 * The get_block cached value has been unconditionally invalidated, 2993 * so real IO is not possible anymore. 2994 */ 2995 if (!offset && ret) { 2996 ret = try_to_release_page(page, 0); 2997 /* maybe should BUG_ON(!ret); - neilb */ 2998 } 2999 out: 3000 return; 3001} 3002 3003static int reiserfs_set_page_dirty(struct page *page) 3004{ 3005 struct inode *inode = page->mapping->host; 3006 if (reiserfs_file_data_log(inode)) { 3007 SetPageChecked(page); 3008 return __set_page_dirty_nobuffers(page); 3009 } 3010 return __set_page_dirty_buffers(page); 3011} 3012 3013/* 3014 * Returns 1 if the page's buffers were dropped. The page is locked. 3015 * 3016 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads 3017 * in the buffers at page_buffers(page). 3018 * 3019 * even in -o notail mode, we can't be sure an old mount without -o notail 3020 * didn't create files with tails. 3021 */ 3022static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags) 3023{ 3024 struct inode *inode = page->mapping->host; 3025 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3026 struct buffer_head *head; 3027 struct buffer_head *bh; 3028 int ret = 1; 3029 3030 WARN_ON(PageChecked(page)); 3031 spin_lock(&j->j_dirty_buffers_lock); 3032 head = page_buffers(page); 3033 bh = head; 3034 do { 3035 if (bh->b_private) { 3036 if (!buffer_dirty(bh) && !buffer_locked(bh)) { 3037 reiserfs_free_jh(bh); 3038 } else { 3039 ret = 0; 3040 break; 3041 } 3042 } 3043 bh = bh->b_this_page; 3044 } while (bh != head); 3045 if (ret) 3046 ret = try_to_free_buffers(page); 3047 spin_unlock(&j->j_dirty_buffers_lock); 3048 return ret; 3049} 3050 3051/* We thank Mingming Cao for helping us understand in great detail what 3052 to do in this section of the code. */ 3053static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb, 3054 const struct iovec *iov, loff_t offset, 3055 unsigned long nr_segs) 3056{ 3057 struct file *file = iocb->ki_filp; 3058 struct inode *inode = file->f_mapping->host; 3059 ssize_t ret; 3060 3061 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 3062 offset, nr_segs, 3063 reiserfs_get_blocks_direct_io, NULL); 3064 3065 /* 3066 * In case of error extending write may have instantiated a few 3067 * blocks outside i_size. Trim these off again. 3068 */ 3069 if (unlikely((rw & WRITE) && ret < 0)) { 3070 loff_t isize = i_size_read(inode); 3071 loff_t end = offset + iov_length(iov, nr_segs); 3072 3073 if (end > isize) 3074 vmtruncate(inode, isize); 3075 } 3076 3077 return ret; 3078} 3079 3080int reiserfs_setattr(struct dentry *dentry, struct iattr *attr) 3081{ 3082 struct inode *inode = dentry->d_inode; 3083 unsigned int ia_valid; 3084 int depth; 3085 int error; 3086 3087 error = inode_change_ok(inode, attr); 3088 if (error) 3089 return error; 3090 3091 /* must be turned off for recursive notify_change calls */ 3092 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID); 3093 3094 depth = reiserfs_write_lock_once(inode->i_sb); 3095 if (is_quota_modification(inode, attr)) 3096 dquot_initialize(inode); 3097 3098 if (attr->ia_valid & ATTR_SIZE) { 3099 /* version 2 items will be caught by the s_maxbytes check 3100 ** done for us in vmtruncate 3101 */ 3102 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 && 3103 attr->ia_size > MAX_NON_LFS) { 3104 error = -EFBIG; 3105 goto out; 3106 } 3107 /* fill in hole pointers in the expanding truncate case. */ 3108 if (attr->ia_size > inode->i_size) { 3109 error = generic_cont_expand_simple(inode, attr->ia_size); 3110 if (REISERFS_I(inode)->i_prealloc_count > 0) { 3111 int err; 3112 struct reiserfs_transaction_handle th; 3113 /* we're changing at most 2 bitmaps, inode + super */ 3114 err = journal_begin(&th, inode->i_sb, 4); 3115 if (!err) { 3116 reiserfs_discard_prealloc(&th, inode); 3117 err = journal_end(&th, inode->i_sb, 4); 3118 } 3119 if (err) 3120 error = err; 3121 } 3122 if (error) 3123 goto out; 3124 /* 3125 * file size is changed, ctime and mtime are 3126 * to be updated 3127 */ 3128 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME); 3129 } 3130 } 3131 3132 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) || 3133 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) && 3134 (get_inode_sd_version(inode) == STAT_DATA_V1)) { 3135 /* stat data of format v3.5 has 16 bit uid and gid */ 3136 error = -EINVAL; 3137 goto out; 3138 } 3139 3140 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 3141 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 3142 struct reiserfs_transaction_handle th; 3143 int jbegin_count = 3144 2 * 3145 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) + 3146 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) + 3147 2; 3148 3149 error = reiserfs_chown_xattrs(inode, attr); 3150 3151 if (error) 3152 return error; 3153 3154 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */ 3155 error = journal_begin(&th, inode->i_sb, jbegin_count); 3156 if (error) 3157 goto out; 3158 error = dquot_transfer(inode, attr); 3159 if (error) { 3160 journal_end(&th, inode->i_sb, jbegin_count); 3161 goto out; 3162 } 3163 3164 /* Update corresponding info in inode so that everything is in 3165 * one transaction */ 3166 if (attr->ia_valid & ATTR_UID) 3167 inode->i_uid = attr->ia_uid; 3168 if (attr->ia_valid & ATTR_GID) 3169 inode->i_gid = attr->ia_gid; 3170 mark_inode_dirty(inode); 3171 error = journal_end(&th, inode->i_sb, jbegin_count); 3172 if (error) 3173 goto out; 3174 } 3175 3176 /* 3177 * Relax the lock here, as it might truncate the 3178 * inode pages and wait for inode pages locks. 3179 * To release such page lock, the owner needs the 3180 * reiserfs lock 3181 */ 3182 reiserfs_write_unlock_once(inode->i_sb, depth); 3183 if ((attr->ia_valid & ATTR_SIZE) && 3184 attr->ia_size != i_size_read(inode)) 3185 error = vmtruncate(inode, attr->ia_size); 3186 3187 if (!error) { 3188 setattr_copy(inode, attr); 3189 mark_inode_dirty(inode); 3190 } 3191 depth = reiserfs_write_lock_once(inode->i_sb); 3192 3193 if (!error && reiserfs_posixacl(inode->i_sb)) { 3194 if (attr->ia_valid & ATTR_MODE) 3195 error = reiserfs_acl_chmod(inode); 3196 } 3197 3198 out: 3199 reiserfs_write_unlock_once(inode->i_sb, depth); 3200 3201 return error; 3202} 3203 3204const struct address_space_operations reiserfs_address_space_operations = { 3205 .writepage = reiserfs_writepage, 3206 .readpage = reiserfs_readpage, 3207 .readpages = reiserfs_readpages, 3208 .releasepage = reiserfs_releasepage, 3209 .invalidatepage = reiserfs_invalidatepage, 3210 .sync_page = block_sync_page, 3211 .write_begin = reiserfs_write_begin, 3212 .write_end = reiserfs_write_end, 3213 .bmap = reiserfs_aop_bmap, 3214 .direct_IO = reiserfs_direct_IO, 3215 .set_page_dirty = reiserfs_set_page_dirty, 3216}; 3217